60499500

@ S CONTROL DATA
CORPORATION

NETWORK PRODUCTS

NETWORK ACCESS METHOD
VERSION 1/COMMUNICATIONS
CONTROL PROGRAM VERSION 3
REFERENCE MANUAL

cDC® OPERATING SYSTEM:
NOS 2

REVISION RECORD

Revision

A (12/01/76)

B

C

REVISION LETTERS I, 0, Q, AND X ARE NOT USED

(04/01/77)
(07/01/77)

(04/28/78)

(08/15/78)
(12/18/78)
(01/15/79)

(08/10/79)

(12/11/79)

(04/18/80)

(10/31/80)

(05/29/81)

(02/26/82)

(01/14/83)

Description

Original Release. PSR Level 439,

Revised to PSR Level 446 for technical corrections.
Revised to PSR Level 452 for technical corrections.

Completely revised for NAM version 1.1 release at PSR level 472 to include support of
remote and foreign NPUs, asynchronous and HASP TIPs, virtual terminals, IAF, and TVF.

Revised at PSR level 477 for technical corrections.
Revised at PSR level 485 for technical corrections.

Revised at PSR level 485 for additional technical correctiomns.

Revised to reflect release of NAM version 1.2. Included are descriptions of the binary
debug log file and postprocessor, special editing support, and QTRM.

Revised to reflect addition of connection duplexing, upline block truncation, block
header break markers, QTRM connection switching, and various technical corrections.

Revised at PSR level 517 to reflect the addition of 714 printer support, and various
technical corrections.

Revised at PSR level 528 to reflect the addition of QTRM support of application~to-
application connections, the user-interrupt capability, and various technical corrections.

Revised for NAM Version 1.3 release at PSR level 541 to include 2780/3780 terminal
support, changes to supervisory messages, PRU interface, and various technical
corrections.

Revised at PSR level 559 to reflect release of NAM Version 1.4, which supports NOS
Version 2.0 and includes the disable flag parameter on the LST/HDX/R supervisory message
and miscellaneous technical corrections.

Revised at PSR level 580 to reflect release of NAM Version 1.5 and CCP Version 3.5, which
run only under the NOS Version 2 operating system. This manual, which was previously
known as the NAM Reference Manual, is no longer applicable to products operating under
NOS 1. It has been reorganized to document information needed by a general networks
user, who must consider NAM as well as CCP when writing a network application. This is a
complete reprint.

Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

©COPYRIGHT CONTROL DATA CORPORATION 1976, 1977, 1978 215 MOFFETT PARK DRIVE

1979, 1980, 1981, 1982, 1983
All Rights Reserved
Printed in the United States of America

ii

SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the back of this manual

60499500 P

s

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars

in the margins or by a dot near the page number if the entire page 1is affected.

indicates pagination rather than content has changed.

Fron
Titl
ii
iti/
v

vi

Page

t Cover
e Page

iv

vii/viii

ix t
xiif

QWP e~ ? V& WN e

?

[}
[e I N el T oY

(>N~} T ™o

H-1
I-1

Index-1 thru -4

hru x1i1i

thru 1-6
thru 2-3
thru 3-4
thru 4-18
thru 5-19
thru 6-15
thru 7-32

thru A-48
thru B-10
thru C-17

thru E-30
thru F-16

thru H-12
thru I-22

Comment Sheet
Mailer

Back

Cover

60499500 P

Revision

t WYY YUY UNRNYTY U TY YUY U D YU Y e O |)

A bar by the page number

iii/iv

PREFACE

This manual, formerly known as the Network Access
Method reference manual, has been renamed the NAM
Version 1/CCP Version 3 reference manual. Its new
organization supplies reference information to both
Network Access Method (NAM) and Communications
Control Program (CCP) users, typically either sys-
tems programmers or analysts who are writing a net-
work application or who would like to learn more
about how the various portions of the network fit
together.

This book describes how applications interface to
the computer network and how the terminal user gains
access to these applications. Plus, this book fa-
miliarizes the reader with the Network Processing
Unit (NPU) and the Communications Control Program
(CCP). Knowledge of the NPU and CCP, however, is
not necessary to write an application program.

NAM and CCP operate under control of the NOS 2
operating system for the CONTROL DATA® CYBER 170
Computer Systems; CDC® CYBER 70 Computer System
models 71, 72, 73, and 74; and 6000 Computer Sys—
tems.

NAM is the subset of the host computer software that
provides communication between an application pro-
gram in the host computer and other application
programs or devices accessing the network’s re-
sources.

The Communications Control Program is software that
resides in a 255x Series Network Processing Unit
that allows a device to access the host computer
over communications lines.

WHO SHOULD READ THIS
MANUAL

This manual is directed at the general networks user
(a systems programmer or analyst), who is familiar
with subsystem applications programming, compiler
and assembler programming conventions, terminal
communication protocols, other network software
products, and the programming requirements of sup—
ported devices.

HOW THIS MANUAL IS
ORGANIZED

In addition to describing NAM, this book now con-
tains the majority of the information previously

60499500 P

found in the CCP reference manual. Information has
been consolidated into this book to reduce redundacy
and to provide a central location for information
needed by the general networks user.

Section 1 introduces the NAM and CCP software.
Section 2 describes the protocols governing infor-
mation exchanged for communication between NAM and
each application program, and between application
programs and their connections, Section 3 describes
the synchronous and asynchronous supervisory mes-
sages used by application programs. Section 4
describes the language and internal interfaces
required by an application program. Section 5 dis-
cusses the application interface program statements
used by NAM to access the network and to send and
receive messages. Section 6 discusses the structure
and ‘execution of an application program job as a
batch or system origin type file. Section 7 gives
more detailed information on CCP than was presented
in the first section of the book. Section 8 de-
scribes network failure and techniques of recovery.

Other parts of the Communications Control Program
reference manual have been moved to other network
product and operating system publications. Use
table 0-1 to help find the location of this infor-
mation.

RELATED PUBLICATIONS

Related material is contained in the publications
listed below. Other manuals may be needed, such as
the hardware, firmware, or emulator software refer-—
ence manual for the devices serviced by a given
program. Also, communication standards and device
operating literature can be useful.

The NOS 2 Manual Abstracts is a pocket-sized manual
that contains a brief description of the contents
and intended audience of every manual available for
NOS 2 and its product set. The abstracts manual
can help a particular reader determine which manuals
are of greatest importance.

Another manual, the Software Publications Release
History, gives the titles and revision levels of
software manuals available for the Programming
System Report (PSR) level of NOS 2 installed at your
site.

TABLE 0-1.

NEW LOCATION OF CCP REFERENCE MANUAL INFORMATION

Manual That Contains Information

. NOS Version 2 Communications s Communications
NOS Version 2 NOS Version 2
NAM/CCP System Control Program Operator/ Control Program
Information Maintenance Version 3 Internal
Reference N Analyst X
M 1 Reference Diagnostic Handbook Maintenance
anua Manual Handbook SpecificationT
CCP overview, concepts, X
and functions
NPU initialization, X
failure, and recovery
Character sets X
CCP glossary X
Mnemonics X
Statistics X
Halt Codes X X
Diagnostics X
Customer Engineering X
error messages
Dump information X
NPU operating X
instructions
Memory map X
Naming conventions X
NPU dumping, loading, X
and initializing details
TAvailable from Software Manufacturing Distribution (SMD), 4201 Lexington Ave. North,
Arden Hills, Minnesota 55112
The following manuals are of primary interest:
Publication
Publication Number
COMPASS Version 3 60492600
Reference Manual
Network Products 60480000
Network Access Method Version 1
Network Definition Language
Reference Manual
Network Products 60480600
Network Access Method Version 1
Terminal Interface Guide
Network Products 60499600
Remote Batch Facility Version 1
Reference Manual
NOS Version 2 Reference Set, Volume 1 60459660
Introduction to Interactive Usage
60499500 P

® vi

NOS Version 2 Reference Set, Volume 3 60459680
System Commands

NOS Version 2 Reference Set, Volume 4 €0459690
Program Interface

The following manuals are of secoundary interest:

Publication

Publication Number
CCP Version 3 60471500
Diagnostic Handbook

COBOL Version 5 60497100
Reference Manual

FORTRAN Extended Version 4 60497800
Reference Manual

FORTRAN Version 5 60481300
Reference Manual

Message Control System Version 1 60480300
Reference Manual

Network Processor Unit) 60472800
Hardware Reference Manual

NOS Version 2 60459390
Diagnostic Index

NOS Version 2 60459320
Installation Handbook

NOS Version 2 60485500
Manual Abstracts

NOS Version 2 60459310
Operator/Analyst Handbook

NOS Version 2 60459300
System Maintenance Reference Manual

Software Publications Release History 60481000
TAF Version 1 60459500

Reference Manual

255x Host Communications Processor/ 60470000
Network Processor Unit Reference Manual
CCP Version 1.0

255X Network Processor Unit 69472800
Hardware Reference Manual

2560 Series Syunchronous Communications 74700700
Line Adapter Hardware Maintenance Manual

2561 Series Asynchronous Communications 74700900
Line Adapter Hardware Malantenance Manual

2563 Series SDLC Line Adapter 74873290
Hardware Maintenance Manual

CDC manuals can be ordered from Control Data Corporation,
Literature and Distribution Services, 308 North Dale Street,
St. Paul, Minnesota 55103,

This product 1is intended for use only as
described in this document. Control Data can-
not be responsible for the proper functioning
of undescribed features or parameters.

60499500 P vii/viii

—

CONTENTS

- s
NOTATIONS xiii Data Message Content and Sequence Protocols 2-9
Interactive Virtual Terminal Data 2-9
1. NETWORK PRODUCTS: AN OVERVIEW 1-1 Line Turnaround Convention 2-10
Interactive Virtual Terminal Exchange
Computer Network 1-1 Modes 2-11
Communications Network 1-2 Normalized Mode Operation 2-11
Software Components of the Network 1-2 Upline Character Sets and Editing
Network Host Products 1-2 Modes 2-11
Network Access Method 1-3 Downline Character Sets 2-13
Peripheral Interface Program 1-3 Page Width and Page Length 2-13
Network Interface Program 1-3 Format Effectcrs 2-13
Application Interface Program 1-3 Transparent Mcde Operation 2-19
Queued Terminal Record Manager 1-3 Application Character Types 2-21
Network Definition Language Processor 1-3 Character Byte Content 2-22
Network Supervisor 1-4 Block Header Content 2-22
Communication Supervisor 1-4 Supervisory Message Ccntent and Sequence
Network Validation Facility 1-4 Protocols 2-22
Network Utilities 1-4 Asynchronous Messages 2-32
Network Dump Analyzer 1-4 Synchronous Messages 2-33
Load File Generator 1-4 Block Header Content 2-33
Debug Log File Processor 1-4
Hardware Performance Analyzer 1-4
NAM Application Programs 1-4

Network Processing Unit and Communicatiouns 3. SUPERVISORY MESSACES AND COMMANDS 3-1
Control Program
Network Processing Unit
Communications Control Program
Base System Software
Service Module

Message Protocols 3-1
Message Sequences 3-1
Managing Logical Connections 3-5
Connecting Devices to Applications 3-5
3-1
3-1
3-1

1-4
1-5
1-5
1-5
1-6
Host Interface Program 1-6 Connecting Applications to Applications -13
Terminal Interface Program 1-6 Monitoring Connections -16
Link Interface Program 1-6 Terminating Connections 3-16
Block Interface Program 1-6 Managing Connection Lists 3-18
In-Line and On-Line Diagnostics 1-6 Controlling List Folling 3-18
Console Debugging Aids 1-6 Controlling List Luplexing 3-19
Performance and Statistics Programs 1-6 Controlling Data Flow 3-21
CDC CYBER Cross System Software 1-6 Monitoring Downline Data 3-22
Using User~Interrupt Feature 3-26
Converting Data 3-27
2. INFORMATION PROTOCOLS 2-1 Truncating Data 3-28
Changing Terminal Characteristics 3-29
Information Flow 2-1 Requesting Terminal Characteristics 3-36
Structure Protocols 2-1 Host Operator Communication 3-37
Physical Protocols and Network Blocks 2-1 Host Shutdown 3-40
Logical Protocol and Physical Blocks 2-1 Error Reporting 3-41
Network Data Blocks 2-1
Transmission Blocks 2-3
Interactive Terminal Input Concepts 2-4
Line Mode Operation 2-4 4., APPLICATION INTERFACE DESCRIPTIONS 4-1
Block Mode Operation 2-4
Physical and Logical Lines 2-5 Language Interfaces 4-1
End-of-Line Indicators 2-5 Parameter List and Calling Sequence
Multiple Logical Lines in One Message 2-5 Requirements 4-1
End-of-Block Indicators 2-5 Predefined Symbolic Names 4-1
Interactive Terminal Output Concepts 2-6 Predefied Symbolic Values 4-9
Batch Data 2-7 COMPASS Assembler Language 4-9
Information Identification Protocols 2-7 Application Interface Program
Application Program Message Types 2-7 Macro Call Formats 4-9
Application Block Types 2-7 Field Access Utllities 4-10
Block Buffer Areas 2-7 Compiler-Level Languages 4-11
Block Header Area 2-7 Application Interface Program
Block Text Area 2-8 Subroutine Call Formats 4-11
Connection Identifiers 2-8 Field Access Utilities 4-12
Application Connection Number 2-8 Queued Terminal Record Manager
Application List Number 2-8 Utilities 4-13

60499500 P ix

Internal Interfaces
Application Interface Program and
Network Interface Program Communication
Worklist Processing
Parallel Mode Operation
Other Software Communication

5. USER PROGRAM CALL STATEMENTS

Syntax
Network Access Statements
Connecting to Network (NETON)
Disconnecting From Network (NETOFF)
Message Block Input/Output Statements
Specific Connections
Inputing to Single Buffer (NETGET)
Inputing to Fragmented Buffer
Array (NETGETF)
Outputing From Single Buffer (NETPUT)
Outputing From Fragmented Buffer
Array (NETPUTF)
Connections on Lists
Inputing to Single Buffer (NETGETL)
Inputing to Fragmented Buffer
Array (NETGTFL)
Processing Control Statements
Suspending Processing (NETWAIT)
Controlling Parallel Mode (NETSETP)
Checking Completion of Worklist
Processing (NETCHEK)

6. CHARACTERISTICS OF AN APPLICATION PROGRAM

NOS System Control Point
Application Job Structure
Commands
Overlays
Access to Application Programs
Types of Application Programs
Disabled
Unique Identifier
Privileged
Execution of Application Programs
Fatal Errors
Debugging Methods
Debug Log File and Associated
Utilities
Statistical File and Associated
Utilities
Dependencies
Memory Requirements

7. THE COMMUNICATIONS CONTROL PROGRAM
AND THE NETWORK PROCESSING UNIT

Hardware Environment
2551 Series Communications Processor
CYBER Channel Coupler
Cassette Drive
NPU Console
Multiplex Subsystem
Multiplex Subsystem Operation
Input Multiplexing
Input Demultiplexing
Output Multiplexing
Output Demultiplexing
Trunk Multiplexing

4-15

4-15
4-15
4-16
4-17

5-13
5-15
5-15
5-17

=0« We e = AN = \ 0o Je N« N« N« JE N
[
NP WLWWwWW W - —

[=a)
I
w

6-13
6-14
6-15

~J
1
—

UL L
LW N = e

1

D B B N N B B N
[}

[}
- w

Network Block Handling 7-4
Simplified Input Processing 7-4
Simplified Output Processing 7-5
Data Priorities 7-6

Connection Regulation 7-6
Levels of Logical Link Regulation 7-6

Terminal Interface Programs 7-7

ASYNC TIP 7-7
Protocol Assumptions 7-8
Supported Input and Output Mechanisms 7-8
Terminal Code Sets and Parity 7-9
Initial Connection 7-9
Di sconnection 7-9
Data Formatting in Normalized Mode 7-10
Normalized Editing Modes 7-10
Input Operations 7-10
Output Operations 7-10
Break Significance 7-11
Input Regulation 7-11
Error Recovery 7-11

X.25 TIP With PAD 7-11
Protocol Assumptions 7-12
Supported Input and Output Mechanisms 7-13
Terminal Code Sets and Parity 7-13
Initial Connection 7-13
Disconnection 7-14
Data Formatting in Normalized Mode 7-14
Normalized Editing Modes 7-14
Output Operations 7-14
Break Significance 7-14
Input Regulation 7-15
Error Recovery 7-15

MODE4 TIP 7-15
Protocol Assumptions 7-16
Supported Input and Output Mechanisms 7-17
Terminal Code Sets and Parity 7-19
Initial Comnection 7-19
Disconnection 7-20
Data Formatting in Normalized Mode 7-20
Normalized Editing Modes 7-20
Input Regulation 7-20
Error Recovery 7-20

HASP TIP 7-21
Protocol Assumptions 7-22
Supported Input and Output Mechanisms 7-22
Terminal Code Sets and Parity 7-25
Initial Connection 7-25
Disconnection 7-26
Data Formatting in Normalized Mode 7-26
Normalized Editing Modes 7-26
Input Regulation 7-26
Output Regulatiion 7-26
Error Recovery 7-26

BSC TIP 7-26
Protocol Assumptions 7-27
Supported Input and Output Mechanisms 7-28
Terminal Code Sets and Parity 7-30
Initial Connection 7-31
Disconnection 7-31
Data Formatting in Normalized Mode 7-31
Normalized Editing Modes 7-31
Input Regulation 7-32
Error Recovery 7-32

8. NETWORK FAILURE AND RECOVERY 8-1

Application Programs 8-1

Host 8-1

Network Processing Unit 8-1

60499500 P

(

Logical Link
Trunk

Line
Terminal

APPENDIXES

>

Character Data Input, Output, and
Central Memory Representation

B Diagnostic Messages

C Glossary

D User Program Call Statement Summary
E Queued Terminal Record Manager

F Terminal Definition Commands

G Delimiting and Transmitting Terminal Input
H Accessing the Network

I Sample FORTRAN Program

INDEX

FIGURES

1-1 Overview of Network Products

1-2 The Interfaces Between the Network

Product Elements
1-3 The Relationship Between the Parts of
the Communications Control Program
2-1 Physical and Logical Information
Structures
2 Block Reassembly Points
-3 Application Block Header Content for
Upline Network Data Blocks
2-4 Application Block Header Content for
Downline Network Data Blocks
2-5 Supervisory Message General Content,
Asynchronous Messages and Synchronous
Messages of Application Character
Type 2
2-6 Supervisory Message General Content,
Synchronous Messages of Application
Character Type 3
2-7 Application Block Header Content for
Upline Supervisory Messages
2~-8 Application Block Header Content for
Downline Supervisory Messages
1 Supervisory Message Mnemonic Structure
-2 Device-to—-Application Connection
Message Sequence
3-3 Connection-Request (CON/REQ/R)
Supervisory Message Format
3~4 Connection-Accepted (CON/REQ/N)
Supervisory Message Format
3-5 Connection-Rejected (CON/REQ/A)
Supervisory Message Format
3-6 Initialized-Connection (FC/INIT/R)
Supervisory Message Format
3-7 Connection-Initialized (FC/INIT/N)
Supervisory Message Format
3-8 Connection-Broken (CON/CB/R)
Supervisory Message Format
3-9 End-Connection (CON/END/R)
Supervisory Message Format,
Connection Establishment Sequences
3-10 Connection-Ended (CON/END/N)
Supervisory Message Format
3-11 Application-to-Application Connection
Message Sequences

60499500 P

[T

1

(S

HEO"HTUON}
e el T R e

2-29

3-21
3-22

3-23

3-38

3-39

3-40

3-42

3-43

3-44

3-45

Request-Application—Connection
(CON/ACRQ/R) Supervisory Message
Format

Application-Connection-Reject
(CON/ACRQ/A) Supervisory Message
Format

Connection Monitoring Message Sequences

Inactive—Connection (FC/INACT/R)
Supervisory Message Format

Connection Termination Message Sequences

Connection List Polling Control
Message Sequences

Connection List Duplexing Message
Sequences

Turn-List-Processing-0ff (LST/QFF/R)
Supervisory Message Format

Turn-List-Processing-On (LST/ON/R)
Supervisory Message Format

Change-Connection-List (LST/SWH/R)
Supervisory Message Format

Turn~On-Half-Duplex-List-Processing
(LST/HDX/R) Supervisory Message Format

Turn-On-Full-Duplex-List-Processing
(LST/FDX/R) Supervisory Message Format

Block-Delivered (FC/ACK/R) Supervisory
Message Format

Block-Not-Delivered (FC/NAK/R)
Supervisory Message Format

Break and Reset Message Sequence

Break (FC/BRK/R) Supervisory Message
Format

Reset (FC/RST/E) Supervisory Message
Format

Application~Interrupt (INTR/APP/R)
Supervisory Message Format

Application-Interrupt-Response
(INTR/RSP/R) Supervisory Message
Format

Terminate-Output-Marker (TO/MARK/R)
Supervisory Message Format

User-Interrupt-Request (INTR/USR/R)
Supervisory Message Format

User-Interrupt Message Sequence

Change Input Character Type Message
Sequence

Change-Input-Character~Type (DC/CICT/R)
Supervisory Message Format

Data Truncation Message Sequence

Data Truncation (DC/TRU/R) Supervisory
Message Format

Terminal Characteristics Redefinition
Message Sequences

Terminal-Characteristics~-Redefined
(TCH/TCHAR/R) Supervisory Message
Format

Define-Terminal-Characteristics
(CTRL/DEF/R) Supervisory Message
Format

Define-Multiple-Terminal-Characteristics
(CTRL/CHAR/R) Supervisory Message
Format

Define-Multiple-Terminal-Characteristics
Abnormal Response (CTRL/CHAR/A)
Supervisory Message Format

Multiple-Terminal-Characteristics~
Defined (CTRL/CHAR/N) Supervisory
Message Format

Request-Terminal-Characteristics
(CTRL/RTC/R) Supervisory Message
Format

Request-Terminal-Characteristics
Abnormal Response (CTRL/RTC/A)
Supervisory Message Format

3-31

3-32

3-36

3-36

xi

34/

3-48

3-49

REER S e
|
L2 R —

viion i i B
I
SN D N = e

[
}
O 0o

5-12
5~-13
5-14

5-19
5-20
5-21

® xii

Host Uperator Kequest-to-Activate-
Debug~Code (HOP/DB/R) Supervisory
Message Format

Host Operator Request-to-Turn—-Off-
Debug-Code (HOP/DE/R) Supervisory
Message Format

Host Operator Request-to-Dump-Field-
Length (HOP/DU/R) Supervisory
Message Format

Host Operator Request-to-Turn—-AIP-
Tracing—On (HOP/TRACE/R) Supervisory
Message Format

Host Operator Request-to-Turn-~AIP-
Tracing-0ff (HOP/NOTR/R) Supervisory
Message Format

Host Operator Request-to-Release-Debug-
Log~File (HOP/REL/R) Supervisory
Message Format

Host Operator Request-to-Restart-
Statistics-Gathering (HOP/RS/R)
Supervisory Message Format

Host Shutdown Message Sequences

Host-Shutdown (SHUT/INSD/R) Supervisory
Message Format

Logical Error Message Sequence

Logical-Error (ERR/LGL/R) Supervisory
Message Format

NFETCH Macro Call Format

NSTORE Macro Call Format

NFETCH Integer Function FORTRAN
Call Format

NSTORE Subroutine FORTRAN Call Format

QTRM Interface Level Analogy

NETON Statement FORTRAN Call Format

Supervisory Status Word Format

NETON Statement Example

NETOFF Statement FORTRAN Call Format

NETGET Statement FORTRAN Call Format

NETGET Statement FORTRAN 5 Examples

NETGET Statement FORTRAN Extended 4
Examples

NETGETF Statement FORTRAN Call Format

NETGETF Statement Text Area Address
Array

NETGETF Statement FORTRAN 5 Examples

NETGETF Statement FORTRAN Extended &
Examples

NETPUT Statement FORTRAN Call Format

NETPUT Statement FORTRAN 5 Example

NETPUT Statement FORTRAN Extended 4
Example

NETPUTF Statement FORTRAN Call Format

NETPUTF Statement Text Area Address
Array

NETPUTF Statement FORTRAN 5 Example

NETPUTF Statement FORTRAN Extended 4
Example

NETGETL Statement FORTRAN Call Format

NETGETL Statement FORTRAN 5 Example

NETGETL Statement FORTRAN Extended 4
Example

3-37

3-38

3-38

3-38

3-39

3-39

3-41
4-10
4-11

5-11
5-12
5-13

NETGLYFL Statement FORTRAN 5 Example

NETGTFL Statement FORTRAN Extended 4
Example

NETWAIT Statement FORTRAN Call Format

NETWAIT Statement FORTRAN 5 Examples

NETWAIT Statement FORTRAN Extended 4
Examples

NETSETP Statement FORTRAN Call Format

NETSETP and NETCHEK Statement
FORTRAN 5 Examples

NETSETP and NETCHEK Statement FORTRAN
Extended 4 Examples

NETCHEK Statement FORTRAN Call Format

Typical Job Structure for System Input

NETDBG Utility FORTRAN Call Statement
Format

NETREL Utility FORTRAN Call Statement
Format

NETSETF Utility FORTRAN Call Statement
Format

NETLOG Utility FORTRAN Call Statement
Format

NETDMB Utility FORTRAL Call Statement
Format

DLFP Control Statement General Format

DLFP Job Command Examples

DLFP Directive Keyword Format

DLFP Directive Examples

General Format of DLFP Output

NETSTC Utility FORTRAN Call Statement
Format

6-13 NETLGS Utility FORTRAN Call Statement
Format

6-14 General Format of One Period Listing
in Statistical File

7-1 Basic Components of a CDC Network
Processing Unit

7-2 Basic Components of the Multiplex
Subsystem

7-3 Simplified Input Processing

7-4 Simplified Output Processing

TABLES

2-1 Default Message Delimiter and
Transmission Keys

2-2 Format Effector Operations for
Asynchronous and X.25 Consoles

2-3 Format Effector Operatiouns for
Synchronous Consoles

2-4 Embedded Format Control Operations

for Consoles
Character Exchanges With Connections
Legal Supervisory Messages
Valid Field Numbers and Field Values
Reserved Symbols
AIP Internal Procedures
AIP Internal Tables and Blocks

5-16
5-16
5-17

5-17
5-17

60499500 P

NOTATIONS

Throughout this manual, the following conventions

are used in the presentation of statement formats,
operator type—ins, and diagnostic messages:

UPPERCASE

lowercase

{}

input parameter

return parameter

60499500 P

Uppercase letters indicate
acronyms, words, or wmne-
monics either required by
the network software as
input, or produced as out-
put.

Lowercase letters identify
variables for which values
are supplied by the NAM or
terminal user, or by the
network software as output.

Ellipsis indicates that
omitted entities repeat the
form and function of the
entity last given.

Square brackets enclose
entities that are optional;
if omission of any entity
causes the use of a default
entity, the default is
underlined.

Braces enclose entities from
which one must be chosen.

This term identifies an AIP
call statement parameter for
which values are supplied
to ATP by the programmer.

This term identifies an AIP
call statement parameter
for which variables are
supplied to AIP by the pro-
grammer and in which values
are placed by AIP.

<ct> The c¢t symbol represents
the network control char-
acter defined for the ter-
minal. This character must
be the first character of
the command entered.

LF The LF symbol represents a
one-line vertical reposi-
tioning of the cursor or
output mechanism. LF also
designates a character or
character «code associated
with such a line feed
operation.

(:) A circle around a character

’ represents a character key
that 1is pressed in con-
junction with a control
key (CTL, CNTRL, CONTRL,
CONTROL, or equivalent).

The boxed CR symbol repre-
sents the terminal key that
causes message transmission;
usually, this is the same
key that causes a carriage
return operation. Trans—
mission keys are described
in more detail in appendix
F.

Unless otherwise specified, all references to num-
bers are to decimal values and all references to
bytes are to 8-bit bytes and all references to
characters are to 7-bit ASCII-coded characters.
Fields defined as unused should not be assumed to
contain zeros.

xiii

NETWORK PRODUCTS: AN OVERVIEW 1

- I A
This section introduces the Control Data Corporation COMPUTER NETWORK
CYBER 170 network products, their relationships to
each other, and their significance to the data com- The computer network includes host computers,
munications user. Network products is a group of application programs, terminals, and the host soft-
programs and hardware that provides communications ware associated with network communications. Each
services to geographically dispersed users. application program gives the terminal wuser or

As shown in figure 1-1, a network consists of a
computer network and a communications network.

application a specific data processing capability.

(/7 Computer

Network

\ Applications /

NAM

Host
Computer

Communications
Network

Terminals

Figure 1-1.

60499500 P

Overview of Network Products

1-1@

COMMUNICATIONS NETWORK

The communications network includes network proc-
essing units (NPUs) and the connecting communication
lines and packet switching networks (PSNs) needed
to transport blocks of data between host computers
and terminals.

The size and complexity of a communications network
varies from a simple network with one local (front-—
end) NPU or a network with one local NPU and one or
more remote NPUs to a more complex network with
multiple local NPUs and multiple remote NPUs.
Attached to these NPUs are terminal devices, such
as entry/display stations.

Because the communications network minimizes termi-
nal type dependency and removes many of the terminal
switching operations from the host, the host can
process data more efficiently.

SOFTWARE COMPONENTS OF
THE NETWORK

Figure 1-2 shows the interfaces between the elements
of the network. The left part of the figure shows
the network host products (NHP), which are the
software elements located in the CDC CYBER 170 host

computer. The middle section shows the Communica-
tions Control Program (CCP), which is the software
element located in the Network Processing Unit. As
shown in the right portion of figure 1-2, CCP com-
municates directly with the terminals while the
Network Access Method (NAM) communicates with
applications. Refer to figure 1-2 while reading
the remainder of this overview section on network
products.

NETWORK HOST PRODUCTS

Network host products includes the network access
software and the application programs that provide
the specific facilities requred by terminal users.

The network access software is collectively called
the Network Access Method or NAM. NAM is used in
several contexts throughout this manual and in the
other network products documentation. NAM can refer
to the interface between application programs and
the communications network; to the programs that
implement that interface, including the Applications
Interface Program (AIP), the Network Interface Pro-
gram (NIP), and the Peripheral Interface Program
(PIP); or to the product NAM, which also includes
the ' Network Supervisor (NS), the Communications
Supervisor (CS), and the Network Validation Facility
(NVF).

Network Host Products

Communictions Terminals

Control Program

|
|
NPU NS |
Files |
|
[
Network |
Defini-
tion |
Files |
|
CCP |
Coupler L
|
| AIP PIP | Logical' Link & | HIP TIPS | _»(:)
NOS NIP Conneftion 1 A _
Files . AR
Network I | —
Terminal
|
|
I
| I
Figure 1-2. The Interfaces Between the Network Product Elements
60499500 P

@ 1-2

In figure 1-2, NAM refers to the set of programs
that implement the interface between the application
programs and communications network.

Network host products sofware, shown 1in the left
part of figure 1-2, includes:

Network Access Method

Network Definition Language Processor
Network Supervisor

Communications Supervisor

Network Validation Facility

Network utilities

Network Access Method application programs

NETWORK ACCESS METHOD

The Network Access Method is the central network
host product. NAM interfaces between applications
in the same host or between applications and the
Communications Control Program.

NAM software consists of three interface programs
that provide a common way for CDC CYBER 170 appli-
cations to access the communications network. NAM
resolves resource contention among application
programs and buffers data to regulate data flow.

Peripheral Interface Program

The Peripheral Interface Program (PIP) is a periph-
eral processor unit program that interfaces the
central processor executed routines of NAM to the
channel-connected local NPUs.

PIP moves blocks of data between the central memory
buffers of NAM and the NPU and reads and writes
disk files used by batch devices. PIP also can
detect when a local NPU needs initializing. If the
NPU does not have system autostart module hardware,
PIP requests the network supervisor to load the
bootstrap program into the NPU.

Network Interface Program

The Network Interface Program (NIP) executes as a
system control point. NIP coordinates the use of
the communications network by all application pro-
grams, buffers data between the application pro-
grams and the network, and manages the logical
connections.

The buffering provided by NIP eliminates the need
for application programs to have outstanding buff-
ers. Although an application program is expecting
input data, the application program can be swapped
out, which reduces the use of host resources.

Each application program may have several connec-

tions; each connection is associated with a terminal
device or with another application program. NIP

60499500 P

translates between network addresses and the more
convenient logical addresses that represent the
connection to the application. NIP also establishes
new connections as they are requested and terminates
connections that are no longer needed or that have
failed.

An application may request NAM to convert the data
on a logical conaection from the network format.
Such conversions determine the format and encoding
of characters seen by the application.

Application Interface Program

The Application Interface Program (AIP) is a set of
subprograms that resides in the application pro-
gram’s field length and provides a procedural
interface to the capablilities of NIP and the
network.

Procedural statements are provided so that the
application program can connect to and disconnect
from the network. Procedural statements also con-
trol information exchange between the application
program and NAM buffers, This information may be
data, or it may be supervisory messages that coor-
dinate the application’s execution with events that
have occurred in the network. NAM may pass a
supervisory message to inform the application of a
new connection that is requesting service, or that
a failure has occurred. In the same way, the
application program uses supervisory messages to
communicate with NAM and the network elements.

Queuved Terminal Record Manager

Queued Terminal Record Manager (QTRM) is a set of
procedures that resides in the application program’s
field length and provides a high level procedural
interface to the network. QTRM is discussed in
appendix E of this bock.

NETWORK DEFINITION LANGUAGE
PROCESSOR

Before the network software can route data through
the network and interface to operators for super-
vision, the definition of the network configuation
must first be communicated to the software. The
Network Definition Language (NDL) is used to
describe this configuration. The Network Defini-
tion Language processor (NDLP), an off-line batch
utility, translates this configuration and prepares
a network configuration file (NCF) and a local
configuration file (LCF).

The NCF contains network configuration information
required by the network.

The LCF coatains host information required by the
Network Validation Facility, such as automatic log-
in parameters and application information. The LCF
allows the network validation facility to validate
and connect to applications.

NDL is described in the Network Definition Language
reference manual.

NETWORK SUPERVISOR

The Network Supervisor (NS), which executes as a NAM
application, interfaces between the NPUs and CCP
program files in the host. NS responds to requests
to load NPUs with their software and saves NPU dumps
on host files.

COMMUNICATION SUPERVISOR

The Communication Supervisor (CS) program executes
as a NAM application. It interfaces to the network
processing unit operator (NOP)., CS allows a net-
work operator at a terminal or host console to
obtain and change the status of network elements,
to communicate with users at terminals, and to run
diagnostics. CS also responds to requests for net-
work configuration data from an NPU.

NETWORK VALIDATION FACILITY

This program, which executes as a NAM application,
validates the terminal user’s access to the host
and an application program’s access to the computer
network. The Network Validation Facility (NVF)
also maintains and reports application status to
the host operator (HOP). As figure 1-2 shows, the
NOS validation file and the 1local configuration
file (LCF) supply validation information.

NETWORK UTILITIES

Four utility programs either are included with or
used by network host products:

The Network Dump Analyzer (NDA)
The Load File Generator (LFG)
The Debug Log File Processor (DLFP)

The Hardware Performance Analyzer (HPA)

Network Dump Analyzer

This host wutility produces a formatted printout
from NPU dump files created by the Network Super-
visor. The site analyst can use these dumps to
help analyze CCP software or NPU hardware failures.
The network dump analyzer uses the network dump
file (NDF), which is shown in figure 1-2, as input.

Load File Generator

This host wutility reformats CCP program files
produced by the CDC CYBER Cross System’s link and
edit programs into a single random access file used
by the Network Supervisor to load NPUs. This file
is the network load file (NLF), which is one of the
NPU files shown in figure 1-2.

Debug Log File Processor

This host wutility processes the debug log file
generated by the Application Interface Program.

Hardware Performance Analyzer

A fourth utility program, the hardware performance
analyzer (HPA), is part of the NOS operating system.
This CYBER utility program produces reports from
information on the account and error log dayfiles.
Network products software makes statistical, error,
and alarm message entries into these dayfiles.

NAM APPLICATION PROGRAMS

The host computer executes CDC-written or site-
written service programs called application pro-
grams that are connected to the network through
NAM. An application program can communicate with
other application programs or terminals connected
to the network.

The CDC-provided NAM application programs are:

Interactive Facility (IAF), which allows you to
create files and to create or execute programs
from a device without using card readers or
line printers. IAF is described in Volumes 1
and 3 of the NOS 2 Reference Set.

"Remote Batch Facility (RBF), which permits you
to enter a job file from a remote card reader
and to receive job output at a remote batch
device. RBF 1is described in the Remote Batch
Facility reference manual.

Transaction Facility (TAF), which permits you
to implement on-line transaction processing
under NOS by writing programs to use terminals.
TAF is described in the TAF reference manual.

Terminal Verification Facility (TVF), which
provides tests you can use to verify that an
interactive console is sending and receiving
data correctly. TVF is discussed in the Ter-
minal Interface Guide.

Message Control System (MCS), which allows you
to queue, route, and journal messages between
COBOL programs and terminals. MCS is described
in the Message Control System reference manual.

NETWORK PROCESSING UNIT
AND COMMUNICATIONS CONTROL
PROGRAM

This subsection discusses the following network
products, which are part of the communications
network and allow a terminal to access the host
computer over communication lines:

The 255x Series Network Processing Unit (NPU),
which connects a host to a terminal

The Communications Control Program (CCP), which
is the software in the NPU

The CDC CYBER Cross System, which supports
installing, maintaining, and modifying CCP

The middle portion of figure 1-2 shows the communi-
cations network.

60499500 P

NETWORK PROCESSING UNIT

An NPU handles front-end or remote data communica-
tions for the CDC CYBER 170 host. The Communica-
tions Control Program resides within the NPU.

To understand CCP, you must have a basic under-
standing of the hardware on which CCP runs. Refer

to the hardware manuals listed in the preface for a
description of the hardware components of the NPU.

COMMUNICATIONS CONTROL PROGRAM

The Communications Control Program, which 1is the
software that executes in the 255x NPUs, consists
of:

Base system software

Service Module

Host Interface Program

Terminal Interface Programs

Link Interface Program

Block Interface Program

In-line and on-line diagnostics
Console debugging aids

Performance and statistics programs

Figure 1-3 shows how the major parts of CCP relate
to each other.

Base System Software

The base system software executes programs, allo-
cates buffers, handles interrupts, and supports
timing and data structures. It includes:

A system monitor, which controls the allocation
of resources for the communications processor

Timing services, which run those programs or
functions that are executed either periodically
or following a specific time lapse for the
processor

A multiplex subsystem, which interfaces with
the multiplex hardware and performs character
by character processing of tasks

Interrupt handler, which controls the transi-
tion of the communications processor between
different program interrupt levels

Initialization, which prepares the network for
on-line operation

Structure services, which build and maintain
internal tables used for routing data

Buffer maintenance, which dynamically allocates
memory in multiple buffer sizes for efficient
memory use

Wworklist services, which provide logic for 255x
interprogram communication through the use of
worklists

Standard subroutines, which provide support
routines to handle arithmetic conversioun, main-
tain page registers, and do miscellaneous tasks

Base System
Software

Host

Terminals

Figure 1-3. The Relationship Between the Parts of the
Communications Control Program

60499500 P

' Service Module

The Service Module (SVM) includes network control
functions and interface programs that provide a
common link to other elements of the communications
network. These programs:

Process service messages
Control line and terminal configuration

Report and respond to regulation and supervision
changes

Host Interface Program

The Host Interface Program (HIP) provides the soft-
ware that 1links the host and a local NPU over a
channel. The HIP drives the CDC CYBER Channel
Coupler, transfers data, checks for errors, and
monitors for host failure and recovery.

Terminal Interface Program

The Terminal Interface Program (TIP) is a modular
program that provides protocol support and the con-
trol needed to interchange data between a terminal
and other elements of CCP. CDC provides TIPs for
asynchronous, X.25, mode 4, bisynchronous, and HASP
terminals. Non-CDC TIPs may be written to support
specific site requirements. Section 7 discusses
TIP details.

Link Interface Program

The Link Interface Program (LIP) transfers informa-
tion over a trunk between NPUs.

Block Interface Program

The Block Interface Program (BIP) routes blocks of
data, processes service messages, and processes the
network block protocol.

In-Lline and On-Line Diagnostics

In-line and on-line diagnostics, which are produced
for the NPU, enable a NOP to isolate communications
line problems. Alarm, CE error, and statistics
service messages are the types of in-line diag-
nostics. In-line diagnostics are generated auto-
matically. On-line diagnostics must be requested
from the NOP console.

e®l-6

Console Debugging Aids

Debug aids provide test utilities for debugging
programs, taking memory snapshots, and dumping the
NPU during program development or system failures.

Performance and Statistics Programs

These programs gather statistics on NPU and indi-
vidual line performance, and periodically dispatch
theses statistics to the Communications Supervisor.

CDC CYBER CROSS SYSTEM SOFTWARE

The CDC CYBER Cross System software allows you to
install, modify, and maintain the CCP software. It
is composed of these programs:

PASCAL, which is a high level compiler patterned
after ALGOL-60. By using PASCAL, you can define
tasks in statements that are processed by the
compiler to yield a variable number of actual
program instructions.

Formatter, which reformats PASCAL output into
an object code format compatible with the com-
munications processor macro assembler output

Macro Assembler, which assembles communications
processor macro level source programs and
produces relocatable binary output. The source
programs 4are written with symbolic machine,
pseudo, and macro instructions.

Micro Assembler, which provides the language
needed to write a micro program. This assembler
translates symbolic source program instructions
into object machine instructions.

Link Editor, which accepts object program
modules and generates a memory image, suitable
for executing in the 255x NPU.

Autolink Utility, which simplifies program
assignment and maximizes the amount of space
assigned to handling buffers.

Expand Utility, which includes several hardware
and software variables used to define a CCP load

file for a given NPU configuration.

See the preface for manuals that contain more
information on the CDC CYBER Cross System.

60499500 P

INFORMATION PROTOCOLS

This section describes the protocols governing
information exchanged for communication between the
Network Access Method (NAM) and each application
program, and between application programs and their
connections. The first portion of this section
defines the terms and concepts needed to understand
the description of information content in the
remainder of this section.

You should remember that parts of the network soft-
ware are written as application programs and also
use these protocols. Some of the features and
options discussed in this and subsequent sections,
therefore, do not necessarily apply to site-written
application programs; such information is indicated
where it is described.

INFORMATION FLOW

Information flow in the network is defined from the
viewpoint of the host computer. Information coming
to the host is said to be traveling upline; infor-
mation moving away from the host is said to be
traveling downline.

STRUCTURE PROTOCOLS

The network software uses structure protocols of
two types:

A logical protocol based on the concept of a
message

A physical protocol based on various defini-
tions of a block of data

The conditions that create a logical message and
the conventions governing the subdivision of mes-
sages are influenced by the physical structure pro-
tocols the network uses. The events involved in
actually creating a message are described later in
this section under the headings Interactive Terminal
Input Concepts and Iateractive Terminal Output
Concepts.

PHYSICAL PROTOCOLS AND NETWORK
BLOCKS

Information exchanged with the network is either
data of no significance to the network software or
nondata control information of significance only to
the network software. Exchanges of control infor-
mation and data between application programs, the
network software, and a terminal user occur in log-
ical messages comprising one or more physical net-
work blocks. A network block is a physical sub-
division of a logical entity.

60499500 P

A network block is a grouping of information with
known and controllable boundary conditions, such as
length, completeness of the unit of communication,
and so forth. Other network documentation refers
to network blocks as network data blocks; this man-
uval uses the term data block only when referring to
network blocks that do not contain control infor-
mation.

Information exchanges between network processing
units and host computers or between application
programs use this physical structure protocol.
Such exchanges occur in single network blocks.

Information exchanges between network processiag
units use a different physical structure protocol.
Such exchanges occur in sets of character and con-
trol bytes called frames. The relationship of a
frame to a network block is not significant to an
application programmer; frames are not discussed in
this section.

Information exchanges between network processing
units and terminal devices use a third physical
structure protocol. Such exchanges occur in sets

of character and control bytes called transmission
blocks.

LOGICAL PROTOCOL AND PHYSICAL
BLOCKS

Upline and downline information within the host and
NPUs is always grouped into physical network blocks.
Network data blocks are grouped into logical mes-
sages. Messages exchanged between an NPU and a
device can also be grouped into physical trans-
mission blocks of one or more logical messages.
Figure 2-1 shows these concepts.

Network blocks are restructured into other types of
blocks at points of entrance and exit from the net-
work processing units. Figure 2-2 shows these
points as circles.

Network Data Blocks

A network data block is a collection of character
bytes, analogous to a clause in English. It is a
partially independent unit of information and might
need to be used with other blocks to form a message.

A network data block can contain all or part of a
message. Whether a message must be divided into
several network data blocks is determined by the
size of a network data block.

Physical Network Blocks

Network Network
Block Block

Network Network
Block Block

-=— 100 characters — - 68 characters-—-=

Logical Messages

-«—100 characters — -9 characters—

Message 1 Message 2 —-» -«— Message 3—»
Network Network Network Network
Block Block Block Block

100 characters —m 68 characters—m

Terminal Transmission Block (Block Mode Operation Input)

100 characters —m -9 characters—»

Transmission Block —

Message 1 -

Message 2 ——= -«— Message 3—=

Network Network
Block Block

Network Network
Block Block

-«—100 characters —= -« 68 characters —

-«—100 characters —= -9 characters—=

Figure 2-1. Physical and Logical Information Structures

Upline and Downline Block Sizes

CDC-defined interactive devices have network data
block sizes that are multiples of 100 character
bytes for upline data and of varying sizes for
downline data. The last block of an upline message
need not contain a multiple of 100 characters.

CDC-defined batch devices have network data block
sizes that are multiples of 640 central memory
words. Each such block is one mass storage physi-
cal record unit (PRU) of a file.

The network administrator establishes the appro-
priate size of upline and downline network data
blocks for each terminal device when the network
configuration file is created. Sizes are usually
chosen to fit a single message into a single net-
work data block, or to optimize use of available
network storage, or to satisfy some other adminis-
trative criterion. The administrator also estab-
lishes the correct size for a terminal transmission
block in the network configuration file.

The initial size of an upline network data block is
established by the site administrator (using the
UBZ parameter of an NDL statement) when he or she
defines the device that produces the block. Once a
size 1s established for a device, that size deter-
mines the maximum number of characters an appli-
cation program can receive as a single network data
block. When an upline message is too long to fit
into a single network data block, the NPU divides
it into as many network data blocks as necessary
before delivery to the application program.

The initial size of a downline network data block
is established by the site administrator (using the
DBZ parameter of an NDL statement) when he or she
defines the device that receives the block. The
established size is a recommended maximum for the
number of characters an application program should
send in a single network block. The actual maximum
size of a downline network block is chosen by the
application program sending the block. NAM imposes
an absolute maximum size, however; this absolute
maximum is described later in this section under
the heading Block Buffer Areas.

60499500 P

(

HOST
NETWORK BLOCKS
FRONT -END
NPU
NETWORK BLOCKS
ran\
\\
TRUNK — 3 FRAMES
D
REMOTE N
NPU
NETWORK BLOCKS
N
¥
COMMUNICATION TERMINAL
LINE ———» TRANSMISSION
8LOCKS
OR
X.25 PROTOCOL
PACKETS
TERMINAL
DEVICE

Figure 2-2. Block Reassembly Points

The maximum length used for each network data block
to or from a device can be independent of the ter-
minal’s transmission block size. For example, a
mode 4 console cannot accept a transmission block
containing more than a specified number of char-
acters. An application program could divide a mul-
tiple line display transmitted to the console of
such a terminal into network blocks smaller than
the buffer space of the specific terminal. However,
the application program does not need to divide its
network blocks. The network software reconstructs
any of the program’s network data blocks longer
than the terminal’s buffer space into several ter-
minal transmission blocks of the correct size.

An application program is advised of the upline and
downline network data block sizes defined for each
device it services when logical connection to a
device occurs. Your application program can change
the established upline block size using control
information called a field number/field value pair;
this process is described in section 3. Your ap-
plication program cannot change the established
downline block size but can ignore it.

60499500 P

The upline block size 1is enforced by the network
software, which subdivides terminal transmission
blocks input from a device into network data blocks
of that size or smaller. The upline block size
defines the largest block that NAM will deliver to
the application program.

The downline block sizes defined are advisory
values. That is, an application program can accept
the size specified for a given logical connection
when the connection is made, or ignore that speci-
fication and choose its own value for maximum block
size. 1If an application program transmits blocks
larger than the downline block size, the network
software does not subdivide them until it creates
transmission blocks for the terminal.

Application programs should use the downline block
sizes defined for terminal devices whenever pos-
sible., If the size of an upline or downline net-
work data block is not appropriate for the type of
data being exchanged with a device, you should
discuss the situation with the network administrator
who configures the devices being serviced. The
Network Access Method Version 1 Network Definition
Language Reference Manual listed in the preface
contains guidelines for choosing upline and down-
line network data block sizes and for selecting
terminal transmission block sizes.

Block Limits

Temporary network block storage (queuing) occurs
for upline and downline traffic at several points
in the network. The network adminstrator controls
the storage space required by controlling the net-
work data block size and the number of blocks queued
in each direction.

The number of blccks queued depends on several
Network Definition Language (NDL) statement param-
eters. One of those parameters, the ABL parameter,
establishes the application block 1limit. The ap-
plication block limit is another device configura-
tion parameter received by an application program
(as the abl field value) when logical connection
occurs. Your application program cannot send more
than that number of downline blocks for queuing
within the network.

The application block limit can be changed by the
application program, wusing control information
called a field numter/field value pair; this proc-
ess 1is described in section 3. The use of the
block limit is described in section 3 as part of
the data flow contrcl description.

Transmission Blocks

Terminals send or receive data in physical groupings
of character bytes; these groupings are called
transmission blocks. The size of a downline trans-
mission block for a specific device is also estab-
lished by the network administrator (using the XBZ
parameter of an NDL statement). The wvalue used
might be dictated by hardware requirements.

2-3 @

Transmission blocks exchanged with X.25 devices are
called packets and have different size and protocol
content requirements than transmission blocks ex-
changed directly with a terminal. The network
administrator can control some of the character-
istics of packets.

During upline transmissions from a device, the NPU
reassembles the terminal’s transmission block into
network blocks. Each transmission block from a
CDC-defined batch device can contain part of a
single message, all of a single message, or several
messages. Each transmission block from a CDC-
defined console device can contain all of a single
message, or several messages.

During downline transmissions, the NPU resassembles
network blocks into terminal transmission blocks.
This conversion is done so that the application
program need not be concerned that output is de-
livered in appropriately sized transmission blocks
when the terminal cannot process blocks larger than
a maximum size. Each transmission block can con-
tain part of a single message or all of a single
message; downline transmission blocks do not contain
more than one message.

INTERACTIVE TERMINAL INPUT
CONCEPTS

An interactive device can send or receive data in
two modes:

Normalized mode

Transparent mode

The significance of these data modes 1s described
later in this section under Interactive Virtual
Terminal Data. The following discussion does not
apply to transparent mode data.

In normalized mode, an interactive device transmits
logical lines of data. Each logical line is analo-
gous to an English sentence. It is a complete unit
of information.

The device can transmit these lines one at a time,
or in sets. It therefore can use one of two pos-
sible transmission modes.

If the device can transmit only one character or
one logical line in each transmission block, it is
operating in line mode. If the device can transmit
more than one logical line in a transmission block,
it is operating in block mode.

HASP and bisynchronous devices (terminal classes 9,
14, 16, and 17) always operate in line mode. X.25
devices (terminal classes !, 2, and 5 through 8)
and mode 4 devices (terminal classes 10 through 13
and 15) always operate in block mode. Only devices
in terminal classes 1, 2, and 5 through 8 that do
not access the network through an X.25 interface
can operate in both modes.

