SYSTEM 2000 LEVEL 2
A MULTI-PURPOQSE DATA
i MANAGEMENT SYSTEM

CYBERNET® SERVICE

Mini Manual CONTROL DATA

CORPORATION

SYSTEM 2000 LEVEL 2

A MULTI-PURPOSE DATA
MANAGEMENT SYSTEM

Mini Manual -

REVISION RECORD

REVISION DESCRIPTION
(7-15-72) Initial Printing
A Complete reformatting and revision supersedes previous
(4-15-74) edition. B
B Added a new chapter on the Report Writer feature and

(5-15-75) implemented the KRONOS "Family'' concept.

‘Publication No.
86615600

Address comments concerning
this manual to:

. . CONTROL DATA CORPORATIO
Printed in the United States of Special Services and Publieatior

America . HQWOSF, P, 0. Box 0
Minneapolis, Minnesota 55440

© 1972, 1974, 1976
by Control Data Corporation

PREFACE :

Control Data's CYBERNET® Service offers the SYSTEM 2000% general purpose
data base management system on CDC® 6600 and cpe® s400 computer sys-
tems which run under the SCOPE and KRONOS® operating systems. Asa
result, SYSTEM 2000 can be employed in both a batch (or remote batch) and
interactive time-sharing mode.

This publication provides a brief description of the SYSTEM 2000 (Level 2)
commands. It is intended to serve as a quick reference tool for the user.
Section numbers appearing in the text of the first five chapters of the mini-
manual refer to the corresponding section numbers in the SYSTEM 2000 User
Information manual. Section numbers in chapters 6, 7, and 8 refer, respec-
tively, to the corresponding sections in the Immediate Access Feature
Supplement, the CDC Machine Dependent Information Supplement, and the
Report Writer Feature Supplement ma.uuals.

This manual assumes user familiarity with Control Data's KRONOS and/or
SCOPE operating systems.

For further information concerning Basic SYSTEM 2000 usage or the optional
features, consult the following manuals:

Publication
Publication Title Number
SYSTEM 2000 Level 2 User Information Manual 76074000
. SYSTEM 2000 Level 2 General Information Manual 76074100
SYSTEM 2000 Level 2 CDC Machine Dependent Information
Supplement 76074200
SYSTEM 2000 Level 2 Diagnostic Message Supplement 76074300

SYSTEM 2000 Level 2 Immediate Access Feature Supplement 76074400
SYSTEM 2000 Level 2 COBOL Procedural Language

Supplement 76074500
SYSTEM 2000 Level 2 FORTRAN Procedural Language

Supplement 76074600
SYSTEM 2000 Level 2 Report Writer Feature Supplement 76074700
SYSTEM 2000 Level 2 Assembly Language Interface

Supplement 76074800
SYSTEM 2000 Level 2 CONTROL 2000 Demonstration Script 84003700

SYSTEM 2000 Level 2 PERSONNEL 2000 Demonstration Script 84003800

*
SYSTEM 2000 is a service mark of MRI Systems Corporation.

CONTENTS

Chapter

1

Page
SYSTEM WIDE OPERATIONS 1-1
CONTROL MODULE 2-1
DEFINE MODULE 3-1
LOADING PROCESS - 4-1
ACCESS MODULE 5-1
IMMEDIATE ACCESS FEATURE 6-1
CYBERNET SERVICE MACHINE-DEPENDENT

INFORMATION 7-1
R]'E)PORT WRITER FEATURE 8-1

INDEX Index~1

SYSTEM-WIDE OPERATIONS 1

MODULE CALL COMMANDS (2.2.1)

Format Function
CONTROL: Calls control module
DEf‘INE: Calls define module
ACCESS: Calls access module

COMMAND FILE CHANGE NAME COMMAND (2.2.2)

Format Function
COMMAND FILE IS <file name>: Changes command file from
INPUT to file name.

DATA FILE CHANGE COMMAND (2.2.3)
Format Function
DATA FILE IS <file name>: - Changes data file from INPUT
to file name.

MESSAGE FILE CHANGE COMMAND (2.2.4)

Format Function
MESSAGE FILE IS <file name>: Changes message file from
OUTPUT to file name.
REPORT FILE CHANGE COMMAND (2.2.5)

Format Function

REPORT FILE IS <file name>: Changes report file from
OUTPUT to file name.

ENTRY TERMINATOR WORD CHANGE COMMAND (2.2.6)

Format Function
ENTRY TERMINATOR IS Changes terminator word
<terminator word>: from END to terminator word.

SEPARATOR IS <separator symbol>:

ECHO <ON> or <OFF>:

Format

_<ECHO COMMAND (2.2.8)

Format

 EXIT COMMAND (2.2.9)

Format

’ : VS‘YSTEM SEPARATOR CHANGE COMMAND (2.2.7)

Function

Changes system separator
(*) to separator symbol.

Function

To issue echoes of SYSTEM
2000 commands with their
associated output; batch de-
fault is ON, interactive de-
fault if OFF.

Function

Terminates the SYSTEM
2000 job,

CONTROL MODULE

USER PASSWORD COMMAND (3.2.1)

USER, <password>:

where:
<password> = a series of alphanumeric, non-blank characters

NEW DATA BASE COMMAND (3.2.2)

NEW DATA BASE IS <data base name>:
where:

<data base name> = a series of characters (single embedded blanks
allowed)

DATA BASE NAME COMMAND (3.2.3)
DATA BASE NAME IS <data base name>:
where:

<data base name> = a series of characters (single embedded blanks
allowed)

VALID PASSWORD COMMAND (3.2.4)
VALID PASSWORD IS <password>:

where:
<password> = a series of alphanumeric, non-blank characters

INVALID PASSWORD COMMAND (3.2.5)
INVALID PASSWORD IS <existing password>:
where:

<existing password> = name of any component-level password contained
in the data base

ASSIGN AUTHORITY COMMAND (3.2.6)
ASSIGN <authority type list> TO <component list> FOR <password list>:

where:
<authority type list> =R, U, W, and/or V in any combination

<component list> = ALL COMPONENTS, or a list of specific compon-
ents by C number or name separated by commas

<password list> = ALL PASSWORDS, or a list of specific passwords
separated by commas

CHANGE PASSWORD COMMAND (3.2.7)

CHANGE PASSWORD <existing password> TO <new password>:

where:
<existing password> = the name held in the data base for either a valid
password or the master password

<new password> = a new name intended to replace a previous password

LIST PASSWORDS COMMAND (3.2.8)

Format Function

LIST PASSWORDS: Obtains a listing of all valid
passwords except the master,
Only master password holder
may use command,

'LIST PASSWORDS AND AUTHORITIES COMMAND (3.2.9)

LIST PASSWORDS AND AUTHORITIES:

RELEASE COMMAND (3.2.10)

Format Function

RELEASE: Releases data base from disk

[N
i
o

STATISTICS COMMAND (3.2.11)
Format Function

STATISTICS: Obtains statistical informa-
tion about the data base

SHARED DATA BASE NAME COMMAND (3.2.12)
SHARED DATA BASE NAME IS <data base name>:
where:

<data base name> = a series of characters (single embedded blanks
allowed)

SAVE DATA BASE COMMANDS (3.3.1)

(1) SAVE DATA BASE ON <idl>:

(2) SAVE DATA BASE ON <idl>/<id2>: (indirect is default)
(8) SAVE DATA BASE ON <idl>/<id2>/INDIRECT:

{4) SAVE DATA BASE ON <idl>/<id2>/DIRECT:

where:
<idl> = data base tape identification

<id2> = update file tape identification

LOAD DATA BASE COMMANDS (3.3.2)

(1) LOAD <data base name> FROM <idl>:

(2) LOAD <data base name> FROM <idl>/<id2>: (indirect is default)
(3) LOAD <data base name> FROM <idl>/<id2>/INDIRECT:

(4) LOAD <data base name> FROM <idl>/<id2>/DIRECT:

where:
<data base name> = the name of the data base

<idl> = data base tape identification

<id2> = update file tape identification

KEEP COMMAND (3.3.3)

KEEP:

APPLY COMMANDS (3.3.4)

(1) APPLY ALL:
(2) APPLY THRU CYCLE <nn>:

where:
<nn> =last desired data base cycle number recorded on
update file

SUSPEND COMMAND (3.3.5)

SUSPEND:

2-3

DEFINE MODULE

DATA BASE COMPONENTS (4.2)

There are four component types within SYSTEM 2000: elements, repeating
groups, user-defined functions, and strings.

All component declarations have a common basic format, regardless of com-

ponent type. Each declaration is a separate command and each contains the

following items:

e Component number

® System separator (default is an asterisk (¥)),

e Component name (character string of 1-250 characters with restrictions
defined)

e Component description (component unique and set off by left and right

parentheses) .
e Colon (to signal the end of a component declaration command)

component system component component .
number separator name description °

ELEMENTS (4.2.1)

The five parts of the component description, for an element, are as follows:
KEY data picture repeating group padding
NON-KEY type designation relationship option

The items within braces { } are optional and each has a default setting if no

specification is made. The items within brackets [] are mandatory.

