60496000

@ CONTROL DATA
CORPORATION

CYBER RECORD MANAGER GUIDE
FOR USERS OF COBOL

CONTROL DATA®

CYBER 170 SERIES

CYBER 70 MODELS 71, 72, 73, 74
6000 SERIES

COMPUTER SYSTEMS

REVISION DESCRIPTION
A Manual released.
(06-18-76)
Publication No.
60496000
Address comments concerning
this manual to:
CONTROL DATA CORPORATION
REVISION LETTERS I, O, Q AND X ARE NOT USED Software Documentation
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086
© 1976
Control Data Corporation or use Comment Sheet in the
Printed in the United States of America back of this manual

i

60496000 A

Mo

e
=

S

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the .
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-
tion rather than content has changed

Page

Revision

Software
Feature Change

Page

Revision

Software
Feature Change

Cover

Title Page

ii thru xi

1-1

2-1 thru 2-7

3-1 thru 3-10
4-1 thru 4-6

5-1 thru 5-6

6-1 thru 6-14
7-1 thru 7-14
8-1 thru 8-11

i 9-1 thru 9-21
! A-l thru A4

B-1, B-2

C-1 thru C-6
Index-1, Index-2
Cmt Sheet
Return Env
Back Cover

P g g e e

60496000 A

iifiv

N’

PREFACE

b]

This user guide describes the input/output system associated
with the CONTROL DATA® COBOL 4 compiler. The name of

the input/output system, which is common to many CDC®

software products, is CYBER Record Manager Version 1.
Both COBOL 4 and CYBER Record Manager are implemented
for the Control Data CYBER 170, CYBER 70 Models 71, 72,
73, 74, and 6000 Series Computer Systems, under the control
of the NOS/BE 1 and NOS 1 operating systems.

It is assumed that the reader of this user guide is a COBOL
programmer with intermediate experience and some knowl-
edge of CDC systems. How to compile and execute a
COBOL 4 program is not discussed, nor is the subject of
compatibility with the ANSI standard for COBOL (X3.23-
1968), with some exceptions. Complete formats of COBOL
statements are not as a rule given, and any formats
illustrated do not distinguish optional from required elements.
For all this information, the reader is referred to the
COBOL 4 Reference Manual. Although several complete
COBOL programs are provided to illustrate various aspects of
COBOL input/output, the operating system control state-

Publication

COBOL Version 4 Reference Manual

Record Manager Version 1 Reference Manual

NOS/BE 1 Reference Manual
NOS 1.0 Reference Manual (Volume 1)

ments that would normally acecompany these programs in an
actual job are not included. Where the results of compiling or
executing a program depend on control statements, an
indication is so made. Control statements processed by
CYBER Record Manager, such as the FILE control statement,
are discussed, however.

Section 2 of this user guide provides an overview of CYBER
Record Manager functions and their relation to COBOL.
Specific topics discussed include record types and USE
procedures. Sections 3 through 8 describe the six file
organizations available to COBOL 4 users and the COBOL
statements that utilize them. Section 9 discusses the file
information table, its usage by COBOL and setting its fields
through the FILE control statement. Appendixes include
charts showing character sets supported and a description of
the various CYBER Record Manager utilities available to
supplement standard COBOL file processing.

Publications containing more detail about COBOL, CYBER
Record Manager, and the various operating systems include:

Publication Number

60496800
60495700
60493800
60435400

This product is intended for use only as
deseribed in this document. Control Data
cannot be responsible for the proper func-
tioning of undeseribed features or para-

meters.