® 2-4

Line Mode Operation

From a terminal user’s viewpoint, transmitting a
single logical line at a time is a buffered line
mode form of input. Buffered line mode allows the
user to select either character-by-character or
line-by-line transmission (some devices have
switches to select either option) without uistinc—
tion. Each logical line is terminated by an end-
of-line indicator; this indicator might also trans-
mit the line from the terminal, if the terminal
buffers lines of input. Each logical line becomes
a separate network message when the NPU receives it.

When the NPU is told that an interactive device is
operating in line mode, the NPU performs line turn-
around for it. When a message is sent upline in
this mode, the NPU begins to send any downline data
available for the device. That is, output is al-
lowed after each logical line of input. (Refer to
the KB option for the IN command, described in
section 3.)

Block Mode Operation

Some devices can transmit many logical lines in a
single transmission block. (The terminal wuser
sometimes can select or override this condition
with a BLOCK or BATCH mode switch on the device.)
Such devices are called block mode terminals.

Block mode terminals group logical lines in the
terminal until the transmission key 1is pressed;
these groups reach the network software as a single
transmission block. The network software forwards
each message to the application program as a sepa-
rate transmission; the effect resembles typeahead
entries from line mode terminals.

Each logical line within the input transmission
block ends with an end-of-line indicator. Each
transmission block is terminated by an end-of-block
indicator.

Whether each logical line in a transmission block
becomes a separate message or each transmission
block becomes a single message initially is deter-
mined by the network administrator through the de-
vice definition in the network configuration file.
Your application program or the terminal user can
change that mode (refer to the EL and EB options of
the EB command, described in section 3).

When the NPU is told an interactive device is oper-
ating in block mode, the NPU does not perform line
turnaround for it until all of its current trans-
mission block is received. When the terminal is
serviced in this mode, the NPU holds all downline
data available for the device until it detects the
end~of-block indicator. That is, output is allowed
after each logical line of input only if each logi-
cal line of input is transmitted in a separate
block. (Refer to the BK and PT options for the 1IN
command, described in section 3.)

A terminal might have a block transmission key that
does not generate the end-of-block indicator. When
the block transmission key generates the end-of-line
indicator, the terminal is operating in line mode,
and logical lines are transmitted from the terminal
as separate messages.

60499500 P

When the transmission key does not generate either
the currently defined end-of-line indicator or the
currently defined end-of-block indicator, the ter-
minal user must be aware of the distinction and must
enter an indicator as the last data character before
pressing the transmission key. These possible con-—
ditions exist:

If the transmission key is pressed immediately
after pressing the key that generates an end-
of-line indicator, a message is generated. This
result is the same as if the device was opera-
ting in line mode and the key generating an
end-of-line indicator had been pressed, or as
if the key generating an end-of-block indicator
had been pressed.

1f the transmission key is pressed immediately
after pressing the key that generates an end-
of-block indicator, a message 1is generated.
This result is the same as if the device was
operating in line mode and the key generating
an end-of-line indicator had been pressed, or
as if the transmission key had generated an
end-of-block indicator.

If the transmission key is pressed without
pressing an end-of-line key or end-of-block key
as the last prior activity, an incomplete mes-
sage exists, The Terminal Interface Program
(TIP) generates an upline network data block if
enough information was received. If a downline
block is available for the device, a few char-
acters of that output might be sent to the
device and overwrite some of the input following
the last end-of-line or end-of-block indicator
received. If downline blocks subsequently
become available for the device, the data
remains queued while the TIP waits for comple-
tion of the input transmission block. This
situation exists until the terminal user enters
more data, ending with either an end-of-line or
an end-of~block indicator.

Physical and Logical Lines

A logical line of input can contain one or more
physical lines; a physical line ends when vertical
repositioning of the cursor or carriage occurs. If
the device recognizes a linefeed operation distinct
from a carriage return operation, a physical line
ends when a linefeed is entered. If no distinction
exists between vertical and horizontal reposition-
ing, a physical line is identical to a logical line.

A physical line of input is relevant to the network
software only when a backspace character is proc-
essed. Terminal users cannot backspace across
physical line boundaries to delete characters in
physical lines other than the current one.

A logical line of input always ends when an inter-
active device transmits an end-of-line or end-of-
block indicator. An wupline message 1is normally

transmitted to the host as soon as a logical line
ends.

60499500 p

End-of-Line Indicators

The end-of-line indicator is initially established
by the network administrator when he or she defines
the device in the network configuration file. The
indicator 1is either a specific code, a code se-
quence, or a specific condition associated with use
of a certain key or set of keys by the terminal
operator. The default keys for generating an end-
of-line indicator are shown in table 2-1.

Your application program or the termiual user can
change this indicator (refer to the EL command
aptions, described ia section 3). The NPU normally
discards any end-of-line indicator character code
when it detects the end of a logical line.

Multiple Logical Lines in One Message

For wupline data from an interactive device, the
network administrator can configure the device so
that the NPU ignores the character or event that
normally causes it to transmit a message as soon as

a logical line ends. TInstead, he or she can make
the NPU use a differant character or event to trig-
ger transmission to the host. Your application

program or the terminal user can also make this
change (refer to the EB option of the EL command,
described in section 3).

This option allows the terminal user to pack many
logical lines into one set of upline network blocks.
Each line includes the end-of-line indicator as a
data character that terminates it. This is a form
of single-message mode, because the host receives
only one message. From the terminal user’s view-
point, one message is many logical lines.

End-of-Block Indicators

The end-of-block indicator is initially established
for the device by the network administrator when he
or she defines the device in the network configura-
tion file. The indicator is either a specific code,
a code sequence, or a specific condition associated
with use of a certain key or set of keys by the
terminal operator.

The default keys fcr generating an end-of-block
indicator are shown in table 2-1. 1In X.25 packet-
switching networks, the packet transmission condi-
tion is always the end-of-block indicator.

When the device is not operating in block mode, the
end-of~-block indicator has the same effect as an
end-of-line indicator.

Your application program or the terminal user can
change the end~of-block indicator (refer to the EB
command, described in section 3). This iundicator
normally is discarded when the last message from the
device is sent upline.

TABLE 2-1. DEFAULT MESSAGE DELIMITER AND TRANSMISSION KEYS

Character or
Terminal Archetype e F Block Mode
Class Terminal End-of-Line Key Line Mode Transmission Key
Transmission Key
1 Teletype Model 30 RETURN RETURN CTRL and D
series
2 CcDC 713, 751, 756 RETURN or RETURN or SEND
CARRIAGE RETURN CARRIAGE RETURN or CONTROL and D
3 Reserved for CDC use
4 IBM 2741 RETURN RETURN None
5 Teletype Model 40-2 RETURN RETURN SEND
6 Hazeltine 2000 CR CR SHIFT and XMIT
or CTRL and D
7 CDC 752 CARRIAGE CARRIAGE CTRL and D
RETURN RETURN
8 Tektronix 4014 RETURN RETURN CTRL and D
1, 2, X.25 packet assembly/ RETURN Packet Packet
5 thru 8 disassembly (PAD) transmission transmission
console device key key
9 HASP (postprint) Variable Variable None
10 CDC 200 User Terminal RETURN None SEND
11 CDC 714-30 NEW LINE None ETX
12 CDC 711 NEW LINE None ETX
13 CDC 714-10/20 NEW LINE None ETX
14 HASP (preprint) Variable Variable None
15 CDC 734 NEW LINE None SEND
16 IBM 2780 End of card End of card None
17 IBM 3780 End of card End of card None
18 thru Reserved for CDC use
28
29 thru Site-defined Unknown Unknown Unknown
31

INTERACTIVE TERMINAL OUTPUT
CONCEPTS

A downline message can contain many logical lines
of output. Each 1logical 1line can contain many
physical lines of output.

A logical line of output ends when the application
program embeds a code or set of bytes for that

® 2-6

purpose in the message, or when the block containing
the line ends. A downline message ends when an
application program indicates that condition.

Because downline messages can always contain more
than one logical line, an interactive device can
always receive the output equivalent of a multiple-
message block mode input transmission. The appli-
cation program can group logical lines as necessary
to achieve that effect,

60499500 P

~

If a message fits into a downline network data
block, the block becomes a single-block message.
If one downline message cannot be fit into a single
network data block, the application program can
split it into as many blocks as necessary. An ap-
plication program generally sends a single message
(consisting of as many logical lines as necessary)
as the response to one input message from an inter-—
active device.

BATCH DATA

Batch devices can be serviced through the interac-
tive virtual terminal interface described later in
this section. A separate set of interface protocols
also exists for batch devices serviced by CDC-
written Terminal Interface Programs and application
programs.

These programs require large amounts of data to be
exchanged between a host computer’s mass storage
devices and CDC-defined batch devices. Such batch
data is therefore assembled into messages of one or
more network data blocks. Each network data block
contains one or more mass storage physical record
units (PRUs). Because only the CDC~written Remote
Batch Facility can use the special interface for
CDC-defined batch devices, the remainder of this
manual does not discuss the requirements this
interface imposes on batch data or batch device
support.

INFORMATION IDENTIFICATION
PROTOCOLS

Conventions exist for identifying network blocks.
These conventions indicate the following things to
the application program sending or receiving the
block:

The kind of message of which the block is a
part; this is called the message type.

The kind of information within the block; this
is called the application block type.

The areas of host central memory containing the
block and containing information describing the
block; these are called the block buffer areas.

The source or destination of the block; these
are called the application connection number and
the application list number.

APPLICATION PROGRAM MESSAGE TYPES

An application program message is a complete logical
unit of information, comprising one or more physical
network blocks. A message can be a line of data to
or from a teletypewriter, a mass storage file, a
service request to NAM, or a screen of information
for a cathode ray tube.

There are two kinds of application messages, data
and supervisory. Data messages convey information
of significance only to a device user or to another
application program. Data messages can consist of
more than one network data block.

60499500 P

Supervisory messages convey information of signifi-
cance only to the network software. Supervisory
messages consist of only one network block.

Supervisory messages are used by an application
program to control data messages between itself and
logical connections.

APPLICATION BLOCK TYPES

The network block is the basic unit of information
exchange for the application program. There are
several types of network blocks that an application
program can exchange. Each type has an identifying
application block type number assigned to it. The
following types exist:

Null blocks, which are dummy input blocks indi-
cating the absence of any data or supervisory
information. These blocks have an application
block type number of O.

Blocks containing portions of data messages, but
not terminating those messages. These blocks
have an application block type number of 1; such
blocks are called BLK blocks in other network
documentation.

Blocks that terminate data messages. These
blocks can include physically empty blocks when
such blocks convey logical information. Blocks
that terminate data messages have an application
block type number of 2; such blocks are called
MSG blocks in other network documentation.

Blocks constituting supervisory messages. These
blocks have an application block type number of
3; such blocks include the information in blocks
called CMD, BACK, BRK, NAK, and other acronyms
in some network documentation.

BLOCK BUFFER AREAS

All network blocks are exchanged between the appli-
cation program and the network software using two
kinds of buffers:

The block header area

The block text area

Block Header Area

Block header areas each contain a 60-bit word de~
scribing the contents of a corresponding text area.
This block header word accompanies the block in the
corresponding block text area during the exchange
between the application program and NAM.

For downline blocks, the application program creates
the block header and NAM interprets it., For upline
blocks, NAM creates the block header and the appli-
cation program interprets it.

Because the contents of the header word depend on
the contents of the text area, the header word for-
mats are described :n this manual after the text
area content protocols are described. To simplify

the header area descriptions, they are presented in
four separate formats:

For upline network data blocks
For downline network data blocks
For upline supervisory message blocks

For downline supervisory message blocks

Block Text Area

A block text area is separately addressed from its
header area and need not be contiguous to it. The
text area countains the single network block de-
scribed by the header word in the header area.

Text areas can be of varying length, as necessary
to accommodate various block lengths. The text area
has a maximum length expressed as a whole number of
central memory words. Text areas can be up to 410
central memory words long.

The length of the text area used by the application
program is described to the network by the applica-
tion program. The text area length must be calcu-
lated from the maximum length of the blocks it will
contain.

Block 1length is distinct from text area length.
The length of a block depends on the type and use
of the block.

Null blocks have zero length and do not require any
central memory words for their text area. Other
block types have lengths expressed in character byte
units, although the bytes need not actually contain
characters.

Blocks are always a whole number of character units
long but do not have to be a whole number of central
memory words long. Not all words in the text area
used for a given block need to be filled with
meaningful information.

Supervisory message blocks are 1 to 410 words long.
Data blocks have lengths of zero up to the maximum
number of characters that can fit in the maximum
text area of 410 words, or 2043 characters, which-
ever occurs first.

Downline messages containing more characters than
the text area size can hold must be divided into
several network data blocks. Each such block must
fit into the text area. Each of these blocks should
also meet the network block size requirement and
must be transmitted separately.

CONNECTION IDENTIFIERS

Two parameters identify and control the routing of
messages:

The application connection number

The application list number

Both parameters are used in AIP calls that fetch
incoming network data blocks. The application con-
nection number is used in the block header words of
outgoing blocks.

Application Connection Number

The application connection number is a 12-bit inte-
ger used to address a particular logical connection.
The connection number can be used as an index into
a control structure (for example, the number of a
connection could be the ordinal of a corresponding
device table) or used in any other manner the ap-
plication chooses.

These connection numbers are assigned serially by
NAM for each application program. Numbers that
become available because of disconnections are re-
assigned to subsequent connections.

A connection number of zero indicates the control
connection on which asynchronous supervisory mes-
sages are sent and received. (See Supervisory Mes-
sage Content and Sequence Protocols, later in this
section,)

Application List Number

NAM permits an application program to group connec-
tions with similar processing requirements into
numbered lists., This is an efficiency feature,
relieving the application of the need to specify
individual connections each time upline block proc-
essing is required. Instead, when a request is
made for a block from a connection onm a list, any
device or application program connections with empty
input queues are automatically skipped and a block
from the first nonempty queue is returned. A single
null block is returned when none of the connections
on the list have any input queued.

This feature can be used in many kinds of list
structures. For example:

An application program must process input from
devices with large network block sizes (such as
interactive graphics terminals in a specific
terminal class) differently than input from
devices with small block sizes. This processing
occurs in different portions of the program
code; therefore, the application program assigns
the devices using large blocks to list 1 and
the devices using small blocks to list 2.

An application program treats all devices the
same and must process blocks from them on an
equal basis. Accordingly, it assigns them all
to the same list.

An application program services terminals in
four geographical areas; each must be treated
separately because of varying state laws.
Accordingly, they are assigned to lists 1
through 4.

60499500 P

—

An application program services devices that
should be treated the same, but with the fol-
lowing complication: when the application has
received a block from a particular terminal, it
must perform some time-consuming function that
prevents it from immediately processing another
block from the same terminal. Accordingly, the
application places all connections on list 1 and
issues an input request on list 1. When a block
for connection x is returned, it temporarily
inhibits receipt of data on connection x before
it issues the next input request. When it can
accept another data block from the terminal
using logical connection x, the application
program sends a supervisory message to reverse
the effect of the temporary inhibition.

The parameter used for this kind of processing is
called the application list number. The application
list number is an integer from O through 63 speci-
fied by the application program when it accepts a
connection. NAM links message input (upline) queues
of all connections that have been assigned the same
list number. An application program can request
blocks from these linked queues in rotation (with=-
out specifying individual connections) by including
the assigned application list number in a NETGETL
or NETGTFL statement (described in section 5).

Each list number identifies one connection list. A
connection list can be viewed as a table of connec-
tion numbers. These connection numbers are entered
in the table in the order in which the application
program assigns the connections to the list. When
the list is scanned for input from a connection,
the connections are examined in the order in which
they are entered in the table.

The application program explicitly assigns the list
number to each logical connection when the connec-
tion is established. The logical connection cor-
responding to application connection number zero
already exists when the application is connected to
the network. For this reason, application connec-
tion number =zero is automatically assigned to
application list number zero without program inter—
vention.

The application program does not have to maintain
any tables associating connection numbers and list
numbers. The application program need not use list
processing at all.

DATA MESSAGE CONTENT
AND SEQUENCE PROTOCOLS

Data blocks consist of 1 to 410 60-bit words or 1
to 2043 12-bit Dbytes. The fields within these
blocks convey information to or from the terminal
user. Data blocks have associated block header
words. These header words convey information to
the network software concerning the contents of the
corresponding text area buffer.

Data blocks are sent and received through the Ap~-
plication Interface Program routines described in
section 5. The application program fetches data
messages one block at a time. When the connection
queue is empty, a null block with an application
block type of zero is returned.

60499500 P

The network software provides a mechanism for the
application program to determine when data blocks
are queued. When a call to an AIP routine is com-
pleted, a supervisory status word at a location
defined by the application program is updated to
indicate whether any data blocks are queued. As
long as the application program continues to make
calls to AIP routines, it can test the supervisory
status word periodically (instead of attempting to
fetch null blocks from all application connection
numbers). The supervisory status word and the use
of NETWAIT are described in section 5.

The protocols for data message text and the use of
the text area buffer depend on whether the logical
connection is with another application program, an
interactive virtual terminal device, or a passive
batch device. Blocks exchanged with other applica-
tion programs in the same host have the fewest re-
quirements and most flexible structure. Blocks
exchanged with CDC-defined batch devices using the
special batch device protocol have the most re-
quirements and the least flexible structure.

Requirements for blocks exchanged with other appli-
cation programs in the same host are covered in the
figures later in this section, and in section 3.
Blocks exchanged between application programs are
groups of binary character bytes with no parity,
equivalent to transparent mode data. Such blocks
can use the eighth bit of an 8-bit byte as data and
need not have the transparent mode bit set in their
block header; see the decriptions of transparent
mode and block header word content later in this
section,

The requirements for exchanging blocks with inter-
active virtual terminal devices are described below.
Requirements for blocks exchanged with batch devices
through the special batch device interface are not
described because that interface is available only
to RBF.

INTERACTIVE VIRTUAL TERMINAL DATA

An interactive virtual terminal can be either a
CDC~defined console device or a site-defined device.
An interactive virtual terminal can send and receive
data in two modes: mnormalized mode and transparent
mode. The format and content of data in these
modes is described later in this subsection. The
characteristics of an interactive virtual terminal
depend on which data exchange mode 1is currently
used.

Tn normalized mode, the characteristics of an in-
teractive virtual terminal are as follows:

Input and output can occur simultaneously.

A page of output has infinite (no physical)
width; logical lines are divided automatically
as needed to fit the physical line restrictions
of the device.

A page of output has infinite (no physical)
length; sets of logical lines are divided auto-
matically as needed to fit the physical re-
strictions of the device page.

A logical Line of output cannot be longer than
a single network block; a single message can
contain an infinite number of logical lines.

Characters are either 7-bit ASCII codes using
zero parity (bit 7, the eighth bit, is always
zero in upline data and ignored in downline
data), or 6-bit display codes with no parity.

Logical 1lines of input are terminated by a
changeable character or condition; this ter-
minator is the end-of-line or end-of-block in-
dicator described earlier in this section., The
input terminator is not part of the data seen
by an application program unless the full-ASCII
feature is used (this is explained later in
this subsection and in section 3 where the FA
command is described).

Logical lines of output are terminated by an
ASCIT unit separator character code (US, repre-
sented by the hexadecimal value IF) or the end
of a zero-byte terminated record. The applica-
tion program places this terminator in the data.

No cursor positioning actions are required to
acknowledge receipt of input, and no timing
adjustments need to be made at the end of phys~-
ical output lines.

Logical lines can be divided into physical lines
by embedding optional format control characters
in downline blocks.

In transparent mode, the characteristics of an
interactive virtual terminal are as follows:

Input and output can occur simultaneously.

A page of output has infinite (no physical)
width.

A page of output has infinite (no physical)
length.

Characters are either 7-bit codes using zero
parity (bit 7, the eighth bit, is always zero
in upline data and ignored in downline data),
or codes of a terminal-dependent code set with
terminal-dependent parity.

Messages of input are terminated by a change-
able character or condition; this terminator is
one of the message or mode delimiters described
later in this section. The mode delimiter is
not part of the data seen by an application
program.

Messages of output are terminated by a condition
or event chosen by an application program (each
network block is separately designated as
transparent or normalized when sent).

Cursor positioning actions might be required,
and timing adjustments might need to be made at
the end of physical output lines.

Line Turnaround Convention

The interactive virtual terminal concept imposes
some conventions on the content and sequencing of
blocks exchanged with an interactive device. The
primary convention of block sequencing involves the
direction and time of block transmission.

® 2-10

The application program can service an interactive
device on a connection as if the device always
operates in a full-duplex mode. That is, input and
output can occur independently; the terminal wuser
can enter several logical lines at once (an opera-
tion called typeahead), without waiting for a re-
sponse to each line.

Application program input and output need not al-
ternate. However, some devices cannot actually
operate that way. To prevent a loss of synchromi-
zation between input and output at such devices, a
line turnaround convention exists. This convention
consists of the following events.

After a block of type 2 (the end of a message) is
sent to a device, no more blocks should be sent
downline until at least one block is input from the
same device. An application program therefore
should never send the last block of a message down—
line until it is ready to wait for input.

A network data block of type 2 has special signifi-
cance to the network software during output to an
interactive device. When such a block is the last
block of the output stream, the network software:

Unlocks the keyboard of an interactive device
being serviced as terminal class 4 (an IBM
2741).

Sends an X-ON code to start an automatic paper
tape input mechanism, if one has been defined
as the input mechanism for the device. Paper
tape operation is explained in more detail in
section 3 where the IN and OP commands are
described.

Starts polling devices in terminal classes 10
through 13 and 15 (mode 4 consoles).

Identifies an automatic input prompt to be re-
turned, if the application program uses this
feature. When this feature is used, the network
software delivers the block to the device and
retains the first 20 characters in the NPU’s
input buffer. Subsequent iaput from the device
is attached to the end of the retained data.
(1f more than one logical line is received from
the device, the first is appended to the re-
tained data.) All logical lines are transmitted
to the host as received from the device.

If the terminal is a half-duplex device, such as a
2741 or a paper tape reader/punch, it must enter
input before the network software will deliver
additional output messages. Other devices are not
subject to this restriction.

The requirement for an input block after a block of
type 2 1is output can be satisfied in several ways
by terminal operators. An empty input line can be
entered and will reach the application program as a
block of type 2 but containing nothing. A line
containing data can be entered and will reach the
application program as one or more network data
blocks.

60499500 P

-

Devices can interrupt output by entering input.
When this occurs, the network software stops the
output until the terminal user completes the input
(using an end-of-line or end-of-block indicator).
Output then resumes at the next character of the
current physical and logical line.

INTERACTIVE VIRTUAL TERMINAL
EXCHANGE MODES

The conventions of block content depend on the mode

in which the block is exchanged. There are two
possible exchange modes, normalized mode and trans-
parent mode. The latter is referred to in other

documentation as binary mode. This manual uses
transparent mode to indicate exchange of a block
that is not in normalized mode.

Normalized Mode Operation

The interactive virtual terminal interface assembles
message character streams into upline network data
blocks from terminal transmission blocks. It dis-
assembles character streams from downline network
data blocks, reassembling them into terminal trans-
mission blocks.

The assembly operation is controlled by the termi-
nation of logical lines. The disassembly operation
can be controlled by the termination of physical
lines when that is appropriate for the output mech-
anism of the device. The disassembly operation can
also be modified by format control characters em-
bedded in each block, and by the page width defined
for the device (refer to the PW command in section
3).

End of Logical Lines in Input

Logical lines reach an application program as one
or more network data blocks. Logical lines usually
end when a message ends and do not contain the
character or code sequence defined as the end-of-
line or end-of-block key.

However, two special cases exist. Logical lines do
contain the end-of-line or end-of-block codes when
the device is operating in full-ASCII editing mode
(described later in this section). Logical lines
also contain the end-of-line code when the end-of-
line key 1is changed to be the default end-of-block
key for the device (see the EB option of the EL
command described in section 3). In the latter
case, the transmission block becomes a message, and
the logical lines within it have no effect on con-
struction or type of network data blocks.

Logical and Physical Lines in Output

The application program does not need to equate a
logical line of output to a complete message nor
does it need to create a separate network block for
each physical line of output. A single logical line
can contain many complete physical lines. A single
block can contain many complete logical lines, and
a message can be one or many such blocks. A phys-
ical or logical line cannot, however, be continued
from one block to another.

60499500 P

Logical lines within downline blocks are ended by
an end-of-line indicator. Unlike the end-of-line
indicators used in upline blocks, downline blocks
always contain codes for the end-of-line function;
the codes used downline are always the same and
usually differ from the codes used wupline. The
downline end~of-line indicator varies according to
the application character type of the block; appli-
cation character types are described later in this
section. Bytes used to store indicators must be
included when determining the number of characters
comprising a downline block.

The end-of-line indicator in 60-bit character bytes
(application character type 1) is determined by the
programs exchanging the block. No predefined end-
of-line indicator exists for that application char-
acter type.

The end-of-line indicator 1in blocks using 8-bit
characters in 8-bit or 12-bit bytes (application
character types 2 or 3) is determined by whether the
block is sent in normalized mode or transparent
mode (described later in this section). In trans-
parent mode, no end-of-line indicator exists. 1In
normalized mode, the end-of-line indicator is the
ASCII unit separator character US.

The end-of-line indicator 1in blocks wusing 6-bit
character bytes (application character type 4) is
12 to 66 bits of zero; these bits are right-
justified to f£ill the 1last central memory word
involved. This convention makes each logical line
the equivalent of a zero-byte terminated logical
record.

The 6-bit option requires a right-justified 12~bit
byte in at least one central memory word. On com-—
puters using the 64-character set, the colon is
represented in 6-bit display code by six zero bits.
On such systems, if the application needs to send
colons to the terminal console in 6-bit display
code, care must be taken to make sure that a string
of colons is not iaterpreted as an end-of~line in-
dicator. A colon preceding the end-of-line indica-
tor is considered as part of the indicator and not
as a colon when it occupies one of the two right-
most character positions in the next-to-last central
memory word of the block or any of the eight left-
most positions in the last word of the block.

All predefined end-of-line indicators embedded
within a block are discarded by the network soft-
ware and produce no characters on the console ocutput
device. The network software can perform carriage
or cursor repositioning when an end-of-line indica-
tor 1is encountered; this operation 1is described
later in this section under Format Effectors.

Upline Character Sets and Editing Modes

The network protocol permits entry from a device of
any code less than or equal to 8 bits per character;
however, a normalized mode character always reaches
an application program as one of the 128 ASCIIL
characters defined in appendix A. Receipt of an
entered character by the application program depends
on the editing functions performed by the TIP.
Three editing modes exist for the TIP when it proc-
esses normalized data:

Complete interactive virtual terminal editing
mode

2-11 @

Special editing mode
Full-ASCII mode

Devices always begin a connection with the network
in normalized mode. The initial upline editing mode
is established for each device when the device is
defined by the network adminstrator. The applica-
tion program or the terminal user can change that
mode using the SE or FA commands, described in
section 3.

Complete Editing

During complete editing operations, the following
hexadecimal character codes cannot be received by
the network application program:

00 (the ASCII character NUL)
7F (the ASCII character DEL)
OA (the ASCII character LF)

The backspace character code currently defined
for the device (see the BS command in section 3)

The end-of-line character currently defined for
the device (see the EL command in section 3)

The end-of-block character currently defined
for the device (see the EB command in section 3)

The following hexadecimal character codes cannot be
received, if entered at certain points in a message:

11 (the ASCII character DCl) if it follows an
end-of-line or end-of-block character and the
TIP is supporting output control for the device
(see the Y option of the OC command in section
3)

13 (the ASCII character DC3) if it follows an
end-of-line or end-of~block character and the
TIP is supporting output control for the device
(see the Y option of the OC command in section
3).

13 (the ASCII character DC3) if it follows an
end-of-line or end-of-block character and the
input mechanism is known to be a paper tape
reader (see the PT option of the IN command in
section 3)

02 (the ASCII character STX), if entered as the
first character of a message

The user-break-l and wuser-break-2 character
codes currently defined for the terminal, if

entered as the only character in a message (see
the Bl and B2 commands in section 3)

The abort-output-block character code currently
defined for the terminal, 1{if entered as the
only character in a message (see the AB command
in section 3)

The network control character currently defined
for the terminal when it follows an end-of-line
or end-of-block character or when it 1is wused
for such purposes as page turning (see the CT
command and the Y option of the PG command in
section 3)

® 2-12

The currently defined cancel input character is
always received at the end of the logical line it
cancels. This character is not data.

Special Editing

Special editing takes precedence over complete
editing. Special editing cannot occur if the ter-
minal operates in block mode.

When special editing occurs, linefeed codes and the
currently defined backspace code are forwarded to
the application program as data. The network soft-
ware sends appropriate responses to the device when
it receives these codes.

During special editing operations, the following
hexadecimal character codes cannot be received by
the network application program:

00 (the ASCII character NUL)
7F (the ASCII character DEL)

The end-of-line character currently defined for
the device (see the EL command in section 3)

the end-of-block character currently defined
for the device (see the EB command in section 3)

The following hexadecimal character codes cannot be
received, if entered at certain points in a message:

11 (the ASCII character DCl) if it follows an
end-of-line or end-of-block character and the
TIP is supporting output control for the device
(see the Y option of the OC command in sectiou
3)

13 (the ASCIL character DC3) if it follows an
end-of-line or end~of-block character and the
TIP is supporting output control for the device
(see the Y option of the OC command in section
3).

13 (the ASCIT character DC3) if it follows an
end-of-line or end-of-block character and the
input mechanism 1is known to be a paper tape
reader (see the PT option of the IN command in
section 3)

02 (the ASCII character STX), if entered as the
first character of a message

The user-break-l! and user-break-2 character
codes currently defined for the terminal, if
entered as the only character in a message (see
the Bl and B2 commands in section 3)

The abort-output-block character code currently
defined for the terminal, if entered as the only
character in a message (see the AB command in
section 3)

The network control character currently defined
for the terminal when it follows an end-of-line
or end-of-block character or when it 1is wused
for such purposes as page turning (see the CT
command and the Y option of the PG command in
section 3)

The currently defined cancel input character is

always received at the end of the logical line it
cancels. This character is not data.

60499500 P

S

Full-ASCIT Editing

Full-ASCIT editing takes precedence over special
editing or complete editing. When full-ASCII edit-
ing occurs, almost all codes are forwarded to the
application program as data. The network software
does mnot perform actions at the terminal when it
receives the codes for backspace, abort-output-
block, cancel input message, user-break-1l, or user-
break-2. These codes and the end-~of-line and end-
of-block indicator codes are sent upline as data.

During full-ASCII editing operations, the following
hexadecimal character codes cannot be received by
the network application program:

00 (the ASCII character NUL) if it occurs after
the end-of-line or end-of-block indicator

OA (the ASCII character LF) if it occurs after
the end-of-line or end-of-block indicator

7F (the ASCIT character DEL) if it occurs after
the end-of-line or end-of-block indicator

The network control character currently defined
for the terminal if it occurs after the end-of-
line or end-of-block indicator or when it is
used for such purposes as page turning (see the
CT command and the Y option of the PG command
in section 3)

11 (the ASCII character DCl) if it occurs after
the end-of-line or end-of-block indicator and
the TIP is supporting output control for the
device (see the Y option of the OC command in
section 3)

13 (the ASCII character DC3) if it occurs after
the end-of-line or end-of-block indicator and
the TIP is supporting output control for the
device or is explicitly supporting paper tape
input from the device (see the Y option of the
O0C command and the PT option of the IN command
in section 3).

The currently defined cancel input character is
always received as the last character of the logical
line it ended. This character is data.

Downline Character Sets

The network protocol permits transmission from a
network application program of any character code
less than or equal to 8 bits. If the application
program uses one of the application character types
that permits transmitting an 8-bit code (application
character types 2 and 3), it cannot use the upper
(eighth) bit for data unless it is transmitting in
transparent mode.

In normalized mode, the application program can only
use the 128 ASCII characters defined in appendix
A, If the application program transmits a 7-bit
ASCII code, it cannot use the upper (eighth) bit
for parity; the network ignores the eighth bit in
downline normalized mode data.

Receipt of a transmitted character by the device
depends on the editing functions and character
transformations performed by the TIP. 1In addition
to character codes altered during the translation

60499500 P

and substitution operations described elsewhere in
this section and in appendix A, the hexadecimal
character code 1F (the ASCII character US used as a
downline block end-of-line indicator) cannot be
received by a device when the application program
transmits a block in normalized mode.

Page Width and Page Length

The application program receives an indication of
the page width and page length in effect for a
device when connection with the device first occurs.
The application program or the terminal user can
change the page width and page length in effect for
a device.

The Terminal Interface Program uses the page length
defined for the device to format physical lines
into physical pages or screens of output. The Ter-
minal Interface Program uses the page width value
to transform logical lines of downline data into
physical lines of output.

For console devices defined as having hardcopy out-
put mechanisms (see the PR option of the OP command
in section 3), a logical line of downline data con-
taining more characters than the page width value
permits is divided 1into singly spaced physical
lines. These physical lines are equal to or shorter
than the page width in effect and are displayed
successively.

For all console devices, the page width is used as
part of the line-counting algorithm to determine
the page length. Each logical line is examined to
determine how many multiples of the page width (how
many physical lines) it contains. Each complete or
partial multiple counts as one line when the TIP
determines the page length.

Line counting begins at the beginning of each down-
line message. The line counter is reset to zero
each time the page 1length of the terminal is
reached, each time any input occurs, or when page
turning occurs during page waiting operation. Refer
to the PG, PW, and PL commands in section 3.

The physical line width of the device might be
smaller than the page width defined for the device.
When this happens, the effect of sending a logical
line of downline data containing more characters
than the physical lire width permits depends on the
terminal hardware.

Format Effectors

An application program can control the presentation
of the characters within a data block by indicating
that the block contains format effectors. TIf the
application program chooses to do this, the first
character of each logical line within the block
becomes a format effector. Format effector charac-
ters cause predefined formatting operations when
the block is delivered to the device. The network
software discards these characters after interpre-
tation; therefore, these characters do not appear
on the interactive terminal output device.

You must include format effector characters when
determining the number of characters comprising the
block. Format effector characters are excluded from
page width calculations.

2-13 ®

Tables 2-2 and 2-3 describe the predefined opera-
tions produced by each format effector character of
each terminal class. The Terminal Interface Program
performs the predefined format effector operation
by inserting the codes for the characters indicated

in the tables in place of the discarded format ef-

fector character code.

The inserted terminal codes

are those of characters in the ASCII set described
in appendix A, with the exception that NL indicates
the terminal-defined new-line code sequence.

TABLE 2-2. FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES
Code Substituted on
: A Does Output Output Mechanism
Terminal Format General Physical Operation Is Infinite Page Follow Previous
Class Effector Length Declared? :
Input Display or Paper Tape
Printer P P
1 blank Space 1 line before output. Does not matter Yes CR CR
No CR, LF CR, LF
0 Space 2 lines before output. Does not matter | Yes CR, LF CR, LF
No CR, 2LF CR, 2LF
- Space 3 lines before output. Does not matter Yes CR, 2LF CR, 2LF
No CR, 3LF CR, 3LF
+ Position to start of current Does not matter Yes or No CR CR
line before output.
* Position to top of form or Yes Yes CR, 5LF CR, 5LF
home cursor before output. No CR, 6LF CR, 6LF
No Yes or No Calculated by TIP
1 Position to top of form or Yes Yes CR, LF CR, 5LF
home cursor and clear screen No CR, 6LF CR, 6LF
before output.
No Yes or No Calculated by TIP
R Do not change position before | Does not matter Yes or No None None
output.
. Space 1 line after output, Does not matter Yes or No CR,LF CR,LF,
DC3,
2NUL
/ Position to start of current Does not matter Yes or No CR CR,
line after output. DC3,
2NUL
Any other | Space 1 line before output. Does not matter Yes CR CR
ASCII No CR, LF CR, LF
character
2 blank Space 1 line before output. Does not matter Yes CR CR
No CR, LF CR, LF
0 Space 2 lines before output. Does not matter Yes CR, LF CR, LF
No CR, 2LF CR, 2LF
- Space 3 lines before output. Does not matter Yes CR, 2LF CR, 2LF
No CR, 3LF CR, 3LF
+ Position to start of current Does not matter Yes or No CR CR
line before output.
* Position to top of form or Does not matter Yes or No EM EM
home cursor before output.
1 Position to top of form or Does not matter |Yes or No EM, CAN EM, CAN
home cursor and clear screen
before output.
® 2-14 60499500 p

TABLE 2-2.

FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES (Contd)

Does Qutput

Code Subst

Output Mechanism

ituted on

Terminal Format General Physical Operation Is Infinite Page Follow Previous
Class Effector Length Declared?
Input Display or P T
Printer aper lape
2 . Do not change position before| Does not matter Yes or No None None
(Contd) output.
. Space 1 line after output. Does not matter Yes or No CR, LF CR, LF
DC3,
2NUL
/ Position to start of current Does not matter Yes or No CR CR,
line after output. DC3,
2NUL
Any other | Space | line before output. Does not matter Yes CR CR
ASCII No CR, LF CR, LF
character
AN blank Space 1 line before output. Does not matter | Yes None N/A
’ No NL
0 Space 2 lines before output. Does not matter | Yes NL N/A
No 2NL
- Space 3 lines before output. Does not matter | Yes 2NL N/A
No 3NL
+ Position to start of current Does not matter Yes or No nBS N/A
line before output. n is calculated by
TIP from current
position
* Position to top of form or Yes Yes 5NL N/A
home cursor before output. No 6NL
No Yes or No nNL N/A
n is calculated by
TIP from current
position
1 Position to top of form or Yes Yes 5NL N/A
home cursor and clear screen No 6NL
before output.
No Yes or No nNL N/A
n is calculated by
TIP from current
position
R Do not change position before| Does not matter Yes or No None None
output.
. Space 1 line after output. Does not matter Yes or No NL NL
/ Position to start of current Does not matter Yes or No nBS nBS
line after output. n is calculated by
TIP from current
position
Any other | Space 1 line before output. Does not matter Yes None None
ASCII No NL NL
character
60499500 P 2-15 @

TABLE 2-2. FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES (Contd)
Code Substituted on
Terminal | Format . , Is Infinite Page Does °“tp9‘ Output Mechanism
General Physical Operation Follow Previous
Class Effector Length Declared? .
Input Display or Paper Tape
Printer P P
5 blank Space 1 line before output. Does not matter Yes None None
No LF LF
0 Space 2 lines before output. Does not matter Yes LF LF
No 2LF 2LF
- Space 3 lines before output. Does not matter Yes 2LF 2LF
No 3LF 3LF

+ Position to start of current | Does not matter | Yes or No ESC, G ESC, G

line before output.

* Position to top of form or Does not matter | Yes or No ESC, H ESC, H

home cursor before output.

1 Position to top of form or Does not matter | Yes or No ESC, R ESC, R

home cursor and clear screen
before output.

s Do not change position before| Does not matter Yes or No None None

output.

. Space ! line after output. Does not matter Yes or No LF LF,
DC3,
2NUL

/ Position to start of current Does not matter Yes or No ESC, G ESC, G,

line after output. DC3,
2NUL
Any other | Space 1 line before output. Does not matter Yes None None
ASCII No LF LF
character
6 blank Space 1 line before output. Does not matter | Yes or No CR CR
0 Space 2 lines before output. Does not matter | Yes CR CR
No 2CR 2CR
- Space 3 lines before output. Does not matter | Yes 2CR 2CR
No 3CR 3CR

+ Position to start of current Does not matter Yes or No None None

line before output.

* Position to top of form or Does not matter | Yes or No DC2 DC2

home cursor before output.

1 Position to top of form or Does not matter Yes or No FS FS

home cursor and clear screen
before output.

, Do not change position before | Does not matter Yes or No None None

output.

. Space 1 line after output. Does not matter Yes or No CR CR,
DC3,
2NUL

/ Position to start of current Does not matter Yes or No None DC3,

line after output. 2NUL
® 2-16 60499500 P

TABLE 2-2. FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES (Contd)
Code Substituted on
Terminal | Format . . Is Infinite Page Does Outpgt Output Mechanisn?
General Physical Operation Follow Previous
Class Effector Length Declared? .
Input Display or Paper Tape
Printer P p
6 Any other | Space 1 line before output. Does not matter Yes or No CR CR
(Contd) ASCII
character
7 blank Space 1 line before output. Does not matter Yes CR CR
No CR,LF CR, LF
0 Space 2 lines before output. Does not matter Yes CR, LF CR, LF
No CR, 2LF CR, 2LF
- Space 3 lines before output. Does not matter Yes CR, 2LF CR, 2LF
No CR, 3LF CR, 3LF
+ Position to start of current Does not matter Yes or No CR CR
line before output.
* Position to top of form or Does not matter Yes or No EM EM
home cursor before output.
1 Position to top of form or Does not matter Yes or No EM, CAN EM, CAN
home cursor and clear screen
before output; delay 100
millisecends before further
output.
, Do not change position before | Does not matter | Yes or No None None
output.
. Space 1 line after output. Does not matter Yes or No CR, LF CR, LF
DC3,
2NUL
/ Position to start of current Does not matter Yes or No CR CR,
line after output. DC3,
2NUL
Any other | Space 1 line before output. Does not matter Yes CR CR
ASCII No CR, LF CR, LF
character
8 blank Space 1 line before output. Does not matter Yes CR CR
No CR, LF CR, LF
0 Space 2 lines before output. Does not matter Yes CR, LF CR, LF
No CR, 2LF CR, 2LF
- Space 3 lines before output. Does not matter Yes CR, 2LF CR, 2LF
No CR, 3LF CR, 3LF
+ Position to start of current Does not matter Yes or No CR CR
line before output.
* Position to top of form or Does not matter | Yes or No ESC, FF ESC, FF
home cursor before output.
1 Position to top of form or Does not matter Yes or No ESC, FF ESC, FF
home cursor and clear screen
before output; delay 1 second
before further output.
s Do not change position before | Does not matter Yes or No None None
output.
60499500 P 2-17 @

TABLE 2-2, FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES (Contd)
Code Substituted on
. - Does Output Output Mechanism
Terminal Format General Physical Operation Is Infinite Page Follow Previous
Class Effector Length Declared? K
Input Display or Paper Tape
Printer pe P
8 . Space 1 line after output. Does not matter Yes or No CR, LF CR, LF,
(Contd) DC3,
2NUL
/ Position to start of current Does not matter Yes or No CR CR,
line after output. DC3,
2NUL
Any other | Space 1 line before output. Does not matter Yes CR CR
ASCII No CR, LF CR, LF
character
TPaper tape column does not apply to X.25 devices.
T1X.25 devices cannot belong to terminal class 4.
TABLE 2-3. FORMAT EFFECTOR OPERATIONS FOR SYNCHRONOUS CONSOLES
General Physical OperationT
Terminal Class Format Effector
Before Output After Output
9 0 Space 1 line. Space 1 line.
and
14 - Space 2 lines. Space 1 line.
Any other ASCII character None. Space 1 line.
10 blank None. Space 1 line.
thru
13 0 Space 1 line. Space 1 line.
and
15
- Space 2 lines. Space 1 line.
* Position to top of form Space 1 line.
or home cursor.
1 Position to top of form Space 1 line.
or home cursor and clear
screen.
Any other ASCII character None. Space 1 line.
16 Any ASCII character Before the first line of Space 1 line.
and the message, generate
17 the prefix text
*%%*CONSOLE MESSAGE
Before the subsequent Space 1 line.
lines of the message,
do nothing.
TNo direct correspondence to code substituted on output device can be made. Code used for
implementation depends on placement of message blocks within a transmission.
® 2-18 60499500 P

Numbers preceding codes indicate the number of times
the codes are repeated in the inserted sequence.
Each line output to a console in terminal classes 9
through 17 leaves the cursor positioned at the
beginning of the next physical line. Processing of
the next line takes this into account.

The format effector characters for clear screen and
home cursor operations (* and 1) receive special
treatment by the Terminal Interface Program when it
is performing a page wait function for the terminal.
(See the PG command in section 3.) If these char-
acters are encountered when the TIP has output only
part of a page, the TIP pauses for terminal operator
acknowledgment of the partial page. When acknowl-
edgment occurs, the format effector functions are
performed and output continues automatically. This
pause occurs without application program action or
knowledge.

If the application program does not indicate the
existence of format effectors, the first character
of each logical line does not act as a format ef-
fector. These characters are output normally but
are preceded by the character codes necessary to
space one line before output. These default line~
spacing codes are the ones substituted when a blank
is used as a format effector.

The application program sets a field in the downline
block’s header word to indicate whether the block
contains format effectors. This indication, how-
ever, has no effect on the use of format control
characters within logical lines of the block. Table
2-4 lists the code substitutions performed for em-
bedded control characters during output to a device
in each terminal class. This table uses the same
character representation convention as tables 2-2
and 2-3, with the following exceptions: the
hexadecimal terminal codes are shown for multiple
ASCII character sequences or for non-ASCII character
sequences.

Transparent Mode Operation

Blocks exchanged between an application program and
a console device in transparent mode do not use most
of the features of the interactive virtual terminal
interface:

No input editing occurs.
No code conversion occurs.

No format effector transformations are performed
for downline blocks.

No page width operations are performed to pre-
serve physical line boundaries.

Page waiting occurs only at the end of a down-
line message.

Transparent mode operation 1is separately selected
for input and output. Either the terminal operator
or the application program can start transparent
mode input, using the IN command described in sec-
tion 3. Only the application program can start
transparent mode output.

60499500 P

Data blocks input in transparent mode have a field
set in their associated header word to indicate this
condition. Output blocks require the same field to
be set,

Transparent mode data exchanged with terminal de-
vices can occupy up to 8 bits of an 8-bit byte,
representing up to 256 distinct character codes of
device instructions. Codes longer than 8 bits can-
not be exchanged; data packed in 12-bit bytes by an
application program or a terminal device is trun—
cated to 8 bits by the network software.

HASP terminals (terminal classes 9 and 14) and
bisynchronous terminals (terminal classes 16 and 17)
cannot transmit or receive such blocks. All other
terminals can, although mode 4 terminals (terminal
classes 10 through 13 and 15) require the special
treatment described below.

During transparent mode operation, the application
program is responsible for all data formatting and
terminal control. For mode 4 terminals, this meauns
that the Terminal Interface Program does not blank—
fill the current line and unlock the keyboard before
input can be performed but does add or remove the
line transmission portion of the protocol envelope
to or from all message text exchanged with the ter-
minal.

Two mutually exclusive forms of transpareat mode
jnput can be selected. The network administrator
can make this selection when the device is defined
in the network configuration file, or the applica~-
tion program or the terminal operator can make it
while the device is active. The two forms are:

Single message

Multiple message (analogous to block mode
operation)

Single-Message Input

For single-message input, one or more transparent
mode input delimiters are specified, usiag the DL
command options described in section 3. For
single-message input, a message ends when trans—
parent mode input ends. Transparent mode messages
need not be equivalent to normalized mode logical
lines.

Single-message transparent mode input eands when the
Terminal Interface Program encounters one of the
mode delimiter conditioas. The delimiter condi-
tions are:

Occurrence of a specific character code in the
input

Occurrence of a specific number of character
bytes in the input

Occurrence of a 200- to 400-millisecond timeout
in the input

2-19 @

TABLE 2-4. EMBEDDED FORMAT CONTROL OPERATIONS FOR CONSOLES
Terminal Class Format Control General Physical Operation Code Substituted on Output Mechanism
Character
1 and 2 LF Space 1 line before next char- LF
7 and 8 acter output.
CR Position to start of current CR
line before next character
output.
4 LF Space 1 line before next char- LF
acter output.
CR Position to start of next line NL
before next character output.
5 LF Space 1 line before next char- ESC, B
acter output.
CR Position to start of current ESC, G
line before next character
output.
6 LF Space 1 line before next char- None
acter output.
CR Position to start of current CR
line before next character
output.
9 LF Space 1 line before next char- None
and acter output.
14
CR Position to start of next line None
before next character output.
10 LF Space 1 line before next char- None
thru acter output.
13
and CR Position to start of next line 1B, 41 (ASCII); 31, 41 (External BCD)
15 line before next character
output,
16 LF Space 1 line before next char- None
acter output.
CR Position to start of next line 10,
before next character output.
17 LF Space 1 line before next char- None
acter output.
CR Position to start of next line 10,
before next character output.

® 2-20

60499500 P

Multiple-Message Input

For multiple-message input, the application program
or the terminal wuser defines one or two input
message-forwarding signals (equivalent to a normal-
ized mode end-of-line indicator) and one or two
transparent mode input delimiters. Each message
ends at a message-forwarding signal; the last mes-
sage ends when transparent input mode ends. The
message~-forwarding signal and mode delimiters are
specified using the XL command options in section 3.

The possible message-forwarding signals are:

Occurrence of a specific character code in the
input

Occurrence of a specific number of character
bytes in the input

The transparent mode delimiters are:

Two consecutive occurrences of a specific char-
acter code (the message-forwarding signal)

A sequence of two character codes (a message-
forwarding code followed by a transparent mode

delimiter code)

Occurrence of a 200~ to 400-millisecond timeout
in the input

Upline Message Blocks

A transparent mode input block is assembled each
time the network block size is reached or the Ter-
minal 1Interface Program encounters a message-
forwarding signal. The last block in the last
message 1is assembled when the delimiter condition
is encountered. If the message-forwarding signal
is a specific character code, the TIP removes that
code from the character stream before assembling
the last block.

In transparent mode, the concept of a logical line
is not meaningful to the network software. Both the
end-of-line and end-of-block indicators are data
within a transparent message.

Transparent Mode Output

Transparent mode output data can be divided
arbitrarily into blocks and messages, provided the
restrictions on network block size are met. A
transparent mode downline block ends when the last
character it contains is transferred to the network
(defined by the tlc field in the block header,
described later in this section).

If the TIP is performing page-wait operations for
the terminal during transparent mode operation,
output stops to wait for terminal operator acknowl-
edgment at the end of each message. The automatic
input feature can be used with the last block of a
transparent mode output message.

60499500 P

Parity Processing

Actual terminal codes are right-justified with zero
fill within the 8-bit character portion of the input
or output byte, The codes contained in the input
or output bytes depend on the parity option declar-
ed for the terminal.

The actual terminal code parity bit can be used for
meaningful code only if no parity is declared (see
the N option of the PA command in section 3).
Otherwise, the parity bit is zero in input blocks
and set by the Terminal Interface Program on output.

For example:

If the terminal uses a 7-bit code such as ASCII,
with the eighth bit as a parity bit, the set-
ting of the eighth bit is determined by the
parity option selected for the terminal. 1f
zero parity is declared, the eighth bit is
always zero on input and output. If odd or even
parity is declared, the eighth bit varies on
input and output to satisfy the character parity
requirement. If no parity is declared, the
eighth bit is treated as part of the character
data and is not changed during input or output.

If the terminal uses a 6-bit code, with the
seventh bit as a parity bit, the setting of the
seventh bit is determined by the parity option
selected for the terminal. If zero parity is
declared, the seventh bit is always zero on
input and output. 1f odd or even parity is
declared, the seventh bit varies on input and
output to satisfy the character parity require-
ment, If no parity is declared, the seventh
bit is treated as part of the character data
and is not changed during input or output.

APPLICATION CHARACTER TYPES

Blocks always contain character bytes. These char-
acter bytes can be of several lengths and can be
packed within bytes of several sizes. Each permit—
ted combination of character byte length and packing
byte size is called an application character type.
There are several application character types sup-
ported by the released version of the software:

One 60-bit character byte per 60-bit word
One 8-bit character byte per 8-bit byte
One 8-bit character byte per 12-bit byte

One 6-bit display code character byte per 6-bit
byte

Blocks transmitted through a network processing
unit always consist of 8-bit characters in 8-bit
bytes. An application program can use blocks of
this application character type, or have NAM coavert
blocks to or from it so that the application pro-
gram can use one of the remaining two application
character types. Block conversion consists of byte
mapping and character code conversion.

