60482200

“ CONTROL DATA

~ @@com"éwmow
DMS-170

- FORTRAN DATA BASE FACILITY
VERSION 1

REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 1
NOS/BE 1

REVISION RECORD

REVISION DESCRIPTION
=
A Original release.
(12-22-78)
B This revision documents version 1.1 of FDBF. Major changes include OPEN and CLOSE options for
(7-20-79) relations, listing control directives in DDLF- output, support of data base status block, support of
library compaction facility, and checksum capability. Minor technical changes and corrections are
included.
C This revision documents version 1.2 of FDBF which provides an interface to FORTRAN 35 and
(12-17-79) language extensions that include array declarations, CHARACTER and BOOLEAN data types,
and error and end-of-file specifiers on DML statements. An enhanced capability for
FORTRAN 4 to use a special long variable to correspond to character data in the schema is
also documented.
D Released at PSR level 528. This revision documents the DML START statement and the file position
(10-31-80) field of the data base status block.

Publication No.

60482200
Address comments concerning
this manual to:
REVISION LETTERS |, 0, Q AND X ARE NOT USED
CONTROL DATA CORPORATION

Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

©COPYRIGHT CONTROL DATA CORPORATION 1978, 1979, 1980

All Rights Reserved
Printed in the United States of America

or use Comment Sheet in the
back of this manual

5

-

J)

\

G@g\

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars

in the margins or by a dot near the page number if the entire page is

indicates pagination rather than content

affected. A bar by the page number

Page

Revision

Front Cover
Title Page
ii

iii/iv

v

vi

vii

viii

ix

1-1 thru 1-7
2-1 thru 2-5
3-1 thru 3-3
4-1

4-2

4-3

4-4

5-1

§5-2

5-3 thru 5-7
6-1

6-2

6-3

6-4

6-5 thru 6-15
7-1

7-2

7-3

7-4 thru 7-8
A-1

A-2

A-3

A-4

B-1

B-2

B-3

8-4

8-5

B-6

8-7 thru B-10
C-1 thru C-5
D-1

E-1

E-2

F-1

F-2

6-1

H-1

H-2

I-1

1-2

I-3

I1-4 thru I-9
J-1

J-2

K-1 thru K-3

[~ e Yz -1-XzX-1-Xxl-1-X-2-2-1-Eel-A-FoloR-1-]--J- - A-F Jel-l-Kol-loNol-lolol-I-R-l-loYo el l-Nel-N_-N-J-R_N_NUNI

Page Revision
Index-1 thru -3 D
Comment Sheet D

Mailer
Back Cover

60482200 D

ifi/iv e

. . R DI R R Voo L
.) ; R ;
B . aot : . -
il . o
X
o B [- Ty T
: i
f t
Al .) " '
Il N .(.
B ' .
) B i
' "
o o
.) .- e e i e © e e e b e« e e e
“. 1 . -
N .t
Ca N . * .
: . K
| I . .
! " . T
” ,
&
o ' '
) !
b |
. oo .
SR o i .
' :]
[
R) . ,
i
. . .) I
R ' o
i H : : . .
- . o '

e ey

PR

Lo

PREFACE

This manual describes the FORTRAN Data Base Facility
(FDBF) within DMS-170, a data management system
developed by Control Data Corporation. FDBF includes
the Data Description Language for the FORTRAN
Sub-Schema (FORTRAN/DDL) and the Data Manipulation
Language (DML). FDBF enables FORTRAN Extended &4
and FORTRAN 5 programs to access a data base.

As described in this publication, FORTRAN Data Base
Facility Version 1.2 operates under control of the
following operating systems:

] NOS 1 for the CONTROL DATA® CYBER 170 Series;
CYBER 70 Madels 71, 72, 73, and 74; and 6000 Series
Computer Systems

NOS/BE 1 for the CDC® CYBER 170 Series;
(CYBER 70 Models 71, 72, 73, and 74; and 6000 Series
Computer Systems

This manual is designed for use by the data administrator
or the staff member responsible for describing FORTRAN
sub-schemas and for use by the FORTRAN applications

programmer writing pregrams that access the data base. It
is assumed that the user is an experienced programmer and
has used Control Data computers and software products. It
is also assumed that the wuser is familiar with the
FORTRAN programming language.

The FDBF user can find additional pertinent information in
the Control Data Corporation publications.

The NOS Manual Abstracts and the NOS/BE Manual
Abstracts are instant-sized manuals containing brief
descriptions of the contents and intended audience of all
NOS and NOS product set manuals, and NOS/BE and
NOS/BE product set manuals, respectively. The abstracts
manuals can be useful in determining which manuals are of
greatest interest to a particular user. The Software
Publications Release History serves as a guide in
determining which revision level of software
documentation corresponds to the Programming Systems
Report (PSR) level of installed site software.

The publications are listed alphabetically in groupings that
indicate relative importance to readers of this manual.

The following publications are of primary interest:

Publication

Reference Manual

DMS-170

DDL Version 3 Reference Manual

CYBER Database Control System Version 2

Publication
Number

60481800

60481900

Volume 1: Schema Definition for Use With:

COB0L
FORTRAN
Query Update

FORTRAN Extended Version 4 Reference Manual
(é FORTRAN Version 5 Reference Manual

60497800
60481300

The following publications are of secondary interest:

Publication

CYBER Record Manager Advanced Access Methods

Reference Manual

DMS-170

DDL Version 3 Reference Manual
Volume 2: Sub-Schema Definition for

Publication
Number

60499300

60482000

CYBER Database Control System Use With:

COBOL
Query Update

60482200 D

vi

Network Products

Transaction Facility Version 1

Reference Manual

NOS Version 1 Manuel_Abstrscts

NOS Version 1 Reference Manual, Volume 1 of 2
NOS/BE. Version 1 Manual Abstracts

NOS/BE Version 1 Reference Manual

Software Publications Release History

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103,

60455340

84000420
60435400
84000470
60493800
60481000

This product is intended for use only as described in
this document. Control Data cannot be responsible for
the proper functioning of undescribed features or

parameters.

60482200 D

J)

)

< CONTENTS
NOTATIONS USED IN THIS MANUAL ix REALM 4-1
Record Definition 4-2
1. DATA BASE PROCESSING WITH DMS-170 1-1 RECORD Statement 4-2
Type Statements 4-2
Data Base Definition 1-1 Relation Definition 4-2
Schema Definition 1-1 RELATION Statement 4-3
Sub-Schema Definitions 1-1 RESTRICT Statement 4-4
COBOL Sub-Schemas 1-1 END . 4-4
FORTRAN Sub-Schemas 1-2 :
| Guery Update Sub-Schemas 1-2
Master Directory Creation 1-3
Data Base Processing 1-3 5. SUB-SCHEMA COMPILATION 5-1
Application Languages 1-3
COBOL Processing 1-5 Sub-Schema Library 5-1
FORTRAN Processing 1-5 DDLF Control Statement 5-1
Guery Update Processing 1-5 Multiple Sub-Schema Compilation 5-2
Transaction Processing 1-5 NOS/BE Control Statements 5-2
Concurrency 1.5 REGUEST Control Statement 5-2
File Privacy 1-6 CATALOG Control Statement 5-2
Relations 1-6 NOS Control Statements 5-3
Constraints 1-6 Sample Deck Structures 5-3
Data Base Praocedures 1-7 Compiling a Sub-Schema 5-3
Input/Cutput Processing 1-7 Creating the Sub-Schema Library 5-3
File Organization 1-7 Adding to the Sub-Schema Library 5-3
Multiple-Index Processing 1-7 Replacing a Sub-Schema 5-5
Data Base Recovery 1-7 Deleting a Sub-Schema 5-5
Log Files 1-7 Compacting a Sub-Schema Library 5-5
Recovery Utilities 1-7 Compilation Output 5-7
Recompilation Guidelines 5-7
(Field Length Requirements 5-7
» 2, SUB-SCHEMA ORGANIZATION 2-1
Sub-Schema Structure Requirements 2-1
Data Description : 2-1 6. FORTRAN DATA MANIPULATION
Variables 2-2 L ANGUAGE 6-1
Arrays 2-2)
Schema/Sub-Schema Correspondence 2-2 DML Statements 6-1
Omission of Data Items 2-2 SUBSCHEMA Statement 6-1
Ordering of Data Items 2-2 INVOKE Statement 6-1
Definition of Data Items 2-2 TERMINATE Statement 6-3
Data Size and Type 2-2 OPEN Statement 6-3
AT Character Data 2-2 CLOSE Statement 6-3
¢ Array Declaration 2-4 READ Statement 6-3
START Statement 6-5
- WRITE, REWRITE, and DELETE
3. SUB-SCHEMA PROGRAMMING Statements 6-5
CONVENTIONS 3-1) LOCK and UNLOCK Statements 6-6
PRIVACY Statement 6-6
Language Elements 3-1 Listing Control Directives 6-8
Keywords 3-1 Error Processing 6-8
User-Defined Names 3-1 Reserved Variables 6-8
Constants 3-1 Data Base Status Blcck 6-9
FORTRAN/DDL Statement Format 3-2 ERR and END Specifiers 6-10
Character Set 3-2 Informative Diagnostic Codes 6-11
Blanks 3-2 Recovery Point Definition 6-12
Continuaticn 3-2 DML Control Statement 6-12
Statement Labels 3-2 Compilation/Execution 6-12
Comment Lines 3-2 Sample Deck Structure 6-14
Blank Lines 3-3
4. FORTRAN/DDL STATEMENTS 4-1 7. EXAMPLES 7-1
SUBSCHEMA 4-1 Using Sub-Schemas 7-1
ALIAS 4-1 Using Relations 7-3

60482200 D vii

TMOoOO® >

4-4
4-5

4-7

viii

Standard Character Sets
Diagnostics

Glossary

Keywords

Syntax Summary-FORTRAN 5
Syntax Summary-FORTRAN 4

Data Base Definition With DMS-170

Data Base Processing With DMS-170

CDCS/TAF Interface

Long V ariable for FORTRAN 4
Applications

Fixed Ocecurrence Elementary Items

Schema/Sub-Schema Differences in
Array Size and Dimension

Variable Arrays in Schema and
Sub-Schema

SUBSCHEMA Statement Format

ALIAS Statement Format

REALM Statement Format

RECORD Statement Format

Type Statement Formats

RELATION Statement Format

RESTRICT Statement Format

END Statement Format

FORTRAN/DDL Control Statement
Format

REQUEST Control Statement
Format

CATALOQOG Control Statement
Format

DEFINE Control Statement
Format

Compiling a Sub-Schema

Creating a Sub-Schema Library

Adding a Sub-Schema to the Library

Replacing a Sub-Schema in the
Library

Deleting a Sub-Schema From the
Library

Compacting a Sub-Schema Library

SUBSCHEMA Statement Format

INVOKE Statement Format

TERMINATE Statement Format

Sub-Schema Statement Ordering

Schema/Sub-Schema Mappin

Column Usage in F' ORTRAN?
DDL Statements

Names of Variables and Common Blocks
Generated by the DML Preprocessor

CDCS Batch Test Facility

Compilation Cutput Listings of Examples

G-l
H-1
I-1

FORTRAN &4/FORTRAN 5 Differences in FDBF J-1

Summary of Data Definition in DMS-170

OPEN Statement Format

CLOSE Statement Format

READ Statement Format

START Statement Format

Formats of WRITE, REWRITE,
and DELETE Statements

Formats of LOCK and UNLOCK
Statements

PRIVACY Statement Format

DML Control Statement

Program Compilation and Execution
With CDCS at a System Control Point

Program Compilation and Execution
With CDCS Batch Test Facility

Schema for University Example

First Sub-Schema for University
Example

First FORTRAN 5 Program for
University Example

Formula for Correlation Coefficient

Second Sub-Schema for University
Example

Second FORTRAN 5 Program for
University Example

Input for Master Directory for
University Example

Control Statements for University
Example

Sample Control Statements for
Data Base Build

Schema for Payroll Example

Sub-Schema for Payroll Example

Input for Master Directory for
Payroll Example

FORTRAN 4 Program for Payroll
Example

FORTRAN/DML Statements
Schema ACCESS-CONTROL Clause
Informative Diagnostic Codes

APPENDIXES
A-1 G
B-1
C-1 H
D-1 1
E-1 J
F-1 K

INDEX
FIGURES
1-2 6-4
1-4 6-5
1-6 6-6
6-7
2-4 6-8
2-4
6-9
2-4
6-10
2-5 6-11
4-1 6-12
4-1
4-2 6-13
4-2
4-3 7-1
4-3 7-2
4-4
4-4 7-3
5-1 7-4
7-5
5-2
7-6
5-2
7-7
5-3 ,
5-3 7-8
5-4
5-4 7-9
5-5 7-10
7-11
5-6 7-12
5-6
6-1 7-13
6-3
6-3
TABLES
2-1 6-1
2-3 6-2
6-3
3.2

k-1 |

7-2
7-3
7-3
7-4
7-5
7-6
7-6
7-6
7-7

6-2
6-7
6-11 |

60482200 D

J J

J)

NOTATIONS USED IN THIS MANUAL

The specifications for each FORTRAN/DDL and
FORTRAN/DML statement are described in a reference
format. The notations used in the reference formats are
described as follows:

UPPERCASE Words are reserved words and must
appear exactly as shown. Reserved
words can be used only as specified
in the reference formats.

Lowercase Words are generic terms that

represent the words aor symbols
supplied by the user. When generic
terms are repeated in a format, a
number is appended to the term fao
identification.

60482200 C

[] Brackets Enclose optional portions of a
reference format. All of the
format within the brackets can be
omitted or included at the user's
opticn. If items are stacked
vertically within brackets, only one
of the stacked items can be used.

{} Braces Enclose two or more vertically
stacked items in a reference
format when only one of the

enclosed items must be used.

Immediately follow a pair of
brackets or braces to indicate that
the enclosed material can be
repeated at the user's opticn.

... Ellipses

Punctuation symbols shown within the formats are
required unless enclosed in brackets and specifically noted
as optional. One or more spaces separate the elements in
a reference format.

L

v
i
B
a I

DATA BASE PROCESSING WITH DMS-170 1

The DMS-170 software package functions as the data
management system for Control Data computer systems.
Through this data management system, a data base can be
defined, maintained, and controlled in an environment
totally independent of the applications that are accessing
it. Conventional files otherwise owned and processed by a
number of distinct applications can be described through
the data description language facilities of DMS-170.
Consequently, the responsibility for tasks such as data
description, data conversion, and validity checking is
transferred from the applications programmer to the data
administrator.

The DMS-170 data management system is composed of the
following elements:

e Data Description Language (DDL), which creates the
schema definition, as well as the COBOL and Query
Update sub-schema definitions.

e CDC® CYBER Database Control System (CDCS),
which controls, monitors, and interprets data base
requests from COBOL, FORTRAN, and Query Update
applications programs.

e CDC® CYBER Record Manager (CRM), which handles
all input/output processing requests on a data base
from an applications program.

e FORTRAN Data Base Facility, which is composed of a
FORTRAN sub-schema definition language and a Data
Manipulation Language (DML).

Each element of the DMS5-170 system is used either in the
definition or in the processing of a data base. The
definition of the data base is accomplished through the
capabilities of DDL and the master directory utility, one of
the data base utilities provided by CDCS. Processing of
the data base involves retrieval and updating of the data by
applications programs through the facilities of CDCS.

The FORTRAN OData Base Facility allows a FORTRAN
programmer to access a data base by inserting DML
statements, which are similar to FORTRAN statements,
into an applications program. Before the FORTRAN
program is compiled, the DML preprocessor translates the
special DML statements into FORTRAN statements and
produces a maodified version of the program for
compilation. The FORTRAN Data Base Facility supports
both FORTRAN Extended 4 and FORTRAN 5 applications
programs.

DATA BASE DEFINITION

The responsibility for the definition of a data base lies with
the data administrator. The data administrator is a person
or group of persons who have the task of developing and
defining the data base as well as monitoring and controlling
the day-to-day processing of that data base. The
relationship of the elements involved in defining a data
base is shown in figure 1-1.

To define a data base, the data administrator uses the Data

Description Language (DDL). Through this language, four
types of data descriptions can be created: the schema, the

60482200 D

COBOL sub-schema, the FORTRAM sub-schema, and the
Query Update sub-schema. Each of these data descriptions
follows specific structuring conventions, includes unique
clauses and staternents, and conforms to an individual set
of rules. Once the schema and COBOL, FORTRAN, and
Query Update sub-schema descriptions have been created
and compiled, the data administrator creates the master
directory through one of the data base utility routines
provided as a part of the COCS data management services.

SCHEMA DEFINITION

The schema is a detailed description in English-like syntax
of the data in a data base. An installation can have many
data bases, but only one schema is allowed for each data
base. The schema description is generated by DDL
statements that name the schema, organize the schema
into files, describe each record type together with the
characteristics of the data comprising the record, and
describe relationships and constraints among files. The
schema also includes access control locks that provide
privacy at the file level. The DDL source statements
describing the data are used as input to the DDL compiler
and are compiled into an object schema, or schema
directory. The data administrator then uses the schema
description to define any number of sub-schemas.

SUB-SCHEMA DEFINITIONS

A sub-schema is a detailed description of selected portions
of a data base to be used by applications programs.
Although only one schems definition is allowed for each
data base, any numbjer of sub-schemas can be defined to
meet the needs of different types of applications.
Sub-schemas are defined by the data administrator for use
by applications programs written in the COBOL,
FORTRAN, and Query Update languages; the sub-schema
descriptions are based on the schema definiticn.

COBOL Sub- Schemas

A COBOL sub-schema is defined through the capabilities of
the DDL language. COBOL sub-schemas describe in
COBOL-like syntax the parts of a data base that can be
accessed by a COBOL program. Data descriptions in
COBOL sub-schema source statements are written to
correspond to data descriptions in the schema. Certain
differences are allowed to exist; these differences are
resolved by DDL and CDCS. The COBOL sub-schema
description is generated by DDL source statements that
identify the schema and sub-schema, specify files and the
content and structure of records, identify relations among
files to be used, specify record qualification for relation
processing, and indicate any changes in data fermat
required by the applications program.

The DDL source statements describing the sub-schema are
compiled by the DDL compiler into an object sub-schema,
or COBOL sub-schema directory. The schema must be
compiled, however, before any sub-schemas using it can be
compiled. A COBOL programmer then uses a listing of the
sub-schema to learn the names and descriptions of the data
to be referenced in the COBOL program.

1-1

. DDL Sub-Schema DDL Sub-Schema
Master Directory Input Input
Input {COBOL, FORTRAN, {Query URdate
Query Update) With CRM)
Y
DDL |
Compiler
DDL DDL
Compiler Compiler
\
Schema
Directory Query
Update
Sub-Schema
Directory
Y
Master
= Directory
Utility
Master
Directory
Figure 1-1. Data Base Definition With DMS-170
FORTRAN Sub-Schemas or FORTRAN sub-schema directory. A listing of the [}

A FORTRAN sub-schema is defined through the facilities
of the DDL language. FORTRAN sub-schemas use
statements similar to FORTRAN specification statements
to describe the parts of a data base that can be accessed
by a FORTRAN program. Data descriptions in FORTRAN
sub-schema source statements are written to correspond to
data descriptions in the schema. Certain differences are
allowed to exist; these differences are resolved by DDL
and CDCS. The FORTRAN sub-schema description is
generated by DDL source statements that identify the
schema and sub-schema, specify files and the content and
structure of records, .indicate changes in data format
required by the applications program, identify relations
among files to be used, and specify record qualification for
relation processing.

FORTRAN sub-schemas, like COBOL sub-schemas, cannot
be compiled until the schema being used has been
compiled. Once the schema has been compiled, the DDL
source statements describing each sub-schema are
compiled by the DDL compiler into an object sub-schema,

sub-schema is used by the FORTRAN programmer to
obtain the names and descriptions of the data to be
referenced in the FORTRAN program.

Query Update Sub-Schemas

GQuery Update sub-schemas are defined through the
capabilities of the DODL language. A Query Update
sub-schema describes the portion of a data base that can
be accessed by a Query Update user in either CDCS data
base access mode or CRM data base access mode.

CDCS Data Base Access Mode

The data descriptions in Query Update sub-schemas in
CDCS data base access mode are written to correspond to
data descriptions in the schema. Certain differences
between the sub-schema and schema data descriptions are
allowed to exist; these differences are resolved by DDL

60482200 D

J J

™

M

and CDCS. For each sub-schema, the DDL source
statements used as input to the DDL compiler name the
schema and sub-schema, specify needed files and the
content and structure of records, identify relations among
files to be used, specify record qualification for relation
processing, and indicate any changes in data format
required by the Query Update program.

After the schema has been compiled, the DDL source
statements describing the sub-schema are compiled by the
DDL compiler into an object sub-schema, or sub-schema
directory. The names and descriptions of data to be
referenced in a Query Update program are obtained from a
listing of the sub-schema.

CRM Data Base Access Mode

The data descriptions in Query Update sub-schemas in
CRM data base access mode are not based on a schema
definition. Schema-defined files can be accessed, however,
providing the DDL source statements that define the
sub-schema describe the data exactly as it is described in
the schema. Appendix K contains a summary of data
definition in DMS-170 to aid in accessing schema-defined
files. For each sub-schema, the DDL source statements
used as input to the DDL compiler name the sub-schema,
specify needed files, define the content and structure of
records, identify relations among files to be used, and
specify record qualification for relation processing.

After the DDL source statements describing the
sub-schema have been written, they are compiled into an
object sub-schema, or sub-schema directory. The names
and descriptions of data to be referenced in a Query
Update program are obtained from a listing of the
sub-schema.

MASTER DIRECTORY CREATION

The master directory must be constructed by the data
administrator before any applicatiocns programs accessing
data base files can be executed. The master directory is a
file containing information relating to all data bases;
schemas; and COBOL, FORTRAN, and Query Update
sub-schemas known to CDCS. In addition to containing
information about logging specifications and data base
procedure libraries, the master directory functions as the
source of all data base and media descriptions for CDCS.
To create or update the master directory, the data
administrator uses the DBMSTRD utility, one of the data
base utilities provided through CDCS. Input to the utility
for a creation run consists of three types of subentries.
These subentries contain information relating to schemas,
files, and sub-schemas. In specific clauses, the data
administrator specifies information to be used by CDCS in
attaching data base files and associated index files, as well
as information regarding logging criteria and data base
procedure libraries. After the master directory has been
generated, it must be stored as a permanent file.

In the process of maintaining a data base environment, the
I data administrator might want to add information for cne
or more new schema definitions, delete or madify existing
schema information, or modify permanent file information
for data base files and procedure library files. Under any
of these circumstances, appropriate changes must be made
to the master directory through a modification run. A new
data base cannot be accessed by applications programs
until the appropriate information from the corresponding
schema is added to the master directory. Similarly, when
information pertaining to a schema is deleted from the

60482200 D

master directory, the schema can no longer be used by an
application. One other form of modification allows the
addition or deletion of information pertaining to
sub-schemas. No sub-schema can be referenced by a user
during executicn unless information about that sub-schema
exists in the master directory. Modification of permanent
file information for data base files and procedure library
files is also allowed. If there are changes in the permanent
file information that is required to attach a data base file
or procedure library file, the information in the master
directory must be modified so that CDCS has the correct
information with which to attach the file.

DATA BASE PROCESSING

Once a data base has been defined by the data
administrator, it can be accessed and maodified by users of
the COBOL, FORTRAN, and Query Update languages. The
relationship of the elements involved in processing a data
base is shown in figure 1-2.

Several special features of CDCS are involved in the
processing of a data base. Two or more users can sccess
the same data base file at the same time through the
concurrency feature. Files can also be locked and unlecked
during concurrent update operations. Data privacy
controls can be specified at the file level through access
control locks defined in the schema. User programs must
supply appropriate key values to gain access to files having
these locks.

An additicnal feature of CDCS processing is the relational
data base facility, which allows data from several linked
files to be retrieved with a single read request.

The CDCS constraint facility allows the data administrator
to impose controls on update operations involving logically
related files. The use of constraints protects the
underlying relationship between files or between items
within a file that might be altered as a consequence of an
update.

CDCS provides a data base procedure linkage to allow
special purpose subprograms written by the data
administrator to be called when specific situations occur
during CDCS processing. The procedures can perform
functions supplemental to those provided by CDCS.

The input/output capabilities of CRM handle all data base l
processing requests from an applications program. Data
base files are processed by CRM Advanced Access Methods
(AAM) according to the requirements and restrictions for
conventicnal files.

The logging and recovery facilities of CDCS provide an
essential service within the data base environment.
Through these facilities, the integrity of a data base can be
preserved; that is, a destroyed data base can be
reconstructed, and an invalid data base can be restored to
a previous state.

APPLICATION LANGUAGES

The data in a data base can be accessed by the following
application languages: COBOL 5, FORTRAN Extended 4
(called FORTRAN 4), FORTRAN 5, and Query Update.
Processing of the ‘data base by COBOL, FORTRAN, and
Query Update programs is controlled and monitored by
CDCS. These application languages can be used in either
batch or interactive mode.

1-3

I
|
Recovery I COBOL FORTRAN/

Utilities Input I Program OML Query Update
I Program Directives
|

—— b ———_ e ——— — data administrator Y user = —f == =— = —— — — — — — —] —_——
FORTRAN =
Sub-Schema } DML
Directory | Preprocessor
|
|
|
[o ——— Query
| Update
|
| 1}
| \
I COBOL FORTRAN
|
s‘éﬁ'ms::f;“’ ' Compiler Compiler
: 1 {
Master | | coBov object i
Directory I Program Program
I
R | 1
- I
Recovery fuL .
Utilities cocs fa-——i}
1
3 |
|
|
CRM - }
' |
|
[
|
Data Bases |
|
|
]

e 1-4

Figure 1-2. Data Base Processing With DMS-170

60482200 D

J)

J

COBOL Processing

A COBOL program accesses data base files through
conventional input/output statements. The files are
opened and closed and records are read, written, deleted,
and updated using the same means as for files that are not
part of a data base. Relation processing is also
accomplished by conventional COBOL statements. Data
retrieved by the program is accessed in accordance with
the way it is described in the COBOL sub-schema.

When a COBOL program utilizing CDCS is to be compiled,
the file containing the sub-schema directory must first be
attached. Once the program is compiled using the
sub-schema, it can be executed later without reattaching
the sub-schema directory.

Execution of an input/cutput statement for a data base file
in a COBOL program causes the COBOL object-time
routines to route 1/O calls to CDCS. CDCS uses AAM for
input/output processing.

FORTRAN Processing

A FORTRAN program accesses data base files through the
FORTRAN Data Base Facility. The FORTRAN Data Base
Facility consists of the FORTRAN sub-gschema definiticns
(already discussed in this section) and the Data
Manipulation Language (DML). The DML consists of a
series of FORTRAN-like statements that are coded within
the logic of a FORTRAN program. These statements allow
the FORTRAN user to access and madify data base files.

Before a proegram containing FORTRAN DML statements is
compiled, the DML preprocessor is called via a control
statement to translate the DML statements into
FORTRAN specification statements and CALL
statements. Data descriptinns are cbtained from the
FORTRAN sub-schema directory, which must be attached
during the preprocessing phase. Following the
preprocessing, compilation of the FORTRAN program
proceeds as for a conventional FORTRAN program; the
translated DML statements are compiled like other
FORTRAN statements. Once the program is preprocessed
using the sub-schema, it can be compiled and executed
later without reattaching the sub-schema directory.

When a FORTRAN program utilizing the FORTRAN Data
Base Facility is executed, CDCS controls all processing of
data base files. CDCS in turn uses AAM for the input and
cutput operations.

Query Update Processing

Query Update functions within the data base environment
whenever a Query Update sub-schema is specified by a
Query Update user. The Query Update language, which is a
special nonprocedural, interactive language, can be used by
both programmers and nonprogramming personnel to
perform several functions. Through simple commands,
search, retrieval, update, and display operaticns can be
performed on data base files as well as on conventional
files. In addition, a single Query Update command can be
used in relation processing to display to the user data from
more than one file. A comprehensive report writing

~ capability is an integral part of Query Update.

60482200 D

A Query Update user can access data base files in COCS
data base access mode or in CRM data base access mode.
In CDCS data base access mode, CDCS controls all file
processing. CDCS in turn uses AAM for input and output
operations. The concurrency, privacy checking, logging,
and recovery features of CDCS are utilized by Query
Update.

In CRM data base access mode, Query Update does not
interface with CDCS to access data base files.
Input/output processing requests on data base files are
handled directly by AAM. To access schema-defined files,
the sub-schema must describe the data exactly as it is
described in the schema (see appendix K).

TRANSACTION PROCESSING

CDCS supports the Transaction Facility (TAF), which
allows processing in transaction mode under NOS.
Transaction processing allows high speed handling or
repetitive executions of a relatively small number of jobs
called tasks. The tasks can be executed by many different
people from many locations. A task usually performs one
of the following manipulations on a data base:

e Stores a new record
e Alters or deletes an existing record
e Produces formatted ocutput

An on-line teller system is an example of transaction
processing: tellers in many locations use terminals
connected on-line to a central processor to make deposits
or withdrawals for an account and to print confirmations.
A task (a deposit or withdrawal) is initiated by a teller
through the terminal; once initiated, the task is executed
through TAF and CDCS. The task can communicate with
the terminal through TAF and the Network Access Method
(NAM) and can initiate subsequent tasks.

Figure 1-3 shows the CDCS/TAF interface. Access to the
data base through TAF is concurrent with access in batch
mode. All access to the data base is monitored by CDCS.

The CDCS/TAF interface supports tasks coded in the
COBOL 5 and FORTRAN Extended 4 programming
languages. The syntax used to code a task is the same as
the syntax used to code a program for execution in batch
mode through CDCS, with a few exceptions. The coding
for a task must include TAF directives and must provide
for a communication block. Also, TAF prohibits a task
from making some requests that are allowed to be made by
an sapplications program executing in batch mode. The
Transaction Facility reference manual contains detailed
information about data base processing through TAF.

CONCURRENCY

An important feature provided through CDCS is the
concurrency feature. Concurrency means that two or more
applications programs can access the same data base file
at the same time. Programs can access a file concurrently
for retrieval or update purposes. During concurrent update
operations, CDCS provides a locking mechanism by which
files and records can be locked and unlocked at appropriate
times. Automatic locking and unlocking are performed by
CDCS when certain input/output operations are specified.
In addition, explicit lock and unlock requests can be issued
from the applications program.

1.5

LIBRARY,

TASK

TRANSACTION,

NAM -

TAF i CDCSs

AN
=

TRANSACTION,,

Figure 1-3. CDCS/TAF Interface

A deadlock situation can cccur when two programs attempt
to access files or records that have been locked by CDCS
or by other programs. When this situation occurs, CDCS
selects one of the contending programs and releases all
locked resources held by that program. Appropriate code
to handle recovery from a deadiock should be included in
applications programs.

FILE PRIVACY

Another valuable function provided by CDCS is the privacy
checking mechanism. Through this mechanism, access to
data base files can be controlled on the basis of criteria
specified in a data base procedure or on the basis of access
control locks declared in the schema.

When a data base procedure is used for privacy checking,
the procedure decides whether to allow the use of a data
base file. The decision is based on the privacy key supplied
by the applications program and on the job name of the
program.

When access control locks are used for privacy checking,
the ACCESS-CONTROL clause in the schema specifies the
locks that apply to the use of a file. The applications
programs must specify the appropriate privacy keys to gain
sccess to the files at execution time.

RELATIONS

The relational data base facility of CDCS allows an
applications program to access data from related files with
a single read request. In the schema definition, the data
administrator links files together into a legical, meaningful
relationship, called a relation, by specifying a relation
entry. The relation entry assigns a name to the relation
and specifies the data items to be used to link the files.

The COBOL, FORTRAN, and Query Update users access
relations based upon the relational informaticn contained

in the respective sub-schemas. The relations in the
COBOL and FORTRAN sub-schemas are in turn based on

1-6

the relations defined in the schema. The relations in the
Query Update sub-schema in CDCS data base access mode
are also based on the relations defined in the schema; the
Query Update sub-schema in CRM data base access mode
directly defines a relation. In addition to the relation
definitions, the sub-schemas for all three application
languages can specify qualification criteria for retrieving
only certain records from the data base files joined in the
relation.

An applications program accesses a relation by specifying a
single read request with the name of the relation that is to
be read. CDCS or Query Update processes the request and
returns a record occurrence from each file in the relation
to the user's work area for the file.

CONSTRAINTS

The constraint facility of CDCS is an independent feature
that provides a means of protecting the integrity of data in
a data base. Use of the facility prevents the possible
introduction of inconsistent data into a data base as a
consequence of update operations by application programs
on records in logically related files, or on items within a
single file.

In the schema definition, the data administrator establishes
a dependent parent-child relationship between files or
between items within a file by specifying a constraint
entry. The constraint entry assigns a name to the
constraint and specifies the data items involved in the
dependent relationship. The files involved in the constraint
must each contain a common data item, which is used to
define the constraint. A parent record occurrence
corresponds to a child record occurrence if both records
contain the same value for the common item.

When a COBOL, FORTRAN, or Query Update applications
program updating a data base is executed, CDCS enforces
the constraints established in the schema. A write, delete,
or rewrite request is permitted or rejected by COCS on the
basis of the effect of the proposed operation on the
relationship in the applicable constraint.

60482200 D

J D)

J)

DATA BASE PROCEDURES

Data base procedures are special subprograms written by
the data administrator to perform a variety of
supplemental operations not otherwise performed by
CDCS. The procedures are called at execution time when
specific situations occur during CDCS processing. The
conditions under which data base procedures are to be
executed are specified in the schema. The order of
execution of the procedures and the names of the data base
procedures are also indicated in the schema. When the
schema is compiled, an alphabetic list of the data base
procedures is printed at the end of the source program
listing.

Some of the functions that can be perfermed by data base
procedures are: data validation; data conversicn not
supported by CDCS; calculation of values for actual or
virtual data items; compression and decompression of data;
additional processing on creation, retrieval, or update of
data base records; privacy checking; and special handling
of error conditions detected within CDCS. The use of data
base procedures to perform these functions provides a
well-defined method of tailoring the CDCS system to meet
the needs of a particular installation.

INPUT/OUTPUT PROCESSING

Execution-time processing of input/output statements that
reference data base files is directed by CDCS to AAM.
AAM handles all operations conceming the physical storage
and access of data in a data base. All data base files
supported by CDCS are conventional extended AAM files.

File Organization

File organization of data base files is specified in the
operating system FILE control statement when the schema
is compiled. The file organization information is stored in
the schema directory. The only file organizations allowed
for data base files that are to be accessed through CDCS
are extended indexed sequential, extended direct access,
and extended actual key.

Records in extended indexed sequential files are stored in
ascending order by key. The records can be accessed
either randomly by key or sequentially by position. This
file organization should be used for files that are to be
accessed both randomly and sequentially.

Records for extended direct access files are stored
randomly in fixed length blocks. The numBer of the block
to receive a record is determined by a calculation
performed by the system on the record key. Records can
be accessed randomly by key or sequentially. Extended
direct access file organization is used most effectively
when rapid random access is required.

Extended actual key files contain records whose key values
are assigned by the system. The key value is a number that
identifies the block and the position within the block in
which the record is stored. Records can be accessed
randomly by actual key; records also can be accessed
sequentially. Extended actual key file organization is used
most effectively for files when the user can keep track of

60482200 D

system-assigned keys and when performance and file
growth characteristics are of primary concern. It is also
used when no unique key exists or when straight sequential
access is desired.