KEY, NON-KEY DESIGNATION (4.2.11)

The command words are:

NON-KEY
KEY (default setting)

Examples of a key element declaration:

1* ORGANIZATION (KEY NAME):
2% COGNIZANT OFFICIAL (NAME):

An example of a non-key element:

3% ADDRESS (NON-KEY NAME):

DATA TYPE DESIGNATION (4.2.1.2)

Mandatory Optional
[NAME] -
[TEXT] ==
[DATE] ==
INTEGER NUMBER
or or
INT NUMB
or
| NUM
it
Wg‘ DECIMAL NUMBER
F;‘g or or
m DEC NUMB
i or
N NUM
il .
b
{gi [MONEY] NUMBER
. or
1 E NUMB
|]; % or
w% NUM

PICTURE DESIGNATION (4.2.1.3)

X = symbol for an alphanumeric character for NAME and TEXT
data types
9 = symbol for a numeric character for INTEGER, DECIMAL
and MONEY data types
XX or 99 = symbol for two characters
X(n) or 9(n) = symbol for the number of characters specified by (n)

Data Type Picture Designation Picture Default

NAME or TEXT X X(7)
XX
XXX
XXXX
XXKXX
X(@)

where n = 1-250 characters

DATE None to be specified

INTEGER 9 9(7)
99
999
9999
99999
9()

= e

where n = machine dependent
value

3-2

Data Type Picture Designation Picture Default

DECIMAL 9 9 9(6). 9(2)
99 99
999 999
9999 9999
99999 99999
9(n) 9(n)

MONEY | . r{

where n = machine dependent
value

same picture
specification
as for decimal

9(6). 9(2)

REPEATING GROUP RELATIONSHIPS {4.2.1.4)

IN <repeating group number>

Example 1

12* STOCKS RG IN 8):

13* NAME OF STOCK (KEY NAME X(20) IN 12):
14* TICKER SYMBOL (KEY NAME X(5) IN 12):

Example 2

1*
2%

ORGANIZATION (KEY NAME X(23)):
COGNIZANT OFFICIAL (NON-KEY NAME X(10)):

The implicit relationship of the above elements would be:

1*

ORGANIZATION (KEY NAME X(23) IN 0):

—

I:implied, but not specified

REPEATING GROUPS (4.2.2)

Examples

of defined repeating groups combined with the defined elements

as follows:

1*
6%
7%
8%

ORGANIZATION (KEY NAME X(23)):
ZIP CODE (NON-KEY INTEGER NUMBER 99999):
CURRENT DATE (NON-KEY DATE):
PORTFOLIOS (RG):

9% PORTFOLIO NAME (KEY NAME X(10) IN 8):

11* MANAGER (NON-KEY NAME X(14) IN 8):

1.

2% STOCKS (RG IN 8):
13* NAME OF STOCK (KEY NAME X(20) IN 12):

USER-DEFINED FUNCTIONS (4.2.3)

Functions are described by the user in his data base definition and apply only to
that data base. Elements whose data values are types INTEGER NUMBER,
DECIMAL NUMBER, MONEY or DATE can be used in a function; data types
NAME and TEXT cannot be used. The component description format for the
user-defined function is as follows:

optional - special function special
<Iunction type FUNCTION character definition character

Examples:

DEFINE:

C200*BLOCK COST (FUNCTION $(C30/C29)$):

ACCESS: .

PRINT C13, *C200* WHERE NAME OF STOCK EXISTS:

PRINT CURRENT PRICE, *PE RATIO* WHERE CURRECT PRICE LE
10.00:

PRINT *INTEREST* WHERE PAYMENT DATE EQ 06/12/72:

STRINGS (4.2.4)

user's
s special string special
iz:;g> STRING <character> definition character

SIMPLE STRING CONCEPT (EXAMPLE}

DEFINE:

500*ABCDEF(STRING/IF ALL OF(CURRENT PRICE GT 10. 00%, CURRENT
PRICE LT 20.00%, ESTIMATED EARNINGS GE 2, 00%, ESTIMATED EARNINGS
LE 4.00% THEN PRINT STOCKS ELSE PRINT NAME OF STOCK WHERE
ORGANIZATION EQ CITY TRUST COMPANY*:/):

EXTENDED STRING CONCEPT (EXAMPLE)
DEFINE:

600*EXAMPLE 1(STRING/IF ALL OF(CURRENT PRICE GE *2+*, CURRENT
PRICE LT*3**, ESTIMATED EARNINGS GE *4**, ESTIMATED EARNINGS

LE *5%*) THEN PRINT STOCKS ELSE PRINT NAME OF STOCK WHERE
ORGANIZATION EQ *1¥%:/):

To invoke the simple string, the commands and their sequence are as follows:

ACCESS:

QUEUE:

C500 or *ABCDEF*
TERMINATE:

To invoke the extended string, the commands and their sequence are as follows:

ACCESS:
QUEUE:
*#CG00(CITY TRUST COMPANY, 10, 00,20. 00, 2. 00, 4. 00)
or
*EXAMPLEL(CITY TRUST COMPANY, 10. 00, 20, 00, 2. 00,4, 00)
TERMINATE:

DATA BASE CONSTRUCTION (4.3)

The command stream required to construct a data base definition appears as
follows:

Format Type of Command

USER, <password>: Control module command
NEW DATA BASE IS <data base name>: Control module command
Component declaration commands Define module commands

MAP: Define module commands

MAP COMMANDS (4.5.2)

MAP commands terminate and execute define module commands which were
specified subsequent to the Iast DEFINE command,

(1) MAP:

(2) MAP WHERE <conditions exist>: N

3) MAP [ORDERED BY] <ordering list> WHERE <conditions exist>:
OB

where:
<conditions exist> = series of legal WHERE clause conditions (see
Section IA3. 11)

<ordering list> = see Section IA3.8

RENUMBER COMMANDS (4.5.3)

RENUMBER commands renumber all components within the data base definition,

(1) RENUMBER: (default values where <c¢> and <n> = 1)
(2) RENUMB WITH <c>:
(3) RENUMBER WITH <c> INCREMENTING BY <n>:

where:
<c> = integer number standing for the component number
of the first component in the data base after renum-
bering has taken place

<n> = integer number standing for the increments between
component numbers

HANGE COMMANDS (4.5.4)

s change the component number, name, or description of a

CHANGE command:
defined in the data base definition.

component currently

k"(l) CHANGE <cl> TO <c2>:
(2) CHANGE <cl> TO <c2> <system separator> <component name>:

(3) CHANGE <cl> TO <c2> <system separator> <component name>
(< component description>):

. where:
X <en> = user component number without leading C

e

<component name> =& series of 1-250 characters (see Section Basic 4,2

n> = see Section Basic 4.2.1 through Basic 4.2.4

<component descriptio

DELETE COMMANDS (4.5.5)

DELETE commands delete components from the data base definition.

STOP AFTER SCAN COMMANDS (4.5.7)

% |
:;i” STRING <C>, <C>,...<c>:
igl §|‘ s DELETE | COMPONENT | <cl> THROUGH <c2>:
[t iil_;, FUNCTION <c>
i
fi g(i g . ‘where:
“N <e¢> = user component number with leading C
i
‘I,
1% w ENABLE/DISABLE EXECUTION COMMANDS (4.5.6)
it
E ﬂ 1] The ENABLE EXECUTION and DISABLE EXECUTION commands are used to
Il edit-only and selectively edit local define module commands.
sl f ,
}1 ENABLE EXECUTION: (default)
i
|

STOP AFTER SCAN commands let users edit the definition for error conditior
and disallow execution of define module commands if any commands, are found
\ in exror. .

1 " DISABLE EXECUTION:

STOP AFTER SCAN IF ERRORS OCCUR:

c
]
@

LOADING PROCESS 4

The loading process has three general functions:

1. To enter large volumes of data into a data base initially and at any later time
during the life of the data base.

2. To edit the user's raw data by checking the data values and data structure
against the user's definition of the data base,

3. To give the user a statistical report at the end of a successful load.

INPUT VALUE STRING DEFINITION EXAMPLE
1* GOOD LIFE INSURANCE CO. *2* 1.G.OGDEN* 4* SAN FRANCISCO*
5% CALIFORNIA*

END*

ENTRY TERMINATOR FORMAT (5.2.3)

The end of a logical entry is signaled by the entry terminator word followed by
a system separator.

Example:
END#*

The end of the value string is signaled by one more system separator after the
last entry terminator.

Example:

END * *
END **
END#*
END * *
COMMANDS RELATED TO THE LOADING PROCESS (5.5)
SEPARATOR IS <separator symbol>:
ENTRY TERMINATOR IS <terminator word>:
DATA FILE IS <file name>:
ENABLE EXECUTION:
DISABLE EXECUTION:
STOP IF (Section 6. 1.6 BASIC)

LOAD:

"OUTPUT FROM THE LOADING PROCESS (5.6)

" An example of the report given when the loading process is complete is shown
bélow. ’

LOAD:
08:44:45 - BEGIN LOADING -
08:44:46 - SCAN COMPLETED -
08:44:46 - DATA SET POINTERS CREATED -
08:44:46 - DATA SETS UPDATE COMPLETED -
08:44:46 - BEGIN KEYED VALUE FILE SORT -
08:44:47 - KEYED VALUE FILE SORT COMPLETED -
08:44:48 - LOADING COMPLETED -

DATA BASE SIZE AFTER LOAD = 22680 CHARACTERS -

ERROR HANDLING (5.7)

If one or more errors are found in a single logical entry, that entire logical
entry is excluded from entering the data base.