2-21 @

For a downline network data block, NAM:

Performs no mapping or character code conversion
on 60-bit character bytes.

Performs no mapping or character code conversion
on 8-bit characters in 8-bit bytes; the parity
setting of the receiving device might cause the
upper or eighth bit (bit 7) of the byte to be
set.

Performs no character code conversion on 12-bit
bytes but maps the 8-bit character to an 8-bit
byte by discarding the leftmost four bits of
the 12; the parity setting of the receiving
device might cause the upper or eighth bit (bit
7) of the byte to be set.

Maps 6-bit characters to 8-bit characters by
translating the former as 6-bit display code
and substituting the corresponding hexadecimal
code from the 128-character ASCII set.

For an upline network data block, NAM:

Performs no mapping or character code conversion
on 60-bit character bytes.

Performs no mapping or character conversion on
8-bit characters 1in 8-bit bytes; the parity
setting of the sending device might cause the
upper or eighth bit (bit 7) of the byte to be
set if the data is sent in transparent mode.

Performs character mapping but no code conver-
sion by right-justifying 8-bit characters in
12-bit bytes with zero fill; the parity setting
of the sending device might cause the upper or
eighth bit (bit 7) of the byte to be set if the
data is sent in transparent mode.

Maps and converts 8-bit characters to 6-bit
characters by translating all ASCII control
characters to display coded blanks, and trans-
lating all hexadecimal ASCII character codes
between 60 and 7F to the display code equiva-
lents of the hexadecimal ASCIT character codes
40 ‘to 5F. All other 7-bit ASCII codes are
translated to the display codes equivalent to
the CDC subset of the ASCII character set (refer
to appendix A).

Because conversion and mapping between 6-bit and 8-
bit characters involves a time-consuming character-
by-character replacement of the block’s data, use
of a 6-bit display coded application character type
is not recommended and 1is restricted to blocks
exchanged with interactive devices. For efficiency,
8-bit byte characters are recommended for blocks
exchanged with devices or other application programs
through the interactive virtual terminal interface.

The application character type of an input block is
determined by the character type associated with
the logical connection. This association first
occurs when the connection is established. You can
change the association as necessary while the con-
nection exists. The application character type of
a specific input block is always indicated by a
field in its associated block header word.

® 2-22

The application character type of an output block
is determined solely by a field in its associated
block header area. 1Input and output blocks trans-
mitted over the same logical connection can there-
fore have different application character types.

CHARACTER BYTE CONTENT

Blocks containing 8~bit characters can be exchanged
with an interactive device in normalized mode or in
transparent mode. Blocks exchanged in normalized
mode always contain 7-bit character codes from the
ASCII character set, with the eighth bit set to
ZEero. Blocks exchanged in transparent mode can
contain 256 character codes from any character set
used by a terminal, with the setting of the eighth
bit determined by the parity processing selected
for the device. Normalized mode exchanges are the
initial mode for all logical connections. Blocks
exchanged in transparent mode are identified by a
field in their associated block header word.

The 1legal combinations of character types, modes,
and uses are summarized in table 2-5. The mecha-
nisms for declaring character types and exchange
modes are described in the Block Header Content
portion of this section and in section 3.

BLOCK HEADER CONTENT

The content of the block header word associated
with a data block depends on whether the application
program 1is sending or receiving the block. The
requirements for all header words associated with
upline data blocks are described in figure 2-3.
The requirements for all header words associated
with downline data blocks are described in figure
2-4,

SUPERVISORY MESSAGE
CONTENT AND SEQUENCE
PROTOCOLS

Supervisory message blocks consist of 1| to 410 60-
bit words or 1 to 2043 12-bit bytes. The fields
within these blocks convey information and instruc-
tions to the network software, in a manner similar
to the character bytes of a data message block.
Supervisory messages are sent and received through
the same application program routines as are used
for data blocks. (See sections 4 and 5.) Supervi-
sory messages have associated block header words,
just as data blocks do. These header words convey
information to the network software concerning the
contents of the corresponding text area buffer.

Supervisory messages have the general formats shown
in figures 2-5 and 2-6. A specific message contains
a fixed combination of four fields and can include
additional parameters. The iundividual messages
supported by the network software are described in
section 3. The fields are described below in the
order of their use, rather than in the order of
their occurrence within a supervisory message.

60499500 P

TABLE 2-5.

CHARACTER EXCHANGES WITH CONNECTIONS

Application ACT Field Exchange Mode Connection Code Set
Character Type Value Used Type (Character Set)
60-bit characters 1 Normalized Application-to-application Binary (None)
in 60-bit bytes within the same host
8-bit characters 2 Normalized Application-to-terminal 7-bit ASCII (128 ASCII)
in 8-bit byte (consoles)
8-bit characters 2 Transparent Application-to-terminal Any 6-, 7-, or 8-bit
in 8-bit bytes (consoles) (Unknown)
8-bit characters 2 Normalized Application-to-application Binary (None)
in 8-bit bytes
8-bit characters 3 Normalized Application-to-terminal 7-bit ASCII (128 ASCII)
in 12-bit bytes (consoles)
8-bit characters 3 Transparent Application-to-terminal Any 6-, 7-, or 8-bit
in 12-bit bytes (consoles) (Unknown)
8-bit characters 3 Normalized Application-to-application Binary (None)
in 12-bit bytes
6-bit characters 4 Normalized Application-to-terminal 6-bit display code to/from
in 6-bit bytes (consoles) 7-bit ASCII (64-character
subset of ASCII)
59 53 41 23 19 16 11 0
it} . elp
ha abt acn reserved for act |birir| e Plale tlc
CDC use iut € Fehnls
ha Symbol ic header area address, specified as the location to receive the application block

header in a call to NETGET, NETGETL, NETGETF, or NETGTFL (see section 5).

abt Application block type of the associated network data block.
values:

This field can have the
=0 indicates a null block. (No block is queued or none can be delivered from
the logical connection polled.)

=1 indicates that the associated block is one of several blocks comprising a
single message, but is not the Last such block.

=2 indicates that the associated block is either the lLast or only one
comprising the message.

Values of 3 through 63 are not valid for data blocks on input.
with the reserved symbol ABHABT (see section 4).

You can access this field

acn Application connection number of the logical connection from which the associated block
was sent. This field can have the values 1 < minacn < acn < maxacn < 4095, where the
values minacn and maxacn are parameters in the NETON Statement (see section 5). You can
access this field with the reserved symbol ABHADR (see section 4).
Figure 2-3. Application Block Header Content for Upline Network Data Blocks (Sheet 1 of 4)
60499500 P 2-23 @

act

ibu

Application character type used to encode the accompanying block. This field can contain
the values:

=1 60-bit transparent characters, packed one per central memory word; this
character type can be used only for application-to-application connections
within the same host.

=2 8-bit characters, packed 7.5 per central memory word; this character type
is recommended for terminal-to-application connections.

=3 8-bit characters, right-justified in 12-bit bytes with zero fill, packed 5
per central memory word.

=4 6-bit display code characters (see table A-1 in appendix A), packed 10 per

central memory word. This value can be used only for
terminal-to-application connections in normalized mode when the block is
exchanged with a site-defined device or a CDC~defined console device.

=5 thru Reserved for CDC use; not currently recognized.

1
=12 Reserved for installation use; usage and content are unrestricted and
thru 15 undefined (the released version of the software does not recognize these

values).

The value contained in the act field is the value assigned to the connection by the
application program for input, either in the cornnection-accepted supervisory message (ict
field) or in the most recent change~input-character-type supervisory message (see section
3). You can access this field with the reserved symbol ABHACT (see section 4).

Input-block-undeliverable bit. When 1ibu has a value of 1, the block associated with
this block header has not been delivered to the appltication program; ibu is 1 when the
block:

. Is lLarger than the maximum text length (tlmax parameter) declared by the application
program in its NETGET, NETGETL, NETGETF, or NETGTFL catl and the program has not
requested that input data be truncated (see the truncate-input asynchronous
supervisory message described in section 3). The block header contains the actual
Length of the queued block in its tlc field, given in character units specified by
the act field. The block remains queued until the application program takes one
of the following actions:

Uses the change-input-character-type asynchronous supervisory message
described in section 3 to compress the characters into fewer central memory
words by using a different application character type to pack them more
densely.

Uses the input-truncation asynchronous supervisory message described in
section 3 to delete enough characters so that the remainder fit into the
existing text area.

Uses a lLonger text area.

The application program then must use another NETGET, NETGETL, NETGETF, or NETGTFL
call to obtain the block.

] Contains transparent mode data from a connection using an act value of 4. The
block header contains the actual length of the queued block in its tilc field
(given in 8-bit bytes) and has an xpt value of 1 (see xpt field description).
The application program can:

Change the input character type for the connection to a value of 2 or 3,
using the change-input-character-type asynchronous supervisory message
described in section 3, then use a NETGET, NETGETL, NETGETF, or NETGTFL
call to obtain the block.

Use the change-input-character-type asynchronous supervisory message with a
set nxp bit as described in section 3; this discards the queued block and
all subsequent blocks of transparent data from the connection.

® 2-24

Figure 2-3. Application Block Header Content for Upline Network Data Blocks (Sheet 2 of 4)

60499500 P

e’

° Is queued on a connection between application programs within the same host and the
act value specified by your application does not match the act value specified by
the other application in its NETPUT call for the block. The application program can:

Change the input character type for the connection using the change-input-
character-type asynchronous supervisory message described in section 3,
then use a NETGET, NETGETL, NETGETF, or NETGTFL call to obtain the block.

You can access this field with the reserved symbol ABHIBU (see section &).

brk Break occurred bit. When brk 1is 1, the application program receives an asynchronous
break supervisory message concerning this connection (see section 3); that message
contains a reason code explaining the reason for the break . A brk vatue of 1 only
occurs in the header for a block with an abt value of 0. This value indicates that the
associated null block was sent upline to mark when the break condition occurred on the
connection. You can access the brk field with the reserved symbol ABHBRK (see section
4).

tru Truncated data bit. When tru 1is 1, the block associated with this block header has been
truncated to fit into the text area used. When tru 1is 0, the block has not been
truncated. The tru bit cannot be 1 unless the application program has issued the data
truncation control asynchronous supervisory message described in section 3 and that
message affects transmissions on this connection. When truncation occurs, the tlc field
contains the maximum number of complete transferred character bytes of the block. You can
access the tru field with the reserved symbol ABHTRU (see section 4).

re Reserved for CDC use.

xpt Transparent mode bit, indicating whether the accompanying block contains transparent mode
data. If your program chooses not to receive transparent mode input when it accepts a
connection or changes the input character type of the connection (nxp field, described in
section 3), an xpt value of 1 is received in a block with an abt of O (an empty block)
and indicates that one or more transparent mode blocks were discarded by the network
software.

If your program can receive transparent mode input, the interpretation of the value this
field contains depends on the act value used, as follows:

act=1, xpt should be ignored.
act=2, if the data is from a site-defined device or a CDC-defined console device:
xpt=0 indicates normalized mode data for which interactive virtual terminal
transformations were performed; 7-bit characters are from the
128-character ASCII set (see appendix A).
xpt=1 indicates transparent mode data for which no transformations were
performed; all eight bit positions might be used to form 256
characters, but the application program must correctly interpret the
format of such data.

act=2, if the data is from an application program:

xpt=0 indicates that the sending application program did not use an xpt
vatue of 1 in its block header for the accompanying block.

xpt=1 indicates that the sending application program used an xpt value of
1 in its block header for the accompanying block.

act=3, if the data is from a site-defined device or a CDC-defined console device:
xpt=0 indicates normalized mode data for which interactive virtual terminal

transformations were performed; 7-bit characters are from the
128~-character ASCII set (see appendix A).

Figure 2-3. Application Block Header Content for Upline Network Data Blocks (Sheet 3 of 4)

60499500 P 2-25 @

xpt=1 indicates transparent mode data for which no transformations were
performed; all eight bit positions in the character portion of the
character byte might be used to form 256 characters, but the
application program ,ust correctly interpret the format of such data.

act=3, if the data is from an application program:

xpt=0 indicates that the sending application program did not use an xpt
value of 1 in its block header for the accompanying block.

xpt=1 indicates that the sending application program used an xpt value of
1 in its block header for the accompanying block.

act=4, if the data is from a site-defined device or a CDC-defined console device:

xpt=0 indicates normalized mode data for which interactive virtual terminal
transformations were performed; 6-bit characters are from the 6-bit
display code set (see table A-1 in appendix A).

xpt=1 indicates that the ibu bit is also set; the tlc field contains the
actual block Length in 8-bit characters (not in 6-bit characters).
Transparent mode is not supported for act=4; a
change-input-character-type supervisory message must be issued before
the block can be received (see section 3).

You can access this field with the reserved symbol ABHXPT (see section 4).

can Cancel-input bit. When can 1is 1, the terminal operator used the cancel-input key
defined for the device or the break condition key (see BR command in section 3) to end the
text in the associated block. The associated block always has an abt of 2, and the data
is always from a console device. The cancel-input request also applies to any blocks with
an abt value of 1 that preceded this block; all blocks in the same message should be
discarded. You can access this field with the reserved symbol ABHCAN (see section 4).

pef Parity error flag bit. When pef is 1, the associated block contains a parity error in
one or more of its characters. You can access this field with the reserved symbol ABHBIT
(see section 4).

tle Text Length of the associated block, in character units specified by the act field. The
equivalent length in central memory words can be computed as follows:

act=1, tle is the number of central memory words the block requires.

act=2, the number of central memory words the block requires is tlc divided by
7.5, rounded upward to an integer.

act=3, the number of central memory words the block requires is tlc divided by
5, rounded upward to an integer.

act=4, the number of central memory words the block requires is tlc divided by
10, rounded upward to an integer.

=5 thru Reserved for CDC use; not currently recognized.
1"

=12 Reserved for installation use; usage and content are undefined.
thru 15

You can access this field with the reserved symbol ABHTLC (see section 4).

Figure 2-3. Application Block Header Content for Upline Network Data Blocks (Sheet 4 of 4)

® 2-26 60499500

59 53 41 23 19 15141312 11 o

x|r|a
ha abt acn abn act | O {flplefi tlc
tlsmi
ha Symbol ic header area address, specified as the application block header's location in a
call to NETPUT or NETPUTF (see section 5).
abt Application block type of the accompanying network data block. This field can contain the
values:
=, indicates that the accompanying block is one of several blocks comprising a
single message, but is not the last such block.
=2, indicates that the accompanying block is either the last or only one

comprising a message.

Values of 0 and 3 through 63 are not valid for data blocks on output. You can access this
field with the reserved symbol ABHABT (see section 4).

acn Application connection number of the lLogical connection to which the accompanying block
should be sent. This field can contain the values 1 < minacn < acn < maxacn < 4095, where
the values minacn and maxacn are parameters in the NETON statement (see section 5.) You
can access this field with the reserved symbol ABHADR (see section 4).
abn Application block number assigned to the block being sent. This field is an 18-bit
integer that identifies the block when the network software's processing of the block
returns certain supervisory messages (see section 3). You define the block number; it can
be:
A sequencing number
The block's central memory address
The block's mass storage address (physical record unit)
An index value for a block control array or table
An external label

You can access this field with the reserved symbol ABHABN (see section 4).

act Application character type used to encode the accompanying block. This field can contain
the values:

=1, 60-bit transparent characters, packed one per central memory word; this
character type can be used only for application—-to-application connections
within the same host.

=2, 8-bit characters, packed 7.5 per central memory word; this character type
is recommended for application-to-terminal connections.

=3, 8-bit characters, right-justified in 12-bit bytes, packed 5 per centratl
memory word.

=4, 6-bit display code characters (see tabte A-1 in appendix A), packed 10 per
central memory word. This value can be used only for normalized mode data
on application-to-terminal connections when the block is exchanged with a
site-defined device or a CbC-defined console device.

=5 thru Reserved for CDC use; not currently recognized.

11
=12 Reserved for installation use; usage and content are unrestricted and
thru 15 undefined (the released version of the software does not recognize these

values).

You can access this field with the reserved symbol ABHACT (see section 4).

Figure 2-4. Application Block Header Content for Downline Network Data Blocks (Sheet 1 of 3)

60499500 P 2-27 @

nfe No-format-effector bit, indicating whether the accompanying block contains format
effectors. If nfe is 1, there are no format effectors in the block; if nfe is 0, the
block contains format effectors requiring removal and interpretation. The nfe field
applies only to normalized mode data exchanged with a site-defined device or a CDC-defined
console device. You can access this field with the reserved symbol ABHNFE (see section 4).
xpt Transparent mode bit, indicating whether the accompanying block contains transparent mode
data. The value used in this field depends on the act value used, as follows:
act=1, xpt value is ignored and can be 1 or O.
act=2, if the data is for a site-defined device or a CDC-defined console device:
xpt=0 indicates normalized mode data for which interactive virtual terminal
transformations should be performed; 7-bit characters are from the
128-character ASCII set (see appendix A).
xpt=1 indicates transparent mode data for which no transformations are to
be performed; all eight bit positions can be used to form 256
characters, but such data must be correctly formatted for terminal
output.
act=2, if the data is for an application program, xpt shoutd be 1 only if the
receiving program can detect and support that value.
act=3, if the data is for a site-defined device or a CDC-defined console device:
xpt=0 indicates normalized mode data for which interactive virtual terminal
transformations should be performed; 7-bit characters are from the
128-character ASCII set (see appendix A).
xpt=1 indicates transparent mode data for which no transformations are
performed; all eight bit positions in the character portion of the
character byte can be used to form 256 characters, but such data must
be correctly formatted for terminal output.
act=3, if the data is for an application program, xpt should be 1 only if the
receiving program can detect and support that value.
act=4, xpt value is ignored and can be 1 or 0.
You can access this field with the reserved symbol ABHXPT (see section 4).
res Reserved for CDC use.
aim Automatic-input-mode flag bit. You can use this field when the accompanying block is the
last block (abt of 2) of a message sent to a site-defined device or a CDC-defined console
device and contains only one logical Line. If aim 1is 1, the first text characters
(excluding format effectors) of the block become the first characters of the next data
block input from the device. If the block contains fewer than 20 characters, only the
characters present are used; if the block contains more than 20 characters, only the first
20 are used. When the downline block contains transparent mode data, the next input block
will not be in transparent mode unless transparent mode input operation has been
explicitly selected by the terminal operator or the application program (with one of the
supervisory messages described in section 3). The aim value is ignored for blocks with
an abt of 1. You can access this field with the reserved symbol ABHBIT (see section 4).
Figure 2-4. Application Block Header Content for Downline Network Data Blocks (Sheet 2 of 3)
2-28 60499500 P

(

tic Text length of the associated block, in character units specified by the act value. The
value to use in the tlc field can be computed as follows:

act=1, tlec is the number of central memory words occupied by the block.

act=2, tlc is the number of complete central memory words occupied by the block
times 7.5, plus the number of complete character bytes used in any
remaining central memory word, rounded upward to an integer.

act=3, tlc is the number of complete central memory words occupied by the block
times 5, plus the number of 12-bit character bytes used in any remaining
central memory word.

act=4, tle is the number of complete central memory words occupied by the block
times 10.

The character count used as the text length must include any format effectors and
end-of-Line indicator bytes contained in the block. You can access this field with the
reserved symbol ABHTLC (see section &4).

Figure 2~4. Application Block Header Content for Downline Network Data Blocks (Sheet 3 of 3)

59 51 49 43 . 0
ta Word e|r
1 pfc bl sfe Parameters
ta Wgrd Parameters
ta Symbolic text area address, specified in a NETGET, NETGETF, NETGETL, or NETGVTFL call as
the location to receive an upline supervisory message or specified in a NETPUT or NETPUTF
call as the location from which to send a downline supervisory message (see section 5).
pfc Primary function code. Field mnemonics are used throughout this manual in specific
message formats. Reserved symbols corresponding to the field mnemonics can be used to
access message fields (see section 4). Reserved symbols for the primary function code are
used throughout this manual within mnemonics identifying specific messages. The mnemonics
and their unpacked (right—-justified) numerical equivalents are:
Reserved
Field Mnemonic Symbol ic Mmemonic Octal Hexadecimal Decimal
con CON 143 63 099
ctrl CTRL 301 o 193
de DC 302 c2 194
err ERR 204 84 132
fc FC 203 83 131
hop HOP 320 (] 208
intr INTR 200 80 128
Lst LST 300 co 192
shut SHUT 102 42 066
tch TCH 144 64 100
to¥ T0 304 c4 196
Primary function codes 00 through EQ hexadecimal are reserved for CDC use. Hexadecimal
codes €1 through EF are for installation use and have no predefined meanings or reserved
symbols. You can access the pfc field with the reserved symbol PFC (see section 4).
Figure 2-5. Supervisory Message General Content, Asynchronous Messages
and Synchronous Messages of Application Character Type 2 (Sheet 1 of 2)
60499500 P 2-29

® 2-30

eb Error bit. When set to 1, eb indicates the occurrence of an error (an abnormal response
to a previous supervisory message); when set to 0, eb indicates a normal response. The
eb field always contains 0 when a supervisory message is not a response to a prior
message. You can access this field with the reserved symbol EB (see section 4).
rb Response bit. When set to 1, rb indicates a normal response to a previous supervisory
message; rb is always 0 in a supervisory message that is not a response to a previous
message. You can access this field with the reserved symbol RB (see section 4).
sfc Secondary function code. Field mnemonics are used throughout this manual in specific
message formats. Reserved symbols corresponding to the field mnemonics can be used to
access message fields (see section 4). Reserved symbols for the secondary function code
are used throughout this manual within mnemonics identifying specific messages. The sfc
mmemonics and their unpacked (right-justified) numerical equivalents are:
Related Reserved
Field Mnemonic Symbolic pfc Symbolic Mnemonic Octal Hexadecimat Decimal
req CON REQ 00 00 00
acrg CON ACRQ 02 02 02
cb CON B 05 05 05
end CON END 06 06 06
defT CTRL DEF 04 04 04
chart CTRL CHAR 10 08 08
rte’ CTRL RTC 1 09 09
tedt CTRL TCD 12 0A 10
cict DC cICT ’ 00 00 00
tru DC TRU (7] [0} 0
Lgt ERR L6L] 01 0
brk FC BRK 00 00 00
rst FC RST o1 (o)) oy}
ack FC ACK 02 02 02
nak FC NAK 03 03 03
inact FC INACT 04 04 04
init FC INIT 07 07 07
db HOP DB 16 0 14
de HOP DE 17 OF 15
du HOP bu 03 03 03
trace HOP TRACE 02 02 02
notr HOP NOTR 07 07 07
rel HOP REL 15 1)) 13
rs HOP RS 10 08 08
usr INTR USR 00 00 00
rsp INTR RSP 01 (0] 01
app INTR APP 02 02 02
off LST OFF 00 00 00
on LST ON n 01 o1
swh LST SWH 02 02 02
fdx LST FDX 03 03 03
hdx LST HDX 04 04 04
insd SHUT INSD 06 06 06
tchar TCH TCHAR 00 00 00
mark 10 MARK 00 00 00
You can access the sfc field with the reserved symbol SFC (see section 4).
parameters These parameters can extend into words 2 through n; n < 410. Parameters are defined in
the descriptions of the specific messages in section 3.
TSynchronous supervisory message fields.
Figure ¢-5. Supervisory Message General Content, Asynchronous Messages
and Synchronous Messages of Application Character Type 2 (Sheet 2 of 2)
60499500 P

ta Word
1
ta Word
n
ta
pfc
eb
rb
sfc
parameters

59 55 47 4341 35 0

0 pfc 0 ZI{] sfc Parameters

E =

Parameters

Symbolic text area address, specified in a NETGET, NETGETF, NETGETL, or NETGTFL call as
the location to receive an upline supervisory message or specified in a NETPUT or NETPUTF
call as the location from which to send a downline supervisory message (see section 5).

Primary function code. Ffield mnemonics are used throughout this manual in specific
message formats. Reserved symbols corresponding to the field mnemonics can be used to
access message fields (see section 4). Reserved symbols for the primary function code are
used throughout this manual within mnemonics identifying specific messages. The mnemonics
and their unpacked (right-justified) numerical equivalents are:

Reserved
Field Mnemonic Symbolic Mmemonic ‘Octal Hexaclec imal Decimal
ctrl CTRL 301 €1 193
to T0 304 C4 196

Primary function codes 00 through EQ hexadecimal are reserved for CDC use. Hexadecimal
codes E1 through EF are for installation use and have no predefired meanings or reserved
symbols. You can access the pfc field with the reserved symbol PFC (see section 4).

Error bit. When set to 1, eb indicates the occurrence of an error (an abnormal response
to a previous supervisory message); when set to O, eb indicates a normal response. The
eb field always contains 0 when a supervisory message is not a response to a prior
message. You can access this field with the reserved symbol EB (see section 4).

Response bit. When set to 1, rb indicates a normal response to a previous supervisory
message; rb is always 0 in a supervisory message that is not a response to a previous
message. You can access this field with the reserved symbol RB (see section 4).

Secondary function code. Field mnemonics are used throughout this manual in specific
message formats. Reserved symbols corresponding to the field mnemonics can be used to
access message fields (see section 4). Reserved symbols for the secondary function code
are used throughout this manual within mnemonics identifying specific messages. The sfc
mmemonics and their unpacked (right-justified) numerical equivalents are:

Related Reserved
Field Mnemonic Symbol ic pfc Symbolic Mnemonic Octal Hexadecimal Decimal

def CTRL DEF 04 04 04
char CTRL CHAR 10 08 08
rte CTRL RTC 11 09 09
tcd CTRL TCD 12 0A 10
mark TO MARK 00 00 00

You can access the sfc field with the reserved symbol SFC (see section 4).

These parameters can extend into words 2 through n; n 5_410. Parameters are defined in
the descriptions of the specific messages in section 3.

60499500 P

Figure 2-6. Supervisory Message General Content, Synchronous
Messages of Application Character Type 3

231 e

The first of the four fields common to all supervi-
sory messages 1is the primary function code. The
primary function code is used to group supervisory
messages into related functions and determine their
routing within the network software.
Functions routed between NAM and the application
program are represented in figures 2-5 and 2-6 by
mnemonics. These mnemonics are defined in paren-—
theses after the corresponding function in the
following list:

Connection data flow control (FC)

Error reporting (ERR)

Device control (CTRL)

Connection list management (LST)

Connection characteristic definition (DC)

Interrupt request (INTR)

Connection control (CON)

Terminal characteristic definition (TCH)

Network shutdown (SHUT)

Host operator commands (HOP)

Terminate output (TO)
The precise function of a message within a primary
function grouping is indicated by its secondary
function code, forming the fourth common field. The
mnemonic symbols used to identify these secondary
function codes are related to the use of the mes-
sages. Mnemonics for these codes also appear in
figures 2-5 and 2-6 and in parentheses after the
secondary functions in the following list:

Request for logical connection (REQ)

End of connection (END)

Connection broken (CB)

Application-to-application connection request
(ACRQ)

Internal shutdown (INSD)

Inactive connection (INACT)

No acknowledgment (NAK)
Acknowledgment (ACK)

Reset (RST)

Break (BRK)

Logical problem (LGL)

Initialization (INIT)

Mark point in data (MARK)

Switch connection between lists (SWH)
Turn connection list processing off (OFF)

Turn connection list processing on (ON)

® 2-32

Turn half-duplex operation on for connection on
a list (HDX)

Turn full-duplex operation on for connection on
a list (FDX)

Begin truncating input on a connection (TRU)
Application interrupt request (APP)

User interrupt request (USR)

Interrupt response (RSP)

Change input character type (CICT)

Report of changed terminal <characteristics
(TCHAR)

Request terminal characteristics (RTC)
Define single terminal characteristic (DEF)

Upline terminal multiple characteristics defi-
nition (TCD)

Downline terminal multiple characteristics def-
‘inition (CHAR)

The second and third common fields are used to
indicate whether the function was performed or not.
By convention, these fields are called the error
and response bits. The error bit is usually set to
indicate the message recipient’s refusal to perform
the function; the response bit is set to indicate
the recipient’s normal completion of the function.

Together, the four common fields define one super-
visory message. Supervisory messages can be grouped
into two classes of sequencing protocol:

Asynchronous (the largest class)

Synchronous

ASYNCHRONOUS MESSAGES

Asynchronous supervisory messages are sent or re-
ceived separately from the stream of data message
blocks between an application program and a logical
connection. Whether these messages are used alone
or as part of the stereotyped sequences described
in section 3, their receipt or the need to send them
cannot be predicted from the generalized logic re-
quired for data block processing. Such messages are
said to be asynchronous to the data block stream.

All asynchronous messages are sent or received on a
special logical connection with the preassigned ap-
plication connection number of zero. The network
software preassigns this application connection
number to connection list zero.

All asynchronous supervisory messages are actually
sent to or received from software resident in the
host computer, although they may be reformatted by
this software for communication with software out-
side of the host, These messages conform to the
requirements of application~to-application connec-
tions. Asynchronous supervisory messages therefore
use an application character type of one. All
supervisory messages are assigned the nonzero ap-
plication block type of three.

60499500 P

Asynchronous supervisory messages are processed
with the same AIP routines used by an application
program to process data message blocks on logical
connections other than application connection number
zero. Asynchronous supervisory messages are queued
on their special connection until fetched by the
application program,

The application program fetches supervisory messages
one message at a time. When the connection queue
is empty, a null block with an application block
type of zero is returned.

The network software provides a mechanism for the
application program to determine when asynchronous
supervisory messages are queued on application con~
nection number zero. When a call to an AIP routine
is completed, a supervisory status word at a loca=-
tion defined by the application program is updated
to indicate whether any asynchronous supervisory
messages are queued. As long as the application
program continues to make calls to AIP routines, it
can test the supervisory status word periodically
(instead of attempting to fetch null blocks from
application connection number zero). The supervi-
sory status word and the use of NETWAIT are de-
scribed in section 5.

SYNCHRONOUS MESSAGES

Synchronous supervisory messages are seat or re-
ceived embedded in the stream of data message blocks
between an application program and a logical con-
nection. Whether these messages are used alone or
as part of the stereotyped sequences described in
section 3, their receipt or the need to send them
is determined by the generalized logic required for
data block processing. Such messages are said to
be synchronous with the data block stream.

All synchronous messages are sent or rveceived on
the logical connection to which they apply. This
logical connection cannot be application connection
number zero.

All synchronous supervisory messages are actually
sent to or received from network software outside
of the host computer. Because the applicatioan pro-
gram processes these messages as network blocks

sent to or received from terminals, the messages
conform to the requirements of application-to-
terminal connections. Synchronous supervisory mes-
sages use an application charactei type of two or
three; your program specifies which is used when it
accepts the connection to the terminal.

Synchronous supervisory messages are processed with
the same AIP routines used by an application pro-
gram to process other blocks on logical connections,
Synchronous supervisory messages are queued on
their connections until fetched by the application
program. Because the application program must dis-
tinguish between data or null blocks and synchronous
supervisory message blocks, supervisory messages
are assigned the application block type of three.

The network software provides a mechanism for the
application program to determine when synchronous
supervisory messages or data blocks are queued on a
logical connection. When a call to the AIP rvoutine
NETWAIT is completed, a supervisory status word at
a location defined by the application program is
updated to indicate whether any synchronous super-
visory message or data blocks are queued. The ap=-
plication program can test the supervisory status
word periodically, instead of attempting to fetch
null blocks from all application connection num-
bers. The supervisory status word and the use of
NETWAIT are described in section 5.

Synchronous supervisory messages are subject to the
same application block limit as data messages and
are similarly acknowledged. This process 1is de-
scribed in section 3,

BLOCK HEADER CONTENT

The content of the block header word associated
with a supervisory message depends on whether the
message 1is asynchronous or syachronous, and on
whether it is being sent or received. The require-
ments for asynchronous and syachronous messages are
described in the preceding subsection. The re~
quirements for all header words associated with
incoming supervisory messages are described in
figure 2-7. The requirements for all header words
associated with outgoing supervisory messages are
described in figure 2-8,

59 53 41 23 19 16 1 0
Reserved for tl) Ot re
ha abt adr use by CDC act b ll; tic
ha Symbol ic header area address, specified as the location to receive the application block

header in a call to NETGET, NETGETF, NETGETL, or NETGTFL (see section 5).
abt Application block type of the associated message block. This field can contain the values:

=0, indicates a null block.
logical connection polled.)

(No message is queued or can be delivered from the

=3, indicates that the accompanying block is a supervisory message block.

Values of 1, 2, and 4 through 63 are not valid for supervisory messages on input. You can
access this field with the reserved symbol ABHABT (see section 4).

Figure 2-7. Application Block Header Content for Upline Supervisory Messages (Sheet 1 of 2)

60499500 P

2-33 @

adr Application connection number of the logical connection from which the message block
comes. This field can have the values:

=0, for asynchronous supervisory messages from the host portion of the network
software.
=acn, for synchronous supervisory messages from the Terminal Interface Program

servicing the logical connection with the indicated nonzero application
connection number.

You can access this field with the reserved symbol ABHADR (see section 4).

act Application character type used to encode the accompanying message block. The value
appearing in this field depends on the type of supervisory message involved and on the
act value you chose (the sct field described in section 3) for synchronous supervisory
messages on this connection; this field can contain the values:

=1, an asynchronous supervisory message packed in 60-bit words. Must be used
for supervisory messages with an adr value of 0.

=2, a synchronous supervisory message packed in 8-bit characters, 7.5
characters per central memory word (the recommended value).

=3, a synchronous supervisory message packed in 8-bit characters, 5 characters
per central memory word.

Because the fields within supervisory messages are groups of bits within central memory
words (rather than characters in a character string), the act field of a supervisory
message does not indicate that character mapping occurred. You can access this field with
the reserved symbol ABHACT (see section 4).

ibu Input-block-undeliverable bit. When 1ibu is 1, the block associated with this block
header has not been delivered to the application program. The block is Larger than the
maximum text length (timax parameter) declared by the application program in its NETGET,
NETGETF, NETGETL, or NETGTFL call and remains queued until:

A NETGET, NETGETL, NETGETF, or NETGTFL call occurs for the connection and specifies
an adequate text length (see section 5).

A truncate-input asynchronous supervisory message (see section 3) is issued for the
connection and a NETGET, NETGETL, NETGETF, or NETGTFL call occurs for the connection
(see section 5). This action resolves the problem only for synchronous supervisory
messages.

A block header with an ibu value of 1 contains the actual length of the queued block in
its tic field, given in character units specified by the act field. You can access
this field with the reserved symbol ABHIBU (see section 4).

tru Truncated data bit. When tru is 1, the synchronous supervisory message block associated
with this block header has been truncated to fit into the text area used. Asynchronous
supervisory messages are never truncated. This bit contains a meaningful value only after
the application program has issued the data truncation control asynchronous supervisory
message described in section 3 and only if that message affects transmissions on this
connection. When truncation occurs, the block header for the truncated block contains the
maximum number of complete transferred character bytes in its tlc field. You can access
this field with the reserved symbol ABHTRU (see section 4).

re Reserved for CDC use.
tlc Text length of the associated block, in character units specified by the act field, as
follows:

act=1, tlc is the number of central memory words occupied by the block.
act=2, tlc is the number of 8-bit bytes containing meaningful message fields.
act=3, tle is the number of 12-bit bytes containing meaningful message fields.

You can access this field with the reserved symbol ABHTLC (see section 4).

Figure 2-7. Application Block Header Content for Upline Supervisory Messages (Sheet 2 of 2)

® 2-34 60499500 P

ha

ha

abt

adr

abn

act

tic

59 63 41 23 19 1]

abt adr abn act 0 tic

Symbol ic header area address, specified as the application block header's location in a
call to NETPUT or NETPUTF (see section 5).

Application block type; abt is 3 for all supervisory messages. You can access this field
with the reserved symbol ABHABT (see section 4).

Application connection number of the logical connection to which the message block should
be sent. This field can contain the values:

=0, for asynchronous supervisory messages addressed to the host portion of the
network software.

=acn, for synchronous supervisory messages addressed to the Terminal Interface
Program servicing the logical connection with the indicated nonzero
application connection number.

You can access this field with the reserved symbol ABHADR (see section 4).
Application block number assigned to the message block being sent. This field is an
18-bit integer that identifies a synchronous supervisory message block when the network
software's processing of the block returns a block-delivered or block—-not-delivered
supervisory message. This field is generally ignored for asynchronous supervisory
messages. If the message is a request for connection with another application program,
that application program will receive this integer as part of the request; see the
CON/ACRQ/R supervisory message description in section 3. You define the block number; it
can be:

A sequencing number

The block's central memory address

The block's mass storage address (physical record unit)

An index value for a block control array or table

An external Label
You can access this field with the reserved symbol ABHABN (see section 4).
Application character type used to encode the accompanying message block. The value
declared for this field depends on the type of supervisory message involved; this field

can have the values:

=1, an asynchronous supervisory message packed in 60-bit transparent character
bytes, one character per central memory word.

=2, a synchronous supervisory message packed in 8-bit character bytes, 7.5
bytes per central memory word; the recommended value.

=3, a synchronous supervisory message packed in 8-bit characters within 12-bit
bytes, 5 bytes per central memory word.

You can access this field with the reserved symbol ABHACT (see section 4).

Text Length of the accompanying block, in character units specified by the act field, as
follows:

act=1, tlc is the number of central memory words occupied by the block.
act=2, tlc is the number of 8-bit bytes containing meaningful message fields.
act=3, tlc is the number of 12-bit bytes containing meaningful message fields.

You can access this field with the reserved symbol ABHTLC (see section 4).

60499500 P

Figure 2-8. Application Block Header Content for Downline Supervisory Messages

2-35 @

SUPERVISORY MESSAGES AND COMMANDS 31

This section describes all synchronous and asyn-
chronous supervisory messages that are legal for
application program communication with network
software. These messages are described in the con-
text of their use.

MESSAGE PROTOCOLS

Figure 2-5 in section 2 shows the general format of
a supervisory message. Note that this information
is in the text area of the message and must be
accompanied by an application block header as de-
scribed in section 2. A supervisory message is
identified by the contents of its primary function
code field, error bit, response bit, and secondary
function code field. This allows a supervisory
message to be described by a mnemonic of the form
shown in figure 3-1. Although many combinations of
valid field values are possible, only certain com-
binations are permitted. Table 3-1 1lists these
legal messages alphabetically by mnemonic.

MESSAGE SEQUENCES

Supervisory messages are always used in stereotyped
sequences of one or more messages. Related messages
(messages distinguished by the use of the error or
response bits) are always part of multiple-message
sequences. The messages described in the following
subsections are discussed in the context of their
normal sequences. Each sequence 1is 1llustrated
with a figure that shows the sender and recipient
of the messages in the sequence, and the direction
of transmission of each message (arrows).

Message sequences include the following:
Managing logical connections
Managing connection lists
Controlling data flow

Converting data

I]
pfc/sfc/sm
pfc The reserved symbolic mnemonic for the

contents of the primary function code
field; this mnemonic can be any of those
listed in figure 2-5 in section 2. |

sfc The reserved symbolic mnemonic of the
contents of the secondary function code
field; this mnemonic can be any of those
listed in figure 2-5 in section 2, |
provided the secondary function code is
legat for the primary function code used.

sm A letter indicating the combined settings
of the error and response bits; this
letter can be:

R Indicating an initial request
supervisory message (bit setting 00)

N Indicating a normal response
supervisory message (bit setting 01)

A Indicating an abnormal response
supervisory message (bit setting 10)

Figure 3-1. Supervisory Message |
Mnemonic Structure

Truncating data

Changing terminal characteristics
Requesting terminal characteristics
Host operator communication

Host shutdown

Error reporting

TABLE 3-1. LEGAL SUPERVISORY MESSAGES

Octal Equivalent of Figure Number
Message Message : Block Header -
M 1 M i Type Bits 59 thru 42 of X Defining
nemonte eaning First Text Area Wordl Fields Message
CON/ACRQ/A Rejection of Upline 307010 acn = 0 3-13
application-to- asynchronous act = 1
application tle = 2
connection
request
CON/ACRQ/R Application-to- Downline 306010 acn = 0 3-12
application asynchronous act =1
connection tle = 2
request
60499500 P 3-1

TABLE 3-1, LEGAL SUPERVISORY MESSAGES (Contd)
Octal Equivalent of Figure Number
Message Message Type Bits 59 thru 42 of Block Header Defining
Mnemonic eaning First Text Area Word? Message
CON/CB/R Connection Upline 306024 acn = 0 3-8
broken asynchronous act =1
tle = 1
CON/END/N All connection Upline 306430 acn = 0 3-10
processing asynchronous act =1
completed tle = 1
CON/END/R End all Downline 306030 acn = 0 3-9
connection asynchronous act =1
processing tlec > 2
CON/REQ/A Connection Downline 307000 acn = 0 3-5
rejected asynchronous act =1
tle =1
CON/REQ/N Connection Downline 306400 acn = 3-4
accepted asynchronous act =1
tle = 1
CON/REQ/R Connection Upline 306000 acn = 0 3-3
requested asynchronous act = 1
tle > 6
CTRL/CHAR/A No terminal Upline 603040 acn # 0 3-42
characteristics synchronous act = 2, 3
changed tle = 1
CTRL/CHAR/N Multiple Upline 602440 acn # 0 3-43
terminal synchronous act = 2, 3
characteristics tlec = 1
defined
CTRL/CHAR/R Define Downline 602040 acn # 0 3-41
multiple synchronous act = 2, 3
terminal tle > 1
characteristics
CTRL/DEF/R Redefine Downline 602020 acn # 0 3-40
terminal synchronous act = 2, 3
characteristic tlc > 6
CTRL/RTC/A Bad value in Upline 603044 acn # 0 3-45
request synchronous act = 2, 3
terminal tle = 1
characteristics
supervisory
message
CTRL/RTC/R Request Downline 602044 acn # 0 3-44
current value synchronous act = 2, 3
of terminal tle > 1
characteristics
CTRL/TCD/R Terminal Upline 602050 acn # 0 3~-46
characteristics synchronous act = 2, 3
definitions tle > 1
DC/CICT/R Change appli- Downline 604000 acn = 0 3-35
cation char- asynchronous act =1
acter type of tle = 1
connection
input
@ 3-2 60499500 P

-~

TABLE 3-1.

LEGAL SUPERVISORY MESSAGES (Contd)

Octal Equivalent of Figure Number
:’lesszﬁi ge::iﬁe Type Bits 59 thru 42 of Bl°§;‘e§§:der Defining
nemonic € 8 First Text Area WordT Message
DC/TRU/R Truncate Downline 604004 acn = 0 3-37
upline asynchronous act = 1
block tle = 1
ERR/LGL/R Logical error Upline 410004 acn = 0 3-57
asynchronous act = 1
tle > 3
FC/ACK/R Output block Upline 406010 acn = 0 3-24
delivered asynchronous act =1
tle = 1
FC/BRK/R Connection Upline 406000 acn =0 3-27
processing asynchronous act =1
interrupted tle = 1
by break
FC/INACT/R Connection Upline 406020 aen = 0 3-15
inactive asynchronous act =1
tle = 1
FC/INIT/N Application Downline 406434 acn = 0 3-7
ready for asynchronous act =1
connection tle =1
processing
(connection
initialized)
FC/INIT/R NAM ready for Upline 406034 acn = 0 3-6
connection asynchronous act = 1
processing tle = 1
(connection
initialized)
FC/NAK/R Output block Upline 406014 acn = 0 3-25
not delivered asynchronous act = 1
tle = 1
FC/RST/R Reset Downline 406004 acn = 0 3-28
connection asynchronous act =1
tle =1
Hop/pB/RTT Activate Upline 640070 acn = 0 3-47
debug code asynchronous act =1
tle =1
HoP/DE/RTT Turn off Upline 640074 acn = 3-48
debug code asynchronous act = 1
tle =1
uop/pu/rTT Dump Upline 640011 acn = 0 3-49
field length asynchronous act =1
tle = 1
HOP/NOTR/RTT Turn off Upline 640014 acn = 0 3-51
AIP tracing asynchronous act = 1
tle = 1
HoP/REL/RTYT Release debug Upline 640064 acn = 0 3-52
log file asynchronous act =1
tle =1
Hop/Rs/RTT Restart Upline 640040 acn = 0 3-53
statistics asynchronous act = 1
gathering tle =1
60499500 P 3-3@

TABLE 3-1. LEGAL SUPERVISORY MESSAGES (Contd)
Octal Equivalent of Figure Number
:issagic gzzziie Type Bits 59 thru 42 of Blogtegszder Defining
emon 8 First Text Area Word' Message
HOP/TRACE/RTT Turn on Upline 640010 acn = 0 3-50
AIP tracing asynchronous act =1
tle = 1
INTR/APP/R Application Downline 400010 acn = 0 3-29
interrupt asynchronous act =1
request tle = 1
INTR/RSP/R Interrupt Downline or 400004 acn = 0 3-30
response Upline act =1
asynchronous tlc =0
INTR/USR/R User interrupt Upline 40000 T1t acn = 0 3-32
request asynchronous x act =1
tle = 1
LST/FDX/R Turn on full Downline 600014 acn = 0 3-23
duplex opera- asynchronous act = 1
tion for con- tle =1
nections in
list
LST/HDX/R Turn on half Downline 600020 acn = 0 3~22
duplex opera- asynchronous act = 1
tion for con- tle = 1
nections in
list
LST/OFF/R Turn list Downline 600000 acn = 0 3-19
processing for asynchronous act =1
connection off tle =1
LST/ON/R Turn list Downline 600004 acn = 0 3-20
processing for asynchronous act = 1
connection on tle = 1
LST/SWH/R Switch appli- Downline 600010 acn = 0 3-21
cation list asynchronous act = 1
number of tle = 1
connection
SHUT/INSD/R Network shut- Upline 204030 acn = 0 3-55
down in asynchronous act =1
progress tic = 1
TCH/TCHAR/R Terminal Upline 310000 acn = 0 3-39
characteristics asynchronous act = 1
redefined tle =1
TO/MARK/R Terminate Downline 610000 acn # 0 3-31
output marker synchronous act = 2, 3
tle = 2
TAssumes upper two bits of field following the secondary function code are zero.
TiThese messages are not currently used. In future releases these messages will be sent by NAM
and applications will have to be able to either handle or ignore them. These messages require
no response.
11 The setting of bits 43 and 42 depends on the alphabetic character included as the interrupting
message from the user.

60499500 P

MANAGING LOGICAL
CONNECTIONS

Five messages are used in connection management.
These are the CON/ACRQ, CON/REQ, CON/CB, CON/END,
and FC/INIT. These messages as well as examples of
how they are used in connecting devices to applica-~
tions, applications to applications, and later
terminating these connections are discussed in this
subsection.

CONNECTING DEVICES TO APPLICATIONS

After an application program has completed a NETON
call, connection-request supervisory messages are
sent to the application on behalf of each device
seeking connection. Request by request, the appli-
cation must decide whether to accept or reject the
requested connection. Rejection might be neces-
sary, for example, when the application program
receives a connection request for a card reader and

it does not support batch devices. To respond to a
connection-request-message, the application must
return one of two similar messages, indicating that
the application is either rejecting or accepting the
connection request., Figure 3-2 shows the common
message sequences in the connection establishment
process.

In this figure, arrows indicate the direction of
transmission of each message. The general term
Network Access Method (NAM) indicates the network
software sending or receiving the message, regard-
less of the software module actually involved.

An application program cannot initiate a connection
to a terminal. The connection-request supervisory
message shown in figure 3-3 can only be an incoming
asynchronous message. The application program’s
first action in processing a terminal-to-application
connection sequence is to issue the asynchronous
connection-accepted supervisory message shown in
figure 3-4, or the connection-rejected message shown
in figure 3-5.

Application

-

Application

-

The application program can now send and receive messages over the Logical connection.

Application

-

The application program has rejected the logical connection.

-

could not be completed.

Although the application program was willing to accept it, the logical connection

Message
CON/REQ/R

CON/REQ/N
FC/INIT/R

FC/INIT/N

Message
CON/REQ/R

CON/REQ/A

Message
CON/REQ/R

CON/REQ/N
CON/CB/R
CON/END/R

CON/END/N

Figure 3-2. Device-to-Application Connection Message Sequence

60499500 P

3-5

ta

con

req

res

acn

abl

sdt

ta

59 51 49 43 35 31 29 23 20 1716 12 75 3 0

T
con |[0]0] req res acn abt | sdt |dt tc |res]i| ord
c
0 pw pl
tname or aname
shost
ownert
res dbz 0
res abn
res ubz xbz res
Llogfam famord
Logname usrind

ahmt

ahds

aawc

atwd (attt)

Symbol ic address of the application program's text area receiving this asynchronous supervisory
message.

Primary function code 6314. This field can be accessed with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of reserved symbol CON.

Secondary function code 0. This field can be accessed with the reserved symbol SFC, as
described in section 4. 1Its value is defined as the value of the reserved symbol REQ.

Reserved by CDC. Reserved fields must be equal to zero.
Application connection number assigned to this lLogical connection, if the connection is estab-
lished; 1 < minacn < acn < maxacn < 4095, where minacn and maxacn are minimum and maximum

values established Dy the application program in its NETON call. (See section 5.) This field
can be accessed with the reserved symbolL CONACN, as described in section 4.

Apptication block Limit, specifying the maximum number of data or synchronous supervisory
message blocks the program can have outstanding (unacknowledged as delivered by the network
software) on this connection at any time. This value is established for the terminal involved
in the logical connection when the terminal is described in the local configuration file. This
field has the range 1 < abl < 7. This field can be accessed with the reserved symbol CONASL,
as described in section 4.
Subdevice type.
IF dt=1, this field can have the values:

0 029 punch patterns are the default for each job deck

1 026 punch patterns are the default for each job deck

If dt=2, this field can have the values:

0 64-character ASCII print train
1 64=character BCD (CDC scientific) print train
2 95-character ASCII print train

® 3-6

Figure 3-3. Connection-Request (CON/REQ/R) Supervisory Message Format (Sheet 1 of 4)

60499500 P

C

(

IF dt=4, this field can have the values:

0 Instructions must be packed in 6-bit bytes

1 Instructions must be packed in 8-bit bytes
dt Device type of the terminal device. This field can have the values:

0 Console (interactive terminal)

1 Card reader

2 Line printer

3 Card punch

4 Plotter

5 Application-to-application connection

6 Reserved for CDC use

4 Reserved for installation use

8 Reserved for CDC use

thru

1

Devices with a device type of zero can be serviced as interactive virtual terminals. Devices
with device types of 1 through & are serviced as batch devices. This field can be accessed
with the reserved symbol CONDT, as described in section 4. Applications other than RBF are
only allowed to do input/output on these devices if non-CDC supported batch terminals.

te Terminal class assigned to the terminal either in the network configuration file or by the
terminal operator. The terminal class determines the parameters and ranges valid for redefi-
nition of the device. The device is serviced by the TIP according to the attributes associated
with the terminal class. These attributes are discussed in appendix F. The terminal class
field can have the values:

1 Archetype terminal for the class is a Teletype Corporation Model 30 Series.

2 Archetype terminal for the class is a COC 713-10, 751-1, 756.

3 Reserved for CDC use,

4 Archetype terminal for the class is an IBM 2741.

5 Archetype terminal for the class is a Teletype Corporation Model 40-2.

6 Archetype terminal for the class is a Hazeltine 2000, operating as a tele-
typewriter.

7 Archetype terminal for the class is a CDC 752.

8 Archetype terminal for the class is a Tektronix 4000 Series, operating as a tele-
typewriter.

9 Archgtype terminal for the class is a HASP (post-print) protocol multileaving work-
station.

10 Archetype terminat for the class is a CDC 200 User Terminal.

1" Archetype terminal for the class is a CDC 714-30.