Multiple-Index Processing

Multiple-index processing is performed when alternate keys
are defined for extended indexed sequential, extended
direct access, and extended actual key files. An index is
created for each alternate key in a data file when the file
is created. The indexes are updated automatically
whenever the data file is updated. Records can then be
retrieved by the primary key or by an alternate key. For
detailed information refer to the Advanced Access
Methods reference manual.

DATA BASE RECOVERY

The recovery facilities of CDCS supply the means to deal
with a lost, partially destroyed, or invalid data base.
Through the use of log files that record informaticn about
user interactions with a data base, aleng with the data base
recovery utilities, the data administrator can reconstruct a
destroyed data base or restore an invalid data base.

Log Files

Two types of log files are used in data base recovery
operations. The journal log file contains a record of each
occurrence of an update or write operation on a data base.
In addition, a record is maintained on the journal log file of
certain user requests and privacy breach attempts. The
second type of log file, the quick recovery log file, is used
internally by CDCS to record blocks of records before the
data base is modified by AAM. Both types of logging are
optional.

Both journal log file names and quick recovery log file
names are specified as input to the master directory
utility. Both are assigned on a per-schema basis. The
journal log file, in addition to being input to a recovery
run, can be processed by a program for statistical analysis
at a later date. The quick recovery log file is processed
before recovery or restoration operations take place.

Recovery Utilities

Four data base utilities are provided by CDCS to perform
several functions required for restoration or reconstruction
of a data base. All utilities are called into execution by
the data administrator via control statements.

The DBRCN utility is used to reconstruct a data base when
the data base has been destroyed through a disk or
software failure. The DBRST utility restores a data base
to a previous state when the data base has been
erroneously updated. Prior to running both the DBRCN and
the DBRST utilities, the DBQRFA utility must be executed

‘to apply the contents of the quick recovery log file to the

data base. The fourth utility, DBQRFI, is used to initialize
the quick recovery log file for block logging.

Q-

SUB-SCHEMA ORGANIZATION

A FORTRAN sub-schema describes the portion of a data
base to be used by one or more FORTRAN applications
programs. Its descriptions link the descriptions found in
the schema with the variables end arrays in the
FORTRAN program. The sub-schema uses statements
similar to FORTRAN specification statements to indicate
the data type and dimensions of variables and arrays used
in the applications program.

The output from compilation of the sub-schema is a
sub-schema directory, When a FORTRAN program
containing DML statements is processed, the file
containing the sub-schema directory must be made
available to the DML preprocessor.

The sub-schema definitions are inserted into the
FORTRAN program by the DML preprocessor. Therefore,
the variables and arrays defined in the sub-schema must
not be specified in type statements in the applications
program.

The sub-schema is based on the schema; the schema must
be compiled before the sub-schema. The sub-schema can
include all or part of the entities defined in the schema.
A given schema can have any number of sub-schemas
written for FORTRAN or COBOL. In general, the schema
description of data can be changed in the sub-schema to
meet the needs of the applications program; however,
some restrictions have been imposed. These are outlined
in the following paragraphs.

Terminology used for some entities differs among the
contexts of the schema, the sub-schema, and the
FORTRAN program. The most important of these is the
term realm for a sub-schema, which is called an area in
the context of a schema, and a file in a FORTRAN
context.

SUB-SCHEMA STRUCTURE
REQUIREMENTS

Table 2-1 shows the order in which groups of
FORTRAN/DDL statements must be written in a
sub-schema. In group 4, the type statements that apply to
the variables and arrays belonging to a record defined by a
RECORD statement appear immediately after the
RECORD statement. In group 5, the RESTRICT
statements that apply to a relation defined by the
RELATION statement appear immediately after the
RELATION statement. A FORTRAN sub-schema must
contain at least one realm, one record, and one type
statement.

DATA DESCRIPTION

A record description entry comprises a RECORD
statement and the type statements immediately following
it. The type statements following each RECORD
statement specify the data items that are to be made
available from the corresponding schema record. The
ordering of type statements is independent of the ordering
of items within the schema record. :

60482200 C

TABLE 2-1. SUB-SCHEMA STATEMENT ORDERING

Group Statements
I e |

1 SUBSCHEMA

2 ALIAS (optional)

3 REALM

4 RECORD and type

5 RELATION (optional)
RESTRICT (optional)

6 END

Correspondence between schema and sub-schema items is
based on the item name. Therefore, a data name in a type
statement must be one of the following:

@ A data name from the schema description
® Analias assigned in an ALIAS statement

Any data name in the schema longer than seven
characters, or containing a hyphen, must be renamed in an
ALIAS statement, because these data names are not legal
variable names in FORTRAN. Once an alias is assigned to
a schema name, the alias must be used in all ODL
statements. Only elementary item names, from the
schema, can be defined in a FORTRAN sub-schema. Each
record type corresponds to a record type in the schema
and must be within one of the realms specified in REALM
statements. E£ach RECORD statement must be followed
by at least one type statement.

All the data items defined in the sub-schema are included
in the FORTRAN program by the DML preprocessor.
Therefore, all data items named in the sub-schema are
either variables or arrays in the FORTRAN applications
program.

Character variables and arrays should be grouped together
within a record in the sub-schema to minimize the number
of common blocks that the DML preprocessor generates
for a FORTRAN program. The variables and arrays are
declared in common blocks in the same order as they are
included in the sub-schema. One common block is
generated for each realm. The name for that common
block is in the form DBnnnn, where nnnn is the realm
ordinal assigned by the DDL compiler. Realm ordinals are
assigned incrementally starting with 1 for each realm
named in the sub-schema. Character data items cannot
share the same common block with noncharacter items;
therefore, a new common block is generated each time a
type statement is encountered that is not compatible with
the previous type statement. The name for each
additional common block required for a realm is in the

form Dnnnnxx, where nnnn is the realm ordinal and xx is a
2-letter identifier assigned incrementally from the series
AA, AB, ..., ZZ.

VARIABLES

A variable declaration in a type statement associates a
symbolic neme of the specified type with a single data
item. Because every data base data item that is to be
referenced in the FORTRAN program must be declared in
the sub-schema, implicit typing of variables s
overridden. A variable defined in the sub-schema must
correspond to a nonrepeating elementary item in the
schema.

FORTRAN/DDL permits a special long variable only for
FORTRAN 4 applications so that a FORTRAN 4 program
can reference a schema item that is a nonrepeating
alphanumeric item longer than 10 characters. In the
sub-schema, this special long variable is declared as an
array. The detailed description of this item is in the
subsection Character Data. (For FORTRAN 5
applications, this same capability is provided by declaring
a variable type CHARACTER.)

ARRAYS

The size, dimensions, and type of an array are defined in a
type statement. Array declarations are identical in form
and content to those in a FORTRAN program.

An array in a sub-schema corresponds to a repeating
elementary item in the schema; that is, to an item
containing an OCCURS clause. A repeating elementary
item is called a vector. An array can correspond to either
a fixed occurrence repeasting item or a variable
cccurrence repeating item,

SCHEMA /SUB-SCHEMA

CORRESPONDENCE

The sub-schema is created to accommodate the needs of a
FORTRAN applications program. Some characteristics of
the data in the data base are fixed by the schema and
cannot be changed by the sub-schema; other
characteristics specified in the schema can be different in
the sub-schema. The following paragraphs outline the
cases in which differences are allowed between the
schema and the sub-schema, and the actions taken by the
DDL compiler to resolve the differences in each case.

OMISSION OF DATA ITEMS

The sub-schema normally describes only a portion of the
data base. Data items that are not required by the
FORTRAN program are not included in the sub-schema
description. Elementary items, complete records, and
entire areas in the schema can be omitted from the
sub-schema., When a record or an area is not included in
the sub-schema description, all subordinate entries are
automatically omitted and cannot be referenced in the
sub-schema.

Unlike the COBOL sub-schema, the FORTRAN
sub-schema has no mechanism for the description of group
items. Therefore, these items must be omitted from the
sub-schema., The elementary items making up the schema
group item must also be omitted from the sub-schema.

Unlike the COBOL sub-schema, only one record type per
realm is permitted in the FORTRAN sub-schema.

The primary key for a realm must be declared in the
sub-schema; alternate keys are required only if they are
actually used. A concatenated key is not supported in
FDBF.

ORDERING OF DATA ITEMS

The order in which data items are specified within a
record description in the sub-schema does not have to be
the same as the order in the schema, as long as the names
of the items match those in the schema or in the ALIAS
statement.

DEFINITION OF DATA ITEMS

Data items can differ in size, type, and number of array
elements from those in the schema.

Data Size and Type

The size and type of data items in the sub-schema are
specified in the type statements. In the schema they are
specified in either the TYPE or PICTURE clause. Since
the schema and sub-schema statements differ in format,
rules have been established for conversion between
sub-schema and schema specifications. In some cases, the
types specified in the schema and sub-schema match
exactly; no conversion is required. In other cases, the
types differ, but a meaningful conversion is established by
DDL and carried out through mapping at execution time
by CDCS. In still other cases, no conversion is possible
and an error message is issued by the DDL compiler.

Complex and double precision variables occupy two words
of storage each; all other variables occupy cne word of
storage. Complex and double precision arrays cccupy two
words of storage for each array element; all other arrays
occupy one word of storage for each array element.

Table 2-2 shows the permissible correspondence between
types of items in the sub-schema and data class
specifications in the schema. (Refer to volume 1 of the
DDL reference manual, for complete descripticns of these
data classes.) For those cases where conversion is
necessary, the table describes the method used.

If the schema specifies a CHECK IS PICTURE clause, the
data description in the sub-schema must match the data
description in the schema for both size end class. The
CHECK 1S PICTURE clause in the schema definition

inhibits data conversion between the schema and the |

sub-schema. Table 2-2 indicates the data type required
for a sub-schema item to correspond to a schema item
defined with the CHECK 1S PICTURE clause.

Character Data

In a sub-schema for a FORTRAN 5 program, an item
must be declared as type CHARACTER to correspond to
schema item of data class 0 (display alphanumeric) or
class 1 (display alphabetic.) Because there is no character
data type in FORTRAN 4, the combination of schema
class 0 or 1 and sub-schema integer allows FORTRAN 4
programs to read and write character data without
conversion. Therefore, any variable defined as integer in
a FORTRAN 4 sub-schema and class 0 or 1 in the schema
is treated as character (not numeric) data. Data assigned

60482200 C

J)

JJ

w93l ewdyds Buipuodsauauod ay3 4oy patjidads SL asne(d LT ST NIIHD dY3 UBYM WYL LURYIS-QNS © 4Oy padinbad sy uwn|od Siy3 Buipeay adfy vyeq,
‘043z 03 *34ed *3aed
pdom quedtgiubis Le34 jO aneA Le34 JO 3n|eA
*paainbaa | 3sea 39s fjued *3aed *3J4ed ajedundy pue jded | ajedunai pue jded x3|dwod
UOLSJI3AUOD ON Kaeuybewy doag Aaeuybewy doug | *paijtwuad joN | Ameuibewt doag | pa3jiwaad jJoN Kaeurbeuwr doug Kreuybewy douag papo) S
‘043z 03 * pAOM *pJom
34ed Kaeuibewr juesLjiubls jsouw uesgyiubys jsow
39S ‘pJom *pJom JO anjeA 3jedundl | 30 anieA 3jeaundy | uoysiaaud
juedsyiubis 1 paJaLnbau *pJ4OM uEd} juedyyLubys pue pJoM JuRDY pue pJomM jued) a|qnop
3sea| douq uoLSJaAU0d ON | -jLubis 3sea| doug | *pajrtumad joN 1sea| doag | *pajitwuad joN | -jiubes 3seay doug | -sLubis jseay doug papo) 1
pazyewsou
*0492Z tiod
*049Z 03 jJed | 03 pJom JueRdL iU ;'padynbaa *padtnbau *anjea “aneA 6ugjeoly
KJeuibewy 33§ -6i1s jsea| 39S UO|SI3AUDD ON | *paldwidd 0N | UOISJBALOD ON | *paljiumdd joN (94 3jedUNs} Le34 3jeduna| papo) €1
*0432 0} *049Z 03 quiod
jJed Kueuibewy | paom jquedryrubis *paagnbaa *paainbau ’paatnbaa 1°paainbaa paxty
39s fjeo 4] 3seay 3as feold *jeol 4| uoiLs4sAu0d ON | uoLSu3Au0d ON | *pajjtuwaad JoN UO|SIIAUO0D ON U0 | SJBAUCD ON papo) 01
*Aaeuyq
03 343Aucd
‘0492 03 *je0|4 pue Jabajui *A1RuULq 0] }49AUOD | *Aseulq 0} J49AUOD
pJaoM jued} siubis pue an{eA 6uy butjuasaadau pue uabajup 6Bui pue a3bajuy Guy juiod
Isea| 313s {leau | -juasaadaa bBupuais Burays 43320 -juasaadaa bugals | -juasaadaa bupais paxiy
*pajyruaad 0N 404 Se aueg | ua3dedeyd 2jen{eA] | *pajrtumad JoN | ~aeyd 3jen(ea3 | *pajatuuad 0N | 49300J4RYD 33BN AT | J230RURYD BIBN|RAJ Aeydsig ¢
*Kreurq
03 343AU0D
*043z 03 *jeo(s pue u3633ut *AIeulq 03 JJ9AUGD | *AJeuiq 03 JU3AUOD
paoM juedtsLubys pue angeA 6uy buyjuasaudad pue Jabaju) bu} pue Jabajup buy
JIsea| 39S f{|edaa | -juasaadaa Buraiys buguays 43300 *paajnbau | -quasaadas bBupsys | -juasauadas bupuais Jabajuy
*pajytuaad JoN J04 Se 3ue§ { J433deJRYd 3jen|eAl | "pajjiusad JON | -Jeyd IjenieA3l | uoiSaaAu0D ON | 493dvJRYD jENn|eA] | J930RJIRYD B3EN|BAT Keydsiqg €
*atjaqeydie
Jou jL Jo.da3 *d13aqeydie jou i
*paajnbau 0443 °paagnbau | 2133qeyd|e
*pajjtwaad 0N *pazaLuad joN *pajatwuad JoN | ‘pajytumad JoN | pajjlusad joN | uopssaAu0d ON *pajyiwaad joN U0 SA3AU0D ON Keydsig 1
d{Jaumu
1 padinbau *paainbas -eydie
*pajytuusd joN *pa33tuuad 0N *pajatwaad JoN | ‘pajyiuwmad JoN | *poa3ytumad J0N | uOLSJIAUOD ON *pajyiwaad 0N UOLSU3AUOD ON Kedsia 0
| —— —
S % ¥ NvyLluod S % b NYHL¥Od S % b NVHLYO0S S % v NVHL¥04 S NVHL¥04 S RV¥L¥03 S NY3LY0d ¥ NvYLW04 (adA3)
X3144W00 NOISIJ3¥d 378n00 N 1901 Nv31008 YILIVYVHO Y¥393UNI Y393UNI sseyd
UBYIS
adl)
euBydIS-qns.

ONIddVIN YWIHIS-8NS/YWIHIS

Z3N8vi

2-3

60482200 C

to these variables in the application program should be
Hollerith data, left-justified and blank filled.

In addition to providing a correspondence between a
sub-schema FORTRAN 4 integer and a schema class 0
or 1 item, FORTRAN/DDL provides a special long
variable to provide the capability for a program to
reference a nonrepeating, schema item longer than 10
characters. In the schema, the item must be an
elementary item and must not be part of a repeating
group. In the sub-schema, the item must be declared as
an integer array. DDL processing makes the schema item
available to the FORTRAN 4 program by having the first
word of the array reference characters 1 through 10, the
second word of the array reference characters 11 through
20, and so forth for the length of the schema item
providing the array is declared having sufficient length.
(The maximum length allowed in the schema for character
data is 32 767 characters.)

The way to reference the long variable depends on the
context. In the DDL RESTRICT statement and as the key
in the DML READ statement, the item must be
referenced by the array-name with no subscripts. In a
FORTRAN 4 statement in a program, the item must be
referenced as an array or array element. See the
FORTRAN 4 reference manual for the rules on array
references.

Figure 2-1 shows a 30-character display alphabetic item
in a schema and the corresponding item declared in a
sub-schema. The sub-schema item MYKEY is used as if it
were a 30-character variable when used in DDL and DML
statements. In a FORTRAN 4 statement, the item must
be used as a 3-word array.

Schema

02 MYKEY PIC "X(30)".

Sub-Schema
INTEGER MYKEY(3)

Figure 2-1. Long Varisble for FORTRAN 4 Applications

Array Declaration

Arrays are declared in the sub-schema by type statements
in the same format as those in a FORTRAN program. The
number of elements in an array is the product of all its
dimensions.

An array is defined in the schema as a vector, or a
repeating elementary item. Elementary data items can be
repeated either a fixed or varying number of times.
Arrays in the sub-schema correspond with these repeating
data items.

A vector in the schema can correspond to a sub-schema
array with up to three dimensions for a FORTRAN 4
program or up to seven dimensions for a FORTRAN 5
program. The number of elements in an array must be
less than or equal to the number of occurrences of the
schema vector. A repeating elementary item is called a
fixed occurrence repeating item if the OCCURS clause
which describes it in the schema specifies the precise
number of occurrerices of the item.

Example:

Figure 2-2 shows the schema and sub-schema declarations
for two arrays. Both are fixed occurrence elementary
items in the schema.

The number of elements of the array declared in the
sub-schema can fall short of (but cannot exceed) the
number of occurrences of the item declared in the
schema. When this happens, the initial elements of the
array are matched to the initial occurrences of the item.

Schema
RESULTS TYPE FLOAT‘
OCCURS 40 TIMES.
TESTNUM PICTURE 9{10)
OCCURS 20 TIMES.
Sub-Schema
REAL RESULTS(40)
INTEGER TESTNUM(20)

Figure 2-2. Fixed Occurrence Elementary Items

For example, in figure 2-3, the arrays BAYNAME and
QUANT have the same number of elements as their
counterparts in the schema, even though they are defined
as 2-dimensional arrays in the sub-schema. The array
TOP10 has fewer elements than its counterpart in the
schema.

Schema '
BAYNAME PICTURE "A(10)" OCCURS 16 TIMES

QUANT PICTURE ''999"
OCCURS 2000 TIMES.
TOP10 TYPE FIXED OCCURS 100 TIMES.
Sub-Schema

INTEGER BAYNAME(2,8), QUANT(200,10),
X TOP10(10)

Figure 2-3. Schema/Sub-Schema Differences in Array
Size and Dimension

A repeating elementary item in the schema is called
variable cceurrence repeating item if a data name is used
in the OCCURS clause. In the schema, the occurrences of
a variable occurrence repeating item (which correspond to
the elements of the array in the sub-schema) are indexed
by the elementary item referenced in the OCCURS
clause. In a FORTRAN sub-schema, this item must be
declared whenever the repeating item is declared. In the
DML statements in the applications program, the variable
is used to specify the number of occurrences of a
repeating item when a record is written. When a record is

60482200 C

J)

J)

read, CDCS sets the variable to the number of
occurrences actually in the record.

If the sub-schema defines an item that is used in the
schema to index the occurrences of a repeating item, the
sub-schema must also define the elementary repeating
item.

A sub-schema array that corresponds to a variable
occurrence repeating item must be defined in the
sub-schema to have the maximum number of elements
possible (the upper limit of the CHECK IS VALUE clause).

Example:

In figure 2-4, the number of occurrences of PERCENT and
SYMBOL cen vary from 1 to 10, depending upon the value
of ECOUNT. PERCENT and SYMBOL are variable
occurrence repeating elementary items in the schema.
PERCENT and SYMBOL. are declared as arrays in the
sub-schema with dimensions equal to the maximum occurs
value. ECOUNT must also be declared in the sub-schema.

60482200 C

Schema
ECOUNT TYPE FIXED
CHECK VALUE 1 THRU 10.
SYMBOL PIC "A(10)", OCCURS ECOUNT TIMES.
FULL-NAME PIC "X(15)" OCCURS ECOUNT TIMES.
PERCENT TYPE FLOAT, OCCURS ECOUNT TIMES.
Sub-Schema
INTEGER ECOUNT, SYMBOL(10)

REAL PERCENT(10)

Figure 2-4. Variable Arrays in Schema and Sub-Schema

2-5

SUB-SCHEMA PROGRAMMING CONVENTIONS

The FORTRAN/DDL sub-schema source program
comprises a series of statements that describe a portion
of a data base. The rules for coding FORTRAN/DDL
statements are similar to those for the version of
FORTRAN specified in the FORTRAN/DDL (DDLF)
control statement. The statements themselves are
described in section 4; this section describes the format
of the statements. Appendix J summarizes required
differences in coding a sub-schema for FORTRAN 4 or
FORTRAN 5 applications programs.

LANGUAGE ELEMENTS

FORTRAN/DDL statements consist of keywords,
user-defined names, constants, and operators. The
operators are fully explained with the statements in
section 4; the remainder of the elements are
described here.

KEYWORDS

FORTRAN/DDL keywords identify statements and options
within statements. Each statement begins with a specific
keyword, and other keywords are used within statements.
When a keyword is used, it must be specified exactly as
shown in section 4. Keywords are shown in uppercase in
this manual. For a complete list of keywords see
appendix D.

USER-DEFINED NAMES

User-defined names identify the schema, sub-schema,
realm, records, data items, and relations. They are
indicated in the formats by lowercase words.

All names are taken from the schema except for schema
entities that are renamed in the sub-schema by the ALIAS
statement. The rules for forming names differ between
data item names and all other names:

Data item names Since these are wused in the
FORTRAN program as variable and
array names, they must correspond
to the FORTRAN rules. They must
be from one to seven characters
long, contain only letters and
digits, and begin with a letter.

Other names These are used only by DMS-170
and consequently follow the more
lenient rules of the schema. They
must contain from 1 to 30 letters,
digits, or hyphens. The first
character must be a letter, and
hyphens cannot be wused at the
beginning or end or adjacent to
each other.

Since each data item appears in a type statement, default
types based on the first letter of the item name are not
applicable in the sub-schema. Non-data base items (used
in the RESTRICT statement) are not given types by DDL,

60482200 C

and consequently must appear in type statements in the
FORTRAN program if other than default types are desired
for them.

A number of variables are generated in the FORTRAN
program by the DML preprocessor; definition or
declaration of these variables in a FORTRAN program can
lead to invalid results. A complete list of these variables
can be found in appendix G.

CONSTANTS

With a few restrictions, constants appearing in DDL
statements follow the rules for FORTRAN constants.
These rules are defined in the FORTRAN reference
manual corresponding to the version of FORTRAN
specified on the control statement used to compile the
sub-schema. The constants allowed are restricted to
integer or real constants without exponents, and to strings
delimited by quotation marks or (for FORTRAN 5
programs only) to strings delimited by apostrophes. The
following forms are not allowed: double precision,
complex, logical, octal, and hexadecimal constants;
Hollerith constants in H, L, or R format; and real
constants with exponents. The following forms can
be used:

e Integer constants consist of an opticnal sign (+ or -)
followed by 1 to 18 digits.

Examples:

0

-12345

+2000
000000000000000004

o Real constants consist of an optional sign (+ or -)
followed by a string of digits containing exactly one
decimal point. The maximum number of digits is 15.
The decimal point can be anywhere within the string;
that is, the number can consist of a fractional part, a
whole number part, or both.

Examples:

0.
-3.22
+4000.
-5

0
1414

e Rules for nonnumeric constants depend on the version
of FORTRAN. In a sub-schema for a FORTRAN 4
program, the constant must be a Hollerith constant (a
string of from 1 to 255 characters delimited by
quotation marks). In a sub-schema for a FORTRAN 5
program, the constant can be a character constant (a
string of from 1 to 255 characters delimited by
apostrophes) or a Hollerith constant (a string of from
1 to 10 characters delimited by quotation marks). If
a delimiting character is to be used in the string, the
character must be specified twice for each

cccurrence. For example, "A"™'B" would yield the
censtant A"B; 'C"D' would yield the constant C'D.

Examples:
"MY KEY WORKS" FORTRAN 4 Hollerith
constant
*"MAX10CHARS" FORTRAN 5 Hollerith
constant
'CATS & DOGS' FORTRAN 5 character
constant

FORTRAN/DDL STATEMENT FORMAT

FORTRAN/DDL statements occupy from 1 to 100
character positions of a source line. A source line is a
punch card or card image, and a character position
corresponds to a card column. Table 3-1 shows the usage
of the character positions within the source line.

TABLE 3-1. COLUMN USAGE IN FORTRAN/DDL

STATEMENTS
Column Usage
1 € or * indicates a comment line.
1-5 Optional statement label containing

one through five digits.

6 Character other than blank or zero
indicates a continuation line; does
not apply to corment lines.

7-72 Text of FORTRAN/DDL statement.

73-100 Identification field, listed but
not otherwise processed by DDL.

No statement can begin on a line that includes any part of
the previous statement; the $ statement separator is not
used.

The following paragraphs describe other aspects of the
mechanics of coding FORTRAN/DDL statements.

CHARACTER SET

The FORTRAN/DDL character set is a subset of the
FORTRAN character set. It consists of the letters A
through Z, the digits 0 through 9, and the following special
characters:

Blank
Equal sign
Comma
Left parenthesis
Right parenthesis
Decimal point
or # Quotation mark
or t Apostrophe
Plus sign
Minus sign

Se s~)

"

In addition, any character (appendix A) can be used in
character constants and in comments.

3-2

BLANKS

Unlike FORTRAN statements, in which blanks are ignored
(except in character constants), DDL statements forbid or
require blanks in specific cases. The rules are as follows:

o Blanks are significent in character constants.

o Keywords, user-defined names, relaticnal operators,
and constants cannot be interrupted by blenks.

Permitted:

RESTRICT RECA(ITEMI.EQ.5.0)
Not permitted:

REST RICT REC A(ITEM 1. EQ.5 .0)

e Keywords must be separated from adjacent names by
at least one blank. Blanks are not required when a
keyword is set off by other special characters.

Permitted:
DOUBLE PRECISION D1, D2(10,20),D3
Not permitted:
DOUBLEPRECISIOND1,D2(10,20),D3

This example clarifies that DOUBLE and PRECISION
are congidered separate keywords, even though they
. are used together.

CONTINUATION

Statements can be continued for more than one line. A
character other than a blank or zero in column 6 indicates
that the line is a continuation line. Columns 1 through 5
of a continuation line must contain blanks. A line with a
C or * in column 1 and any character in column 6 is a
comment line, not a continuation line. The maximum
number of continuation lines in cne statement is 19.

The END statement cannot be continued.

STATEMENT LABELS

As in FORTRAN, any statement can contain a label in
columns 1 through 5. A label is a one to five digit
integer. Labels do not affect DDL processing, but can be
included for documentary reasons. No diagnostic is issued
if the same label is used more than once.

Labels on type statements become FORTRAN statement
labels when the type statements are copied into the
FORTRAN source program. If any label on the type
statements is a duplicate of a label on another FORTRAN
statement, a diagnostic is issued by the FORTRAN
compiler.

COMMENT LINES

A line with a C or * in column 1 is a comment line.
Comment lines are copied to the DDL output listing but
gre not otherwise processed. Comments can cantain any
chaeracter in the character set. Comments do not
interrupt statement continuation.

60482200 C

J)

J)

BLANK LINES

Blank lines can be used freely between statements to
produce blank lines on the source listing. Within
statements, the interpretation of a blank line is consistent
with the versicn of FORTRAN specified on the ODLF

60482200 C

control statement. With FORTRAN 4, a blank line
interrupts statement continuation, and the next line is
interpreted as an initial line even if it has the form of a
continuation line. With FORTRAN 5, a blank line is
considered a comment line and does not break the
continuation sequence.

FORTRAN/DPDL STATEMENTS

This section describes the individual FORTRAN/DDL
statements. The rules for coding the statements are in
section 3, and table 2-1 shows the order in which
statements must occur in a sub-schema. Appendix E
contains 8 syntax summary of FORTRAN/DDL statements
for FORTRAN 5 applications; appendix F contains the
syntax summary for FORTRAN 4 applications.

SUBSCHEMA

The SUBSCHEMA statement (figure 4-1) must be the first
statement in every FORTRAN/DDL program. It names
the schema and the sub-schema. Only cne SUBSCHEMA
statement can appear.

SUBSCHEMA sub-schema-name, SCHEMA = schema-name

Figure 4-1. SUBSCHEMA Statement Format

The sub-schema named in the SUBSCHEMA statement is
used whenever the sub-schema is referenced after it has
been compiled and stored in the sub-schema library. The
name must be uhique among sub-schemas associated with
the designated schema.

The schema-name identifies the schema to which the
sub-schema belongs. The file containing the compiled
schema must be attached when the sub-schema is
compiled.

ALIAS

The ALIAS statement (figure 4-2) is used to change the
name of an entity from the name used in the schema to
the name used in the sub-schema. The name to be
changed can be a realm, a record, or a data item.

The ALIAS statement is optional; if used it must
immedisately follow the SUBSCHEMA statement.

Assigning an alias in the sub-schema does not change the
name in the schema; it is a substitute name that is used
only in the sub-schema and in the FORTRAN programs
referencing the sub-schema. The old name must appear in

the schema; once an alias has been assigned, the new
name, rather than the old name, must be used exclusively
in the sub-schema and the FORTRAN program.

The name type specifier (REALM, RECORD, or ITEM)
applies to all names in that ALIAS statement. Any
number of ALIAS statements can be used, but no old name
or new name can appear more than once."

The ALIAS statement must be used to change item names
that are longer than seven characters, or that contain
hyphens. Such names are valid in the schema but are not
legal symbolic names in FORTRAN.

Example:

Schema:
01 LAST-IN-FIRST-OUT PICTURE "X(10)"

Sub-Schema:
ALIAS (ITEM) LIFO = LAST-IN-FIRST-OUT

The form old-item-name.old-record-name must be used to
provide unique names within the FORTRAN program when
the same name appears in two different records in the
schema.

Example:
Schema:
RECORD NAME IS TOTAL-REC
01 ACCOUNT PICTURE "99999"

;!ECORD NAME IS PARTIAL-REC
01 ACCOUNT PICTURE "99999"

Sub-Schema:
ALIAS (ITEM) ACNTTOT = ACCOUNT . TOTAL-REC,
1 ACNTPAR = ACCOUNT . PARTIAL-REC

REALM

The REALM statement (figure 4-3) identifies the specific
schema areas that are used in the sub-schema and in the
FORTRAN applications programs referencing the
sub-schema. Realm and area are sub-schema and schema

(REALM)
ALIAS

(iTEM)

old-item-name

old-item-name.old-record-name

{RECORD) } new-name-1 = old-name-1 [, new-name-2 = old-name-2]

Formats for old-name (with ITEM option only):

Figure 4-2. ALIAS Statement Format

60482200 C

§-1

terms, respectively, for what is known to the operating
system, and to FORTRAN, as a file.

ALL

REALM {rea!m—name-1

[, realm-name-2] * ° }

Figure 4-3. REALM Statement Format

At least one REALM statement must appear in the
sub-schema. If ALIAS statements are used, the REALM
statements must immediately follow the last ALIAS
statement; otherwise, they must immediately follow the
SUBSCHEMA statement.

Any number of REALM statements can be included, but no
realm can be named more than once. All realms named
must appear in the schema. The ALL option specifies that
all the realms defined in the schema are to be available to
the sub-schema. Unless the ALL option is used, only those
realms named in a REALM statement are available to the
sub-schema and to the FORTRAN programs referencing
the sub-schema.

RECORD DEFINITION

A rtecord definition comprises a RECORD statement
followed by one or more type statements. The record
definitions must Iimmediately follow the REALM
statements, and each sub-schema must contain at least
one record definition. Each record definition corresponds
to a record type defined in the schema.

The type statements following a RECORD statement
specify those data items occurring within the record that
are to be used in the sub-schema. These data items can
be used as variables or arrays in the FORTRAN program.
The type statements also define the FORTRAN data types
of the items, as well as the number of dimensions and size
of arrays. Data items not included in the sub-schema
cannot be accessed by the FORTRAN program. The items
defined for a record in the sub-schema can differ in order,
number, and (in some cases) type from the equivalent
definitions in the schema. Refer to section 2 for a
discussion of schema/sub-schema compatibility.

RECORD STATEMENT

The RECORD statement (figure 4-4) identifies a schema
record that is to be used in the sub-schema. Any number
of RECORD statements, each followed by a group of type
statements, can appear in the sub-schema, but no record
name can be used more than cnce. Each record must
appear in the schema. The schema links record types with
areas; the area associated with a record in the sub-schema
must appear in a REALM statement. Only one record
type per realm in the sub-schema is permitted.

RECORD record-name

Figure 4-4. RECORD Statement Format

TYPE STATEMENTS
Type statements identify and describe the data items that

are to be made available to the sub-schema and the
applications program. FORTRAN/DDL recognizes the

4-2

same type statements as the version of FORTRAN
compiler specified in the DDLF control statement. The
rules governing type statements and the amount of
storage allocated to each variable are described in the
FORTRAN Extended 4 reference manual or in the
FORTRAN 5 reference manual. The formats of the type
statements are shown in figure 4-5. FORTRAN 4 allows
the following type statements: REAL, INTEGER,
LOGICAL, COMPLEX, AND DOCUBLE. FORTRAN 5
allows the following type statements: CHARACTER,
BGOOLEAN, REAL, INTEGER, LOGICAL, COMPLEX, and
DOUBLE PRECISION. Unlike FORTRAN 4 syntax,
FORTRAN 5 syntax requires that both the keywords
DOUBLE and PRECISION be specified.

Each data item referenced in the sub-schema must appear
in a type statement. If it is an array, its dimensions are
given in the same type statement. No item can appear in
more than one type statement. If an item occurs in more
than one record type in the schema, it must be renamed
by the ALIAS statement in the sub-schema. Since each
item appears in a type statement, implicit typing

.according to the first letter of the item name is not

recognized in FORTRAN/DDL.

Each item appearing in a type statement must be defined
in the schema. (It could be defined under a different
name if it appears in the ALIAS statement in the
sub-schema.) Each item defined as an array must be
defined in the schema with the OCCURS clause. The
number of elements in the sub-schema array must not
exceed the number of occurrences in the schema vector.

At least one type statement must be associated with each
RECORD statement, even if no items are used by the
FORTRAN program (for example, a program that counts
the number of records in a file). The variable that is the
primary key for the realm must be included in the
sub-schema; alternate keys have to be included only if
they are actually used in the program.

Example:

RECORD FIRST-REC
INTEGER A, B, C(12)
REAL X

RECORD SECOND-REC
INTEGER D, E
COMPLEX H(2,3,4)
CHARACTER*20 J

The variables A, B, and X and the array C are to be made
available from the record type FIRST-REC; the variables
D, E, and J, and the array H are to be made available
from the record type SECOND-REC. The character
variable J is allowed only for FORTRAN 5 applications.
A similar data item for a FORTRAN 4 application would
be a special long variable declared as INTEGER J(2).

For examples of correspondence between type statements
in the sub-schema and item descriptions in the schema,
see section 2.

RELATION DEFINITION

A relation definition comprises a RELATION statement
optionally followed by any number of RESTRICT
statements. Relation definitions are optional; if used,
they must immediately follow the last group of RECORD
and type statements.