ACCESS MODULE 5

DESCRIBE COMMANDS (6.1.1)

(1) DESCRIBE:
(2) DESCRIBE <component number>:
(3) DESCRIBE <component number> THROUGH <component number>:
(4) DESCRIBE <component number> THRU <component number>:
(5) DESCRIBE [STRINGS 1
FUNCTIONS

where:

<component number> = a letter C followed by an integer component number,
e.g., C4, Co54, etc.

LOAD COMMAND (6.1.2)

LOAD:

STRING CONCEPT (6.1.3)

SIMPLE STRING

... <system separator> <string reference> <system separator>...
EXTENDED STRING

... <system separator> <string reference> (<argument1>, <argument_>,...

<argument, > 2
16)

where:

<system separator> = default system separator is the asterisk (¥)

<string reference> = string name or string number, e.g., C45
<argument > = any string of alphanumeric characters or even

another string (it must be a simple string ~- one

without arguments) enclosed in parentheses. Argu-

ment specifications are treated as TEXT-type mater-

ial concerning use of blanks. Arguments may num-

ber up to 16, each separated by commas

1-16

1The DESCRIBE FUNCTIONS command may only be used in the Immediate
Access Feature.

Example:

USER, ABCD:

DATA BASE NAME IS SAMMY:

DEFINE:

600*XYZ (STRING/PRINT Cl1, PRINT C2 WHERE ANY OF (C1 EQ *1%*
C2 EXISTS, C4 NE *2%%):/):

ACCESS:

QUEUE:

*C600 (ABC, LEFTOVERSHOE)

CLEAR COMMANDS (6.1.4)

(1) CLEAR AUTOMATICALLY: SCOPE default
(2) CLEAR: KRONOS default

ENABLE/DISABLE EXECUTION COMMANDS (6.1.5)

ENABLE EXECUTION: {default)
DISABLE EXECUTION:

STOP IF COMMANDS (6.1.6)

<n>

(1) STOP IMMEDIATELY IF { ANy

} {UPDATE} COMMANDS ARE REJECT

<n>

(2) STOP AFTER SCAN IF {AND

} {UPDATE} COMMANDS ARE REJECTE

where:
<n> = any integer number greater than zero

{ } = optional command components

CONTINUE COMMANDS (6.1.7)

(1) CONTINUE IF {UPDATE} COMMANDS ARE REJECTED:)
(2) CONTINUE AFTER SCAN IF {UPDATE} COMMANDS ARE REJECTED:

where:
{UPDATE } = an optional command specification

RELOAD COMMANDS (64.8)

(1) RELOAD:
(2) RELOAD WHERE <where clause>:
(3) RELOAD ORDERED BY <ordering clause> WHERE <where clause>:

where:
<where clause> = a series of legal WHERE clause conditions (see
Section IA3, 8)

<ordering clause> = see Section IA3.16

REORGANIZE COMMAND (6.1.9)
REORGANIZE <n>:

where:
<n> = an integer number (0, 1, or 2)

QUEUE PROCESSING (6.2)

In queue processing, the entire command stream, which begins with the com-
mand, QUEUE, and ends with the command, TERMINATE, is read before any
retriéval or updating occurs.

COMMAND SCAN

Each command is scanned for syntactic errors, one command at a time, until
the TERMINATE command is read, at which time command execution takes
place. Each command or iteration of a command is assigned a sequence num-—
ber., The sequence numbers assigned to PRINT commands are the only ones
ever displayed, They are displayed with the command echo and then later with
the output. If a command has errors, a diagnostic is printed on the message
file; the command is not executed hut the run continues unless the user has
specified that the run abort because of user errors.

COMMAND EXECUTION

Once the command stream has been completely examined, all the WHERE
clauses are processed in parallel. After the selected data sets are found,
operations on the data base are carried out in the following steps in the order
shown:

1. ALL PRINT TREE operations are executed.

2. ALL REMOVE TREE operations are executed.

3. ALL APPEND TREE operations are executed in the order in which they
occur in the command stream.

4. All other operations are executed in the order in which they occur in the
command stream and in the order in which they occur within a single com-
mand, subject to the testing of any associated IF clauses.

All operations, (except PRINT TREE) which would otherwise have affected a daf
set, are ignored if the data set is part of a tree which has been removed in step
2 as the result of a REMOVE TREE operation.

QUTPUT

The output data from PRINT operations are sorted and grouped by command
sequence-number before being printed on the user Report File. No output is
given as a direct result of update operations, per se.

QUEUE PROCESSING COMMANDS (6.3)

All available commands may be summarized as fitting into one of the following
semantic patterns:

® <action clause> WHERE <where clause>:

e IF <if clause> THEN <action clause> WHERE <where clause>:

® IF <if clause> THEN <action clause> ELSE <action clause> WHERE
<where clause>:

e REPEAT pseudo-command

1
<action clause> = (1) element operation

PRINT <element>
REMOVE <element>

ADD
CHANGE ::1:;::222 EQ <value> <system
ASSIGN P

(2) group operationl

PRINT <repeating group>
REMOVE <repeating group>

ADD
CHANGE <repeating group> EQ <value string>
ASSIGN

2
(3) tree operation

PRINT TREE <repeating group>

REMOVE TREE <repeating group>

APPEND TREE <repeating group> EQ <value
string>

<where clause> = (1) where condition

<element> EXISTS
<element> | EQ | <value> <system separator>
NE
GT
GE
LT
LE

<repeating group> HAS <where condition>
(2) where sub-expression

<where condition>
ANY {<cuunt>} OF (<where condition1>,<where

conditicm2> ee)

ALL OF (<where condition1>, <where coudition2>
vel)

1Element& and group operation statements may be specified in the same action
clause, set off by commas, where the repeating group implicitly specified by
the element(s) and the repeating group explicitly specified by the group(s) are

2Mu.ltiple-. element and group operations may not be specified for tree operations.

5-4

{3) where expression

<where sub-expression>
ANY {<count>} OF (<where sub-expression, >,
<sub-expression2>. ..) lA

ALL OF (<where sub—expressinnl>,<where sub-
expression2>. o)

where:
<if clause> = (1) if condition

<element> EXISTS
<element> FAILS
<element> | EQ | <value> <system separator>
NE
GT
GE
LT
LE

<element> <system separator> |EQ| <element>
NE| <system
GT| separator>
GE
LT
LE

(2) if sub-expression

<if condition>
ANY {<count>} OF (<if cond.ition1>, <if condi~

t10n2>)

ALL OF (<if condition1>, <if cundition2>. ..)
(3) if expression

<if sub-expression>

ANY {<count>} OF (<if suh—expression1>,

<if sub-expression2>. .)

ALL OF (<if sub—expressionl>, <if sub-expres-

ion_>...
su:om2)

QUEUE COMMAND (6.3.1)

QUEUE:

PRINT AND PRINT TREE COMMANDS (6.3.2)

(1) PRINT <element> WHERE <where clause>:
(2) PRINT <repeating group> WHERE <where clause>:
(3) PRINT TREE <repeating group> WHERE <where clause>:

where: .
<element> = element name or "C'" number, e.g., C45

<repeating group> = repeating group name or 'C'" number
<where clause> = any number of legal WHERE clause conditions

Example:

PRINT C13, PRINT Cl14 WHERE C13 EQ GENERAL MOTORS*:
REMOVE AND REMOVE TREE COMMANDS (6.3.3)

(1) REMOVE <element> WHERE <where clause>:
(2) REMOVE <repeating group> WHERE <where clause>:
(3) REMOVE TREE <repeating group> WHERE <where clause>:

where:
<element> = element name or "C" number, e.g., C45

<repeating group> = repeating group name or "C'" number
<where clause> = series of legal WHERE clause conditions
Examples:

REMOVE C2 WHERE C2 EQ J.B. WISER*:
REMOVE TREE C8 WHERE C9 EQ INCOME*:

ADD COMMANDS (6.3.4)

(1) ADD <element> EQ <value> WHERE <where clause>:
(2) ADD <repeating group> EQ <value string> WHERE <where clause>:

where:
<element> = element name or "C' number, e.g., C45

<repeating group> = repeating group name or "C' number
<value> = character string terminated by system separator
<value string> = system separator following each value and each
component identification and terminated by termin~
ator and system separator, e.g., I*XXX*2XYYY*
END*
<where clause> = series of legal WHERE clause conditions

Example:

ADD C14 EQ UPJ* WHERE C13 EQ UPJOHN*:

CHANGE COMMANDS (6.3.5)

(1) CHANGE <element> EQ <value> WHERE <where clause>:
(2) CHANGE <repeating group> EQ <value string> WHERE <where clausep:

where:
<element> = element name or "C'" number, e.g., C45

<repeating group> = repeating group name or "C" number
<value> = character string terminated by system separator
<value string> = system separator following each value and each
component identification and terminated by ter~
minator and system separator, e,g., 1*¥XXX*2*%
YYY*END*
<where clause> = series of legal WHERE clause conditions

Examples:

CHANGE MANAGER EQ B.J. DILLARD* WHERE C9 EQ INCOME*:
CHANGE STOCKS EQ 14*REX* 15* OTC* END* WHERE C14 EQ UPJ*:

ASSIGN COMMANDS (6.3.6)

(1) ASSIGN <element> EQ <value> WHERE <where clause>:
(2) ASSIGN <repeating group> EQ <value string> WHERE <where clause>:

where:
<element> = element name or "'C" number, e.g., C45

<repeating group> = rgpeati.ng group name or "C" number
<value> = character string terminated by system separator
<value string> =-system separator following each value and each com-
ponent identification and terminated by terminator
and system separator, e.g., 1*XXX*2*YYY*END*
<where clause> = series of legal WHERE clause conditions.