12 Archetype terminal for the class is a CDC 711-10.

13 Archetype terminal for the class is a CDC 714-10/20.

14 Archgtype terminal for the class is a HASP (pre-print) protocol multileaving work-
station.

15 Archetype terminal for the class is a CDC 734.

Figure 3-3. Connection-Request (CON/REQ/R) Supervisory Message Format (Sheet 2 of 4)

60499500 P 3-70

ric

ord

tname

pw

pl

shost

ownert

dbz

16 Archetype terminal for the class is an IBM 2780.
17 Archetype terminal for the class is an IBM 3780.
18 Reserved for CDC use.

thru

27

28 Reserved for installation use.

thru
n

This field can be accessed with the reserved symbol CONT, as described in section 4.
Restricted interactive capability (for consoles only). This field can have the values:

Q Terminal has unrestricted interactive capability.

1 Terminal has restricted interactive capability.
Applications are advised to Limit the amount of interactive dialog with a terminal that has
restricted interactive capability. Such terminals (for example a 2780 or 3780) in which the
console is emulated by a card reader and line printer are not truly interactive. This field

can be accessed with the reserved symbol CONR, as described in section 4,

Device ordinal, indicating a unique device when more than one device with the same device type
is on the same communication Line. This field can have the value:

0 ALl interactive terminals
1 Batch devices

thru

7

The device ordinal is assigned to the device when the device is defined in the network con-
figuration file. The field can be accessed with the reserved symbol CONORD, as described in
section 4.

Terminal device name, assigned to the device in the network configuration file. This name is
one to seven 6-bit display code letters and digits, left-justified with btank fill; the first
character is always alphabetic. The terminal device name is the element name used by the net-
work operator to identify the device. This field can be accessed with the reserved symbol
CONTNM, as described in section 4.

If the device is an interactive device, this field specifies the maximum number of characters
in a physical Lline of input or output, 0 or 20 < pw < 255. 1If the device is a batch card
reader or card punch, this field specifies the maximum number of characters in an input or out-
put record. If the device is a batch Line printer, this field specifies the maximum number of
characters in a line of output, 50 < pw < 255. If the device is a plotter, this field speci-
fies the maximum number of character bytes of plotter information in a record of output. Page
width of terminals is discussed in appendix F. This field can be accessed with the reserved
symbol CONPW, as described in section 4. PW can be assigned in the network configuration file
or the user can set console PW from the terminal. Default value depends on terminal clause.

Page length of a device, specifying the number of physical Lines that constitute a page. The
page length is assigned to the terminal either in the network configuration file or by the
terminal operator; page length is one of the attributes associated with the terminal class by
the TIP, and is discussed in appendix F. This field can have the values 0 or 8 < pl < 255 for
interactive terminals, but is always 60 for batch devices. This field can be accessed with the
reserved symbol CONPL, as described in section 4.

Reserved by CDC.

Terminal device name of the controlling console (for batch devices only). This field can be
accessed by the reserved symbol CONOWNR, as described in section 4.

Block size in characters for any downline block from the application to NAM. The downline
block size is assigned to the device in the network configuration file and is a function of
line speed, device type, and terminal class as described in the Network Definition language
reference manual. This field can have the values 1 < dbz < 2043. The values are advisory
only. This field can be accessed by the reserved symbol CONDBZ, as described in section 4.

Figure 3-3. Connection-Request (CON/REQ/R) Supervisory Message Format (Sheet 3 of &)

60499500 P

—

abn

Application block number from the application block header of the CON/ACRQ supervisory message
if the CON/ACRQ message originated from this application. If the CON/ACRQ message did not
originate from this application, the value is zero. This applies to application-to-application
connections only. This field can be accessed by the reserved symbol CONAABN, as described in
section 4.

ubz Upline blocking size (in multiples of 100 characters) for a console device. Upline blocking
size (in PRUs) of a batch device. This field can be accessed by the reserved symbol CONUBZ, as
described in section 4.

xbz Transmission block size (in characters) of the device. This defines the number of characters
in an output transmission block that CCP sends to the terminal. This field can be accessed by
the reserved symbol CONXBZ, as described in section 4.

Log fam The NOS family name supplied by the terminal operator during lLogin or by the local con-
figuration file as an automatic login parameter. This family name is one to seven 6-bit
display code letters and digits, left-justified with blank fitl, This field can be accessed
by the reserved symbol CONFAM, as described in section 4.

famord The NOS family ordinal corresponding to the Logfam field contents. This field can be accessed
by the reserved symbol CONFO, as described in section 4.

Logname The NOS user name supplied by the terminal operator during Login or by the Local configuration
file as an automatic Login parameter. This user name is one to seven 6-bit display code let-
ters, digits, or asterisks, left-justified with blank fill. This field can be accessed by the
reserved symbol CONUSE, as described in section 4.

usrind The NOS user index corresponding to the Logname field contents. This field can be accessed by
the reserved symbol CONUI, as described in section 4.

ahmt User validation control word defined in the NOS validation file. This field can be accessed by
the reserved symbol CONAHMT, as described in section 4.

ahds User validation control word defined in the NOS validation file. This field can be accessed by
the reserved symbol CONAHDS, as described in section 4.

aawc User validation control word defined in the NOS validation file. This field can be accessed by
the reserved symbol CONAAWC as described in section 4.

atwd(attt) User validation control word defined in the NOS validation file. This field can be accessed by
the reserved symbol CONATWD, as described in section 4.

Figure 3-3. Connection-Request (CON/REQ/R) Supervisory Message Format (Sheet 4 of 4)
59 51 49 43 35 23 11 9 5 0
nls
ta con |0 |1 req unused acn unused x |c|act aln
plt

ta Symbolic address of the application program's text area from which this asynchronous super-
supervisory message is sent.

con Primary function code 6314. This field can be accessed with the reserved symbol PFC, as de-
scribed in section 4. Its value is defined as the value of the reserved symbol CON.

req Secondary function code 0. This field can be accessed with the reserved symbol SFC, as de-
scribed in section 4. 1Its value is defined as the value of the reserved symbol REQ.

acn Application connection number assigned by the network software to this end of the lLogical con-
nection being established with the terminal. The value placed in this field must be the value
used in the CON/REQ/R message to which this message is a response. This field can be accessed
with the reserved symbol CONACN, as described in section 4.

nxp No transparent input flag. This field can have the values:

0 Allow transparent input
1 Transparent input not allowed
Figure 3-4. Connection-Accepted (CON/REQR/N) Supervisory Message Format (Sheet 1 of 2)
60499500 P

3-9e

sct

act

aln

The change-input-character~type supervisory message, described lLater in this section, permits
an application to change to or from allowing transparent mode input. If transparent input is
not allowed any transparent input destined for the application will be discarded. This field
can be accessed with the reserved symbol DCNXP, as described in section 4.

Synchronous supervisory message input character type. This field can have the values:
0 Application character type 2

1 Application character type 3

To indicate the input character type of synchronous supervisory messages the application is
willing to accept. The change-input-character-type supervisory message, described Later in
this section, allows an application to change the input character type of synchronous super-
visory messages which the application will receive. This field can be accessed by the
reserved symbol DCSCT, as described in section 4.

Application input character type, specifying the form of character byte packing that the
application program requires for input data blocks from the lLogical connection. This field can
have the values:

1 60-bit words. Can be used for application-to-application connections within a host.
Cannot be used for terminal—-to—application connections.

2 8-bit characters in 8-bit bytes, packed 7.5 characters per central memory word; if
the input is not transparent mode, the ASCII character set described in table A-2 is
used.

3 8-bit characters in 12-bit bytes, packed 5 characters per central memory word, right-
justified with zero fill within each byte; if the input is not transparent mode, the
ASCII character set described in table A-2 is used.

4 6-bit display coded characters in 6-bit bytes, packed 10 characters per central
memory word; the characters used are the ASCII set of CDC characters described in
table A-1,

The act value declared applies only to input on the connection and can be changed by a
DC/CICT/R supervisory message at any time during the existence of this logical connection.
This field can be accessed with the reserved symbol CONACT, as described in section 4.

Application List number assigned by the application program to this logical connection; 0 < aln
< 63. This field can be accessed with the reserved symbol CONALN, as described in section 4.

Figure 3-4. Connection-Accepted (CON/REQ/N) Supervisory Message Format (Sheet 2 of 2)

ta

ta

con

reg

‘rc

acn

59 51 49 43 35 23 0

con |1}0] req rc acn unused

Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.

Primary function code 6314. This field can be accessed with the reserved symbol PFC, as
described in section 4. 1Its value is defined as the value of the reserved symbol CON.

Secondary function code 0. This field can be accessed with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol REQ.

Reason code, specifying the reason the application program is refusing to complete the connec-
tion. This field is ignored. This field can be accessed with the reserved symbol RC, as de-
scribed in section 4.

Application connection number assigned by the network software to this end of the logical con-
nection being rejected. The value placed in this field must be the value used in the CON/REQ/R
message to which this message is a response. Upon receipt of this message, the network soft-
ware can reuse this application connection number for a different lLogical connection with the
same program. This field can be accessed with the reserved symbol CONACN, as described in
section 4.

® 3-10

Figure 3-5. Connection-Rejected (CON/REQ/A) Supervisory Message Format

60499500 P

If the application program accepts the connection
(assuming that no change has occurred in the status
of the requesting terminal), the network software
informs the application program that the connection
is ready for data transmission. This is done by
sending the asynchronous initialized-connection
message shown in figure 3-6 upline to the applica-
tion program. If conditions have not changed and
the application program can still service the con-
nection, it responds by issuing the connection-
I initialized message shown 1in figure 3-7. Data
transmission on the logical connection can then
begin. After the network software receives the
connection-initialized message, the application
program can send output to console devices or wait
for input from them. An application program cannot
send or receive any supervisory messages or data
messages on a connection until connection initial-
ization processing has been completed.

If the application program rejects the connection,
no further action by the program or the network
software occurs. If the application program accepts
the connection but the network software cannot ini-
tialize the connection, the asynchronous connection-
broken supervisory message shown in figure 3-8 is
sent to the application program. This connection-
broken message requires the application program to
respond by issuing an end-connection asynchronous
message, as shown in figure 3-9. The network soft-
ware finishes this sequence by responding with the
connection-ended asynchronous supervisory message
shown in figure 3-10.

If the application program does not follow these
message sequences, a logical-error asynchronous
supervisory message is issued to the program. This
message is discussed at the end of this section.

59 51 49 43 35 23 0
ta fc 0]0] init unused acn unused
ta Symbol ic address of the application program's text area receiving this asynchronous supervisory
message.
fe Primary function code 8314- This field can be accessed with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol FC.

init Secondary function code 7. This field can be accessed with the reserved symbol SFC, as defined
in section 4. Its value is defined as the value of the reserved symbol INIT.

acn Application connection number assigned by the network software to the program end of the
logical connection that has been initialized. This value is the same as that used in previous
CON/REQ/R and CON/REQ/N messages. This field can be accessed with the reserved symbol FCACN,

as described in section 4.

Figure 3-6. Initialized-Connection (FC/INIT/R) Supervisory Message Format

59 51 49 43 35 23 0
ta fc 0|1]init unused acn unused
ta Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.
fc Primary function code 8314. This field can be accessed with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol FC.

init Secondary function code 7. This field can be accessed with the reserved symbol SFC, as defined
in section 4. Its value is defined as the value of the reserved symbol INIT.

acn Application connection number assigned by the network software to the program end of the
logical connection that has been initialized. This value placed in this field must be the
value used in the the FC/INIT/R message to which this message is a response. This field can be
accessed with the reserved symbol FCACN, as described in section 4.

Figure 3-7. Connection-Initialized (FC/INIT/N) Supervisory Message Format

60499500 P

ta

ta

con

cb

rc

acn

59 51 49 43 35 23 0

con 010 <cb rc acn unused

Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

Primary function code 6344, This field can be accessed with the reserved symbol PFC, as
described in section 4. 1Its value is defined as the value of the reserved symbol CON.

Secondary function code 5. This field can be accessed with the reserved symbol SFC, as de-
scribed in section 4. Its value is defined as the value of the reserved symbol CB.

Reason code, specifying the cause of the broken connection. This field can have the values:

1 Communication has been lost with the element at the other end of the logical connec-
tion. If the element is an application program, it is unavailable; if the element is
a terminal, the line has disconnected.

2 The network software broke the connection. This can occur if this message is a re-
sponse to a CON/REQ/N message containing an invalid parameter or if the NOP disabled
the communication Line to the terminal.

This field can be accessed with the reserved symbol RC, as described in section 4.

Application connection number assigned by the network software to the program end of the
logical connection being broken. This number is always one for which the application program
has previously received a CON/REQ/R message. This field can be accessed with the reserved
symbol CONACN, as described in section 4.

Figure 3-8. Connection-Broken (CON/CB/R) Supervisory Message Format

ta

ta

con

end

acn

59 51 49 43 35 23 17 0

con (010} end 0 acn unused

aname unused

Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.

Primary fuqction code 631?. This field can be accessed with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CON.

Secondary function code 6. This field can be accessed with the reserved symbol SFC, as de-
scribed in section 4. Its value is defined as the value of the reserved symbol ENDD.

Application connection number assigned by the network software to this end of the logical con-
nection being terminated. The value placed in this field must be the value used in the
CON/REQ/R message beginning this message sequence. Upon receipt of this message, the network
software issues a response message and can reuse this application connection number for a
different logical connection with the same program. This field can be accessed with the re-
served symbol CONACN, as described in section 4.

Figure 3-9, End-Connection (CON/END/R) Supervisory Message Format,
Connection Establishment Sequences (Sheet 1 of 2)

60499500 P

- P

aname Name of next application, 1 to 7 characters consisting of tetters or digits only with a leading
alpha character, teft-justified and blank filled within the field. This field is used for
terminal-to-application connection only. This field can contain the following:

0 The network software alone determines the next application program that the
device is connected to, or disconnects the device if that is an appropriate
action.

NVF NVF reinitiates the login sequence appropriate for the terminal or causes

command terminal disconnection. The following commands are valid:

BYE or Causes the device to be disconnected from the host.

LOGOUT

HELLO Reinitiates login for the device. If dialog is possible and
or required, the Login prompting sequence begins.

LOGIN

Valid The device at the other end of the logical connection is switched (without NVF

appli- prompting dialog) to connection with the indicated application, if possible.

cation the name placed in the field must be the element name used to define the refer-
name enced application program in the validation file (VALIDUX).
If neither the NVF or valid application name option is used, the value placed in the field must
be one to seven 6-bit display code characters consisting of Letters or numbers only with a
teading alpha character, and blank filled.

Figure 3-9. End-Connection (CON/END/R) Supervisory Message Format,
Connection Establishment Sequences (Sheet 2 of 2)

59 51 49 43 35 23 0
ta con 011 end unused acn unused
ta Symbolic address of the application program's text area receiving this asynchronous supervisory
message.
con Primary function code 6314. This field can be accessed with the reserved symbol PFC, as de-

scribed in section 4. Its value is defined as the value of the reserved symbol CON.

end Secondary function code 6. This field can be accessed with the reserved symbol SFC, as de-
scribed in section 4. Its value is defined as the value of the reserved symbol ENDD.

acn Application connection number assigned by the network software to the program end of the logi-~
cal connection that has been terminated by the CON/END/R message to which this message is a re-
sponse. After issuing this message, the network software can reassign this application con-
nection number to another logical connection with the same program. This field can be accessed
with the reserved symbol CONACN, as described in section 4.

Figure 3-10. Connection-Ended (CON/END/N) Supervisory Message Format

CONNECTING APPLICATIONS TO (as described in section 5), and have not reached
APPLICATIONS their connection limits.

When one application program needs to be connected Figure 3-11 shows the most common message sequences
to another, the first application program sends a in the process of establishing a connection between
supervisory message request to the network software, two applications.

asking for establistment of a logical connection.

Unlike terminal-to-application connections, the In this figure, arrows indicate the direction of
network software permits more than one logical con- transmission of each message. The general term
nection to exist between two application programs. Network Access Method (NAM) indicates the network
The only requirements for such connections are that software sending or receiving the message, regard-
both programs be running, have completed NETON calls less of the software module actually involved.

60499500 P 3-13 @

Application 1

NAM Application 2

Application 1 NAM Application 2 Message
——— CON/ACRQ/R
_— CON/REQ/R
- CON/REQ/R
B CON/REQ/N
e CON/REQ/N
_— FC/INIT/R
-+ FC/INIT/R
B FC/INIT/N
_— FC/INIT/N

The requested logical connection is established and enabled for input and output.

Message

——-

D S

Application program 2 is not available.

CON/ACRQ/R

CON/ACRQ/A

The lLogical connection is not established.

Application 1 NAM Application 2 Message
. CON/ACRQ/R
—_— CON/REQ/R
- CON/REG/R
~¢————————— CON/REQ/A
—_— CON/REQ/N
- CON/CB/R
S — CON/END/R
B B CON/END/N

Application program 2 rejects the Logical connection.

Figure 3-11.

All three sequences begin when the first application
program issues the asynchronous supervisory message

shown in figure 3-12. This request-application-
connection message causes the network software
either to issue the asynchronous application-

connection-reject message shown in figure 3-13, or
to use a message sequence similar to that used for
terminal-to-application connections. If the latter
occurs, both application programs receive the form
of the asynchronous connection-request supervisory
message shown in figure 3-3. Both programs may
accept the connection by issuing the form of the
connection-accepted asynchronous supervisory mes-
sage shown in figure 3-4. If so, then both must
exchange the initialized-connection and connection-—
initialized messages of figures 3-6 and 3-7 with
the network software before any data can be trans-
mitted on the logical connection.

3-14

Application-to-Application Connection Message Sequences

Neither application program can send or receive any
supervisory or data messages on a connection until
connection initialization processing has been com-
pleted.

If either program cannot complete or service the
logical connection, it can reject the connection
request by issuing the asynchronous connection-
rejected message described in figure 3-5. When
this occurs, the other application program must
exchange the connection-broken, end-connection, and
connection-ended asynchronous supervisory messages
with the network software. No further action is
required by the rejecting application program.

If either application program does not follow these
message sequences, a logical-error asynchronous
supervisory message 1s issued. This message is
discussed at the end of this section.

60499500 P

59 51 49 43 17 0

ta con {0 [0] acrq unused reserved
aname reserved
ta Symbolic address of the application program's text area from which this asynchronous super-

visory message is sent.

con Primary function code 6314, This field can be accessed with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of reserved symbol CON.

acrg Secondary function code 2. This field can be accessed with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol ACRQ.

reserved Reserved by CDC. Reserved fields must be equal to zero.

aname Name of the application program with which this program wishes a logical connection to be
established. This name can be one to seven 6-bit display coded tetters and digits, lLeft-
justified with blank fill; the first character is always alphabetic. The name placed in this
field must be the element name used to define the requested application program in the network

configuration file. This field can be accessed with the reserved symbol CONANM, as described
in section 4.

Figure 3-12. Request-Application-Connection (CON/ACRQ/R) Supervisory Message Format

59 51 49 43 35 17 0
ta con 1]10]| acrq rc abn reserved
aname reserved
ta Symbolic address of the application program's text area receiving this asynchronous supervisory
message.
con Primary function code 6316_ This field can be accessed with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of reserved symbol CON.

acrq Secondary function code 2. This field can be accessed with the reserved symbot SFC, as
described in section 4. Its value is defined as the value of the reserved symbol ACRQ.

rc Reason code, specifying the cause for rejecting the connection request. This field can have
the values:

1 Call rejected by destination application.

2 A network shutdown is in progress and no additional connections can be established.
9 The receiver application is temporarily not available.

10 The requestor application is temporarily not allowed to make application-to-

application connections.
12 Maximum retries reached.
This field can be accessed with the reserved symbol RC, as described in section 4.
abn Application block number from the application block header of the CON/ACRG/R supervisory mes-
sage of the requestor application. This field can be accessed by the reserved symbol CONABN,
as described in section 4.
aname Name of the application program with which connection was requested. This field will always
be the same as the aname field in the CON/ACRQ/R message to which this message is a response.

This field can be accessed with the reserved symbol CONANM, as described in section 4.

reserved Reserved by CDC. Reserved fields must be equal to zero.

Figure 3-13. Application-Connection-Reject (CON/ACRQ/A) Supervisory Message Format

60499500 P 3-15@

A logical connection established between two appli-
cation programs does not necessarily have the same
application connection number for both applications.
The network software assigns the application con-
nection number to each end of the logical connection
independently. The application connection number
is unique within all connections of each application
program, so that the same logical connection can
have, for example, an acn parameter of 2 for appli-
cation program A (which accepted one previous con-
nection) but an acn parameter of 4 for application
program B (which accepted three previous con-
nections).

MONITORING CONNECTIONS

As soon as a logical connection is completely ini-
tialized by the network software and an application
program, the network software begins incrementing
an inactivity timer. Each time a data block or
synchronous supervisory message is transmitted on
the logical connection, this inactivity timer is
reset to zero. Any time 10 minutes elapse without
any message transmission on a logical connection,
the network software uses one of the supervisory
message sequences shown in figure 3-14 to inform
the application program of the condition.

The connection monitoring sequence consists of the
asynchronous inactive-connection message shown in
figure 3-15. This message is advisory only; no
response is required from the application program.
The network software automatically resets the
inactivity timer to zero as soon as the message is
issued.

Connection monitoring is not performed for logical
connections to batch devices.

Application NAM Message
-— FC/INACT/R

The timer for the logical connection is reset to
zero.

Application 1 NAM Application 2 Message

- M FC/INACT/R

The timer for the logical connection is reset to
zero.

Figure 3-14. Connection Manitoring
Message Sequences

TERMINATING CONNECTIONS

A logical connection can be terminated any time
after establishment of it begins. This discon-
nection can be initiated by an application program
or by the network software. These two possibilities
have separate corresponding supervisory message
sequences, as shown in figure 3-16.

A logical connection termination is indicated by
the network whenever a condition arises that is not
caused by the application program. Such conditions
include hardware failure, a dialup line being dis-
connected without a formal logout by a terminal
operator, failure of another (connected) applica-
tion program, and so forth. The general case of
this is shown by the second message sequence in the
figure, a sequence already encountered as part of
the connection establishment sequences discussed
earlier in this section.

59 51 49 43 35 23 0
ta fc 0|0 inact unused acn unused
ta Symbolic address of the application program's text area receiving this asynchronous supervisory
message.
fc Primary function code 8314. This field can be accessed with the reserved symbol PFC, as de-

scribed in section 4. Its value is defined as the value of the reserved symbol FC.

inact Secondary function code 4. This field can be accessed with the reserved symbol SFC, as de-
scribed in section 4. Its value is defined as the value of the reserved symbol INACT.

ach Application connection number assigned by the network software to the program end of the

The value in this field is always nonzero and is the
value used in an FC/INIT/N message processed by the application program. This field can be
accessed with the reserved symbol FCACN, as described in section 4.

logical connection reported as inactive.

Figure 3-15. Inactive-Connection (FC/INACT/R) Supervisory Message Format

60499500

2~}

Application NAM Message
— CON/END/R
- CON/END/N

The Llogical connection is terminated by the
application program. The application connection
number can be reassigned to another logical con-
nection by the network software.

Application NAM Message

-t CON/CB/R

The logical connection is terminated by the net-
work. The application program can salvage data
in transit by fetching any blocks queued.

—> CON/END/R

- CON/END/N

The application connection number can be re-
assigned to another logical connection by the
network software.

Figure 3-16. Connection Termination
Message Sequences

The sequence begins when the network software sends
the connection-broken message of figure 3-8 to the
application program. The network software discards
any data blocks or synchronous supervisory messages
sent by the application program on the connection
between the time this asynchronous supervisory mes-
sage 1s queued and the time it 1is processed by the
application program. When the application program
receives this message, it can still fetch any up-
line blocks queued on the logical connection. As
soon as it has fetched all outstanding blocks, the
application program must issue an end-connection
message of the form shown in figure 3-9., The net-
work software responds with the asynchronous
connection-ended message described in figure 3-10.
The application connection number of the terminated
logical connection then becomes available for use
with another logical counnection.

Application-initiated termination of a logical con-
nection occurs whenever the application program
processes a terminal operator’s request to end con-
nection, or in any other situation where the appli-
cation program has finished exchanging blocks over
the logical connection. The message sequence is the
first one shown in figure 3-16. This sequence
begins when the application program issues an
asynchronous end-connection supervisory message.

The format of the end-connection message is de-
scribed in figure 3-9. This message permits the
application program to influence connection switch-
ing or disconnection processing performed for the
device after it is disconnected from the applica-
tion program. The effects of this end-connection
message vary according to the aname field contents
and whether the device is a passive (batch) or
interactive (console) device.

60499500 P

The contents of aname for passive devices 1is
irrelevant, NVF will always logout a passive device
if it’s connection is ended.

When a zero aname parameter is used an interactive
device 1s prompted for the name of the next program
the device should be connected to, unless the user
is allowed access only to the disconnected applica-
tion program. In this instance, the device’s log-
ical connection 1s processed by NVF as if an aname
value of BYE or LOGOUT was specified.

When a valid application name is used in the aname
field for a console connection, the connection is
disposed of in one of two ways. If the specified
application program is available and the login user
name of the console is allowed access to it, the
console connection is switched directly to the new
application program. This switch 1is performed
without dialog between NVF and a console operator.
The network software performs the switch by sending
a connection-request supervisory message for the
console to the specified application program.

If the specified application program is not avail-
able or the login user name does not permit the
terminal to access it, the terminal connection is
not switched. In this case, an interactive ter-
minal is informed of the condition with the message
APPLICATION NOT PRESENT or USER ACCESS NOT POSSIBLE
- CONTACT NETWORK ADMINISTRATOR. The terminal is
then prompted for another application program name,
unless the terminal was configured for a full auto-
matic login procedure and the user name in that
procedure validates access only to the disconnected
application program. In this instance, the ter-
minal’s logical connection is processed by NVF as
if an aname value of BYE or LOGOUT was specified.

When an NVF command is used in the aname field,
disconnection processing depends on the command
used and whether the terminal is a batch or inter-
active terminal. The HELLO or LOGIN command causes
NVF to initiate a manual login dialog with an
interactive terminal.

The BYE or LOGOUT command causes NVF to attempt
disconnection of the terminal from the data com-
munication network. NVF requests the network soft-
ware to perform disconnection processing for batch
and interactive terminals.

When passive devices are logged out, they will be
reconnected to the same host application as its
owning console if the console has not logged out.

On dialup lines, interactive terminals are assigned
to a disconnection queue. When all interactive
terminals on the dialup line are assigned to the
disconnection queue, a timer for the 1line is
started. When the timer for the line expires, the
dialup line is physically disconnected. This dis-
connection causes physical disconnection of all
terminals on the line, including any passive ter-
minals still connected to an application program
(the connection is broken from the application pro-
gram’s viewpoint). The network software effectively
hangs up the telephone, but the terminals can be
reconnected after a new dial-in procedure.

On hardwired lines, no disconnection occurs when

all interactive terminals on the hardwired line are

timed out. Because the line is not disconnected in

this instance, passive terminals still connected to
application programs remain connected to those
programs.

While a terminal is queued for disconnection, any
terminal operator keyboard entry removes the ter-

minal from the disconnection queue and reconnects
it to NVF for a new manual login procedure. The

data entered is discarded by the network software

and therefore can be anything the operator wishes.

MANAGING CONNECTION
LISTS

There are five asynchronous supervisory message
sequences used for connection list management. Each

sequence consists of one message, issued by the
application program.

Three of these sequences, as shown in figure 3-17,
control 1list polling and 1list assignment. The

other sequences, shown in figure 3-18, control the

duplexing mode used during list processing.

Application NAM Message
LST/OFF/R

When the List number associated with the affect-
ed logical connection is next polled by the
application program, no blocks will be returned
from the connection,

Application NAM Message
: LST/ON/R

When the List number associated with the affect-
ed logical connection is next polled by the
application program, blocks might be returned
from the connection.

Application NAM Message

= LST/SWH/R

When the new list number associated with the
affected logical connection is next polled by
the application program, blocks might be re-
turned from the connection.

Figure 3-17. Connection List Polling Control
Message Sequences

CONTROLLING LIST POLLING

Connection list polling control consists of enabling
or disabling the fetching of input blocks from a
single logical connection when the list that the
connection is assigned to is polled. All connec-
tions are 1nitially enabled for 1list processing
without application program action. Each time the

Application NAM Message

— LST/FDX/R

When the List number associated with the affect-
ed logical connection is next polled by the
application program, blocks can be returned from
the affected logical connection regardless of
the previous types of blocks output on the
connection.

Application NAM Message
' LST/HDX/R

When the list number associated with the affect-
ed Llogical connection is next polled by the
application program, blocks of application block
type 1 or a single block of block type 2 are
returned from the affected connection only if a
block of block type 2 or a LST/ON/R message has
been sent downline on the connection since the
Last upline block of block type 2 was delivered
to the program. In effect, message input to the
program is disabled until message output is com-
plete.

Figure 3-18. Connection List Duplexing
Message Sequences

application program polls the 1list number that it
has associated with a specific connection, blocks
queued from that connection can be returned to the
program. If the program requires the list to be
polled without returning any blocks queued from the
connection, the asynchronous supervisory message
shown in figure 3-19 causes the next poll of the
list to exclude the connection. This turn-list-
processing-off message effectively disables list
processing for the connection. This message is not
acknowledged by the network software and remains in
effect until canceled by the asynchronous turn-list-
processing-on message shown in figure 3-20.

The turn-list-processing—on message is issued by
the application program to enable list processiag
and input for a specific connection. This message
causes the next poll of the list number associated
with the indicated connection to include the con-
nection’s data block queue. The network software
does not acknowledge this message. If the message
is issued when 1list processing already has been
enabled for the connection, no error occurs. The
message remains in effect until canceled by a turn-
list-processing-off supervisory message.

Enabling 1list processing for a logical connection
does not cause a queued block to be returned from
that connection the next time the connection’s list
is polled. Connections on a list are searched in a
round-robin fashion starting with the connection
following the connection from which data was last
obtained. Disabled connections are skipped during
the polling process; enabled connections and con-
nections in half-duplex mode for which no output
has been sent are included.

60499500 P

59 51 49 43 35 23 0
ta Ist |0 |0]| off unused acn unused
ta Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.
Ist Primary function code CO14. This field can be accessed with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol LST.

off Secondary function code 0. This field can be accessed with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reverse symbol OFF.

acn Application connection number assigned by the network software to the program end of the logi-
cal connection for which List processing is being disabled. The value used in this field must

be the value used in a CON/REQ/R message processed by the application program. This field can
be accessed with the reserved symbol LSTACN, as described in section 4.

Figure 3-19. Turn-List-Processing-0ff (LST/OFF/R) Supervisory Message Format

59 51 49 43 35 23 0
ta Ist |0]0} on unused acn unused
ta Symbol ic address of the application program's text area from which this asynchronous super-
visory message is sent.
Ist Primary function code C014. This field can be accessed with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol LST.

on Secondary function code 1. This field can be accessed with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol ON.

acn Application connection number assigned by the network software to the program end of the logi-
cal connection for which List processing is being enabled. The value used in this field must
be the value used in a CON/REQ/R message processed by the application program. This field can
be accessed with the reserved symbol LSTACN, as described in section 4.

Figure 3-20. Turn-List-Processing-On (LST/ON/R) Supervisory Message Format

The list number associated with a specific connec-
tion is determined by the application program when
it accepts the logical connection. This list num—
ber can be changed while the connection exists by
issuing the change-connection-list supervisory mes-
sage shown in figure 3-21. The network software
does not acknowledge this asynchronous message, but
the change is effective at the time of the next
poll of the new list number. After the change-
connection-list message is issued by the application
program, polls of the old list number cannot return
blocks queued from the affected connection.

Polling of connection lists is performed through
application calls to the AIP routines NETGETL and

I NETGTFL. These routines are described in section 5.

60499500 P

CONTROLLING LIST DUPLEXING

Upline and downline transmissions on logical con-
nections wusually occur in a full duplex mode. 1In
full duplex mode, the number and occurrence of com-
plete upline message blocks 1is not related in any
way to the number or occurrence of downline message
blocks. Message input and output 1is logically
independent and can become unsynchronized.

The 1list processing feature of NAM can be used in
conjunction with a set of asynchronous supervisory
megsages to avoid loss of input and output synchro-
nization on a logical connection. These messages
can be used to switch the connection to and from a
half duplex mode of input and output.

59 51 49 43 35 23 5 0
ta Ist |0 |0 | swh unused acn unused nuatn
ta Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.
Ist Primary function code C0q4. This field can be accessed with the reserved symbol PFC, as

described in section 4. 1Its value is defined as the value of the reserved symbol LST.

swh Secondary function code 2. This field can be accessed with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol SWH.

acn Application connection number assigned by the network software to the program end of the logi-
cal connection being switched to a new connection lList. The value used in this field must be
the value used in a CON/REQ/R message processed by the application program. This field can be
accessed with the reserved symbol LSTACN, as described in section 4.

nuatn The number of the new connection List to which the logical connection is reassigned; 0 :_nuaLn
< 63, This field can be accessed with the reserved symbol LSTALN, as described in section 4.

Figure 3-21. Change-Connection-List (LST/SWH/R) Supervisory Message Format

In half duplex mode, delivery of an upline block of
block type 2 turns off additional list processing
for the connection until a downline block of block
type 2 or a LST/ON/R message is sent on the same
connection. In effect, application program input
obtained through NETGETL or NETGTFL calls must
alternate with output for the connection, because
no other sequence of input and output is possible
using those calls.

An application program begins network access with
its AIP list processing code automatically enabled
for full-duplex operation of all logical connec-
tions. The program can change a single connection
to half-duplex operation at any time during network
access by issuing the asynchronous supervisory mes-
sage shown in figure 3-22, with the appropriate
application connection number included in the acn
field. Alternatively, the program can change all
existing and any future connections by issuing the
same supervisory message with an acn field value of
zero., There is no response to either form of this
message.

When half-duplex operation begins for a connection,
the connection is initially enabled or disabled for
normal list processing, depending on the setting of
the reserved symbol LSTDIS in the LST/HDX/R super-
visory message shown in figure 3-22. If LSTDIS is
set to zero, then the connection 1is initially
enabled for normal 1list processing via NETGETL or
NETGTFL calls. When such a call returns a block of
application block type 2 (identifying the last
block of an upline message), NETGETL or NETGTFL
calls disable the connection for subsequent 1list
processing.

Use of the turn-on-half-duplex-list-processing
message has no effect on use of the turn-list-
processing-off or turn-list-processing-on messages.
The effects of the latter messages take precedence
over the mode of duplexing operation in effect for
a given connection. In addition, the turn-list-
processing-on message enables the connection for
input, even if no output has been sent.

3-20

An application program can change a single connec-
tion back to full-duplex operation at any time
during network access by issuing the asynchronous
supervisory message shown in figure 3-23, with the
appropriate application connection number included
in the acn field. Alternatively, the program can
change all existing and any future connections by
issuing the same supervisory message with an acn
field value of zero. There is no response to either
form of this message.

When full duplex operation begins for a connection,
the connection is initially enabled for normal list
processing via NETGETL or NETGTFL calls. The con-
nection remains enabled wuntil disabled by the
previously described turn-list-processing-off
supervisory message. Upline delivery of a data
block of application block type 2 has no relation-
ship to downline transmission of a block of the
same block type.

Use of the turn-on~full-duplex-list-processing mes-
sage has no effect on wuse of the turn-list-
processing-off or turn-list-processing-on mes-
sages. The effects of the latter messages take
precedence over the mode of duplexing operation in
effect for a given connection. If a given connec-—
tion has been disabled for any list processing by a
turn-list-processing-off message, it remains dis-
abled after full-duplex operation is turned on for
the connection.

If either of the list duplexing control messages is
issued for a connection already operating in the
requested duplexing mode, the extra message is
ignored. If the acn field specified within either
message Iidentifies a nonexistent logical connec~
tion, a logical-error supervisory message is sent
to the application program and the requested change
in duplexing operation does mot occur.

If either of the list duplexing control messages is
issued with an acn field value of zero, the duplex-
ing mode of application connection zero remains
unchanged. The asynchronous supervisory message
connection is always enabled for full duplex opera-
tion on application list zero.

60499500 P

in section 4.

described in section 4.

59 51 49 43 35 23 10
d
ta st {0]0]| hax unused acn unused i
s
ta Application program text area from which this asynchronous supervisory message is sent.
Ist Primary funtion code COqg. This field can be accessed with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol LST.

hdx Secondary function code 4. This field can be accessed with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol HDX.

acn Application connection number assigned by the network software to the program end of the logi-
cal connection for which half-duplex list processing is being enabted. The value used in this
field can be either zero or the value used in a CON/REQ/R message processed by the application
program. If acn is zero, all connections are enabled; if acn is nonzero, the specific con-
nection is enabled. This field can be accessed with the reserved symbol LSTACN, as described

dis Disable flag. The value of this flag is set either to 1 if the connection is to be initially
disabled for normal Llist processing or to 0 if the connection is to be initially enabled for
normal Llist processing. This field can be accessed with the reserved symbol LSTDIS, as

Figure 3-22. Turn-On-Half-Duplex-List-Processing (LST/HDX/R) Supervisory Message Format

in section 4.

59 51 49 43 35 23 0
ta Ist |0jO| fdx unused acn unused
ta Application program text area from which this asynchronous supervisory message is sent.
st Primary function code CO16- This field can be accessed with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol LST.

fdx Secondary function code 3. This field can be accessed with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol FDX.

acn Application connection number assigned by the network software to the program end of the logi-
cal connection for which full-duplex List processing is being enabled. The value used in this
field can be either zero or the value used in a CON/REQ/R message processed by the application
program. If acn is zero, all connections are enabled; if acn is nonzero, the specified con-
nection is enabled. This field can be accessed with the reserved symbol LSTACN, as described

Figure 3-23. Turn-On-full-Duplex-List-Processing (LST/FDX/R) Supervisory Message Format

CONTROLLING DATA FLOW

Data to and from console connections has its flow
controlled at both ends of those connections.
Whenever possible, this control is imposed volun-
tarily by the application program. Conditions out-
side the network, however, can interfere with data
flow. Flow control is therefore also imposed by the
network software in reaction to external conditionms.
When the latter occurs, the application program
must compensate for the effect on data flow.

Because the application program is not directly
involved 1in the data exchange on batch device con-
nections, the remaining paragraphs in this sub-
section do not apply to application-to-batch device
connections.

60499500 P

Downline flow control is logically separated from
upline flow control. This separates flow control
into an input function and an output function.

Downline flow control is implemented through block
delivery monitoring mechanisms. These mechanisms
involve exchanges of asynchronous supervisory mes~
sages, and the application program’s adherence to
data block transmission conventions.

Upline input flow 1is controlled by synchronous
supervisory messages and by the application pro-
gram’s adherence to data block transmission con-
ventions.

3-21

l MONITORING DOWNLINE DATA If the application program’s output does not exceed

the block limit, but for some reason a block is

An application program can send downline blocks lost or wunaccounted for, a block-not-delivered
along a particular connection much faster than they asynchronous supervisory message (figure 3-25) is
can be output at the device. Since NAM and CCP must returned to the application. Neither the block-
save these extra blocks until they are processed by delivered message nor the block-not-delivered mes-
the device, the extra blocks can cause NAM and CCP sage requires the application program to issue a
to have storage problems. On the other hand, the response or acknowledgment message to NAM.

same application program might be sending blocks

along another connection at such a slow rate that

its device 1is wunder-occupied. Network software This protocol allows the application to control
provides a set of conventions that allow the appli- downline data flow, as follows:

cation to control the flow of data between itself

and its devices for increased efficiency in such

cases, Define two arrays, K and M.

A block limit is established for each logical con- When a connection i is accepted, set K(i)=0 and
nection; this parameter indicates how many blocks M(i)=block limit.

of data or synchronous supervisory messages an

application program can have outstanding on the Whenever a block-delivered message is received
logical connection at any instant. This block limit for application connection number i, set
is the abl field value included in the connection- K(i)=K(i) - 1.

request supervisory message. As blocks are deliv-

ered to the device, a block-delivered asynchronous Whenever a break supervisory message isl
supervisory message (figure 3-24) is returned to the received, set K(i)=0.

application. If the application program’s output

exceeds the value of the block limit, a logical- As long as K(i) is less than M(i), set K(i) + 1
error asynchronous supervisory message 1s returned and output one block on connection i.

to the application, together with the reason for
the failure, and the last block is discarded by NAM.
The break supervisory message included in this

The block-delivered supervisory message is used to strategy affects downline traffic on a logical
manage flow control. However, receipt of a block connection. Such a message is sent to the applica-
delivered supervisory message does not in all cases tion program whenever a network condition requires
guarantee that the data block has reached its downline transmission on the connection to be
destination. interrupted.
59 51 49 43 35 23 5 0
ta fc 0]0]| ack unused acn abn unused
ta Symbolic address of the application program's text area receiving this asynchronous supervisory
message.
fc Primary function code 8314. This field can be accessed with the reserved symbol PFC, as
l described in section 4. 1Its value is defined as the value of the reserved symbol FC.
ack Secondary function code 2. This field can be accessed with the reserved symbol SFC, as
1 described in section 4. Its value is defined as the value of the reserved symbol ACK.
acn Application connection number assigned by the network software to the program end of the logi-
cal connection on which the block was delivered. This value is always nonzero and is the acn
value used by the program in the application block header sent with the delivered block. This
I field can be accessed with the reserved symbol FCACN, as described in section 4.
abn Application block number assigned by the application program to the delivered block. This
value is the abn value used by the program in the application block header sent with the
delivered block. This field can be accessed with the reserved symbol FCABN, as described in
section 4.

Figure 3-24. Block-Delivered (FC/ACK/R) Supervisory Message Format

3-22 60499500 P

59 51 49 43 35 23 S a
ta fc 0]0| nak rc acn abn unused
ta Symbolic address of the application program's text area receiving this asynchronous supervisory
message.
fc Primary function code 8314. This field can be accessed with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol fC.
nak Secondary function code 3. This field can be accessed with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol NAK.
rc Reason code explaining why the block was not delivered. This field can have the value:
1 Network software error caused Loss of the block in transit; the block can be retrans-
mitted but might be delivered out of sequence with subsequently transmitted blocks.
This field can be accessed with the reserved symbol RC, as described in section &,
acn Application connection number assigned by the network software to the program end of the logi-
cal connection on which the block was Lost. This value is always nonzero and is the acn value
used by the program in the application block header sent with the lost block. This field can
be accessed with the reserved symbol FCACN, as described in section &.
abn Application block number assigned by the appLicafion program to the lost block. This value
is the abn value used by the program in the application block header sent with the lost block.
This field can be accessed with the reserved symbol FCABN, as described in section 4.

Figure 3-25.

] The NPU relies on the application program to decide

when traffic can be resumed.

To prevent ambiguous

situations and allow the application program maximum

flexibility in reacting to such an interruption,

the following sequence of events always occurs (see
l figure 3-26):

1.

Blocks output by the application program but
not yet delivered to a device are discarded.

A break supervisory message (figure 3-27) is
sent to the application program.
break

The application program receives the

supervisory message.

For application-to-terminal connections NAM
queues a null block with the break-occurred bit
set following any data blocks that preceded the
occurrence of the break. This null block
serves as a marker to identify the point in the
data stream where the break occurred.

The application program then must issue a reset
asynchronous supervisory message, as shown in
figure 3-28, as a respoase to the break mes-
sage. No response to the reset message is sent
by NAM to the application. Normal downline
traffic can now resume.

60499500 P

Block-Not-Del ivered (FC/NAK/R) Supervisory Message Format

Application NAM Message

- FC/BRK/R

NAM discards all unacknowledged blocks sent to
the terminal. The appliation program can
request queued input from NAM, but will not

receive another FC/BRK/R affecting this
connection.

— FC/RST/R

The application program can request all out-
standing queued input from NAM,

The application program can now resume communi-
cation with the terminal in the normal fashion.

Figure 3-26. Break and Reset Message Sequence

The application program can process all pending
input by issuing NETGET or NETGETF calls
(section 5) on that connection until a null
block is received with the break-occurred bit
set. The disposition of these blocks is up to
the application.

ta

ta

fc

brk

rc

acn

abn

reserved

59 51 49 43 35 23 5 0

fc 0|0} brk re acn abn reserved

Symbolic address of the application program’s text area receiving this asynchronous supervisory
message.

Primary function code 8314. This field can be accessed with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol FC.

Secondary function code 0. This field can be accessed with the reserved symbol SFC, as
described in section 4. 1Its value is defined as the value of the reserved symbol BRK.

Reason code, explaining the cause of the break condition. This field can contain the values:

1 The terminal operator used the key or entered the character defined for the
terminal as generating a user-break-1 condition.

2 The terminal operator used the key or entered the character defined for the
terminal as generating a user-break-2 condition.

3 Reserved.
thru
6

The user-break-1 and user-break-2 characters are defined when the terminal is configured in the
network configuration file, or when the terminal operator or application program use the TIP
commands B1 and B2. This message is also generated with rc value of 1 when BR=y and the user
presses the break function key when the console device is idle or while output is in progress.
This field can be accessed with the reserved symbol RC, as described in section 4.

Application connection number assigned by the network software to the program end of the logi-
cal connection on which the break occurred. This field always contains a nonzero value
previously used by the application program in an FC/INIT/N message and must be used by the
application program in a subsequent FC/RST/R message before data transmission on the connection
is again possible. This field can be accessed with the reserved symbol FCACN, as described in
section 4.

Application block number assigned by the application program to the Last block for which an
FC/ACK/R message was generated before the break condition occurred. This field contains a zero
only when no FC/ACK/R messages were generated before the break occurred. This field can be ac-
cessed with the reserved symbol FCABN, as described in section 4.

Reserved for CDC. Reserved fields must be equal to zero.

Figure 3-27. Break (FC/BRK/R) Supervisory Message format

ta

ta

fc

rst

acn

59 51 49 43 35 23 0

fc 0|0 rst reserved acn reserved

Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.

Primary function code 8344. This field can be accessed with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol FC.

Secondary function code 1. This field can be accessed with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol RST.

Application connection number assigned by the network software to the program end of the logi-
cal connection to be reset. This value is always nonzero and must be the acn value received
by the application program in a previous FC/BRK/R message. This field can be accessed with the
reserved symbol FCACN, as described in section 4.

® 3-24

Figure 3-28. Reset (FC/RST/R) Supervisory Message Format

60499500 P

The break message reflects suspension of downline
traffic only. Upline traffic (input) on the con-
nection is not affected. The application block
number from the last block-delivered message is the
only reliable guide to the downline blocks dis-
carded and requiring retransmission.

The asynchronous application-interrupt supervisory
message (figure 3-29) provides a method for the
application program to bypass data and to communi-
cate with the other end of the conunection.

For application-to~terminal connections, this allows
an application program to send an 8-bit ASCII char-
acter as expedited data to the network software.
The meaning of this character is predefined by the

use is for asynchronous device connections with the
8-bit ASCII parameter set to 2, meaning that the
application wants downline data discarded. NAM
responds to the application-interrupt supervisory
message by sending the application-interrupt
response message shown in figure 3-30. The appli-
cation cannot send another INTR/APP until the
response is received. The network software discards
all downline data queued for the terminal until a
terminate-output-marker synchronous supervisory
message (figure 3-31) is received. The TO/MARK/R
message serves as a marker to indicate the point at
which network software stops discarding downline
data blocks queued for the terminal after it
receives the application originated interrupt. It
is the responsibility of the application to send

network

software.

The only currently predefined

the TO/MARK/R supervisory message on the connection.

ta

ta

intr

app

parm

acn

59 51 49 43 35 23 0

intr |0 10| app parm acn 0

Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.

Primary function code 804¢.
described in section 4.

This field can be accessed with the reserved symbol PFC, as
Its value is defined as the value of the reserved symbol INTR.

Secondary function code 2.
described in section 4.

This field can be accessed with the reserved symbol SFC, as
Its value is defined as the value of the reserved symbol APP.

Application-interrupt B-bit value.
INTRCHR, as described in section 4.

This field can be accessed through the reserved symbol
Only the value 2 is supported.

Application
application interrupt is requested.
INTRACN, as described in section 4.

This field can be accessed through the reserved symbol

connection number assigned by the network software for the connection on which the

Figure 3-29. Application-Interrupt (INTR/APP/R) Supervisory Message Format

ta

ta

intr

rsp

acn

59 51 49 43 35 23 0

intr 00| rsp 0 acn unused

Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent,

Primary function code 8044.
described in section 4.

This field can be accessed with the reserved symbol PFC, as
Its value is defined as the value of the reserved symbol INTR.

Secondary function code 01.
defined in section 4.

This field can be accessed with the reserved symbol SFC, as
Its value is defined as the value of the reserved symbol RSP,

Application connection number assigned by the network software for the connection on which the
The value placed in this field must be
the device connection value used in the INTR/USR/R message to which this message is a response.

user—-interrupt-response supervisory message was sent.

This field can be accessed with the reserved symbol INTRACN, as described in section 4.

60499500 P

Figure 3-30. Application-Interrupt-Response (INTR/RSP/R) Supervisory Message Format

3-25 @

59 51 49 43 0
ta to 0|0} mark unused
ta Symbolic address of the application program's text area from which this synchronous supervisory
message is sent.
to Primary function code C4qg4. This field can be accessed with the reserved symbol PFC, as de-

scribed in section 4. Its value is defined as the value of the reserved symbol TO.

mark Secondary function code 0. This field can be accessed with the reserved symbol SFC, as de-
scribed in section 4. Its value is defined as the value of the reserved symbol MARK.

Figure 3-31. Terminate-Output-Marker (TO/MARK/R) Supervisory Message Format

USING USER-INTERRUPT FEATURE

The terminal operator can send a message to the
application that bypasses regular upline data by
entering a user-interrupt sequence. The operator
enters the interrupt sequence by entering the TIP
command control character (defined by the CT com-
mand) and an alphabetic character followed by an
end-of-block indicator. NAM generates the user-
interrupt-request supervisory message, INTR/USR/R
(illustrated in figure 3-32) and sends it to the
application.

The application program responds with the
application-interrupt-response supervisory message
(illustrated in figure 3-30) after receiving the
INTR/USR/R message if the application supports user
interrupts. If the application does not support
user interrupts, it can ignore the INTR/USR/R mes-
sage and issues no response. Figure 3-33 illus-
trates the flow of messages. Until the response is
sent, the wuser cannot enter another interrupt
sequence.

If the application program supports user interrupts,
predefined meanings can be given to the alphabetic
characters available as interrupt characters.

Application NAM Message

- INTR/USR/R

NAM delivers the user—interrupt 8-bit ASCII
alphabetic character to the application in an
asynchronous supervisory message on acn=0.

Supervisory programs and applications that do
not support the user-interrupt message need
take no further action.

— INTR/RSP/R

The application that supports user interrupts
must respond with an interrupt-response super-
visory message on acn=0.

Figure 3-33. User-Interrupt Message Sequence

as described in section 4.

described in section 4.

59 51 49 43 35 23 0
ta intr J0 0] usr char acn unused

ta Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

intr Primary function code 8044. This field can be accessed with the reserved symbol PFC, as
described in section 4. The value of this field is defined as the value of reserved symbol
INTR.

usr Secondary function code 00. This field can be accessed with the reserved symbol SFC, as

described in section 4. Its value is defined as the value of the reserved symbot USR.

char User-interrupt 8-bit ASCII value. This field can be accessed with the reserved symbol INTRCHR,

acn Application connection number assigned by the network software for the connection sending the
user-interrupt request. This field can be accessed with the reserved symbol INTRACN, as

Figure 3-32., User~Interrupt-Request (INTR/USR/R) Supervisory Message Format

® 3-26

60499500 P

——

~——

| CONVERTING DATA

Data exchanged on an interactive terminal-to-
application connection is converted to and from
display code or ASCII character codes at the dis-
cretion of the application program. This conversion
also includes packing and unpacking of data char-
acter codes from bytes of different sizes. NAM
converts data in a given block according to the
application character type associated with the
block.