60482200 C

J)

JJ

FORTRAN 5 Format

(CHARACTER

[*default-tength (1]
BOOLEAN
{ | REAL
INTEGER
LOGICAL
COMPLEX
DOUBLE PRECISION

length nor len is specified, 1 is assumed.

item-name
item-name (d1 [,d2] .. .)

where d specifies the bounds of an array dimension.

The formats for d are:
upper-bound
lower-bound: upper-bound

FORTRAN 4 Format

REAL

INTEGER

LOGICAL

COMPLEX

DOUBLE [PRECISION]

The formats for item-name aro:
item-name
item-name (d1 [d2 [, d3]])

item-name-1 [*len-1] [,item-name-2 [*ten-2]] . ..

item-name-1 [,item-name-2} . . .

In a CHARACTER type statement, default-length and len must be positive integer constants. If neither default-

In each type statement, the formats for item-name are:

From one through seven bounds can be specified for an array.

where the bound specification must be an integer constant: positive, zero, or negative. The upper-bound must be
greater than or equal to the lower-bound. (When the lower-bound is not specified, 1 is assumed.)

item-name-1 [item-name-2] ...

where d is a dimension, Each dimension must be a positive integer constant. (The dimension specifies the
upper-bound; 1 is always assumed for the lower-bound.)

/

Figure 4-5. Type Statement Formats

The RELATION statements specify the schema relations
to be made available to the FORTRAN program.
RESTRICT statements restrict records accessed by a
relation to include only those which satisfy a logical
expression. The RESTRICT statements immediately
foliowing a RELATION statement describe restrictions on
that relation. Relaticns are explained in section 1.

RELATION STATEMENT

The RELATION statement (figure 4-6) specifies that a
relation defined in the schema is to be available to the
FORTRAN program. Any number of RELATION
statements can appear, but no relation can be named more
than once.

60482200 D

RELATION relation-name

Figure 4-6. RELATION Statement Format

The relation-name must be the same name specified in the
RELATION NAME clause in the schema. The schema
specifies which realms and record types apply to a
relation. When a relation is declared in the sub-schema,
the associated realms end record types must also be
declared in the sub-schema.

4-3

RESTRICT STATEMENT

The RESTRICT statement (figure 4-7) limits a relation by
specifying criteria that must be satisfied by a record
occurrence on a read before it is made available to the
FORTRAN program. RESTRICT statements are optional;
any number can appear with a RELATION statement.
However, only one RESTRICT statement can be included
for a given record. All records referenced must be defined
in the schema and must be in a realm that is joined by the
relation named in the preceding RELATION statement.

The entities to be compared in the logical expression of a
RESTRICT statement are data base items, non-data base
items, and constants. A maximum of 1024 data base items,
non-data base items, constants, and operators can appear
in the restrictions on any one relation.

e A data base item must be defined in the sub-schema as
part of the record. It must not be described in the
schema through VIRTUAL RESULT or DECODING
data base procedures. It must be a variable or en
array element with a constant subscript. When two
data base items are compared, they must be the same
size and must be compatible as determined from the
schema data class of each item. Items of schema data
classes O through 4 (items stored as display code) are
compatible. An item of any other schema data class is
compatible only with an item of the same schema data
class.)

e Non-data base items are simple variables that appear
in the FORTRAN program but are not defined in the
sub-schema. Use of a non-data base item in a
RESTRICT statement allows dynamic qualification of

a relation. Non-data base items must agree in size-

and type with the sub-schema representation of the
data base items to which they are being compared.
Results will be unpredictable if the size and type are
not identical.

e Constants are real, integer, Hollerith, or character
constants. (Character constants are allowed only in
FORTRAN 5.) The forms allowed for constants are
shown in section 3. A constant must be compatible
with the schema representation of the data base item
to which it is being compared.

When a data base item is compared to another data base
item or to a non-data base item, both items must have the

same size and type. Complex and logical items are not
allowed. Real, integer, and double precision items are
compared by magnitude. If a data base item is described
as an integer in the sub-schema and as a display item in the
schema (schema classes 0 through 4), it is assumed to
contain character data and can only be compared to a data
base item similarly described, to a compatible non-data
base item, or to a Hollerith constant. A real or integer
constant can be compared to a data base item of any
numeric type (real, integer, or double precision);
appropriate conversion is performed before the magnitudes
are compared.

Logical expressions are interpreted the same as in
FORTRAN.

Example:
Valid logical expressions:

ITEML .GT. ITEM2

X .GE. 4.23 .AND.I.LT. 4

(FIRST .EQ. LAST) .AND. (SECOND .GT. THIRD)
1.0R. .NOT. FOURTH .GT. 0

Invalid logical expressions:

NOT. ((1.GT. 2) .OR. (J.GT. 3))

Two levels of nesting are not permitted.
LOGICAL L
A .GT.B.OR. L

Logical variables are not allowed.
COMPLEX C,D

cC GT.D
Complex variables are not allowed.

END

The END statement (figure 4-8) must be the last statement
in every FORTRAN/DDL program. It cannot be
continued. No statements or comment lines can appear
after the END statement.

END

Figure 4-8. END Statement Format

Format of logical expression:

RESTRICT record-name-1 (logical-expression-1) [, record-name-2 (logical-expression-2)]. . .

; 0l
non-db-item-1

constant-2

db-item-4
1)
non-db-item-2

EQ.
NE. .
db-item-2
['.';?T'] [{)db-item-1{ ST :constant-1
GE.
LE.
.AND. EQ.
A, NE.
OR. [:“F’T'] [db-item-3 ¢ -ST-
XOR. GE.
X. LE.

Figure 4-7. RESTRICT Statement Format

4-4

60482200 D

J)

J)

SUB-SCHEMA COMPILATION

The FORTRAN sub-schema is coded on a standard
80-column coding sheet according to the specifications in
this manual. Coding information is punched on 80-column
cards or entered through a terminal. The resulting source
program and various control statements are input to the
FORTRAN/DDL compiler to compile the sub-schema and
to store it in the sub-schema library. The control
statements provide information for the operating system
and for the FORTRAN/DDL compiler. A set of control
statements, beginning with a job statement and ending
with a 7/8/9 card or its equivalent, precedes the
FORTRAN/DDL source program.

SUB-SCHEMA LIBRARY

One or more compiled sub-schemas are stored in a
permanent file called the sub-schema library. The library
is created when the first sub-schema is stored in it.
Subsequent sub-schemas are added to the library or
replace existing sub-schemas in the library. A sub-schema
can be deleted from the library through the use of the
purge parameter on the DDLF control statement.

Data security can be maintained by creating more than
cne sub-schema library in order to contro}l the availability
of the sub-schemas to the FORTRAN programs.

Sub-schemas providing access to data that is restricted to
specific applications can be stored in one sub-schema
library while sub-schemas for general use can be stored in
a different library. Each library is identified by a unique
permanent file name. When the applications program is
compiled, a sub-schema library must be attached by
specifying the permanent file name of the library.
Sub-schemas stored in other libraries are not available to
the program.

DDLF CONTROL STATEMENT

The DDLF control statement (figure 5-1) must be included
in the set of control statements preceding the
FORTRAN/DDL source program. It provides the
FORTRAN/DDL compiler with information related to a
specific sub-schema. The DDLF control statement is used
to add, replace, or delete a sub-schema in the sub-schema
library, or to create a compacted sub-schema library.

FORTRAN 4 and FORTRAN 5 applications programs can
access areas in a data base if the sub-schema referenced
by the program has been compiled for the appropriate
version of FORTRAN. The DODLF control statement
parameters F4 and F5 differentiate between the two
versions.

F4
DDLF(g, SB=Ifn,py,p2.P3,P4.P5.Pg.P7.Pg.Pg)

installation time.

DDLF Identifies the FORTRAN/DDL control statement.

F4 An optional parameter that specifies language version. This parameter specifies
a sub-schema for use with a FORTRAN 4 applications program. If F4 or F5
is not specified, F4 is assumed; however, this default can be changed at

F5 An optional parameter that specifies language version. This parameter specifies
a sub-schema for use with a FORTRAN 5 applications program.

SB=lfn Specifies a logical file name (Ifn) of the sub-schema library; default is SBLFN.
Py I=Ifn An optional parameter that specifies a nondefault input file; Ifn is the logical file
name of the source input file; default is INPUT.

P2 L=Ifn An optional parameter that specifies a nondefault output file; Ifn is the logical
file name of the source listing file; default is OUTPUT. {f L=0 is specified, only
diagnostics and associated statements are listed.

P3 R An optional parameter that replaces the existing sub-schema in the sub-schema
library with the sub-schema compiled from the source program in the input deck.
Replacement takes place only if no compilation errors other than informative
diagnostics are encountered.

P4 N An optional parameter that compiles the sub-schema but does not add it to the
sub-schema library.

Ps P An optional parameter that purges the specified sub-schemas from the sub-schema

library; no compilation takes place.

Figure 5-1. FORTRAN/DDL Control Statement Format (Sheet 1 of 2)

60482200 D 5-1

Pg SC=lfn

P A

LO=0p4/0
1oP2 S source listing

specifications.

p9 NL=lfn

An optional parameter that specifies the lagical file name of the schema; this param-
ater overrides the schema name specified in the SUBSCHEMA statement of the source
program; default is the first seven characters of the name specified in the program.

An optional parameter that produces a list of sub-schemas and their corresponding
schemas, together with their creation dates, from the library indicated by the SB
parameter. No compilation takes place.

An optional parameter that selects the listing produced by the DDLF compiler.
LO=0p4 op;, must be one of the following:

O object listing of data mapping modules and source listing

If LO is not specified, or if LO only is specified, S only is assumed. Source and
object listings are written to the file specified by the L parameter. If L=0 is
specified, no listing is produced, except for error messages, regardless of LO

An optional parameter that invokes the sub-schema library compaction facility
to create a compressed sub-schema library from an existing sub-schema fibrary.
Sub-schemas that have not been pu{ged or replaced are copied to ifn and a revised

index table is created. The default Ifn is NEWLIB. No compilation takes place.

Figure 5-1. FORTRAN/DDL Control Statement Format (Sheet 2 of 2)

Only one library manipulation function can be performed
in an execution of FORTRAN/DDL. If more than cne
function is specified, a control statement error is issued.
If a library manipulation function is attempted on a
nonempty file that does not contein a library, a diagnostic
is issued and the job is aborted.

MULTIPLE SUB-SCHEMA COMPILATION

Several sub-schemas can be compiled with a single DDLF
control statement. The sub-schemas must be combined
into a single input file with no intervening
end-of-records. Each sub-schema is compiled in turn until
an end-of-record (end-of-information) is encountered.
The parameters specified on the DDLF control statement
apply to all sub-schemas in the input file.

NOS/BE CONTROL STATEMENTS

In additiocn to the DDLF control statement, standard
NOS/BE control statements are included in the set of
control statements preceding the FORTRAN/DDL source
statements. Refer to the NOS/BE reference manual for
complete descriptions of the control statements. Two
control statements that must be used in specific instances
are described in the following paragraphs.

REQUEST CONTROL STATEMENT

The REQUEST control statement (figure 5-2) is included
in the set of control statements for the first sub-schema
to be stored in the sub-schema librery. This statement
specifies the logical file name of the sub-schema library.

REQUEST(ifn,*PF)

ifn Specifies the logical fite name of
the sub-schema library.

CATALOG CONTROL STATEMENT

The CATALOG control statement (figure 5-3) is used to
catalog the sub-schema library on a permanent file. This
statement must be included in the set of control
statements for the first sub-schema to be stored in the
library. If more than one sub-schema is to be stored in
the library, the extend (EX) and modify (MD) parameters
must be specified.

CATALOG(Ifn,pfn,ID=owner,EX=pw,MD=pw,CN=pw)

Ifn Specifies the logical file name of the
sub-schema library. If Ifn is omitted,
the first seven characters of the pfn
are used for the logical file name.

pfn Specifies the permanent file name of
the sub-schema library. If pfn is
omitted, the Ifn is used for the
permanent file name.

ID=owner Identifies the owner of the sub-
. schema library file being created.

EX=pw Specifies the password required to
add a sub-schema to the sub-schema
library.

MD=pw Specifies the password required to
make a change to the sub-schema
library.

CN=pw Specifies the password required to
purge the sub-schema library,

Figure 5-2. REQUEST Control Statement Format

5-2

Figure 5-3. CATALOG Control Statement Format

60482200 D

JJ

J)

NOS CONTROL STATEMENTS

The set of control statements preceding the
FORTRAN/DDL source statements include the DDLF
control statement and standard NOS control statements.
Refer to the NOS reference manual for complete
descriptions of the control statements. The DEFINE
control statement (figure 5-4) must be included in specific
instances.

DEFINE(ifn=pfn/PW=passwrd,CT=ct,M=m)

Ifn=pfn Specifies the logical and permanent
file name of the sub-schema library.
If pfn is omitted, Ifn is the perma-
nent file name.

PW=passwrd Specifies the password required to
add a sub-schema to the sub-
schema library.

CT=ct Specifies the method of access.
Available entries include P (private),
S{semiprivate}, and PU(public).

M=m Specifies the file or user permission
mode. Available entries include W
{write), M(modify), A(append}, and
R(read).

Figure 5-4. DEFINE Control Statement Format

SAMPLE DECK STRUCTURES

The following paragraphs describe the deck structures and
control statements required to compile, store, and delete
FORTRAN sub-schemas. Control statements for both the
NOS/BE and NOS operating systems are described.

COMPILING A SUB-SCHEMA

The source program for a FORTRAN sub-schema can be
compiled without storing it in the sub-schema library.
This is accomplished with a deck structure similar to the
one shown in figure 5-5. The DDLF control statement
must be included in the control statements and the
compile parameter (N) must be specified. The language
version parameter (F4 or F5) should be specified, or a
default value is assumed. The schema file must also be
attached.

CREATING THE SUB-SCHEMA LIBRARY

The sub-schema library is created when the first
sub-schema is stored in it. Figure 5-6 illustrates a deck
structure used to compile a sub-schema and create a
sub-schema library.

In this example, the schema file SCHPAY is attached. The
REGQUEST/CATALOG and DEFINE control statements
specify the logical file name of the sub-schema library
and assign it to a permanent file device. If only cne
sub-schema is to be stored in the library, the sub-schema
name can be used for the library file name. The DDLF
control statement names the sub-schema and schema files
and specifies the language version.

ADDING TO THE SUB-SCHEMA LIBRARY

Once the sub-schema library has been created, new
sub-schemas can be added to the library. The deck
structure illustrated in figure 5-7 adds a sub-schema to
the sub-schema library created by the example in
figure 5-6.

NOS/BE Operating System

L

6

7

8 y.

9 FORTRAN/DDL Sub-Schema
Source Input

7
8

/ DDLF(F5,SB=SBTST,N,SC=SCHPAY)
/ATTACH(SCHPAY,ID=DD L)

Job Statement

NOS Operating System

6
-
9 (FORTRAN/DDL Sub-Schema

Source Input
7 1
g /DDLF(F5,5B=SBTST,N,SC=SCHPAY)
/ATTACHISCHPAY) =
/ CHARGE Statement
/ USER Statement
/ Job Statement

Figure 5-5. Compiling a Sub-Schema

60482200 C

NOS/BE Operating System

NOS Operating System

|

L

Y

6

7

8 y

9 { FORTRAN/DDL Sub-Schema Source Input

[-]

? CATALOG(SUBSCH,ID=DDL MD=DDL,
EX=DDL,CN=DDLX)

/DD LF(F4,5B=SUBSCH,SC=SCHPAY)
/ REQUEST(SUBSCH,*PF)

/ ATTACH(SCHPAY,ID=DDL}

Job Statement

Y

=

6
7
8
9

(FORTRAN/DDL Sub-Schema Source Input

7
8

9 : ,
/ DDLF(F4 SB=SUBSCH,SC=SCHPAY)

/ DEFINE(SUBSCH/PW=DDL,CT=PU,M=W)

(ATTACH(SCHPAY)
- /CHARGE Statement

//USER Statement
Job Statement

Figure 5-6. Creating a Sub-Schema Library

NOS/BE Operating System

NOS Operating System

L T

I

L

©CoOoND

(FORTRAN/DDL Sub-Schema Source Input

7
8

9
/ DDLF({SB=SUBSCH)
/ ATTACH(SUBSCH,ID=DDLPW=DDL)
/ATTACH(SCHPAY,ID=DDL)

Job Statement

OO~

(FORTRAN/DDL Sub-Schema Source Input

: il

8 /DDLFisB=sUBSCH)

/ATTACH{SUBSCH/PW=DDL,M=W)
ATTACH(SCHPAY)
/CHARGE Statement
/USER Statement
Job Statement

54

Figure 5-7. Adding a Sub-Schema to the Library

60482200 C

J)

J)

n

Two ATTACH control statements are required in this
example. The schema file SCHPAY and the sub-schema
library file SUBSCH are attached. The DDLF control
statement requires cnly the SB parameter if the schema
name and file name are the same and the appropriate
language versian is the default value.

Each sub-schema stored in the library must have a unique
name. If the sub-schema being added to the library has
the same name as a sub-schema already stored in the
library, a diagnostic is issued and the job is aborted.

REPLACING A SUB-SCHEMA

A new sub-schema can replace one stored in the
sub-schema library. Figure 5-8 illustrates a deck
structure for replacing a sub-schema in the library.

The sub-schema library file is attached with the
applicable password specified. The schema file, SCHPAY,
must also be attached. In addition to the SB parameter in
the DDLF control statement, the replacement parameter
(R) must be specified. The DDLF control statement also
specifies language version; in this figure F5 is specified.
If the sub-schema to be replaced cannot be found in the
sub-schema library, an informative diagnostic is issued
and the new sub-schema is added to the library.

DELETING A SUB-SCHEMA

A sub-schema stored in the sub-schema library can be
deleted from the library by specifying the purge
parameter (P) in the DDLF control statement. A deck
structure for deleting two sub-schemas is shown in
figure 5-9.

The sub-schema file must be attached. The SB and P
parameters are specified in the DDLF control statement.
The 7/8/9 card or its equivalent designates the end of the
control statements. This is followed by statements that
specify the sub-schemas to be deleted. The sub-schema
name is entered anywhere from column 7 through
column 72. If more than one sub-schema name is entered,
a comma must follow each sub-schema name.

COMPACTING A SUB-SCHEMA LIBRARY

When a sub-schema is purged or replaced in a sub-schema
library, the index table is altered but the sub-schema is
not physically removed from the library. This can result
in much unused space in a sub-schema library. The
sub-schema library compaction facility can be used to
create a new, compacted sub-schema library from an
existing sub-schema library, eliminating any purged or
replaced sub-schemas. The sub-schema compaction
facility is invoked by the NL parameter on the DDLF
control statement. Figure 5-10 illustrates a deck
structure for creating a compacted sub-schema library.

The existing sub-schema file is attached. The
REQUEST/CATALOG and DEFINE control statements
specify the logical file name of the new sub-schema file
and assign it to a permanent file device. On the DDLF
control statement, the SB parameter specifies the old
sub-schema file name and the NL parameter specifies the
new sub-schema file name and calls the library
compaction facility. Active sub-schemas on the old
library are transferred to the new library. The PURGE
statement destroys the old library file.

NOS/BE Operating System

6
S |
8 Vs
g (FORTRAN/DDL Sub-Schema Source Input
7
8

9
~ / DDLF{F5,SB=SUBSCH, R)
//ATTACH(SUBSCH,ID=DDL PW=DDL)

JATTACH(SCHPAY,ID=DD L)

Job Statement

NOS Operating System

(FORTRAN/DDL Sub-Schema Source Input

7
8 /DDLF(F5,5B=SUBSCH,R)]
/ATTACH(SUBSCH/PW=DDL,M=M)
ATTACH(SCHPAY)
CHARGE Statement

/USER Statement

OoOoND

Job Statement

Figure 5-8. Replacing a Sub-Schema in the Library

60482200 C

5-5

NOS/BE Operating System

; / NEWHIRES
9 r PAYROLL

7

8

9
/ DDLF{SB=SUBSCH,P)_
ZATTACH(SUBSCH,ID=DD L,PW=DDL)

Job Statement

NOS Operating System

VA NEWHIRES

QoOND

(PAYROLL

: |

8 /ODLF(SB-SUBSCHP)

/ATTACH{SUBSCH/PW=DDL,M=M)
/ CHARGE Statement o
/ USER Statement
Job Statement

Figure 5-9. Deleting a Sub-Schema from the Library

NOS/BE Operating System

/PURGE(SUBSCH,RB=1)

Wo~NM

X=DDL,CN=DDLX)

/DDLF(SB=SUBSCH,NL=NEWSUB)
REQUEST(NEWSUB,*PF)

/ATTACH(SUBSCH,I D=DDL)

Job Statement

fATALOG(NEWSUB,ID=DDL,MD=DDL, 7
E

NOS Operating System

6 I
7
8 /PURGE(SUBSCH)
9 / DDLF(SB=SUBSCH,NL=NEWSUB)
/DEFINE(NEWSUB/PW=DDL,CT=PU,M=\Y)
/ ATTACH(SUBSCH)

CHARGE Statement
/ USER Statement

Job Statement

5-6

Figure 5-10 Compacting a Sub-Schema Library

60482200 C

J)

J)

Al

COMPILATION OUTPUT

A listing of the FORTRAN/DDL source program is
provided whenever a sub-schema is compiled. Each line of
the listing corresponds to one socurce line or card image in
the source program. The format and order of each line on
the listing are identical to the format and order of the
statements in the source program. The compilation
output listings of the sub-schema used in the examples in
this manual are included in appendix I.

The FORTRAN/DDL compiler assigns a line number to
each input statement beginning with 00001. The line
numbers are printed on the source listing starting in
column 16. Diagnostic messages begin in column 3 of the
listing. After the last input statement is listed, a
compilation summary is printed. When relation statistics
are applicable, relation names and their traversed areas
are included.

The source listing can be suppressed by specifying L=0 on
the FORTRAN/DDL control statement. Diagnostic
messages and the compilaticn summary are the only
listing that is printed.

A cross-reference list and a data map are not printed
when the sub-schema is compiled. When the FORTRAN
applications program containing DML statements is
compiled, the variables and arrays defined in the
sub-schema or generated by the DML preprocessor are not
listed unless the DS parameter is specified on the DML
control statement.

60482200 C

RECOMPILATION GUIDELINES

DDL generates a checksum (an identifying 1-word bit sum)
for each area and relation in the schema. These
checksums are the means for determining the need to
recompile a sub-schema. If a checksum in a recompiled
schema is different from the corresponding checksum in
the previous schema, any sub-schema referencing the
changed element must be recompiled. A sub-schema not
referencing a changed element does not need to be
recompiled.

ODL generates a single checksum for a sub-schema. This
checksum is the means for determining the need to
recompile a FORTRAN/DML program. If a checksum of a
recompiled sub-schema differs from- the previous
checksum, all applications programs referencing that
sub-schema wmust be processed again by the DML
preprocessor and recompiled. When the FORTRAN/DML
program is compiled, the checksum of the sub-schema it
references is copied into the program binary output.
When the program is executed, that checksum must be the
same as a checksum of a sub-schema in the master
directory. If the program references an invalid checksum,
CDCS aborts the program and issues a diagnostic.

FIELD LENGTH REQUIREMENTS

Field length requirement for generating a minimum
FORTRAN sub-schema is 60gik. A minimum sub-schema
contains one realm, one record, and one item. Field
length requirements for a larger sub-schema can be
estimated by using the formula:

60K + (n*12)

where n is the number of elements. An element is a
realm, record, item, or relation.

FORTRAN DATA MANIPULATION LANGUAGE

The FORTRAN Data Manipulation Language (DML) is the
execution time facility enabling data base access from a
FORTRAN program. DML cen be used with both
FORTRAN 4 and FORTRAN 5 programs. DML consists of
8 series of statements, similar to FORTRAN statements,
that are included in a FORTRAN program and processed
by the DML preprocessor prior to compilation of the
program. DML translates the statements- into FORTRAN
specification statements and CALL statements, which can
then be compiled like other FORTRAN statements. At
execution time, CDCS is called to access the data base.

This section describes the DML statements and the DML
control statement, which causes the preprocessing of DML
statements. The language version of the FORTRAN
pragram is specified in the DML control statement.

DML STATEMENTS

The syntax requirements for DML statements are
basically the same as for FORTRAN statements of the
language version specified in the DML control statement.
The syntax requirements are outlined in the FORTRAN
Extended 4 reference manual and in the FORTRAN 5
reference manual. The exceptions to standard syntax
are: a DML statement cannot be the object of a logical
IF, a DML statement in a FORTRAN 4 program can
contain a special long variable, and a DML statement
cannot appear on the same line as another statement (that

is, the $ statement separator cannot be used as is allowed
in FORTRAN 4 statements).

For some DML statements, syntax requirements are
different for FORTRAN 4 and FORTRAN S programs. In
this section of the manual, these differences are indicated
by two separate formats in the figure illustrating the
statement format. Appendix E contains a syntax
summary of DML statements for FORTRAN 5
applications programs. Appendix F contains a syntax
summary of OML statements for FORTRAN 4
applications programs. The differences in FORTRAN 4
and FORTRAN 5 that affect syntax in DML statements
are summarized in appendix J.

DML statements access files defined by the sub-schema.
The sub-schema must be compiled before the DML
preprocessor is called, and the sub-schema library file
must be available to the OML preprocessor. (See
section 5 for sub-schema compilation.) The files
referenced in the DML statements should not be
referenced elsewhere by conventional input/cutput
statemments, including the PROGRAM statement; they
should be referenced exclusively by DML statements.

DML statements can appear both in the main program and
in subprograms. Table 6-1 summarizes the DML
statements and states where they are allowed to appear
within the executable or nonexecutable statements of a
program.

60482200 C

SUBSCHEMA STATEMENT

The SUBSCHEMA statement (figure 6-1) is required in
every program unit accessing the data base defined by the
sub-schema. It need not appear in a program unit that
contains no DML statements. It is nonexecutable, and
must appear after the specification statements and before
the first DATA or NAMELIST statement, statement
function, or executable statement.

SUBSCHEMA (sub-schema-name)

Figure 6-1. SUBSCHEMA Statement Format

Only one sub-schema can be used by a FORTRAN
program. The sub-schema to be referenced must have
been previously compiled with the same language version
specified (F4 or F5) as specified in the DML control
statement. The sub-schema must be available to the DML
preprocessor.

At the point in a program unit where the SUBSCHEMA
statement appears, the DML preprocessor copies the text
of the type declarations and DATA statements resulting
from the sub-schema compilation into the program. The
variables and arrays appear in common blocks. In
addition, several other variables and arrays are declared
by DML. These variable and array names are reserved for
use by DML, and should not be defined by the user.
Appendix G contains a list of all the variable, array, and
common block names created by the DML preprocessor.

The common block DB0000 is declared by DML in every
FORTRAN/DML program. This common block contains
variables used for error and status processing. The
declarations for the block are as follows:

INTEGER DBREALM(3), DBTSTAT, ...,
DBRnnnn(3), DBSnnnn, . . .

COMMON /DB0000/ DBREALM, DBSTAT, ...,
DBRnnnn(3), DBSnnnn, . . .

These variables are used as follows:

DBREALM Name of realm to which status code in
DBSTAT applies.

DBSTAT Status of DML request.

DBRnnnn Name of realm whose sub-schema
ordinal number is nnnn.

DBSnnnn

Current status of realm whose
sub-schema ordinal number is nnnn.

INVOKE STATEMENT

The INVOKE statement (figure 6-2) must be executed
before any other DML statement (except SUBSCHEMA,
which is nonexecutable). It establishes connection
between the applications program and CDCS. INVOKE
must be executed in every program unit in which DML
statements are executed.

TABLE 6-1. FORTRAN/DML STATEMENTS

Statement Function 1:°§;§;$2m Statement Function 1ﬁ°::§;:2m

SUBSCHEMA | Identifies the Must appear after START Logically posi- Anywhere between
sub-schema to be | specification state- relation | tions the root OPEN and CLOSE for
used by the ments and before any realm of the a relation.
program, DATA or NAMELIST specified rela-

statements, statement tion for subse-
function definitions, quent retrieval
or executable state- of records
ments of every program through a DML
unit containing DML READ relation
statements. statement.

INVOKE Establishes con- |[Must be executed before READ Transfers data Anywhere between
nection between any other DML statement from a record in { OPEN and CLOSE for
the executing (except the SUBSCHEMA the specified a realm.
program and CDCS. | statement, which is data base file to

nonexecutable); must the variables in-
appear in every program cluded in the
unit containing DML sub-schema
statements. description of

’ the record.

TERMINATE [Disconnects the Must be the last DML
executing pro- statement to be execu- READ Transfers data Anywhere between
gram from CDCS. ted until a subsequent relation | from a record in | OPEN and CLOSE for

INVOKE statement. each of the data | a relation.
base files com-

PRIVACY Establishes right | Optional; must be exe- prising the
of the program cuted before the first relation to the
to access to a execution of OPEN for variables in-
realm, a realm, cluded in the

sub-schema

OPEN Initiates pro- Anywhere between descriptions of
cessing of a INVOKE and TERMINATE; the records.
realm, can only be executed

when a realm is closed. WRITE Causes a record Anywhere between
to be stored in a | OPEN and CLOSE for
data base file a realm.

OPEN Initiates pro- Anywhere between consisting of the

relation | cessing of the INVOKE and TERMINATE; current values of
realms joined in | can only be executed the variables in-
the relation. if the realms are cluded in the

closed. sub-schema
description of

CLOSE Ends processing Anywhere after OPEN the record.
of a realm. and before TERMINATE;

a realm can be opened REWRITE Logically Anywhere between

and closed any number replaces a record { OPEN and CLOSE for

of times in a program. in a data base a realm, but fol-
: file. Towing a READ or

CLOSE Ends processing Anywhere after OPEN LOCK.

relation }of the realms and before TERMINATE;

Joined in the realms in a relation DELETE Logically removes | Anywhere between
relation. can be opened and a record from a OPEN and CLOSE for
closed any number of data base file. a realm, but fol-
times in a program. lgging a READ or
LOCK.

START Logically posi- Anywhere between OPEN
tions a realm and CLOSE for a realm. LOCK Prevents other Anywhere between
for subsequent Jobs from up- OPEN and CLOSE for
retrieval of dating the a realm.
records through specified realm.

a sequential
DML READ state- UNLOCK Releases a lock Anywhere between
ment. on a specified OPEN and CLOSE for
realm. a realm.
6-2 60482200 D

JJ

2)

INVOKE

Figure 6-2. INVOKE Statement Format

The name of the program unit in which the first INVOKE
statement is executed is used by CDCS as the run-time-id
for log files. Subsequent INVOKE statements cause
verification that identical sub-schemas are being
referenced in each program unit.

TERMINATE STATEMENT

The TERMINATE statement (figure 6-3) disconnects the
applications program from CDCS. After TERMINATE has
been executed, no other DML statements can be executed
until another INVOKE has been executed. The
TERMINATE statement must be executed before the
FORTRAN STOP or END statement.

TERMINATE

Figure 6-3. TERMINATE Statement Format

TERMINATE permits CDCS to close files and return
resources used by the job. If the job terminates
abnormally before TERMINATE is executed, CDCS
automatically performs the same functions.

OPEN STATEMENT

The OPEN statement (figure 6-4) prepares a realm for
processing. No other statement related to the realm
(except PRIVACY) can be executed when the realm is not
open. The realm must be among those described in the
sub-schema.

FORTRAN 5 Format

|
realm-name _
OPEN ({relation-name} MODE = {'8} LERR=s])

FORTRAN 4 Format

realm-name _
OPEN ({relation-name} MODE = {'8})

] Open realm for input only.

10 Open realm for input and output; default when
MODE is omitted.

O Open realm for output only (not valid for relations).

Figure 6-4. OPEN Statement Format

An OPEN relation statement prepares the realms joined in
the relation for processing. The relation name must be
included in the sub-schema. Relations are normally
opened for input (MODE=I). The relation can be opened
for input and output (MODE=IO) if the user wishes to have
locking of records read for the relation occurrence, or if
individual realms in the relation are to be updated.

60482200 C

If any of the realms included in the relation are already
apen, no action occurs for that realm. Any previous mode
setting remains in effect.

When a realm is opened for input (MODE=I), only READ,
LOCK, UNLOCK, and CLOSE can be executed. When a
realm is opened for input/output (MODE=IO), READ,
WRITE, DELETE, REWRITE, LOCK, UNLOCK, and
CLOSE can be executed. Output mode (MODE=0) must be
specified for creation of a new file; it is not valid for an
existing file. When a realm is opened for output, only
WRITE, LOCK, UNLOCK, and CLOSE can be executed.

Example:
OPEN (CUL-DE-SAC, MGDE =1)

The realm named CUL-DE-SAC is opened in read-only
mode.

For FORTRAN 5 programs only, the optional error
specifier ERR=s is available to indicate the statement
where execution is to continue if an error condition occurs
on execution of the OPEN statement. In the specification
ERR=s, s must be the statement label of an executable
FORTRAN or DML statement within the same program
unit that contains the specification. For more
information, see the subsection ERR and END Specifiers.

CLOSE STATEMENT

The CLOSE statement (figure 6-5) ends processing of the
specified realm or the realms joined in the specified
relation. The only DML statement that can be executed
when a realm is closed is another OPEN statement.

FORTRAN 5 Format

realm-name }
CLOSE { {relation-name LERR=s])

FORTRAN 4 Format

CLOSE ({realm—name })
relation-name

Figure 6-5. CLOSE Statement Format

Realms closed by a CLOSE relation statement should not
be explicitly closed by a CLOSE realm statement. If a
realm closed by a CLOSE relation statement is already
closed, no action is taken for that realm.

For FORTRAN 5 programs only, the optional error
specifier ERR=s is available to indicate the statement
where execution is to continue if an error condition occurs
on execution of the CLOSE statement. In the
specification ERR=s, s must be the statement label of an
executable FORTRAN or DML statement within the same
proagram unit that contains the specification. For more
information, see the subsection ERR and END Specifiers.

READ STATEMENT

The READ statement (figure 6-6) causes CDCS to read a
record from the specified realm, disassemble it into the
variables and arrays included in the sub-schema
description of the record, and set these variables and

6-3

FORTRAN 5 Format

READ ({ﬁ;‘m} [,KEY £o.

FORTRAN 4 Format

realm-name .EQ.
READ({relation-name} KEY GT.

GE.

item-name | [LERR=s]} [,END=s])

item-name |)

Figure 6-6. READ Statement Format

arrays in the FORTRAN program to their current values
from the record. The record must be described in the
sub-schema. If any type conversion is implied by the
correspondence between the schema and sub-schema
descriptions of a data item, it is performed at this time.

A relation read causes CDCS to read a relation
occurrence. A relation occurrence consists of one record
from each of the realms comprising the relation. The
FORTRAN variasbles and arrays included in the
sub-schema description of each record are set to their
current values from the relation cccurrence.

1f the KEY option is omitted, the read is sequential; the
record or relation cccurrence located is the next record or
relation occurrence from the current location of the
realm or relation. The value 100g is returned in DBSTAT
or in the data base status block to denote end-of-file. If
the KEY option is used, the item referenced must be set
before the read to the primary or alternate key value of
the record desired. The item must have been defined in
the sub-schema, and must refer to a primary or alternate
key for the realm. For relations, the key must be in the
root realm, or first realm named in the schema relation
definition.