60496000 A

v/vi

N’

Fa”’

CONTENTS

m

1. INTRODUCTION TO CYBER
RECORD MANAGER

2. MAJOR CYBER RECORD
MANAGER CONCEPTS

File Information Table

Implementor-Names for Files

File Organizations

Multiple Index Files

Buffers

Record Types
Decimal Character Count Reeords (D Type)
Fixed Length Records (F Type)
Record-Mark Records (R Type)
Trailer Count Records (T Type)
Control Word Records (W Type)
Zero Byte Records (Z Type)

USE Procedures
USE AFTER ERROR
USE BEFORE/AFTER LABEL
USE FOR DUPLICATE KEY
USE FOR HASHING

3. SEQUENTIAL FILE ORGANIZATION

Record Types
Device Types
File Delimiters
Block Types
K Type Blocks
C Type Blocks
E Type Blocks
I Type Blocks
Binary Recording Mode
Special System Files
Creating Sequential Files
Environment Division °
ORGANIZATION IS
RESERVE ALTERNATE AREAS
Data Division
LABEL RECORD
Procedure Division
Extending Sequential Files
Reading Sequential Files
Sample Program 1: Using Sequential Files
Sample Program 2: C Type Blocks, Z Type Records

4, RELATIVE FILE ORGANIZATION

Random Access
Sequential Access
Creating Relative Files
‘Environment Division
Specifying Relative File Organization
RESERVE ALTERNATE AREAS
FILE-LIMITS
ACCESS MODE
ACTUAL KEY
Data Division
Procedure Division
Processing Existing Relative Files
Sample Program 3: Processing Relative Files

60496000 A

1-1

N
iR

PUTERRRYRY
N R R oW RN

!
SISO, OO

3-4
3-4
3-4
3-4
3-4
3-5
3-5
3-7

4-1
4-1
4-2
4-2
4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-3
4-4

5. STANDARD FILE ORGANIZATION

File Storage
Creating Standard Files
Environment Division
Defining File Organization
RESERVE ALTERNATE AREAS
FILE-LIMITS
ACTUAL/SYMBOLIC/RECORD KEY
Data Division
Procedure Division
Updating Standard Files
Reading Standard Files
Sample Program 4: Using Standard Files

6. DIRECT FILE ORGANIZATION

File Storage
File Statistics Table
Home Blocks
Overflow Blocks
Creating Direct Files
Environment Division
SELECT. . . ASSIGN
RESERVE ALTERNATE AREAS
FILE-LIMITS
ACCESS IS RANDOM
ACTUAL/SYMBOLIC/RECORD KEY
ALTERNATE RECORD KEY
NUMBER OF BLOCKS
RECORD-BLOCK CONTAINS
Data Division
BLOCK CONTAINS
LABEL RECORD
Procedure Division
Processing Existing Direct Files
Primary Key Access
Alternate Key Access
Read Only Processing
Sample Program 5: Using Direct Files
Sample Program 6: Using Multiple Index
Direct Files :

7. INDEXED SEQUENTIAL FILE
ORGANIZATION

File Storage
File Statistics Table
Data Blocks
index Blocks
Creating Indexed Sequential Files
Environment Division
RESERVE ALTERNATE AREAS
RECORD/SYMBOLIC KEY
ALTERNATE RECORD KEY
Index Block Size Calculation
Data Bloek Size Calculation
Data Division
BLOCK CONTAINS
LABEL RECORD
Procedure Division
Processing Existing Indexed Sequential Files
Primary Key Access
Duplicate Keys

g
A

01

U‘IC.HO‘IUIU'IUl'IU‘IUIU'IUICﬂCJ‘I
QOO DD DD DD DO DD b e e b ek

6-3
6-3
6-3
6-4
6-5
6-5
6-5
6-5
6-5
6-5
6-6
6-6
6-6
6-7
6-7

6-12

7-1
7-2
7-2
7-2
7-2
7-4
7-4
7-4
7-4
7-5
7-5
7-6
7-6
7-6
7-6
7-6
7-6
7-7

vii

Alternate Key Access
Read Only Processing
Sample Program 7: Using Indexed

Sequential Files

Sample Program 8: Multiple Index

8.