Data sent downline by an application program for
output at an interactive terminal or to another
application has an application character type
associated with it on a block-by-block basis. When
the application program needs to change the conver-
sion performed for downline data on a given con-

nection, it simply changes the act field value used
in the block header of each data block. The

effects of a given act field value declaration are
described in detail in section 2.

Data received upline by an application program from
a console device or another application has an
application character type associated with the log-
ical connection on which the data blocks are
received. The application character type associated
with a given block of upline (input) data is
assigned by the application program when the log-
ical connection is first established. This assign-
ment is part of the connection-accepted supervisory
message. When the application program needs to
change the conversion performed for upline data on
a given connection, it changes the act field value
associated with the logical connection by issuing
the asynchronous change-input-character-type super-
visory message. This message can be issued at any
time the logical connection exists, after the
application program has issued the FC/INIT/N mes-
sage for the connection. As shown in figure 3-34,
there is no response to the change-input-

character-type message, but the message takes effect
immediately.

Application NAM Message
—- DC/CICT/R

The next input request for this logical con-
nection returns blocks in bytes of the new
character type.

Figure 3-34. Change Input Character
Type Message Sequence

The change~input-character-type message has the
format shown in figure 3-35. The act field values
described in the figure are explained in more detail
in section 2. ©Note that transparent mode upline
data cannot be correctly received when an applica-
tion character type other than 2 or 3 is associated
with the logical connection.

The conversion change requested by the change-input-
character~type message affects the next block
fetched by the application program. For example,
the application program might have been receiving
blocks of 7-bit ASCII code characters, packed in
12-bit bytes (an act value of 3); the application
program now needs to receive blocks of 6-bit dis-
play code characters, packed in 6-bit bytes (an act
value of 4). The program sends a change-input—-
character-type message, specifying an act value of
4; the next block received from that logical con-~
nection is 6-bit display code characters, packed in
6-bit bytes.

An application program can also change the format
in which it will receive synchronous supervisory
messages from character type 2 to 3 or vice versa.
The third parameter the user can change with the
change-input-character~type supervisory message is
the no-transparent-input-flag. The initial values
are specified on the connection-accepted supervisory
message.

visory message is sent.

dc Primary function code C2¢4.
described in section 4.

cict Secondary function code 0.
described in section 4.
nection when it was established.

initialization of the connection.
as described in section 4.

59 51 49 43 35 23 79 1]
nis
ta dc 0])0] cict]unused acn unused x|c] act
pit
ta Symbolic address of the application program's text area from which this asynchronous super-

This field can be accessed with the reserved symbol PFC, as
Its value is defined as the value of the reserved symbol DC.

This field can be accessed with the reserved symbol SFC, as
Its value is defined as the value of the reserved symbol CICT.

acn Application connection number assigned by the network software to this end of the logical con-
The value placed in this field must be the value associated

with an existing connection and used in the FC/INIT/N supervisory message that completed

This field can be accessed with the reserved symbol DCACN,

Figure 3-35,

60499500 P

Change-Input-Character-Type (DC/CICT/R) Supervisory Message Format (Sheet 1 of 2)

3-27

nxp

sct

act

No-transparent-input flag. This field can have the values:
0 Allows transparent input
1 No transparent input allowed
This field can be accessed with the reserved symbol DCNXP, as described in section 4.

Application character type in which the application program expects to receive synchronous
supervisory messages. This field can have the values:

0 Deliver supervisory messages in character type 2
1 Deliver supervisory messages in character type 3
This field can be accessed with the reserved symbol DCSCT, as described in section 4.

Application character type, specifying the form of character byte packing that the application
program requires for all future input data blocks from the logical connection. The value de-
clared replaces the value previously declared by the application program for this connection in
a CON/REQ/N or DC/CICT/R message. This field can have the values:

1 60-bit words; must be used for supervisory messages with ADR=0; can be used for
intra-host application-to-application connections (for restrictions see the
description of the 1BU bit in section 2); cannot be used for terminal-to-
application connections or for inter-host application-to-application connections.

2 8-bit characters in 8-bit bytes, packed 7.5 characters per central memory word; if
the input is not transparent mode, the ASCII character set described in tablte A-2
is used.

3 8-bit characters in 12-bit bytes, packed 5 characters per central memory word,

right-justified with zero fill within each byte; if the input is not transparent
mode, the ASCII character set described in table A-2 is used.

4 6-bit display code characters in 6-bit bytes, packed 10 characters per central
memory word; the characters used are the ASCII set of CDC characters described in
table A-1. This applies to terminal-to-application connections only.

5 Reserved for CDC.
thru
11

12 Reserved for installation.
thru
15

The act value declared applies only to input on the connection and can be changed by another
DC/CICT/R message at any time during the existence of this logical connection. This field can
be accessed with the reserved symbol CONACT, as described in section 4.

Figure 3-35. Change-Input-Character-Type (DC/CICT/R) Supervisory Message Format (Sheet 2 of 2)

If the requested application character type is not
valid for the connection specified, a logical-error
supervisory message is sent to the application pro-
gram, and the application character type associated
with the logical connection is unchanged. Other-
wise, receipt of the change-input-character-type
message is not acknowledged.

@ 3-28

TRUNCATING DATA

Data received upline by an application program from
a terminal or from another application can be
truncated to fit the text area buffer provided by
the application. This truncation allows the appli-
cation to obtain at least part of a block longer

60499500 P

than the text area instead of receiving an input-
block-undeliverable reply (ibu bit set in the block
header). An asynchronous supervisory message is
available to inform NAM that the application wants
to have a block truncated on a particular connec-
tion or to have blocks truncated on all existing
and future connections. As indicated in figure
3-36, the effect of this supervisory message 1is
irreversible, and there i1s no response.

Application NAM Message
: DC/TRU/R

The next input request for this logical connec-
tion or all connections, depending on whether a
nonzero acn is specified in the DC/TRU/R, will
receive truncated data when truncation is
necessary.

Figure 3-36. Data Truncation Message Sequence

When data is actually truncated, the tru bit in the
application block header is set, and the tlc field
in the block header 1is set to the size of the
portion of the block received (instead of being set
to the full size of the block).

This data truncation supervisory message (figure
3-37) can be issued at any time after completion of
a NETON call. This message affects all messages on
the connection, including synchronous supervisory
messages. If acn=0 is specified, the application
has to call NETOFF and NETON again to not receive
truncated data blocks. If the acn field specified
within the message identifies a nonexistent logical
connection, a logical-error supervisory message is
sent to the application and data truncation does
not occur. If more than one data truncation mesg—
sage affecting a connection is issued, the extra
messages are ignored.

CHANGING TERMINAL
CHARACTERISTICS

The process of configuring a terminal consists of
defining a number of terminal characteristics that
the network software should use in communication
with a terminal. Some terminal characteristics can
be given default values by the Communications
Control Program (CCP), while others can be provided
by the Network Definition Language (NDL) and the
site administrator.

Once a terminal is configured (or defined), sub-
sequent changes to the terminal definition can be
made via TIP commands by the terminal operator, or
via supervisory messages by the application program
to which the terminal is connected.

This subsection describes the supervisory messages
that the application can use to change the settings
of terminal characteristics. The supervisory mes-—
sage used to find out the current values of terminal
characteristics is described in the following sub-
section, Requesting Terminal Characteristics. Ter-
minal definition commands are described in appendix
F.

Figure 3-38 shows some possible message sequences
involved in changing terminal characteristics.

The application program is advised of the TIP com-
mand entry explicitly only when the command changes
one of three terminal characteristics:

Terminal class (value describing the physical
attributes of a group of similar terminals)

Page width (value describing the number of
characters potentially output per line)

Page length (value describing the number of
potential lines output per page)

described in section &.

59 51 49 43 35 23 0
ta dc 0]0]| tru unused acn unused
ta Application program text area from which this asynchronous supervisory message is sent.
dc Primary function code C21?. This field can be accessed with the reserved symbol PFC, as
described in section 4. ts value is defined as the value of the reserved symbol DC.

tru Secondary function code 01q4. This field can be accessed with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol TRU.

acn Application connection number. If zero, all existing and future connections other than con-
nection zero will have truncation control on. If acn is not zero, truncation control witl be
on for that connection only. This field can be accessed with the reserved symbol DCACN, as

Figure 3-37. Data Truncation (DC/TRU/R) Supervisory Message Format

60499500 P

3-29 @

Application NAM Message

The terminal operator enters the TC, PW, or PL commands to the Terminal Interface
Program.

- : TCH/TCHAR/R

The next block sent to the device or from the device is affected by any constraints
imposed under the new device page width, page length, or terminal class.

Application NAM TIP Message

The application program changes a device characteristic other than page width, page
length, or terminal class.

— CTRL/DEF/R

The next block sent to the device or sent from the device is affected by any constraints
imposed under the new device characteristic.

Application NAM TIP Message

The application program changes page width, page Length, or terminal class.

o CTRL/DEF/R

- TCH/TCHAR/R

The next block sent to the device or sent from the device is affected by any constraints
imposed under the new page width, page length, or terminal class.

Application NAM Message

The application sends a define-multiple-terminal-characteristics message to NAM in order
to redefine several of the terminal characteristics with a single message. The message
is properly formatted and the new characteristics take immediate effect. NAM replies
with a define-terminal-characteristics normal response,

: CTRL/CHAR/R
- CTRL/CHAR/N
Application NAM Message

The application sends a define-terminal-characteristics message to NAM, but one of the
FN/FV pairs is bad. The changes do not take effect, and a define-terminal-
characteristics abnormal response is sent to the application.

> CTRL/CHAR/R

- CTRL/CHAR/A

Figure 3-38. Terminal Characteristics Redefinition Message Sequences

The upline terminal~-characteristics-redefined super- The application 1is provided with two different
visory message is an asynchronous one, with the formats for changing terminal characteristics. The
format shown in figure 3-39, This message is sent define-terminal-characteristics supervisory message
to the application by NAM whenever NAM is notified (figure 3-40) specifies terminal characteristic
that one of the above terminal characteristics has commands as a string of ASCII characters. If there
been redefined by a terminal user or an application is an error in one of the commands, the TIP stops
program. The effect of the TIP command causing processing the message, no indication is sent to
this message 1is immediate, and no response is the application, and any commands prior to the
required from the application program. error are processed. There is no response to this
message.

e 3-30

60499500 P

ta

ta

tch

tchar

acn

tclass

pw

pl

59 51 49 43 35 23 15 7 0

tch |0 |0]tchar |unused acn tclass pw pl

Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

Primary function code 641?. This field can be accessed with the reserved symbol PFC, as
described in section 4. ts value is defined as the value of the reserved symbol TCH.

Secondary function code 0. This field can be accessed with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol TCHAR.

Application connection number assigned by the network software to this end of the lLogical con-
nection for which the change occurred. This field always contains a value previously used by
the application program in an FC/INIT/N message. This field can be accessed with the reserved
symbol CONACN, as described in section 4.

The terminal class currently associated with the real terminal by the TIP servicing it. The
terminal class determines the parameters and ranges valid for redefinition of the terminal.
The terminal is serviced by the TIP according to the attributes associated with the terminal
class (see text). The terminal class field can contain the values:

Archetype terminal for the class is a Teletype Corporation Model 30 Series.
Archetype terminal for the class is a €DC 713-10, 751-1, 756.

Reserved for CDC use (cannot be received in current version of software).
Archetype terminal for the class is an IBM 2741.

Archetype terminal for the class is a Teletype Corporation Model 40-2.

Archetype terminal for the class is a Hazeltine 2000, operating as a teletypewriter,
Archetype terminal for the class is a CDC 752.

00 ~N O VI S U N =

Archetype terminal for the class is a Tektronix 4000 Series, operating as a teletype-
writer.

9 Archetype terminal for the class is a HASP (post-print) protocol multileaving work-

station.

10 Archetype terminal for the class is a CDC 200 User Terminal.

11 Archetype terminal for the class is a CDC 714-30.

12 Archetype terminal for the class is a CDC 711-10.

13 Archetype terminal for the ctass is a CDC 714-10/20.

14 Archetype terminal for the class is a HASP (pre-print) protocol multileaving work-
station.

15 Archetype terminal for the class is a CDC 734,
16 Archetype terminal for the class is an IBM 2780.
17 Archetype terminal for the class is an IBM 3780.

If the terminal class value received has not changed from that previously associated with the
terminal, then the value in either the pw or pl fields (or both) has usually changed. If the
terminal class value received has changed from that previously associated with the terminal,
then all attributes associated with the terminal have been changed to the default attributes
for the new terminal class; the values in the pw and pL fields might have changed from those
previously associated with the real device. This field can be accessed by the reserved symbol
TCHTCL, as described in section &4,

The most recently declared page width of the terminal, specifying the number of characters in a
physical Line of output. This field can contain the values 0 or 20 < pw < 255. This field can
be accessed by the reserved symbol TCHPW, as described in section 4.

The most recently declared page Length of the terminal, specifying the number of physical Llines
that constitute a page. This field can contain the values O or 8 < pl 5_255. This field can
be accessed by the reserved symbol TCHPL, as described in section %.

60499500 P

Figure 3-39. Terminal-Characteristics-Redefined (TCH/TCHAR/R) Supervisory Message Format

3-31

message is sent.

ctrl Primary function code C1q4.
described in section 4.

def Secondary function code 4.
described in section 4.

string
teristic and its desired setting.
sign.
trol character.

59 51 49 43 0
ta ctrl [0 |0 def string
ta Symbolic address of the appliéation program's text area from which this synchronous supervisory

This field can be accessed with the reserved symbol PFC, as
Its value is defined as the reserved symbol CTRL.

This field can be accessed with the reserved symbol SFC, as
Its value is defined as the value of the reserved symbol DEFF.

A 7-bit ASCII character string that describes one or more commands consisting of the charac-
The characteristic and its value are separated by an equals
Multiple characteristics can be changed by separating the commands by the network con—
See appendix F for a List of all the possible commands that can be sent.

Figure 3-40.

The define-multiple-terminal-characteristics mes-
sage is described in figure 3-41. This mnessage
specifies a string of pairs of 8-bit numbers start-
ing after the secondary function code field and
extending for as many (8-bit) bytes as necessary.
The application stores an 8-bit field number (FN)
in the first of a pair of bytes and a field value
(FV) in the second byte of the pair. Each FN
represents a particular device characteristic, and
the corresponding FV represents the value the
application program wishes to assign to that char-
acteristic. The application program needs to
specify only the FN/FV pairs for the characteristic
it wants to change. If one of the FN/FV pairs con-

Define~Terminal-Characteristics (CTRL/DEF/R) Supervisory Message Format

no characteristics are
the application program receives the
abnormal response message shown in figure 3-42,
Figure 3-43 shows the normal response to the
define-multiple-terminal~characteristics supervisory
message. Valid combinations of FN/FV pairs are
defined in table 3-2,

tains an incorrect value,
changed and

The define-terminal-characteristics and define-
multiple-terminal characteristics supervisory mes-
sages sent downline by the application program are
removed from the output stream by the TIP and acted
on directly. The terminal operator is not advised
of their occurrence in the output stream.

message is sent.

ctrt Primary function code €144,
described in section 4.

char Secondary function code 8.
described in section 4.

fv

values are defined in table 3-2.

59 51 49 43 35 27 19 1 0
ta ctrt 10 {0 char fny fvq fnp fvy aee
ta Symbolic address of the application program text area from which this synchronous supervisory

This field can be accessed with the reserved symbol PFC, as
Its value is defined as the value of the reserved symbol CTRL.

This field can be accessed with the reserved symbol SFC, as
Its value is defined as the value of the reserved symbol CHAR.

fn; The 8-bit field number of the desired parameter.
i The 8-bit field value of the desired parameter.

The field number and field value pairs can extend beyond one word.

Valid field numbers and

Figure 3-41.

® 3-32

Define-Multiple-Terminal-Characteristics (CTRL/CHAR/R) Supervisory Message Format

60499500 P

——

59 51 49 43 35 27 0
ta ctrl [|O0] char fn rc unused
ta Symbolic address of the application program text area receiving this synchronous supervisory
message.
ctri Primary function code C1q4. This field can be accessed with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CTRL.
char Secondary function code 8. This field can be accessed with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol CHAR.
fn Field number causing the abnormal response.
rc Reason code for error. This field can have the values:
1 Out of range value
2 Duplicate control character
3 Invalid value for terminal class
4 Illegal terminal class change
) Illegal parameter for terminal class
Figure 3-42. Define-Multiple-Terminal-Characteristics Abnormal Response
(CTRL/CHAR/A) Supervisory Message Format
59 51 49 43 0
ta ctrel 10 {1 char unused
ta Symbolic address of the application program's text area receiving this synchronous supervisory
message.
ctri Primary function code C114. This field can be accessed with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CTRL.
char Secondary function code 8. This field can be accessed with the reserved symbol SFC, as de-
scribed in section 4. Its value is defined as the value of the reserved symbol CHAR.

Figure 3-43.

Multiple-Terminal-Characteristics-Defined (CTRL/CHAR/N) Supervisory Message Format

60499500 P

TABLE 3-2. VALID FIELD NUMBERS AND FIELD VALUES
Value
Parameter (Mnemonic) ?3mber Terminal Range Form of Input
ctal) Classes (Decimal)
Abort block (AB) 51 1-8 (9-17) (:) 0-127 Numerical value for character (:)
Break as user break 1 (BR) 63 1, 2, 5-8 0-1 Yes (1), no (0)
(4, 9-17)
Backspace character (BS) 47 1-8 (9-17) 0-127 Numerical value for character ()
Interruption character (Bl) 52 1-15 (16, 17) 0-127 Numerical value for character (:)

3-33 @

TABLE 3-2.

VALID FIELD NUMBERS AND FIELD VALUES (Contd)

® 3-34

Number Terminal Value
Parameter (Mnemonic) Range Form of Input
(Octal) Classes (Decimal)
Termination character (B2) 53 1-15 (16, 17) 0-127 Numerical value for character (:)
Carriage return idle count 54 1-8 (9-17) 0-99 Decimal number
(CI)
56 1-8 (9-17) 0-1 CA (1)
Cancel character (CN) 46 1-15 (16, 17) 0-127 Numerical value for character ()
Cursor positioning (CP) 107 1, 2, 5-8 0-1 Yes (1), no (0)
(4, 9-17)
Network control character 50 1-17 0-127 Numerical value for character C:
(CT)
Single message transparent 70 1-8 (9-17) 0-1 Character specified (1), not
input delimiters (DL) specified (0)
71 1, 2, 5-8 0-15 Character count (upper byte)
(9-17)
72 1, 2, 5-8 0-255 Character count (upper byte)
(9-17)
73 1-8, 10-13, 15 0-255 (:) Numerical value for character
(9, 14, 16, (Xhh)
17)
74 1, 2, 5-8 0-1 Timeout (1), no timeout (0)
(9-17)
106 1-8, 10-13, 15 0 Single message (0)
End-of-block character (EB) 100 1, 2, 5-8, 0-127 (:) Numerical value for character
10-13, 15
101 1, 2, 5-8, 1-2 ® EL (1), EB (2)
10-13, 15
102 1, 2, 5-8, 0-3 (& NO (0), CR (1), LF (2), CL (3)
10-13, 15
(9, 14, 16,
17)
End-of-line character (EL) 75 1, 2, 5-8, 0-127 (:) Numerical value for character
10-13, 15
76 1, 2, 5-8, 1-2 EL (1), EB (2)
10-13, 15
77 1, 2, 5-8, -3 (® NO (0), CR (1), LF (2), CL (3)
10-13, 15
(9, 14, 16,
17)
Echoplex mode (EP) 61 1, 2, 5-8 0-1 Yes (1), no (0)
(4, 9-17) @
Full ASCII input (FA) 67 1-8, 10-13, 15 | 0-1 Yes (1), no (0)
Host availability 41 1-17 0-1 Yes (1), no (0)
display (HD)
Input control (IC) 103 1, 2, 5-8 0~1 Yes (1), no (0)
(4, 9-17) @

60499500 P

TABLE 3-2. VALID FIELD NUMBERS AND FIELD VALUES (Contd)

15 (®

65 1-8 (® 0-2 (5

Line feed idle count (LI) 55 1-8 (9-17) 0-99
57 1-8 (9-17) 0-1
Lockout unsolicited 40 1-15 (16, 17) 0-1
messages (LK)
Output control (0C) 104 1, 2, 5-8, 0-1
(4, 9-17) @
Output device (OP) 66 1-8 (9-17) -2 (®
Parity processing (PA) 62 1, 2, 5-8 0-3
Page waiting (PG) 45 1-8, 10-13, 15 0-1-
(9, 14, 16, 17)
Page length (PL) 44 1-17 0, 8-255
Page width (PW) 43 1-17 0, 20-255
Special editing mode (SE) 60 1-8 (9-17) (® 0-1
Terminal class (TC) 42 1-17 1-17 (®
Multi-message transparent 70 1-8 (9~-17) 0-1
input delimiter (XL) (:)
71 1, 2, 5-8 0-15
(9-17)
72 1, 2, 5-8 0-255
(9-17)
73 1-8, 10-13, 15 | 0-255 (¥
(9, 14, 16,
17)
74 1, 2, 5-8 0-1
(9-17)
105 1-8 (9-17) 0-255 (3
106 1-8, 10-13, 15 | 1

Numb. Terminal value
Parameter (Mnemonic) umber e Range Form of Input
(Octal) Classes
(Decimal)
Input device (IN) 64 1-8, 10-13, 0-1 Transparent input (l), not

transparent (0)

KB (0), PT (1), BK (2)
Decimal number

CA (1)

Yes (1), no (0)

Yes (1), no (0)

DI (0), PR (i), PT (2)
Z(0), 0 (1), E (2), ¥ (3)

Yes (1), no (0)

Decimal number
Decimal number
Yes (1), no (0)
Decimal number

Character specified (1), not
specified (0)

Character count (upper byte)

Character count (lower byte)

Numerical value for character
(Xhh)

Timeout (1), no timeout (O0)
Numerical value for character

(Yhh)

Multi-message (1)

Notes:

Ignored for packet-switching network (PSN) terminals.

for this parameter must also be specified.

Not all values are legal for all terminal classes.

@0 ©OOO0

Not allowed for packet-switching network (PSN) terminals.

Numbers in parentheses in this column indicate terminal classes for which the parameter is ignored.

Any hexadecimal value except 00-02, 20, 30-39, 3D, 41-5A, 61-7A, or 7F.

If the value of one of the fields for this parameter is changed, the values of all other fields

60499500 P

3-35 @

REQUESTING TERMINAL
CHARACTERISTICS

The request-terminal-characteristics supervisory
message (figure 3-44) is issued by an application
program on console connections to learn the current
value of the terminal characteristics. The appli-
cation program specifies a string of pairs of 8-bit
numbers starting after the secondary function code
field and extending for as many 8-bit bytes as
necessary. The application stores a field number
(FN) in the first half (8 bits) of the 8-bit pair
and reserves the second half (8 bits) for a field
value (FV). Each FN represents a particular char-
acteristic. The network returns the value of the
characteristic in the corresponding FV byte. Any
value placed in the FV byte by the application is
ignored and overwritten. The application program
needs to specify only the FNs for the character-
istics it is interested in. If the string contains

an incorrect FN, no terminal characteristics are
returned and the application receives the abnormal
response message shown in figure 3-45. For a list
of legal FNs and the corresponding range of possible
FVs see table 3-2,

The response to a request-terminal-characteristics
supervisory message 1s a terminal-characteristics-—
definition message (figure 3-46). This message can
be received only on console connections. The NPU
generates a string of pairs of 8-bit numbers start-
ing after the secondary function code field and
extending for as many 8-bit bytes as necessary.
The first 8-bits of the 16-bit pair is one of the
field numbers specified in the request-terminal-
characteristics supervisory message. The second
8-bits of the 16-bit pair is the current value of
the particular characteristic the FN represents.
For a list of valid FNs and the associated valid
range of FVs see table 3-2.

described in section 4.

rtc Secondary function code 9.
scribed in section 4.

59 51 49 43 35 27 19 1 0
ta ctrl 0 j0 rtc fn,y fvq fnp fvo cee
ta Symbolic address of the application program's text area receiving this synchronous supervisory
message.
ctrl Primary function code C1q4. This field can be accessed with the reserved symbol PFC, as

Its value is defined as the value of the reserved symbol CTRL.

This field can be accessed with the reserved symbol SFC, as de-
Its value is defined as the value of the reserved symbol RTC.

fny The 8-bit field number of the desired parameter.
i The 8-bit field value of the desired parameter.

Valid field numbers and values are defined in table 3-2.

Figure 3-44.

Request-Terminal-Characteristics (CTRL/RTC/R) Supervisory Message Format

described in section 4.

rtc Secondary function code 9.
scribed in section 4.

rc - Reason code for error.

5 Iltegal fn value

59 51 49 43 35 27 0
ta ctrl 10} rtc fn rec unused
ta Symbolic address of the application program's text area receiving this synchronous supervisory
message.
ctri Primary function code C194. This field can be accessed with the reserved symbol PFC, as

Its value is defined as the value of the reserved symbol CTRL.

This field can be accessed with the reserved symbol SFC, as de-
Its value is defined as the value of the reserved symbol RTC.

fn First field number in the string found to be erroneous by the network software.
several bad field numbers, only the first bad one will be diagnosed.

This field can have the value:

In case of

Figure 3-45.

® 3-36

Request-Terminal-Characteristics Abnormal Response (CTRL/RTC/A) Supervisory Message Format

60499500 P

59 51 49 43 35 27 19 11 0

ta ctrl {0 |O ted fnq fvq fny fvz .es

ta Symbolic address of the application program's text area receiving this synchronous supervisory
message.

ctri Primary function code C144. This field can be accessed with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CTRL.

ted Secondary function code DAjg. This field can be accessed with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol TCD.

fn; The 8-bit field number of the desired parameter.

fv; The 8-bit field value of the desired parameter.

valid field numbers and values are defined in table 3-2.

Figure 3-46. Terminal-Characteristics-Definition (CTRL/TCD/R) Supervisory Message Format

HOST OPERATOR COMMUNICAT'ON The ‘host operator request-to-turn-off-debug-code

supervisory message shown in figure 3-48 is sent

The host operator supervisory messages described in from NAM to the application program when the
this subsection are not used in this release. How- operator enters the K-display command:

ever, they will be used in future releases and

applications will have to be able to either handle K.DE=appname

or ignore them.

The host operator request-to-activate-debug-code The application should turn off its in-line debug
supervisory message (figure 3-47) is sent from NAM code. There is no response to the request-to-turn-
to the application program when the operator enters off-debug-code message.

the K-display command:

K.DB=appname The host operator request-to-dump-field-length
supervisory message (figure 3-49) is sent from NAM
The application should turn on the in-line debug to the application program when the operator enters
code. Activating the in-line debug code can change the K-display command:
the application program’s abort conditions or error
case handling or both. There is no response to the K.DU=appname

request-to—activate-debug~code message.

59 51 49 43 0
ta hop 0 |0 db unused

ta Symbol ic address of the application program's text area receiving this asynchronous supervisory
message.

hop Primary function code DDy4. This field can be accessed with the reserved symbol PFC, as de-
scribed in section 4. Its value is the value of the reserved symbol HOP.

db Secondary function code 0Ej4. This field can be accessed with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol DB.

Figure 3-47. Host Operator Request-to-Activate-Debug-Code (HOP/DB/R) Supervisory Message Format

60499500 P 3-37 @

59 51 49 43 0
ta hop |0 |0 de unused
ta Symbolic address of the application program's text area receiving this asynchronous supervisory
message.
hop Primary function code 0016. This field can be accessed with the reserved symbol PFC, as de-
scribed in section 4. Its value is the value of the reserved symbol HOP,
de Secondary function OFj4. This field can be accessed with the reserved symbol SFC, as de-
scribed in section 4. Its value is the value of the reserved symbol DE.
Figure 3-48. Host Operator Request-to-Turn-0ff-Debug-Code (HOP/DE/R) Supervisory Message Format
59 51 49 43 0
ta hop {0 [0 du unused
ta Symbolic address of the application program's text area receiving this asynchronous supervisory
message.
hop Primary function code DD1g. This field can be accessed with the reserved symbol PFC, as de-
scribed in section 4. Its value is the value of the reserved symbol HOP.
du Secondary function code 3. This field can be accessed with the reserved symbol SFC, as de-
scribed in section 4. Its value is the value of the reserved symbol DU.

Figure 3-49.

Host Operator Request-to-Dump-Field-Length (HOP/DU/R) Supervisory Message Format

The application should dump its field length. The
application can call NETDMB to dump its field length
onto the AIP dump file ZZZZDMB (see section 6).
There is no response to the request-to-dump-field-
length message.

The host operator request-to-turn—-AIP-tracing-on
supervisory message (figure 3-50) is sent from NAM
to the application program when the operator enters
the K-display command:

K.LB=appname

The application program should begin logging of
network traffic on the debug log file. The appli-
cation program should call NETDBG to turn AIP
tracing on. Note that the application program must
be loaded with NETIOD for the AIP tracing to occur.
There is no response to the request-to-turn-AIP-
tracing-on message.

The host operator request-to-turn-AIP-tracing-off
supervisory message (figure 3-51) is sent from NAM
to the application program when the operator enters
the K-display command:

K.LE=appname

59 51 49 43 0
ta hop 10 {0 |trace unused

ta Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

hop Primary function code DD1g. This field can be accessed with the reserved symbol PFC, as de-
scribed in section 4. Its value is the value of the reserved symbol HOP.

trace Secondary function code 2. This field can be accessed with the reserved symbol SFC, as de-
scribed in section 4. Its value is the value of the reserved symbol TRACE.

Figure 3-50,

® 3-38

Host Operator Request-to-Turn-AIP~Tracing-On (HOP/TRACE/R) Supervisory Message Format

60499500 P

59 51 49 43 0
ta hop 0(0]| notr unused

ta Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

hop Primary function code DO14. This field can be accessed with the reserved symbol PFC, as de-
scribed in section 4. Its value is the value of the reserved symbol HOP.

notr Secondary function code 7. This field can be accessed with the reserved symbol SFC, as de-
scribed in section 4. Its value is the value of the reserved symbol NOTR.

Figure 3-51. Host Operator Request-to-Turn-AIP-Tracing-0ff (HOP/NOTR/R) Supervisory Message Format

The application program should stop logging network
traffic in its debug log file. The application
program should call NETDBG to turn AIP tracing
off., There is no response to the request-to-turn-
AIP-tracing-off supervisory message.

The host operator request-to-release-debug-log-file
supervisory message (figure 3-52) is sent from NAM
to the application program when the operator enters
the K-display command:

The application program should release its debug
log file. The application program should call
NETREL to release the debug log file. To ensure
proper processing of the debug log file, the appli-
cation program must have issued a prior NETREL call
as described in section 6. There is no respounse to
the request-to-release-debug-log-file supervisory
message.

The host operator request-to-restart-statistics-—
gathering supervisory message (figure 3-53) is sent

from NAM to the application program when the opera-
tor enters the K-display command:

K. LR=appname
K.RS=appname
59 51 49 43 0
ta hop |0 [0] rel unused

ta Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

hop Primary function code D014. This field can be accessed with the reserved symbol PFC, as de-
scribed in section 4. Its value is the value of the reserved symbol HOP.

rel Secondary function code ODqg. This field can be accessed with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol REL.

Figure 3-52. Host Operator Request-to-Release-Debug-Log-File (HOP/REL/R) Supervisory Message Format

59 51 49 43 0
ta hop {0 |0 rs unused

ta Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

hop Primary function code D0i4. This field can be accessed with the reserved symbol PFC, as de-
scribed in section 4. Its value is the value of the reserved symbol HOP.

rs Secondary function code 8. This field can be accessed with the reserved symbol SFC, as de-
scribed in section 4. Its value is the value of the reserved symbol RS.

Figure 3-53. Host Operator Request-to-Restart-Statistics-Gathering
(HOP/RS/R) Supervisory Message Format

60499500 P 3-39e@

The application program should flush its statistics
counters, reset them to zero, and restart statistics
gathering. For this supervisory message to be
useful the application program should do at least
one of the following:

Restart AIP statistics gathering by calling
NETSTC (described in section 6) to turn AIP
statistics gathering off or back on

Restart any other statistical information
internal to the application program that can be
used to tune the particular application. The

application program can write such statistical
information onto the AIP statistical file

ZZZZZSN by calling NETLGS (see section 6).

There 1is no response to the request-to-restart-

statistics-gathering message.

HOST SHUTDOWN

Conditions sometimes require the host operator to
terminate network operations or to abort the appli-
cation program. The host operator can shut down
the entire data communications network or portions
of the network, element by element, including
executing application programs.

The operator has two shutdown options available.
He can select an idle-down option that permits
gradual termination of operations, wusually as a
normal part of network service. He can also select
a disable option; this option requests immediate
termination of application program operations and
can either follow selection of the idle-down option
or be independently selected.

The type of shutdown determines the shutdown proc-~
essing that should be performed by the application
program. Figure 3-54 illustrates the three asyn-
chronous supervisory message sequences that can

occur during shutdown operations. The first
sequence begins when an idle-down option is
selected; the application program receives an

advisory shutdown message, shuts down its connec-
tions gracefully, and terminates network access
without additional network or host operator action.
The second sequence begins when a disable option is
selected; the application program receives a man-
datory shutdown message and should not attempt to
terminate connections gracefully. The third
sequence is a hybrid of the first two; if insuf-
ficient time elapses between selection of an idle-
down option and selection of a disable option, the
application program can terminate some of its con-
nections gracefully, but not all of them.

® 3-40

Application Nam Message
- SHUT/INSD/R
(idle-down)

— CON/END/R

- CON/END/N

The application program fetches all queued up-
Line blocks from all terminals or other appli-
cation programs, then ends all connections prior
to a shutdown of the network.

The application program may disconnect from the
network with a call to the AIP routine NETOFF.
(See section S.)

Application NAM Message
-¢ SHUT/INSD/R
(disable)

The application program must perform an imme-
diate call to NETOFF to avoid being aborted by
system console operator commands during the
network shutdown in progress.

Application NAM Message
- SHUT/INSD/R
(idle-down)

- CON/END/R

- CON/END/N
- SHUT/INSD/R

(disable)

The application program fetches as many queued
upline blocks as possible and ends as many
connections as possible prior to shutdown of the
network, then issues its NETOFF call immediately
after receipt of the second shutdown message.

Figure 3-54. Host Shutdown Message Sequences

The Network Access Method does not attempt to force
the termination of applications that do not call
NETOFF in response to an idle-down or disable
request. Normal termination of network operationms,
however, depends on correct application behavior.
Applications that do not eventually call NETOFF
after receiving an idle or disable request must be
dropped by the host console operator. This then
permits normal termination of the network software.

Figure 3-55 shows the two forms of the host-shutdown
supervisory message. The application program does
not issue a response to this supervisory message.

60499500 P

ta

59 51 49 43 0

ta
message.

shut Primary function code 4244.
scribed in section 4.

insd Secondary function code 6.

shut |0 |O| insd unused i

Symbolic address of the application program's text area receiving this asynchronous supervisory

This field can be accessed with the reserved symbol PFC, as de-
Its value is defined as the value of the reserved symbol SHUT.

This field can be accessed with the reserved symbol SFC, as de-
scribed in section 4. Its value is defined as the value of the reserved symbol INSD.

Indicator for type of shutdown message. This field can have the values:

0 This is a normal (warning) message of a pending network shutdown. The network soft-
ware will not permit any more logical connections to be established, but the applica-
tion program can inform existing connections of the shutdown, fetch queued input data
from all connections, and voluntarily end all connections before issuing a NETOFF
call. (See section 5.)

1 Network shutdown is beginning. The application cannot send or receive blocks on any
existing connection and no more lLogical connections can be established. The applica-
tion program must issue a NETOFF call immediately without ending any existing connec-
tions. (See section 5.)

This field can be accessed with the reserved symbol SHUTF as described in section 4.

ERROR REPORTING

Figure 3-55. Host-Shutdown (SHUT/INSD/R) Supervisory Message Format

The primary mechanism used by the network software
to indicate logic errors to an application program
is an asynchronous supervisory message. In all
cases, the message sequence for this mechanism con-
sists of a single message (figure 3-56). The mes-
sage used in this sequence 1s the logical-error
supervisory message, shown in figure 3-57. The
application program does not send a response to
this supervisory message.

Application NAM Message
- ERR/LGL/R

Figure 3-56. Logical Error Message Sequence

As indicated by the reason codes iancluded in the
message, many conditions are considered to be log-
ical errors by the network software. The simpler
conditions are completely defined within the figure;
more details are described here.

59 51 49 43 35

ta err j0j0 | tgtl rc

unused

ta

err

abherr

firstwrd

Symbolic address of the application program's text area receiving this asynchronous supervisory
message.

Primary function code 84q4. This field can be accessed with the reserved symbol PFC, as de-
scribed in section 4. Its value is defined as the value of the reserved symbol ERR.

60499500 P

Figure 3-57. Logical-Error (ERR/LGL/R) Supervisory Message Format (Sheet 1 of 2)

3-41

tgl Secondary function code 1. This field can be accessed with the reserved symbol SFC, as de-
scribed in section 4. Its value is defined as the value of the reserved symbol LGL.
re Reason code identifying the cause of the message. This field can contain the values:

1 An invalid act value was specified in the block header of a downline data block
or in a DC/CICT/R message.

2 An invalid tlc was encountered; either the value in the block header of a downline
block was greater than 2043, or the length of the block exceeded 410 central memory
words.

3 An invalid abt value was specified in the block header of a downline block; either
the value was 0 or greater than 3.

4 An invalid acn value was encountered in the block header of a downline data block,
in a synchronous supervisory message, or in an asynchronous supervisory message.

5 The application block Limit of the connection has been exceeded for downline trans-
missions.

6 More than 100 ERR/LGL/R messages have been issued to the application program, and
the program still has upline synchronous supervisory messages queued for it. Until
the application program fetches all queued supervisory messages, all downline
asynchronous supervisory messages causing ERR/LGL/R messages are ignored.

7 An iltegal or illogical supervisory message was encountered; either the combined
primary and secondary function codes of the message are not a valid value, or the
message is not permitted as part of supervisory message sequences currently in
progress with the application program, or a synchronous supervisory message on
connection 0.

8 A fragmented input or output error has occurred; a call to NETPUTF, NETGETF, or
NETGTFL causes this supervisory message when the block involved in the call con-
tains more than 40 fragments, contains a fragment of more than 63 words, or the
total block Length in words is inconsistent with the call's tlmax parameter or the
block header's tlc value.

9 Reserved by CDC for network software use.

thru

11

12 An application is not allowed to send data blocks on a connection it has establish-
ed with a passive device.

13 Reserved by CDC for network software use.

thru

15

This field can be accessed with the reserved symbol RC, as described in section 4.

abherr Application block header word associated with the block or supervisory message that caused the
ERR/LGL/R message. This field contains a zero word if the network software cannot provide a
copy of the block causing the program. This field can be accessed with the reserved symbol
ERRABH, as described in section 4.

firstwrd The first 60 bits of the block or supervisory message causing the ERR/LGL/R message are placed
in this field if the network software can supply the information. This field contains a zero
word unless the abherr field is nonzero and the tlc¢ field within that block header is nonzero.
This field can be accessed with the reserved symbol ERRMSG, as described in section 4.
Figure 3-57. Logical-Error (ERR/LGL/R) Supervisory Message Format (Sheet 2 of 2)

3-42 60499500 P

~—

The rc field value of 1 is received when:

On an application-to-application connection,
the application connection specified an appli-
cation character type of 4 either in the abh or
in the change-input—~character-type supervisory
message.

For a supervisory message the application
specified an application character type other
than 1, 2, or 3 in the abh.

On an application-to-terminal connection, an
application character type other than 2, 3, or
4 was used in a downline block header or a
change-input-character-type supervisory message.

The rc field value of 4 is received when:

The application connection number involved 1is
out-of-range for the application program and
therefore nonexistent. Connection numbers not
yet assigned to the application program, or
greater than maxacn, are out of range.

Application connection number O 1is specified
in a change-connection-list or turn-list-
processing-off supervisory message.

The rc field value of 5 is received when the appli-
cation program is not using a flow control monitor-
ing mechanism, such as that described earlier in
this section. The downline block causing the block
limit to be exceeded is discarded. The application
program should not transmit any more downline blocks
until it has received at least one block-delivered
message upline.

60499500 P

The rc field value of 6 is received when the net-
work software attempts to protect itself from
application program flaws in supervisory message
processing logic. A partial limit imposed on the
number of logical errors permitted for an applica-
tion program prevents the application program from
deadlocking the network in such cases. This limit
applies only to logical-error messages queued for
the application program. The limit keeps the pro-
gram from committing large numbers of errors in
downline transmissions without periodically fetching
asynchronous supervisory messages sent upline to
identify the errors. The limit is implemented as
follows:

Each time the network software sends an asyn-
chronous logical-error message to the applica-
tion program, a limit counter for the program
is incremented by one.

Each time the application program fetches all
queued asynchronous supervisory messages it has
outstanding, the limit counter for the program
is reset to zero.

When the limit counter for the program reaches
100, a logical-error message with the rc field
value of 6 1is queued for the program. Until
the application program fetches all queued
asynchronous supervisory messages it has out-
standing, any downline transmission by the
program that causes a logical-error message
condition 1is discarded by the network software
without being processed.

When the 1limit counter reaches 100, additional
asynchronous supervisory messages might already be
buffered by AIP. In this case, the maximum number
that must be fetched to clear the counter may be as
high as 121.

3-43

APPLICATION INTERFACE DESCRIPTIONS

41

R R e - T R e

This section describes the 1language interface
requirements of an application program, the inter-
facing utilities available to a program, and those
aspects of network software internal interfacing
that affect program use of certain Network Access
Method (NAM) features. However, this manual does
not attempt to describe all network software inter-
faces. Portions of the network software that
execute as application programs use supervisory
messages that are either not discussed in this
manual or else that are modified from the format
presented in this manual. This section treats only
those areas of interface that are properly used by
an installation-written application program.

LANGUAGE INTERFACES

Application program use of the Application Interface
Program (AIP) is essentially the same, regardless
of the language used to code the application pro-
gram. Parameter list and calling sequence require-
ments are the same for COMPASS assembler language
and compiler-level languages. The residence of the
AIP routines, the form of the calling sequences, and
the utilities available to the application program
differ for COMPASS and compiler-level languages.

PARAMETER LIST AND CALLING
SEQUENCE REQUIREMENTS

The AIP statements and interfacing utilities use
standard FORTRAN-style calling sequences and param-
eter lists; that is, a parameter list contains one
60-bit word per parameter. The address of this
parameter list 1s passed to the appropriate routine
in register Al. Linkage with the statement within
the application program is performed by executing a
return jump instruction (RJ) to the entry point.
To provide compact object code, traceback informa-
tion is not generated, and the parameter list need
not be followed by a word of zeros.

Because the statement parameters are passed by
address (called by reference), the NAM programmer
should be careful about substituting values when
defining the parameters. Those parameters identi-
fied as return parameters should not be specified
as constants or expressions in the call statement.
Such specifications can produce unpredictable errors
in program code. This restriction is compatible
with normal FORTRAN programming practices.

60499500 P

Return parameters are normally defined by variable
names, array names, array element names, or similar
symbolic addresses. Since the terminology for such
entities varies according to the programming lan-
guage used, this manual uses the term symbolic
address for all such possibilities. Unless other-
wise stated, numeric absolute or relative addresses
are not used in call statements.

Those parameters identified as input parameters can
be defined by constants, expressions that can be
evaluated to produce constants, or symbolic ad-
dresses (as defined above). Input parameters are
usually defined by constants or expressions; this
manual uses the term value for all such possibil-
ities.

All ATP statement parameters used by a COBOL program
must be described in the Data Division as level 0Ol
data entries, or data entries at other levels when
the entries are left-justified to word boundaries.
COBOL 5 programs that access fields within param-
eters must also describe the fields in the Data
Division as COMP-4 numeric data entries to manipu-
late values within the fields as 6-bit entities.
Direct field access and AIP use is difficult using
COBOL; COMPASS macros or FORTRAN subroutines are
sometimes necessary to set up parameters before AIP
calls or to unpack them after AIP calls.

All direct calls from a COBOL program to AIP must
be coded as calls to FORTRAN-X subroutines. Refer
to section 5. Indirect use of AIP by a COBOL pro-
gram 1s also possible; refer to the Queued Terminal
Record Manager description later in this section.

The NAM calling sequence does not permit recursive
calls.

PREDEFINED SYMBOLIC NAMES

The fields in NAM supervisory messages have been
assigned symbolic names so that they can be identi-
fied to the wutilities described 1later in this
section. These names are display-coded Hollerith
characters and are 1listed and defined in table
4-1., The capitalized symbol appears as it should
be used in calls to NFETCH or NSTORE. The symbols
are arranged alphabetically within the table.

TABLE 4-1. RESERVED SYMBOLS

Predefined
Symbol Entity Defined by Symbol Integer Value
ABHABN Application block number field in application block header for all upline or None
downline blocks
ABHABT Application block type field in application block header for all upline or None
downline blocks
ABHACT Application character type field in application block header for all upline None
or downline blocks
ABHADR Process number address field in application block header for supervisor pro- None
gram upline or downline blocks (system use only). Application connection
number field in application block header for all application program upline
or downline blocks.
ABHBIT Parity error flag bit in application block header for upline (input) blocks. None
Auto-input mode flag bit in application block header for downline (output)
blocks.
ABHBRK Break occurred in downline (output) transmission bit in application block None
header for upline (input) message block.
ABHCAN Cancel previous blocks bit in application block header for upline (input) None
blocks. Punch banner (lace) card bit in application block header for down-
line (output) blocks.
ABHIBU Input block undeliverable bit in application block header for upline (input) None
blocks
ABHNFE No format effectors flag bit in application block header for downline (out~- None
put) blocks
ABHTLC Text-length-in-character—units field in application block header for all None
upline or downline blocks
ABHTRU Truncation occurred bit in the application block header for upline (input) None
data or supervisory message blocks
ABHUBF User break flag None
ABHWORD Application block header word for all upline or downline blocks None
ABHXPT Transparent mode transmission bit in application block header for all upline None
or downline blocks
ACCON Character type of CON supervisory messages 1
ACCTRL Character type of CTRL supervisory messages 2
ACDBG Character type of DBG supervisory messages 1
ACDC Character type of DC supervisory messages 1
ACERR Character type of ERR supervisory messages 1
ACFC Character type of FC supervisory messages 1
ACHOP Character type of HOP supervisory messages 1
ACIFC Character type of IFC supervisory messages 1
ACINTR Character type of INTR supervisory messages 1
ACK Secondary function code field for FC/ACK/R 2
ACLST Character type of LST supervisory messages 1
® 4-2 60499500 P

N

TABLE 4-1., RESERVED SYMBOLS (Contd)

Symbol Entity Defined by Symbol Iizzgziiszgue
ACRQ Secondary function code fieldlfor CON/ACRQ messages 2
ACSET Character type of SET supervisory messages 1
ACSHUT Character type of SHUT supervisory messages 1
ACTCH Character type of TCH supervisory messages 1
APP Secondary function code field for INTR/APP messages 2
BRK Secondary function code field for FC/BRK/R 0
CB Secondary function code field for CON/CB/R 5
CHAR Secondary function code field for CTRL/CHAR 816
CICT Secondary function code field for DC/CICT/R 0
CON Primary function code field for connection management messages 6316
CONAABN Application block number of CON/ACRQ supervisory message None
CONAAWC User validation control words in CON/REQ/R None
CONABL Application block limit field in CON/REQ/R None
CONABN Application block number of CON/ACRQ supervisory message None
CONABZ Block size in connection management messages None
CONACN Application connection number field in connection management messages None
CONACR Primary and secondary function code fields for CON/ACRQ/R, including EB and 630216
RB fields as zero
CONACRA Primary and secondary code fields in CON/ACR2/A including EB field set to 1 638216
CONACT Application input character type field in CON/REQ/N None
CONAHDS User validation control words in CON/REQ/R None
CONAHMT User validation control words in CON/REQ/R None
CONAHWS User validation control words in CON/REQ/R None
CONALN Application list number field in CON/REQ/N None
CONANM Requesting application program name in CON/REQ/R None
CONASWI User validation control words in CON/REQ/R None
CONATWD Various default terminal characteristics in the connection management messages None
CONBDD Break discard data field in CON/REQ/N None
CONCB Primary and secondary function code fields for CON/CB/R, including EB and RB 630516
fields as zero
CONDBZ Downline block size in the connection management message CON/REQ None
CONDT Device type field in CON/REQ/R None
CONEND Primary and secondary function code fields in CON/END/R, including EB and RB 630616
fields as zero
CONENDN Primary and secondary code fields in CON/END/N including RB field set to 1 63&616

60499500 P

TABLE 4-1, RESERVED SYMBOLS (Contd)

Symbol Entity Defined by Symbol IE:Z;:iisziue
CONFAM Family name terminal is logged in under connection management messages None
CONFO Family ordinal corresponding to CONFN None
CONHID Host node number where requested application resides in connection management None
messages
CONICT Application input character type None
CONNXP No transparent data field in CON/REQ/N None
CONORD Device ordinal field in CON/REQ/R None
CONOWNR Terminal name field in CON/REQ/R None
CONPAR First word of parameters in CON/REQ/R None
CONPL Page length field in CON/REQ/R None
CONPW Page width field in CON/REQ/R None
CONR Restricted interactive capability field in CON/REQ/R None
CONRAC Reason code field in CON/REQ/N and CON/REQ/A None
CONRCB Reason code field in CON/CB/R None
CONREQ Primary and secondary function code fields in CON/REQ/R, including EB and RB 630016
fields as zero
CONREQA Primary and secondary function code fields in CON/ACRQ/A including EB field 638016
set to 1
CONREQN Primary and secondary function code fields in CON/REQ/N including RB field 634016
set to 1
CONSCT Synchronous message type field in CON/REQ/R None
CONSDT Sub-device type field in CON/REQ/R None
CONSL Security limit field in CON/REQ/R None
CONT Terminal class field in CON/REQ/R None
CONTNM Terminal name field in CON/REQ/R None
CONUBZ Upline block size in the connection management message CON/REQ None
CONUI User index field in CON/REQ/R None
CONUSE User name field in CON/REQ/R None
CONXBZ Transmission block size field in CON/REQ/R None
CTRCHAR Primary and secondary code fields in CTRL/CHAR/R, including EB and RB fields CIOS16
as zero
CTRDEF Primary and secondary function code fields in CTRL/DEF/R, including EB and C104,
RB fields as zero
CTRL Primary function code field in terminal control messages 0116
CTRRTC Primary and secondary function code fields for CTRL/ATC C10916
CTRTCD Primary and secondary code fields in CTRL/CHAR/R, including EB and RB fields CIOA16
as zero
® 4-4 60499500 P

TABLE 4~1., RESERVED SYMBOLS (Contd)

Symbol Entity Defined by Symbol Iﬁizgziigsiue

DB Secondary function code field in HOP/DB/R L

DC Primary function code field im DC/CICT/R C216

DCACN Application connection number field im DC/CICT/R None

DCACT Application character type in DC/CICT None

DCCICT Primary and secondary function code fields in DC/CICT/R, including EB and RB 200
fields as zero 16

DCNXP No transparent data field in DC/CICT/R None

DCSCT Synchronous message type field in DC/CICT/R None

DCTRU Primary and secondary function code fields in DC/TRU/R, including EB and RB C20116
fields as zero

DE Secondary function code field in HOP/DE/R Flo

DEFF Secondary function code field in CTRL/DEF/R 4

DU Secondary function code field in HOP/DU/R 3

EB Error bit in all supervisory messages None

ERR Primary function code field in ERR/LGL/R 8416

ERRABH Application block header word in ERR/LGL/R None

ERRLG Reason code field in ERR/LGL/R None

ERRLGL Primary and secondary fuaction code fields in ERR/LGL/R, including EB and RB 840116
fields as zero

ERRMSG First message text word in ERR/LGL/R None

FC Primary function code field in flow control supervisory messages 8316

FCABN Application block number field im FC/ACK/R None

FCACK Primary and secondary function code fields in FC/ACK/R, including EB and RB 830216
fields as zero

FCACN Application connection number field in flow control supervisory messages None

FCBRK Primary and secondary function code fields in FC/BRK/R, including EB and RB 830016
fields as zero

FCET Error text in FC/BRK message None

FCINA Primary and secondary function code fields in FC/INACT/R, including EB and RB 830416
fields as zero

FCINIT Primary and secondary function code fields in FC/INIT/R, including EB and RB 830716
fields as zero

FCINITN Primary and secondary code fields in FC/INIT/N including RB field set to 1 8347, ¢

FCNAK Primary and secondary function code fields in FC/NAK/R, including EB and RB 830316
fields as zero

FCRBR Reason code field in FC/BRK/R None

FCRST Primary and secondary function code fields in FC/RST/R, including EB and RB 830116
fields as zero

60499500 P 4=5

TABLE 4-1. RESERVED SYMBOLS (Contd)

Predefined

Symbol Entity Defined by Symbol Integer Value

FDX Secondary function code field in LST/FDX/R 3

HDX Secondary function code field in LST/HDX/R 4

HOP Primary function code field in HOP supervisory messages DO16

HOPDB Primary and secondary code fields in HOP/DB/R, including EB and RB fields as DOOE16
zero

HOPDE Primary and secondary code fields in HOP/DE/R, including EB and RB fields as DOOF16
zero

HOPDU Primary and secondary code fields in HOP/DU/R, including EB and RB fields as D00316
zero

HOPNOTR Primary and secondary code fields in HOP/NOTR/R, including EB and RB fields as D00716
zero

HOPREL Primary and secondary code fields in HOP/REL/R, including EB and RB fields as DOOD16
zero

HOPRS Primary and secondary code fields in HOP/RS/R, including EB and RB fields as D00816
zero

HOPTRCE Primary and secondary code fields in HOP/TRACE/R, including EB and RB fields D00216
as zero

INACT Secondary function code field in FC/INACT/R 4

INIT Secondary function code field in FC/INIT/R 7

INSD Secondary function code field in SHUT/INSD/R 6

INTR Primary function code field in user-interrupt supervisory messages 8016

INTRACN Application connection number field in user-interrupt supervisory None
messages

INTRAPP Primary and secondary function code fields in INTR/APP/R, including EB and RB 800216
fields as zerso

INTRCHR User interrupt 8-bit ASCII alphabetic character A through Z in typeahead None
user—interrupt supervisory messages.