For FORTRAN 4 programs only, if the key is a special
long varisble, the array-name without subscripts must be
specified in the KEY option.

Example:

MYKEY(1) = 10HABCDEF GHIJ

MYKEY(2) = 10HKLMNOPQRST
MYKEY(3) = 10HUVWXYZABCD
READ (REALMA,KEY=MYKEY)

The value ABCDEFGHIJKLMNOPQRSTUVWXYZABCD is
established for the key that is referenced in the DML
READ statement by the unsubscripted array name
MYKEY. In the sub-schema, the item MYKEY was
declared an integer array with three elements. (For more
information about the special long variable, see the
Character Data subsection.)

The data item used as the key value for the read can be of
any data type except logical. If it is complex or double
precision, it is treated as real. If it is complex, the
imaginary part is discarded and it is treated as a real
value. If it is double precision, the least significant part
is discarded and it is treated as real.

To locate the desired record, the comparison specified by
the KEY option is performed. The record returned is the
first record in the realm (or in the root realm of the
relation) that satisfies the specified comparison. If the
comparison is .EQ. or =, the key of the record must
exactly match the value in the data item (no conversion is
performed, except as described for complex and double
precision items). If the comparison is .GE., the key of the
record must be greater than or equal to the value in the
data item. Values are compared by numerical magnitude.
If the comparison is .GT., the key in the record must be
strictly greater than the value of the data item.

If the primary or alternate key is described in the schema
as a character key, comparison by means of the ASCII or
COBOL collating sequence is not available in a FORTRAN
program; comparison is by display code only.

Example:

If the keys on the realm PONT-LEVEQUE are as
follows:

21
31
34

37

then the following statements read the record whose
key is 31:

MM =31

READ (PONT-LEVEQUE, KEY = MM)
and the following statements read the record whose
key is 36:

LAST =35
READ (PONT-LEVEGQUE, KEY .GE. LAST)

60482200 C

J)

J)

!

For FORTRAN 5 programs only, the optional specifiers
END=s and ERR=s are available to indicate the statement
where execution is to continue if an end-of-file condition
or an error condition occurs on execution of the READ
statement. The END specifier is applicable only for a
sequential read. In the specification END=s or ERR=s, s
must be the statement label of an executable FORTRAN or
DML statement within the same program unit that contains
the specification. For more information see the subsection
ERR and END Specifiers.

START STATEMENT

The START statement (figure 6-7) positions a realm or
relation for subsequent retrieval of records. Before the
START statement is executed, the realm or relation must
have been opened with MODE=I or MODE=IO specified.

Execution of the START statement causes CDCS to
establish the current position of the realm or relation. If
the KEY option is specified, the realm or relation is
positioned at the first qualifying record occurrence or
relation occurrence. In a START realm statement, the
item name specified must be a data item defined in the
sub-schema and must be a primary or alternate key for the
realm. In a START relation statement, the item name
specified must be a key that is defined in the root realm,
the first realm named in the schema relation definition.
For FORTRAN 4 programs, the item name can be a special
long variable that is used as described in the READ
Statement subsection.

If the KEY option is omitted, the relational operator is
assumed to be an equals sign; the item name is assumed to
be the primary key with a value equal to the current
contents of that item.

For FORTRAN 5 programs only, the optional error
specifier ERR=s is available to indicate the statement
where execution is to continue if an error condition cccurs
on execution of the START statement. In the specification
ERR=s, 3 must be the statement lsbel of an executable
FORTRAN or DML statement within the same program
unit that contains the specification. For more information,
see the subsection ERR and END Specifiers.

The START statement does not cause a record to be
transferred to the program. The statement is normally
followed by a sequential DML READ statement, which
performs the read from the position established by the
execution of the START statement. The START statement
can be specified any number of times.

Under most circumstances, either a START statement or a
READ statement that specifies the KEY option can be used
to position a realm or relation. However, when a user
wants to position a relation for subsequent sequential read
operations and that particular relation is qualified by a
RESTRICT statement, the START relation statement must
be used. Under this one circumstance, positioning the
relation with the READ statement (READ relation-name
KEY) would cause unpredictable results.

WRITE, REWRITE, AND
DELETE STATEMENTS

The formats of the WRITE, REWRITE, and DELETE
statements are shown in figure 6-8.

FORTRAN 5 Format

WRITE
REWRITE ; (realm-name [LERR=s])
DELETE

FORTRAN 4 Format

WRITE
REWRITE ; (realm-name)
DELETE

Figure 6-8. Formats of WRITE, REWRITE,
and DELETE Statements

These statements all create or modify individual records in
the named realm. The realm must have been defined in the
sub-schema.

FORTRAN 5 Format

realm-name

FORTRAN 4 Format

START { { mlation-name} KEY ‘ gg‘# item-name [,ERR’=s])
.GE

realm-name
START ({relation-name} 'KEY{

EQ. { .
GT. (item-name)
.GE.

Figure 6-7. START Statement Format

60482200 D

6-5 @

WRITE uses the current values of all the variebles defined
for the record in the sub-schema to construct a record, and
then writes the record to the named realm. All primary
and alternate keys must be set appropriately before the
record i3 written. Any data items in the schema record
that are not defined in the sub-schema are given null
values before the record i3 written to the data base. The
sctual null value for each data class is detailed in the
CDCS 2 reference manual.

REWRITE replaces the last record read with a new record
based on the current values of all the variebles defined for
the record in the sub-schema. The primary key must not
have changed since the last read, or an error results. The
only way to replace a record with a new record with a
different primary key is to delete the old record and then
write the new record.

DELETE removes the record maost recently read from the
realm. The primary key is checked to ensure that it has
not changed gince the last read.

For FORTRAN 5 programs only, the optional error
specifier ERR=s is available to indicate the statement
where execution is to continue if an error condition occurs
on execution of the WRITE, REWRITE, or DELETE
statement. In the specification ERR=8, 8 must be the
statement label of an executsble FORTRAN or DML
statement within the same progrem unit that contains the
specification. For more information, see the subsection
ERR and END Specifiers.

Example:
The keys on the realm REBLOCHON are as follows:

70

120
190
550

663
664

If item PKEY is defined in the schemna as the primary
key, and the following statements are executed:

PKEY = 662
C CREATE A NEWRECORD

WRITE (REBLOCHON)

PKEY = 300

READ (REBLOCHON, KEY .GT. PKEY)
C THISWILL DELETE RECORD WITH

PRIMARY KEY OF 550

DELETE (REBLGCHON)

PKEY = 100

READ (REBLOCHON, KEY .GE. PKEY)

C REWRITE RECORD WITH
PRIMARY KEY OF 120
REWRITE (REBLOCHON)

6-6

The keys on the file are then as follows:

70

120

190

662 (new record)
663

664

The CDCS locking mechanism requires that 8 REWRITE or
DELETE statement be preceded by a DML READ
statement or by a DML LOCK statement. The DML READ
statement locks a record; the DML LOCK statement locks
the realm.

Normally, statements intervening between the last READ
and the REWRITE would alter items in the record (but not
the primary key), since otherwise the identical record is
rewritten.

LOCK AND UNLOCK STATEMENTS

The formats of the LOCK and UNLOCK statements are
shown in figure 6-9.

FORTRAN 5 Format

{ LOCK

UNLOCK } {realm-name [,ERR=s])

FORTRAN 4 Format

{ LoCK
UNLOCK

} {realm-name)

Figure 6-9. Formats of LOCK and UNLOCK Statements

The LOCK statement prevents other jobs from updating
the specified realm until en UNLOCK statement is
executed. Although CDCS always locks the current record
whenever the realm Is opened for 1/0, LOCK locks the
whole realm. The UNLOCK statement releases the lock on
the specified realm. The realm must have been described
in the sub-schema.

For FORTRAN 5 programs only, the optional error
specifier ERR=s is available to indicate the statement
where execution is to continue if an error condition occurs
on execution of the LOCK or UNLOCK statement. In the
specification ERR=s, s must be the statement label of an
executable FORTRAN or DML statement within the same
program unit that contains the specification. For more
information, see the subsection ERR and END Specifiers.

PRIVACY STATEMENT
The PRIVACY statement (figure 6-10) establishes the

right of a program to access a realm. It has no effect
unless the realm was defined with an ACCESS-CONTROL

60482200 D

J)

J)

FORTRAN 5 Format

1

10

0
character-constant

variable-name

array-name-1

FORTRAN 4 Format

PRIVACY (realm-name,

|

10

(o]
Hollerith-constant

array-name-2

character-constant }
)

|
PRIVACY (realm-name, MODE= { IO} Y PRIVACY = { variable-name
(o]

array-name-1

Restricts access to input operations.

Allows access for both input and output; default when MODE is omitted.
Restricts access to output operations.

A privacy key of 1 through 30 characters delimited by apostrophes.

Name of a variable that is defined as type CHARACTER *30 and contains a 1-through
30-character privacy key that is left-justified and blank filled.

Unsubscripted name specifying a 3-word array containing a 1- through 30-character
privacy key that is left-justified and blank filled in the field of the array.

1
MODE= { IO} . PRIVACY = {

Hollerith-constant })
o

array-name-2

Restricts access to input operations.

Allows access for both input and output; default when MODE is omitted.
Restricts access to output operations.

A privacy key of 1 through 30 characters delimited by quotation marks.

Unsubscripted name specifying a 3-word array containing a 1-through 30-character
privacy key that is left-justified and blank filled in the field of the array.

Figure 6-10. PRIVACY Statement Format

clause in the schema. If the realm was defined with an
ACCESS-CONTROL clause in the schema, the PRIVACY
statement must supply the privacy key before the realm
cen be opened. To access several realms, each requiring a
privacy key, the FORTRAN program must contain a
PRIVACY statement for each realm. Similarly, to open a
relation that joins realms with each realm requiring a
privacy key for access, a PRIVACY statement for each
realm must be specified before the OPEN relation
statement.

The PRIVACY statement specifies the privacy key. The
language elements used to specify the privacy key depend
on the version of FORTRAN; figure 6-10 details what each

-version allows. FORTRAN 5 allows a character-constant,

variable-name, or an array-name to provide the privacy
key. FORTRAN 4 allows a Hollerith-constant or an
array-name to provide the key. For both versions of
FORTRAN, the privacy key must be a string of from 1 to
30 characters made availsble through the PRIVACY
statement. At execution time, CDCS compares the key
specified in the PRIVACY statement with the lock
specified in the schema ACCESS-CONTROL clause. If a
program attempts to open a realm without supplying the
correct privacy key, the program is terminated.

60482200 D

The type of access allowed when the character string
matches depends on the setting of the MODE opticn.
Table 6-2 details which mode option is used to satisfy the
types of locks in the schema ACCESS-CONTROL clause.
If no mode is specified, IO is assumed.

TABLE 6-2. SCHEMA ACCESS-CONTROL CLAUSE

Privacy
Mode Update Retrieval
Option
m
1 X
0 X
10 X X

FORTRAN & example:

PRIVACY(GORGONZOLA, MODE = IO, PRIVACY =
1 "THIRTY CHARACTERS ARE ALLGWED.")

If the character string in the ACCESS-CONTROL clause in
the schema is also THIRTY CHARACTERS ARE
ALLOWED, then the realm GORGONZOLA can be opened
in any mode.

FORTRAN 5 example:

CHARACTER*30 PKEY
DATA PKEY /'OPEN SESAME/

PRIVACY(TALES,PRIVACY=PKEY)

In the FORTRAN S program, the character-veriable PKEY
is declared having a length of 30 cheracters and is given
the value OPEN SESAME. The PRIVACY statement
specifies the varisble PKEY. If the character string in the
ACCESS-CONTROL clause in the schema is also OPEN
SESAME, then the realm TALES can be opened in any mode.

LISTING CONTROL DIRECTIVES

The DML preprocessor automatically generates listing
control directives as part of the translated FORTRAN
program. These directives have the farm:

FORTRAN 4 FORTRAN 5
C/ LIST,NONE C$ LIST(ALL=0)
C/ UST,ALL C$ LIST(ALL)

The first directive iphibits the listing of all succeeding
FORTRAN statements. The second directive resumes
listing of FORTRAN statements. The DML preprocessor
ingserts these directives immediately after the
SUBSCHEMA and INVOKE statements, as in the following
example:

** SUBSCHEMA(BIRD)
C/ UIST,NONE
C/ UST,ALL

= INVOKE
C/ LIST,NONE
C/ LIST,ALL

The effect of the listing control directives is to inhibit the
listing of the FORTRAN statements generated by FDBF.
These directives cen be suppressed by the DS parameter on
the DML control statement, in which case all FORTRAN
statements generated by FDBF appear on the FORTRAN
source listing. Note that the CALL statements generated
as a result of executable DML statements are not
suppressed by the listing control directives.

ERROR PROCESSING

During execution of FORTRAN/DML processing, varicus
error conditions are detected by CDCS and CRM, Some of
these errors are fatal and cause immediate job step abort;
others are nonfatal and allow the job to continue (while
possibly leaving the current input/output operation
incomplete). In the latter case, the user might wish to be
informed of the error condition that was detected, possibly
to print a message or to perform other operations. For this
reascn, several mechanisms have been established for
communication between CDCS and a user program.

§ s

This subsection on error processing describes some of these
mechanisms. Varisbles and arrays defined by CDCS are
available for user access so that more information can be
obtained when an error occurs. CDCS also can return error
codes and status information in the data base status block
if OMLDBST is called in a FORTRAN program.
FORTRAN 5 programs can use ERR and END specifiers in
DML statements to specify special processing when an
error or end-of-file condition occurs. Some CDCS and
CRM diagnostic codes returned in DBSTAT or in the data
base status block do not necesserily represent error
conditions; rather, they are informative diagnostics. A
following subsection indicates some informative diagnostic
codes.

RESERVED VARIABLES

Varisbles and arrays defined by FDBF are available for
user sccess so that more infarmation can be abtained when
an error occurs. (See appendix G for a complete list of
reserved varigbles.) The following variables are available:

DBREALM(3) Name of the realm on which the most
recent DML operation was performed.
The name is a Hollerith constant,
left-justified in the 3-word array, with
blank fill.
DBSTAT Error number in octal of the most
recent error; either a CDCS error
number or a CRM error number.
Numbers between 600 and 677 are
CDCS errors; all others are CRM
errors. See the appropriate reference
manual for a complete list of errors.
If the value of DBSTAT is zero, no
error occurred. DBSTAT should be
printed using an O format.
DBRnnnn(3) Realm name, in the same format as
DBREALM. One variable in this form
is reserved for each realm; the number
nmnnn is the realm ordinal. Realm
ardinals are assigned in the seme order
as realms are declared in the
sub-schema; the first ordinal is 1.

DBSnnnn Error status for realm ODBRnnnn.
Same format as DBSTAT. If no error
occurred on the last access to realm
nnnn, DBSnnnn is zero; otherwise, it is
set to the number of the error thst
occurred.

After each DML operation, the value in DBSTAT reflects
the status of the input/output operation. If the statement
has been successfully executed, the value in DBSTAT is 0.
If ean errar has prevented successful execution of the
statement, DBSTAT contains the octal value of the CRM
or CDCS error or status (such as end-of-information). The
status varisble should be checked after each DML
operation to maintain integrity of the data base.

For relation processing, several status or error codes might
result from execution of a single DML READ. In this case,
DBREALM contains the name of the last realm read that
produced a nonzero status. DBSTAT contains the value of
that status or error code. The status of each realm
involved in the relation can be found in the DBSnnnn field
for that realm. The CDCS 2 reference manual describes
the status codes that can result from a READ relation.

60482200 D

J)

JJ

With this scheme, the user can either determine the most
recent error occurring in any realm (with DBSTAT) or the
current status of a particular realm (with DBSnnnn).

DATA BASE STATUS BLOCK

The user can include an array, called a data base status
block, in the FORTRAN progrem to which CDCS returns
data base status information. CDCS updates the data base
status block after every operation on a data base file or
relation. Information returned to the data base status
block includes the following:

e CRM or CDCS error code (or codes, for relations)
e Sub-schema item ordinal for item-level errors

| ¢ CRM code indicating file position of a realm
e Function being executed when an error cccurred

e Rank in a relation of the realm on which either 8 CRM
ar CDCS error occurred or a special relation condition
(null record or control break) occurred

o Name of the realm on which an error occurred

The user program communicates the location and length of
the data base status block to CDCS by calling a routine.
The length must be at least 1 word and should not be
greater than 11 words. CDCS returns as much information
as possible in the given length. The block should be of type
INTEGER. The format of the call is as follows:

CALL DMLDBST(status-block,length)

where status-block is the name of the array to be used by
CDCS and length is the length in words of the status bleck.

The information returned in the data base status block is as
follows:

Word
Number Contents

1 CRM or CDCS error code in octal for the
last data base operation on a realm or
relation; zero if no error has cccurred.

Note that only error codes are returned. If
the last operation was a relation retrieval
for which a null record or control break
occurred, the status codes for these
conditions are not returned.

2 Suw-schema item ordinal for CDCS
item-level errors. Item-level errors include
data validation errors, record mapping
errors, and item-level data base procedure
errors. Value is zero if no errors have
occurred. The item ordinal assigned by the
FORTRAN DDL compiler is identified on
the sub-aschema source listing.

3 CRM code in octal indicating file position of
the realm when the last data base cperaticn
was performed. A file position code is
returned when open, close, read, and start
operations are performed. For a relation
operation, the file position code indicates
the position of the root realm when the last
operation was performed. The following list
includes the file position codes that most
commonly occur during data base processing.

60482200 D

10g End-of-key-list, which occurs when
the last primary key value
associated with a given alternate
key has been returned during a read
operation using an alternate key
value.

20g End-of-record, which occcurs when a
record has been returned during a
read cperation.

100g End-of-information, which occurs
when a sequential read operation is
attempted after the previcus read
operation returned the last record in
the file. This file position code can
be used in a FORTRAN program to
determine end-of-file.

If a FORTRAN program uses information
returned in the data base status block to
determine end-of-file, the file position code
should be used. The file position codes are
CRM codes; further information on file
position (the FP field of the file information
table) is in the CYBER Record Manager
Advanced Access Methods reference manual,

Not used (reserved for future use).

Function being performed when an error or
relation condition occurred; one of the
following charecter strings (left-justified
and blank filled):

UNDEFINED CPEN

RAN-READ CLOSE
SEQ-READ START
WRITE RECOVR-PT
REWRITE TIME
DELETE PRIVACY
REL-READ LOCK
REL-NEXT UNLOCK
REL-STRT END

Value is undefined if no error has occurred.

For a relation operation, the rank of the
realm on which a CRM or CDCS error
occurred; zero if no error has occurred.

The root realm of the relation has a rank of
one.

An error on a realm during a relation read
terminates the operation. Consequently,
there is never more than one rank in the
relation which has a CRM or CDCS error.

For a relation operation, the lowest rank on
which a control break occurred; zero if no
control break has occeurred.

The root realm of the relation has a rank of
one. All realms in the relation with a rank
greater than the rank stored in this word
also have control break status or null status
(null status overrides control break status).

For a relation operation, the lowest rank for
which there was a null record; zero if no
null record.

6-9

The root realm of the relation has a rank of
one. All realms in the relation with a rank
greater than the rank stored in this word
also have null record occurrences.

Name of the realm on which an error has
occurred; stored as a left-justified, blank
filled character string. Contains blanks if
no errar has occurred, or if the error has
occurred on a non-1/O operation or an 1/O
operation nct explicitly requested by the
user.

9,10,11

An example of the declarations for the data base status
block is as follows:

INTEGER STATUS(11),FUNCTN,RELSTAT(3)
INTEGER REALM(3),IER,IORD

EQUIVALENCE (STATUS(1),IER),

» (STATUS(2),ICRD),

* (STATUS(B),I!-;P),

* (STATUS(5),FUNCTN),

* (STATUS(6),RELSTAT(1)),
* (STATUS(9),REALM)

CALL DMLDBST(STATUS,11)

Note that the length of the status block is variable; CDCS
updates only those words contained within the given
length. If, for instance, the user program was not
interested in the realm name, the last three words could be
omitted. The array STATUS would then be eight words
leng. Only these eight words would be updated by CDCS
after every data base operation.

Although the length of the data base status block is
variable, the length provided must be sufficient to allow
complete specification of each unit of status informaticn,
or that information will not be updated. Thus, three words
are required for both the relation status (words 6, 7, and 8)
and the realm name (words 9, 10, and 11). Additionally,
CDCS updates words 2, 3 and 4 as a single unit that returns
auxiliary status; for information to be returned in any one
of these words, length must be provided for all three
words. If, for example, the block length is six words, there
is not enough space for CDCS to return all three words of
the relation status, so no relation status is returned.

The data base status block consists of character and
numeric information. Octal codes are returned in words 1
and 3. Decimal integers are returned in words 2, 6, 7,
and 8. Character strings are returned as follows: a
10-character string in word 5 and a 30-character string in
words 9, 10, and 11. A FORMAT statement that is used in
printing words of the data base status block should
appropriately specify the contents of each word that is
being printed.

The routine DMLDBST can be called at any point in the

FORTRAN grogram after the INVOKE. It need be called
only once. The status block specified in the call is updated

6-10

for any data base operation performed after the call. Each
time DMLDBST Is called, the status block is initialized to
zeros or blanks, so it should not be called after execution
of a DML statement if the status of that statement is
desired. Only one status block can exist at a time for a
FORTRAN program. If DMLDBST is called more than once
in a program, the status block defined in the last call is the
one that is updated by CDCS.

1f DMLDBST is not called, the FORTRAN program can still
reference the varisble DBSTAT and the status words for
each realm in the common blocks set up by FDBF
(described under Error Processing).

ERR AND END SPECIFIERS

The optional error and end-of-file specifiers in the form
ERR=s and END=s are allowed only in FORTRAN 5
programs. The s refers to the statement label of an
executable FORTRAN or DML statement where execution
is to continue if an error or end-of-file condition occurs
during execution of the DML statement containing the
specifier.

The ERR=s specifier can be added to the following DML
statementss OPEN, CLOSE, READ, WRITE, DELETE,
REWRITE, LOCK, and UNLOCK. If a CRM or CDCS error
condition occurs during the execution of a DML statement
containing this specifier, the following steps occur:

1. Execution of the DML statement terminates.

2. DML status variables are set to the CDCS or CRM
error code,

3. The appropriate fields in the data base status block
are set if DMLDBST has been called.

4, Execution centinues with the statement labeled s.

Control is not transferred to the statement labeled s in the
error specifier when a CDCS relation condition indicating a
null record occurrence or control break (that is, a status
code value of 6273 and 632g, respectively) occurs.
Unlike execution of a FORTRAN 5 statement, execution of
the program is not terminated when an error condition
occurs on the execution of a DML statement that does not
contain the ERR=s specifier; rather, execution continues at
the next executable statement.

The END=s specifier can be added cnly to the DML READ
statement and is applicable only for a sequential read. If a
DML READ statement contains this specifier and an
end-of-file condition is encountered, the following steps
occur:

1. Execution of the READ statement terminates.
2. DML status variables are set to 100g.
3. Execution continues with the statement labeled s.

For an explanation of the sequence in which the status
varigbles are set, see the Informative Diagnostic Codes
subsection.

Unlike execution of a FORTRAN 5 statement, execution of
the program is not terminated when an end-of-file
condition occcurs on the execution of a DML READ
statement that does not contain the END=s specifier;
rather, execution continues at the next executable
statement.

60482200 D

JJ

J)

INFORMATIVE DIAGNOSTIC CODES

_ Some diagnostic codes returned in DBSTAT and in the data

base status block do not represent error conditions; rather,
the codes are informative diagnostics reporting a condition
that has occurred. These conditions can be handled in the
FORTRAN/DML program. Table 6-3 lists some of the
informative diagnostics that are returned in the following
status elements: the data base status block, DBSTAT, and
DBSnnnn. Not all of the codes indicated are returned in all
of the elements. The table indicates the component of
DMS-170 recognizing the condition, the code returned, the
message, and the status element to which the code is
returned. Those informative codes that are returned in the
data base status block are returned in the first word, with
the exception of the code 100g; exceptions concerning
this code are indicated later in this subsection. Some
conditions are recognized by CRM and others by CDCS; the
user can refer to the CYBER Record Manager Advanced
Access Methods reference manual or to the CDCS 2
reference manual for detailed information.

The following paragraphs indicate the significance of
informative codes to the user.

The 100g diagnostic code indicates an attempt to read
beyond end-of-information. This is an informative code
that can be used by a FORTRAN program in determining
end-of-file only when the code is returned to DBSTAT or
DBSnnnn. When returned in the first word of the data base
status block, this code indicates a real error. However, the
data base status block provides a field (the third word) to
which file position information is returned; the 100g file
position code indicates end-of-information and can be used
by a FORTRAN program in determining end-of-file. The
timing of the writing of the 1003 code to the status
elements (DBSTAT, OBSnnnn, or the third word of the data
base status block) can be important to the user who is
considering placing count variables or other routines in
J asscciation with a sequential DML READ statement. The

status elements are set to 100g when the READ l
statement has been executed one additicnal time after the
last record was read. For example, if there are 10 records
being read, DBSTAT is set to 100g after the llth time
the READ statement is executed. Similarly, if a
FORTRAN 5 applications program contains the READ
statement with the END=s specifier, it would be after the
11th time the READ statement is executed that execution
is transferred to the statement labeled s.

The 445g diagnostic code occurs when no record is found
whose key matches the value of the key specified in the
DML READ statement.

The 506g diagnostic code occurs when an alternate key
value is not found. CRM issues this diagnostic when a read
is attempted at the end of the alternate key file.

The 627g diagnostic code indicates a null record
occurrence on a realm. The 632g code indicates a
control break on a realm. These conditions can occur on a
relation read. These codes are not returned in the data
base status block. See the CDCS 2 reference manual for
detailed information on relation processing.

The 652g diagnostic code indicates that an open was
attempted on a realm already opened. The 654g
diagnostic code indicates that a close was attempted on a
realm already closed. These diagnostics can occur on the
statements OPEN or CLOSE of a relation or a realm.

The 663g code indicates a deadlock condition; that is, a
situation arising in concurrent data base access when two
or more applications programs are contending for a
resource that is locked by one of the other programs. The
663g code indicates that CDCS has unlocked all locks
held by the FORTRAN program. The user should provide
appropriate code to handle recovery from a deadlock.
Refer to the CDCS 2 reference manual for more
information.

TABLE 6-3. INFORMATIVE DIAGNOSTIC CODES

Returned to Returned
Code Message Data Base to DBSTAT Diagnost'ic
Status Block and DBSnnnn rom
1008 CANNOT SEQUENTIALLY POSITION BEYOND FILE X CRM
BOUNDS
4458 KEY NOT FOUND - FILE POSITION ALTERED - X X CRM
REQUEST IGNORED
5068 ALTERNATE KEY NOT FOUND X X CRM
6278 No message. Indicates a null record X cbcs
occurrence was encountered on a file
during relation processing.
('3328 No message. Indicates a control break X cbCcs
was encountered on a file during
relation processing.
6528 AREA an ALREADY OPEN X X CcoCcs
6548 AREA an NOT OPEN X X CbCs
6638 DEADLOCK ON AREA an X X cocs
60482200 D 6-11

RECOVERY POINT DEFINITION

CDCS provides the data base functions of logging and
recovery for use by the data administrator. Their use is
transparent to the user program. The user, however, can
define a recovery point to CDCS. This is a point to which
the data base would be reset so that the program could be
easily restarted should recovery of the date base be
necessery.

Specification of recovery points is accomplished in the user
program by issuing a call to the subroutine DMLRPT. The
call marks the point for recovery purposes. The format of
the call is:

CALL DMLRPT (num,comment)

where num is an integer containing the unique entry point
number assigned by CDCS and comment is a 3-word array
containing a Hollerith constant with blenk fill. The user
can retain the recovery point number for reference
purposes if desired. The Hollerith constant is written to
the journal log file alang with the recovery point nhumber.

Execution of the subroutine DMLRPT causes the following
events to occur in the order given. The user program is
suspended until these events have completed:

1. All I/O buffers for data base areas are flushed.

2. A recovery point log record is force written to the log
file for the data base.

3. The quick recovery file for the data base is emptied.

On return from this subroutine, the user is assured that the
data base can be recovered to its current state (barring
such disasters as simultanegus destruction of both the data
base and the log file).

The creation of a recovery point does incur overhead, since
CDCS activity halts for all users until the preceding three
events have been completed. To reduce this overhead, an
application might choose to create a recovery point every
fourth transaction. Judicious use of recovery points can
aid in recovery, but misuse can severely impact throughput.

DML CONTROL STATEMENT

The DML preprocessor processes DML statements and
translates them into FORTRAN statements. Therefore,
the input to DML is a file containing a FORTRAN program
with added DML statements, and the output from DML is a
file containing the translated version of the input file. The
output file can be compiled by the FORTRAN Extended 4
compiler or the FORTRAN 5 compiler as specified by the
language version (LV) parameter in the DML control
statement.

The format and options of the DML control statement are
shown in figure 6-11. The parameters cen appear in any
order.

Example:

DML (L V=F4, SB=BRIE, I, Ez=ERRFILE, ET=W)

6-12

This control statement specifies that the DML
preprocessor is to generate statements for the
FORTRAN Extended 4 compiler, that the sub-schema
library is on the file BRIE, that input is on the file
COMPILE, that cutput is to be written to DMLOUT,
that error messages are to be written to ERRFILE,
end that the job step aborts if any errors of warning
level or higher occur.

COMPILATION/EXECUTION

Following is a list of steps needed to execute a FORTRAN
data base applications program.

1. Define and compile a schema.
2. Define and compile required sub-schemas.

3. Include the compiled sub-schemas in the master
directory by executing the DBMSTRD utility.

4. Create a FORTRAN program containing DML
statements and execute the DML preprocessor.

5. Compile the applications program, using the DML
output file as input to the FORTRAN compiler.

6. Specify an LDSET(LIB=DMSLIB) control statement.

7. Execute the applications program.

Befare execution of an applications program, the user must
include the appropriate control statement to attach any
independent file needed by the program. When the
compiled program is executed, CDCS monitors and
interprets all requests for action on relaticns and on data
base files. All data base files and index files that are
referenced in the sub-schema used by the applications
program are attached automatically by CDCS. If any one
of these files does not exist when the program is executed,
the program is aborted. The master directory and log files
are attached at CDCS initialization.

When CDCS is active, it resides at a system control point;
an applications program resides at a user control point.
CDCS and an applications program can reside at the same
control point, however, when the CDCS Batch Test Facility
is used. This facility is usually used to test and debug
applications that require a sub-schema and master
directory different from those active with CDCS at a
system control point. To use the CDCS Batch Test Facility
the same steps as mentioned previously must be performed
with the exception that the following three steps are
substituted for steps 6 and 73

6. Attach the master directory file and, if applicable,
attach log files.

7. Make the DMS-170 library available by specifying the
LIBRARY(DMSLIB) control statement.

8. FExecute the program by specifying the CDCSBTF
control statement.

Refer to appendix H for more information about the CDCS
Batch Test Facility.

60482200 D

J)

-~
-~

SB=

[

p2

p5

Ifn
LV=op

Lv
omitted
Lv=0
I=ifn

omitted

O=ifn

omitted
0=0
E={fn

omitted
ET=op

ET
omitted
ET=0

DML (SB=lfn,p1,p2,p3,p4,p5,p6)

Name of file containing sub-schema library; default is SUBLFN. SB=0 is not allowed.

Language version. Specifies the version of FORTRAN for which the DML preprocessor is to
generate statements. The value of op can be one of the following:

F4 Specifies FORTRAN Extended 4.

F5 Specifies FORTRAN 5.

Same as LV=F5,

Same as LV=F4. (This default value can be changed at installation time.)
Not allowed.

Name of file containing FORTRAN source program with added DML statements to be
preprocessed by DML.

Same as I=COMPILE.

Same as I=INPUT.

Not allowed.

Name of file to which translated version of FORTRAN source program is to be written. DML
statements appearing in FORTRAN program are translated into FORTRAN statements before
being written to this file.

Same as O=DMLOUT.

Same as O=DMLOUT.

No output is produced.

Name of file to which error diagnostics are to be written.

Same as E=ERRS.

Same as E=QUTPUT.

Error termination code. Four levels of errors are defined; if an error of the specified level or
higher takes place, the job is aborted to an EXIT(S) control statement (NOS/BE) or EXIT
control statement (NOS). The abort does not take place until DML is finished. The possible
values for op, in increasing order of severity, are as follows:

T Trivial. The syntax of the usage is correct, but it is questionable.

w Warning. The syntax is incorrect, but the processor has been able to recover by making
an assumption about what was intended.

F Fatal. An error that prevents DML from processing the statement in which it occurs.
Unresolvable semantic errors also fall into this category. Processing continues with the
next statement.

C Catastrophic. Compilation cannot continue. However, DML advances to the end of the
current program unit and attempts to process the next program unit.

Same as ET=F.
Same as ET=0.

Do not abort the job step even if errors occur {except for control statement errors).

T and W errors do not invalidate the output file produced by DML (the file specified by the O option}). The
translated code on the file can still be compiled (barring any errors not related to DML), but the results might
not be what the user intended. F and C errors, however, produce an output file that cannot be successfully
compiled by FORTRAN.

DS

omitted

Directive suppression. Listing control directives are not generated; all FORTRAN statements
generated by FDBF appear on the FORTRAN source listing.

Listing control directives are generated; FORTRAN statements generated by FDBF do not appear
on the FORTRAN source listing.

FORTRAN CALL statements generated as a result of executable DML statements always appear on the
FORTRAN source listing regardiess of DS specification.

60482200 D

Figure 6-11. DML Control Statement

SAMPLE DECK STRUCTURES

l Figure 6-12 illustrates the control statements needed to
execute the DML preprocessor and to compile and execute
a FORTRAN applications program. The ATTACH
statement references the sub-schema library containing
the compiled FORTRAN sub-schema referenced in the
applications program. The referenced sub-schema must be
included in the master directory and CDCS must be at a
system control point. The LDSET(LIB=DMSLIB) control
statement causes the DMS-170 library to be made available
for execution of the program. The LGO control statement
initiates: execution of the relccatable binary program
caontained on that file.

The control statements necessary to compile, but not to
execute, a program are all those indicated in figure 6-12
except that the LDSET(LIB=DMSLIB) and LGO statements
are omitted. By removing these two control statements,
the user can check complition of a progream before
specifying execution.

Figure 6-13 illustrates the control statements needed to
execute the DML preprocessor, and to compile and execute

a FORTRAN applications program using the CDCS Batch
Test Facility, The first ATTACH statement references the
sub-schema library containing the compiled FORTRAN
sub-schema referenced in the applications program. The
sub-schema library must be available to the DML
preprocessor. The second ATTACH statement references
the master directory file, which must contain the
referenced sub-schema and must be available to execute
the program. The LIBRARY(DMSLIB) statement makes the
DMS-170 library available for program execution. The
CDCSBTF statement causes execution of the program
through the CDCS Batch Test Facility. The CDCSBTF
statement must reference the file containing the
relocatable binary program (for this application that file is
the system default file, LGO).

The control statements necessary to compile, but not to
execute, the FORTRAN/DML program are the same as
those indicated in figure 6-13 except that the ATTACH of
the master directory, the LIBRARY(DMSLIB), and the
CDCSBTF(LGO) statements are omitted. By removing
these three control statements, the wuser can check
complition of a program befare specifying execution.