Example:

ASSIGN DATE EQ 07/15/71% WHERE C1 EXISTS:

APPEND TREE COMMANDS (6.3.7)

(1) APPEND TREE <repeating group> EQ <value string> WHERE <where
clause>:
(2) APPEND TREE |:ENTRY EQ] <value string>
. co

where: ~
<repeating group> = repeating group name or "C" pumber other than

ENTRY or CO

<value string> = system separator following each value and each com-
ponent identification and terminated by terminator
and system separator, e.g., 1¥XXX*2*¥YYY*END*

<where clause> = series of legal WHERE clause conditions

Example:

APPEND TREE ENTRY EQ 1*GOOD TIME CO. *END*:

ACTION CLAUSES (6.3.8)

(1) <action clause>:

(2) <action clause> WHERE <where clanse>:

(3) IF <if clause> THEN <action clause> WHERE <where clause>:

4) IF <if clause> THEN <action clause> ELSE <action clause> WHERE

<where clause>:

where: .
<if clause> = see Section Basic 6.3.11

<where clause> = see Section Basic 6.3.9

<action clause> = specific commands falling into three operations ps
outlined below. All commands have individual sec-
tions containing a complete presentation of each.

(a) element operation, or element operation list
(multiple operations may be listed, separated
by commas, if all elements are members of the
same repeating group)

PRINT <element>
REMOVE <element>

ADD
CHANGE <element> EQ <value>
ASSIGN
(b} group operation
PRINT <repeating group>
REMOVE <repeating group>
ADD
CHANGE <repeating group> EQ <value string>
ASSIGN

(c

tree operation

PRINT TREE <repeating group>

REMOVE TREE <repeating group>

APPEND TREE <repeating group> EQ <value
string>

WHERE -CLAUSES (6.3.9)

(1) <action clause> WHERE <where clause>:

(2) IF <if clanse> THEN <action clause> WHERE <where clause>:

(3) IF <if clause> THEN <action clause> ELSE <action clause> WHERE
<where clause>:

where:
<if clause> = see Section 6.3.11

<action clause> = see Section 6.3.8
<where clause> = any one of the following statements:
(a) a where condition
<element> EXISTS
<element> | EQ | <value>
NE
GT
GE
LT
LE

<repeating group> HAS <where condition>

®

a where sub-expression
<where condition>

ANY {<count>} OF (<where condition, >,
<where condition2>. o)

ALL OF (<where sub—exptessionl>, <where sub-
expresslon2> ces)

Examples: N

WHERE C1 EXISTS:
WHERE ANY 2 OF (Cl EXISTS, C9 EQ TRUST*, C13 EQ GOODYEAR*):

IF CLAUSES (6.3.11)

(1) IF <if clause> THEN <action clause> WHERE <where clause>:
2) IF <if clause> THEN <action clause> ELSE <action clause> WHERE
<where clause>:

where:
<action clause> = see Section Basic 6.3.8 \

<where clause> = see Section Basic 6.3.9
<if clause> = any one of the following statements

(a) if condition

EXISTS
<element> [F ATLS

5-9

<element>
<element> <system separator> | EQ | <value>
NE |<system

LT | separator:

LE -

‘GT | <elements

GE | <system
separator:

o

if sub-expression

<if condition> .
ANY {<count>} OF (<if condition, >, <if con-

d.xtmn2>,...)

ALL OF (<if sub-expression

sion2>, o)

1>, <if sub-expres-

UNARY OPERATORS (6.3.12)

(1) ...WHERE <element> EXISTS:
(2) IF <element> |EXISTS
FAILS

where:
<element> = element name or "C" number

BINARY OPERATORS (6.3.13)

(1) ...WHERE <element> <binary operator> <specific value>:

2) IF <element> <binary operator> <specific value>...

(3) IF <element> <system separator> <binary operator> <element>
<system separator>...

where:
<element> = element name or "C'" number

<binary operator> =| EQ
NE
LT
LE -
GT
GE

<specific value> = a value followed by a system separator
<system separator> = system separator currently is use (default separator
is *)
HAS OPERATOR (6.3.14)
HAS

... WHERE <repeating group> | HAVE <condition>:
HAVING

5-10

where:
<repeating group> = repeating group name or “C' number

<condition> = any of the WHERE clause conditional statements

BOOLEAN OPERATORS (6.3.15)

(1) ...ANY {<count>} OF (<conditions>...)
(2) ...ALL OF (<conditions>...)

where:
<count> = n where 1 < n < 7; default condition sets <count> =1

<conditions> = any legal WHERE clause and IF clause conditions
(see Sections Basic 6.3.9 and 6.3.11)

DATA ELAG {6.3.16)

<system separator> DATA <system separator> (for example, *DATA¥*)

where:
<system separator> = by default, the asterisk (¥)

Example:

IF C9 EQ *DATA* THEN ASSIGN C8 EQ *DATA* WHERE Cl1 EQ *DATA*:

REPEAT PSEUDO-COMMANDS (6.3.17)
{1) REPEAT <special character> <command stream> <special character>:
(2) REPEAT <special character> <command stream> <special character> <n>
TIMES:
where:
<special character> = any machine allowable character not appearing in the .
enclosed command stream

<command stream> = character string not exceeding 250 characters, in-
cluding one or more complete commands

<n> = an integer number
Example:

REPEAT/APPEND TREE ENTRY EQ *DATA*:/:

TERMINATE COMMANDS (6.3.18)
(1) TERMINATE:

(2) TERMINATE/PRINT:
(3) TERMINATE/UNLOAD:

5-11

IMMEDIATE ACCESS FEATURE 6

DESCRIBE COMMANDS (3.1)

(1) DESCRIBE:

(2) DESCRIBE <component number>: .

(3) DESCRIBE <component number> THROUGH < component number>:
(4) DESCRIBE <component number> THRU <component number>:

STRINGS
(5) DESCRIBE |:FUNC’I‘IONS:|

where: .
<component number> = a letter C followed by an integer component number,
e.g., C4, C54, etc.

TALLY COMMANDS (3.2)

(1) TALLY <element list>:
(2) TALLY/EACH/ <element list>:
(3) TALLY/ALL/ <element list>:
where:
<element list> = one or more element names or numbers separated
by commas

Examples:
TALLY/EACH/C26:
TALLY/ALL/C26:

PRINT COMMANDS (3.3)

(1) PRINT <print clause>:
(2) PRINT <print clause> <ordering clause> WHERE <conditions exist>:

where:
<print clause> = <option>, <hy clause(s)>, or <option list(s)>

<ordering clause> = an optional portion of the command used or order
_ - the output (see Section IA 3.8)

<conditions exist> = series of legal WHERE clause conditions
<option list> = one or more format option statements separated by
commas, the entire list set off by slashes. (See

Section IA 3.4)

<by clause(s)> = one or more BY clauses separated by commas, each
one having its own object list. (See Section IA 3.10)

<object list(s)> = KEY or NON-KEY element references (name or num-
ber), repeating group references, in-line and user~
defined function references, and system functions

6-1

Examples:

PRINT C1, C2, C28:
PRINT BY ENTRY, C1, COUNT C9, COUNT C13, BY C8, C9, Ci3:

FORMAT STATEMENTS (3.4)

(1) PRINT/ <option list>/:

(2) PRINT/ <option list>/<print clause>,..:

(3) LIST/ <option list>, TITLE <title specifications>/<list clause>...:
(4) UNLOAD/ <option list>/<unload clause>...:

where:
<option list> = one or more format option statements separated by
commas

/ (slash) = the mandatory symbol used to set off the option list,
when used

The format options available to the user are as follows:

Format Statements

(1) SINGLE SPACE (5) NULL SUPPRESS
DOUBLE SPACE NULL

(2) INDENT ’ (6) TREE
BLOCK GROUP

{3) NUMBER (7) REPEAT
NAME REPEAT SUPPRESS

4) STUB (8) ZERO SUPPRESS
STUB SUPPRESS ZERO

Example:

PRINT/NULL/C1, C2, C3 WHERE C5 EQ A:

SYSTEM FUNCTIONS (3.5)

... <function name> <function object>
~where:
<function name> = any of the six functions MIN, MAX, AVG, SUM,
COUNT, SIGMA

<function object> = any element, repeating group, in-line or user-definec
function (including nested system functions)

Example:

PRINT MAX C1, MIN C1, COUNT C1:

USER-DEFINED FUNCTIONS (3.6)

(1) PRINT...*<function reference>*,..:

(2) PRINT...*<function reference>*, ., WHERE,..:
(3) LIST/...*<function reference>*... WHERE...:
(4) UNLOAD...*<function reference>*.,, WHERE...:

ADD

(5) | CHANGE| <element> =...*<function reference>*... WHERE,..:
ASSIGN

(6) ...ORDERED BY [ir’fv? } *<function reference>*...:

Example:

PRINT *C101* WHERE C1 EQ SMITH:

IN-LINE FUNCTIONS (3.7)

(1) PRINT...(<in-line function>)...:

(2) PRINT...(<in-line function>)... WHERE...:

@) LIST/.../...(<in-line function>).., WHERE...:
(4) UNLOAD... (<in-line function>)... WHERE... :

ADD .
(5){CHANGE] <element> =...(<in-line function>)... WHERE...:

ASSIGN HIGH
(6) ...ORDERED BY [L Ow:l (<in-line function>)...

Example:

PRINT SUM(C24-C30) WHERE C13 EQ AMERICAN CYANAMID:

ORDERING STATEMENTS (3.8)

ORDERED BY
OB

(1) PRINT <object list>, <ordering clause> WHERE...:

<ordering clause> WHERE,..:

(2) LIST/.../ <object list>, [ggDERED BY

(3) UNLOAD <object list>, [g;DERED BY] <ordering clause> WHERE..,:

where:

<object list> = KEY and NON-KEY element references (name or
number), repeating group references, in~line and
user-defined function references, and system func-
tions

<ordering clause> = [HIGH] <item 1>, [HIGH] <item 2>...

LOW LOW
<item n> = any one of the <object list> items defined above
The HIGH and LOW directives are sort words with the following meanings:

LOW = default condition; low-to-high (ascending order);
i.e., 1,2,8,4,...0rA, B, C,D...

HIGH = high-to-low (descending order); i.e., 12, 11, 10, 9,
...orV,U,T,85,...

6-3

LIST COMMANDS (3.9}

(1) LIST/TITLE <title specifications>/:

(2) LIST/TITLE <title specifications>/<list clause>: .

(3) LIST/ <option list>, TITLE <title specifications>/<list clause>,
<ordering clause> WHERE < conditions exist>:

where: .
<title specifications> = <page heading> <page footing> <column specifica-
tions>

<option list> = one or more format option statements separated by
commas (see Section IA 3.4)

© <list clause> = <by clauses> and <object lists> or just <object lists>
<ordering clause> = ordering option; see Section IA 3.8
<conditions exist> = series of legal WHERE clause conditions

<by clauses> = one or more BY clauses separated by commas, each
having its own object list (see Section IA 3.10)

<object lists> = KEY or NON-KEY element references (name or num-
ber), in-line and user-defined function references,
and system functions

Page headings and footings are specified immediately following any format
options desired.

<page heading> = D(NN) <test>,
<page footing> = F(MM) <test>,
D = date
NN = beginning column for the text

The <column specification> may be made up of a single specification or several
specifications; specifications are separated by commas, A specification may
include two fields of format identification: <type> and <title>. The <type>
field is not mandatory. However, if it is not supplied, the <title> field must
be specified. The <type> field is identified as:

L
<type> = | R | (<integer number>)
B

where: ~
L = <title> left-justified
R = <title> right-justified
B = column to be blank and <title>, if any, left-justified

The <title> field is identified as:

<title> = (a) <string of characters>
{b) <string of characters> + <string of characters>
_{c) <string of characters> + <string of characters>
"+ <string of characters)
(d) + <string of characters> -
(e) + <string of characters> +

6-4

{f) ++ <string of characters>

{g) + <string of characters> + <string of characters>
(h) <string of characters> + <string of characters> +
(i) <string of characters> ++ <string of characters>

where:
<string of characters> = any string of characters which will become the column
heading, limited in number only by the output device
in use, e.g., a maximum number of characters on a
teletype equals 69; this maximum is 129 on a printer

+ = normally indicates title wraparound, three lines
allowable per column; also controls which of the
three lines will be blank

Example:

LIST/TITLE L(10)NAME OF +AASTOCK, AALATEST + EARNINGS,
+AAAADATEAAAA, B(9)SHARES + DESIRED, B(7)PRICE + DESIRED,
R(9)CURRENT + PRICE AA/C13, C19, C7, C24 WHERE PORTFOLIO
NAME EQ INCOME:

BY CLAUSES (3.10)

) PRINT! <object list>:

(2) PRINT <object list>, <by clause>, <by clause>:

(3) PRINT <by clause> WHERE <conditions exist>:

(4) PRINT <system function> <function object> <by phrase>:

i (5) PRINT <object list>, <by clause>, <system function> <function object>
i <by phrase> WHERE <condition exist>:

where:
<object list> = any item legally referenced in a <print clause>,
including items from disjointed data sets

<by clause> = <by phrase>, <object list>

<by phrase> = BY followed by an RG name or number, including
"DATA BASE"

<conditions exist> = any of the legal WHERE clause conditions

<system function> = any of the six built-in system functions (SUM,
COUNT, etc.)

<function object> = any component that may be legally operated upon by
the associated function

Example:

PRINT BY ENTRY, C1, COUNT C1, C12, COUNT C13:

1Wherever appropriate, the BY clause may be issued in the PRINT, LIST, and
" UNLOAD commands,

6-5

WHERE CLAUSES (3.11)
...WHERE <conditions exist>

where:
<conditions exist> = any number of legal WHERE clause conditions as
defined by the following statements:

(1) Unary operator condition

<element> EXISTS
- FAILS

{2) Binary operator condition
MeQ
NE
LT
LE
GT
| GE

<element> <value>

(3) Ternary operator condition

SPA!
<element> ’—NP NS <value><system separato

<value>

B
(4) Normalized condition
<repeating group> HAS <condition>
Example:

PRINT PORTFOLIO NAME, MANAGER WHERE PORTFOLIO NAME
EXISTS:

UNARY OPERATORS: EXISTS, FAILS (3.12)

... WHERE <element> | EXIST, EXISTS, or EXISTING
FAIL, FAILS, or FAILING

where:
<element> = element name or "C" number

Example:

PRINT C1 WHERE C5 FAILS

BINARY OPERATORS: EQ,NE,LT,LE,GT,GE (3.13)
«+. WHERE <element> <binary operator> <specific value>:

where:
<element> = element name or "C" number

<binary operator> = [EQ equal

NE not equal

LT less than

LE less than or equal to
GT greater than

GE greater than or equal to

<specific value> = a value
Example:

PRINT C1 WHERE C2 GE 12:

BOOLEAN OPERATORS: AND,OR,NOT (3.14)
(1) ... WHERE <condition1> [ggrj <condition2>:
{2) ... WHERE NOT <coudition1>:

where:
<condition > = any one of the many WHERE clause conditional
statements

Example:

PRINT C1 WHERE C5 EQ 10 OR C6 LT S:

AT OPERATORS (3.15)

(1) ... WHERE ... <condition> AT <n>:
_(2) ... WHERE ... (<boolean combination>) AT <n>...:
(3) ... WHERE ... (<condition> AT <n>) AT 0:

where:
<condition> = any of the legal WHERE clause conditions

<n> = positive integer number indicating logical positional
relationship in the data base tree structure

<boolean operator> = two or more conditions within the same data set,
with or without AT clauses, linked by Boolean
operators

Example:

PRINT C25 WHERE BLOCK NUMBER EQ 1000 AT 0.

HAS OPERATORS (3.16)

... WHERE <repeating group> | HAS <condition>
HAVE
HAVING

6-7

where: .
<repeating group> = repeating group name or "'C"

<condition> = any of the WHERE clause condition statementé,
nested or unnested

Example:

WHERE ENTRY HAS NAME OF STOCK EQ UPJOHN:

STRING CONCEPTS (3.17)
SIMPLE STRING
... <system separator> <string reference> <system separator>.,.

EXTENDED STRING

... <system separator> <string reference> (<argument1>, <argument2>. .)
where:
<system separator> = default system separator is the *.

<string reference> = string name or string number (e.g., C45).

<arguments> = any string of alphanumeric characters or even
another string (it must be a simple string, without
arguments) enclosed in parentheses. Argument
specifications are treated as TEXT-type material
with respect to use of blanks.