INTRRSP Primary and secondary function code fields in INTR/RSP/R, including EB and 800116
RB fields as zero

INTRUSR Primary and secondary function code fields in INTR/USR/R, including EB and 800016
RB fields as zero

LCONAC Length in 60-bit words of CON/ACRQ messages 2

LCONACA Length in 60 bit words of CON/ACRQ/A 2

LCONCB Length in 60-bit words of CON/CB/R 1

LCONEN Length in 60-bit words of CON/END/R 2

LCONENN Length in 60 bit words of CON/END/N 1

LCONREQ Length in 60-bit words of CON/REQ/R message (not including APARAM) 1110

LCORQR Length in 60-bit words of CON/REQ/N and CON/REQ/A 1

LCTRL Length in 60-bit words of terminal control messages 2

® 4-6 60499500 P

——

TABLE 4-1. RESERVED SYMBOLS (Contd)

Symbol Entity Defined by Symbol IE:E::iigggue

LDC Length in 60-bit words of DC/CICT/R 1

LERR Length in 60-bit words of ERR/LGL/R 3

LFC Length in 60-bit words of flow control supervisory messages {except FC/BRK) 1

LFCACK Length in 60 bit words of FC/ACR/R 1

LFCBRK Length of FC/BRK message 2

LFCINCT Length in 60 bit words of FC/INACT/R 1

LFCINIT Length in 60 bit words of FC/INIT/R 1

LFCINITN Length in 60 bit words of FC/INLIT/N 1

LFCNAK Length in 60 bit words of FC/NAK/R 1

LFCRST Length in 60 bit words of FC/RST/R 1

LG Secondary function code field in HOP/LG/R ' A16

LGL Secondary function code field in ERR/LGL/R 1

LHOPDB Length in 60 bit words of HOP/DB/R 1

LHOPDE Length in 60 bit words of HOP/DE/R 1

LHOPDU Length in 60 bit words of HOP/DU/R 1

LHOPNTR Length in 60 bit words of HOP/NOTR/R 1

LHOPREL Length in 60 bit words of HOP/REL/R

LHOPRS Length in 60 bit words of HOP/RS/R 1

LHOPTRA Length in 60 bit words of HOP/TRACE/R 1

LINTR Length in 60-bit words of INTR/USR/R and INTR/RSP/R 1

LLST Length in 60~bit words of list management supervisory messages 1

LSHUT Length in 60-bit words of SHUT/INSD/R 1

LST Primary function code field in list management supervisory messages CO16

LSTACN Application connection number field in list management supervisory messages None

LSTALN Application 1list number field in list management supervisory messages None

LSTDIS Initial half duplex field in LST/HDX/R None

LSTFDX Primary and secondary function code fields in LST/FDX/R, including EB and RB C00316
fields as zero

LSTHDX Primary and secondary function code fields in LST/HDX/R, including EB and RB C00416
fields as zero :

LSTOFF Primary and secondary function code fields in LST/OFF/R, including EB and RB C00016
fields as zero

LSTON Primary and secondary function code fields in LST/ON/R, including EB and RB COOl16
fields as zero

LSTSWH Primary and secondary function code fields in LST/SWH/R, including EB and RB C00216
fields as zero

60499500 P 4-7 @

TABLE 4-1. RESERVED SYMBOLS (Contd)

Symbol Entity Defined by Symbol 1§2222£igziue

LTCH Length in 60-bit words of TCH/TCHAR/R 1

NAK Secondary function code field in FC/NAK/R 3

NOTR Secondary function code field in HOP/NOTR/R 7

OFF Secondary function code field in LST/OFF/R 1

ONN Secondary function code field in LST/ON/R and PRU/ON messages 0

PFC Primary function code field in all supervisory messages None

PFCSFC Primary and secondary function code fields in all supervisory messages, None
including EB and RB fields

RB Response bit in all supervisory messages None

RC Reason code field in all supervisory messages None

REL Secondary function code field in HOP/REL/R . D16

REQ Secondary function code field in CON/REQ messages 0

RS Secondary function code field in HOP/RS/R 816

RSP Secondary function code field in INTR/RSP/R 1

RST Secondary function code field in FC/RST/R 1

RTC Secondary function code in field in CTRL/RTC/R 916

SFC Secondary function code field in all supervisory messages None

SHUINS Primary and secondary function code fields in SHUT/INSD/R, including EB and 420616
RB fields as zero

SHUT Primary function code field in SHUT/INSD/R 4216

SHUTF Shut down type in SHUT/INSD

SHUTYP Type of shutdown field in SHUT/INSD/R None

SPMSGO The corresponding word zero through nine of any supervisory message None

Spuscs

SWH Secondary function code field in LST/SWH/R 2

TCD Secondary function code field inm CTRL/TCD Ao

TCH Primary function code field in TCH/TCHAR/R 6416

TCHACN Application connection number field in TCH/TCHAR/R None

TCHAR Secondary function code field in TCH/TCHAR/R 0

TCHPL Page length field in TCH/TCHAR/R None

TCHPW Page width field in TCH/TCHAR/R None

TCHTCH Primary and secondary function code fields in TCH/TCHAR/R, including EB and 640016
RB fields as zero

TCHTCL Terminal class field in TCH/TCHAR/R None

TRACE Secondary function code field in HOP/TRACE/R 2

® 4-8 60499500 P

Each symbol consists of the characters identifying
its field within a message, combined with characters
identifying the specific message or group of mes-
sages. For example:

All primary function code fields can be accessed
through the symbol PFC. :

All fields in messages with the primary function
code mnemonic CON begin with CON; the applica-
tion list number field 1in such messages 1is
therefore CONALN.

All fields in the application block header word
can be accessed through symbols beginning with
ABH.

Some symbols are restricted to use 1in certain con-
texts., For example, the FORTRAN Extended 4 call:

IVAL=NFETCH (0, 6LCONEND)
or the FORTRAN 5 call:
IVAL=NFETCH (0, L""CONEND")
returns the primary and secondary code value for
the corresponding fields in a CON/END/R message;
however, the FORTRAN Extended 4 call:
CALL NSTORE (SMTA, 6LCONEND,IVAL)
or the FORTRAN 5 call:
CALL NSTORE (SMTA,L"CONEND",6IVAL)
causes an error message indicating that the symbol
CONEND is unrecognized. The symbol is unrecognized
because its context 1is incorrect. The correct
FORTRAN Extended 4 call to store the information is:
CALL NSTORE (SMTA, 6LPFCSFC,1VAL)
or the call:
CALL NSTORE (SMTA, 6LPFCSFC, 6LCONEND)
These calls correspond to the FORTRAN 5 call:
CALL NSTORE (SMTA,L"PFCSFC'",IVAL)
or the call:

CALL NSTORE (SMTA,L"PFCSFC",L"CONEND")

There are no predefined names for the AIP statement
parameters described in section 5.

PREDEFINED SYMBOLIC VALUES

Some of the supervisory message fields with pre-
defined symbolic names have predefined values that
can be obtained through the wutilities described
later in this section. Values for such names are
given 1in table 4~1, where the names are listed
alphabetically.

You can obtain the value assigned to a given sym~
bolic name in the released version of the network
software by using a form of the NFETCH utilities.
The NFETCH utilities comprise a macro that can be

60499500 P

called by a COMPASS program, and a similar sub-
routine that can be called by a program written in
a high-level language.

Be careful in using names with predefined values;
in some instances, a name and corresponding value
have been assigned to a group of fields. Choosing
a wrong name in a utility call can fill more fields
than the programmer intends. The NAM programmer
should become familiar with all of the predefined
symbolic names before using the interfacing util-
ities.

COMPASS ASSEMBLER LANGUAGE

Application programs coded in COMPASS use AIP
statements that make macro calls. These AIP macros
reside in the system text library NETTEXT.

Packing and unpacking supervisory message blocks in
a COMPASS program 1is easily accomplished using the
interfacing utilities NFETCH and NSTORE. These
field access utilities also reside in the system
text library NETTEXT. An application program using
either utility must first contain calls to SST and
NETMAC.

Application Interface Program Macro
Call Formats

For those AIP statement calls with parameters, three
forms of the COMPASS macro call are possible:

[label] macro-name parameters

This 1is the format of the standard call,
which produces the full calling sequence.

[label] macro-name {LIST-label }
LIST=register name

When this format is used, macro expansion
assumes that the proper calling parameter
block is located at the specified address,
loads this address 1into register Al, and
performs the call to the AIP procedure.

[label] macro-name parameters, LIST

When this format {s used, macro expansion
produces a parameter block in place but
does not generate the call to the AIP pro-
cedure; the address of the statement using
this form is the address used in the second
form.

Use the first form when making a straightforward
call to the AIP procedures. Use the second form
once the parameter 1list has been created elsewhere
with the third form. This form might save space
when procedures are used several times.

Example 1:
NETPUT IHA,ITA
This statement 1is a direct call to execute the

NETPUT macro with the two symbolic address param-
eters shown.

4-9 @

Example 2:
PUT1 NETPUT THA,ITA,LIST

This statement expands the NETPUT macro and creates
the indicated parameter list at symbolic address
PUT1 but does not execute NETPUT.

Example 3:
NETPUT LIST=PUT1

This statement actually executes the NETPUT macro
with the parameters in the list expanded at location
PUTL.

If a macro call is issued with an error, the COMPASS
assembler flags the error and provides an explana-
tion during assembly of the macro. A complete
listing of the assembly error messages from AIP-
related macros is provided in appendix B.

A summary of all the macro call formats available
appears in appendix D.

Field Access Utilities

Two additional macros, NFETCH and NSTORE, are pro-
vided to make message field definition and access
easier. Application programmers are urged to use
these macros as described below. Use of these
macros and their related predefined symbolic names
will simplify application program conversion under
future versions of the network software.

NFETCH Macro

A call to the NFETCH macro returns the contents of
a specific field within an array of one or more
words that comprise all or part of a supervisory
message block. The octal integer value returned by
the call is right-justified within the X or B reg-
ister specified in the call.

The format of the NFETCH macro call is given in
figure 4-1.

Execution of NFETCH destroys the contents of regis-
ters A5, X5, X6, and the X or B register specified
to receive the returned value. Execution of NFETCH
requires the application program to contain calls
to SST and NETMAC. Placing NETTEXT in the COMPASS
control statement defines the NFETCH macro and the
symbolic names used as the NFETCH field parameters.

As examples of NFETCH use, consider the following
operations.
Example 1:

NFETCH MYARRAY,PFC,X1
This statement places the value of the primary
function code field within MYARRAY into register XI.

The primary function code field is identified by the
symbolic name PFC.

® 4-10

LOCATION I OPERATION I VARIABLE

[1abel] | NFETCH | array,field,Xj or Bj
label Optional address label of the macro call.

array The address of the first word of the array from

which the field value should be obtained. This
parameter can be:

An address labet
The name of a register address
Zero

If zero is declared, any predefined value for the
indicated symbolic name is returned.

field The predefined symbolic name of the field for
which a value should be fetched from the array.
The possible contents of field are listed
alphabetically in table 4-1.

i The number of the X or B register which
should receive the value fetched from the
array. The value is right-justified in Xj or
Bj on return from the call. When a B
register is used, the field to be fetched must
be < 18 bits long.

Figure 4-1. NFETCH Macro Call Format

Example 2:
SX2 BUFFER
NFETCH X2,SFC,X3

These statements place the value of the secondary
function code field within BUFFER into register X3.
The secondary function code field is identified by

‘the symbolic name SFC, and the address label BUFFER

is supplied through register X2.

Example 3:
NFETCH ARRAY ,EB,X3
NZ X3,ERROR

These statements place the value of the error bit
(EB) within ARRAY into register X3. If the value
in X3 is nonzero (if EB has a value of 1), a jump
to ERROR occurs.

Example 4:
NFETCH 0,CON,X1

This statement returns the predefined value 63¢
in register Xl. The value returned is that of the
primary function code field of all connection-
request supervisory messages, as identified by the
predefined symbolic name CON.

If an NFETCH macro call is issued with an error,
the COMPASS assembler flags the error and provides
an explanation during assembly of the macro. A
complete listing of the assembly error messages
from NFETCH is included in appendix B.

60499500 P

NSTORE Macro

A call to the NSTORE macro sets the contents of a
specific field within an array of one or more words
that comprise all or part of a supervisory message
block. The format of the NSTORE macro call is given
| in figure 4-2.

LOCATION | OPERATION [VARIABLE
[1abel]] NSTORE i array, field=value
tabel Optional address label of the macro call.
array The address of the first word of the array into

which the field value should be placed. This
parameter can be declared as an address {abel
or the name of an address register.

field The predefined symbolic name of the field for
which a value should be stored in the array. The
possible contents of field are listed alphabetically
in table 4-1.

value The value to be stored in the identified field
within the array. This parameter can be:
A right-justified integer
A right-justified, zero-filled character string

A symbolic name with a predefined value
(see table 4-1)

Bj or Xj, where j is the number of an X
or B register containing one of the first
two possibilities for value above.

Figure 4-2, NSTORE Macro Call Format

Execution of NSTORE destroys the contents of reg-
isters A5, A6, X5, X6, X7, and any X or B register
specified in the call. Execution of NSTORE requires
the application program to contain calls to SST and
NETMAC. Placing NETTEXT in the COMPASS control
statement defines the NSTORE macro and the symbolic
names used as the NSTORE field parameters.

As examples of NSTORE use, consider the following
operations.

Example 1:
SX2 MYARRAY
NSTORE X2, PFC=CTRL

These statements store the value predefined for CTRL
in the primary function code field of MYARRAY. The
primary function code field 1is identified by the
symbolic name PFC, and the address label MYARRAY is
obtained through register X2,

Example 2:
NSTORE MYARRAY, PFC=CTRL

This statement performs the same operation shown in
example 1.

60499500 P

Example 3:
NSTORE MYARRAY, CONOWT=7RTERMABC

This statement stores the terminal name TERMABC in
the owning console terminal name field of MYARRAY.
The owning console terminal name field is identified
by the predefined symbolic name CONOWT.

If an NSTORE macro call is issued with an error,
the COMPASS assembler flags the error and provides
an explanation during assembly of the macro. A
complete listing of the assembly error messages
from NSTORE is included in appendix B.

COMPILER-LEVEL LANGUAGES

Application programs coded in compliler-level lan-
guages such as FORTRAN use AIP statements that make
relocatable subroutine calls. Such statements need
not be declared as external routines. Entry point
references are satisfied by the CYBER loader; the
AIP routines are loaded from the local library NETIO
or NETIOD, which must be declared in an LDSET or
LIBRARY control statement.

READ, WRITE, and CONNEC are not employed when NAM
is used by a FORTRAN program for input and output
between the program and terminals. Terminals serv-
iced by an application program do not have logical
unit numbers.

ACCEPT and DISPLAY are not employed when NAM is
used by a COBOL program for input and output between
the program and terminals you can use. You can use
these verbs in COBOL programs that use other net-
work application programs, such as the CDC-written
Transaction Facility (TAF), for network access.

Packing and unpacking supervisory message blocks in
a compiler-level program 1s easily accomplished
using the interfacing utilities NFETCH and NSTORE.
These field access utilities reside in local library
NETIO or NETIOD.

Programs written using compiler-level languages can
also use the AIP routines indirectly through the
utility package called the Queued Terminal Record
Manager (QTRM). QIRM is described at the end of
this subsection and the use of QTRM is completely
defined in appendix E. The subroutines comprising
QTRM reside in local library NETIO or NETIOD.

Application Interface Program Subroutine
Call Formats

Only one form of the AIP subroutine call is possible
in compiler-level language programs. This form is:

subroutine-name (parameters)

The syntax of this form is discussed in section 5.
A summary of all the calls avallable appears in
appendix D. The FORTRAN form of the subroutine call
format is the format used throughout this manual
when discussing the AIP routines.

Field Access Utilities

Two additional relocatable subroutines, NFETCH and
NSTORE, are provided to make message field defini-
tion and access easier. Use of these routines and
their related predefined symbolic names will sim-
plify application program conversion under future
versions of the network software. Because each
call to one of these routines causes a table scan,
use of the routines increases program execution
time. This increase can be minimized by setting up
all constants processed by calls to the routines
with a single set of calls at the beginning of the
program.

NFETCH Function

A call to the NFETCH function subprogram returns an
integer value for the contents of a specific field
within an array of one or more words that comprise
all or part of a supervisory message block. NFETCH
can be used anywhere in a program expression that
an operand can be wused; figure 4-3 defines the
format for NFETCH as it is used in an assigmment
statement.

[ivalue=] NFETCH({array,field)

ivalue= A return parameter; as input to the call, an
optional integer variable to receive the value
returned for the function.

array An input parameter, specifying the symbolic
address of the first word of the array from
which the field value can be obtained. This
parameter can be:

The array name
Zero

if zero is declared, any predefined value for the
indicated symbolic name is returned.

field An input parameter, specifying the predefined
symbolic name of the field for which a value
should be fetched from the array. The possible
contents of field are listed in table 4-1. This
parameter must be left-justified with zero fill.

Figure 4-3. NFETCH Integer Function
FORTRAN Call Format

The size of the field involved in the NFETCH call
determines the format of the content value returned.
The field is read as an octal value and the value
returned is right-justified as either an integer or
a display code character string.

If either the field or array parameter is omitted
from the function statement, the application program
is aborted and a dayfile message is 1issued. (See
appendix B.)

As examples of NFETCH uses, consider the following
operations.

Example 1:
The FORTRAN Extended 4 statement:
M=NFETCH(ARRAY, 2LEB)
or the FORTRAN 5 statement:
M=NFETCH(ARRAY,L"EB")
makes M equivalent to the value of the error bit.
The error bit is identified by the predefined sym-
bolic name EB, left-justified with zero fill in the
call.
Example 2:
The FORTRAN Extended 4 statement:
M=NFETCH(O, 3LCON)
or the FORTRAN 5 statement:
M=NFETCH(O0,L"CON")
makes M the integer value l43g, equivalent to the
predefined value for the primary function code field
in all connection-request supervisory messages.
The primary function code field is identified by
the predefined symbolic name CON, left-justified
with zero fill in the call.
Example 3:
The FORTRAN Extended 4 statement:
IF (NFETCH(ARRAY,2LEB).EQ.1) CALL ERROR
or the FORTRAN 5 statement:
IF (NFETCH(ARRAY,L"EB").EQ.1) CALL ERROR
causes a jump to ERROR if the value of the error bit

(EB) within ARRAY is 1.

NSTORE Subroutine

A call to the NSTORE subroutine sets the contents
of a specific field within an array of one or more
words that comprise all or part of a supervisory
message block. Figure 4-4 gives the FORTRAN format
of the NSTORE call statement,

Integer values stored by the NSTORE call are stored
as Integers. Character strings are stored in dis-
play code form and symbolic names are converted to
octal equivalents of their predefined values when
stored. Only one field can be specified in each
call. A value can be stored in a field any time
after the array is declared.

If either the array, field, or value parameters are
not declared or are nonexistent, the application
program is aborted and a dayfile message is issued.
(See appendix B.)

60499500 P

CALL NSTORE(array,field,value)

array A return parameter; as input to the cali, the
symbolic address of the first word of the array
into which the field value should be placed.
This parameter is normally the array name.

field An input parameter, specifying the predefined
symbolic name of the field for which a value
should be stored in the array. The possible
contents of field are listed alphabetically in
table 4-1. This parameter must be left-
justified with zero fill,

value An input parameter, specifying the value to be
stored in the identified field within the array.
This parameter can be:
A right-justified integer value

A right-justified, zero-filled Hollerith
character string

A left-justified, zero-filled symbolic name
with a predefined value (see table 4-1).

Figure 4-4, NSTORE Subroutine
FORTRAN Call Format

As examples of NSTORE use, consider the following
operations.
Example 1:
The FORTRAN Extended 4 statement:

CALL NSTORE (ARRAY, 3LPFC, 3LCON)
or the FORTRAN 5 statement:

CALL NSTORE(ARRAY,L"PFC",L"CON")
stores the predefined value for the primary function
code of all connection-request supervisory messages
in the primary function code field of ARRAY. The
primary function code value 1is identified by the
predefined symbolic name CON and the primary func-
tion code field by the predefined symbolic name PFC;
both names are left-justified with zero fill in the
call.
Example 2:
The FORTRAN Extended 4 statement:

CALL NSTORE (ARRAY,6LCONOWT, 7RTERMABC)
or the FORTRAN 5 statement:

CALL NSTORE(ARRAY,L"CONOWT",R"TERMABC")
stores the display coded terminal name TERMABC in
the owning console terminal name field of ARRAY,
The owning console terminal name field is identified

by the predefined symbolic name CONOWT, left-
justified with zero fill in the call.

60499500 P

Example 3:

The FORTRAN Extended 4 statement:

CALL NSTORE(ARRAY, 2LRB,1)

or the FORTRAN 5 statement:

CALL NSTORE(ARRAY,L"RB",1)

sets the response bit field in ARRAY to 1. The
response bit field is identified by the predefined
symbolic name RB, left-justified with zero fill in
the call.

Queved Terminal Record Manager Utilities

You can set up a teleprocessing service by inter-
facing an application program directly with AIP
through the subroutine calls described in section
5. This {interface requires manipulation of many
bit-oriented fields, as described in section 2, and
multiple operations to perform a single function,
as described in section 3. These protocol require-
ments can be quite complex, dwarfing the portion of
a program’s code that actually performs a teleproc-
essing service when the service itself 1is very
simple.

A FORTRAN programmer can use AIP directly with only
minor inconvenience when shifting and masking are
required. The NFETCH and NSTORE routines permit a
COBOL programmer to bypass most of the shifting and
masking problems of direct AIP use, but some remain.
Shifting and masking is extremely difficult for a
COBOL programmer when NFETCH and NSTORE cannot be
used because COBOL constrains field access to fields
that are multiples of 6 bits. NFETCH, which is
coded as a function and not as a subroutine, is not
directly callable from a COBOL program because COBOL
does not support functions. To use NFETCH, a COBOL
programmer must write a subroutine in another
applications language.

The Queued Terminal Record Manager (QTRM) utility
package allows compiler language users to remain
unaware of AIP protocol requirements. QIRM also
allows users of COBOL 5.2 (and later versions) to
create teleprocessing service programs wusing an
interface that is oriented to fields defined in
multiples of 6 bits.

QTRM is an indirect interface to the network; its
use 1s functionally analogous to directly calling
CYBER Record Manager. Using QTRM, an application
programmer can send messages to and receive messages
from a network of terminals as if the programmer
were reading and writing records or files in mass
storage. This parallelism is shown in figure 4-5.

Compiler Language
User Program

i

CYBER Record Manager

)

Device
Driver

4
‘

RMS
Controllers

Queued Terminal Record Manager

i

Network
Processing
Units

Figure 4-5. QTRM Interface Level Analogy

QTRM is used through calls to the following seven
subroutines:

QTOPEN, which is called once to establish com-
munication between the application program and
the network. A call to QTOPEN is analogous to
opening a mass storage file.

QTLINK, which 1s <called to 1initiate an
application-to-application connection.

QTGET, which is called each time part or all of
a message is required from the network. A call
to QTGET is analogous to a single read operation
on a mass storage file.

QTPUT, which is called each time part or all of
a message 1s intended for the network. A call
to QTPUT is analogous to a single write opera-
tion on a mass storage file.

QTENDT, which is called to disconnect a single
terminal from communicating with the application
program.

QTCLOSE, which is called once to disestablish
communication between the application program
and the network. A call to QICLOSE is analogous
to closing a mass storage file.

QITIP, which is called to deliver a synchronous
supervisory message to a specified connection.

Operation of these procedures is monitored and
controlled through a network information table,
analogous to a file information table. The network
information table contains 10 central memory words
of information about each device the application
program can potentially service, and 10 words of
global information about the state of the applica-
tion program’s communication with the network.

Application programs using QTRM can use only those
features of AIP that are provided through the QTRM
procedure calls. Such application programs should
not also contain calls to AIP routines other than
NFETCH and NSTORE. QTRM performs the following
functions:

Assigns all active device connections to a
single connection list and polls that 1list for
input on behalf of the application program

Performs all asynchronous supervisory message
exchanges required during application program
execution

Provides the final logical line zero byte ter-

minator in downline blocks containing display
code characters

60499500 P

QTRM is a simplified alternative to AIP and there-
fore does not support all of the AIP features.
Features currently not supported by QTRM include
the following:

Parallel mode code execution, as provided
through NETSETP and NETCHEK calls

Fragmented buffer input and output, as provided
through NETGETF, NETPUTF, and NETGTFL calls

Application program connections with passive
(batch) devices

Terminal user interruption of type-ahead proc-
essing

Full-duplex mode

Runtime selection of debug log file and statis-
tical file entries, as provided through NETDBG
and NETSTC calls; both files can be generated
or have generation suppressed through selection
of the appropriate library during loading of the
QTRM routines

Manipulation of application connection 1lists,
or direct polling of any 1list as provided
through NETGETL and NETGTFL calls

Use of different application character types for
input on the same connection, or on different
connections, or change of the application char~
acter type used for input during the time the
program is connected to the network

Notification of lnactive connections

Selective polling of input from a specific con-
nection, as provided through NETGET and NETGETF
calls

Transparent mode input

Disposition of the debug log file during pro-
gram execution, as provided through the NETREL
and NETSETF calls; postprocessing disposition
of the file is required

Transmission of messages to the debug log file,
as provided through NETLOG calls

Exchange package and central memory field length
dumps, as provided through NETDMB calls

Transmisslon of messages to the statistical log
file, as provided through NETLGS calls

Appendix E contains a complete description of the
QTRM procedure calls and a sample program illustrat-
ing QTRM use by a COBOL programmer. QIRM proce-
dures are not discussed elsewhere because QTRM use
precludes direct use of the AIP routines documented
by the remainder of this manual.

INTERNAL INTERFACES

The information in the remainder of this section is
not needed to create a Network Access Method appli-
cation program. This information is provided as

60499500 P

background for application programmers using the
parallel mode processing feature of NAM, and pro-
grammers with a need for understanding communication
among the components of the network software.

APPLICATION INTERFACE PROGRAM
AND NETWORK INTERFACE PROGRAM
COMMUNICATION

One copy of the Network Interface Program resides
at a control point and communicates with separate
copies of the Application Interface Program at each
control point containing an application program.
Communication between NIP and each copy of AIP
occurs through system control point calls initiated
by AIP. The mechanism for this communication is a
fixed~length buffer of status bits, pointers, and
data that is called a worklist.

Worklist Processing

When an application program requests connection with
the network, its copy of AIP establishes a long-
term connection with NIP, The long-term connection
exists until the program requests disconnection from
the network, or until NIP is informed of the pro-
gram’s failure or termination by the operating
system. While the long-term connection exists, an
additional short-term connection occurs whenever AIP
initiates a transfer of worklists between itself and
NIP. The short-term connection exists until NIP
issues a system control point call to end it.

The requests made by an application program to AIP
are either satisfied by AIP directly or collected
into the worklist contained within the AIP portion
of the application program’s field length. AIP
places entries in this worklist until one of the
following occurs, then 1initiates the short-term
connection:

NETON or NETOFF is called by the application
program. (See section 5.)

The worklist is full.

Another entry cannot be made without causing the
worklist to overflow.

The application program calls a routine (NETGET,
NETGETL, NETGETF, or NETGTFL) that obtains input
from the network’s data structures, other than
AIP queues. (See section 5.)

NETCHEK is called.

The application program issues a nonforced
NETWAIT call to make itself available for roll-
out or any input, and no supervisory messages
or data are queued for it. (See section 5.)

The application program issues a forced NETWAIT
call.

The application program calls NETPUTF, unless
the total message text involved in the call is
small enough to fit in the worklist.

This worklist is used to queue outgoing supervisory
and data messages, and to queue incoming (upline)
data messages only. A second buffer acts as a queue
for incoming supervisory messages. When AIP in-
itiates the short-term connection, it checks to see
whether its supervisory message buffer is full; if
not, AIP appends a request for supervisory message
input to the end of the worklist and passes the
worklist to NIP. The period during worklist proc-
essing 1s the only time when NIP can read from or
write into the field length of AIP, and then only
when AIP initiates the actionm.

NIP processes the transferred worklist until all of
the entries are satisfied, then ends the short-term
connection. Worklist processing 1s suspended when:

The operating system rolls out the application
program.

NIP causes the application program to be rolled
out in response to the request of the program.
(See NETWAIT call, section 5.)

A worklist entry cannot be processed without
obtaining additional central memory, which is
not available.

Even if there are downline messages queued, no
worklist transfer occurs in these instances:

The application program calls a routine (NETGET,
NETGETF, NETGETL, or NETGTFL) to obtain
asynchronous supervisory messages and AIP
transfers any queued messages to the applica-
tion.

The application program issues a nonforced
NETWAIT call and there are supervisory messages
or data available for the application.

The application program calls a routine to
obtain either asynchronous supervisory messages
or data messages and NIP has none queued for the
application and AIP has nothing queued for the
application.

Generally, an application program does not depend
on the status of worklist processing between its
corresponding AIP copy and NIP. Most programs can
adequately function when concerned only with text
area buffers and calls to AIP. However, the Network
Access Method does provide a mechanism that allows
an application program to monitor worklist proc—
essing and execute code dependent on that proc-
essing. This mechanism is called parallel mode
operation.

Parallel Mode Operation

When an application program issues the call that
initiates the long-term connection, it identifies a
supervisory status word that is used by AIP as a
buffer for several flags. Among the supervisory
status word flags are worklist processing bits used
during parallel mode operations.

When an application program is not processing in
parallel mode (the normal, default condition), its
copy of AIP initiates the short-term connection
with a system control point call specifying that

recall is in effect. 1In this case, the program’s
copy of AIP does not regain control of the central
processor until all worklist entries are processed
by NIP and the short-term connection 1is ended.
Because the application program cannot regain the
central processor until its copy of AIP has regained
the central processor, the program cannot perform
any processing in the interim.

Parallel mode operation is usually beneficial only
when used on a dual CPU system, because NIP ordi-
narily has a higher priority than any application
program and gains control of the central processor
after a call is made to it. NIP retains control
until it completes processing of the worklist
request.

Processing in parallel mode is analagous to making
operating system calls without recall in effect.
An application program enters parallel mode by
issuing a call to the AIP routine NETSETP., While
in parallel mode, anytime AIP initiates the short-
term connection, it does so without specifying
recall. The application program’s copy of AIP
reacquires control of a central processor as soon
as the operating system’s scheduling algorithm per-
mits, and AIP returns control to the calling point
of the application program proper. As long as the
short-term connection exists, the application pro-
gram can continue processing with the sole restric-
tion that it cannot issue calls to any AIP routines
other than NETCHEK or NETOFF.

Calls to NETCHEK cause AIP to indicate the current
status of worklist processing using a bit in the
supervisory status word. After each NETCHEK call,
the application program must check the supervisory
status word. As soon as the bit indicating comple-
tion of worklist processing is set, the program is
free to issue any AIP call. Parallel mode proc-
essing is ended by a second call to the AIP routine
NETSETP.

The worklist processing completion bit serves
several purposes in parallel mode operation. Calls
to NETCHEK cause this bit to be set when processing
of the previous request to AIP has been completed,
even when that request did not cause a worklist
entry or transfer. When a call to NETCHEK results
in the completion bit being set, the application
program can:

Safely reuse any header area and text area used
in its last AIP call

Assume that any workiist transfer involved in
the previous AIP function request resulted in
the updating of the other bits in the supervi-
sory status word

When a call to NETCHEK does not result in the com-
pletion bit being set, the application program
should issue additional NETCHEK calls before execu-
ting any code dependent on either condition.

Calls to NETOFF end parallel mode operation by
ending both the long-term and short-term connections
simultaneously. NIP processes a worklist containing
a NETOFF call as if the worklist were transferred
while the application program was not processing in
parallel mode. Calls to NETCHEK are not necessary
to test completion of a NETOFF call.

60499500 P

OTHER SOFTWARE COMMUNICATION

Examination of a complete compiler or assembler
listing for an application program will reveal sym-
bols and entry points not discussed in this manual.
These symbols and entry points are used internally
for interfacing between NIP, AIP, and the operating
system. Table 4-2 lists the names of internal pro-
cedure calls with an outline of the function of each
routine; these calls should not be used directly by
the application program. In general, procedure
names beginning with the three characters NP$ are
reserved for use by AIP and should not be used by

and common blocks involved in the processing of an
application program’s AIP statements.

The Communications Supervisor, Network Supervisor,
and Network Validation Facility interface with NAM
via the AIP procedure calls described in section 5.
These interfaces use special supervisory messages
not described in section 3. These special supervi-
sory messages cannot be used in another NAM appli-
cation program.

NAM interfaces with the network processing unit
software through the Peripheral Interface Program,
which uses block protocol. These blocks are com-

' application programs. Table 4-3 lists the tables

piled or interpreted by NIP,

TABLE 4-2. AIP INTERNAL PROCEDURES

60499500 P

Name Function

NP$CLK Used only when AIP {s run with either the debugging or statistics option on; gets clock
time.

NPSDATE Used only when AIP is run with either the debugging or statistics option on; gets current
date. ’

NP$DBG Used only when AIP 1is run with the debugging option on; makes entries in application pro-
gram local file ZZZZZDN. These entries show results of calls to other AIP routines by the
program. (See section 6.)

NP $DMB Dumps field length to the ZZZZDMB file.

NP$SERR Issues error messages to the application program’s dayfile.

NP$GET Creates GET worklist entry to send to NIP.

NP$GSM Refills AIP’s supervisory message buffer. (See worklist processing.)

NPSMSG Issues dayfile message.

NPSON Processes NETON call response from NIP.

NPS$SOSIF Issues SSC RA+1 call.

NPSPUT Creates PUT worklist entry to send to NIP.

NP$PUTF Creates NETPUTF worklist entry to send to NIP.

NP$RCL Allows AIP to go into recall.

NPSREAD Used only when AIP is run with the debugging option on; reads job record for NETREL call.

NPSRESP Processes worklist responses from NIP.

NP$ROUT Used only when AIP is run with the debugging option on; routes job to input queue for
NETREL call.

NPSRTIM Used only when AIP is run with the debugging option on; gets real time since deadstart.

NPSRWD Used ouly when AIP is run with the debugging option on; rewinds a file.

NPSSEND Called when a worklist must be transferred to NIP,

NP$SLOF Used only when AIP is run with the debugging option on; executes SETLOF macro for NETSETF
call. (See section 6.)

NPSSN Used only when AIP is run with the statistics option on; accumulates statistical data.

TABLE 4-2. AIP INTERNAL PROCEDURES (Contd)

Name Function
NP$SPRT Used only when AIP is run with the statistics option on; makes entries in application pro-
gram local file ZZZZZSN. (See section 6.)
NPSSYM Allows COMPASS users access to common symbol definitionms.
NPSTIM Used only when AIP is run with the statistics option on; gets CPU time.
NPSUCV Used to update AIP control variables.
NPSUSI Used to update the S and I bits in the user communication word.
NPSWRTO Used only when AIP is run with the debugging option on; writes one word to the AIP debug
log file.
NPSWRTR Used only when AIP is run with either the debugging or statistics option on; writes
end-of-record to the debug log file or statistics file.
NT SWRTW Used only when AIP is run with either the debugging or statistics option on; writes entry
to the debug log file or statistics file.
NP$XCDD Used only when AIP is run with the statistics option on; converts numbers to decimal
display code. ’
NPSXFER Transfers a worklist to NIP.
TABLE 4~3. AIP INTERNAL TABLES AND BLOCKS
Name Function
NP$DB Used only when AIP is run with the debugging option on; contains calling parameters for
debugging routine NP$DBG.
NPS$GETS Controls variables used to process GET calls.
NPSLOF Used only when AIP is run with the debugging option on; parameter block for SETLOF
macro. (See section 6.)
NP$MODE Used to keep track of the state the application is in at any one time.
NP $NWL Worklist for the application program.
NPSNWNC Used only when AIP is run with the debugging option on; aids in character conversion.
NP$ONAM NETON entry for the debug log file.
NPS$PUTS Controls variables used to process PUT calls.
NP$SMB ATIP supervisory message buffer for the application program. This block is included in
the last 100g words of NP$NWL.
NP$STAT Used only when AIP is run with the debugging option on; contains statistics gathered by
NIP. (See section 6.)
NPSTAA Used to reference the text area array (TAA) in fragmented GETs and PUTs
NPSZHDR Header entry for the debug log file.

60499500 P

USER PROGRAM CALL STATEMENTS S

This section describes the Application Interface
Program (AIP) statements used by a network applica-
tion program to access the network, control network
processing, and transmit and receive the messages
described in sections 2 and 3.

SYNTAX

Application Interface Program statements are used
in COMPASS programs, or 1In programs written in
high-level languages such as FORTRAN. In most
high-level languages, only positional parameters can
be used; AIP statements conform to this syntactical
requirement and, therefore, do not permit the use
of keywords. The interpretation attached to a given
parameter 1s determined solely by 1its location
within the string of parameters of each AIP state-

ment. All {input parameters must be supplied; there
are no defaults.

The FORTRAN positional form is used throughout this
section to present AIP statements. Coding the
statements when they are used in other languages
requires few modifications. For example, in the
form of a COMPASS macro call, a sample NETGETL
statement has the form:

[label] NETGETL aln, ha, ta, tlmax,[LIST]

This converts to the FORTRAN

which is:

subroutine syntax,

CALL NETGETL (aln, ha, ta, tlmax)

Use of LIST and label are discussed in section 4
where COMPASS interface requirements are given.

The FORTRAN subroutine syntax, in turn, converts to
the following COBOL syntax for the same statement:

ENTER FORTRAN-X NETGETL
USING aln,ha,ta,tlmax

The mnemonic variables identifying each parameter
are defined in the statement descriptions, along
with any coding constraints imposed on them. Commas
delimit parameters Iin all languages; the signifi-
cance of blanks depends on the language wused.
Unless otherwise specified, all values supplied for
parameters should be decimal integers.

General definitions of terms appearing in parameter
descriptions are given 1in the glossary. More
detailed definitions and parameter constraints that
depend on the programming language used are given
in section 4 under the heading of Language Inter-
faces. Program structural considerations that
depend on command use are described in section 6
under the headings of Commands and Dependencies.

60499500 P

NETWORK ACCESS STATEMENTS

An application program uses two AIP statements to
begin and end access to the network’s resources.
The NETON statement must be used before the program

can use any other AIP statement except NETREL,
NSTORE, NFETCH, NETSETF, NETCHEK, NETSETP, or
NETOFF. The NETOFF statement must be used after all

AIP functions are completed to cause the AIP portion
of the application program to perform vital house-
keeping tasks; these tasks are associated with debug
log file, statistical file, and login processing by
the network software.

CONNECTING TO NETWORK (NETON)

The NETON statement
following functions:

(figure 5-1) performs the

Identifies the application program to the net-
work so that the Network Validation Facility
(NVF) can validate the right of the program to
access the network’s resources

Causes AIP to establish communication with NIP

Identifies a word to be used for communication
from AIP to the program, outside of the super-
visory message mechanism (figure 5-2)

Informs the network software of limitations on
the number of logical connections the program
can handle

Causes AIP to begin debug log file and statis-
tical file compilation, 1if AIP contains code
permitting this (See section 6.)

An application program must successfully complete a
NETON call before it can use any AIP statement other
than NETOFF, NETCHEK, NETREL, NETSETF, or NETSETP.
If another AIP statement is used before a NETON
call is successfully completed, AIP aborts the job
and issues a message to the job’s dayfile. The
incorrectly placed call has no other effect.

An application program’s NETON statement is suc-—
cessfully validated by the Network Validation Fa-~
cility when the program name contained in the NETON
call appears in the system common deck COMTNAP. If
the program is defined as a privileged application
in the local configuration file, it must meet the
residency requirements for such to be successfully
validated. (See section 6.) The origin type of the
program job does not affect this portion of program
validation. If validation 1is not successful, the
application program is aborted. TIf validation is
successful, the program has access to the network
as long as a NETOFF statement is not issued and
communication with NIP continues.

CALL NETON (aname,nsup,status,minacn, maxacn)

aname An input parameter, specifying in display code the name of the application program, as it is
identified for log in and in the local configuration file. This can be one to seven 6-bit
alphabetic and numeric characters, but the first must be alphabetic. This parameter must be
left-justified, with blank fitl. It is advisable to avoid names beginning with the letters NET
to make loader map interpretation easier. The following application program names are reserved
for internal networks use:

ALL IAF NAM NVF PTFU TAF
BYE LOGIN NIP PFU QTF TCF
cs LOGOUT NS PTF QTFS TVF
HELLO MCS NUL PTFS RBF

Use of some of these names causes the program job to be aborted; use of the remainder can cause
unpredictable errors.

nsup A return parameter; as input to the call, nsup is the symbolic address of the supervisory
status word for communication from AIP to the application program. This word has the format
shown in figure 5-2. The upper bit of this word is relevant during parallel mode processing
only; this bit reports the status of worklist processing and is updated after each AIP call
except NETSETP. Bits 56 and 55 are set when indicated in the figure to report the status of
the data message and supervisory message queuing performed by AIP. These bits are valid after
any AIP call except NETDBG, NETLOG, NETREL, NETSETF, NETSETP, or NETSTC. This word need not
contain zeros at the time of the NETON call and should not be changed at any time by the
application program.

status A return parameter; as input to the call, status is the symbolic address of the NETON calt
status word. On return from the call (or when worklist processing is comptete if the call was
made in parallel mode), the content of this word indicates the network software's disposition
of the application program's NETON attempt. The values of status can be:

0 NETON was successful.

1 NETON was unsuccessful because NIP was not at a control point or did not have enough
resources to service this application program (too many application programs running
at the same time),

2 NETON was rejected because an application program is presently accessing the network
with the same name as specified for the aname parameter.

3 NETON was rejected because the application program has a status of disabled in the
Communications Supervisor's tables. The program must be rerun after its entry in the
Local configuration file has been changed or after the network operator has enabled
it.

minacn An input parameter, specifying the smallest application connection number the application
program can process; 0 < minacn < maxacn < 4095. The network software assigns acn values
to connections, beginning with the number specified for minacn. (See section 2.)

maxacn An input parameter, specifying the largest applicaton connection number the application
program can process; 0 < minacn < maxacn 5_4095. The network software does not attempt to
complete any more connections to the program after all connections from minacn through
maxacn (inclusive) are in use.

Figure 5-1. NETON Statement FORTRAN Call Format

60499500 P

e’

—

a Reserved for CDC use.

section 6).

59 57 55 54 29 0
nsup clajn]ils unused mc
c AIP request and worklist processing completion bit. This bit is relevant only in paraliel mode.

When any AIP routine other than NETSETP is entered and the AIP function is not completed, the bit
is set to zero. If the AIP function is completed, the bit is set to one, if a worklist transfer
was required. If the bit is zero, the program cannot call any AIP routines except NETCHEK or
NETOFF nor can it use the header area and text area of the last AIP call until the bit is set to
one. The bit is set to one by NETCHECK when the lLast AIP function is completed.

n NAM available bit. This bit is set to one upon return from a NETON call if NAM is available, and

zero if NAM is not available. The bit is also set to zero by AIP when AIP is informed by the
operating systems that NAM is no longer available.

i Input-in-queue bit. This bit is set to one if NIP has either data messages of synchronous
supervisory messages queued for the application.
call to NETDBG, NETLOG, NETDMB, NETLGS, NETREL, NETSETF, NETSETP, or NETSTC. This bit is set to
zero when no data messages or synchronous supervisory messages remain queued for the program.

s Supervisory message in queue bit. This bit is set to one if asynchronous supervisory messages are
queued on application connection number O for this program. This bit is valid after any AIP call
except a call to NETDBG, NETDMB, NETLGS, NETLOG, NETREL, NETSETF, NETSETP, or NETSTC. The s bit
is set to zero when no asynchronous supervisory messages remain queued for the program.

mc A count of the number of messages on the debug Llog file when Library NETIOD is used., A NETON caltl
(or a NETREL call with a nonzero Lfn parameter value) resets the count to zero (described in

The bit is valid after any AIP call except a

Figure 5-2. Supervisory Status Word Format

If the program loses communication with NIP, it is
aborted by the operating system unless it {s a sys-
tem control point job. System control point jobs
are not aborted. The program can reprieve itself
from such an abort by using the NOS REPRIEV macro.
The program should examine the last error flag that
was set for the job (by using the NOS GETJCR macro)
to determine the cause of the program’s failure.
If the program failed because NAM failed, it should
issue a NETOFF call and successfully complete
another NETON call before issuing any further calls
to the AIP routines. The NETOFF call, used in this
case, causes AIP to perform internal housekeeping
functions and finish information transfer to the
debug log and statistical files; the second NETON
causes AIP to reinitialize internal tables and re~
establish communication with NIP. 1If a new copy of
NIP becomes available prior to the NETOFF call, the
second NETON call causes the NETOFF statement to be
ignored and program processing can be resumed after
new logical connections have been established.
Alternating NETON and NETOFF statement sequences in
parallel mode have unpredictable results.

The network software tracks an application program
and issues dayfile messages concerning the program
on the basis of the aname parameter used in the
program’s NETON call. The operating system, how-
ever, is unaware of this name and 1issues dayfile
messages on the basis of the job name assigned to

60499500 P

the program according to the contents of the job’'s
command portion. So that all dayfile messages con-
cerning the same program can be identified, you
should take the steps described in section 6.

Figure 5-3 contains a portion of a FORTRAN program
that correctly performs a NETON call. The program,
called PROG, is identified by that name in COMTNAP
and in the local configuration file as a nonprivi-
leged application. PROG can process up to three
logical connections but requires connections to be
numbered beginning with 2. PROG uses the integer
word NSUP as a supervisory status word for communi-
cation from AIP and tests for successful completion
of the NETON call through the integer word NSTATUS.

DISCONNECTING FROM NETWORK (NETOFF)

The NETOFF statement (figure 5-4) performs the
following functions:

Breaks AIP communication with NIP

Causes AIP to finish formatting and transferring
information for the debug log file and statis-
tical file, if these files are being compiled

Clears AIP internal tables so that the program
can issue another NETON call, if necessary

5-3

NAME=ZHPROG
NSTATUS=0
MINACN=2
MAXACN=4

999 PRINT 998, NSTATUS

STOP

COMMO.N NSUP,HA(2),TA(200,2)

CALL NETON(NAME,NSUP,NSTATUS,MINACN,MAXACN)
IF (NSTATUS.NE.O) GO TO 999

998 FORMAT(* NSTATUS IS *, 112)

Figure 5-3. NETON Statement Example

CALL NETOFF

Figure 5-4. NETOFF Statement FORTRAN
Call Format

The NETOFF statement is used only after all proc-
essing of logical connection activities is finished
and the program is prepared to end connection with
the network. After the NETOFF call is completed,
no AIP statement other than NETON, NETREL, NSTORE,
NFETCH, NETDMB, and NETSETF can be used. The NETOFF
call breaks any logical connection still existing
between the application program and a terminal or
another application and prevents the network
software from attempting to establish any new con-
nection. After the NETOFF statement is processed,
the application program continues to execute under
control of the operating system.

An application program should always issue a NETOFF
call before terminating. Otherwise, the network
software informs consoles or other application pro-
grams with which connections exist that the program
has failed; passive device connections are disposed
of by the network software as 1f the program had
failed. Unless a NETOFF call is completed or NETREL
is called, the debug log file compiled during job
execution cannot be correctly disposed of. Unless
a NETOFF call is completed, the statistical file
compiled during job execution will not exist.

The NETOFF statement can also be used in a reprieval
situation. This use 1is described under Connecting
to Network (NETON).

MESSAGE BLOCK INPUT/OUTPUT
STATEMENTS

Input and output on logical connections can be
handled through wunified or fragmented buffers.
Input can be obtained from a connection either by
its individual connection number, or according to
its membership in a 1list of connections. ATIP
statements permit an application program four
options for input or output from a specific connec-
tion and two options for input from a connection on
a list.

5-4

SPECIFIC CONNECTIONS

The four options for specific connection input and
output are as follows:

Fetch input to a single, unified buffer (NETGET
statement)

Fetch input to an array of buffers (NETGETF
statement)

Send output from a single, unified buffer
(NETPUT statement)

Send output from an array of buffers (NETPUTF
statement)

.

Inputing to Single Buffer (NETGET)

Each NETGET call transfers one data or supervisory
message block from the NIP queue for the connection
specified in the call. The NETGET call places the
block header in the application program’s block
header area and the message block in the application
program’s text area. The NETGET statement has the
format shown in figure 5-5.

If no message block is available from the indicated
connection, AIP returns a null block; that is, AIP
places a header word with an application block type
of zero in the header area, and leaves the text area
unchanged from what it contained after any previous
transfer.