Indexed Sequential Files

ACTUAL KEY FILE ORGANIZATION

File Statistics Table
Creating Actual Key Files
Environment Division

PEEELS
= O 00 =3
= o

2R
W N

iy
D b 1 -3

viii

FILE-LIMITS
ACTUAL KEY -
ALTERNATE RECORD KEY

STANDARD CHARACTER SET

" GLOSSARY

Input/Output Interfaces

D Type Records

F Type Records

R Type Records

T Type Records

USE Statement for Error Processing

USE Statement for Labels

USE Statement for Duplicate Keys

USE Statement for Hashing Procedure

Environment Division for Creating
Sequential Files

Data Division for Sequential File

Procedure Division for Sequential
File Creation

Procedure Division for Extending
Sequential Files

Procedure Division for Reading
Sequential Files

Sample Program 1: Processing
Sequential Files

Input Data for Sample Program 1

Output from Sample Program 1

Sample Program 2: C Blocks, Z Records

Input Data for Sample Program 2

Output from Sample Program 2

Environment Division Clauses for
Creating Relative Files

Procedure Division Statements for
Creating Relative Files

Procedure Division Statements for
Existing Relative Files

Sample Program 3: Processing Relative
Files :

Output from Program 3

Standard File Structure

Environment Division for Creating
Standard Files

Procedure Division Statements to
Create Standard Files

Procedure Division Statements for
Updating Standard Files

Procedure Division Statements for
Reading Standard Files

7-7 Data Division
7-8 BLOCK CONTAINS
LABEL RECORD
7-8 Procedure Division
Processing Existing Actual Key Files
7-10 Primary Key Access
Alternate Key Access
Read Only Processing
Sample Program 9: Using Actual Key Files
8-1 Sample Program 10: Multiple Index
Actual Key Files
8-1
8-1
8-2 9. FILE CONTROL STATEMENT
8-2
8-2 FILE Control Statement Usage
8-2 FILE Control Statement Examples
APPENDIXES
A-1 C. UTILITIES
B-1
FIGURES
2-1 5-6 Sample Program 4: Processing
2-4 Standard Files
2-4 5-7 Standard File Program Input
2-5 5-8 Standard File Program Output
2-5 6-1 Unused Space in Home Blocks
2-6 6-2 Overflow Blocks
2-6 6-3 Environment Division for Direct
2-7 Files Creation
2-7 6-4 Index File Structure
6-5 Data Division Clauses for
3-3 Direct File Creation
3-4 6-6 Procedure Division Statements for
Creating Direct Files
3-4 6-7 Procedure Division for Updating Direct
Files
3-5 6-8 Sample Program 5: Direct Files
6-9 Output from Sample Program 5
3~5 6-10 Sample Program 6: Direct Access

4-5

5-1

Multiple Index

6-11 Input for Sample Program 6

6~12 Output from Sample Program 6

7-1 Padding of Data Blocks

7-2 File with One Level of Index Block

7-3 File with Two Levels of Index Block

7-4 Environment Division Clauses for
Creating Indexed Sequential Files

7-5 Data Division Clauses for Creating
Indexed Sequential Files

7-6 Procedure Division Clauses for Creating
Indexed Sequential Files

7-7 Procedure Division Statements for
Indexed Sequential Files

7-8 Sample Program 7: Using Indexed
Sequential Files

7-9 Output from Program 7

7-10 Sample Program 8: Multiple Index
Indexed Sequential Files

7-11 Input for Sample Program 8

7-12 Output from Sample Program 8

8-1 Environment Division for Creating
Actual Key File

8-2 Data Division for File Creation

8-3 Procedure Division for File Creation

8-3
8-3
8-3
8-3
8-3
8-4
8-4
8-5
8-5

9-1
9-2

G’f{lalul
DN DD b

cnalaa:

7-11

7-12
7-13
7-14

8-2

8-3
8-3

60496000 A

I

&4

i-4 Procedure Division for Existing Actuai
Key Files

8-5 Sample Program 9: Using Actual
Key Files

8-6 Output from Sample Program 9

8-7 Sample Program 10: Multiple Index
Actual Key Files

8-8 Input for Sample Program 10

8-9 Output from Sample Program 10

9-1 E Type Blocks, T Type Records
(First Example)

9-2 E Type Blocks, T Type Records
(Second Example)

9-3 K Type Blocks, D Type Records
(First Example)

9-4 K Type Blocks, D Type Records
(Second Example)

2-1 Correspondence Among RECORD CONTAINS
Clause, Record Description Entry
and Record Type

2-2 Record Type/File Organization
Combinations

3-1 PRU Size by Device

3-2 Block Types

3-3 File Structure Attributes for
Special System Files

4-1 Access Mode and Open Status Combinations,
Relative Files

6-1 Access Mode and Open Condition
Combinations, Direct Files

60496000 A

9-5
8-4
9-6
8-6
8-8 9-7
8-9 9-8
8-10
8-11 9-9
9-10
9-9
9-11
9-10
9-12
9-11
9-13
9-12
TABLES
7-1
2-3
8-1
2-4
3-1 9-1
3-2 9-2
9-3
3-3 9-4
9-5
4-1 9-6
9-7
6-1 9-8
9-9

E Type Blocks, R Type Records
(First Example)

E Type Blocks, R Type Records
(Second Example)

I Type Blocks, W Type Records
(First Example)

I Type Blocks, W Type Records
(Second Example)

K Type Blocks, F Type Records

C Type Blocks, F Type Records
(First Example)

C Type Blocks, F Type Records
(Second Example)

C Type Blocks, Z Type Records
(First Example)

C Type Blocks, Z Type Records
(Second Example)

Access Mode and Open Condition
Combinations, Indexed Sequential
Files

Access Mode and Open Condition
Combinations, Actual Key Files

FIT Fields by Record Type

FIT Fields by Block Type

FIT Fields for Sequential Files

FIT Fields for Relative Files

FIT Fields for Standard Files

FIT Fields for Direct Files

FIT Fields for Indexed Sequential Files

FIT Fields for Actual Key Files

Other FILE Control Statement Parameters

QO‘OGO@CIDKDCDQ -3
~1 QWD TN

|
ot

it
®

9-8

ix/x

N’

_/,

NOTATIONS USED IN THIS MANUAL

The following notational conventions are used in the descrip-
tions of formats for COBOL statements:

[] Brackets enclose optional portions of
the format. The information con-
tained within the brackets ean be
included or omitted at the user's
option.

{ } Braces denote a choice of items, but
one of the items must be used.

60496000 A

UPPERCASE

lowercase

Eliipses following brackets or braces
indicate the enclosed items may be
repeated at the user's option.

COBOL reserved words, used in the
source program only as specified in the
given formats, are written in upper-
case,

Lowercase terms represent words or
symbols to be supplied by the user.
These words and symbols are replaced
in program examples by specific char-
acter strings.

N’

R

INTRODUCTION CYBER RECORD MANAGER 1
/

CYBER Record Manager is the input/output processor that
provides an interface between a COBOL 4 program and the
operating system routines that process files on hardware
devices. CYBER Record Manager permits file and record
flexibility in both reading and writing so that a COBOL
program can produce files that can be proeessed by other
source language programs. Since the file formats created and
recognized by CYBER Record Manager are independent of
the language or processor through which CYBER Record
Manager is called; files written through one source language
can be read through another; thus, the COBOL user need not
have a working knowledge of the FORTRAN language to use a
file created by a FORTRAN program.