DITTO OPERATORS (3.18)

(1) DITTO:

(2) DITTO | WHERE <conditions exist>:
BEFORE
AFTER

where:

<conditions exist> = any of the legal WHERE clause conditions

SAME OPERATORS (3.19)
... WHERE SAME:

...WHERE SAME [AND:I <conditions exist>:
OR

... WHERE <conditions exist> [AND] SAME...:
OR

...WHERE (< condition1> AND | SAME) [AND <condition2> AND
SAME...: OR OR OR

... WHERE <etc, >

6-8

SAME DECLARATION CCMMAND (3.20)

SAME IS | STATIC :
DYNAMIC

where:
DYNAMIC = the default processing mode of SAME

The SAME declaration command changes the processing mode of the SAME
operator in the following way:

STATIC = SAME refers to the last WHERE clause that did not
have a SAME operator

DYNAMIC = SAME refers to the last WHERE clause whether or
not it had a SAME operator

LIMIT COMMANDS (3.21)

(1) LIMIT <nl>:

<n2>
@) LIMIT <nl> I:,<n2>/<disposition>]
<n2> <n3>
(3) LIMIT <nl> l:, <n2>/< disposition>:| [,<n3>/<fi1ename>] :
(4) END LIMIT:
where:
<nl>,<n2>, or <n3> = 0 or any positive integer; if equal to 0, then limit is

infinite

<disposition> = | CANCEL default is CANCEL
TRUNCATE

<filename> = filename recognizable to resident operating system

NOTE: <nl> and <n3> must be less than or equal to <n2> except when <n2> = 0.

UNLOAD COMMANDS (3.22)

(1) UNLOAD:

(2) UNLOAD <unload clause>:

(3) UNLOAD/<option list>/<unload clause>, <ordering clause> WHERE
<conditions exist>:

where: -
<option list> = see Section 1A 3.4

<unload clanse> = <by clause> and <object list> or just <object list>
<ordering clause> = ordering option (see Section IA 3.8)

<conditions exist> = series of legal WHERE clause conditions

<by clause> = see Section IA 3.10.
<object lists> = KEY or NON-KEY element references (name or
number), repeating group references, in-line and

user-defined function references, and system re-
ferences.

IMMEDIATE ACCESS UPDATE COMMANDS

ADD COMMANDS (4.1)

EQ <value>

1
(1) ADD <element> [: <function>

] WHERE <conditions exist>:
(2) ADD <repeating gr:cn.1p>1 EQ <value string> WHERE <conditions exist>:

where:
<element> = element name or "C" number

<value> = character string terminated by system separator

<function> = any legal in-line, user-defined or system function;
the function may be enclosed in a BY clause

<conditions exist> = series of legal WHERE clause conditions
<repeating group> = repeating group name or "C"
<value string> = system separator following each value and each com-
ponent identification and terminated by the entry ter-
minator, e.g., 1*XXX*2*¥YYY*END*

Examples:

ADD C5 EQ 07/15/71* WHERE C1 EQ GOOD CO. :
ADD C21 = (0.1%34, 50) WHERE C13 EQ GENERAL MOTORS:

CHANGE COMMANDS (4.2)

EQ <value> | wirRE <conditions exists:
= <function>

(1) CHANGE <element>1 [
(2) CHANGE <repeating group>1 EQ <value string> WHERE <conditions exist>

where:
<element> = element name or "C'" number

<value> = character string terminated by system separator

<function> = any legal in-line, user-defined or system function;
the function may be enclosed in a BY clause

1
A trace notation may be entered following the element or repeating group., For
an example of trace notation, see Section IA 4.8,

6-10

<conditions exist> = series of legal WHERE clause conditions
<repeating group> = repeating group name or "C'" number
<value string> = system separator following each value and each -

component identification and terminated by the entry
terminator, e,g,, I*XXX*2*YYY+*END*

Examples:
CHANGE C25 EQ ABC* WHERE C9 EQ INCOME:
CHANGE C29 = (C29+500) WHERE C13 EXISTS:

REMOVE COMMANDS (4.3)

1
(1) REMOVE <element>" WHERE <conditions exist>:
(2) REMOVE <repeating group>1 WHERE <conditions exist>:

where:
<element> = element name or "C'" number

<conditions exist> = series of legal WHERE clause conditions
<repeating group> = repeating group name or "C'" number
Example:

REMOVE MANAGER WHERE MANAGER EQ DICK ESSELSEN:
ASSIGN COMMANDS (4.4)

EQ <value> | wrppn <conditions exist>:
= <function>

1
(1) ASSIGN <element> l:
(2) ASSIGN <repeating group>1 EQ <value string> WHERE <conditions exist>:

where:
<element> = element name or "C'" number

<value> = character string terminated by system separator

<function> = any legal in-line, user-defined or system function;
the function may be enclosed in a BY clause

<conditions exist> = series of legal WHERE clause conditions
<repeating group> = repeating group name or ''C"' number
<value string> = system separator following each value and each com-
ponent identification and terminated by the entry ter-
minator, e.g., 1*¥XXX*2¥YYY*END*
Examples:

ASSIGN DATE EQ 02/25/71* WHERE C1 EXISTS:
ASSIGN C22 = MAX €22 BY C9 WHERE C13 EQ GOOD CO.:

1A trace notation may be entered following the component idéntification. For an
explanation of trace notation, see Section IA 4. 8.

6-11

ASSIGN TREE COMMAND (4.6)

ASSIGN TREE <repeating gruup>1 EQ <value string> WHERE <conditions exist>

where:
<repeating group> = repeating group name or '"C'' number

<value string> = system separator following each value and each com-
ponent identification and terminated by the entry ter-
minator, e.g., I*XXX*2*YYY+*END*
<conditions exist> = series of legal WHERE clause conditions
Example:
ASSIGN TREE PORTFOLIOS EQ 9* PRIVATE* 10* XYZ* 12* 13*
CENTRAL* END* WHERE C9 EQ STOCKS:

INSERT TREE COMMANDS (4.7)

(1) INSERT TREE <repeat1ng> EQ (value) [BEFORE:I <cund1t1cns>

group string AFTER exist
1 1
() INSERT TREE /ToPeating) (partial traced) oo fvalue \ e
\group notation string

conditions)
exist °

N 1] 4
repeating full trace value .
(8) INSERT TREE (group) <notaj:ion EQ string/ °

where:
<repeating group> = repeating group name or "C" number

<value string> = system separator following each value and each com~
ponent identification and terminated by the entry ter-
minator, e.g.,, I*XXX*2*YYY*END*
<conditions exist> = series of legal WHERE clause conditions
full or partial \ = a string of one or more integer numbers each pre-
trace notation ceded by a system separator, e.g., *1 ¥3 *2,,,

Examples:

INSERT TREE C12 *0 EQ 13* ABC CO.* END* WHERE C$ EXISTS:
IF C25 EQ 26*2025%27*BUY*28%02/25/72*END*AFTER C26 EQ 2024:

1
A trace notation may be entered following the component identification. For an
explanation of trace notation, see Section 4. 8.

6-12

TRACE NOTATIONS (4.8)
FULL TRACE
" A specific example of a full trace is:
REMOVE TREE ENTRY *4:
In this case, the fourth logical entry is removed from the data base.
;ﬁnoﬂ:er full trace example is:
ASSIGN PORTFOLIOS *2%0 EQ 9% CLIMBER* Ii* J.D, GILPEN* END#*;

Here, the second PORTFOLIOS data set in the last logical entry is selected. Its
contents are removed and replaced with the value string values.

Finally, a third example is:

INSERT TREE ENTRY*0 EQ 1* ABC CONGLOMERATE* 2* J. P, SMITH*
7% 07/16/71% END*:

In this example, a new logical entry with one data set where the ORGANIZATION
is the ABC CONGLOMERATE has been added as the last logical entry to the
data base.

PARTIAL TRACE
An example of a partial trace is:
REMOVE C25%*1 WHERE C9 EQ PILFER FUND:

Here, the qualified data set is the level 1 data set for PILFER FUND. The
gelected ancestral data sets are all C12 repeating groups (STOCKS) for PILFER
FUND., The trace extends to the first occurrence of C25 repeating group
(TRANSACTION) and removes it.

A second example is:

ASSIGN .C25%0*2 EQ 26+ 3001* 27+ BUY* 28+ 02/25/70* 20* 5000% 30%
25, 00* END* WHERE C9 EQ RESERVE:

In this case, the qualified data set is the level 1 data set for the RESERVE
portfolio. The selected ancestral data sets are all C8 (PORTFOLIOS) repeating
groups. Since the WHERE clause qualified only one C8 repeating group RE-
SERVE portfolio), the selected ancestrat data set is the RESERVE portfolio.
Tollowing the trace downward, the last transaction enter :d for the second
occurrent of the STOCK repeating group is assigned new viuaes,

PREVIOUS OPERATOR (4.9)

ADD

CHANGE component ' diti
ASSIGN compone > EQ PREVIOUS WHERE (o0 ’°“s>
ASSIGN TREE identification exist
INSERT TREE

CYBERNET SERVICE MACHINE-DEPENDENT 7
INFORMATION

CYBERNET Service offers SYSTEM 2000 on CDC 6600 Computer Systems that
function under both KRONOS and SCOPE Operating Systems. KRONOS users
can perform their SYSTEM 2000 processing in an interactive time-sharing mode
while SCOPE users acquire over-the-counter batch and remote batch access,

INTERACTIVE KRONOS USAGE

The following procedure lets SYSTEM 2000 users log-in to KRONOS and acquire
interactive time-sharing:

75/04/04. 11.48.14.
~«KRONOS sends basic log-in

EASTERN CYBERNET CENTER SN166 KRONOS| M85°%9¢

FAMILY: KC ~————————— KRONOS requests family name; user enters
appropriate name.