The application program indicates the size of its
buffer in each NETGET call. If a message block
larger than this size is queued from the specified
connection, the message block remains queued. AIP
copies the header word of the block into the appli-
cation program’s block header area, sets the ibu
bit of the header to one to indicate the condition,
and places the actual length of the queued block in
the tlc field of the header. The application pro-
gram’s text area is unchanged from what it contained
after any previous transfer. To obtain the still-
queued message block, the program must issue another
NETGET call indicating a buffer size sufficient to
accommodate the queued block, or issue a DC/TRU/R
asynchronous supervisory message to have the data

60499500 P

CALL NETGET(acn,ha,ta,tlmax)

minacn <

after return from the catl.

specified for input from the connection.

act=2 1<
act=3 1<
act=4 1<

acn An input parameter, specifying the application connection number of the Logical connection from
which a message block is requested. This parameter can have the values:

0 Transfer one asynchronous supervisory message.

Transfer one data block or synchronous supervisory message from the logical
acn < maxacn connection with the indicated acn.

ha A return parameter; as input to the call, ha is the symbolic address of the application
program's header area. The header area always contains an updated application block header

ta A return parameter; as input to the call, the symbolic address of the first word of the buffer
array constituting the text area for the application program. On return from the call, the
text area contains the requested block if a block was delivered to the application. The text
area identified by ta should be at least tlmax words long.

tlmax An input parameter, specifying the maximum Length in central memory words of a block the
application program can accept. The value declared for tlmax should be less than or equal to
the tength of the text area identified in the same call; if timax is greater than the length of
the text area, the block transfer resulting from the NETGET call might overwrite a portion of
the program. The maximum value needed for tlmax is a function of the block size used by the
connection for input to the program and of the application character type the program has

The following ranges are valid:

act=1 1 f_thax.S 410 for 60-bit (one per word) transparent characters

timax < 273 for 8-bit (7.5 per word) ASCII characters

tlmax < 410 for 8-bit (5 per word) ASCII characters

tlmax < 205 for 6-bit (10 per word) display code characters

A tlmax value of O can be legally declared but results in an input-block-undeliverable

condition; that is, an application block header is returned with a set ibu field, even when an
empty block of application block type 2 is queued (a block with a tlc value of 0).

Figure 5-5. NETGET Statement FORTRAN Call Format

truncated. (See section 3.) If message truncation
is in effect at the time of the NETGET call, then
the message will be delivered with the tru bit set
in the header.

If the application program’s text area 1is larger
than the block transferred by the NETGET call, the
portion of the text area after the last word used
for the block remains unchanged from what 1t con-—
tained after any previous transfer. If the trans-
ferred block does not completely fill the last word
used for it, all character positions in the 1last
word used are altered by the transfer. Only the
leftmost character positions of the last word
included in the block header word tlc field value
contain meaningful data.

You can use NETGET to obtain an asynchronous super—
visory message from application connection number
0. You can also use NETGET to fetch synchronous
supervisory messages and data message blocks from
application connection numbers other than O.
Synchronous supervisory messages and data message
blocks are never queued on logical connection O.

60499500 P

Figures 5-6 and 5-7, which illustrate FORTRAN 5 and
FORTRAN Extended 4 formats, respectively, contain
two examples of NETGET use. The first occurrence
is in fetching asynchronous supervisory messages,
specifically, for connection-request messages.
Fetching continues until no asynchronous messages
are reported via the supervisory status word (test
of NSUP contents). The second appearance of NETGET
is in a loop polling for any messages queued on a
terminal connection; the polling loop continues
until a NETGET call returns a null block. The block
header word HA is tested after each call to detect
the null block, which has an application block type
(ABHABT) of zero.

The value chosen for TIMAX in this example 1is
adequate for both a connection-request supervisory
message of ten 60~bit characters and for a logical
line of 72 teletypewriter characters with an appli-
cation character type of 2 used for input. The text
area array TA has a dimension of twice TLMAX words,
in case the test of ABHIBU fails and a block larger
than anticipated must be transferred (third NETGET
call).

5-5

INTEGER TA(20),HA, TLMAX,OVTLMAX
DATA HA/0/,TA/20%0/, TLMAX/10/

NACN=0
1 CALL NETGET(NACN,HA,TA TLMAX)
IF({(NSUP.AND.0''02000000000000000000").EQ.0)
1GO 70O 2

GO TO 1
2 CONTINUE

NACN=TERM({IACN)

3 CALL NETGET(NACN,HA,TA TLMAX)
IF(INFETCH(HA,L"ABHABT").EQ.0) GO TO 4
IF(NFETCH(HA,L"ABHIBU"}.EQ.1) GO TO 5

6 CONTINUE

GO 70 3

5 OVTLMAX = NFETCH(HA,L"ABHTLC")/7.5
ATEMP=NFETCH(HA,L"ABHTLC")/7.5
IF(ATEMP.NE.OVTLMAX)OVTLMAX=0OVTLMAX + 1
IF(OVTLMAX.GT.20} GO TO 9
CALL NETGET(NACN,HA TA OVTLMAX}
GO TO 6

4 CONTINUE

9 STOP

Figure 5-6. NETGET Statement FORTRAN
5 Examples

Inputing to Fragmented Buffer Array (NETGETF)

Each NETGETF call transfers one data or supervisory
message block from the NIP queue for the connection
specified in the call. The NETGET call places the
block header in the application program’s block
header area. It divides the message block into
fragments of whole central memory words and places
each fragment in a separately addressed application
program text area. The NETGETF statement has the
format shown in figure 5-8.

The text areas used are defined for AIP by the text
area address array identified in the NETGETF call.
This text area address array has the format given
in figure 5-9.

The application program indicates the total size of
its text area buffers in each NETGETF call through
fields in the text area address array. If a message
block larger than this total size is queued from the
specified connection, the message block remains
queued. AIP copies the header word of the block
into the application program’s header area, sets
the ibu bit of the header to one to indicate the
condition, and places the actual 1length of the
queued block in the tlc field of the header. The
application program’s text areas are unchanged from
what they contained after any previous transfer.
To obtain the still-queued message block, the pro-
gram must issue another NETGETF call, indicating a

INTEGER TA(20),HA, TLMAX,0OVTLMAX
DATA HA/0/,TA/20%0/, TLMAX/10/

NACN=0

1 CALL NETGET(NACN,HA,TA, TLMAX)
1F{NSUP.AND.020000000000000000008).£EQ.0}
1GO TO 2

GO 701
2 CONTINUE
.
.
NACN=TERM(IACN)

3 CALL NETGET{(NACN,HA, TA TLMAX)
IF(NFETCH(HA 6LABHABT).EQ.0) GO TO 4
IF(NFETCH(HA 6LABHIBU}.EQ.1) GO TO 5

6 CONTINUE

[
.
GO TO 3

5 OVTLMAX=NFETCH(HA,6LABHTLC)/7.5
ATEMP=NFETCH(HA,6LABHTLC)/7.5

- IF(ATEMP.NE.OVTLMAX)OVTLMAX=0OVTLMAX + 1
IFIOVTLMAX.GT.20) GO TO 9
CALL NETGET(NACN,HA TA,OVTLMAX}
GO TO 6

4 CONTINUE

9 STOP

Figure 5-7. NETGET Statement FORTRAN
Extended & Examples

total text area size sufficient to accommodate the
queued block, or it must issue a DC/TRU/R super-
visory message (see section 3).

If the total size of the application program’s text
areas 1s larger than the block transferred by the
NETGETF call, the portions of the text areas after
the last word used for the block remain unchanged
from what they contained after any previous trans-
fer. 1If the transferred block does not completely
fill the last word used for it, all character posi-
tions in the last word used are altered by the
transfer. Only the leftmost character positions of
the last word included in the block header word tlc
field value contain meaningful data.

If no message block is available from the indicated
logical connection, AIP returns a null block; that
is, a header word with an application block type of
zero 1s placed in the header area, and the text
areas remain unchanged from what they contained
after any previous transfer.

You can use NETGETF to obtain an asynchronous
supervisory message from application connection
number O. You can also use NETGETF to fetch
synchronous supervisory messages and data message
blocks from application comnnection numbers other
than 0. Synchronous supervisory messages and data
message blocks are never queued on logical con-
nection O.

60499500 P

e

CALL NETGETF(acn,ha,na,taal

acn
from which a message block is requested.

0 Transfer one asynchronous supervisory message.

minacn <
acn < maxacn

ha
program's header area.
after return from the call.
na
into.
a portion of the program.

taa

format shown in figure 5-9.

An input parameter, specifying the application connection number of the Logical connection
This parameter can have the values:

Transfer one data block or synchronous supervisory message from the logical
connection with the indicated acn.

A return parameter; as input to the call, ha is the symbolic address of the application
The header area always contains an updated application block header

An input parameter, specifying the number of fragments the message block should be divided

The number used should be the same as the number of central memory word entries in the
text area address array identified by the taa parameter; if na is greater than the length of
the text area address array, the block transfer resulting from the NETGETF call might overwrite
Parameter na can have values 1 < na < 40,

An input parameter, specifying the symbolic address of the first word of the one-dimensional
array defining the application program's text areas.

The array identified by taa has the

Figure 5-8.

NETGETF Statement FORTRAN Catl Format

59 39

30

taaq unused

ﬁze1

unused address

taan, unused

Sizen g

unused address,,

taa1

size;
1 < size; < 63,

The Length in central memory words of block fragment i.

The symbolic address of the beginning of the array used in the NETGETF call.

This field can contain the values

The sum of all na values for size; defines the size in central memory

words of the largest block the call can transfer; this sum is the equivalent of the tlmax
The sum of all na values for size can be 0, but this
results in an input-block~undeliverable condition; that is, an application block header is
returned with a set ibu field, even when an empty block of application block type 2 is

parameter in the NETGET statement.

queued (a block with a tic value of

address;
receive block fragment i.
contiguous central memory areas.

0.

The relative numeric address of the first word of the application program text area to
The text area addresses given in this field need not be for

Figure 5-9.

] Figures 5-10 and 5-11, which illustrate FORTRAN 5
and FORTRAN Extended 4 formats, each contain
examples of NETGETF use. The program uses the first
NETGETF call to fetch a block containing an entire
screen of data, which AIP fragments into 12 text
areas containing one 60-character physical 1line
each. The application character type chosen for
input from the logical connection is 4, The pro-
gram continues to fetch full screen buffers of data
until a null block 1is encountered by the test of
ABHABT. The text areas used are 12 separately
addressed 6-word arrays (LINEl through LINE12),

60499500 P

NETGETF Statement Text Area Address Array

which initially contain blanks (DATA statements).
The text area address array (TAA), contains 12
corresponding words; each word contains the relative
address of a text area, obtained with the LOCF
function. Although the array TAA has a dimension
of 24, only the first 12 entries are expected to be
used; therefore, a value of 12 is assigned to NA in
its DATA statement. Only the first assignment
statement constructing TAA 1is shown; because each
text area will contain six words of tem 6-bit char-
acters each, a size of 6 is declared in each TAA
entry.

5-7

DIMENSION LINE 1(6), . . . ,LINE24(6)
INTEGER HA,TAA(24),0VRFLNA,TERM(20)
DATA NA/12/,HA/O/,LINE1/6*L" "/, ... LINE24/6*L" "/

TAA(1)=SHIFT(6,30).0R.LOCF(LINE1)

NACN=TERM(IACN})

CALL NETGETF{NACN,HA,NA TAA)
IF(NFETCH(HA,L"ABHABT").EQ.0) GO TO 2
IF(NFETCH(HA,L"ABHIBU") .EQ.1} GO TO 5
6 CONTINUE

GO TO 1
OVRFLNA=NFETCH(HA,L"ABHTLC")/60.0
ATEMP=NFETCH(HA, L"ABHTLC")/60.0
IF(ATEMP.NE.OVRFLNA)OVRFLNA=OVRFLNA + 1
IF(OVRFLNA.GT.24) GO TO 9

CALL NETGETF(NACN,HA,OVRFLNA,TAA)

GO TO 6

2 CONTINUE

9 STOP

-

8]

The second NETGETF call recovers a block not
delivered by the original call because the block was
larger than expected. This condition is detected
by the test of ABHIBU, as returned by the first
NETGETF call. The second call is issued with more
of the text area address array specified, so that
all 24 text areas potentially can be used.

Ovutputing From Single Buffer (NETPUT)

Each NETPUT call requests AIP to form a message
block from the information located in the applica-
tion program’s block header and text areas. The
calling application program must construct a com-—
plete message block header, as described in section
2. The text portion of the message block can be
either a data block, as described in section 2, or
a supervisory message block, as described in section
3. The block formed by AIP is sent to the logical
connection specified in the block header. The
NETPUT statement has the format shown in figure
5-12.

Figure 5-10. NETGETF Statement
FORTRAN 5 Examples

DIMENSION LINE 1(6), . . . ,LINE24(6)

INTEGER HA,TAA(24), OVRFLNA TERM(20)

DATA NA/12/,HA/0/,LINE1/6*1L /,... LINE24/6*1L /
.

TAA(1)=SHIFT(6,30).0R.LOCF(LINE1)

NACN=TERM(IACN)

CALL NETGETF(NACN,HA NATAA)
IF(NFETCH(HA 6LABHABT).EQ.0) GO TO
IF(NFETCH(HA,BLABHIBU).EQ.1) GO TO
6 CONTINUE

GO TO 1

5 OVRFLNA=NFETCH{(HA,6LABHTLC)/6.0
ATEMP=NFETCH(HA,6LLABHTLC)/60.0
IF(ATEMP.NE.OVRFLNA)JOVRFLNA=OVRFLNA + 1
IF(OVRFLNA.GT.24) GO TO 9
CALL NETGETF(NACN,HA,OVRFLNA,TAA)

_

2
5

CALL NETPUT (ha,ta)

ha An input parameter, specifying the
symbolic address of the application
program's block header area. The block
header area must contain a valid block
header word.

ta An input parameter, specifying the
symbolic address of the application
program's text area. The text area must
contain a valid data message or
supervisory message block, correctly
described by the contents of the block
header area.

GO TO 6

2 CONTINUE
[]
L]

9 STOP

Figure 5-11. NETGETF Statement FORTRAN
Extended 4 Examples
5-8

Figure 5-12. NETPUT Statement
FORTRAN Call Format

To reduce data transfer overhead, downline data is
sometimes buffered by AIP within the application
program’s field length. Completion of a NETPUT
call therefore does not necessarily mean that the
downline data has been transferred to the network.

When an application program is not operating in
parallel mode, return from a NETPUT call is equiva-
lent to completion of the call, and the application
program can reuse the header area and text area
specified in the call immediately. When an appli-
cation program is operating in parallel mode, return
from the call is not equivalent to completion of the
call., Completion of the call must be determined
through the supervisory status word bits. If com-—
pletion is not detected when these bits are checked,
completion must be forced through calls to NETCHEK.
The header area and text area cannot be reused
safely until completion occurs. Otherwise, AIP
might transfer information on the wrong connection
or data other than what the application intended to
transfer as part of the block.

60499500 P

Actual transfer of downline data occurs any time the
application program makes an AIP call that requires
access to the network software’s data structures.
Any NETGET or NETGETF call causes downline transfers
when the call is not made on connection number O,
Any NETWAIT call with a flag value of one causes
downline transfers. A NETGETL or NETGTFL call
causes downline transfers when the call is not made
on list number O, Other AIP calls do not necessar-
ily cause immediate downline transfers, and downline
data buffered by AIP may remain untransferred if the
application program is swapped out by the operating
system. Downline data buffered by AIP might also
remain untransferred 1if the application program
schedules 1its own central processor usage with the
COMPASS macro RECALL, instead of using calls to
NETWAIT. To force the transfer of downline data
buffered in AIP, call NETCHEK. (See Worklist Proc-
essing in section 4.)

You can use NETPUT to send asynchronous supervisory
messages to application connection number 0. You
can also use NETPUT to send syunchronous supervisory
messages and data message blocks to application
connection numbers other than O, Synchronous
supervisory messages and data message blocks are
never sent on logical connection O.

Figures 5-13 and 5-14, which illustrate FORTRAN 5
and FORTRAN Extended 4 formats respectively, contain
an example of NETPUT use., The program has fetched
an asynchronous supervisory message and determined
that the message 18 a connection request from a

console. The header area contains the connection-
request block header. Because asynchronous super-
visory messages use an application character type
of one, the connection-accepted message being
created in the example requires the first NSTORE
call to place a 1 in the tlec field. The response
mesgsage 1s only one central memory word, viewed as
a single character. The next four lines of code
modify the first word of the connection-request
message, contained in text area TA. First, the
NSTORE call sets the response bit (RB). Next, the
NSTORE call places a list number in the connection-
accepted message, followed by an application char-
acter type of 4. Six-bit display code characters
are to be used for input from this connection, an
option that is legal for consoles because they use
the interactive virtual terminal interface.
Finally, the NETPUT call sends the completed mes-
sage on applicatlion connection naumber O, The
incoming block header already contained this number,
so the program did not need to supply it while con-
structing the outgoing block header.

]
°
CALL NSTORE (HA,L'"ABHTLC",1)
CALL NSTORE (TA(1),2LRB,1)
CALL NSTORE(TA(1),L"CONALN" ,TERM(1,8))
CALL NSTORE(TA(1) ,L"CONACT",4)
CALL NETPUT(HA,TA)
L]
.

Figure 5-13. NETPUT Statement
FORTRAN 5 Example

60499500 P

[
]
CALL NSTORE (HA,6LABHTLC,1)
CALL NSTORE(CTA(1),2LRB,1)
CALL NSTORE(TA(1),6LCONALN, TERM(1,8))
CALL NSTORE(TA(1),6LCONACT,4)
CALL NETPUT (HA,TA)
L]
[]

Figure 5-14. NETPUT Statement FORTRAN
Extended 4 Example

Ovutputing From Fragmented Buffer Array (NETPUTF)

Each NETPUTF call requests AIP to form a message
block from the information located in the applica-
tion program’s block header and scattered text
areas, The calling application program must con-
struct a complete message block header, as described
In section 2. The text portion of the message block
can be either a data block, as described in section
2, or a supervisory message block, as described in
section 3. The block formed by AIP is sent to the
logical connection specified in the block header.
The NETPUTF statement has the format shown in figure
5-15.

CALL NETPUTF(ha,na,taa)

ha An input parameter, specifying the
symbolic address of the application
program's block header area. The block
header area must contain a valid block
header word.

na An input parameter, specifying the number
of fragments the message block is divided
into. The number used should be the same
as the number of central memory word
entries in the text area address array
identified by the taa parameter; if na is
greater than the length of the text area
address array, the block transferred by
the NETPUTF call might contain meaningless
information appended to the last
meaningful fragment. Parameter na can
have the values 1 < na < 40.

taa An input parameter, specifying the
symbol ic address of the first word of the
one-dimensional array defining the
application program's text areas. The
array identified by taa has the format
shown in figure 5-16.

Figure 5-15, NETPUTF Statement
FORTRAN Call Format

You can use NETPUTF to send asynchronous supervisory
messages to application connection number 0. You
can also use NETPUTF to send synchronous supervisory
messages and data message blocks to application
connection numbers other than 0. Synchronous
supervisory messages and data message blocks are
never sent on logical connection 0.

5-9

| NAM assembles the text portion of the block trans-
ferred by the call from separately addressed text
areas scattered through the application program’s
field length. The addresses and' sizes of these
text areas are supplied to AIP through a text area
address array specified in the NETPUTF call. (See
figure 5-16.) The total size of all of ‘the text
areas identified in the text area array should be
greater than or equal to the central memory word
equivalent of the number of characters specified in
the block header. If the block header declares the
block to contain fewer central memory words than
all the text areas contain, the portion of the text
areas beyond the size declared in the block header
will not be included in the transferred block.

To reduce data transfer overhead, downline data is
sometimes buffered by AIP within the application
program’s field length. Completion of a NETPUTF
call therefore does not necessarily mean that the
downline data has been transferred to the network.

When an application program is not operating in
parallel mode, return from a NETPUTF call is equiv-
alent to completion of the call, and the application
program can reuse the header area and text areas
specified in the call immediately. When an appli-
cation program is operating in parallel mode, return
from the call is not equivalent to completion of the
call. Completion of the call must be determined
through the supervisory status word bits. If com—
pletion is not detected when these bits are checked,
completion must be forced through calls to NETCHEK.
The header area and text areas cannot be reused
safely wuntil completion occurs. Otherwise, AIP
might transfer information on the wrong connection
or data other than what the application intended to
transfer as part of the block.

Actual transfer of downline data occurs any time the
application program makes an AIP call that requires
access to the network software’s data structures.
Any NETGET or NETGETF call causes downline transfers
when the call is not made on connection number O.
Any NETWAIT call with a flag value of one causes
downline transfers. A NETGETL or NETGTFL call
causes downline transfers when the call is not made
on list number 0. Other AIP calls do not necessar-
ily cause immediate downline transfers, and downline
data buffered by AIP might remain untransferred if
the application program is swapped out by the
operating system. Downline data buffered by AIP
might also remain untransferred if the application
program schedules its own central processor usage
with the COMPASS macro RECALL, instead of wusing
calls to NETWAIT. To force the transfer of downline
data buffered in AIP, call NETCHEK. (See Worklist
Processing in section 4.)

Figures 5-17 and 5-18, which illustrate FORTRAN 5
and FORTRAN Extended 4 formats, respectively, con-
tain an example of NETPUTF use. The program sends
a block containing an entire screen of data to an
interactive console. AIP assembles the block from
text areas containing one logical (and physical)
line each. The application character type used for
the block is 4. The program uses 12 text areas of
separately addressed 6-word arrays (OLINEl through
OLINE12), containing 6-bit display code characters
and 12-bit zero byte terminators (DATA statements).
The text area address array, OTAA, contains 12 cor-
responding words; each word contains the relative
address of a text area, obtained with the LOCF
function. Because the array OTAA has a dimension
of 12, a value of 12 is assigned to ONA in its DATA
statement. Only the first assignment statement
constructing OTAA is shown. Because each text area
contains six words of ten 6-bit characters each, a
size of 6 is declared in each OTAA entry.

59 39

taaq unused

sizey

unused address4

‘I\

taa,, unused

SIZena

unused addressn

a

taaq The symbolic address of the beginning of the array used in the NETPUTF call.

sizey The length in central memory words of block fragment i. This field can contain the values
1 < size; < 63. The sum of all na values for size; defines the size in central memory
words of the block to transfer; this sum must be less than or equal to 410 central memory
words.

address; The numeric relative address of the first word of the application program text area
containing block fragment i. The text area addresses given in this field need not be for
contiguous central memory areas.

fFigure 5-16. NETPUTF Statement Text Area Address Array
5-10 60499500 P

~—

.

.
DIMENSION OLINE1(6),. . . ,OLINE12(6}
INTEGER HA, OTAA(12), ONA, TERM(20)

DATA ONA/12/,HA/O/,OLINE1/"ABCDEFGHIJ", . . ., L"12345678"/, . . .

1DATA OLINE12/"ABCDEFGHIJ", . . ., L"12345678"/

OTAA(1)=SHIFT(6,30).0R.LOCF(OLINET)

L]
[]

CALL NSTORE(HA, L"ABHABT", 2)

CALL NSTORE(HA, L"ABHADR", TERM(IACN))
CALL NSTORE(HA, L"ABHABN", 1)

CALL NSTORE(HA, L"ABHACT", 4)

CALL NSTORE(HA, L"ABHNFE", 1)

CALL NSTORE(HA, L"ABHTLC", 720)

CALL NETPUTF(HA, ONA, OTAA)

Figure 5-17. NETPUTF Statement FORTRAN S Example

DIMENSION OLINE1(6), . . . ,OLINE12(6}
INTEGER HA, OTAA(12), ONA, TERM(20)

DATA ONA/12/,HA/0/,OLINE1/10HABCDEFGHLJ, . . . ,8L12345678/, . . .

1DATA OLINE12/10HABCDEFGHIJ, . . ., 8L12345678/

OTAA(1)=SHIFT(6,30).0R.LOCF(OLINE1)
.
.
CALL NSTORE(HA, 6LABHABT,2)
CALL NSTORE(HA, 6LABHADR, TERM(IACN}))
CALL NSTORE(HA, 6LABHABN, 1)
CALL NSTORE(HA, 6LABHACT, 4)
CALL NSTORE(HA, 6LABHNFE, 1)
CALL NSTORE(HA, 6LABHTLC, 720)
CALL NETPUTF(HA, ONA, OTAA)

Figure 5-18. NETPUTF Statement FORTRAN Extended 4 Example

CONNECTIONS ON LISTS

The two options for input from connections on lists
are as follows:

Fetch input to a single, unified buffer (NETGETL
statement)

Fetch input to an array of buffers (NETGIFL
statement)

Inputing to Single Buffer (NETGETL)

Each NETGETL call causes NAM to select (on a rotat-
ing basis) one of the logical connections from a
specified list. NAM only chooses a connection that
has message blocks queued and that has not been
turned off by a LST/OFF/R supervisory message. One
message block is transferred from the NIP queue of
the selected connection for each call to NETGETL.
The NETGETL call places the block header in the

60499500 P

application program’s header area and the message
body in the application’s text area. Figure 5-19
shows the format of the NETGETL statement.

Each NETGETL statement causes the connection list
to be scanned only once. Scanning begins with the
connection immediately following the connection
from which a block was previously transferred. The
first connection on the list is examined after the
last onme on the list. Scanning ends when a connec-
tion with a queued input block is found. If no
connection has a queued input block, scanning ends
with the connection preceding the one at which
scanning started.

If data or supervisory message blocks are not
available from any connection on the list, a null
block is returned. A header word with an applica-
tion block type of zero is placed in the header
area, and the text area is unchanged from its con-
tent after the last block was obtained. Null blocks
are not returned from each connection.

CALL NETGETL{(aln,ha,ta,tlmax)

on the indicated Llist.

after return from the call.

specified for input from the connection.

act=3 1

| A

aln An input parameter, specifying the number of the connection List to be scanned for a queued
block. This parameter can have the values:

0 Obtain all asynchronous supervisory messages queued on application connection
number O first, then any data or synchronous supervisory message blocks queued
on other connections on Llist zero.

1 < aln 5_63 Obtain one data or synchronous supervisory message block from one connection

ha A return parameter; as input to the call, the symbolic address of the application program's
block header area. The header area always contains an updated application block header word

ta A return parameter; as input to the call, the symbolic address of the first word of the buffer
array constituting the text area for the application program. On return from the call, the text
area contains the requested block if a block was available and the text area was lLarge enough.
The text area identified by ta should be at least tlmax words long.

timax An input parameter, specifying the maximum length in central memory words of a block the
application program can accept. The value declared for tlmax should be less than or equal to
the length of the text area identified in the same call; if tlmax is greater than the length of
the text area, the block transfer resulting from the NETGETL call might overwrite a portion of
the program. The maximum value needed for timax is a function of the block size used by the

connection for input to the program and of the application character type the program has
The following ranges are valid:
act=1 1 < timax < 610 for 60-bit (one per word) transparent characters
act=2 1 < timax < 273 for 8-bit (7.5 per word) ASCII characters
timax < 410 for 8-bit (5 per word) ASCII characters
act=4 1 < tlmax < 205 for 6-bit (10 per word) display code characters
A timax value of O can be Legally declared but results in an input-block-undeliverable

condition; that is, an application block header is returned with an ibu value of 1, even when an
empty block of application block type 2 is queued (a block with a tic value of 0).

Figure 5-19. NETGETL Statement FORTRAN Call Format

The application program indicates the size of its
buffer in each NETGETL call. If a message block
larger than this size is available for transfer,
the message block remains queued, unless message
truncation has been requested. AIP coples the
header word of the block into the application pro-
gram’s block header area, sets the ibu bit of the
header to one to indicate the condition, and places
the actual length of the queued block in the tle
field of the header. The application program’s text
area is unchanged from what it contained after any
previous transfer. To obtain the still-queued
block, the program must issue a separate NETGET
call, indicating a buffer size sufficient to accom-—
modate the queued block, or it may request a trun-
cated message wusing the DC/TRU/R asynchronous
supervisory message (see section 3). The conmnection
pointer within the list is incremented regardless
of whether a transfer occurs, so the same connection
is not involved in a second NETGETL call.

If the application program’s text area 1is larger
than the block transferred by the NETGETL call, the
portion of the text area after the last word used
for the block remains unchanged from what it con-
tained after any previous transfer. If the trans-
ferred block does not completely fill the last word
used for 1it, all character positions in the last

word used are altered by the transfer. Only the
leftmost character positions of the 1last word
included in the block header word tlc field value
contain meaningful data.

You can wuse NETGETL to obtain an asynchronous
supervisory message from application connection
number 0. Application connection number O is always
part of application list number 0. When a NETGETL
call specifying input from list O is issued, any
asynchronous supervisory messages queued for the
program are returned before list scanning continues
to other connection numbers on list O. Synchronous
supervisory messages and data message blocks on
connection numbers other than =zero can also be

‘obtained when their connection numbers have been

assigned to list O,

Figures 5-20 and 5-21, which illustrate FORTRAN 5
and FORTRAN Extended 4 formats, respectively, con-
tain an example of NETGETL statement use. The
program has assigned all interactive consoles to
list O when accepting connection with them (code
not shown). A NETGETL call is used to periodically
poll list O for asynchronous supervisory messages
affecting new or existing connections, and for
interactive input affecting passive terminal con-
nections. The TIMAX value of 10 is adequate for

60499500 P

~

both supervisory messages of application character
type 1 and 72-character logical lines in ASCII
(application character type 2) from the interactive
consoles. FEach time list O is polled by the NETGETL
call, the block header area HA is tested to deter~
mine the block type. If a null block (ABHABT of 0)
18 found, polling ceases. If a block type of 1 or
2 is found, the block is processed (code not shown)
and polling continues. If a supervisory message
{block type of 3) is found, a subroutine called SMP
i8 entered to process the supervisory message and
polling of list O continues.

The NETGET call recovers a block not delivered by
the original call because the block was larger than
expected. This condition is detected by the test
of ABHIBU, as returned by the NETGETL call. The
NETGET call is 1ssued with more of the text area
buffer available; OVTIMAX can be up to twice TIMAX
before the text area 1s completely fiiled.

l Inputing to Fragmented Buffer Array (NETGTFL)

Each NETGTFL call causes NAM to select (on a rotat-
ing basis) one of the logical connections from a
specified 1list. NAM only chooses a connection that
has message blocks queued and has not been turned
off by a supervisory message. One message block is
transferred from the NIP queue of the selected con-
nection for each call to NETGIFL; the block header
is placed in the application program’s header area
and the message body is placed in the application’s

l text areas. Figure 5-22 shows the format of the
NETGTFL statement.

Each NETGTFL statement causes the connection list
to be scanned only once. Scanning begins with the
connection immediately following the connection from
which a block was previously transferred. The first
connection on the list is examined after the last
one on the list. Scanning ends when a connection
with a queued input block is found. If no connec~
tion has a queued input block, scanning ends with
the connection preceding the one at which scanning
started.

The text areas used are defined for AIP by the text

area address array identified in the NETGIFL call.

This text area address array has the format shown
I in figure 5-23.

The application program indicates the total size of
its text area buffers in each NETGTFL call through
fields in the text area address array. If a message
block larger than this total size 1s queued from
the specified connection, the message block remains

I queued, unless truncation 1is 1in effect. (See
section 3.) AIP copies the header word of the block
into the application program’s header area, sets
the ibu bit of the header to one to 1indicate the
condition, and places the actual length of the
queued block in the tlc field of the header. The
application program’s text areas are unchanged from
what they contained after any previous transfer.
To obtain the still-queued message block, the pro-
gram must 1ssue a separate NETGETF call, indicating
a buffer size sufficient to accommodate the queued
block. The program also can request data truncation
using the DC/TRU/R asynchronous supervisory message.
(See section 3.) The connection pointer within the
list is incremented regardless of whether a transfer
occurs, so the same connection is not involved in a
second NETGTFL call.

60499500 P

—

INTEGER TA(20),HA, TLMAX, OVTLMAX
DATA HA/0/, TA/20*0/, TLMAX/10/

NALN=0

CALL NETGETL(NALN,HA, TA, TLMAX)
IF(NFETCH(HA,L"ABHABT").EQ.0) GO TO 5
IF(NFETCH(HA,L"ABHABT").NE.3) GO TO 4
CALL SMP(HA, TA, TLMAX)

GO TO 1

IF(NFETCH(HA,L"ABHIBU").EQ.1} GO TO 3
CONTINUE

GO TO 1
OVTLMAX=NFETCH(HA,L"ABHTLC")/7.5
ATEMP=NFETCH(HA,L"ABHTLC")/7.5

IF(ATEMP.NE.OVTLMAX)OVTLMAX=0OVTLMAX + 1

IF(OVTLMAX.GT.20} GO TO 9
NACN=NFETCH(HA,L"ABHADR")
CALL NETGET(NACN, HA, TA, OVTLMAX)

GO TO 1

CONTINUE
.

®
STOP

Figure 5-20. NETGETL Statement
FORTRAN 5 Example

INTEGER TA(20},HA, TLMAX, OVTLMAX
DATA HA/0/, TA/20*0/, TLMAX/10/

NALN=0
CALL NETGETL(NALN,HA, TA, TLMAX)
IF(NFETCH(HA, 6LABHABT).EQ.0) GO TO 5
IF(NFETCH(HA, 6LABHABT).NE.3) GO TO 4
CALL SMP(HA, TA, TLMAX)
GO TO 1
IF(NFETCH(HA, 6LABHIBU).EQ.1) GO TO 3
CONTINUE

.

.
GO TO 1
OVTLMAX=NFETCH(HA, 6LABHTLC)/7.6
ATEMP=NFETCH(HA, 6LABHTLC)/7.5

IF{ATEMP.NE.OVTLMAX)OVTLMAX=0OVTLMAX + 1

IFIOVTLMAX.GT.20}) GO TO 9
NACN=NFETCH(HA, 6LABHADR}
CALL NETGET(NACN, HA, TA, OVTLMAX)

GO TO 1
CONTINUE

STOP

Figure 5-21. NETGETL Statement FORTRAN
Extended 4 Example

CALL NETGTFL(aln,ha,na,taa)

aln An input parameter, specifying the number of the connection List to be scanned for a queued
block. This parameter can have the values:

0 Obtain all asynchronous supervisory messages queued on application connection
number 0 first, then any data or synchronous supervisory message blocks queued
on other connections on Llist zero.

1 < aln < 63 Obtain one data or synchronous supervisory message block from one connection
on the indicated Llist.

ha A return parameter; as input to the call, the symbolic address of the application program's
block header area. The header area always contains an updated application block header after
return from the call. .
na An input parameter, specifying the number of fragments the message block should be divided
into. The number used should be the same as the number of central memory word entries in the
text area address array identified by the taa parameter; if na is greater than the lLength of
the text area address array, the block transfer resulting from the NETGTFL call might overwrite
a portion of the program. Parameter na can have the values 1 < na < 40.
taa An input parameter, specifying the symbolic address of the first word of the one-dimensional
array defining the application program's text areas. The array identified by taa has the
format shown in figure 5-23.
Figure 5-22. NETGTFL Statement FORTRAN Call Format
59 39 30 18 0
taa, unused sizeq unused address
27 °
[
L]
taap, unused size, unused address,,,
taa, The symbolic address of the beginning of the array used in the NETGTFL call.
size; The Length in central memory words of block fragment i. This field can contain the values
1 < size; < 63. The sum of all na values for size; defines the size in central memory
words of thie Largest block the call can transfer; this sum is the equivalent of the tlmax
parameter in the NETGETL statement. The sum of all na values for size can be 0, but this
results in an input-block-undeliverable condition; that is, an application block header is
returned with the ibu field set, even when an empty block of application block type 2 is
queued (a block with a tic value of 0),
address; The numeric relative address of the first word of the application program text area to

receive block fragment i. The text area addresses given in this field need not be for
contiguous central memory areas.

Figure 5-23. NETGTFL Statement Text Area Address Array

60499500 P

If the total size of the application program’s text
areas 1s larger than the block transferred by the
NETGTFL call, the portions of the text areas after
the last word used for the block remain unchanged
from what they contained after any previous trans-
fer. If the transferred block does not completely
fill the last word used for 1it, all character posi-
tions in the last word are altered by the transfer.
Only the leftmost character positions of the last
word indicated by the block header word tlc field
value contain meaningful data.

If data or supervisory message blocks are not
available from any connection on the list, a null
block 1is returned. A header word with an appli-
cation block type of zero is placed in the header
area, and the text areas are unchanged from their
contents after the last block was obtained. Null
(empty) blocks are not returned from each connec-
tion.

You can use NETGIFL to obtain an asynchronous
supervisory message from application connection
number 0. Application connection number 0 is always
part of application list number 0. When a NETGTFL
call specifying input from 1list O is issued, any
asynchronous supervisory messages queued for the
program are returned before 1list scanning continues
to other connection numbers on list 0. Synchronous
supervisory messages and data message blocks on
connection numbers other than zero can be obtained
when their connection numbers have been assigned to
list O.

Figures 5-24 and 5-25, which illustrate FORTRAN 5
and FORTRAN Extended 4 formats, respectively, con-
tain an example of NETGTFL use. The program previ-
ously assigned all interactive consoles to list 0
when accepting connection with them (code not
shown). A NETGTFL call is used to perifodically
poll 1list 0 for asynchronous supervisory messages
affecting new or existing connections, and for
interactive input affecting console connections.
If the poll is successful (does not return a null
block) and returns an asynchronous supervisory mes~
sage block, subroutine SMP is called to process the
message. If the poll returns a data message block
header but no block (test of ABHIBU fails), a
NETGETF call is issued with a total text area buffer
size larger than 1in the original call; this NETGETF
call should successfully retrieve the queued block.

NAM fragments the block transferred by the NEIGTFL
or NETGETF call into 12 (NA) or more (OVRFLNA) text
areas (LINEl through LINE24), identified in the 24-
entry text area address array (TAA). Each text area
is intended to hold one 60-character display coded
physical line from a full page of input. NAM places
each line into six consecutive central memory words.
The calculation of OVRFLNA assumes that an applica-
tion character type of 4 is used for imput, but the
size of the LINEl text area is adequate for both
application character type 4 lines and the applica-
tion character type ! words used for asynchronous
supervisory messages. The FORTRAN function LOCF
stores the address of each of the text area arrays
in TAA, and the TAA entry has a corresponding length
of 6; only the first TAA assignment statement is
shown.

60499500 P

DIMENSION LINE1(6), . . . ,LINE24(6)
INTEGER HA, TAA({24), OVRFLNA
DATA NA/12/,HA/O/,LINE1/6*L" "/, ... LINE24/6*L" "/

TAA(1)=SHIFT(6,30).0R.LOCF(LINE1)
°
L

NALN=0

—_

CALL NETGTFL(NALN,HA NATAA)
IF(NFETCH(HA,L"ABHABT").EQ.0) GO TO 5
IF(NFETCH(HA,L"ABHABT").NE.3) GO TO 4
CALL SMP{HA ,NA TAA)

GO TO 1

4 [F{NFETCH(HA,L"ABHIBU").EQ.1) GO TO 3
2 CONTINUE

GO 70 1

3 OVRFLNA=NFETCH(HA,L"ABHTLC')/60.0
ATEMP=NFETCH(HA,L"ABHTLC')/60.0
IF(ATEMP.NE.OVRFLNAJOVRFLNA=OVRFLNA + 1
IF(OVRFLNA.GT.24) GO TO 9
NACN=NFETCH(HA,L"ABHADR")
CALL NETGETF(NACN,HA,OVRFLNA,TAA)
GO TO 2

5 CONTINUE

9 STOP

Figure 5-24. NETGTFL Statement
FORTRAN 5 Example

PROCESSING CONTROL STATEMENTS

The three processing control statements NEIWAIT,
NETSETP, and NETCHEK cause or reduce processing
delays to alter the application program’s efficien~
cy. These three statements are used in conjunction
with the supervisory status word established by the
application program in its NETON statement. NETWAIT
and NETCHEK can be used by any application progranm;
NETSETP is used only by programs performing parallel
mode processing, as described in section 4.

SUSPENDING PROCESSING (NETWAIT)

The NETWAIT statement (figure 5-26) performs the
following functions:

Allows an application program to make itself a
candidate for rollout by the operating system
or otherwise suspend its processing

Allows the application program to declare a
maximum time for processing suspension

Allows the application program to delay resump-
tion of processing until input is available for
it on any of its logical connections, or on
connection zero

Causes the supervisory status word (NETON nsup
parameter) for the program to be updated on
return from the NETWAIT call

Calls to NETWAIT with nonzero flag values always

* suspend processing when suspension is possible. ~
* Calls to NETWAIT with =zero flag values suspend
DIMENSION LINE1(6), . . . ,LINE24(6) processing only when no input is available.
INTEGER HA, TAA(24), OVRFLNA
DATA NA/12/,HA/O/,LINE1/6*1L /,... LINE24/6*1L/ ~
. NETWAIT calls with a flag value of 0 should only be
* made after all outstanding asynchronous supervisory
TAA(1)=SHIFT(6,30).0R.LOCF(LINE1) messages have been fetched by the program. A
: NETWAIT call with a flag value of zero made while I
any asynchronous supervisory message remains queued
NALN=0 always results in immediate return to the program,

1 CALL NETGTFL(NALN,HA NATAA) regardless of whether any other input is available.
IF{NFETCH{HA, 6LABHABT).EQ.0) GO TO 5 Such calls represent unnecessary additional proc-
IF(NFETCH(HA, 6LABHABT).NE.3) GO TO 4 essing by AIP and the program and do not cause
CALL SMP(HA NA TAA) transfer of worklists that are not completely filled
GO TO 1 (effectively delaying output resulting from previous

4 IF(NFETCH(HA, 6LABHIBU).EQ.1) GO TO 3 calls to NETPUT or NETPUTF).

2 CONTINUE

L
.
GO TO 1 If NETWAIT is called while the program is operating

3 OVRELNA=NFETCH(HA, 6LABHTLC)/60.0 in parallel mode, parallel mode operation is ig-

nored, and the program is suspended. Parallel mode
operation is reinstated when return from the NETWAILIT I
call occurs. You should not issue a call to NETWAIT
when it would interrupt parallel mode operation,

ATEMP=NFETCH(HA, 6LABHTLC)/60.0
IF(ATEMP.NE.OVRFLNA)OVRFLNA=OVRFLNA + 1
IF(OVRFLNA.GT.24) GO TO 9
NACN=NFETCH(HA, 6LABHADR)

CALL NETGETF(NACN HA,OVRFLNA TAA) unless a call to NETCHEK first returns an indication ~—’
GO TO 2 that all worklist processing is completed.
5 CONTINUE
4 You should include NETWAIT calls in an application I
N program that repeatedly polls the network for input
9 STOP (via NETGET, NETGETL, NETGETF, or NETGTFL calls).

If such programs omit frequent NETWAIT calls, severe
performance degradation can result; if you perform
on-line debugging of such application programs, you
should use small time limits for the job while it
is in the debugging phase.

Figure 5-25., NETGTFL Statement FORTRAN
Extended &4 Example

~—

CALL NETWAIT(time,flag)
time An input parameter, 1 < time £.4095, specifying the number of seconds for which the application
program should be suspended. If a value of zero is declared, a default value of one is used;
if a value greater than 4095 is declared, a default value of 4095 is used.
flag An input parameter, specifying the conditions under which processing should be resumed. This
parameter can have the values:
~—
0 Return from NETWAIT call (resume processing) when input is available from any connec-
tion, or when the period declared by the time parameter has etapsed. A minimum time
of 1 second is used if input is not available immediately. When a flag value of zero
is declared and input is available immediately, the value declared for the time
parameter is ignored.
1 Return from NETWAIT call (resume processing) when the period declared by the time
parameter has elapsed, regardless of whether input is available from any connection.
Also forces buffer output to be transmitted.
Figure 5-26. NETWAIT Statement FORTRAN Catl Format
~——”

5-16 60499500 P ~

l You should use NETIWAIT calls as part of the appli-
cation program’s mechanisms to control queuing.
For example, the application program must be sure
before each NETPUT or NETPUTF call that the call
will not cause the logical connection’s application
block limit to be exceeded. When the 1limit has
been reached, the application program should not
output another block until it has received a block-
delivered supervisory message for a block already
sent. Because repeated polling for supervisory
message input to obtain these acknowledgments can
degrade program performance, a NETWAIT call should
follow any NETPUT or NETPUTF call that might cause
the limit to be reached. The time value declared
in the NETWAIT call should be large enough to allow
a block-delivered supervisory message to be received
before another NETPUT or NETPUTF call occurs.

Similarly, an application program should never enter
parallel mode after a NETPUT call unless the program
first issues a NETWAIT call., Because AIP does not
transfer worklists partially filled by NETPUT calls,
the NETWAIT call is necessary to force transfer of
the worklist. (See Worklist Processing in section
4.,) If NETWAIT is not called, the time between the
NETSETP call and the first NETCHEK call is not used
for network processing.

Figures 5-27 and 5-28, which illustrate FORTRAN 5
and FORTRAN Extended 4 formats, respectively, con-
tain examples of NETWAIT statement use. The program
sends a series of data message blocks with NETPUT
calls, issues a NETWAIT that transfers the worklist
and begins block transmission, and then checks the
supervisery status word (NSUP). If no asynchronous
supervisory messages are queued on return from the
first NETWAIT call, no block~delivered message can
have been received and the NSUP test fails. The
program issues a second NETIWAIT call specifying
delay until input on any connection (including the
asynchronous supervisory message connection 0) 1is
queued.

MSK 1=0"'02000000000000000000"
:
CALL NETPUT(HA,TA TLMAX)
ITIME=1
IFLAG=1
CALL NETWAIT(ITIME,IFLAG)
IF(NSUP.AND.MSK1.EQ.MSK1} GO TO 1
ITIME=10
IFLAG=0
CALL NETWAIT({ITIME,IFLAG)
1 IACN=0
CALL NETGET{IACN, HA, TA, TLMAX)
CALL SMP(HA, TA, TLMAX)

Figure 5-27. NETWAIT Statement
FORTRAN 5 Examples

60499500 P

MSK 1=02000000000000000000B

CALL NETPUT{HA TA TLMAX)
ITIME=1
IFLAG=1
CALL NETWAIT(ITIME,IFLAG)
IF(NSUP.AND.MSK1.EQ.MSK1) GO TO 1
ITIME=10
IFLAG=0
CALL NETWAIT(ITIME,IFLAG)

1 1ACN=0
CALL NETGET({IACN, HA, TA, TLMAX)
CALL SMP{HA, TA, TLMAX)

Figure 5-28. NETWAIT Statement FORTRAN
Extended & Examples

CONTROLLING PARALLEL MODE (NETSETP)

The NETSETP statement (figure 5-29) begins or ends
an application program’s parallel mode operation.
Parallel mode operation involves worklist processing
and is discussed in detail under both headings in
section 5. While in parallel mode, an application
program cannot use any AIP statements other than
NETOFF or NETCHEK until AIP processing completion
has been indicated in the supervisory status word.
The supervisory status word used during parallel
mode operation is defined by the nsup parameter in
the application program’s NETON statement. The bit
of the supervisory status word concerned with par-
allel mode processing is updated only while an
application program is operating in parallel mode.

CALL NETSETP(optiomn)
option An input parameter, specifying whether
parallel mode operation begins or ends
after the NETSETP call. This parameter
can have the values:

=0 Begin parallel mode operation.
#0 End parallel mode operation.

(This is the defautt value for
application program operation.)

Figure 5-29. NETSETP Statement
FORTRAN Call Format

When an application program is operating in parallel
mode, it should not alter the contents of the text
area used for a NETPUT or NETPUTF call immediately
after that call. The program can normally reuse the
area as soon as a call to NEIWAIT, NETGET, NETGETF,
NEIGETL, or NETGTFL is completed. The text area
used in a NETPUT or NETPUTF call should not be
altered until after worklist processing is reported
complete; nor should the NETON call status word be
tested until then.

A call to NETSETP ending parallel mode operation
should not be issued until a call to NETCHEK returns
an indication that all worklist processing is com—
pleted. AIP ignores calls to NETSETP that attempt
to end parallel mode operation if the application
program is not operating in parallel mode.

Figures 5-30 and 5-31, which illustrate FORTRAN 5
and FORTRAN Extended 4 formats respectively, contain
examples of NETSETP and NETCHEK use. The program
attempts to reduce the number of worklist transfers
between AIP and NIP to increase its efficiency. It
does this while servicing a batch device on appli-
cation connection number 2 and transmitting to an
interactive console on application connection
number 3.

[}
ITLMAX=410
IIACN=3
IBACN=2
10PT=0
CALL NETSETP(IOPT)
10 0099, 1=1,5,1
CALL NSTORE(IIHA(CI),L"ABHADR",IIACN)
CALL NSTORE CIIHA(I),L"ABHABN",I)
CALL NETPUT(IIHA(I), ITEXT (20%(I-1)))
88 ITEMP=NSUP.AND.SHIFT(1, 59)
IF(ITEMP.EQ.SHIFT(1, 59)) GO TO 99
CALL NETCHEK
G0 TO 88
99 CONTINUE
98 ITEMP=NSUP.AND.SHIFT(1, 55)
IF (ITEMP.EQ.SHIFT (1, 55)) GO TO 3
ITEMP=NSUP. AND.SHIFT(1, 56)
IF (ITEMP.EQ.SHIFT (1, 56)) GO TO 4
ITIME=?
IFLAG=1
CALL NETWAIT C(ITIME,IFLAG)
60 TO 98
3 IACN=0
10PT=1
CALL NETSETP(IOPT)
CALL NETGET (IACN, IHA, ITA, ITLMAX)
[}

L]

4 I0PT=0
CALL NETSETP(IOPT)

CALL NETGET(IIACN, IIHA(1), ITEXT(1), ITLMAX)

5 CALL NETCHEK
ITEMP=NSUP.AND.SHIFT(1, 59)
IF(ITEMP.NE.SHIFT(1, 59)) GO TO 5

.
.

6 CALL NETCHEK
ITEMP=NSUP.AND.SHIFT(1, 59)
IF(ITEMP.NE.SHIFT(1, 59)) GO TO 6

.
[
GO TO 10

Figure 5-30. NETSETP and NETCHEK Statement

FORTRAN 5 Examples

[]
[]
ITLMAX=410
IIACN=3
IBACN=2
I0PT=0
CALL NETSETP(IOPT)
10 0099, I =1, 5, 1
CALL NSTORE(IIHA(1), 6LABHADR, IIACN)
CALL NSTORE (IIHA(1), 6LABHABN, 1)
CALL NETPUT (IIHAC1), ITEXT(20%(1-1)))
88 ITEMP=NSUP.AND.SHIFT(1, 59)
IFCITEMP.EQ.SHIFT(1, 59)) GO TO 99
CALL NETCHEK
60 TO 88
99 CONTINUE
98 ITEMP=NSUP.AND.SHIFT(1, 55)
IF (ITEMP.EQ.SHIFT(1, 55)) GO TO 3
ITEMP=NSUP.AND.SHIFT(1, 56)
IF (ITEMP.EQ.SHIFT (1, 56)) 60 TO 4
ITIME=?
IFLAG=1
CALL NETWAIT (ITIME,IFLAG)
GO TO 98
3 IACN=0
10PT=1
CALL NETSETP(IOPT)
CALL NETGET(IACN, IHA, ITA, ITLMAX)
[]

[
4 I0PT=0
CALL NETSETP(IOPT)

CALL NETGET(IIACN, IIHA(1), ITEXT(1), ITLMAX)
5 CALL NETCHEK
ITEMP=NSUP.AND.SHIFT(1, 59)
IFCITEMP.NE.SHIFT(1, 59)) GO TO 5
L]
[]
6 CALL NETCHEKX
ITEMP=NSUP.AND.SHIFT(1, 59)
IF(ITEMP.NE.SHIFT (1, 59)) GO TO 6
L]

L}
G0 TO 10

Figure 5-31., NETSETP and NETCHEK Statement
FORTRAN Extended 4 Examples

The program flow shown minimizes worklist transfers
by concentrating the interactive output, instead of
interleaving each output line with NETGET calls that
might cause worklist transfers by AIP for worklists
not completely filled. Parallel mode does not
expedite this efficiency, but requirements for its
use are illustrated in several parts of the code.