NOS/BE Operating System

w4

FORTRAN 4 Source Program Containing
DML Statements

NOS Operating System

6
g |
8 L
9 /FORTRAN 4 Source Program Containing
DML Statements
: |
8
9 /IGo.

/ LDSET(LIB=DMSLIB)
FTN{I=DMLOUT)

DML(LV=F4,SB=SSLIB) / DML(LV=F4,SB=SSLIB)
/ATTACH(SSLIB,ID=DDL) / ATTACH(SSLIB/UN=num)
lob Statement /CHARGE Statement
/ USER Statement
Job Statement
Figure 6-12. Praogram Compilation and Execution With CDCS at a System Control Point
6-14 60482200 D

JJ

™

NOS/BE Operating System NOS Operating System
, I

L .
FORTRAN 5 Source Program Containing
DML Statements

L

1

FORTRAN 5 Source Program Containing
DML Statements

8 1
9 /CDCSBTF(LGO)
/LIBRARY(DMSLIB)
/ ATTACH(MSTRDIR/UN=num)
/ FTN5(1=DMLOUT,LO)
/DML(LV=F5,SB=SSLI8)
/ ATTACH(SSLIB/UN=num)
-/ CHARGE Statement
/USER Statement
Job Statement

ORONM

8

9 /CDCSBTF(LGO)
/LIBRARY(DMSLIB)
ATTACH(MSTRDIR,ID=DDL)}
/ FTN5(1=DMLOUT,LO)
/ DML(LV=F5,5B=SSLIB)
/ATTACH(SSLIB,ID=DDL)
Job Statement

Figure 6-13. Program Compilation and Execution With CDCS Batch Test Facility

60482200 D 6-15

EXAMPLES

This section contains two examples using FORTRAN/DDL

and the DML preprocessor. The first example is a
relatively simple application using a schema, two
sub-schemas, and a FORTRAN 5 program corresponding
to each sub-schema. This example illustrates the use of
an application with CDCS at a system control point. The
second example shows the definition of a relation and use
of the relation by a FORTRAN 4 program. This example
illustrates the use of the CDCS Batch Test Facility.

The figures in this section show only the program source
input of the examples. The compilation output listings of
the example programs (that includes schemas,
sub-schemas, master directories, and FORTRAN/DML
programs) are shown in appendix I. :

USING SUB-SCHEMAS

The first example, the university example, assumes the
existence of a data base containing the test results for a
series of tests administered to students. The schema for
the data base, as well as a description of the items it
contains, are shown in figure 7-1.

The first program of the example updates selected records
by computing new probabilities based on new test scores.
It also computes and prints the correlation coefficient,
which is a measure of how closely the new data matches
the old data. The sub-schema for this program is shown in
figure 7-2. The only items required from the schema are
the test number (the primary key, required in every
sub-schema), the number of students, and the probability
of aright answer for each question.

SUBSCHEMA PROBSS, SCHEMA = TEST-FILES
REALM TESTS

RECORD R1

INTEGER TESTNO,STCOUNT

REAL PROB(100)

END

Figure 7-2. First Sub-Schema for University Example

The program in figure 7-3 reads new records from a
sequential file (NEWTPE) and uses the test number to
locate the desired record in the data base. It then
computes the correlation coefficient and updates the data
base. The formula for the coefficient is shown in
figure 7-4; in the program, the arrays PROB and
NEWPROB are equivalenced to X and VY, respectively.
The program calls DMLDBST and uses the array STATBLK
(which is declared in the program) to return data base
status information on error conditions. The error
specifier is incorporated in both the DML READ and
REWRITE statements. (See the Data Base Status Block
subsection for more information.)

The second program uses the test number, the name and
number of the professor, the professor's current rating
(according to the students), and the probabilities of
correct answers for each question. The sub-schema for
the program is shown in figure 7-5. The program in
figure 7-6 prints the name and rating of each professor,
and then the name of each test the professor has given.
For each test, the average number of correct responses
per question is computed and printed. Since the data base

SCHEMA TEST-FILES.

AREA TESTS.

RECORD R1 WITHIN TESTS.
TESTNO TYPE FIXED.

PROFNUMN TYPE FIXED.
PROF PICTURE "Xx(20)".

RATING TYPE FLOAT.
STCOUNT TYPE FIXED.

DATA CONTROL.

SEQUENCE IS ASCII.

TNAME TYPE CHARACTER 20.

PROB TYPE FLOAT OCCURS 100 TINMES,
CHECK VALUE 0.0 THRU 1.0.

AREA TESTS KEY IS TESTNO, DUPLICATES ARE NOT ALLOWED,
KEY IS ALTERNATE PROFNUM, DUPLICATES ARE INDEXED,

A
L | L y
PROF- ST- PROB PROB
TESTNO TNAME NUM PROF RATING COUNT) P {100}
1 10 20 30 40 50 60 70 80 9 ¥ 1080
TESTNO Test number RATING Rating of professor; from 1.0 to 10.0
TNAME Test name STCOUNT Number of students taking test
PROFNUM ldentification number assigned to professor PROB For each question on test, probability that a
PROF Name of professor student gets the right answer; from 0.0 to 1.0

Figure 7-1. Schema for University Example

60482200 C

7-1

10

20
1

30

40
45
46

C MAIN LOOP

1

1
50

PROGRAM MEWTEST

INTEGER STATBLK(S)

REAL NEWPROB(100),X(100),VY(100)
EQUIVALENCE (PROB,X) , (MEWPROB,Y) , (CORCOEF,R)

SUBSCHEMA (PROBSS)

¥ = 100

INVOKE

CALL DMLDBST(STATBLK,S)

OPEN(S ,FILE="NEWTPE',STATUS='0LD* ,ACCESS="SEQUENTIAL")
OPEN(TESTS)

READ(S,*,ERR=40,END=50) TESTNO,NEWST,NEWPROB
READ (TESTS,KEY=TESTNO,ERR=4S)
SUMXY = SUMX = SUMY = SUMXSQ = SUMYSQ = 0.0
00 20 1s1,N
SUMXY = SUMXY + X(I)*Y(I1)
SURX = SUMX + X(I)
SURY = SUMY + Y(I)
SUMXSQ = SUMXSQ + X(I)#*2
SUMYSQ = SUMYSQ + Y(I)w#2
R = (N*SUMXY - SURX#SUMY)/
(SQRT(N®SUMXSQ - SUMX##2) % SQRT(N#SUMYSQ - SUMY#%2))
PRINT #», * TEST NO. = *, TESTNO,
* CORRELATION COEFFICIENT = ', CORCOEF
NEWTOT = STCOUNT + NEWST
0 30 I=1,M
PROB(I) = (PROB(I)*STCOUNT + NEWPROB(I)#NEWST) /NEWTOT
STCOUNT = NEWTOT
REWRITE(TESTS,ERR=A5)
60 TO 10
PRINT %, * ERROR ON FILE READ®
PRINT 46, STATBLK
FORMAT (1X,'STATUS BLOCK'/
1X,04,2%,15,2X,03,2%,12,2X,410)
CLOSE(TESTS)
CLOSE(S,STATUS=*DELETE")
TERMINATE
sToP
END

Figure 7-3. First FORTRAN 5 Program for University Example

file is being read by a key (an alternate key), the value of
PROFNUM must be set before the data base can be read.

N
N Z XY -
=1

Therefore, the sequential file PROFS, which contains
N N selected values of PROFNUM, is read first. Then, with
ZXZY; the value of PROFNUM established, PROFNUM is used to
i=1 =1 position the file on the data base read to the first record

of the professor. Then the remaining records for that

i=1

R =
\/ N N \/ N N professor are read sequentially.
NEX2Z —(Z2x)2 VNZY?2 - (ZvV;2
i=1 i

.= =1 The input for the master directory for the university
example is shown in figure 7-7. The master directory

Figure 7-4. Formula for Correlaticn Coefficient

must contain permanent file information. For the NOS
operating system, the permenent file identification must
be specified in the form UN "usernum" as shown in
figure 7-7. Far the NOS/BE operating system, ID "file-id"
must be specified.

Figure 7-8 indicates the control statements required for

each step involved in setting up the data base, compiling

SUBSCHEMA RATE, SCHEMA = TEST-FILES the FORTRAN/DML program named NEWTEST, and
REALM TESTS executing it with CDCS at a system control point. The
RECORD R1 control statements for compiling the sub-schemas and
INTEGER TESTNO, PROFNUM creating the sub-schema library show both sub-schemas
CHARACTER %20 TNAME, PROF being compiled with one set of control statements. The
REAL RATING, PROB(100) data base administrator should perform steps 1, 2, and 3
END and should provide the applications programmer with the
necessary information to use the sub-schema. With the

sub-schema information provided, the programmer can

Figure 7-5. Second Sub-Schema for University Example write the FORTRAN/DML program. The control

7-2

60482200 D

J)

J)

PROGRAM RATER

INTEGER ALTKEY

INTEGER STATBLK(S)
SUBSCHEMA (RATE)

INVOKE

CALL DMLDBST(STATBLK,S)

OPEN(TESTS)
100 READ (5,%,END=900) PROFNUM

ALTKEY = PROFNUM
PRINT 12, PROF, RATING
200 sum = 0.0
b0 300 1=1,100
SuUm = SUM + PROB(I)
300 CONTINUE
AVG6 = SUM/100.0
PRINT 13, TNAME, AVG
READ(TESTS ,ERR=800,END=100)

60 TOo 200

800 PRINT 14, STATBLK

900 CLOSE(TESTS)
TERMINATE
CLOSE(5,STATUS='DELETE")
STOP

13 FORMAT (1X,A20,4X,F4.3)
14 FORMAT (1X,'STATUS BLOCK'/

END

OPEN(5,FILE='PROFS', STATUS='0OLD’', ACCESS="SEQUENTIAL")

READ(TESTS ,KEY=PROFNUM,ERR=800)

IF (PROFNUM .NE. ALTKEY) GO TO 100

12 FORMAT (' PROF = ', #20, ' RATING = *, F4.1)

1 1X,04,2X,15,2X,03,2X,12,2X,A10)

Figure 7-6. Second FORTRAN 5 Pragram for University Example

SCHEMA NAME IS TEST-FILES
FILE NAME IS TFILE.
AREA NAME IS TESTS
PFN IS "TESTS"
UN IS "Qup0468"
INDEX PFN IS "RATEIN"
UN IS "aup0&4é68”.
SUBSCHEMA NAME IS PROBSS
FILE NAME IS SUBLIB2.
SUBSCHEMA NAME IS RATE
FILE NAME IS SUBLIB2.

Figure 7-7. Input for Master Directory
for University Example

statements to compile and execute the sample program
NEWTEST are shown in step 4 of figure 7-8. The control
statements indicate that the sub-schema library must be
attached for DML preprocessing and that the independent
file NEWTPE must be attached for execution; the data
base files are automatically attached. The
LDSET(LIB=DMSLIB) control statement and the statement
specifying the program binary output file (for this
example, the default file LGO) are necessary to execute
the program.

USING RELATIONS

This second example illustrates building a data base,
compiling a FORTRAN 4 program, and executing the
program through the CDCS Batch Test Facility. After the
data base is built, the data base is read by a FORTRAN 4
program using a read relation statement and is updated by
the program with a REWRITE statement. The program is
executed using the CDCS Batch Test Facility, which can

60482200 D

be used for testing and debugging a program that requires
a schema, sub-schema, and a master directory different
from those active with CDCS at a system control point.

The following steps are included in the example:

1. Schema compilation

2. Sub-schema compilation

3. Master directory build

4. Preprocessing the FORTRAN/DML program by DML
5. Compilation of the FORTRAN program

6. Testing of the pragram with the CDCS Batch Test
F acility

The control statements necessary to perform the
preceding steps are illustrated in figure 7-9. Include also
are control statements necessary to establish files as
permanent files and to print CDCS output.

The data base is to contain three files (areas). A FILE
statement is included for each area. These statements
define the file characteristics to CYBER Record Manager.

The schema for the data base is illustrated in figure 7-10.
The schema, PAYDATA, describes the variables included
in each record, the record format for each area, the keys
associated with each record, and any desired relations
between records.

The sample schema contains three areas. The first area
(PFILE) contains the name (last, first, and middle initial)
of all employees, as well as the title, social security
number, and pay code for each. The second area (EXMPT)
contains the social security number, monthly salary, date

7-3

Step NOS/BE Operating System

Job Statement
REQUEST(TFILE,*PF)

1. Schema
Compilation

DDL3(SC=TFILE)
CATALOG(TFILE,ID=DDL,RP=899)
7/8/9 in Column 1

Schema Source Input

6/7/8/9 in Column 1

2. Sub-Schema Job Statement

and FTN5{I=DMLOUT,LO)
Execution ATTACH(NEWTPE,ID=MYID)
LDSET(LIB=DMSLIB)
LGO.
7/8/9 in Column 1
FORTRAN/DML Program
6/7/8/9 in .Column 1

FILE{TESTS,FO=IS,RT=F FL=1080,MRL=1080
MNR=1080,KT=1,KL=10,XN=RATEIN)

Compilation REQUEST(SUBLIB2,*PF)

and Library ATTACH(TFILE,ID=DDL)

Creation DDLF(F5,5B=SUBLIB2,SC=TFILE)
CATALOG(SUBLIB2,1D=DDL,RP=899)
7/8/9 in Column 1
1st Sub-Schema Source Deck
2nd Sub-Schema Source Deck
6/7/8/9 in Column 1

3. Master Job Statement

Directory REQUEST(MSTRDIR,*PF)

Creation ATTACHI(TFILE,ID=DDL) '
ATTACH(SUBLIB2,ID=DDL)
DBMSTRD(NMD=MSTRDIR,LD)
CATALOG(MSTRDIR,ID=DDL,RP=999)
7/8/9 in Column 1
Master Directory Source input
6/7/8/9 in Column 1

4, Program Job Statement
NEWTEST ATTACH(SUBLIB2,1D=DDL)
Compilation DML(LV=F5,SB=SUBLIB2,ET=W)

NOS Operating System

Job Statement

USER Statement

CHARGE Statement

DEFINE(TFILE/CT=PU,M=R

FILE(TESTS,FO=IS,RT=F,FL=1080,MRL=1080
MNR=1080,KT=1,KL=10,XN=RATEIN)

DDL3(SC=TFILE)

7/8/9 in Column 1

Schema Source Input

6/7/8/9 in Column 1

Job Statement

USER Statement

CHARGE Statement
DEFINE(SUBLIB2/CT=PU,M=W)
ATTACH(TFILE)
DDLF(F5,8B=SUBLIB2,SC=TFILE)}
7/8/9 in Column 1

1st Sub-Schema Source Deck

2nd Sub-Schema Source Deck
6/7/8/9 in Column 1

Job Statement

USER Statement

CHARGE Statement
DEFINE(MSTRDIR/CT=PU,M=W)
ATTACH(TFILE)
ATTACH(SUBLIB2)
DBMSTRD(NMD=MSTRDIR,LD)
7/8/9 in Column 1

Master Directory Source input
6/7/8/9 in Column 1

Job Statement

USER Statement

CHARGE Statement
ATTACH(SUBLIB2/UN=num)
DML(LV=F5,SB=SUBLIB2,ET=W)
FTN5{1=DMLOUT,LO)
ATTACH(NEWTPE)
LDSET{(LIB=DMSLIB)

LGO.

7/8/9 in Column 1
FORTRAN/DML Program
6/7/8/9 in Column 1

Figure 7-8. Control Statements for University Example

of hire, and vacatiocn and sick leave hours accrued by all
exempt employees. The third area (NEXMPT) contains
the same information for all hourly employees, and,
additionally, any required union deductians.

The first relation, FIXUP1, establishes a link between
areas PFILE and EXMPT. The second relation, FIXUP2,
establishes a link between areas PFILE and NEXMPT.
This allows the applications program to perform 1/O
operations on the joined areas with a single I/O statement.

A sample sub-schema is shown in figure 7-11. The
sub-schema describes the portion of the data base to be
accessed by the applications program. The ALIAS clause
assigns a unique name, TSOCSEC, to the data item
SOCSEC contained in record SREC1 to distinguish it from

7-4

the data item of the same name contained in SREC2. The
applications program must reference the data item by its
alias.

After the schema and sub-schema are compiled, using the
DDL3 and DDLF control statements shown in figure 7-9,
they are bound together into a single master directory.
The master directory also contains the operating system
permanent file names and passwords. The master
directory build is initiated by the DBMSTRD control
statement. The progream source input for the master
directory build is shown in figure 7-12.

The preceding steps are performed by the datas
administrator. After these steps have been completed,
the FORTRAN programmer uses DML to access the data
base.

60482200 C

JJ

J)

NOS/BE Operating System

JOB Statement
REQUEST(PFILE,*PF)
REWIND(PFILE)
CATALOG(PFILE,ID=MYID}
RETURN(PFILE)
REQUEST(PNDX,*PF)
REWIND(PNDX)
CATALOG(PNDX,ID=MYID)
RETURN(PNDX)
REQUEST(EXMPT,*PF)
REWIND(EXMPT)
CATALOG(EXMPT,ID=MYID)
RETURN{EXMPT)

FILE(EXMPT, FO=IS,RT=F FL=27, MNR=27,
KL=9,EMK=YES,EFC=3)

FILE(PFILE,FO=IS,RT=F FL=64 MNR=64,
XN=PNDX,EMK=YES,KL=9,EFC=3)

FILE(NEXMPT FO=IS,RT=F,FL=29,MNR=29,
KL=9,EMK=YES,EFC=3)

DDL3(DS,SC=PAYDATA)
DDLF(F4,SC=PAYDATA,SB=SUBLIB)
REQUEST(MSTRDIR,*PF)
DBMSTRD(NMD=MSTRDIR,LO)
CATALOG(MSTRDIR,ID=MYID)
DML(LV=F4,SB=SUBLIB,DS}
FTN(I=DMLOUT)}
LIBRARY(DMSLIB)
CDCSBTF(LGO)
REWIND(CDCSOUT)
COPYSBF(CDCSOUT,OUTPUT)

7/8/9 in Column 1
Schema Source Statements

7/8/9 in Column 1
Sub-Schema Source Statements

7/8/9 in Column 1
input for Master Directory Build

7/8/9 in Column 1
FORTRAN 4 Source Statements

6/2/8/9 in Column 1

NOS Operating System

JOB Statement

USER Statement

CHARGE Statement

DEFINE(PFILE EXMPT,PNDX/PW=SECRET)
DEFINE(MSTRDIR)

PERMIT(PFILE usernum1=W,usernum2=W)
PERMIT(EXMPT usernum1=W,usernum2=W)
PERMIT{PNDX,usernum1=W,usernum2=W)
PERMIT(MSTRDIR,usernum1=W,usernum2=W)
RETURN(PFILE,EXMPT,PNDX)

FILE(EXMPT,FO=IS,RT=F,FL=27,MNR=27,
KL=9,EMK=YES,EFC=3) :

FILE(PFILE,FO=IS,RT=F,FL=64, MNR=64,
XN=PNDX,EMK=YES,KL=9,EFC=3)

FILE(NEXMPT,FO=IS,RT=F,FL=29, MNR=29,
KL=9,EMK=YES,EFC=3)

DDL3(DS,SC=PAYDATA)}

DDLF{F4,SC=PAYDATA,SB=SUBLIB)

DBMSTRD(NMD=MSTRDIR,LO)

DML(LV=F4,SB=SUBLIB,DS)

FTN{I=DMLOUT)

LIBRARY(DMSLIB)

CDCSBTF(LGO)

REWIND(CDCSOUT)

COPYSBF(CDCSOUT,OUTPUT)

7/8/9 in Cotumn 1
Schema Source Statements

7/8/9 in Column 1
Sub-Schema Source Statements

7/8/9 in Column 1
Input for Master Directory Biild

7/8/9 in Column 1
FORTRAN 4 Source Statements

6/7/8/9 in Column 1

Figure 7-9. Sample Control Statements for Data Base Build

A single record is updated. A relation read is used to
read a record from each of the realms PFILE and
EXMPT. The record key for the read is the current
value of SOCSEC. The relation links records in

An applications program to update the data base and the
output of the program are shown in figure 7-13. This
program makes the following changes to the data base:

A new record is written to PFILE and to EXMPT.
The record contains the values defined in the source
program. DML statements open, write, and clase the
files. To create the file, the first open specifies
MODE=0. Then data is written to the file. The file
is then closed and reopened with MODE=IO so it can
be read and updated. After each of these operations,
the value of DBSTAT is printed to check the status of
the operation.

60482200 C

PFILE and EXMPT; the record read from each area is
the one in which the value of the social security
number is equal to the key value. A new value is
assigned to MSALARY and the record is rewritten to
area EXMPT. In order to verify the change, the new
record is read using a read relation, and selected
values are printed.

SCHEMA PAYDATA.

/% SET UP A SCHEMA TO BE USED
/= BY FORTRAN 4 APPLICATIONS
AREA PFILE.

RECORD IS REC WITHIN PFILE,
SOCSEC TYPE CHARACTER 9.
LNAME TYPE CHARACTER 10

OCCURS 2 TIMES.
FNAME TYPE CHARACTER 10.
MI TYPE CHARACTER 1.
PCODE TYPE CHARACTER 4.
TITLE TYPE. CHARACTER 10

OCCURS 2 TIMES.

AREA EXMPT.

RECORD IS SREC1 WITHIN EXMPT.
SOCSEC TYPE CHARACTER 9.
MSALARY TYPE CHARACTER 4.
VACHRS TYPE CHARACTER 4.
SICKHRS TYPE CHARACTER 4.
EMPDATE TYPE CHARACTER 6.

AREA NEXMPT.

RECORD IS SREC2 WITHIN NEXMPT.
SOCSEC TYPE CHARACTER 9.
HSALARY TYPE CHARACTER 4.
UNION PICTURE "XX".
EMPDATE PICTURE "Xx(6)".
VACHRS PICTURE "X (4)".
SICKHRS PICTURE "X (4)",

DATA CONTROL.

/% KEYS ARE DEFINED HERE. NOTE THAT
/+ SOCSEC MUST BE QUALIFIED BY RECORD

/* SINCE IT IS NOT A UNIQUE NAME
AREA NAME IS PFILE
KEY IS SOCSEC OF REC

KEY IS ALTERNATE PCODE

AREA NAME IS EXMPT
KEY IS SOCSEC OF SREC1

AREA NAME IS NEXMPT
KEY IS SOCSEC OF SREC2

RELATION NAME IS FIXUP1
JOIN WHERE SOCSEC OF REC
EQ
SOCSEC OF SREC1.
RELATION NAME IS FIXUP2
JOIN WHERE SOCSEC OF REC
EQ
SOCSEC OF SREC2.

*/
*/

*/
*/
*/

DUPLICATES ARE NOT ALLOWED

DUPLICATES ARE NOT ALLOWED.

DUPLICATES ARE NOT ALLOWED.

DUPLICATES ARE NOT ALLOWED.

SUBSCHEMA EXAMP1, SCHEMA=PAYDATA

THIS COMMENT DEMONSTRATES THE
ABILITY OF FDBF TO CARRY SUB-SCHEMA
COMMENTS TO THE FORTRAN SOURCE
LISTING IF THE DS PARAMETER IS
SPECIFIED ON THE DML CONTROL
STATEMENT

IO OIIOOIOO

ALIAS (ITEM) TSOCSEC=SOCSEC.SREC1
REALM PFILE, EXMPT

RECORD REC
INTEGER SOCSEC,LNAME(2),FNAME, MI,
+ PCODE,TITLE(2)

RECORD SREC1 ,
INTEGER TSOCSEC,MSALARY,VACHRS,
+ SICKHRS ,EMPDATE
RELATION FIXUP1

END

Figure 7-11. Sub-Schema for Payroll Example

SCHEMA NAME IS PAYDATA
FILE NAME IS PAYDATA.
AREA NAME IS PFILE
PFN IS "PFILE"
UN "QUDO468" PW “SECRET"
INDEX FILE ASSIGNED
PFN IS "PNDX"
UN "QUD0468" PW "SECRET".
AREA NAME IS EXMPT
PFN IS “EXMPT"
UN "QUDO0468" PW "“SECRET".
AREA NAME IS NEXMPT
PFN IS “NEXMPT"
UN "QUDO468" PW "SECRET".
SUBSCHEMA NAME IS EXAMP1
FILE NAME IS SUBLIB.

Figure 7-10. Schema for Payroll Example

7-6

Figure 7-12. Input for Master Directory for Payroll Example

60482200 C

JJ

Qﬁ

PROGRAM FDBFTST(OUTPUT=64) .
cecceecccccecceccc

c
c A PROGRAM TO TEST SOME FEATURES OF THE FORTRAN DATA BASE FACILITY
C
c DECLARE SUBSCHEMA APPLICATION CAN ACCESS
c
c INVOKE CDCS AND OPEN FILES FOR PROCESSING
c

SUBSCHERA (EXAMP1)

INVOKE

OPEN(PFILE ,MODE=0)
101 FORMAT (DBSTAT= ", 04)

WRITE 101, DBSTAT

OPEN(EXMPT,MODE=0)

WRITE 101, DBSTAT
cececeeeccccecceccccecccccececcecccecccccccccccccccccccccccccccccccccecccccccccce
[

c DEFINE VALUES OF DATA ELEMENTS
c

SOCSEC="123456789"

FNANE="TON"

MI="X"

LNAME (1)="JONES"

LNAME(2)=" *

PCODE="3000"

TITLE(1)="PROGRAMNMER"

TITLE(2)=" " -

TSOCSEC="123456789"

MSALARY="1750"

VACHRS="80"

SICKHRS="20"

EMPDATE="010177"
geeeececceccccccccccccccccceccccecccccceccceccccccccccccccccccccccccccccccccc
c

c WRITE VALUES TO DATABASE
c
WRITVE(PFILE)
WRITE 101, DBSTAT
WRITE(EXMPT)

WRITE 101, DBSTAT
ccceecececccceccecccceccccccccccccccccccceccccccccecccccccccccccccccccccccccce
c

c CLOSE FILES TO END CREATION MODE OF DATA BASE
c

CLOSE (PFILE)

WRITE 101, DBSTAT

CLOSE (EXMPT)

WRITE 101, DBSTAT
cceeececccecccccccecceccecccccecccccccccecccecccecccccccccccccccccccccccccccccccccce
c

c OPEN FILES AND BLANK FILL LAST NAME AND MONTHLY SALARY
c

OPEN(PFILE)

OPENCEXMPT)

LNANME (1) =10H

MSALARY=10H

cececeeceeccececcccccccecccccecccccccccceccccccccecccecccccceccccccccccccccce
c
c READ USING THE RELATION DEFINED IN THE SCHEMA/SUBSCHEMA
c

READ (FIXUP1,KEY=SOCSEC)

PRINT =, “READ BY RELATION RETURNS:"

PRINT 100,LNANE MSALARY
cceceeccececcceccceccecccceccccccccceccccccceccccccccceccccccceccecccccccccecccccccccccce
c

c CHANGE THE VALUE OF MONTHLY SALARY AND REWRITE EXEMPT RECORD
MSALARY="2000"
REWRITE (EXMPT)

60482200 C

Figure 7-13. FORTRAN 4 Program for Payroll Example (Sheet 1 of 2)

1-7

cceeceecceccecceecccececeecccceccececceecccecccecccecccceecceccccceccccccccccc

c
c

c

READ AND PRINT THE VALUES TO VERIFY CHANGE TOOK PLACE

READ(FIXUP1,KEY=SOCSEC)
PRINT *,“READ BY RELATION AFTER REWRITE:"
PRINT 100,LNAME , MSALARY

100 FORMAT (1X,3A10)

CLOSE(EXMPT)
CLOSE(PFILE)
NNN=6LOUTPUT
ENDFILE NNN
TERMINATE
STOP

END

Program Output

DBSTAT= 0000
DBSTAT= 0000
DBSTAT= 0000
DBSTAT= 0000
DBSTAT= 0000
DBSTAT= 0000
READ BY RELATION RETURNS:

JONES 1750
READ BY RELATION AFTER REWRITE:
JONES 2000

7-8

Figure 7-13. FORTRAN 4 Program for Payroll Example (Sheet 2 of 2)

60482200 C

J J

J

STANDARD CHARACTER SETS A

e

CONTROL DATA operating systems offer the following
variations of a basic character set:

CDC 64-character set
CDC 63-character set
ASCII 64-character set
ASCII 63-character set

The set in use at a particular installation was specified
when the operating system was installed.

Depending on another installation option, the system
assumes an input deck has been punched either in 026 or in
029 mode (regardless of the character set in use). Under
NOS/BE, the alternate mode can be specified by a 26 or
29 punched in columns 79 or 80 of the job statement or

60482200 A

any 7/8/9 card. The specified mode remains in effect
through the end of the job unless it is reset by
specification of the alternate mode on a subsequent 7/8/9
card.

Under NOS, the alternate mode can be specified by a 26
or 29 punched in columns 79 and 80 of any 6/7/9 card, as
described above for a 7/8/9 card. In addition, 026 mode
can be specified by a card with 5/7/9 multipunched in
column 1, and 029 mode can be specified by a card with
5/7/9 multipunched in column 1, and a 9 punched in
column 2.

Graphic character representation appearing at a terminal
or printer depends on the installation character set and
the terminal type. Characters shown in the CDC Graphic
column of the standard character set table are applicable
to BCD terminals; ASCII graphic characters are applicable
to ASCII-CRT and ASCII-TTY terminals.

TABLE A-1. STANDARD CHARACTER SETS

cDC ASCI!
Display Hoiterith External .
Code Graphic Punch 8CD Graphic o ot
(octal) (026) Code

oot : (colon) Tt 82 00 : (coton) 11 82 072
0 A 121 61 A 12-1 101
02 B 12-2 62 B 122 102
03 (o 12-3 63 c 123 103
04 D 124 64 D 124 104
05 E 125 65 E 125 105
06 F 126 66 F 126 106
07 G 12-7 67 G 12.7 107
10 H 128 70 H 128 110
11 { 129 7n | 129 1n"r
12 J 111 41 J 1141 112
13 K 11-2 42 K 112 113
14 L 113 43 L 11-3 114
15 M 114 44 M 114 115
16 N 115 45 N 115 116
17 0 116 48 0 116 117
20 P 17 47 P 117 120
21 Q 118 50 Q 18 121
22 R 119 51 R 19 122
23 S 02 22 S 02 123
24 T 03 23 T 03 124
25 1] 04 24 U 04 125
26 v 05 25 v 05 126
27 w 06 26 w 06 127
30 X 07 27 X 07 130
31 Y 08 30 Y 08 131
32 b4 09 3 4 09 132
33 0 0 12 0 0 060
34 1 1 01 1 1 061
35 2 2 02 2 2 062
36 3 3 03 3 3 063
37 4 4 04 4 4 064
40 5 5 05 5 5 065
3] 6 6 06 6 6 066
42 7 7 07 7 7 067
43 8 8 10 8 8 070
44 9 9 " 9 9 on
45 + 12 60 + 12-8-6 053 .
46 . 11 40 : 1 065
47 1184 54 1184 052
50 / 01 21 / 01 057
51 { 084 K’} { 1285 050
52) 1284 74) 11856 051
53 $ 118-3 63 $ 1183 044
64 = 8-3 13 = 86 075
55 blank no punch 20 blank no punch 040
56 , (comma) 083 33 . (comma) 083 054
57 . {period) 128-3 73 . (period) 128-3 056
60 = 086 36 # 83 043
61 [87 17 ¢ 1282 133
62] 082 32) 118-2 135
63 %t 86 16 %11 084 045
64 * 84 14 " (quote) 8-7 042
65 r~ 085 35 _ lunderline) 085 137
66 v 110 52 ! 1287 041
67 A 08-7 37 & 12 046
70 t 11856 55 ' (apostrophe) 85 047
71 } 1186 56 ? 087 077
72 < 1220 72 < 12-84 074
73 > 1187 57 > 086 076
74 < 85 15 @ 84 100
75 2 1285 75 \ 082 134
76 = 128-6 76 -~ {circumflex) 1187 136
77 ; {semicolon) 12-8-7 77 ;. {semicolon) 1186 073

tTwelve 2ero bits at the end of a 60-bit word in a zero byte record are an end-of-record ‘mark rather than

two colons,

tt)n installations using a 63-graphic set, display code 00 has no associated graphic or card code; display

code 63 is the colon (8-2 punch).

yield a blank (55g).

The % graphic and related card codes do not exist and translations

60482200 D

JJ

TABLE A-2. CDC CHARACTER SET COLLATING SEQUENCE

Collating
Sequence
Decimal/Octal

00 00
01 01
02 02
03 03
04 04
05 05
06 06
07 07
08 10
09 11
10 12
1 13
12 14
13 15
14 16
15 17
16 20
177 21
18 22
19 23
20 24
21 25
22 26
23 27
24 30
25 31
26 32
27 33
28 34
29 35
30 36
31 37

cDC
Graphic

blank

CEH 4 v~ lev.——.>m } — RIA

~

OTMmMOO®®D>»AH I ~-

Collating
Display | External Sequence cDC Display | External
Code BCD Decimal/Octal Graphic Code BCD
= —— |
55 20 32 40 H 10 70
74 15 33 41 | 11 1
63t 161 34 42 v 66 52
61 17 35 43 J 12 41
65 35 36 44 K 13 42
60 36 37 45 L 14 43
67 37 38 46 M 15 44
70 55 39 47 N 16 45
n 56 40 50 (0] 17 46
73 57 41 51 P 20 47
78 75 42 52 Q 21 50
76 76 43 53 R 22 51
57 73 44 54] 62 32
52 74 45 55 S 23 22
77 77 46 56 T 24 23
45 60 47 57 U 25 24
53 53 48 60 Y 26 25
47 54 49 61 w 27 26
46 40 50 62 X 30 27
50 21 51 63 Y 31 30
56 33 52 64 Z 32 N
51 34 53 65 : oot nonet
54 13 54 66 0 33 12
64 14 65 67 1 34 01
72 72 56 70 2 35 02
01 61 57 71 3 36 03
02 62 58 72 4 37 04
03 63 59 73 5 40 05
04 64 60 74 6 41 06
05 65 61 75 7 42 07
06 66 62 76 8 43 10
07 67 63 77 9 44 n

1'In installations using the 63-graphic set, the % graphic does not exist.
External BCD code 16.

The : graphic is display code 63,

60482200 B

A-4

TABLE A-3. ASCII CHARACTER SET COLLATING SEGUENCE

Coliating ASCII . Collating
Sequence Graphic Dc'::::y ?3?322 Sequence
Decimal/Octal | Subset Decimal/Octal
G0 00 blank 55 20 32 40
01 01 ! 66 21 33 41
02 02 ' 64 22 34 42
03 03 # 60 23 35 43
04 04 $ 53 24 36 44
05 05 % 63t 25 37 45
06 06 & 67 26 38 46
07 07 ’ 70 27 39 47
08 10 { 51 28 40 50
09 1) 52 29 41 51
10 12 . 47 2A 42 52
11 13 + 45 2B 43 53
12 14 . 56 2C 4 54
13 15 - 46 2D 45 55
14 16 . 57 2E 46 56
15 17 / 50 2F 47 57
16 20 0 33 30 48 60
17 21 1 34 31 49 61
18 22 2 35 32 50 62
19 23 3 36 33 51 63
20 24 4 37 34 52 64
21 25 5 40 35 53 65
22 26 6 41 36 54 66
23 27 7 42 37 55 67
24 30 8 43 38 56 70
25 31 9 44 39 57 71
26 32 : 00t 3A 58 72
27 33 : 77 38 59 73
28 34 < 72 3C 60 74 .