USER NUMBER: ABC1234 ~—KRONOS asks user to enter his user number;
user responds by entering his CDC-assigned
PASSWORD user number (i.e., ABC1234)
j|‘<—-—————KRONDS asks for user's password
mEEREEENEN

KRONOS specifies the terminal number
TERMINAL: 102, TTY assigned for this session

RECOVER/SYSTEM: NULL-——XRONOS asks what subsystem to process under
SYSTEM 2000 users enter NULL

OLD,NEW, OR LIB FILE: LIB-—— KRONOS asks for file status; SYSTEM
2000 users enter LIB

FILE NAME: S2KV2 <—————KRONOS asks for file name; SYSTEM 2000 user
enter S2Kv2
READY.

_S2KV9«——————————After READY response, users enter -S2KVZ
to execute SYSTEM 2000

74/01/14. 11.26.00. *BEGIN SYSTEM 2000*RELEASE 2, 23E|~ SYSTEM 2000
processing
can now
begin

?USER,, xax; ~—————————User identifies himself to SYSTEM 2000 by
— entering his data base password (i.e.,xxxx)

Under KRONOS#*, the default ARU limit is 51210. However, users can issue the
following standard SYSTEM 2000 command to establish a different, non-standard
limit for a terminal session:

ARU LIMIT IS <n>:
where:

<n> = the new ARU limit; this must be an integer less
than 32768

*SCOPE users establish their own ARU limits by submitting an appropriate
SCOPE control card.

7-1

SPECIAL CONTROL MODULE COMMAND (MDI-48)

‘The following new control module command (available for both SCOPE and
KRONOS users) lets the user attach a data base (from tape) under an account
which is different from the account specified in the user's job control card
(SCOPE) or log-in user number (KRONOS).

ACCOUNT IS <n>:

where:
<n> = the account or user number under which the data
base is catalogued

However, certain SYSTEM 2000 commands should not be issued once an
ACCOUNT IS command is entered. This limitation applies to the following
commands:

(1) LOAD <data base name> FROM <tape id>:
(2) NDB IS <data base name>:

(3) KEEP: .

(4) REORGANIZE:

REPORT WRITER FEATURE 8

The section numbers in this chapter refer to the corresponding sections in the
SYSTEM 2000 Level 2 Report Writer Feature Supplement manual, publication

number 76074700,

REPORT DEFINITION (2.0)

The general form of a complete report definition is:

FOR REPORT <reportname>,
PHYSICAL PAGE...:
LOGICAL PAGE...:
INCLUDE...:
SUPPRESS...:
DECLARE,..:

(there may be several
DECLARE commands)

SELECT |RECORD| IF...:
ORDER BY...:

<other report-wide actions>
AT END,

<end-of-report actions>
FOR PAGE,

<page actions>
"AT END,

<end-of-page actions>
FOR <component>,

<hbreakpoint actions>
AT END,

<end-of-block actions>
FOR RECORD,

<breakpoint actions>
AT END,

<end-of-block actions>

END {REPORT! :

- FOR REPORT
Block

~———TFOR PAGE
Block

~——— FOR <component>
Blocks, up to 62
per Report

~———— FOR RECORD
Block

REPORT RECORDS (2.1)

The concept of "record" and its relationship to the hierarchy of data base com~
ponents is extremely important for accurate report definition. All data base
components named anywhere in the report definition must be members of the
same "family'"; that is, they must lie along a single vertical path of the data
base definition. A report record is the collection of values corresponding to
the named components along a single vertical path of the data itself.

ACTION CONTROL (2.2)

There are two basic ways to control the execution of Report Writer action
clauses. The FOR and AT END phrases of individual report blocks specify the
domain, or context, in which the actions take place. The IF...THEN...ELSE..
command specifies the conditions which must be met within that domain and
designates alternate actions depending on whether these conditions are satisfied
or not.

FOR REPORT Phrase (2.2.1)

FOR REPORT <reportname>,

where: <reportname> = the report identifier. It may be 1 to 8 alphanumeric
characters, the first of which must be alphabetic.

FOR PAGE Phrase (2.2.2)

FOR PAGE,

FOR <component> Phrase (2.2.3)_

FOR <component>, N

where: <component> = data base element or RG name or component number
as defined in Section Basic 4.2 of the SYSTEM 2000
User Information Manual,

FOR RECORD Phrase (2.2.4)

FOR RECORD,

AT END Phrase (2.2.5)

AT END,

IF...THEN...ELSE (2.2.6)

IF <if-clause> THEN <action clauses>)ELSE <action clauses>% :

where: <action clauses> = a combination of PRINT, DPRINT, SPRINT,
COMPUTE, RESET, SKIP, and CALL clauses
(sections RW 2.4.1 through RW 2.4.5) separated
by commas.

<if-clause> = any of the following:

(a) if-condition

1 <element> EXISTS

@ <derived name>| | FAILS

(2) <repeating group> OCCURS

<element>
(3) |:<derived name;l <relop><value><separator>

4 <element> <separator> <relop> <element> <separator>
@) | <derived name> ep P <derived name> P

where: <element> = element name or "C" number, e.g., C45.
<derived name> = user-specified identifier for a computed value
previously defined in a DECLARE command
(Section RW 2.3.4). It may not be a type NAME
or TEXT value if it is used on the left side of a
relational operator.
v <repeating group> = repeating group name or "C" pumber.

<relop> = one of the relational operators EQ, NE, LT, LE,
GT, GE.

<value> = alphanumeric character string.

<separator> = system separator currently in use (default is the
asterisk).

{b) if-subexpression
<if-condition>
ANY }<count> f OF (<if-conditionl>, <if—condition2>, N <if—conditlonn>)

ALL OF (<if—condition1>, <if—cundition2, e <if~conditionn>)

where: n is less than or equal to 7 and <count> is an integer less than or
equal to n.

{(c) if-expression
<if-subexpression>

ANY i<count>f OF (<if—-subexpression1>, <if-subexpression2>, -
<if-subexpressionn>)
ALL OF (<if-subexpression, >, <if-subexpression,>, ... <if-subexpression >)

where: 1 is less than or equal to 7 and <count> is an integer less than or
equal to n.

REPORT-WIDE SPECIFICATIONS (2.3)

A set of commands is available in the FOR REPORT block to define variables,
select and sort report records, control printing of detail and summary print
lines, and define the dimensions of the report page.
PHYSICAL PAGE Command (2.3.1)
PHYSICAL PAGE IS <width> BY <length>:
where: <width> = the number of print positions per physical line,
up to 180.
<length> = the number of print lines per physical page. If
length is 0 (zero), page length is infinite.
LOGICAL PAGE Command (2.3.2)
LOGICAL PAGE IS <width> BY <length>:
where: <width> = the number of print positions per logical page.

<length> = the number of lines per logical page.
Neither <width> nor <length> may exceed its PHYSICAL PAGE counterpart.
INCLUDE/SUPPRESS Commands (2.3.3)
SUPPRESS

INCLUDE :I DETAIL:

INCLUDE | o
SUPPRESS] § RY:

DECLARE Command (2.3.4)

S DECIMAL
INTEGER _
DECLARE MONEY <derived name> =
DATE
CNT <separator> < function><separator>
RCNT 1 oF } (<arithmetic expression>)
SUM 1 <component>
RSUM <derived name>

(<arithmetic expression>)
<separator> < function><separator>

where: <derived name> = user-specified identifier for the calculated value.
It may be 1 to 6 alphanumeric characters, the first
of which must be alphabetic. Whenever a <derived
name> appears to the right of the equals sign, it
must have been defined by a previous DECLARE,

CNT = identifies the <derived name> as a coufiter asso-
- ciated with the named item.

RCNT = the same as CNT, but automatically reset to zero
after printing.

SUM = identifies the <derived name> as an accumulator
associated with the named item.

RSUM = same as SUM, but automatically reset to null after
printing, -

<separator> = the system separator.

<function> = component name or number identifying a user-
defined function. If it is an extended function, the
final <system separator> is replaced by the argu-
ment list enclosed in parentheses, i.e.,

<separator> <function> (< argumentl> s <argumeutu>)

User~defined functions are discussed in detail in
Section Basic 4.2.3 of the SYSTEM 2000 User
Information Manual.

<arithmetic expression> = an arithmetic expression composed of type
INTEGER, DECIMAL, MONEY, or DATE data
base elements, constants, previously declared
derived names, and the operators +, -, *, and /.
Date constants. must be specified in the format
mm. dd.yy to avoid confusing a slash with a divide
instruction.