Six different file organizations are defined in COBOL 4 and
supported by CYBER Record Manager to allow the COBOL
user flexibility in file structure and usage. The organizations
are:

Sequential Direct
Relative Indexed Sequential
Standard Actual Key

All but sequential file organization require individual records
in the file to have keys associated with them, so that a single
record can be read or written by identifying its key. Three of
these file organizations can optionally have multiple index
structure: direct, indexed sequential, and actual key.
Records in multiple index files can be accessed randomly or
sequentially on any of several keys provided by the user. The
most important or most frequently used key is the unique
primary key; all the other keys are referred to as alternate
keys. The terms multiple index files and alternate key files
are interchangeable terms.

For all file organizations, COBOL language statemen.s
specified by the user are interpreted by the COBOL compiler
and converted to CYBER Record Manager calls to arrange
input/output processing, CYBER Record Manager, in turn,
communicates with the operating system to manage the file
functions involved:

File creation Positioning
Label processing Updating
Initialization Termination

Data transfer

60496000 A

Linkage between a COBOL program and CYBER Record
Manager is established automatically when the COBOL object
program is loaded. When a WRITE statement is executed,
CYBER Record Manager accepts a record from the user,
later returning the record in the exact format in which it was
provided. Between the record's acceptance and its return,
CYBER Record Manager communicates with the COBOL
program and the operating system to arrange and carry out
the processing required for the record. During this pro-
cessing, CYBER Record Manager might add special termina-
tors or control words to the record, or join it to other
records, before writing it to a device. Although such
manipulations might affect the format of the record in
storage, they do not interfere with its logical integrity or its
appearance to the user program.

The file structure specifications provided by the user in a
COBOL program are interpreted at compile time by the
COBOL compiler and communicated to CYBER Record
Manager through the file information table. These specifica-
tions can be overridden in some cases, however, by the FILE
control statement (section 9), which takes effect at execution
time. Use of the FILE control statement is not recommended
for users who are not familiar with the interactions between
COBOL and CYBER Record Manager; discussion of it is
therefore deferred until after these interactions have been
described.

CYBER Record Manager also provides error processing for
the various file organizations and applications. Input/output
errors encountered in program execution are signaled and the
numbers of appropriate error messages are listed in the
program dayfile for user reference. Various labeling conven-
tions are accommodated for those file organizations that
permit labels. Both standard and nonstandard (user-provided)
labels are processed through CYBER Record Manager; the
label processing routines read labels, submit them for writing
or user processing, and terminate user label processing.

N’

NG

MAJOR CYBER RECORD MANAGER CONCEPTS 2

‘

All file processing requests in a COBOL 4 program are
implemented through CYBER Record Manager. Based on
clauses specified in the Environment and Data Divisions, and
on statements in the Procedure Division, the COBOL com-
piler generates calls to CYBER Record Manager, which in
turn- requests the operating system to perform the actual
input and output. Both file strueture specifications and
specific processing requests are translated from program
statements into a form usable by CYBER Record Manager.

FILE INFORMATION TABLE

To establish communications with CYBER Record Manager,
the COBOL compiler creates a file information table (FIT)
for each file. The compiler places file information in the
table for each file specified in the program as it encounters
applicable source program statements.” CYBER Record
Manager uses the information in this table as a basis for
requesting file processing action by the operating system.
Figure 2-1 illustrates the interfaces involved in communi-
eating input/output actions.

The file information table contains descriptions. of the
individual file's organization, record size and type, blocking
structure, and processing options, as well as the logical file
name by which the file is known to the operating system and
other pertinent data such as labeling information, buffer size,
and record area location.

Most of these file characteristies are specified by the COBOL
programmer in Environment and Data Division clauses. For
example, if the programmer specifies:

SELECT PAYROLL-FILE (line 1)
ASSIGN TO PAYFILE (line 2)
ORGANIZATION IS SEQUENTIAL (line 3)
RESERVE 2 ALTERNATE AREAS (line 4)

. .