29 35 = 54 3D 61 75
30 36 > 73 3E 62 76
31 37 ? 71 3F 63 77

ASCJ!
Graphic
Subset

Y r rmNYXELCCHOWDIPIVOZErRC—IOTMMOODPH

Display | ASCII
Code Code
74 40

01 41

02 42

03 43

04 44

05 45

06 46
07 47

10 48

11 49

12 4A
13 4B
14 4C
15 4D
16 4E
17 4F
20 50
21 51

22 52
23 53
24 54
25 55
26 56
27 57
30 58
31 59
32 5A
61 5B
75 5C
62 5D
76 5E
65 5F

~rln installations using a 63-graphic set, the % graphic does not exist. The : graphic is
display code 63.

60482200 B

J)

ﬂ
Aﬁ%)

DIAGNOSTICS

S S

Diagnostics are produced by the FORTRAN/DDL compiler
and the DML preprocessor. These diagnostics are listed in
the tables below.

FORTRAN/DDL DIAGNOSTICS

All diagnostics that can be issued during the compilation
of a FORTRAN sub-schema are listed in table B-1. When
a diagnostic message is printed on the source listing, it is

W Warning. The syntax is incorrect, but the
processor has been able to recover by making an
assumption about what was intended.

F Fatal. An error which prevents DML from
processing the statement in which it occurs.
Unresolvable semantic errors also fall into this
category. Processing continues with the next
statement.

preceded by a three-digit number enclosed in asterisks.

The diagnostics are listed in order by this number.

C Catastrophic. Compilation cannot continue;
however, DML advances to the end of the
current program unit and attempts to process the
next program unit.

Sub-schema library maintenance messages are listed in
table B-2.

Cﬁm FORTRAN /DML DIAGNOSTICS

All diagnostics that can be issued by the DML
preprocessor are listed in table B-3. These diagnostics are
written to the file named by the E parameter of the DML
control statement. Each diagnostic has one of the
following severity codes associated with it:

EXECUTION TIME DIAGNOSTICS

Execution time diagnostics are issued by CDCS?2;
FORTRAN Data Base Facility has no execution
diagnostics of its own. CDCS52 diagnostics are listed in
the CDCS 2 reference manual.

T Trivial. The syntax of the usage is correct, but
it is questionable.

TABLE B-1. FORTRAN/DDL DIAGNOSTICS

Error

Code Message Significance Action

099 SOURCE WORD LONGER THAN 255 Correct the error and recompile.
CHARACTERS, UNABLE TO CONTINUE

COMPILATION - DDLF ABORTED

100 EMPTY INPUT FILE The input file is empty and the
Gg - compilation is terminated.

107 INVALID NAME IN ALIAS
STATEMENT

108 EQUAL SIGN MISSING

The compiler is unable to inter-
pret the input stream.

Create a new file and recompile.

The specified name does not con- | Correct the error and recompile.

form to the naming conventions.

The syntax rules for this state- | Correct the error and recompile.

ment require an equal sign.

111 INVALID QUALIFIER NAME The specified qualifier name
does not conform to the naming

conventions.

Correct the error and recompile.

114 INVALID STATEMENT - REALM
OR ALIAS STATEMENT EXPECTED

If ALIAS statements are used,
they must immediately follow

the SUBSCHEMA statement and
precede any REALM statement.

If ALIAS statements are not
used, the REALM statements must
inmmediately follow the SUBSCHEMA
statement.

Correct the error and recompile.

115 INVALID REALM NAME The specified name does not
conform to the naming

conventions.

Correct the error and recompile.

60482200 D B8-1

TABLE B-1. FORTRAN/DDL DIAGNOSTICS (Contd)

E;ggr Message Significance Action
116 DUPLICATE REALM NAME A1l realm names must be unique. Correct the error and recompile.
119 RECORD STATEMENT NOT SPECIFIED, The sub-schema must include at Correct the error and recompile.
UNABLE TO CONTINUE - COMPILATION | least one RECORD statement.
ABORTED Compilation is terminated.
120 INVALID RECORD NAME The specified record name does Correct the error and recompile.
not conform to the naming .
conventions.
121 DUPLICATE RECORD NAME A1l record names must be unique. | Correct the error and recompile.
122 CANNOT LOCATE OWNER REALM IN The schema area in which this °| Correct the error and recompile.
THE SCHEMA record is defined is not speci-
fied in a sub-schema REALM
statement.
124 INVALID ITEM NAME The specified item name does Correct the error and recompile.
not conform to the naming
conventions.
125 ITEM NAME NOT UNIQUE A1l item names must be unique. Correct the error and recompile.
126 ITEM SIZE GREATER THAN The maximum size allowed for a Correct the error and recompile.
MAXIMUM SIZE ALLOWED CHARACTER item is 32 767 char-
acters.
127 INVALID ITEM LENGTH The length for a CHARACTER item Correct the error and recompile.
must be specified in the form
*1en, where len is a positive
integer.
128 LENGTH SPECIFIED FOR The specification for length, Correct the error and recompile.
NON-CHARACTER ITEM *len (where len is an integer),
is allowed only for type
CHARACTER items.
130 INVALID DIMENSION BCUND The specified dimension value is | Correct the error and recompile.
not an integer.
131 THE UPPER DIMENSION BOUND When the user specifies a Correct the error and recompile.
IS LESS THAN THE LOWER BOUND dimension of an array, the value
of the upper bound must be
greater than or equal to the
value of the lower bound. See
the description of the type
statement for more information.
133 EXCEEDED THE MAXIMUM NUMBER In a sub-schema for a FORTRAN 4 Correct the error and recompile.
OF DIMENSIONS ALLOWED program, an array can have a
maximum of three dimensions; in
a sub-schema for a FORTRAN 5
program, an array can have a
max imum of seven dimensions.
138 DOUBLE PRECISION MUST BE The keyword PRECISION must be Correct the error and recompile.
SPECIFIED IN FORTRAN 5 specified in the type statement
for a double precision item when
the F5 parameter is specified in
the DDLF control statement.
B-2 60482200 D

J)

J D

gﬂ*\
6&*\

TABLE B-1. FORTRAN/DDL DIAGNOSTICS (Contd)

Error
Code

Message

Significance

Action

142

143

144

145

146

147

148

155

166

169

1

179

200

201

ALIAS ENTRY TYPE NOT SPECIFIED

AN ITEM IS THE ONLY ALIAS
TYPE THAT CAN BE QUALIFIED

UNKNOWN QUALIFIER NAME

parm INVALID IN THE
FOLLOWING STATEMENT

SUBSCHEMA STATEMENT NOT
SPECIFIED - COMPILATION ABORTED

SCHEMA KEYWORD MISSING

INVALID SCHEMA OR SUBSCHEMA
NAME

SCHEMA NAME SPECIFIED IN THE
SUB-SCHEMA DOES NOT MATCH
THE SCHEMA NAME IN THE SCHEMA

INVALID SUBSCRIPT IN CLASS
MATRIX

EMPTY SCHEMA DIRECTORY

INSUFFICIENT FIELD LENGTH -
INCREASE YOUR FL --- DDL
ABORTED

UNABLE TO COPY AREA ENTRIES
FROM THE SCHEMA, SCHEMA IN
INVALID

RECORD STRUCTURE CAUSES
MAXIMUM NUMBER OF COMMON BLOCKS
TO BE EXCEEDED

AN ALIASED NAME MUST BE
REFERENCED BY THE ALIAS-NAME
SPECIFIED IN THE ALIAS STATE-
MENT

60482200 C

Alias entry type REALM, RECORD,
or ITEM was not specified; the
current entry is ignored.

Record and realm names must be
unique; therefore, there is no
need to qualify them.

The qualifier entry could not be
located; the ALIAS statement is
ignored.

The indicated parameter is
invalid.

The SUBSCHEMA statement is
required in every FORTRAN/DDL
source program. Compilation is
terminated.

The keyword SCHEMA is required
in the SUBSCHEMA statement.

The specified schema or sub-
schema name does not conform to
the naming conventions.

The schema name specified in the
SUBSCHEMA statement must be the
same as the name specified in
the schema declaration in the
schema.

Internal to DDL.

No information in the schema
directory.

Not enough field length was
specified to complete the com-
pilation. The job is aborted.

The specified schema did not
contain valid data, and area
entries could not be read.

The maximum number of common
blocks allowed is 500. FORTRAN/
DDL generates common blocks se-
quentially according to the sub-
schema source program: one
common block is generated for
each area; an additional common
block is generated each time
FORTRAN/DDL encounters a data
type incompatible with the pre-
vious data type. (Character
data is incompatible with all
other data types.)

When an alias is assigned, the
alias and not the schema-
assigned name must be
referenced.

Specify entry type and
recompile.

Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

See the systems analyst.
Recompile the schema.

Use the RFL control statement
to increase field length.

Correct and recompile the
schema.

Group data items of the same
type together within a record
to minimize the number of
common blocks generated, and
recompile.

Correct the error and Fecompi]e.

TABLE B-1. FORTRAN/DDL DIAGNOSTICS (Contd)

Error
Code

Message

Significance

Action

202

203

204

205

206

210

211

212

213

214

215

216

217
218

219

220

300

B-4

MAXIMUM AREA COUNT EXCEEDED
MAXIMUM RECORD COUNT EXCEEDED
MAXIMUM ITEM COUNT EXCEEDED
MAXIMUM ITEM COUNT FOR A

RECORD EXCEEDED

FATAL ERRGRS GCCURRED --
FOLLOWING STATEMENTS IGNGRED

A RECORD HAS BEEN PREVIOUSLY
DEFINED FOR THIS REALM

NO DATA ITEMS DEFINED FOR
THIS RECORD

INVALID STATEMENT - END
STATEMENT EXPECTED

INVALID STATEMENT FOLLOWING
END STATEMENT

NO END STATEMENT

COMMA OR EQUAL MISSING

STATEMENT CONTAINS EXTRANEGUS
INFORMATION

INTERNAL ODLF ERROR

TYPE CHARACTER IS NOT VALID IN
FORTRAN 4

THE LOW:HIGH BOUNDS FEATURE
IS NOT VALID IN FORTRAN 4

TYPE BOOLEAN IS NOT VALID
IN FORTRAN 4

RECORD parm NOT FOUND IN SCHEMA

A maximum of 4095 areas is
allowed.

A maximum of 4095 records is
allowed.

A maximum of 4095 items can be
declared.

A maximum of 4095 items per
record is allowed.

Due to the occurrence of one or
more fatal errors, subsequent
statements are not processed by
the compiler.

Only one record can be defined
for a realm.

At least one data item must be
defined for each record.

Only an END statement is allowed
at this position in the input
stream. ’

A SUBSCHEMA statement is the only
statement that can follow an END
statement.

The last statement in a FORTRAN/
DOL program must be an END
statement.

The syntax rules for this
statement require a comma or
equal sign.

Data was found beyond the end
of the statement.

An internal DDL error occurred.

An item cannot be defined as
type CHARACTER if the F4 param-
eter is specified on the DDLF
control statement.

The low:high bounds feature is
allowed only in FORTRAN 5. In
FORTRAN 4, the low bound of an
array dimension is assumed to
be 1; the user specifies only
the high bound.

An item cannot be described as
type BOOLEAN if F4 is specified
on the DDLF control statement.
Type BOOLEAN is allowed only in
FORTRAN 5.

The record named is not defined
in the schema.

Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

See the systems analyst.

Change usage to one permitted
in FORTRAN 4.

Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

60482200 C

J)

J

€§ﬁ*\
€ﬁa\

TABLE B-1. FORTRAN/DDL DIAGNOSTICS (Contd)

Error
Code

Message

Significance

Action

301

302

304

306

307

308

310

312

313

314

315

401

402

403

404

MAXIMUM ARRAY ELEMENTS IN SUB-
SCHEMA GREATER THAN IN SCHEMA

SUBSCHEMA ITEM DOES NOT APPEAR
IN SCHEMA

KEY ITEM FOR REALM parm NOT
FOUND IN SUBSCHEMA

TYPE OF REPEATING ITEM DOES
NOT AGREE WITH TYPE OF REPEATING
ITEM IN SCHEMA

ILLEGAL ITEM CONVERSION

REALM parm NOT FOUND IN SCHEMA

INSUFFICIENT FL FOR DDLF PASS 2

HIERARCHY OF SUB-SCHEMA ITEM
DIFFERS FROM CORRESPONDING
ITEM IN SCHEMA

NO RECORD ENTRIES WERE
SPECIFIED FOR REALM parm

WARNING: SS SIZE GR SCHEMA
SIZE - MAY CAUSE TRUNCATION
ERRORS AT EXECUTION TIME

SUBSCHEMA ITEM CANNOT DIFFER
FROM SCHEMA ITEM WITH CHECK
IS PICTURE OPTION

INVALID RELATION NAME

RELATION NAME NOT UNIQUE

UNABLE TO FIND CORRESPONDING
RELATION ENTRY IN THE SCHEMA

AREA parm TRAVERSED IN THE
SCHEMA MUST BE SPECIFIED
IN A REALM STATEMENT

60482200 O

The dimension value specified
in the sub-schema must be less
than or equal to the maximum
occurs value in the schema.

The item specified in the sub-
schema is not defined in the
schema.

The primary key must be defined
for every realm in the sub-
schema.

An array must correspond to a
vector in the schema. A vari-
able must correspond to a
nonrepeated data item in the
schema.

Data type specified in the
schema cannot be converted to
data type specified in the sub-
schema.

The realm name specified in the
sub-schema cannot be located in
the schema.

Not encugh field length was
specified to complete the com-
pilation. The job is aborted.

A sub-schema item corresponds
to a schema item that is part
of a repeating group. Items in
a repeating group cannot be
referenced in FORTRAN/DDL.

At least one record statement
must be specified for each
realm specified in the sub-
schema.

An execution error can result
from nonzero or nonblank
truncation.

The CHECK IS PICTURE option in
the schema disallows data
conversion.

The specified relation name
does not conform to the naming
conventions.

The relation name must be
unique among all relation and
realm names in the sub-schema.

The relation name specified in
the sub-schema does not appear
in the schema.

The indicated area is joined in
a relationship within the
schema, but is not specified in
a REALM statement.

Correct the error and recompile.

Correct the error and recompile.
Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

Use the RFL control statement
to increase field length.

Convert schema repeating group
into vectors or omit item from
sub-schema.

Correct the error and recompile.

Increase schema size of item,
or ensure that the data is
within the schema-defined

Timit.
Refer to the CHECK IS PICTURE

option for type requirements.
Correct the error and recompile.
Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

B-5

TABLE B-1. FORTRAN/DDL DIAGNOSTICS (Contd)

Error
Code

Message

Significance

Action

405

406

407

408

409

410

411

413

417

418

419

420

421

422

426

B-6

INVALID RECORD NAME

UNABLE TO FIND RECORD ENTRY

parm IS AN INVALID DATA-BASE-
IDENTIFIER NAME

DATA-BASE-IDENTIFIER parm
IS UNDEFINED

DATA-BASE~IDENTIFIER parm
IS UNDEFINED IN THE SCHEMA

CONVERSION NOT POSSIBLE
FOR LITERAL

INVALID USE OF DBI parm -
DOES NOT BELONG TG RESTRICTED
RECORD

SOURCE DBI DOES NOT HAVE
A COMPATIBLE SCHEMA DATA
REPRESENTATION WITH THE
TARGET DBI

INVALID STATEMENT - END
STATEMENT EXPECTED

PERICD MISSING

EXTRANEGUS DATA IN STATEMENT

NUMBER CGF DIMENSIONS SPECIFIED
DOES NOT EQUAL THE NUMBER CF
DIMENSIONS DEFINED FOR ARRAY parm

SUBSCRIPT SPECIFIED FOR
ITEM WHICH IS NOT AN ARRAY

DUE TO FATAL ERRORS,
COMPILATION IS ABORTED

OWNER AREA OF THE RESTRICTED
RECORD WAS NOT SPECIFIED IN
THE RELATION ENTRY (IN THE
SCHEMA)

The record name specified in a
RESTRICT statement does not
conform to the naming
conventions.

A record referenced in a
RESTRICT statement does not
appear in the sub-schema.

The indicated parameter is not
a valid data base item in a
RESTRICT statement.

The indicated data base item
in a RESTRICT statement does
not appear in the sub-schema.

The indicated identifier
parameter does not appear in
the schema.

Arithmetic operations cannot be
performed on a literal.

The indicated data base item
does not apply to the record
referenced in a RESTRICT
statement.

Source and target data base
jtems used in a RESTRICT state-
ment must be compatible as de-
termined from the schema data
class of each item. Items of
schema data classes 0 through

4 (items stored as display code)
are compatible. An item of any
other schema data class is com-
patible only with an item of the
same schema data class.

Only an END statement is
allowed at this position in the
input stream.

A period was expected in 'this
statement and was not found.

Data was found beyond the end
of the statement.

The number of dimensions speci-
fied for the item in the RESTRICT
clause does not conform to the
iub-schema description of the
tem.

A subscript is specified for an
item that is not defined as an
array in the sub-schema.

Too many fatal errors have
occurred.

The area associated with a
record named in a RESTRICT
statement is not referenced
in the schema relation entry.

Correct the error and recompile.

Correct the error and recompile.
Correct the error ;nd recompile.
Correct the error and recompile.
Correct the error and recompile.
Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.
Correct the error and recompile.

Correct the error and recompile.

Correct the error and recompile.

Correct as many errors as
possible and recompile.

Correct the error and recompile.

60482200 D

b J

J)

TABLE B-1. FORTRAN/DDL DIAGNOSTICS (Contd)

E;z:r Message Significance Action
427 INVALID OR MISSING RELATIONAL A relational operator is missing | Correct the error and recompile.
OPERATOR or is not one of the six valid
operators.

428 | EXCEEDED FIELD LENGTH, Not enough field length was Use the RFL control statement
INCREASE YOUR FIELD LENGTH specified to complete the to increase field length.
compilation. The job is

aborted.
429 | RECORD ENTRY parm WAS Only one RESTRICT statement can | Correct the error and recompile.
PREVIOUSLY SPECIFIED IN A be included for a given record.
RESTRICT CLAUSE The indicated parameter is
not allowed.
430 INVALID LOGICAL OPERATOR A logical operator is missing Correct the error and recompile.
or is not one of the allowed
operators.
431 NO END STATEMENT The last statement in a FORTRAN/ | Correct the error and recompile.
DDL must be an END statement.
432 INVALID STATEMENT FOLLOWING A SUBSCHEMA statement is the only| Correct the error and recompile.
END STATEMENT statement that can follow an END
statement.
433 SKIPPING TO THE NEXT An invalid RESTRICT statement Correct the error and recompile.
RESTRICT STATEMENT causes the system to scan for
the next RESTRICT statement.
434 RESTRICT STATEMENT FOUNOD The scan following an invalid Correct the error and recompile.
RESTRICT statement located
another RESTRICT statement.
435 COULD NOT FIND ANY MORE The scan following an invalid Correct the error and recompile.
RESTRICT STATEMENTS FOR THE RESTRICT statement did not
CURRENT RELATION ENTRY locate another RESTRICT
statement.
436 parm [S AN INVALID SUBSCRIPT Subscripts must be positive Correct the error and recompile.
integer constants. The indi-
) cated parameter is not valid.
™ 438 TERMINATING DELIMITER FOR The closing parenthesis of a Correct the error and recompile.
1 SUBSCRIPT IS MISSING subscript is missing.
439 THE SUBSCRIPT VALUE IS NOT The subscript specified is Correct the error and recompile.
WITHIN THE BOUNDS OF ARRAY greater than the declared upper
DECLARATION bound or less than the declared
lower bound.
440 DID NOT SPECIFY SUBSCRIPT The indicated parameter requires | Correct the error and recompile.
FOR ARRAY parm subscripting.
441 MAXIMUM RELATION COUNT A maximum of 4095 relations can Correct the error and recompile.
EXCEEDED be declared.
442 LEFT PARENTHESIS MISSING Left-right parentheses must Correct the error and recompile.
match, :
443 RIGHT PARENTHESIS MISSING Left-right parentheses must Correct the error and recompile.
match.

-

60482200 C 8-7

TABLE B-2. SUB-SCHEMA LIBRARY MAINTENANCE MESSAGES

Message

Significance

Action

DID NOT LGCATE parm, PURGE
NOT POSSIBLE

0ID NOT LOCATE SUB-SCHEMA
TO BE REPLACED --- NEW
SUB-SCHEMA HAS BEEN ADDED

ILL-FORMATTED LIBRARY --
NOT UPDATABLE, ODL ABGRTED

SUB-SCHEMA WITH THE SAME
NAME AS THE NEW SUB-SCHEMA
ALREADY EXISTS --- FILE
NOT UPDATED

WARNING --- EMPTY SUB-
SCHEMA FILE

EMPTY SUB-SCHEMA FILE, DOLF
ABORTED

OLD SUB-SCHEMA FILE BAD,
SUB-SCHEMA LENGTH 1S ZERO.
DDLF ABORTED

. EMPTY INPUT FILE --- PURGE
NOT POSSIBLE

The sub-schema name specified for
the purge could not be located
in the sub-schema library.

The sub-schema to be replaced in
the library could not be located;
the current sub-schema has been
added to the library.

The sub-schema library contains an
error and cannot be updated. OOL
terminates.

The current sub-schema could not
be added to the library since the
library contains a sub-schema with
the same name.

The sub-schema library contains no
sub-schemas. The sub-schemas might
have been purged prior to this
compilation. The new sub-schema
is added to the library and is the
only sub-schema in the library.

The sub-schema library contains no
sub-schemas; issued during a sub-
schema compaction, audit, or purge.
The sub-schemas might have been
purged prior to this compilation.

The sub-schema library contains a
sub-schema of length zero, indi-
cating a bad library file; issued
during a sub-schema compaction.
DDLF terminates.

The input file contains no sub-
schemas. The input file might
have been purged prior to this
operation.

Specify the correct sub-schema name
and recompile.

Specify correct library or sub-schema

and recompile.

Check for empty library or file that
is not a library. Correct the error
and recompile.

Change the sub-schema name and
recompile.

1f sub-schemas have been purged,
create a new library.

If the sub-schemas have been purged,
create a new library.

Re-create the library.

If the input file is in error,
create a new file.

TABLE B-3. FORTRAN/OML DIAGNOSTICS

g;zgr Message Severity Significance Action

100 | EMPTY INPUT FILE c The input file is empty and Create a new file and resubmit.
processing is terminated.

101 | LEFT PARENTHESIS MISSING F A left parenthesis was expected | Correct the error and resubmit.
but not found.

102 | INVALID SUBSCHEMA NAME F The specified sub-schema name Correct the error and resubmit.
does not conform to naming
conventions.

103 | RIGHT PARENTHESIS MISSING F A right parenthesis was Correct the error and resubmit.
expected but not found.

104 | EXTRANEOUS DATA FOLLOWING F Data was found beyond the end Correct the error and resubmit.

RIGHT PARENTHESIS of a statement.

B-8

60482200 C

JJ

TABLE B-3. FORTRAN/DML DIAGNOSTICS (Contd)

E:;gr . Message Severity Significance Action
105 | NO INVOKE STATEMENT WAS F An INVOKE statement must be Correct the error and resubmit.
FOUND IN PRECEDING PROGRAM included in each program unit -
UNIT that contains DML statements.
107 | MODE=0 INVALID ON OPEN F The mode option must be I or Correct the error and resubmit.
RELATION 10 for an OPEN relation.
108 | UNKNOWN SOURCE WORD F The DML preprocessor is unable |Correct the error and resubmit.
to interpret the statement. :
109 | INVALID MODE F The mode must be I, 10, or 0. Correct the error and resubmit.
110 | EQUAL SIGN MISSING F An equal sign was expected but |Correct the error and resubmit.
not found.
111 | SUBSCHEMA NOT AVAILABLE F The sub-schema could not be Specify the correct library
found in the specified library. | and resubmit.
112 | EXTRANEOUS DATA IN F DML does not recognize the item | Correct the error and resubmit.
PARAMETER LIST following the equal sign in a
keyword specification such as
END=, ERR=, KEY=, or MODE=.
113 | KEY PARAMETER MISSING F The keyword KEY was expected Correct the error and resubmit.
but not found.
114 | INVALID RELATIONAL F The relational operator is Correct the error and resubmit.
OPERATOR missing or is invalid.
115 | INVALID ITEM NAME F The item name does not conform | Correct the error and resubmit.
to naming conventions.
116 | ITEM IS NOT DEFINED AS A F The item is not defined as a Specify the correct key or
KEY FOR THIS REALM key in the schema. update the schema.
117 | PERIOD MISSING F A pe;iod was expected but not Correct the error and resubmit.
found.
118 | INTERNAL DML ERROR c An error internal to DML Contact the systems analyst.
occurred.
119 | COMMA OR RIGHT PARENTHESIS F A comma or right parenthesis Correct the error and resubmit.
NOT FOUND was expected but not found.
121 | PRIVACY TYPE MUST BE F An invalid privacy type was Correct the error and resubmit.
LITERAL OR ARRAY NAME specified.
122 | INVALID PARAMETER F The specified parameter is not | Correct the error and resubmit.
valid in this statement.
123 | DUPLICATE PARAMETER F The same parameter cannot be Correct the error and resubmit.
specified more than once.
124 | PRIVACY PARAMETER LITERAL F The privacy literal must be 30 | Correct the error and resubmit.
IS GREATER THAN or fewer characters.
30 CHARACTERS
125 | PRIVACY PARAMETER NOT F The privacy parameter is Correct the error and resubmit.
SPECIFIED required.
126 | INSUFFICIENT FIELD C Not enough field length was Use the RFL control statement
LENGTH - OML ABORTED specified to complete to increase field length.
. preprocessing. The job is
aborted.
" 60482200 C 8-9

Error

127

128

129

130

Code

DML LANGUAGE VERSION (LV

Message

Severity

—

DIFFERS FROM SUB-SCHEMA

INVALID FORTRAN LABEL

END= IS NOT VALID IN

FCRTRAN 4

ERR= IS NOT VALID IN

FORTRAN 4

Significance

applications program must
specify the same version of
FORTRAN. For example, when a
sub-schema is compiled with F4
specified in the BDLF control
statement, applications pro-
grams that use that sub-schema
must specify LV=F4 in the DML
control statement. Similarly,
for FORTRAN 5 applications, F5
must be substituted for F4 in
the example above.

The END=s and ERR=s parameters
must specify a valid statement
label (any 1- through 5-digit
positive nonzero integer).

The parameter END= is allowed
only in FORTRAN 5.

The parameter ERR= is allowed
only in FORTRAN 5.

—_— —

T r——een e
) F A sub-schema and a FORTRAN/DML

Action

Correct the error and resubmit.

Correct the error and resubmit.

Correct the error and resubmit.

Correct the error and resubmit.

———— |

B-10

60482200 C

J D

J)

-

GLOSSARY C

Access Control -
Protection of data from unauthorized access or
modification; called privacy in the FORTRAN Data

Base Facility.

Actual Key -
A file organization in which records are stored
according to their key values.

Advanced Access Methods (AAM) -
A file manager that processes indexed sequential,
direct access, and actual key file organizations and
supports the Muiltiple-Index Processor. See CYBER
Record Manager.

Alias -
A data name used in the sub-schema in place of a
schema data name.

Alternate Key -
A data item for which the value can be used to

randomly access a record in a CRM file.

Area -
A uniquely named schema data base subdivision that
contains data records; identified in the sub-schema as
a realm; a file.

Array -]
A data item consisting of a set of elements of the
same type that is identified by a single name;
FORTRAN sub-schema data structure. See
Elementary Item.

Attach -
The process of making a permanent file accessible to a
job by specifying the proper permanent file
identification and passwords.

Basic Access Methods (BAM) -
A file manager that processes sequential and word
addressable file organizations. See CYBER Record
Manager.

Beginning-of-Information (BOI) -
As defined by CRM, the start of the first user record
in a file. System-supplied information, such as an
index block or control word, does not affect
beginning-of-information. Any label on a tape exists
prior to beginming-of-information.

Block -
On tape, information between interrecord gaps on a
tape. CRM defines several blocks depending on file
organization as shown in table C-1.

Checksum -

A one-word sum generated by DDL for each area and
relation in a schema and for each sub-schema.
Checksums are stored in the schema and sub-schema
directories, and in the master directory. CDCS
references them to check the validity of using a
previously compiled sub-schema with the current
schema or of using a previously compiled applications
program with a current sub-schema.

60482200 D

TABLE C-1. BLOCK TYPES

Organization Blocks

Indexed sequentiatl Data block; index block

Direct access Home block; errflow block
Data block

Block type I, C, K, E

Actual key

Sequential

Child Record Occurrence -
For relation processing, a record occurrence that has
another record occurrence (the parent record
occurrence) at the next lower rank in a hierarchical
tree structure of the relation.

Concurrency -
Simulteneous access to the same data in a data base
by two or more applications programs during a given
span of time.

Constant -
A fixed value, explicitly written in a source
statement. In a FORTRAN sub-schema, the term

corresponds to a literal in the schema.

Control Break -
A condition occurring during a relation read; the
condition signifies that a new record occurrence was
read for the parent file.

Control Word -
A system-supplied word that precedes each W type
record in storage.

Conversion -
The process of changing data characteristics between
the schema and the sub-schema.

CYBER Database Control System (CDCS) -
The controlling module that provides the interface

between the applications program and the data base.

CYBER Record Manager (CRM) -

A generic term relating to the common products BAM
and AAM, which run under the NOS and NOS/BE
operating systems and allow a variety of record types,
blocking types, and file organizations to be created
and accessed. The execution time input/output of
COBOL, FORTRAN, Sort/Merge 4, ALGOL, and the
DMS-170 products is implemented through CRM.
Neither the input/output of the NOS and NOS/BE
operating systems nor any of the system utilities such
as COPY or SKIPF are implemented through CRM.
All CRM file processing requests ultimately pass
through the operating system input/output routines.

Data Administrator -
A person who defines the format and orgenization of
the data base.

Data Base -
A systematically organized, central pool of
informaticn; organization is described by a schema.

Data Base Procedure -
A special-purpose routine that performs a predefined
operatiaon, specified in the schema and initiated by
CDCS.

Data Description Language (DDL) - :
The language used to structure the schema and the
sub-gchema.

Data Item - . .
A unit of data within a record; can be an elementary
or group data item in the schema. A dsta item can be
a variable or array in the FORTRAN sub-schema.

Data Manipulation Language (DML) -
The extensions to FORTRAN that provide access to a
data base.

Deadlock -
A situation that arises in concurrent data base access
when two or more applications programs are
contending for a resource that is locked by one of the
cther applications pregrams, and none of the programs
can proceed without that resource.

Direct Access -
In the context of CRM, one of the five file
organizations. It is characterized by the system
hashing of the unique key within each file record to
distribute records randomly in blocks called home
blocks of the file.

In the context of NOS permanent files, a direct access
file is a file that is accessed and modified directly.

Directory -
A file that contains area and record attributes of the
data base; created when the schema is compiled; an
object schema.

Elementary Item - .

A data item that is not subdivided into other data
items in the schema data structure; an elementary
item that is part of a group item has the highest level
number in the group item. A nonrepeating elementary
item in the schema corresponds to a variable in the
FORTRAN sub-schema; a repeating elementary item
corresponds to an array.

End-of-Information (EOI) -
Defined by CRM in terms of the file organization and
file residence as shown in table C-2.

File -
A collection of records treated as a unit; an area in
the schema; a realm in the sub-schema.

File Information Table (FIT) -
A table through which CDCS communicates with CRM.

Fixed Occurrence Data Item -)
A data item that is repeated the same number of
times in all records in the schema data structure.

TABLE C-2. END-OF-INFORMATION BOUNDARIES
File File Physical
Organization Residence Position
Sequential Mass storage | After the last
user record.
Labeled tape After the last
in SI, I, S, user record and
or L format before any file
trailer labels.
Unlabeled After the last
tape in SI user record and
or I format before any file
trailer labels.
Unlabeled Undefined.
tape in S or
L format
Word Mass storage After the last
Addressable word allocated
to the file,
which might be
beyond the last
user record.
Indexed Mass storage After the record
Sequential, with the highest
Actual Key key value.
Direct Mass storage After the last
Access record in the
most recently
created overflow
block or home
block with the
highest relative
address.
Group Item -

A data item that is subdivided into other data items; a
collection of data items in the schema data structure.
Group items and elementary items within a group are
not referenced in the FORTRAN sub-schema.

Hierarchical Tree Structure -
A representation that commonly illustrates record
occurrences for files joined in a directed relation. The
root of the tree is a record cccurrence in the root file
and each successive level represents the record
occurrences in each joined file.

Home Block -
Mass storage allocated for a file with direct access
organization at the time the file is created.

Indexed Sequential -
A file organization in which records are stored in
ascending order by key.

Keyword -

A word that is required in a DDL source program
statement.

60482200 D

J)

J)

Gﬁﬁh
6@3\

Level -
For system-logical-records, an octal number 0 through
17 in the system-supplied 48-bit marker that
terminates a short or zero-length PRU.

Level Number -
A number defining the structure of data within a
record in the schema.

Literal -
A constant completely defined by its own identity in
the schema.

Logging -
The facility of COCS through which historical records
are kept of operations performed by users on data base
areas. Logging information is used in data base
recovery and restoration operations.

Logical File Name (Ifn) -
The one to seven display code alphabetic or numeric
characters by which the operating system recognizes a
file. Every Ifn in a job must be unique and must begin
with a letter.

Logical Record -
Under NOS, a data grouping that consists of one or
more PRUs terminated by a short PRU or zero-length
PRU. Equivalent to a system-logical-record under
NOS/BE.

Nested Group Item -
A group item that is subordinate to another group item
in the schema data structure.

Noise Record -
The number of characters the tape drivers discard as
being extranecus noise rather than & valid record. The
value depends on installation settings.

Null Record Occurrence -
A record occcurrence composed of the display code
right bracket symbol in each character position. It is
used in a relation cccurrence to denote that no record
occurrence qualifies or that a record occurrence does
not exist at a given level in the relation.

Cperation -
A particular function performed on units of data; for
instance, opening or closing an area, or storing or
deleting a record.

Overflow Block -
Mass storage the system adds to a file with direct
access organization when records cannot be
accommodated in the home block.

Parent Record Occurrence -
For relation processing, a record occurrence that has

another record occurrence (the child record
occurence) at the next higher rank in a hierarchical
tree structure of the relation.

Partition -
As defined by CRM, a division within a file with
sequential organization. Generally, a partition
contains several records or sections. Implementation
of a partition boundary is affected by file structure
and residence, as shown in table C-3,

Notice that in a file with W type records, a short PRU
of level 0 terminates both a section and a partition.

60482200 D

TABLE C-3.

PARTITION BOUNDARIES

Device

Record
Type
(RT)

Block
Type
(BT)

Physical Boundary

PRU
device

Sorl
format
tape

Any
other
tape
format

C,K,E

A short PRU of
level 0 containing
a one-word deleted
record pointing
back to the last I
block boundary,
followed by a con-
trol word with a
flag indicating a
partition boundary.

A short PRU of
level O containing
a control word
with a flag indi-
cating a partition
boundary.