When the program has sent downline all of the blocks
it intends to send to the console, it tests for
upline data or asynchronous supervisory messages.
If neither is found, NETWAIT rolls the program out
for 7 seconds and suspends parallel mode processing
temporarily.

60499500 P

When asynchronous supervisory messages are found,
the program leaves parallel mode processing with a
nonzero IOPT parameter in another NETSETP call.
The program can then fetch the messages without
needing to test NSUP for completion of the NETGET
call.

When upline data is found, the program makes sure
it is in parallel mode with a zero IOPT parameter
in a NETSETP call. This call is ignored if it is
reached by a path that had already caused parallel
mode processing to begin. While in parallel mode,
the program fetches any queued input from the con-
sole. NETCHEK is called and tested for completion
after the NETGET call. After the attempt to fetch
data from the console is completed (the input dis-
posed of by code is not shown), a similar attempt
(not shown) 1s made to fetch data from the batch
device. When any batch data has been disposed of,
the program returns to its output loop for the con-
sole (having presumably prepared the output buffers
first).

If a system control point job 1is operating in
parallel mode when it loses communication with NIP,
all further network input and ouput AIP calls are
ignored, but the program is not aborted. The pro-
gram should check the n bit 1in the supervisory
status word (see figure 5-2) after completion of all
network input and output calls to determine whether
or not it is still communicating with NIP.

If a system control point job is not operating in
parallel mode when it loses communication with NIP,
it is aborted when it makes the next AIP request.
The operating system aborts all nonsystem control
point jobs when NIP aborts regardless of operating
mode.

CHECKING COMPLETION OF WORKLIST
PROCESSING (NETCHEK)

The application program uses the NETCHEK statement
(figure 5-32) to perform several functions. Each
call to NETCHEK:

Updates bit 59 of the supervisory status word
(identified by the nsup parameter used in the
NETON statement) on return from the call, when
the program is in parallel mode

60499500 P

Forces AIP to attempt transfer of its current
worklist to NIP if the transfer has not yet
occurred, 1if the program 1s running in either
parallel or nonparallel mode

CALL NETCHEK

Figure 5-32. NETCHEK Statement I
FORTRAN Call Format

It is not necessary to call NETCHEK to cause work-
list transfers. Worklist transfers occur normally
after all the requirements described in section 4 l
under Worklist Processing have been met. A NETCHEK
call causes an attempt to transfer a worklist in
situations that do not meet these criteria. This
operation 1is equivalent to a NETWAIT except that
processing is not suspended.

By checking the supervisory status word after each
NETCHEK call, the application program can determine
the most recent state of worklist processing and
determine whether additional AIP routine calls can
be issued. NETCHEK, NETOFF, and NETWAIT are the
only AIP statements that can be used while any
worklist processing operation is pending. A call
to NETSETP ending parallel mode operation should
not be issued until a call to NETCHEK returns an
indication that all worklist processing has been
completed.

If NETON is called during parallel mode operation,
NETCHEK should not be called until all worklistl
processing 1is reported complete. The NETON call
status word does not contain meaningful information
until processing for the worklist containing the
NETON call is complete. NETCHEK should not be
called after a NETOFF call 1s issued in parallel
mode. A NETOFF call ends parallel mode operation
by making worklist processing completion status
impossible.

Worklist processing is described in section 4., The
supervisory status word is described wunder the
heading Connecting to Network at the beginning of
this section. Figures 5-30 and 5-31 contain
examples of NETCHEK use.

5-19

S’

CHARACTERISTICS OF AN APPLICATION PROGRAM 6

This section describes the structure and execution
of a Network Access Method (NAM) application program
job as a batch or system origin type file.

NOTE

You can create application programs
from a time-sharing terminal under
NOS, and debug the compiler or as-
sembler logic that way. You can
initiate a NAM application from the
system console or from the system
card reader, via remote batch ter-
minal submittal or wvia the time-
sharing system.

You cannot execute application pro~
grams as Transaction Facility tasks.

NOS SYSTEM CONTROL POINT

The NOS system control point facility permits the
exchange of data between programs running at dif-
ferent control points. These programs are called:

System control point jobs when they are formally
defined as subsystems of the operating system

User control point jobs when they exchange data
with a system control point job

System control point jobs (subsystems) can make
privileged requests to the operating system and
execute with a very high priority. Network system
control point jobs such as the Network Interface
Program (NIP) usually reside in the operating system
library.

Application programs accessing the network execute
as system control point jobs or user control point
jobs using the system control point facility. Since
the code that implements this facility is embedded
in the Application Interface Program (AIP), it
remains transparent to the application program.
Certain aspects of system control point jobs and
user control point jobs, however, do affect appli-
cation program operation.

An application program cannot execute successfully
unless the CUCP bit is set in the access word asso-
ciated with the user name of its job. If the pro-
gram attempts to access the network and the CUCP
bit is not set, the program is aborted with the
dayfile messages ILLEGAL USER ACCESS and SYSTEM
ABORT, and no error exit processing occurs. Access
word bits are set through the MODVAL utility, as
described in the NOS System Maintenance reference
manual.

While connection to the network exists, a network
application program always has a minimum system
activity count of one. If the application program
uses the control point manager system macro call
(GETACT), the minimum system activity count appears
in the SCA field of the call. When a network ap-

60499500 P

plication program ends its connection with the net-
work by a NETOFF call, the system activity count
may go down to zero. The GETACT macro is described
in volume 4 of the NOS reference set.

APPLICATION JOB
STRUCTURE

A batch application program job using the Network
Access Method is structured like any other batch
job.

A job is a sequence of commands, optionally follow-
ed by source programs, object programs, data, or
directives. A batch job begins with the job command
and ends with an end-of-information indicator. Jobs
can consist of either physical card decks or images
of card decks.

Application program jobs can enter the system in one
of two ways:

Batch jobs on cards are read in through card
readers at the central site. Batch jobs of card
images are read from a load tape under the
direction of the system console operator or the
direction of another job.

Remote batch jobs on cards are read in through
card readers at remote site terminals. Remote
batch job card images are transmitted to form a
file at the host computer. All remote batch
jobs reach the host computer facilities through
the Remote Batch Facility (RBF).

Batch jobs have the same structure no matter what
their origin. Remote batch jobs differ from central
site batch jobs in that output returns to the ter-
minal and that remote jobs are subject to the limi-
tations of the physical equipment at the remote
site. The following information about job decks
applies to both card decks and card deck images.

The first card of the batch job deck is the job
command; the last card has a 6/7/8/9 multiple punch
in column 1. Cards with a 7/8/9 or 6/7/9 multiple
punch in column | divide the deck into a command
portion, program portion, and optional data portion.
When a job deck is created as card images from a
time-sharing terminal, the cEOR and cEOF entries
result in the logical equivalent of 7/8/9 and 6/7/9,
respectively. If the job deck is submitted from a
HASP or bisynchronous station through the Remote
Batch Facility, the /*EORnn and /*EOI cards result
in the logical equivalent of 7/8/9 and 6/7/8/9,
respectively. HASP or bisynchronous station card
readers and card punches support 7/8/9 cards but not
6/7/8/9 cards; 200 User Terminal card readers do not
recognize either /*EORnn cards or /*EOI cards.

Jobs in the system waiting to begin execution are
collectively known as the input queue. Each job
enters the system with the name specified by the
first command in the job deck. The operating system
changes this name, based on the job command present,
to distinguish it from all others in the system.

Once a job enters central memory and begins execu-
tion, the image of the job deck is known as a file
by the name of INPUT. During job execution, a file
with the name of OUTPUT is generated. When the job
completes execution, file OUTPUT becomes part of the
output queue. The output queue 1is the collective
name for output files remaining in the system when
the jobs that generated them have completed execu-
tion. As printers, punches, or remote devices be-
come ready, the operating system or remote batch
software causes files from the output queue to be
physically output. Such files normally return to
the user with the system-generated name of the job
that created them.

COMMANDS

Commands are instructions to the operating system
or its loader. They are grouped together at the
beginning of a deck. Collectively, the commands
form a job stream. Individually, the commands are
job steps.

' Commands execute in the order in which they appear
in the job stream, unless that order is modified by
the operating system control language. Con-

Isequently, the order of the commands governs the
order of other sections in the deck.

The wuser is responsible for structuring the job
decks so that each command read from file INPUT |
corresponds correctly with the sections of the job
deck. The operating system handles each section of
the job deck only once, unless the job specifies
contrary handling.

The job command portion of an application program
job deck normally contains a USER command as its
second card. (See figure 6-1.) The wuser name
specified in this command must have bit 11 (CUCP)
of its corresponding access word set, so that the
application program can successfully complete calls
to system control points. The NOS System Mainte-
nance reference manual describes the mechanism for
setting access word bits. Some installations
require a CHARGE command following the userl
statement.

Until the program is successfully compiled, the only
other required command is a compiler or assembler
execution command in the form described in the ap-
propriate reference manual for the product being
used. Figure 6-1 illustrates the use of the com-
piler execution command for FORTRAN 5. If the job
uses a compiler, a LIBRARY or LDSET command is
needed to satisfy externals from local libraries
NETIO or NETIOD. If the job uses COMPASS, the
COMPASS command must declare NETTEXT to satisfy AIP.
externals and define the symbolic names used for the
field access macro utilities NFETCH and NSTORE.
(See section 4.)

3]
End-of-Information Card 7
8 /4
Separator Card 9 (9
VA
Data Statements
7
Separator Card 8
9 |
Program Statements, L
Including AIP Calls]
7
Separator Card g
{ LGo.
LDSET(LIB=NETIOD}
) (FTN5(LO=S/-A)
Commands,
Including a Compiler JCHARGE(OOSQ'2934657)
or Assembler Call [USER(APPLLPASS,FAMI)
Job Command RMV3. B
N
Figure 6-1. Typical Job Structure for System Input
6-2 60499500 P

The network software identifies an application pro-
gram and issues dayfile messages concerning the
program on the basis of the aname parameter used in
the program’s NETON call. The operating system,
however, is unaware of this name and issues dayfile
messages on the basis of the job name assigned to
the program according to the contents of the job’s
command portion. To ensure that all dayfile mes-
sages concerning the application program can be
identified, you should take the following steps when
the program is run as a batch job:

Determine the method NOS will use to assign a
job name to the application program.

Determine the first four characters of that
name.

Inform the system console operator of the first
characters of the job name corresponding to the
application name.

Do not thereafter alter the portion of the job
compands that determines the job name.

Alternatively, you can use the NOS control point
manager macro GETJN to determine the job name as-
signed to the application program job during each
execution. For the system console operator’s in-
formation, this name can then be entered in the
system dayfile with a message indicating its ap-
plication program name equivalent. This operation
can be performed with the NOS system macro
MESSAGE. GETJN and MESSAGE are described in volume
4 of the NOS 2 reference set.

Regardless of the mechanism used to determine the
job name, diagnostic messages significant to the
system console operator should always be sent to the
network operator as well. When the network operator
is not usually the system console operator, identi-
fication of diagnostic messages by job name associ-
ation might not be as important as identification
of such messages by application program name.

If the job contains commands to reprieve itself from
an abort (RERUN or RESTART), the program portion of
the job must issue a NETOFF and new NETON call in
order to continue accessing the network through NAM.

OVERLAYS

When an application program job is structured to use
overlays, the common blocks used by all AIP routines
mnust reside in the main (zero-level) overlay. The
operating system loader places the blocks in the
main overlay only if the application program makes
at least one call to an AIP routine other than
NETCHEK in the main overlay. At a minimum, the
NETON call must therefore be placed in the main
overlay of the program.

ACCESS TO APPLICATION
PROGRAMS

Access by terminal users to application programs is
controlled in two ways. The first way is by user
name and the second way is by terminal device name.

60499500 P

Each user name in the host can be validated to comn-
nect to one or any application in the network.
This validation is done through MODVAL which is
described in the NOS 2 System Maintenance reference
manual.

In the local configuration file, each terminal can
be designated to have a mandatory or a primary ap-
plication assigned to it., If the application is
mandatory, the terminal cannot be logged into any
other application regardless of the wuser name
entered. If the application is primary, the ter-
minal will automatically be connected to the ap-
plication on the initial login unless an alternate
application name is enforced during the login. On
subsequent logins the network will prompt for an
application and, 1f a carriage return is entered,
the network will connect the terminal to the primary
application.

TYPES OF APPLICATION
PROGRAMS

All application programs must be configured in the
local configuration file (LCF). When an application
is defined in the local configuration file it can
be declared as having one of the following
attributes:

Disabled
Unique Identifier
Privileged

DISABLED

A disabled application is configured in the network,
but is not allowed to access the network until the
operator enters an enable command to allow it to be
connected.

UNIQUE IDENTIFIER

A unique identifier application program requires
that interactive terminal user access to it be
restricted on the basis of the login parameters
used. Only one interactive terminal with a given
combination of family name and user index can be
connected with a wunique identifier application.
NVF rejects a terminal user’s request to be con-
nected with a unique identifier application if the
user logs in with a family and user index combina-
tion used by a terminal that is already connected
with the application. NVF tells the terminal user
to try again later.

As an example, the Remote Batch Facility (RBF)
routes its output files on the basis of the family
and user names used when the terminal console logs
in. So that output will not be misrouted, RBF is
normally configured as a unique identifier appli-
cation program. Thus the family and user index
combinations of all interactive terminals accessing
the program are guaranteed to be unique.

PRIVILEGED

Privileged application programs must have the CS0J
bit set in the access word associated with the user
name for the job executing the program code. This
bit provides the program with system origin type
permission which is required to access the network
successfully.

Jobs with system origin type permission can be
executed by system console operator type-in. Such
jobs usually reside under the operating system user
name in the operating system permanent file catalog
or are installed in the operating system library.

Having system origin type permission does not mean
that these programs must have a system origin type
when executed; rather, a privileged application
program is capable of such execution.

Nonprivileged application programs can have any
origin type permission. Origin type permission for
such programs does not affect access to the network.

The primary reason for defining an application pro-
gram as privileged is to help ensure network secu-
rity. Nonprivileged application progams cannot run
with the application program name used for a privi-
leged application, even if the privileged appli-
cation program is not currently running.

Application programs are usually defined as privi-
leged when they are installed in the system. An
installed application program is one that resides
in the operating system library. The procedure file
used to execute an installed application program
must have the CASF bit set in the access word asso-
ciated with the user name in the file. Jobs that
maintain or attempt to access installed application
programs must also have the CASF bit set in the
access words associated with their user names.
This bit must be set for access to the system
library.

If a privileged application program has not been
installed in the system library, it can be executed
by a system console operator type-in that invokes
its procedure file. The type—-in used has the form:

X.BEGIN, ,anamep.

where the anamep parameter is the name of the pro-
cedure file. The procedure file must be an indirect
access permanent file in the operating system per-
manent file catalog (stored under the system user
name and user index). For the anamep value, you can
use a variant of either the program entry point name
or the program network application name (NETON
statement aname parameter), and all three identi-
fiers should be coordinated. CDC-written applica-
tion programs are invoked through procedure files
for which certain naming conventions have been
adopted. These conventions appear in the NOS In-
stallation Handbook, described in the preface.
Similar conventions could be adopted for site-
written application programs.

An installed privileged application program can be
executed by a system console operator type-in of the

form:

X.anament

® 6-4

where the anament parameter is the name of the pro-
gram (first entry point) installed in the library.
For the anament value, you can use a variant of the
program network application name (NETON statement
aname parameter).

A privileged application program that is not in-
stalled can be executed by a system console operator
type~in that invokes an installed procedure file.
This type~in has the form:

X.anamep.

where the anamep parameter is the name of the pro-
cedure file installed in the library. For the
anamep value you can use a variant of either the
program entry point or the program network applica-
tion name (NETON statement aname parameter), and all
three identifiers should be coordinated. As de-
scribed previously, the naming conventions used by
CDC for CDC-written application programs should be
used as a guide for procedure files invoking site-
written application programs.

You should not define an application program as
privileged or install it in the system library until
the program has been thoroughly debugged. Programs
should be run with batch or remote batch origin
during the debugging process.

EXECUTION OF APPLICATION
PROGRAMS

Application program job structure is partially
dependent on the purpose of the job’s execution.
If the job is executed for debugging purposes, the
debugging method chosen for the program can affect
the parameters specified in the job’s LDSET or
LIBRARY command and thereby affect the AIP code ex-
ecuted at the program’s control point. This aspect
of execution is discussed in the next subsection.

Successful execution of an application program de-
pends on several conditions beyond the scope of the
program’s code. The less obvious of these depend-
encies are discussed later in this section; these
dependencies are primarily requirements for proper
configuration of the program and the terminals it
services.

FATAL ERRORS

Portions of the Network Access Method issue diag-
nostic messages for all fatal errors. These mes-
sages are described in appendix B.

The form used for AIP and QTRM diagnostics depends
on the library used to load the routines used dur-
ing execution. When NETIO is used in the LIBRARY
or LDSET statement, a single diagnostic message with
a reason code is written to the program dayfile
before the program is aborted by a fatal error.
When NETIOD is used, the same diagnostic is issued,
but supplementary diagnostics can also be issued
before the program aborts.

60499500 P

DEBUGGING METHODS

Two methods are available for debugging the con-
nection servicing logic of an application program:

Supervisory and/or data message flow through the
program can be traced by optiomnal AIP code; this
code creates a log file of such messages.

Statistical information on program execution can
be gathered for performance adjustment by
optional AIP code; this code creates a statis-
tics file of the program’s network use.

lDebug Log File and Associated Utilities

The optional AIP code that creates the log file
glves an application program a means of recording
all exchanges between the program and the network.
The AIP utility routine NETDBG gives the program a
method of selecting exchanges that should be re-
corded. A running count of the number of messages
copied to the debug log file is kept in the super-
visory status word (NETON nsup parameter). This
count enables the application to decide when to call
the AIP utility routine NETREL, which gives an ap-
plication program a way of releasing, saving, or
processing the current information in the debug log
file. The AIP utility routine NETSETF gives an ap-
plication program a way of requesting the operating
system to flush the input/output buffer for the
debug log file automatically, if the application
terminates abnormally. The AIP wutility routine
NETLOG allows the application to enter messages
into the debug log file.

Whether or not the log file is created depends on
the system library used to satisfy the application
program’s externals. AIP code for the program can
be loaded from either NETIO or (if the installation
elects to install it) from NETIOD. When NETIOD is
used, all code needed to create the log file is
loaded; the options for logging both supervisory
messages and data messages are automatically turned
on initially. Because this code causes additional
processing overhead and central memory requirements
for the application program’s control point, you
might want to remove the code after the program 1is
completely debugged. You can remove the code from
the job without altering the application program’s
structure by loading the AIP code from NETIO in-
stead of NETIOD. When NETIO is used, the only parts
of the log file code loaded are do-nothing versions
of NETDBG, NETLOG, NETREL, and NETSETF.

NETDBG Utility

When NETIOD is used, the log file is automatically
created without application program calls. You can
use calls to NETDBG to switch either or both options
for message logging off and back on throughout the
program.

NETDBG calls use the same syntax and calling
sequences as other AIP calls. (See sections 4 and
5.) Figure 6-2 shows the NETDBG utility FORTRAN
call statement format. NETDBG can only be called
after NETON is called and before NETOFF is called.

60499500 P

CALL NETDBG(dbugsup, dbugdat, avail)

dbugsup An input parameter that turns the
logging of supervisory messages on or
off. This parameter can have the

values:
=0 Turn supervisory message
logging on.
#0 Turn supervisory message

logging off.

When supervisory message logging is
turned on, all supervisory messages
(except block-delivered messages)
exchanged on connection 0 between the
application program and NAM are log-
ged. Logging occurs whenever a call
to NETGET, NETGETL, NETGETF, NETGTFL,
NETPUT, or NETPUTF causes a message
transfer. This logging continues
until a call with a nonzero debugsup
parameter is issued.

dbugdat An input parameter that turns the
logging of data messages on or off.
This parameter can have the values:

=0 Turn data message logging
on.

#0 Turn data message lLogging
off.

When data message logging is turned
on, all data messages exchanged on I
any connection between the applica-
tion program and NAM are logged;
block-del ivered supervisory messages
(FC/ACK/R) are also logged, regard- |
Lless of the value specified for the
dbugsup parameter. Logging occurs
whenever a call to NETGET, NETGETL,
NETGETF, NETGTFL, NETPUT, or NETPUTF
causes a message transfer. This log-
ging continues until a call with a
nonzero dbugdat parameter is issued.

avail A return parameter that indicates
whether the lLogging code portion of
AIP was loaded when the program was
Loaded. On return from the call,
this parameter can have the values:

=0 Loading occurred from NETIOD
and logging is possible.

=1 Loading occurred from NETIO
and logging is not possible.

When a value of 1 is returned, speci-
fication of 0 for either dbugsup or
dbugdat has had no effect but does
not cause an error.

Figure 6-2. NETDBG Utility FORTRAN Call |
Statement Format

Calls to NETDBG can occur in programs using either
NETIO or NETIOD. For example, when a NETDBG call
turns either or both supervisory and data message
logging on and a status is returned indicating log-
ging is not possible, no error occurs and the option
selection is ignored. When the program contains a
NETDBG call before NETON to turn both logging
options off and a status 1is returned indicating
logging is possible, a log file is still created to
contain a record of the program’s NETON, NETDBG, and
NETOFF calls.

NETREL Utility

Log file creation begins when the application pro-
gram successfully completes its NETON call and ends
when NETOFF is issued. 1If the application has not
called NETSETF previously and the program fails, the
output buffer used for the log file is not com-
pletely emptied into the file. In such a case, the
application should reprieve itself and issue a
NETOFF call, or a NETREL call, to flush the input/
output buffer.

NETREL calls use the same syntax and calling
sequences as other AIP calls. (See sections 4 and
5.) Figure 6-3 shows the NETREL utility FORTRAN
call statement format. To use the NETREL utility,
an application must issue an initialization call to
NETREL with a nonzero first parameter. This call
must be issued before NETON and any NETSETF call in
order to set up the ZZZZZDN file correctly.

The first parameter on the NETREL call is the name
of a file containing a job command record. If the
file name supplied does not conform to the NOS
operating system file name format, NOS aborts the
job when AIP attempts to do input/output on the
file.

The second parameter on the NETREL call gives the
maximum number of words in each message to be saved
in the ZZZZZDN file. NETREL reads up to 192 cen-
tral memory words of the named file, or until a
logical end-of-record is encountered.

The third parameter in the NETREL call determines
the position at which NETREL begins reading the
named file. The file can be rewound to the
beginning-of-information before reading begins, or
it can be read from its current position.

After copying the job command record file to the
debug log file, AIP writes an end-of-record level 0
to the debug log file before beginning to log mes-
sages. Each call to NETREL zeros the message count
in the supervisory status word (NETON nsup parame-
ter). Subsequent calls to NETREL route ZZZZZDN to
the input queue, reinitialize the file environmment
table and message count in the supervisory status
word, and copy another job command record to a new
ZZZ7ZDN file.

If NETREL is not called and the application is
loaded with NETIOD, the debug log file exists as a
local file assigned to the application job. The
debug log file does not begin with a job command
record; therefore, at job termination it should be
treated (disposed of) as a normal local file.

® 6-6

CALL NETREL(Lfn,msglth,nrewind)

Lfn An input parameter that names the
file containing the job record to be
copied to the ZZZZIDN file. This
parameter can have the values:

=0 The application program job
provides its own disposition
of the file ZZZZZDN. Only
the msglth parameter is proc-
essed by AIP.

#0 The named file contains a job
record to dispose of the file
Z2Z2ZZIDN. The value declared
for Lfn must be left-justified
with zero fill, and can be one
to seven alphabetic or numeric
characters in any combination
permitted by the NOS operat-
ing system file name format.

msglth An input parameter that gives the
maximum number of words of each mes-
sage to be saved on the ZZZZIDN file;
O<msglth<410. The value is ignored
if msglth is O.

nrewind An input parameter that controls

whether AIP rewinds the job record

file before the NETREL operation

begins. This parameter can have the

values:
=0 File Lfn is rewound before
any operation is performed.
#0 File Lfn is not rewound be-
fore any operation is per-
formed.

If the value declared for Lfn is zero,
a value of zero for the rewind para-
meter is ignored.

Figure 6-3. NETREL Utility FORTRAN Call
Statement Format

NETSETF Utility

NETSETF calls use the same syntax and calling
sequences as other AIP calls. (See sections 4 and
5.) Figure 6-4 shows the NETSETF utility FORTRAN
call statement format. NETSETF allows the input/
output buffer for the debug log file ZZZZZDN to be
flushed automatically, if the application ter-
minates abnormally. If the error flag code is
greater than SPET, then the debug log file is not
flushed. See volume 4 of the NOS reference set for
a list of the values for the error flag code.
Flushing sets the flush bit in the file environment
table (FET) for the debug log file and calls the
NOS macro SETLOF.

The SETLOF macro provides the NOS operating system
with a list of files and FET addresses to be flush-
ed on abnormal termination. The SETLOF macro can
be called more than once; each successive call
overrides the previous call with a new list of
files.

60499500 P

CALL NETSETF (flush,fetadr)

flush An input parameter that fiushes the debug log
file automatically upon abnormal termination.
The flush parameter can have the following
values:

=0 the flush bit is set in the FET and
the FET address of the debug log
file is returned in fetadr.

#0 the flush bit is set in the FET and
the SETLOF macro is called. The
FET address is not returned.

fetadr A return parameter that is the FET address of
the debug log file returned by NAM. If zero,
either the flush parameter was nonzero or
NETIO was loaded (in which case the flush
parameter makes no difference).

Figure 6-4. NETSETF Utility FORTRAN Catl
Statement Format

Applications written in FORTRAN or COBOL should not
call NETSETF, because those compilers use CYBER
Record Manager, and CYBER Record Manager also calls
the NOS macro SETLOF. If you want the application
to call the SETLOF macro and include the debug log
file in the SETLOF macro list, the application can
first call NETSETF to get the FET address of the
debug log file. If NETSETF is not called and you
want an application to flush the debug log file on
abnormal termination, then the program must reprieve
itself and call NETOFF or NETREL. NETSETF needs to
be called only once and should be called before
NETON is called. NETREL does not clear the flush
bit in the FET when it reinitializes the FET.

NETLOG Utility

NETLOG calls use the same syntax and calling se-
quences as other AIP calls. (See sections 4 and 5).
Figure 6-5 shows the NETLOG utility FORTRAN call
statement format. NETLOG allows an application to
enter messages into the debug log file. These mes-
sages can be of any size, but large messages de-
grade the performance of AIP. Messages are copied
to the debug log file unchanged. However, they are
truncated if the NETREL utility has previously been
called and if the message length exceeds the number
of central memory words specified as the maximum
message length in the NETREL call. The messages can
be either formatted or unformatted. DLFP prints
formatted messages unchanged. DLFP prints unfor-
matted messages the same way it prints network mes-
sage text (in octal, hexadecimal, display code, and
ASCII characters). NETLOG cannot be called before
NETON.

NETDMB Utility

NETDMB calls use the same syntax and calling se-
quences as other AIP calls. (See sections 4 and 5).
Figure 6-6 shows the NETDMB utility FORTRAN call
statement format. NETDMB allows an application to
dump its exchange package and central memory field

60499500 P

CALL NETLOG(address,size,format)

address An input parameter that gives the
address of the message to be written
to the debug log fite.

size An input parameter that gives the
size in central memory words of the
message to be written to the debug
Ltog file.

format An input parameter that determines
whether the message is formatted or
unformatted. This parameter can have
the values:

=0 The message is unformatted
and will be printed by DLFP
in octal, hexadecimal, 6é-bit
display code characters, and
ASCII characters.

=1 The message is formatted and
will be printed unchanged by
DLFP.

Figure 6-5. NETLOG Utility FORTRAN Call
Statement Format

CALL NETDMB(dumpid,ecs)

dumpid An input parameter that is a six-digit
octal number dump identifier.
0<dumpid?77777

ecs An input parameter that, if #0, also

dumps the associated ECS.

Figure 6-6. NETDMB Utility FORTRAN Call
Statement Format

length into the local dump file ZZZZDMB. The data
is in binary format. The file ZZZZDMB must be
postprocessed by a binary dump interpreter to allow
selection of address range and formatting for print.
The dump formatting is done through DSDI which is
described in the NOS 2 System Maintenance reference
manual. A logical end-of-record is written to the
file 2ZZZDMB after each NETDMB call.

Debug Log File Postprocessor Utility

The debug log file is a binary compressed file and
it is written using NOS data transfer macros. You
can obtain a listing of this file by running the
debug log file postprocessor utility with the
desired options.

The debug log file postprocessor (DLFP) utility is
a program that processes the debug log file gen-
erated by AIP. The general format of the DLFP con-
trol statement is shown in figure 6-7. Examples of
DLFP control statements are shown in figure 6-8.

|=|fn«|

1=0

| omitted
L=lfng

L omitted
B=lfng

B omitted

D

D omitted

N=|fn4

N omitted

The job command format for DLFP is:
DLFP(p1.p2,P3.P4.P5)

pj is any of the following parameters in any order:

Directives comprise the next record on file
Ifn1 .

No directive input.

Directives on file INPUT.

List output on file Ifn2.

List output on file QUTPUT.

File Ifn contains the debug log file.
Debug log file is ZZZZZDN.
Discontinue processing current directive
record if there are errors in it. Restart
with next directive record if any.

Do not ignore directive errors; abort job.
Create new debug log file 1fng with
records selected from |fng or ZZZZZDN
according to directives governing record
selection for the list output file. [f this
option is selected, no debug log file data

is written on the list output fite.

No new debug log file is created.

File names must comply with the NOS product set format.

Figure 6-7.

DLFP Control Statement General
format

DLFP(D,L=SAVE)

DLFP{I=DIR,B)

DLFP(1=0,B=TAPE)

DLFP reads the debug log data from
file TAPE. The entire log file is
processed and written to output.

The output goes to the QUTPUT file.

DLFP reads the debug log data from
file ZZZZZDN. DLFP reads the
INPUT file looking for directives.

if the directives are not correct,
DLFP ignores them. The output
goes to file SAVE.

DLFP aborts with the fatal error
message PARAMETER FORMAT
ERROR because there is no file
associated with the B parameter. If
the B parameter is specified cor-
rectly, DLFP reads file DIR looking
for directives. |If the directives are
not correct, DLFP aborts.

Figure 6-8.

DLFP Job Command Examples

The debug 1log file postprocessor automatically
rewinds the debug log file before postprocessing
begins. The application programmer needs to rewind
the file only when DLFP is not the first software
to access the file after program execution
completes.

The debug log file can be copied, made permanent,
or otherwise accessed before DLFP begins its post-
processing. Such operations, however, must not
alter the form of the file used for DLFP input. You
cannot copy portions of the file and successfully
run DLFP using the incomplete copy.

The N option of the DLFP command provides a means
for creating a new debug log file that is a subset
of an existing debug log file. The new file can be
separately processed by a subsequent DLFP job com-
mand and separate DLFP directives.

An optional directive file can be submitted to the
DLFP to select special messages for output. The
directive file can have zero or more directive
records.

Each directive record is a Z type record, which can
contain one or more keywords starting in card image
column 1. Keywords allow you to select which mes-
sages are written to the output file. All keywords
are optional and can appear in any order. You can
use one or more blanks, or a comma followed by zero
or more blanks, to separate the keywords. You can
use leading blanks. Figure 6-9 shows the general
format of DLFP directive keywords with examples of
them in figure 6-10.

Each directive record initiates an independent
search. An empty directive file or empty directive
record or I=0 causes all debug log file messages to
be output., Directive records are copied to the
output listing file.

DLFP issues dayfile messages to inform users of
fatal errors or processing completion. Appendix B
provides a list of all dayfile messages issued by
DLFP. Errors or informative messages can be written
to the output file by DLFP. All messages except NO
MESSAGES FOUND are fatal errors and cause the job
to be aborted unless the D option was specified on
the job command.

The general format of a log file listing is shown
in figure 6-11. (Appendix 1 includes a sample out-
put.) NETON and NETOFF calls are logged to record
the start and end of NAM interfacing; only suc-
cessful NETON calls are logged. Each AIP call
logged is followed by the octal relative address (in
parentheses) from which the call was made. The
NETON call log includes the parameter values de-—
clared on the statement. The NETDBG call log lists
the value declared for dbugsup as OPT]l and for
dbugdat as OPT2. Calls that transfer messages are
logged with their declared parameters, followed by
the block header contents and data message contents.
(All words comprising a supervisory message are
listed.) The contents of each word are given in
hexadecimal, octal, 6-bit display code form, and
ASCII-coded form. Each message is numbered in the
order it was transferred.

60499500 P

———

Keyword T Value Description

8 Specifies that only upline blocks with the flow control break flag bit (bit brk)
set in the application block header are output.

BD= yymmdd Specifies that only messages that were lLogged on or after this date are output.
Messages before this date are not output. yy is the rightmost two digits of the
year, mm is the month, and dd is the day of the month; 00<yy<99, 01<mm<i2,
01<dd<31.

B8T= hhmmss Specifies that only messages that were logged on or after this time are output.
Messages before this time are not output. If the debug log file contains more
than one day's messages, messages beginning after the first occurrence of this
time will be output if BD is not specified. hh is the hour, mm is the minute,
and ss is the second; Oqshhfﬁk, OQqufﬁ?, 0Q§s§§§9.

C Specifies that only messages with the Cancel flag set in the application block
header are output.

CN= n Specifies that only synchronous and asynchronous supervisory messages and data
blocks relating to connection number n are output; 1§n5255.

DN= Reserved for CDC use.

E Specifies that only messages with the error bit set in the supervisory message
are output.

ED= yymmdd Specifies that messages on or after this date are not to be output. yy is the
rightmost two digits of the year, mm is the month, and dd is the day of the
month; 00<yy<99, 01<mm<12, 01<dd<31.

ET= hhmmss Specifies that messages on or after this time are not to be output. 1If the
debug log file contains more than one day's messages, searching terminates after
the first occurrence of this time if ED is not specified. hh is the hour, mm is
the minute, and ss is the second; 00<hh<24, 00<mm<59, 00<ss<59.

LE= n Specifies maximum Length in central memory words of each message to be output;
1%n<410 (default=10).

F Specifies that only network messages with the no format effector bit set in the
application block are output.

N Specifies that only network messages are output. Messages generated by applica~
tions for the debug Log file are ignored.

NM= n Specifies that only n messages are output; 0<1000000.

P= Specifies that only messages with the parity-error bit or auto input mode bit
set in the application block header are output.

PF= hh Specifies that only supervisory messages with the primary function code (PFC)
equal to hhyg are output. No check is made to determine whether hh is a lLegal
PFC value; 0Q§hh16§FF.

PS= hhxx Specifies that only supervisory messages with PFC/SFC equal to hhxxqg are output.
No check is made to determine whether hh is a legal PFC value and xx is a legal
SFC value. 0000<hhq4<FFFF.

R Specifies that only messages with the response bit set in a supervisory message
are output.

SM= n Specifies that no messages are output until after the nth message, which satis-
fies all the other keyword options, is found; 0<n<1000000.

SN= Reserved for CDC use.

T Specifies that only upline blocks with the data truncation flag bit set in the
application block header are output.

Figure 6-9. OLFP Directive Keyword Format (Sheet 1 of 2)
60499500 P 6-9

X

U

eywordT Value Description

Specifies that only messages with the input block undeliverable bit set in the
application block header are output.

Specifies that only messages with the transparent data bit set in the applica-
tion block header are output.

T

The same keyword can appear more than once in a directive record. If there is a value associated with
this keyword, the value in the last occurrence of the keyword is the one used for the search. Blanks

can precede or follow the = sign. If both PF and PS are specified, the lLast one specified overrides the
first one specified. If there are errors in the directive record, the job is aborted unless the D option
was specified on the control statement. 1If the D option was specified, the directive record in error is
ignored and processing restarts with the next directive record, if any. If there are multiple errors in
a directive record, all errors are identified.

Figure 6-9. DLFP Directive Keyword Format (Sheet 2 of 2)

R,E DLFP processes and outputs all supervisory messages that have both
the response and error bit set. There are currently no supervisory
messages that have both bits set.

BD=780229,8T7=2401 ,ED=780228 DLFP does not process this directive record because it contains at
least one error. The first error is that February 29, 1978 is an in-
valid date. The second error is that 2401 is an invalid time. Note
that it was not an error to have the ED date earlier than the BD date
although no messages would ever be processed because of it.

PF=ABC,SM=-1,LE=1F ,NM=10000000 DLFP does not process this directive record because it contains at
Least one error. The first error is that ABC is not a two-character
hexadecimal number. The second error is that - is not a legal char-
acter to have in the directive record. The third error is that 1F is
not a decimal number. The fourth error is that the character string
NM=10000000 is greater than 10 characters.

X,CN=15,SM=20 DLFP processes and outputs all messages on connection number 15 that
have the transparent bit set except for the first 19.

P$=8301,CN=5,PF=83 DLFP processes and outputs all supervisory messages relating to con-
nection number 5 that have a PFC=834,(FC mnemonic). Note that even
though PS is also specified, the directive is ignored because PF is
specified after it.

8C=781104,87=2350,€E0=781105, DLFP processes and outputs all messages that occurred from 11:50 PM
ET=000000 on November 4, 1978 to midnight.

LE=2 ,PF=67 ,NM=10 DLFP processes the first ten supervisory messages with PFC=674,(CON
mnemonic). Only the first two words of each supervisory message is
output.

PS=8381 DLFP outputs no messages. 81 is too large a value for SFC, so DLFP

does not find any matching supervisory message.

PS=6302,CN=1,E DLFP processes and outputs all CON/ACRQ/R supervisory messages re-
Lating to connection number 1 that have the error bit set.

,CN=300,UX,PF=FD,CN=30 DLFP does not process this directive record because it contains at
Least one error. The first error is that the first keyword does not

begin in column 1. The second error is that 300 is too Large a con-
nection number. The third error is that there should be a comma or
blank between the U and X. Even if the three errors were not present,
DLFP would not output any messages because currently FD is not a
Legitimate PFC value. Also CN=30 does not fix the error in the first
CN directive.

Figure 6-10. OLFP Directive Examples

60499500 P

aname LOG FILE OUTPUT current date yy/mm/dd
DATE RECORDED yy/mm/dd PAGE ddd
hh.mm.ss.mil NETON (000000) ANAME = ccccccc DATE = yy/mm/dd MSG NO. ddd
NSUP ADDR = 000000 MINACN = dddd MAXACN = dddd
hh.mm.ss.mil NETDBG (000000) OPT1 = b OPT2 = b DATE = yy/mm/dd MSG NO. ddd
hh.mm.ss.mil NETGET (ooocoo0o) ACN = dddd HA = 000000 TA = 000000 TLMAX = dddd MSG NO. ddd
ABT = dd ADR = dddd ABN = oooooo ACT = dd STATUS = bbbbbbbb TLC = ddd
001 hhhhhhhhhhhhhhh 00000000000000000000 ccccecccccc aaaaaaaaa mnemonic
002 hhhhhhhhhhhhhhh 00000000000000000000 cccecceccccc aaaaaaaaa
nnn hhhhhhhhhhhhhhh 00000000000000000000 cccccccccc aaaaaaaaa
hh.mm.ss.mil NETLOG (000000) MSG NO. ddd
001 hhhhhhhhhhhhhhh 00000000000000000000 ccccccccce aaaaaaaaa mnemonic
002 hhhhhhhhhhhhhhh 00000000000000000000 cccccceccece aaaaaaaaa
003 hhhhhhhhhhhhhhh 00000000000000000000 cceccccccce aaaaaaaaa
hh.mm.ss.mil NETGETL (oooooo) ALN = dddd HA = ooocoo TA = 000000 TLMAX = dddd MSG NO. ddd
ABT = dd ADR = dddd ABN = 000000 ACT = dd STATUS = bbbbbbbb TLC = ddd
001 hhhhhhhhhhhhhhh 00000000000000000000 ccccccccce aaaaaaaaa mnemonic
002 hhhhhhhhhhhhhhh 00000000000000000000 ccececcceccce aaaaaaaaa
nnn hhhhhhhhhhhhhhh 00000000000000000000 ccccccccce aaaaaaaaa
hh.mm.ss.mil NETGETF (000000) ACN = dddd HA = 000000 NA = dd TAA = 000000 MSG NO. ddd
ABT = dd ADR = dddd ABN = 000000 ACT = dd STATUS = bbbbbbbb TLC = ddd
FRAGMENT 1 SIZE = dddd ADDRESS = 000000
oM hhhhhhhhhhhhhhh 00000000000000000000 ccccccecccec aaaaaaaaa mnemonic
002 hhhhhhhhhhhhhhh 00000000000000000000 ccececccececce aaaaaaaaa
FRAGMENT 2 SIZE = dddd ADDRESS = 000000
FRAGMENT dd SIZE = dddd ADDRESS = 000000
nnn hhhhhhhhhhhhhhh 00000000000000000000 cccececccce aaaaaaaaa
hh.mm.ss.mil NETGTFL (o0oo0ooo) ALN = dddd HA = ooocooo NA = dd TAA = 000000 MSG NO. ddd
ABT = dd ADR = dddd ABN = 000000 ACT = dd STATUS = bbbbbbbb TLC = ddd
FRAGMENT 1 SIZE = dddd ADDRESS = 000000
001 hhhhhhhhhhhhhhh 00000000000000000000 ccceecccce aaaaaaaaa mnemonic
FRAGMENT dd SIZE = dddd ADDRESS = 000000
nnn hhhhhhhhhhhhhhh 00000000000000000000 cceccccecc aaaaaaaaa
hh.mm.ss.mil NETPUT (000000} HA = 000000 TA = 000000 MSG NO. ddd
ABT = dd ADR = dddd ABN = 000000 ACT = dd STATUS = bbbbbbbb TLC = ddd
001 hhhhhhhhhhhhhhh 00000000000000000000 cccccceccce aaaaaaaaa mnemonic
002 hhhhhhhhhhhhhhh 00000000000000000000 ccccccccce aaaaaaaaa
nnn hhhhhhhhhhhhhhh 00000000000000000000 ccccccccece aaaaaaaaa
Figure 6-11. General Format of DLFP Qutput (Sheet 1 of 2)
60499500 P 6-11@

I hh.mm.ss.mil NETPUTF (000000) HA = 000000 NA = dd TAA = 000000 MSG NO. ddd
ABT = dd ADR = dddd ABN = oocoooo ACT = dd STATUS = bbbbbbbb TLC = ddd
FRAGMENT 1 SIZE = dddd ADDRESS = oooo0o0
001 hhhhhhhhhhhhhhh ©00000000000000000000 ccceeccccee aaaaaaaaa mnemonic
nnn hhhhhhhhhhhhhhh oooooooo;ooooooooooo cccceccccce aaaaaaaaa
FRAGMENT dd SIZE = dddd ADDRESS = oooo00
nnn hhhhhhhhhhhhhhh 00000000000000000000 ccccececcee aaaaaaaaa
I hh.mm.ss.mil NETOFF (ooocooo) DATE = yy/mm/dd. MSG NO. ddd
LEGEND:
l aname Application name.
hh.mm.ss.mil System clock time of the AIP call in hours, minutes, seconds, and milliseconds.
yy/mm/dd System date expressed as year, month, and day.
I mnemonic For supervisory messages, the message mnemonic appears; for data messages, this area is
blank.
a ... a Indicates ASCII characters are Llisted.
b ... b Indicates binary digits are listed.
[Indicates display code characters are listed.
d...d Indicates decimal digits are listed.
h ... h Indicates hexadecimal digits are Listed.
[B Indicates octal digits are listed.
N .ea N Indicates last central memory word listed from block.
I Figure 6-11. General Format of DLFP Output (Sheet 2 of 2)

The listing provides the following labeled informa-
tion:

ACN gives the value used for the acn parameter
in the indicated call.

ALN gives the value used for the aln parameter
in the indicated call.

I HA gives the octal relative address used in
place of the symbolic address specified for the
ha parameter in the indicated call.

TA gives the relative address used in place of
the symbolic address specified for the ta pa-
rameter in the indicated call.

NA gives the value used for the na parameter in
the indicated call.

TAA gives the relative address used in place of
the symbolic address specified for the taa pa-
rameter in the indicated call.

TLMAX gives the value used for the tlmax pa-
rameter in the indicated call.

ABT gives the abt field content for the appli-
cation block header used in the indicated call.

ADR gives the adr or acn field content for the
application block header used in the indicated
call.

ABN gives the abn field content for the appli-
cation block header used in the indicated call.

ACT gives the act field content for the appli-
cation block header used in the indicated call.

STATUS gives the settings of bits 19 through 12
for the application block header used in the
indicated call, at the time the call is
completed.

TLC gives the tlc field content for the appli-
cation block header used in the indicated call.

FRAGMENT gives the number within the call taa
array used to locate the corresponding informa-
tion transferred by the call.

SIZE gives the content of the size field within
the call taa array used to delimit the corre-
sponding information transferred by the call.

ADDRESS gives the address field content of the

taa array used to locate the corresponding
information transferred by the call.

60499500 P

Statistical File and Associated Utilities

The optional AIP code that creates the statistical
file allows you to record cumulative figures of
exchanges between the program and the network. The
AIP utility routine NETSTC gives the program a
method of selecting which portions of the program
have figures accumulated. The AIP utility NETLGS
allows you to write messages in the statistical
file. All statistical output is written to a local
file named ZZZZZSN.

Whether or not the statistical file is created
depends on the system library used to satisfy the
application program’s externals. AIP code for the
program can be loaded from either NETIO or (if the
installation elects to install it) from NETIOD.
When NETIOD is used, all code needed to create the
statistical file is loaded; accumulation of figures
is automatically turned on initially. Because this
code causes additional processing overhead and cen-
tral memory requirements for the application pro-
gram’s control point, you can remove the code when
the statistical file is not needed. You can remove
the code from the job without altering the appli-
cation program’s structure by loading the AIP code
from NETIO instead of NETIOD. When NETIO is used,
the only part of the statistical file code loaded
is a do-nothing version of NETSTC.

When NETIOD is used, the statistical file is auto-
matically created without application program calls.
You can use calls to NETSTC to switch accumulation
off and back on throughout the program, and to dump
and restart statistics counters.

NETSTC Utility

NETSTC calls use the same syntax and calling se-
quences as other AIP calls. (See sections 4 and 5.)
Figure 6-12 shows the NETSTC utility FORTRAN call
statement.

Calls to NETSTC can occur in programs using either
NETIO or NETIOD. For example, when a NETSTC call
turns accumulation on and a status is returned in-
dicating accumulation 1s not possible, no error
occurs and the option selection is ignored. When
the program contains a NETSTC call immediately after
NETON to turn accumulation off and a status is
returned indicating accumulation is possible, a
statistical file is still created to contain a
record of the program’s NETON, NETSTC, and NETOFF
calls. A call to NETSTC before NETON is legal.

Statistical file creation begins when the applica-
tion program successfully completes its NETON call
and ends when NETOFF is issued. A logical end-of-
record is written to fille ZZZZZSN when NETOFF is
called. Because the output buffer used for the file
is not completely emptied into the statistical file
until the application program issues a NETOFF call,
it is important to issue the call even when the
program loses communication with the network;
otherwise, the last few entries written to the
statistical file for the job run cannot be saved.
All statistics are written to file ZZZZZSN and the
counters reset to zero whenever a call to NETSTC is
made to turn statistics gathering off and AIP was
loaded from NETIOD. Individual statistics are
written to ZZZZZSN and reset to zero whenever the
counter overflows.

NETLGS Utility

NETLGS calls use the same syntax and calling se-
quences as other AIP calls. (See sections 4 and 5).
Figure 6-13 shows the NETLGS utility FORTRAN call
statement format. NETLGS allows an application to
enter messages into the statistical log file
22ZZZSN.

CALL NETSTC(onoff, avail)

cause an efror.

onoff An input parameter that turns the accumulation of statistics on or off. This parameter can have the values:
=0 Turn accumulation on.
=1 Turn accumulation off.

When statistics accumulation is turned on, each call to an AIP routine increments a counter for that
routine and each block transferred between the application program and the network increments a
counter for blocks of that type. Incrementing continues until a call with an onoff parameter of 1 is
issued. Calls with onoff parameters of O cause the counters to be reset to 0.

avail A return parameter that indicates whether the statistics accumulation portion of AIP was loaded when
the program was loaded. On return from the call, this parameter can have the values:

=0 Loading occurred from NETIOD and accumulation is possible.
=1 Loading occurred from NETIO and accumulation is not possible.

When a value of 1 is returned, specification of O for the onoff parameter has no effect but does not

Figure 6-12. NETSTC Utility FORTRAN Call Statement Format

60499500 P

6-13 @

CALL NETLGS(address,size)

An input parameter that indicates the
address of the message to be written
to the statistics log file. The
message must contain é6-bit display
code information with a line termi-
nator (12 to 66 bits of zero, right-
justified in a central memory word).

address

size An input parameter that indicates the
number of words in the message.

Figure 6-13. NETLGS Utility FORTRAN Call

Statement Format

When application program execution ends, the sta-
tistical file exists as a local file named ZZZZZSN.
The file is written using NOS data transfer macros;
the contents are 6-bit display code characters,
formatted for printer output. To obtain a listing
of this file, the file must be rewound and copied
to OUTPUT, or otherwise disposed by using ROUTE.

Each period for which statistics are accumulated
during program execution is listed separately in the
statistical file. Figure 6-14 shows the general
format of the period listings. The counters used
are 60-bit signed integers, reset to zero at the
beginning of each period. If a counter is not used
during a given period (its value remains zero), the
corresponding line for the counter is omitted from
the listing for that period. 1If a counter over-
flows during a given period, the corresponding line
in the listing is preceded by the message:

%COUNTER OVERFLOWX*#*x

and the counter is reset to zero. If the program
is running in parallel mode during the period, the
number of transfer attempts unsuccessful because NIP
was busy are listed. The CPU utilization shown is
cumulative between the NETON and NETOFF calls. The
NAK-S 1line indicates the number of block-not-
delivered (FC/NAK/R) supervisory messages received.

DEPENDENCIES

Before an application program executes as part of
the network, the application program should be
identified in the network’s files as part of the
local host computer system’s resources. This 1is
done by entering its application program name into
the local configuration file, using the Network
Definition Language (NDL). This action is not the
application programmer’s responsibility and is not
described in this manual. Use of the Network Defi-
nition Language is described in the Network Defini-
tion Language reference manual mentioned 1in the
preface.

NAM STATISTICS GATHERING STARTED

NET {ON } DATE yy/mm/dd. TIME hh.mmss.
sTC

NAM STATISTICS GATHERING TERMINATED

NET {g;g} DATE yy/mm/dd. TIME hh.mm.ss.

CPU TIME USED: dddddd SEC

NUMBER OF PROCEDURE CALLS

NETCHEK dddddd
NETGET dddddd
NETGETF dddddd
NETGETL dddddd
NETGTFL dddddd
NETPUT dddddd
NETPUTF dddddd
NETSETP dddddd
NETWAIT dddddd

NUMBER OF WORKLIST TRANSFER ATTEMPTS

SUCCESSFUL
UNSUCCESSFUL

dddddd
dddddd

NUMBER OF INPUT/OUTPUT BLOCKS TRANSFERRED

INPUT ABT=0 dddddd
INPUT ABT=1 dddddd
INPUT ABT=2 dddddd
INPUT ABT=3 dddddd
OUTPUT ABT=1 dddddd
OUTPUT ABT=2 dddddd
QUTPUT ABT=3 dddddd
NUMBER OF ERRORS
LOGICAL ERROR dddddd
NAK-S dddddd
Legend:
yy/mm/dd System date of the call beginning
or endin