< component> = data base element or repeating group name or num-
ber - when used with SUM or RSUM, it must be a
type DATE, INTEGER, DECIMAL, or MONEY
element,

The term DECLARE may be abbreviated as DE. INTEGER and DECIMAL may)
be abbreviated as INT and DEC.

ORDER BY Command (2.3.7)

ORDER BY <ordering list>:

where: <ordering list> = (HIGH) <item >, {(HIGH) <1tem2>...} :

<itemn> = <repeating group> or <element> or <detived name>
Either the component name or number may be used
for <repeating group> and <element>.

ACTION CLAUSES (2.4)

Report Writer action clauses include the PRINT, DPRINT and SPRINT print
clauses; and the COMPUTE and RESET arithmetic clauses.
PRINT Clauses (2.4.1)
PRINT
DPRINT | <print phrase> {, <print phrase>}) ...
SPRINT
where: <print phrase> is one of the following:
(a) to print a literal
i(< c01>)% <special character><literal><special character>
‘where: <col> = the left~most print position
' <special character> = any legal special character except the system
separator, colon, or teletype carriage return. The
same special character must occur on both sides of
the literal. I (<col>) is omitted, the special char-
acter must be a slash (/).
<literal> = the actual sequence of characters to be printed.
Blanks are preserved in the same manner as for

type TEXT data [MDI].

{b) to print data
L TN
% |:R:| (<col>) , <edit p1cture>f)f <element>
[;] (<col>, <edit picture>)<derived name>

where: L and R = left-justify (L) or right-justify (R) the data item.
Only NAME and TEXT values may be left-justified.

<col> = left~-most print position of the field described in the
edit picture.

8-6

<edit picture> = specifies the format and number of characters in
the print field for this item (see Sections RW 2.4.1.1
and RW 2.4.1.2).

<element> = data base element name or "C" number.

<derived name> = PAGE, LINE, or the name of an item in a
DECLARE or DECLARE EXTERNAL command.

PRINT, DPRINT, and SPRINT may be abbreviated as PR, DPR and SPR.

EDIT PICTURE INSERTION CHARACTERS (2.41.1)

The user may enhance the readability of output values by including the following
insertion characters in the edit picture of the item:

$-+.,0B[]/CRDB
In addition, the following are insertion characters for NAME, TEXT, and DATE
items (but replacement characters for DECIMAL, INTEGER, and MONEY; see
Section RW 2,4.1,2):

Z floating +
* floating ~

floating $ floating [

where "floating'" means multiple consecutive occurrences of the character.

EDIT PICTURE REPLACEMENT CHARACTERS (2.4.1.2)

Replacement characters in the edit pictures of numeric data suppress leading
zeroes and replace them with other characters in printing the data item. Only
one type of replacement character may be used in an edit picture, although
pictures with replacement characters may also contain insertion characters
according to the rules in the following discussion. The replacement characters
are:

Z floating +
* floating ~
floating $ floating [
where "floating' means multiple occurrences of the character., These char-

acters are insertion characters in nonnumeric data items.

COMPUTE Clause (2.4.2)
COMPUTE <derived name> ; »<derived na.me>§ ee

where: <derived name> = a derived value defined in a DECLARE command as
a system function CNT, SUM, RCNT, or RSUM.

COMPUTE may be abbreviated as CO.

8-7

RESET Clause (2.4.3)
RESET <derived name> ;,<derived name>§

where: <derived name> = name of a DECLARE'd variable that is defined as a
system function CNT, SUM, RCNT, RSUM.

RESET may be abbreviated as RS.

SKIP Clause (2.4.4)
(1) SKIP | TO NEW| PAGE
(2) SKIP <n> LINE|s|

where: <m> =an integer 0 < m < 63, causing m lines to be skipped.
If m = 0, overprinting results.

REPORT EXECUTION (3.0)

ALL

GENERATE [< reportname> % , <reportname>...

! } | WHERE <where clause>{ :

where: <reportname> = the name assigned to the report by the FOR REPORT
phrase.

ALL = specifies that all reports defined since COMPOSE
are to be generated in the order of their definitions.

<where clause> = any legal SYSTEM 2000 WHERE clause (Section IA
3.11) except SAME to determine which sections of the
data base are to be selected.

WHERE may be abbreviated as WH.

SAMPLE REPORTS. (4.0)

For sample reports refer to the Portfolio Data Base foldout in the user infor-
mation manual and the Personnel Data Base definition in the Report Writer
supplement manual, page RW 4-23.

REPORT WRITER ERROR MESSAGES (5.0)

For a listing of error messages refer to Section 5. 0 of the Report Writer
supplement manual.

INDEX

Access module 5-1 to 5-10
Account Is command 7-2
Action clauses 5-8, 8-6
Action control 8-2

Add commands 5-6, 6-10
Append tree commands 5-7, 6-12
Apply command 2-3

Assign authority command 2-2
Assign commands 5-7, 6-11
AT END phrase 8-2

At operators 6-7

Binary operators 5-10, 6~6
Boolean operators 5-11, 6-6
By clauses 6-5

Change commands 3-6, 5-7, 6-10

Change password command 2-2

Clauses 5-8, 5-9, 6-6

Clear commands 5-2

Command execution 5-2
Command file change command
1-1

Command scan 5-3

COMPUTE clause 8-7

Continue commands 5-2

Control module 2-1 to 2-3
Special command 7-2

CYBERNET machine-dependent
information 7-1 to 7-2

Data base components 3-1
Data base construction 3-5
Data base name command 2-1
Data file change command 1-1,
4-1
Data flags 5-11
Data type designation 3-2
DECLARE command 8-5
Define module 3-1 to 3-6
Delete commands 3-6
Describe commands 5-1
Ditto operators 6-8

Echo command 1-2
Edit picture insertion characters
8-7
- Edit picture replacement characters
8-7
Elements 3-1
Enable/disable execution commands
3-6, 4-1, 5-2

Index-1

Entry terminator format 4-1

Entry terminator word command
1-1, 4-1

Error bandling 4-2

Error messages 8-8

Exit command 1-2

FOR <component> phrase 8-2
FOR PAGE phrase 8-2

FOR RECORD phrase 8-2
FOR REPORT phrase 8-2
Format statements 6-2
Functions 3-4, 6-2, 6-3

Has operator 5-10, 6-7

If clauses 5-9 -
IF,..THEN...ELSE 8-3
Immediate access feature 6-1 to
6-13 .
Updating 6-10
INCLUDE/SUPPRESS command
8-4 .
Input value string definition 4-1
Insert tree commands 6-12
Interactive SYSTEM 2000 usage
7-1
Invalid password command 2-1

Keep command 2~3
Key designation 3-1
KRONOS 7-1

Limit commands 6-9

List commands 6-4

List passwords command 2-2

List passwords and authorities
command 2-2

Load command 4-1, 5-1

Loading process 4-1 to 4-2

LOGICAL PAGE IS command 8-4

Log~in procedure (KRONOS) 7-1

Map command 3-5
Message file change command 1-1
Module call commands 1-1

New data base command 2-1
Non-key designation 3-1

Operators 5-10, 5-11, 6-~6, 6-7,
6-8

ORDER BY command 8-6
Ordering statements 6-3
Output 5-3

Output from loading 4-2

Passwords 2-1, 2-2

PHYSICAL PAGE IS command 8-4
Picture designation 3-2

PRINT clauses 8-6

Print commands 5-5, 6-1

Print tree commands - 5-5

Queue command 5-3
Queue processing 5-3

Release command 2-2

Reload commands 5-2

Remove commands 5-6, 6-11
Remove tree commands 5-6
Renumber commands 3-5
Reorganize commands 5-3
Repeating groups 3-3

Repeat pseudo command 5-4, 5-11
Report definition 8-1

Report execution 8-8

Report file change command 1-1
Report records 8-2
Report-wide specifications 8-4
Report writer feature 8-1
RESET clause 8-8

Same declaration command 6-9

Same operators 6-8

Sample reports 8-8

Save data base commands 2-3

Shared data base name command
2-3

SKIP clause 8-8

Statements 6-2, 6~3

Statistics command 2~2

Strings 3-4, 4-1, 5-1, 6-8

Stop after scan commands 3-6,
4-1 .

Stop If command 4-1, 5-2

Suspend command 2-3

System functions 6-2

System separator change command
1-2 .

System-wide operations 1-1 to 1-2

Tally command 6-1

Terminate command 5-4, 5-11
Trace notations 6-13

Trees 5-5, 5-6, 5-7, 6-12

Unary operators 5~10, 6-6

Unload commands 6-9

Update features 3-6, 5-6, 5-7,
6-10, 6-11, 6-12, 6-13

User-defined functions 3-4

User password command 2-1

Valid password command 2-1

Where clauses 5-9, 6-6

Index-2

CORPORATE HEADQUARTERS

8100 34TH AVENUE SOUTH

MINNEAPOLIS, MINNESO'

MAILING ADDRESS EOXO MPLS., MINN. 55440
SALES OFFICES AND SERVICE CENTERS

IN MAJOR CITIES THROUGHOUT THE WORLD

CONTROL DATA

CORPORATION