A short PRU of
level 0 followed by
a zero-length PRU
of level 17g.

A zero-length PRU
of level number 17g.

A separate tape
block containing as
many deleted rec-
ords of record
length 0 as re-
quired to exceed
noise record size,
followed by a de-
leted one-word
record pointing
back to the last I
bleck boundary,
followed by a con-
trol word with a
flag indicating a
partition boundary.

A separate tape
block containing as
many deleted rec-
ords of record
Tength 0 as re-
quired to exceed
noise record size,
followed by a con-
trol word with a
flag indicating a
partition boundary.

A tapemark.

A tapemark.

Undefined.

C-3

Permanent File -
A file on a mass storage permanent file device that is
protected against accidental destruction by the system
and can be protected against unauthorized asccess or
destruction.

Physical Record Unit (PRU) -)
Under NOS and NOS/BE, the amount of information
transmitted by a single physical operation of a
specified device, as shown in table C-4.

TABLE C-4. PRU SIZES

: Size in Number

Device of 60-Bit Words
Mass storage (NOS and 64
NOS/BE only).
Tape in SI format with 128
coded data (NOS/BE only).
Tape in SI format with 512
binary data.
Tape in I format (NOS 512
only).
Tape in any other format. Undefined.

A PRU that is not full of user data is called a short

PRU; a PRU that has a level terminator but no user

data is called a zero-length PRU.

Primary Key -
A key that must be defined for random access of a
record in an indexed sequential, direct access, or
actual key file.

PRU Device -
Under NOS and NOS/BE, a mass storage device or a
tape in SI or I format, so called because records on
these devices are written in PRUs.

Random File - ‘

In the context of CRM, a file with word addressable,
indexed sequential, direct access, or sactual key
organization in which individual records cen be
accessed by the values of their keys; in the context of
the NOS and NOS/BE operating systems, a file with
the random bit set in the file environment table in
which individual records are accessed by their relative
PRU numbers.

Rank -
The rank of a file in a DMS-170 relation corresponds
to the position of the file in the schema definition of
the relation. The ranks of the files joined in a relation
are numbered consecutively, with the roat file having
a rank of 1.

Realm -
A uniquely named sub-schema data base subdivision

that contains data records; identified in the schema as
an area; a file.

Realm Ordinal -
A unique identifier assigned to each realm in a
sub-schema when the sub-schema is compiled. Realm
ordinals for a FORTRAN sub-schema are used in
conjunction with the FORTRAN status variables.

® C-4

Record -
As defined by CRM, a group of related characters. A
record or a portion thereof is the smallest collection
of information passed between CRM and a user
program, Eight different record types exist, as
defined by the RT field of the file information table.

For processing through the FORTRAN Data Base
Facility, a record is equivalent to a record occurrence.

Other parts of the operating systems and their
products might have additional or different definitions
of records.

Record Occurrence - .
An actual data base record that conforms to a record
description in the schema.

Record Type -
A term that can have one of several meanings,
depending on the context. CRM defines eight record
types established by an RT field in the file information
table. Tables output by the loader are classified as
record types such as text, relocatable, or absolute,
depending on the first few words of the tables.

In FORTRAN/DDL, the description of the attributes
of a record; record layout. The name of a record type
is given in the RECORD statement.

Relation -
The logical structure formed by the joining of files for
the purpose of allowing en applications program to
retrieve data from more than cne file at the same
time. The structure is declared in the schema and is
based on common identifiers in the files.

Relation Occurrence -
The logical concatenation of a record occurrence from
each record type specified in the relation.

Repeating Group -
A collection of data items that occurs a number of
times within a record; can consist of elementary
items, group items, and vectors.

Root Realm -
The realm that ranks lowest in a relation; its record
occurrences are pictured as the root of a tree in a
hierarchical tree structure.

Schema -
A detailed description of the internal structure of the
complete data base.

Section -
As defined by CRM, a division within a file with
sequential organization. Generally, a section contains
more than one record and is a division within a
partition of a file. A section terminates with a
physical representation of a section boundary, as
shown in table C-5.

The NOS and NOS/BE operating systems equate a
section with a system-logical-record of level 0
through 16g.

Sequential -

A file orgenization in which records are stored in the
order in which they are generated.

60482200 D

J)

J D

TABLE C-5.

SECTION BOUNDARIES

Device

Record
Type
(RT)

?lock
ype
(BT)

Physical
Representation

PRU
device

Sorl
format
tape

Any
other
tape
format

C,K,E

A deleted one-word
record pointing
back to the last I
block boundary
followed by a con-
trol word with
flags indicating a
section boundary.
At least the con-
trol word is in

a short PRU of
level 0.

A control word with
flags indicating a
section boundary.
The control word

is in a short PRU
of level 0.

A short PRU with a
level less than
17g.

Undefined.

A separate tape
block containing
as many deleted
records of record
length 0 as re-
quired to exceed
noise record size,
followed by a de-
leted one-word
record pointing
back to the last I
block boundary,
followed by a con-
trol word with
flags indicating a
section boundary.

A separate tape
block containing
as many deleted
records of record
length 0 as re-
quired to exceed
noise record size,
followed by a con-
trol word with
flags indicating a
section boundary.

Undefined.

Undefined.
Undefined.

60482200 D

Short PRU -)
A PRU that does not contain as much user data as the
PRU can hold and is terminated by a system
terminator with a level number.

Under NOS, a short PRU defines EOR; under NOS/BE,
a short PRU defines the end of a system-
logical-record. In the CRM context, a short PRU can
have several interpretations depending on the record
and blocking types.

Sub-Schema -
A detailed description of the portion of the data base
to be made available to one or more FORTRAN
applications programs.

Sub-Schema Item Ordinal -
A unique identifier within a record assigned to each
item in a sub-schema when the sub-schema is
compiled. Sub-schema item ordinals are used in
conjunction with the data base status block.

Sub-Schema Library -
A permanent file containing one or more sub-schemas.

System-Logical-Record -
Under NOS/BE, a data grouping that consists of ane or
more PRUs terminated by a short PRU or zero-length
PRU. These records can be transferred between
devices without loss of structure.

Equivalent to a logical record under NOS.

Equivalent to a CRM S type record.

Type -
The storage format of a data item which determines
permitted values, length, and arithmetic meaning.

Variable -
A single named data item in the FORTRAN
sub-schema data structure.

W Type Record -
One of the eight record types supported by CRM.
Such records appear in storage preceded by a
system-supplied control word. The existence of the
control word allows files with sequential organization
to have both partition and section boundaries.

Word Addressable -

A word addressable file is a mass storage file
containing continuous data or space for data. Words
within a word addressable file are numbered from 1
to n, each word containing 10 characters. Retrieving
or writing of the data at any given word within the file
is specified by the word number, called the word
address.

Zero-Byte Terminator -
The 12 bits of zero in the low order position of a word;
the 12 bits mark the end of the line to be displayed at
a terminal or printed on a line printer. The image of
cards input through the card reader or terminal also
has such a terminator.

Zero-L_ength PRU -
A PRU that contains system information, but no user
data. Under CRM, a zero-length PRU of level 17 is a
partition boundary. Under NOS, a zero-length PRU
defines EOF.

C5 e

KEYWORDS D

The keywords for FORTRAN/DDL and FORTRAN/DML. are FORTRAN/DML KEYWORDS

listed below.
CLOSE
DELETE
FORTRAN/DDL KEYWORDS
END
EQ.
.A. ERR
ALIAS
ALL .GE.
.AND, .GT.
BOOLEAN I
INVOKE
CHARACTER I0
' DOUBLE KEY
END
.EQ. .LE.
LOCK
.GE. .LT.
.GT.
INTEGER MODE
ITEM
' LOGICAL
.LT.
o
N OPEN
.NE
.NOT.
PRIVACY
.0,
READ
PRECISION REWRITE
REAL
REALM START |
RECORD SUBSCHEMA
RELATION
RESTRICT
TERMINATE
SCHEMA
SUBSCHEMA
UNLOCK
X.
.xm.
WRITE

60482200 D ’ D-1

SYNTAX SUMMARY - FORTRAN 5 E

The format specifications for all FORTRAN/DDL and FORTRAN/DML statements for use with FORTRAN 5 are summarized
and listed in this appendix. Detailed information for each format is referenced by page number.

SUMMARY OF FORTRAN/DDL STATEMENTS - FORTRAN 5

Page No.
((Ream) l
ALIAS {RECORD) new-name-1 = old-name-1 [,new-name-2 = old-name-2] . . . 4-1
| (rrem) |
END 4-4
ALL
REALM {realm-nme-l [, realm-name-2] . . } 4-1
RECORD record-name 4-2
RELATION relation-name _ 4-3
RESTRICT record-name-1 (logical-expression-1) [,record-name-2 (logical-expression-2)] . . . 4-4
Format of logical expression:
.Eg.
."
* db-1{tem-2
[:?T] [(] db-item-1 ﬂ constant-1 D]
b ‘ap non-db-item-1
.GE.
.LE.
.}A\ND. .Eg.
<A. N
* db-item-4
gt [NM)T] [(] db-item-3 ﬂ constant-2 } nl. ..
'xm. . oGEo non"db'iteﬂ'l-z
X .LE.
SUBSCHEMA sub-schema-name, SCHEMA = schema-name 4-1
CHARACTER [*defau]t-'length [.]] ftem-name-1[*1en-1] [,item-name-z[*‘len-z]].)
BOOLEAN
< REAL b
Eg%gif item-name-1 [,item-name-2] . . . 4-2
COMPLEX
\ DOUBLE PRECISION)

60482200 D E-1

SUMMARY OF FORTRAN /DML STATEMENTS - FORTRAN 5

CLOSE ({73 a¥1on-name] L/ERR=s])

DELETE (realm-name[,ERR=s])
INVOKE

B LOCK (reaim-name [,ERR=s])

OPEN ({ ::‘]‘;’:;:Tem} [MODE= :éo}] [,ERR=s])

1 character-constant
PRIVACY (realm-name, | MODE= (I’O . PRIVACY = { variable-name })

array-name

~ READ ({‘;g:a":;mem [. KEY % :Eg: } 1teln:-name] [,ERR=s][, END=5])

RENRITE (realm-name [,ERR=s])

I START ({ Fo T name e } [, KEY { -£9. ; 1tem-name] [,ERR=s])
.6E.
SUBSCHEMA (sub-schema-name)

TERMINATE
J UNLOCK (realm-name[,ERR=s])

WRITE (realm-name[,ERR=5s])

E-2

Page No.

6-5

6-1

6-6

6-6

6-3

6-3

6-5

60482200 D

J)

J)

SYNTAX SUMMARY - FORTRAN 4 F

The format specifications for all FORTRAN/DDL and FORTRAN/DML statements for use with FORTRAN 4 are summarized
and listed in this appendix. Detailed information for each format is referenced by page number.

SUMMARY OF FORTRAN/DDL STATEMENTS - FORTRAN 4

Page No.
(REALN)
ALIAS il;%o) new-name-1 = old-name-1 [, new-name-2 = old-name-2] . . . 4-1
(3)] 4-4
AL
REALM {mh-nue-l [, readm-name-2] . . } 41
RECCRD record-name 4-2
RELATION relation-name _ 4-3
RESTRICT record-name-1 (logical-expression-1)[, record-name-2 (logical-expression-2)]. . . 4-4
Format of logical expression:
'%‘
‘ot db-1tem-2
["DT] [(]db=item=1 'g‘ constant-1 }[)]
:“: non-db-item-1
> .LE’
.:HD. .EQ.
. NE.
° * db-item-4
‘R [','f“'] [(Jdb-item-3 { -5T- { constant-2 }[] .
) -6, } non-db-item-2
SUBSCHEMA sub-schema-name, SCHEMA = schema-name 4-1
REAL
INTEGER l
LOGICAL item-name-1 [,{item-name-2] . . . 4-2
l NUBLE[PRECISION] $

60482200 D F-1

SUMMARY OF FORTRAN /DML STATEMENTS - FORTRAN 4

CLOSE ({‘,’.2‘,’:‘;;0,,_“ h

DELETE (realm-name)

INVOKE

-] LOCK (reatm-name)

e () [e 1]

I | -
PRIVACY (ream-name, [nmg = {(1)0} ’] PRIVACY = {ml;tfth constant})

- el

REMRITE (realm-name)

SUBSCHEMA (sb-sche-a—nue)
TERMINATE
B UMOCK (reatm-name)

WRITE (realm-name)

Page No.

6-3

6-5
6-1

6-6

6-3

6-6

6-3

6-5

6-1
6-3
6-6

6-5

60482200 D

J)

2)

NAMES OF VARIABLES AND COMMON BLOCKS

GENERATED BY THE DML PREPROCESSOR

OBFnnnn
DBInnnn
DBNnnnn
DBREALM
DBRELST
DBRUID
DBRnnnn

60482200 C

where nnnn is 0001 through 9999
where nnnn is 0001 through 9999

where nnnn is 0001 through 9999

where nnno is 0001 through 9999

DBSCNAM
DBSTAT
DBSnnnn
DBTEMP
D8Tnnnn
DBnnnn
Dnnnnxx

where nnnn is G001 through 9999

where nnnn is 0001 through 9999
where nnnn is 0300 through 9999

where nnnn is G001 through 9999 and xx is
AA through Z2Z

G-1

CDCS BATCH TEST FACILITY H

The CDCS Batch Test Facility provides the capability of
running CDCS along with one or more user jobs as a normal
batch job at a control point. This facility is intended
primarily for use when a program is being developed and
tested, since data and file definitions are changing
frequently during this stage. By running the Batch Test
Facility, the user can attach new versions of the master
directory file each time the job is run. Normally, when
CDCS is running at a system control point, the control
point must be dropped and reinitiated to attach a new
master directory file.

The CDCS Batch Test Facility is an absolute program,
called CDCSBTF, which resides on the system library.
CDCSBTF consists of the normal CDCS system control
point routines and tables plus a set of special routines that
communicate with the user programs at the CDCS control
point. These special routines load the user programs and
simulate the interface between the user control point and a
system control point.

Multiple copies of COCSBTF can be run concurrently with
each other and with a system control point version of
CDCS. In addition, as many as 16 user programs can be run
with each copy of CDCSBTF. Because user programs are
loaded by a program-initiated load from CDCSBTF, the
programs must be in relocatable binary format. Programs
in absolute binary format, as well as segmented programs
and overlays, cannot be run with CDCSBTF.

CDCSBTF EXECUTION

The CDCSBTF program is called into execution by a
control statement. Before the program is executed,
however, several file requirements and restrictions should
be considered. In addition, load maps from the user call
load operations can be obtained by setting switches prior to
the execution of COCSBTF. The allocation of field length
and other required resources, such as magnetic tapes for
log files, is handled as for a normal batch job.

CDCSBTF CONTROL STATEMENT

The CDCS Batch Test Facility is executed by the
CDCSBTF control statement. As many as 16 user program
file names can be specified in the statement. No control
statement parameters for the programs can be included,
however. The format of the CODCSBTF control statement
is shown in figure H-1.

CDCSBTF(1fn-1,1fn-2, . . .}

Ifn Specifies the logical file name of a
relocatable binary file containing a
user program. Up to 16 files can
be specified.

Figure H-1. CDCSBTF Control Statement Format

60482200 D

FILE REQUIREMENTS AND RESTRICTIONS

Certain files must be attached or requested before the
CDCSBTF program can be executed. The rmaster directory
file must be attached using the file name MSTRDIR. All
necessary log files must also be attached or requested.
The names of the log files must correspond to the file
names described in the master directory utility run. The
job name recorded on a log file during execution of
CDCSBTF is Crnnnnnn, where nnnnnn is the number
associated with the particular user job. The user programs
that are to be run with CDCSBTF must be present in
relocatable binary format either as local files or as
permanent files.

When CDCS is executing as the Batch Test Facility, the
name of the output file produced by CDCS is CDCSOUT.

Care must be taken in assigning file names to non-CDCS
files when the Batch Test Facility is being used. Because
several user programs can be executed during one run of
CDCSBTF, every non-CDCS file referenced by the user
programs must have a unique name. This restriction is
especially critical for the file names INPUT and QUTPUT;
they can be used by only one of the programs. Since CDCS
cannot enforce this restriction, the user must take
particular care in using these names.

Programs running with CDCSBTF cannot use as file names
the name MSTRDIR, CDCSOUT, or a name beginning with
five Zs; moreover, a name consisting of P, X, or F followed
by six digits cannot be used. In addition, no logical file
name used for a log file can appear within a user program.

FORTRAN programs running with COCSBTF must execute
the DML TERMINATE statement before a STOP or END
statement.

PROCESSING CONSIDERATIONS

The following paragraphs describe processing limitations
that apply to CDCS executing as the Batch Test Facility.

In a FORTRAN program executing with the CDCS Batch
Test Facility, the Data Manipulation Language (DML)
TERMINATE statement must execute before a FORTRAN
STOP or END statement. If execution of the FORTRAN
program ends without a TERMINATE statement being
executed, processing is discontinued for all programs
specified in the CDCSBTF control statement that have not
completed execution.

The CDCS Batch Test Facility has a limitation on the
number of jobs for which abnormal end-of-job processing
can be performed. For all the programs specified in the
CDCSBTF control statement, the Batch Test Facility
allows a total of two concurrent calls to the RECOVR
routine. If each of three or more programs, executing with
the CDCS Batch Test Facility, requires a call to the
RECOVR routine, the CDCS Batch Test Facility aborts
processing. The following diagnostic is issued:

RECOVR - TOO MANY RECOVERY REQUESTS

FORTRAN 5 provides a mechanism that can eliminate
automatic calls to the RECOVR routine and cen help
prevent the problem of too many recovery requests. The
DB parameter in the FTNS5 control statement affects
end-of-job processing. If the parameter DB=0 is specified
in the FTNS control statement, the RECOVR routine is not
automatically called for abnormal end-of-job processing.

If the CDCS Batch Test Facility aborts processing, a close
operation is performed on any open data base files.

LOAD MAPS

Maps of the program loading operations of a
program-initiated load can be obtained by setting sense
switches 1 through 4 prior to execution of the CDCSBTF
control statement. Each sense switch setting corresponds
to different information on the load map. The settings and
the associated types of information are as follows:

Setting Load Map Information

SWITCH,1. Statistics (5)

SWITCH, 2. Block maps (B)

SMTCH,3. Entry point maps (E)

SWITCH, 4. Entry point cross-reference maps (X)

The control statements in figure H-2 illustrate sample NOS
and NOS/BE jobs in which the CDCS Batch Test Facility is
executed for a FORTRAN program. Before the CDCSBTF
program is called, files containing .the sub-schema
directory (needed for program compilation), the master
directory, and a journal log file are attached. In addition,
a second journal log file is requested and the desired
portions of the load map are selected.

NOS/BE Operating System NOS Operating System
JOB,CMfl. JOB,CMfi.

ATTACH,SUBSC, |D=xxx. ATTACH,SUBSC/UN=xxx.
DML,SB=SUBSC. DML,SB=SUBSC.
FTN,I=DMLOUT. FTN,I=DMLOUT.
ATTACH,MSTRDIR,ID=xxx. ATTACH MSTRDIR/UN=xxx.
ATTACH,LOG1,ID=xxx. ATTACH,LOG1/UN=xxx.
REQUEST,LOG2,MT,RING, ... REQUEST,LOG2,MT,PO=W, ...
SWITCH,2. SWITCH,2.

SWITCH,3. SWITCH,3.

SWITCH 4. SWITCH,4.

LIBRARY,DMSLIB.

LIBRARY,DMSLIB.

Specifies maximum field length.

Attaches the sub-schema.

Preprocesses the DML statements in the FORTRAN
program and writes to DMLOUT.

Compiles the FORTRAN program on DMLOUT and
places it on the LGO file.

Attaches the master directory.

Attaches first journal log fite.

Requests second journal log file.

Requests block map on program-initiated load.
Requests entry point map on program-initiated load.
Requests entry point cross reference map on program-
initiated load.

Specifies that library DMSLIB is to be used to satisfy
externals.

CDCSBTF,LGO. CDCSBTF,LGO. Executes CDCSBTF.
REWIND,CDCSOUT. REWIND,CDCSOUT. Rewinds the CDCSBTF output file.
COPYSBF,CDCSOUT,OUTPUT. COPYSBF,CDCSOUT,OUTPUT. Prints the CDCSBTF cutput file.
EXIT. EXIT. Establishes processing if error occurs.
DMP. DMP. Dumps the exchange package.
DMP,177000. DMP,177000. Dumps the contents of the field length.
REWIND,CDCSOUT. REWIND,CDCSOUT. Rewinds the CDCSBTF output file.
COPYSBF,CDCSOUT,OUTPUT. COPYSBF,CDCSOUT,OUTPUT. Prints the CDCSBTF output file.
Figure H-2. Sampie FORTRAN Execution of COCS Batch Test F acility
H-2 60482200 D

D)

J J

COMPILATION OUTPUT LISTINGS OF EXAMPLES |

This' appendix contains the compilation output listings of Compilation/Execution subsection for more informaticn
the programs used in the examples in this manual. The on the DS parameter.

figure number in parentheses shown with each output

listing matches the figure number of the corresponding The following compilation output listings are from the
program source listing that appears in section 7. pregrams in the university example on using sub-schemas.

These programs illustrate a FORTRAN 5 application.
For the ouput listing of the FORTRAN/DML program for

the payroll example, the DS parameter was specified in . Figure I-1 Schema
the DML control statement so that the listing contains all - Figure I-2 First sub-schema
the FDBF-generated statements. The listing (figure 1-10) Figure I-3 First FORTRAN/DML program
shows that comments from the sub-schema can be Figure I-4 Second sub-schema
inserted in the FORTRAN/DML program. See the Figure I-5 Second FORTRAN/DML program
Figure I-6 Master directory
00001 SCHEMA TEST-FILES.
00002 AREA TESTS.
E" 00003 RECORD R1 WITHIN TESTS.
: 00004 TESTNO TYPE FIXED.
00005 TNAME TYPE CHARACTER 20.
00006 PROFNUM TYPE FIXED.
00007 PROF PICTURE "X (200°“.
00008 RATING TYPE FLOAT.
00009 STCOUNT TYPE FIXED.
00010 PROB TYPE FLOAT OCCURS 100 TIMES,
00011 CHECK VALUE 0.0 THRU 1.0.
00012 DATA CONTROL.
00013 AREA TESTS KEY IS TESTNO, DUPLICATES ARE NOT ALLOWED,
00014 KEY IS ALTERNATE PROFNUM, DUPLICATES ARE INDEXED,
(aﬁ\ 00015 SEQUENCE IS ASCII.
\ *x** AREA CHECKSUMS #»#¥x
AREA NAME CHECKS UM
TESTS 23304715645666355511
DDL COMPLETE. 0 DIAGNOSTICS.
453008 CM USED. 0.230 CP SECS.

Figure I-1. Output Listing of the Schema for the University Example (Figure 7-1)

00001 SUBSCHEMA PROBSS, SCHEMA = TEST-FILES
00002 REALM TESTS
00003 "RECORD R1

*% WITHIN TESTS °
00004 INTEGER TESTNO,STCOUNT

*% ORDINAL 2
00005 REAL PROB(100)

*% ORDINAL 3
00006 END
hkkhk END OF SUB-SCHEMA SOURCE INPUT

PRIMARY KEY 00004 TESTNO FOR AREA TESTS

kkkkk RECORD MAPPING IS NEEDED FOR REALM - TESTS

----- BEGIN SUB-SCHEMA FILE MAINTENANCE ————-

SUBSCHEMA CHECKSUM
PROBSS 14037043413701606733
----- END OF FILE MAINTENANCE m————
DDLF COMPLETE. 0 DIAGNOSTICS. ‘
501008 CM USED. 0.951 CP SECS.

Figure -2, Output Listing of the First Sub-Schema for the University Example

60482200 C I-1

1 PROGRAM NEWTEST
2 INTEGER STATBLK(S)
3 REAL NEWPROB(100),x(100),Y(100)
4 EQUIVALENCE (PROB,X), (NEWPROB,Y), (CORCOEF ,R)
5 #% SUBSCHEMA (PROBSS)
6 CS LIST(ALL=0)

34 ¢3S LIST(ALL)

35 N = 100 .
36 »*x INVOKE

37 cs LIST(ALL=0)

41 C$ LIST(ALL)

42 CALL DMLINV(0001,08F0001,10HPROBSS »10H ,
| 43 +10H ,0"33271713217720155477™)

b4 CALL DMLDBST(STATBLK,S5)
| 45 OPEN(S,FILE="NEWTPE"' ,STATUS='0OLD' ,ACCESS='SEQUENTIAL")

Lé *x OPEN(TESTS)

47 C MAIN LOOP

48 CALL DMLOPN(DBFO001,0001,2H10)

49 10 READ(S5,* ,ERR=40,END=50) TESTNO,NEWST ,NEWPROB
50 ** READ(TESTS ,KEY=TESTNO,ERR=45)

51 CALL DMLRDK(DBFO001,0001,00001,0001,1,0010,1,0000,00,
52 +TESTNO , %45)

53 SUMXY = SUMX = SUMY = SUMXSQ = SUMYSQ = 0.0

54 po 20 1=1,N

55 SUMXY = SUMXY + X(I)#*Y(I)

56 SUMX = SUMX + X(I)

57 SUMY = SUMY + Y(I)

58 SUMXSQ = SUMXSQ + X(I)##2

S9 20 SUMYSQ = SUMYSQ + Y(I)##2

60 R = (NXSUMXY - SUMX*SUMY)/

61 1 (SQRT(N*SUMXSQ - SUMX##2) * SQRT(N*SUMYSQ - SUMY##*2)
62 PRINT %, ' TEST NO. = ', TESTNO,

63 1 ' CORRELATION COEFFICIENT = ', CORCOEF

64 NEWTOT = STCOUNT + NEWST

65 00 30 I=1,N

66 30 PROB(I) = (PROB(I)*STCOUNT + NEWPROB(I)*NEWST)/NEWTOT
67 STCOUNT = NEWTOT

68 ww REWRITE(TESTS,ERR=45) -

69 CALL DMLREW(DBF0001,0,0001,00001,%45)

70 G0 TO 10

71 40 PRINT *, ' ERROR ON FILE READ'
72 45 PRINT 46, STATBLK

73 46 FORMAT (1X,'ST‘TU$'8LOCK'I

] 74 1 1X,04,2X,15,2X,03,2X,12,2X,410)
75 %% CLOSE(TESTS)

76 S0 CALL DMLCLS (DBFD001,0001)

' 77 CLOSE(5,STATUS='DELETE')
78 #x* TERMINATE
79 CALL DMLEND
80 sTOP
81 END

Figure I-3. Output Listing of the First FORTRAN/DML Program far the University Exampte (Figure 7-3)

I-2 ' 60482200 D

J)

BB

00001 SUBSCHEMA RATE, SCHEMA = TEST-FILES

00002 REALM TESTS

00003 RECORD R1
*% WITHIN TESTS

00004 INTEGER TESTNO, PROFNUM
*% ORDINAL 2

00005 CHARACTER *20 TNAME, PROF
*% ORDINAL 4

00006 REAL RATING, PROB(100)
#% ORDINAL 6

00007 END

whkRk END OF SUB-SCHEMA SOURCE INPUT
PRIMARY KEY 00004 TESTNO FOR AREA TESTS
ALTERNATE KEY 00004 PROFNUM FOR AREA TESTS

hkhkhk RECORD MAPPING IS NEEDED FOR REALM - TESTS

----- BEGIN SUB-SCHEMA FILE MAINTENANCE —————

SUBSCHEMA CHECKSUM
RATE 74130570233417530273

————— END OF FILE MAINTENANCE = ====-
DDLF COMPLETE. 0 DIAGNOSTICS.
501008 CM USED. 1.169 CP SECS.

Figure I-4. Output Listing of the Second Sub-Schema far the University Example (Figure 7-5)

PROGRAM RATER '
INTEGER ALTKEY
INTEGER STATBLK(S5)

* % SUBSCHEMA (RATE)

cs LIST(ALL=0)

cs LIST(ALL)

37 *n INVOKE

38 cs LIST(ALL=0)

42 CS LIST(ALL)

w
VIS WNN=

43 CALL DMLINV(0001,0BF0001,10HRATE »10H ’

44 +10H ,0"32241344541751127631") l
45 CALL DMLDBST(STATBLK,S)

46 OPEN(S,FILE='PROFS',STATUS='0LD"' , ACCESS="SEQUENTIAL") I
L7 xx OPEN(TESTS)

48 CALL DMLOPN(DBF0001,0001,2H10)

49 100 READ (5,%,END=900) PROFNUM
50 #* REMD(TESTS,KEY=PROFNUM,ERR=800)

51 CALL ODMLRDK(DBF0001,0001,00002,0001,1,0010,1,0001,00,
52 +PROFNUM, %800)

53 ALTKEY = PROFNUM

54 PRINT 12, PROF, RATING

S5 200 sum = 0.0

56 po 300 1=1,100

57 SUM = SUM + PROB(I)

58 300 CONTINUE

59 AVG = SUM/100.0

60 PRINT 13, TNARE, MVG

61 xx REMD(TESTS ERR=800,END=100)

62 CALL DMLRD(DBF0001,0001,1,1,%#800 ,*100)
63 IF (PROFNUM .NE. ALTKEY) G0 TO 100

64 60 TO 200

65 800 PRINT 14, STATBLK
66 *% CLOSE(TESTS)
67 900 CALL DMLCLS(DPBFO0001,0001)

68 x» TERMINATE

69 CALL DMLEND

70 CLOSE(S,STATUS="'DELETE") |
71 sTOP

72 12 FORMAT (' PROF = ', #20, * RATING = ', F&.1)
73 13 FORMAT (1X,P20,4X,F4.3)

74 14 FORMAT (1X,'STATUS BLOCK'/

75 1 1X,04,2X,15,2X,03,2X,12,2X,410) |
76 END

Figure I-5. Output Listing of the Second FORTR AN/DML Program far the University Example (Figure 7-6)

60482200 D I-3

MASTER DPIRECTORY CONTENTS
0 (S=SCHEMA, A=AREA, RSRELATION, SS=SUB-SCHEMA)

0 NAME 1)
S TEST-FILES 1
CREATION DATE - 79282 TIME - 10.32
A TESTS , 1
CHECKSUN - 23104715645666355511
$S PROBSS

CHECKSUM - 14037043413701606733

CREATION DATE - 79282 TIME - 10.32
SS RATE

CHECKSUM - 74130570233417530273

CREATION DATE - 79282 TIME - 10.32

SUMMARY FOR TEST-FILES
NUMBER OF AREAS
NUMBER OF RELATIONS
NUMBER OF SUB-SCHEMAS

NO =

OVERALL SUMMARY
NUMBER OF SCHEMAS
NUMBER OF SUB-SCHEMAS
NUMBER OF RELATIONS
NUMBER OF AREAS
DIRECTORY SIZE (WORDS) 72

Va2 ON =

Figure 1-6. Output Listing of the Master Directory for the University Exemple (Figure 7-7) _

The following compilation output listings are from the Figure I-7 Schema
programs used in the payroll example on using relations. Figure [-8 Sub-schema
These programs illustrate a FORTRAN 4 application. Figure I-9 Master directory

Figure 1-10 FORTRAN/DML program

60482200 C

J)

J D

-

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
#4% AREA CHECKSUNS #ws#
AREA NARME
PFILE
EXMPT
NEXMPT
#4% RELATION CHECKSUMS ###
RELATION NAME
FIXUP1
FIXUP2
DDL COMPLETE.

SCHEMA PAYDATA.

/* SET UP A SCHEMA TO BE USED */
/% BY FORTRAN 4 APPLICATIONS */
AREA PFILE.

RECORD IS REC WITHIN PFILE.
SOCSEC TYPE CHARACTER 9.
LNAME TYPE CHARACTER 10

OCCURS 2 TIMES.
FNAME TYPE CHARACTER 10.
MI TYPE CHARACTER 1.
PCODE TYPE CHARACTER 4.
TITLE TYPE CHARACTER 10

OCCURS 2 TIMES.

AREA EXMPT.

RECORD IS SREC1 WITHIN EXMPT.
SOCSEC TYPE CHARACTER 9.
MSALARY TYPE CHARACTER 4.
VACHRS TYPE CHARACTER 4.
SICKHRS TYPE CHARACTER 4.
EMPDATE TYPE CHARACTER 6.

AREA NEXMPT.

RECORD IS SREC2 WITHIN NEXMPT.
SOCSEC TYPE CHARACTER 9.
HSALARY TYPE CHARACTER 4.
UNION PICTURE "XX".

EMPDATE PICTURE "X(6)".
VACHRS PICTURE "X(4)".
SICKHRS PICTURE "X (4)*".
DATA CONTROL.
/* KEYS ARE DEFINED HERE. NOTE THAT */
/* SOCSEC MUST BE QUALIFIED BY RECORD =/
/* SINCE IT IS NOT A UNIQUE NAME */
AREA NAME IS PFILE
KEY IS SOCSEC OF REC
DUPLICATES ARE NOT ALLOWED
KEY IS ALTERNATE PCODE
DUPLICATES ARE NOT ALLOWED.
AREA NAME IS EXMPT
KEY IS SOCSEC OF SREC1
DUPLICATES ARE NOT ALLOWED.
AREA NARE IS NEXMPT
KEY IS SOCSEC OF SREC2
DUPLICATES ARE NOT ALLOWED.

RELATION NAME IS FIXUP1

JOIN WHERE SOCSEC OF REC
EQ
SOCSEC OF SREC1.

RELATION NAME IS FIXup2

JOIN WHERE SOCSEC OF REC
EQ
SOCSEC OF SREC2.

CHECKSUM

46214557603577042464
63653124200041162331
42117615403546135513

CHECKSUM
52460536061200070013
52460536063200070013

0 DIAGNOSTICS.
453008 CM USED. 0.693

CP SECS.

Figure I-7. Output Listing of the Schema for the Payroll Example (Figure 7-10)

60482200 C

I-5

00001 SUBSCHEMA EXAMP1, SCHEMA=PAYDATA
00002 c
00003 c THIS COMMENT DEMONSTRATES THE
00004 c ABILITY OF FDBF TO CARRY SUB-SCHEMA
00005 c COMMENTS TO THE FORTRAN SOURCE
00006 [LISTING IF THE DS PARAMETER IS
00007 [SPECIFIED ON THE DML CONTROL
00008 c STATEMENT
00009 c
00010 ALIAS (ITEM) TSOCSEC=SOCSEC.SREC1
00011 REALM PFILE,EXMPT
00012 RECORD REC
% WITHIN PFILE
00013 INTEGER SOCSEC,LNAME(2) ,FNAME MI,
00014 + PCODE,TITLE(2)
% ORDINAL 6
00015 RECORD SREC1
*x WITHIN EXMPT
00016 INTEGER TSOCSEC,MSALARY,VACHRS,
00017 + SICKHRS ,EMPDATE
*% ORDINAL 5
00018 RELATION FIXUP1
*xk3V4% 00013 WARNING: ITEM -SOCSEC- SS SIZE GR SCHEMA SI1ZE - MAY CAUSE TRU
*kk314% 00013 WARNING: ITEM -MI- SS SIZE GR SCHEMA SIZE - MAY CAUSE TRUNCAT
*hkx314% 00013 WARNING: ITEM -PCODE- SS SIZE GR SCHEMA SIZE - MAY CAUSE TRUN
*kk31h% 00016 WARNING: ITEM ~TSOCSEC- SS SIZE GR SCHEMA SIZE - MAY CAUSE TR
*kk314% 00016 WARNING: ITEM -MSALARY- SS SIZE GR SCHEMA SIZE - MAY CAUSE Tf
*xx314% 00016 WARNING: ITEM -VACHRS- SS SIZE GR SCHEMA SIZE - MAY CAUSE TR
*Ax3Y4% 00016 WARNING: ITEM -SICKHRS~- SS SIZE GR SCHEMA SIZE - MAY CAUSE Tk
*xk314% 00016 WARNING: ITEM -EMPDATE~ SS SIZE GR SCHEMA SIZE - MAY CAUSE TR
PRIMARY KEY 00013 SOCSEC FOR AREA PFILE
ALTERNATE KEY 00013 PCODE FOR AREA PFILE
PRIMARY KEY 00016 TSOCSEC FOR AREA EXMPT
ek ko RECORD MAPPING IS NEEDED FOR REALM - PFILE
hhkkkk RECORD MAPPING IS NEEDED FOR REALM - EXMPT
00019 END
dekdkh END OF SUB-SCHEMA SOURCE INPUT
hkkhk RELATION STATISTICS hdkkh
RELATION 001 FIXUP1 JOINS AREA - PFILE
: AREA - EXMPT
----- BEGIN SUB-SCHEMA FILE MAINTENANCE ————
SUBSCHEMA CHECKSUM
EXAMP1 66421650035257141055
----- END OF FILE MAINTENANCE —————
DDLF COMPLETE. 8 DIAGNOSTICS.
510008 CM USED. , 1.783 (P SECS.

I-6

Figure I-8. Output Listing of the Sub-Schema for the Payroll Example (Figure 7-11)

60482200 C

J)

J)

MASTER PIRECTORY CONTENTS

0 (S=SCHEMA, A=AREA, R=RELATION, SS=SUB-SCHEMA)
0 NAME Ip
S PAYDATA 1
CREATION DATE - 79285 TIME - 11.07
A PFILE 1
CHECKSUM - 46214557603577042464
A EXMPT 2
CHECKSUM - 63653124200041162331
A NEXMPT 3
CHECKSUM - 42117615403546135513
R FIXUP1
CHECKSUM - 52460536061200070013
R FIXUP2 :
CHECKSUM - 52460536063200070013
SS EXAMP1
CHECKSUM - 66421650035257141055
CREATION DATE - 79285 TIME - 11.08

SUMMARY FOR PAYDATA
NUMBER OF AREAS
: NUMBER OF RELATIONS
6" NUMBER OF SUB-SCHERMAS

- W

OVERALL SUMMARY
NUMBER OF SCHEMAS 1
NUMBER OF SUB-SCHEMAS 1
NUMBER OF RELATIONS 2
NUMBER OF AREAS 3
DIRECTORY SIZE (WORDS) 1465

Figure 1-9. Output Listing of the Master Directory for the Payroil Example (Figure 7-12)

1 PROGRAM FDBFTST(OUTPUT=64)
cececececececccceeecceccecccecccccececccececcececccccccccecccccccecccccccccccccceccccccccccc

A PROGRAM TO TEST SOME FEATURES OF THE FORTRAN DATA BASE FACILITY
DECLARE SUBSCHEMA APPLICATION CAN ACCESS
INVOKE CDCS AND OPEN FILES FOR PROCESSING

10 SUBSCHEMA (EXANP1)

SUBSCHEMA EXAMP1, SCHEMA=PAYDATA

» »

THIS COMMENT DEMONSTRATES THE
ABILITY OF FDBF TO CARRY SUB-SCHEMA
COMMENYS TO THE FORTRAN SOURCE
LISTING IF THE DS PARAMETER IS
SPECIFIED ON THE DML CONTROL
STATEMENT

15

OO 2O0OOOHOOON

20 *k ALIAS (ITEM) TSOCSEC=SOCSEC.SREC1
Rl REALM PFILE,EXNPT
1 2] RECORD REC
+ WITHIN PFILE
INTEGER SOCSEC,LNAME(2) , FNAME NI,
<25 + PCODE,TITLE(2)
*& ORDINAL é
] RECORD SREC1
** WITHIN EXMPT
INTEGER TSOCSEC,MSALARY,VACHRS,

30 + SICKHRS ,EMPDATE
*% ORDINAL 5
*& RELATION FIXUP1
ik END

Figure I-10. Output Listing of the FORTRAN/DML Program for the Payroll Example (Figure 7-13) (Sheet 1 of 3)

60482200 C

35
40
45
50
55
60

65
.?o
75
8n
85
90

95

-100-

INTEGER DBIOD0O1

EQUIVALENCE (DBI0001,SOCSEC)

COMMON/DBO001/ SOCSEC,LNAME,FNAME NI, PCODE,TITLE
INTEGER 0B10002

EQUIVALENCE (DpBI0002,TSOCSEC)

COMMON/DB0002/ TSOCSEC,MSALARY,VACHRS ,SICKHRS ,EMPDATE
INTEGER DBREALM(3) ,DBSTAT,DBSCNAM(3) ,DBRUID
COMMON/DBO000/DBREALH,DBSTAT ,DBSCNAM,DBRUID
+,DBRELST

INTEGER DBRO0O1(3),0BS0001,0BF0001(35),08T0001(2)
COMMON /DB0000/DBR0O001,DBS0001,0B8F0001,08T0001
INTEGER DBR0002(3),0B8S0002,08F0002(35),0BT0002(2)
COMMON /DB0000/0BR0002,DBS0002,0BF0002,0BT0002
INTEGER DBN00O1(0003)

COMMON/DB0O000/DBNOOO1

INTEGER DBAOOO1(0003)

INTEGER DBRELST(0002)

DATA DBN00O01/0002+0,0/

DATA DBAOOO1/

+0001 ’
+0002 ,
+0/

DATA DBRELST/
+000010000000000000018B,
+000000000000000000008/
DATA DBTOO001/10KHFT4 .0/
DATA DBREALM/3%21H / ,DBSTAT/0/ .
+,DBSCNAM/10HPAYDATA »10H »10H /
DATA DBROOO1/10HPFILE »10H »10H
+ DBS0001/0/,bBF0001/12+0,000001200000000000008,11+0,
+000000000000000000008,6*0,000000002200000000008,
+000000000070000000008,2+0/
DATA DBRO002/10HEXMPT »10H »10H
+ DBS0002/0/,0BF0002/12*0,000000620000000000008,11+0,
+000000000000000000008 ,6+0,000000002200000000008,
+000000000070000000008 ,2+0/
*h INVOKE
DATA DBRUID /1OHFDBFTST /
DBF0O001(16)=LOCF(DBID001)
DBFO001 (25)=DBF0001(25)+DBF0001(16)
pBFO002(16)=LOCF(DB10002)
0BF0002(25)=DBF0002(25)+DBF0002(16)
DBNOOO1 (0001)=LOCF(DBFO001)
DBNO0O1(0002)=LOCF(DBFO0002)

CALL DMLINV(0002,0BF0001,10HEXANP1 »10H ,

+10H ,664216500352571410558)
*k OPEN(PFILE, MODE=0)
CALL DMLOPN(DBFO0001,0001,2H0)

101 FORMAT (" DBSTAT= “, 04)
WRITE 101, DBSTAT
* OPEN (EXMPT ,MODE=0)

CALL DMLOPN(DBF0002,0002,2H0)
WRITE 101, DBSTAT

/,

cecececececccecececcecccccccccccececccccccccccccccecccccccccceccccccccccccccccccc

("

c DEFINE VALUES OF DATA ELEMENTS
C
SOCSEC="123456789"
FNAME="TOM"
"l="xll
LNAME (1)="JONES"
LNAME (2)=" "
PCODE="3000"
TITLE(1)="PROGRAMMER"
TITLE(2)=" "

TSOCSEC="123456789"
MSALARY="1750"
VACHRS="80"
SICKHRS="20"
EMPDATE="010177"

ccecececcecceccecccececcccccccecccecccccecccceccccccccccccccccccccccccccccccccccccccc

1-8

Figure 1-10. Output Listing of the FORTRAN/DML Program for the Payroll Example (Figure 7-13) (Sheet 2 of 3)

60482200 C

J)

J 2

6@5\
6?*‘

105

120

125

130

135

140

145

150

155

160

165

WRITE VALUES TO DATABASE

*OoO00

* WRITE(PFILE)
CALL DMLWRT(DBFO001,0,0001,00001)
WRITE 101, DBSTAT
& WRITE (EXMPT)
CALL DMLWRT (DBF0002,0,0002,00001)
WRITE 101, DBSTAT
cecccececcecceccccecccccccecccccccecccceccccccecccccccccccccccccccccccccccccccccccccc
c .

c CLOSE FILES TO END CREATION MODE OF DATA BASE
c
*ok CLOSE(PFILE)

CALL DMLCLS(DBF0001,0001)

WRITE 101, DBSTAT
*% CLOSE CEXMPT)

CALL DMLCLS(DBF0002,0002)

WRITE 101, DBSTAT
€CCCCCCCCCeeCceeccccceCcecccecceccceccceccecccceccccccececcceccecececcecce
c

[OPEN FILES AND BLANK FILL LAST NAME AND MONTHLY SALARY
c
*k OPEN(PFILE)
CALL OMLOPN(DBFO0001,0001,2H10)
"k OPEN (EXMPT)

CALL OMLOPN(DPBF0002,0002,2HI10)

LNARME(1)=10H

MSALARY=10H
cececececcececcecccecececcccecceccceccceccccecccccccccccceccccecccccccecceccccccecccccccce
c

C READ USING THE RELATION DEFINED IN THE SCHEMA/SUBSCHEMA
c
*k READ (FIXUP1 ,KEY=SOCSEC)
CALL DMLRLK(DBNOOO1,0001,00001,0001,1,0010,0,0000,00,SOCSEC ,
+ 0001)

PRINT *,"READ BY RELATION RETURNS:"

PRINT 100,LNAME,MSALARY
ccceceecccecececcccccecccccececcececceccceccccececcceccececceccccececececcecccccce
c
¢ CHANGE THE VALUE OF MONTHLY SALARY AND REWRITE EXEMPT RECORD

MSALARY="2000"
*k REWRITE (EXMPT)
cccececececccecceccecececeecececcceccececccecccccececcececccecceececcecceccecececcecce
¢
c READ AND PRINT THE VALUES TO VERIFY CHANGE TOOK PLACE
c

CALL DMLREW(DBF0002,0,0002,00001)
*k READ (FIXUP1,KEY=SOCSEC)

CALL DMLRLK(DBNDOO1,0001,00001,0001,1,0010,0,0000,00,S0CSEC ,

+ 0001)

PRINT *,"READ BY RELATION AFTER REWRITE:"

PRINT 100,LNAME, MSALARY
100 FORMAT(1X,3A10)

*x CLOSE (EXMPT)

CALL DMLCLS (DBF0002,0002)
* CLOSE(PFILE)

CALL DMLCLS (DBFO001,0001)

NNN=6LOUTPUT

ENDFILE NNN
** TERMINATE

CALL DMLEND

sToP

END

Figure I-10. Output Listing of the FORTRAN/DML Program for the Payroit Example (Figure 7-13) (Sheet 3 of 3)

60482200 C

I-9

FORTRAN 4/FORTRAN 5 DIFFERENCES IN FDBF

This appendix summarizes the differences in FORTRAN 4
and FORTRAN 5 that are reflected in FORTRAN/DDL
statements and in DML statements.

SPECIFYING LANGUAGE V_ERSION

Both the DDLF control statement (specifying sub-schema
compilation) and the DML control statement (specifying
DML preprocessing) require that languege version be
specified. If the language version is not actually
specified, a default is assumed. The sub-schema
referenced by a FORTRAN/DML. program must have been
compiled with the same language version specified as that
specified for DML preprocessing.

In the DDLF control statement, specifying an F4 or F5
parameter designates compilation of a sub-schema for use
by a FORTRAN 4 or FORTRAN 5 program, respectively.

Example:

DDLF(F5,58=SUBSCHM)
The DDLF control statement designates that the
sub-schema is compiled for use by a FORTRAN 5 program
and that the sub-schema is to reside on the sub-schema
library file SUBSCHM.

In the DML control statement, specifying the language

version parameter LV=F4 or LV=F5 designates
preprocessing for FORTRAN 4 or FORTRAN 5,
respectively.
Example:

DML(LV=F5,58=SUBSCHM)

The DML control statement designates that a program on
file INPUT is preprocessed for the FORTRAN 5 compiler,
that output is written to file DMLOUT, and that the
sub-schema referenced by the program resides on the
sub-schema library file SUBSCHM.

LANGUAGE VERSION DIFFERENCES

This section indicates the language elements used in
FORTRAN/DDL and DML statements which are different
in FORTRAN 4 and FORTRAN 5. For a detailed
description of the syntax required in FORTRAN/DDL
statements, see section 4 of this manual. For a detailed
description of the syntax required in DML statements, see
section 6. The syntax summary for FORTRAN 5
applications is in appendix E; the syntax summary for
FORTRAN 4 applications is in appendix F.

The following two statements are general syntax rules
that apply to the language elements described in
subsequent subsections.

The FORTRAN/DDL compiler requires that the
syntax of the statements comprising the sub-schema
be consistent with the syntax requirements of the
version of FORTRAN specified on the DDLF control
statement.

60482200 C

The DML preprocesser requires that the syntax of the
OML statements in the FORTRAN/DML program be
consistent with the version of FORTRAN specified on
the DML control statement.

BLANK LINES

FORTRAN 5 interprets a blank line as a comment line,
which does not break a possible continuation sequence.
FORTRAN 4 interprets a blank line as an initial
statement; therefore, a blank line breaks a possible
continuaticn sequence.

Blank lines can be used in the sub-schema source input and
in the FORTRAN/DML program.

DATA TYPES

Data types allowed in the sub-schema type statement
depend on the version of FORTRAN. In addition, the
method of declaring character data depends on the version
of FORTRAN.

Recognized Data Types

FORTRAN 5 allows two data types not allowed by
FORTRAN 4; namely, type BOOLEAN and type
CHARACTER.

Both versions of FORTRAN recognize the double precision
data type. FORTRAN 5 allows the following specification:

DOUBLE PRECIS[OB’
FORTRAN 4 recognizes the following two specifications:

DOUBLE
DGOUBLE PRECISION

These data types are declared in type statements in
sub-schema source input.

Declaring Character Data

When a sub-schema is specified for FORTRAN 5, a type
CHARACTER data item must be declared in the
sub-schema to correspond to a schema data item that is
display alphanumeric or display alphabetic (class 0 of 1).

When a sub-schema is specified for FORTRAN 4 and no
conversion is desired, a type INTEGER data item must be
declared to corrrespond to a schema data item that is
display alphanumeric or display alphebetic. If the schema
item is longer than 10 characters, FORTRAN/DDL allows
a special long variable, which is an integer array declared
in the sub-schema, to correspond to the schema item.
When specifying this array in a DML READ statement or
in a DDL RESTRICT statement, the array-name without
subscripts must be specified. In a FORTRAN 4 statement
the array is specified as a standard array. For more
information about this special long variable, see section 2.

J-1

ARRAY DECLARATION

FORTRAN 5 allows an array to have a maximum of seven
dimensions. Both the lower and upper bound of a
dimension can be specified by a positive, zero, or nsgative
integer constant; however, the lower bound must be less
than the declared upper bound.

FORTRAN 4 allows an array to have a maximum of three
dimensicns. The lower bound is always assumed to be one;
the upper bound must be specified by a positive integer
constant.

Array declarations are made in type statements in
sub-schema source input.

STRING DELIMITERS

FORTRAN 5 allows two delimiters: the apostrophe (in
some character sets indicated as an up-arrow) and the
quotation mark (in some cheracter sets indicated as a not
equals sign). A string of characters delimited by
apostrophes is interpreted as a character constant. A
string of characters delimited by quotation marks is
interpreted as a Hollerith constant; FORTRAN 5 limits
Hollerith constants to a length of 10 characters.

' J-2

FORTRAN 4 allows cne delimiter: the quotation mark.
The string is interpreted as a Hollerith canstant.

The strings can be used in two statements. Used in the
FORTRAN/DDL RESTRICT statement, the string can
contain up to 255 characters. Used in the DML PRIVACY
statement, the string can contain up to 30 characters.

ERROR AND END-OF-FILE SPECIFIERS

FORTRAN 5 allows the ERR (error) and END (end-of-file)
specifiers. The specifier indicates the statement where
execution Is to continue when an error or end-of-file
condition occurs upon execution of the statement. The
ERR specifier can be used in the- following DML
statements: CLOSE, DELETE, LOCK, OPEN, READ,
REWRITE, UNLOCK, and WRITE. The END specifier can
be used in a sequential DML READ statement.

FORTRAN 4 does not allow these specifiers.

These specifiers provide the capability for conditional
processing in DML statements for the FORTRAN 5 user.
FDBF provides other means for error and end-of-file
processing. See the Error Processing subsection in
section 6 for more information.

60482200 C

J)

JJ

SUMMARY OF DATA DEFINITION IN DMS-170 K

This summery includes all the clauses or statements that
can be used in defining data items. Table K-1 shows the
schema definition required for data items of each schema
data class and the sub-schema definitions that correspond
to each schema data class.

For Query Update access to schema-defined data base files
in CYBER Record Manager (CRM) data base access mode,
the data base must be defined in the Query Update
sub-schema exactly as the data base is defined in the
schema. Therefore, every data item must be defined to
correspond in size and class to the schema definition of the
item.

60482200 D

For COBOL, FORTRAN, and Query Update access to
schema-defined files in CYBER Database Control System
(CDCS) data base access mode, the definition of data items
in the sub-schemas does not have to correspend exactly to
the schema definition of data items. Through mapping,
CDCS can generate a record image conforming to the
sub-schema format from a record in schema format, or can
perform the conversion of data from sub-schema format to
schema format. Detailed information about conversions
allowed is included in this manual, and in the CDCS 2, the
DDL 3 volume 1, and the DDL 3 volume 2 reference
manuals.

K-1 @

¢ C

(v1
(S493004RYyd (s493004eYd nay3 T st
juawaoe [dad juawage[dad aniea J3b pazL
pue uci} pue uoi3} Mv._oz 1) | =-93ut ay3 ~{eunou
-Jasu} pue -dasui pue jutod buijeoly 34aym) jutod
. dASE6) . dASG6) Nv317009 (d AS6) pazy|eudou | 1-43633jul burjeoys
2-dW0d JiJdsunN 2~dW0d Jt43unN N i EL] 2-dr03 JLJ3uny ‘paubtg 1v¥07d 3uoN pspo) €1
(81
nay3 T st
(s4930040Y2 (s4932040Yd angea J4ab
JuswadR | doa Juswsde (daq -3jul 3yl
pue uoi3 pue uoL} 343YM)
WII907 | -43sul pue w1901 -49su} pue NY31008 2-4abajul 436a3u1
Y3IDIUNI dASS6) 1 X30NI dASE6) WII901 TWII801 uX3ONI | (d A S 6) 1-43b63jut Aaeurq
T-dW0d JL4sWnN 1-dW0) JLA3uNN Y39IINI Y393LNI 1-dW0J oruauny | 4abajur Aaeuig 03x14 3UON papo) 0t
(s4930e40Y2 (s4a30v40Yd uoijisod
juaudde|dad juawade|dad bupjeas 40 ew
pue uoi3 pue uoi3 -1938p 3oL dx®
(3uou 40) | -43sui pue | (uou 40) | -a3sSuU} pue (3uou uo) 40 340} |du (¢
dW0J d AS6) dW0d dAS6) d0d | (d A S 6) | snid otasunu ALldG6) paxiy
AvV1dSlId Ji43uny AV1dSIQ JpJ3uny J9uoN JBUON AY1dSIa JL43uny 3po3 Aeldsiq JuoN dLuauny | Aepdstg ¥
(s483004RYd (s433204RY2 uojjLsod
juswade|d - quawade|d 493004RYD 3Se|
-34 pue =24 pue u} youndaaao
(3uou 40) uoi3J4asut | (suou a0) uoj3aasul (auou 40) ubLs aaAey
dW0d pue § 6) dH0d pue s 6) dK0J (S 6)] wued “opusunu (1 6) | 43ba3ui
AV1dSIa JLJ43uny AV1dSIa Jp43uny JBUON }SUON AV1dSIa JL43uNN 3po2 Ae|dsig 3UoN drauny | Aepdsig €
Mmcoc 40) J139q
(auou 40) V) 2133q | (Suou J0) (v) ot33q (suou 4o0) | (vy) 9t33q J139qeyde (v) 24389 ~eyd|e
AVdSIa -eydly | AVdSIO ~eyd|y 4393INI ¥3LIVUVHI AV1dSIQ -eydly | ‘spod Aeidsig SuoN -eydly | Aepdsig| 1
(sx LLe (sx LLe (sx LLe (sx LLe
se pasn se pasn se pasn se pasn
uo3ed uoijed uoL3ed uoL3ed
-14108ds ~t31o8ds -1 3109ds -} 34 09ds
paxtu paxLu paxiw paxiw
£S5 40 sy $Sg 40 SY ¢Sp 40 Sy £sg 40 sy
LLe jou LLe 3ou LL® 30U tLe 3ou
6 X V) 6 X V) 6 X V) 6 X v) | dtJownu
(suou 40) Ji4aunu | (suou 40) JtJ43wnu (3ucu a0) J}J3Wnu J}43wnueydie JfJ3uwnu -eydie
AVdSIa -eydly AY1dS1a ~eydLy Y3931NI YILIVYYHI AV1dS10 -eydly | “apod Aeldsig | ¥ILOVUVHO -eydiy | Aeydsig 0
ﬂ% ﬂﬂﬂ%
asne() asnel) asney) asne|) — 0
39vsn NLIId 39vsn FUNLII4 | Juswajels adk) asne|) asne|) | vopjejuasauday asnel) asne|) N N
wwayog-gng | I3RS 3L | Taguch | quniorg (eua3u] aAl | nwora | Seekd | Soeld
3poy ssaddy aseg apoy ssadoy aseg b papuajx3 oMmuummm“w ieq | ®3Ra
eje uL ewsyd eje up ewayd -
-wzm wWwvnw »;wuom wnmmmwmwvnw agwncm NYYL¥04 RUWBYIS-qnS 10800 VW3HIS

0LT-SWG NI NOILINIZ43Q Viva

“1-3 378vL

60482200 D

® K-2

*lenuRW 3JudI9EU AJL|1IRJ Aseq RIRQ NYYLY¥0J 4O 2 BWN{OA £00 34} U} UMOYS Si UOLSJBAUOD Pi[eA

*pamof|® asneid> aan3aid ON,,
*3df3 ewayds-qns Buipuodsad.tod ON,;

(s4830040Yd (s493004RYd
Juawade|daa Juawdde | dad
pue uoy3 pue uoy3 (spaom 2) 3ded
-J43Su} pue ~J3suL pue Aaeuybewy pue
d ASE6) dAS6) 3d4ed [Rad YIpM xa| dwod
X37dW02 dpa3unN [X31dW09 JWEY X31dW0d X31dW09 | ,auoN ouoy | qupod Bupzeors| x31dw02 auoy| papo3| 1
(62 nuy3
(s4@300404d (s4332040Yd ST si
Juswase [daJ Juawade [dad aniea 4ab
pue uotj pue uoyj} (sp4om 2) | -aju} ayy uoysid
-43sul pue -J43su} pue jusod Bupeols 3J3YM) -aud
dAS6) dAS6)| NOISIDINd NOISI1J3¥d pazyLewdou | -aabd3u} 3Lqnop
378n0a staaunN [318000 WET I1anoa 378n00 JOUON Jauoy ‘paubys %074 auwoy| papo) eHuL
asne|) asne|) asne|) asne|) aueN *ON
vsn| 3¥nLdId 39vsn LI | JuawdIeds dAY |4 50000¢ oggy [25M°LD asnel) =o.pww=wmngnu¢ asnel) ummmmww sse) | sse()
RWAYIS-qn ¥
apoW Ssaooy aseg 3POR Ss900y 0509 b uunmomxw QUBYIS-qN§ 39vsn | 3¥nLdId Leusagu] 3dAL 2380 | v390
®3eQ W¥) Ul ewauds | ejeq s30) ur ewayds NVHL¥04 S NVHL¥04 T euayds-qns 10800 VHIHIS

~-qng ajepdn A43nh

-qng ajepdn Auand

(P3u0)) 0LT-SW@ NI NOILINI3G Viva

“T=% 378Vl

K3 @

60482200 D

INDEX

Access Control C-1 (see also Privacy)
ACCESS-CONTROL clause 1-6, 6-6
Actual key C-1 (see also Extended actual key file)
Advanced Access Methods (AAM) 1-7, C-1
Alias C-1
ALIAS statement 2-1, 4-1
Alternate key

Definition C-1

Use 2-2, 6-4, 7-2
Application languages 1-3
Area 2-1,C-1
Arrays 2-2,C-1
Attach C-1
ATTACH control statement 5-5

Basic Access Methods (BAM) C-1
Beginning-of-information (BOI) C-1
Blanks 3-2

Blank lines 3-3

Block C-1 (see also Common blocks)

CATALOG control statement 5-2
CDCS
At a system control point 6-14, 7-2
Batch Test Facility 6-14, 7-3, H-1
Definition 1-1, C-1
Informative diagnostics 6-8, 6-11
CDCSBTF control statement 6-14, H-1
Charecter data
Default length (FORTRANS) 4-3
General 2-2
Grouping in record 2-1
Character set 3-2, A-1
CHECK IS PICTURE clause 2-2, 2-3
Checksum 5-7, C-1
Child record occurrence 1-6, C-1
CLOSE statement 6-3
COBOL
Processing 1-5
Sub-schemas 1-1, K-2
Collating sequence 6-4
Column usage in FORTRAN/DDL statements 3-2
Comment linres 3-2
Common blocks
Listing G-1
Sequence generated 2-1
Compaction 5-5
Compilation output listings 5-7, I-1
Compilation/executicn 6-12
Concatenated key 2-2
Concurrency 1-3, 1-5, C-1
Constant 3-1, C-1
Constraints 1-3, 1-6
Continuation 3-2
Control break
Definition C-1
Informative diagnostic code 6-11
Reported in data base status block 6-9

60482200 O

Control statements
CDCSBTF 6-14, H-1
DDLF 5-1
DML 6-12,1-1
NOS/BE 5-1
NOS 5-2
LDSET 6-14,7-3
Used in examples 7-4, 7-5
Control word C-1
Conversion 2-2, C-1
CYBER Database Control System (see CDCS)
CYBER Record Manager (CRM)
Definition C-1
Element of DMS-170 1-1
General 1-3
Informative diagnostics 6-11

Data administrator
Definition 1-1, C-2
Function 7-2, 7-4
Data base
Definition 1-1, C-2
Procedures 1-3, 1-7, C-2
Processing 1-3
Recovery 1-7,6-12
Data base status block
Definition 6-9
Example 7-1
Values returned 6-4, 6-9, 6-11
Data conversion 2-2
Data definition summary K-1
Data description 2-1
Data Description Language (DDL) 1-1, C-2
(see also FORTRAN/DDL)
Data item names 3-1, C-2
Data Manipulation Language (DML)
Arrays generated 3-1, G-1
Definition 1-1, C-2
Preprocessor 6-1, G-1
Statements 6-1, E-2, F-2
Variables generated 3-1, G-1
Data type and size 2-2
DBMSTRD utility 1-3, 6-12, 7-4
DBSTAT variable
Definition 6-8
Example 7-5
Values returned 6-4, 6-11
DDLF control statement 5-1
Deadlock 1-6, 6-11, C-2
DEFINE control statement 5-3
Definition of data items 2-2
DELETE statement 6-5
Diagnostics
CDCS and CRM infarmative diagnostics 6-11
Execution time B-1
FORTRAN/DDL B-1,B-8
FORTRAN/DML. B-8
RECOVR diagnostic H-1
Returned to applications program 6-8

Index-1 ®

Direct access C-2 (see also Extended direct
access file)

Directery 1-1, C-2

DML control statement 6-12, I-1

DMLDBST routine (see Data base status block)

DMLRPT routine 6-12

Elementary item 2-2, 2-4, C-2
End-of-file
END specifier 6-5, 6-10
File position code 6-9
Processing considerations 6-4, 6-11
End-of-information 6-10, 6-11, C-2
END specifier 6-10
END statement 4-4
ERR specifier 6-10
Error processing 6-8
Examples :
Compilation output listings 1-1
FORTRAN 4 application 7-3
FORTRAN 5 application 7-1
Using CDCS at system control point 7-1
Using CDCS Batch Test Feacility 7-3
Extended actual key file 1-7
Extended direct access file 1-7
Extended indexed sequential file 1-7

Field length 5-7
File
Definition 2-1, C-2
Organization 1-7
Privacy 1-6
Processing 1-7
File informaticn table (FIT) C-2
File position
Determining end-of-file (see End-of-file)
File position (FP) code 6-9, 6-11
Positioning example 7-2
READ statement 6-4
START statement 6-5
Fixed cccurrence
Data item 2-2, C-2
Elementary items 2-4
FORTRAN
Processing 1-5
Sub-schemas 1-2, 2-1, K-2
FORTRAN Data Base Facility 1-1
FORTRAN Data Manipulation Language 1-1, 6-1
FORTRAN 4/FORTRAN 5 differences J-1
FORTRAN/DDL
Control statement format 5-1
Diagnostics B-1, B-8
FORTRAN 4 statement formats F-1
FORTRAN 5 statement formats E-1
Statement format 3-2, E-1,F-1
Statement order 2-1
Statements 4-1, E-1,F-1
FORTRAN/DML diagnostics B-1, B-8
FORTRAN/DML statement formats
FORTRAN 4 F-2
FORTRAN 5 E-2
General 6-1

Group item 2-2, C-2

Hierarchical tree structure C-2
Home block C-2

® Index-2

Indexed sequential C-2 (see also Extended
indexed sequential file)

Input/output processing 1-1, 1-3, 1-7

INVOKE statement 6-1

KEY option 6-4
Keywords 3-1, C-2, D-1

Language elements 3-1
LLangusge version
Control statement parameter 5-1, 6-12
Differences FORTRAN 4/FORTRAN 5 J-1
Level C-3
Level number C-3
Listing control directives 6-8
Literal C-3
Locking
Definition 1-3, 1-6
Effects REWRITE or DELETE statement 6-6
LOCK statement 6-6
UNLOCK statement 6-6
LOCK statement 6-6
Log files 1-7, 6-12
Logging 1-3,C-3
Logical expressions 4-4
Lagical file name 5-2, C-3
Logical record C-3
Long varigble 2-2, 2-4, 6-4

Master directory
Check for recompilation 5-7
Creation 1-3
DBMSTRD utility 1-3, 6-12, 7-4
Example 7-2, 7-4
Utility 1-7

MODE option 6-3, 6-7

Multiple-index processing 1-7

Multiple sub-schema compilation 5-2, 7-2

Nested group item C-3
Noise record C-3
Nonnumeric constant 3-1
Nonnumeric literal (see nonnumeric constant)
Nonrepeating elementary item 2-2
NOS/BE control statements 5-2
NOS control statements 5-3
Null record cccurrence
Definition C-3
Informative diagnostic code 6-11
Reported in data base status block 6-9

OCCURS clause 2-4
Omission of data items 2-2
OPEN statement 6-3
Operation 6-8, C-3
Ordering of data items 2-2
Overflow block C-3

Parent record cccurrence 1-6, C-3
Partition C-3

Permanent file C-4

Physical record unit (PRU) C-4
Primary key 2-2, 6-4, C-4

Privacy 1-3, 1-6

PRIVACY statement 6-6

60482200 D

J)

J)

Processing
coBOL 1-5
FORTRAN 1-5
Transaction 1-5
Query Update 1-5
PRU device C-4
PURGE control statement 5-5

Query Update
Processing 1-5
Sub-schema 1-2, K-2

Reandom file C-4
Rank 6-9, C-4
READ statement 6-3, 6-6, 6-11
Realm 2-1, C-4
Realm ordinal 2-1, C-4
Realm position (see File position)
REALM statement 4-1
Recompilation 5-7
Record
Definition 4-2, C-4
Description entry 2-1
Occurrence C-4
Statement 2-1, 4-2
Type 2-2,C-4
Recovery 1-3, 1-7
Recovery point 6-12
RECOVR diagnostic H-1
Relation
Definiticn 1-6, 4-2, C-4
Occurrence C-4
Read 6-4
Statement 4-3
Use 7-3
Repeating elementary item 2-2, 2-4
Repeating group C-4
REQUEST control statement 5-2
RESTRICT statement 4-4
REWRITE statement 6-5
Root realm
Definition C-4
File position returned 6-9
Processing considerations 6-4, 6-9

Sample deck structures 5-3, 6-14

Schema definition 1-1, C-4

Schema/sub-schema
Correspondence 2-1, 2-2
Data definition summary K-1

Differences in array size and dimensicn 2-4

Mapping 2-3
Section C-4
Sequential C-4

60482200 D

Short PRU 6-4
START Statement 6-5
Statement labels 3-2
Status block (see Data base status block)
SUBSCHEMA statement 4-1, 6-1
Sub-Schema
cosoL 1-1
Compilation 5-1
Definition 1-1, C-5
Directory 2-1
FORTRAN 1-2, 2-1
Item ordinal 6-9, C-5
Library 5-1, 5-3, C-5
Library maintenance messages B-1, B-8
Organization 2-1
Programming conventions 3-1
Statement ordering 2-1
Structure requirements 2-1

Query Update 1-2
Use 7-1
System-logical-record C-5

TERMINATE statement 6-3
Transaction Facility (TAF) 1-5
Type C-5

Type statements 2-1, 4-2

Unlocking 1-3, 1-5
UNLOCK statement 6-5
User-defined names 3-1
Utilities

DBMSTRD 1-3, 6-12, 7-4

DBQRFA 1-7

DBGQRFI 1-7

DBRCN 1-7

DBRST 1-7

Variable arrays in schemas/sub-schemas 2-4
Variable occurrence data item 2-2, 2-4
Variable

Definition C-5

General 2-2

(see also Long variable)
Vector 2-4

W type record C-5
Word addressable C-5
WRITE statement 6-5

Zero-byte terminator C-5
Zero-length PRU C-5

Index-3 ©

G E CONTROL DATA

CORPORATION
COMMENT SHEET

MANUAL TITLE: FORTRAN Data Base Facility Version 1 Reference Manual

PUBLICATION NO.: 60482200 REVISION: D
NAME:

COMPANY:

STREET ADDRESS:

ary: STATE: Z® CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please

(@m\ include page number references).

D Please Reply D No Reply Necessary

CUT ALONG LINE

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON OOTTED LINES

AA3419 REV. 4,79 PRINTED IN U.S.A.

TAPE TAPE
FOLD FOLD
NO POSTAGE
NECESSARY
IF MARED
IN THE
UNITED STATES

]

BUSINESS REPLY MAIL S

FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.]

N

POSTAGE WILL BE PAID BY S

CONTROL DATA CORPORATION S

: R

Publications and Graphics Division [

215 Moffett Park Drive R

Sunnyvale, California 94086]

L]

S

I
FOLD FOLD

TAPE

TAPE

CUT ALONG LINE

J D