FD PAYROLL-FILE

the COBOL compiler obtains the following information from
the entries and places it in the file information table for
CYBER Record Manager use:

Logical file name (PAYFILE)
File organization

Buffer size

Labeling information

Length of each block
Location of record area

(from line 2)
(from line 3)
(from line 4)
(from line p)
(from line q)
(from line r)

Sinece the COBOL compiler creates the file information table
automatieally, without user intervention, it is not necessary
for a programmer to know its exact format. The user should
be aware, however, that file structure information provided
by the COBOL compiler can be overridden with parameters
on the FILE control statement. This statement changes file
characteristics set in the file information table by compila-
tion of the source language statements. Use of the FILE
control statement is described in seetion 9; the file informa-
tion table is explained in more detail in the Record Manager
reference manual.

IMPLEMENTOR-NAMES FOR FILES

The logical file name used by CYBER Record Manager in
calls to the operating system routines is the implementor-
name the programmer specifies for a file in the ASSIGN
clause. The logical file name uniquely identifies the file to
the system. For example, if:

SELECT PAYROLL-FILE
ASSIGN TO PAYFILE

is specified, the COBOL compiler places the implementor-
name PAYFILE in the file information table; thereafter the
name PAYFILE is used by CYBER Record Manager, the
operating system, and all other users external to the COBOL
program in referencing that particular file. PAYROLL-FILE
is used only internally in the COBOL program.

Choice of an implementor-name is left entirely to the

LABEL RECORDS OMITTED (line p) programmer, as long as the first character is a letter, and the
BLOCK CONTAINS 640 CHARACTERS (line q) second through seventh characters are letters or digits (A
DATA RECORD IS PAYREC. (line r) through Z or 0 through 9).
COBOL CYBER
Object FIT Record :
Program Manager Osp;;?;:: 9

Figure 2-1. Input/Output Interfaces

60496000 A

The system attaches special meaning to four file names:
INPUT, OUTPUT, PUNCH, and PUNCHB. In addition, the
NOS 1 operating system predefines characteristies of the
name P8, and NOS/BE 1 predefines the name P80C. Unless
specified otherwise by the user (such as through the ROUTE
control statement under NOS/BE 1), the origin or destination
of these files is determined automatically when executing in
bateh mode:

INPUT Implies that the file consists of eard images
from the job deck.

OUTPUT Implies that the file is to be printed at the
end of the job.

PUNCH Implies that the file is to be punched in

Hollerith format at the end of the job.

PUNCHB Implies that the file is to be punched in
binary format at the end of the job.

P8 Implies that the file is to be punched in
absolute binary format (NOS 1 only).

P8oC Implies that the file is to be punched in
absolute binary format (NOS/BE 1 only).

To access data which is part of the job deck, the SELECT
statement might be as follows:

SELECT IN-FILE
ASSIGN TO INPUT

To specify a file to be printed, the statement might be:

SELECT REPORT-FILE
ASSIGN TO OUTPUT

FILE ORGANIZATIONS

There are two kinds of hardware devices on which a file can
reside: tapes and mass storage. (Card punch and line printer
files are mass storage files.) Of the six file organizations,
only sequential files can reside on tape; all six can reside on
mass storage. The six file organizations are:

Sequential
Relative

Standard -

Direct

Indexed Sequential
Actual Key

The file information table fields set by the compiler for each
file organization are listed in section 9.

The file organization is specified in the ORGANIZATION
clause in the Environment Division. A brief desecription of
each file organization is given below; more detailed informa-
tion is presented in subsequent sections.

Sequential file organization requires that records be read and
written in sequence; the records remain in the physical order
in which they were written. It is most effective for files that
are normally read from beginning to end; records can only be
written after the last record in the file. Sequential files are
implemented through CYBER Record Manager sequential file
organization.

Relative file organization allows both sequential and random
access of records on a mass storage device. Useful for small
files with contiguous fixed length records, relative organiza-
tion requires an integer key defining the record number for
random access. The key is the same as the relative position
of the record; for example, key 46 identifies the record in

2-2

position 46. If the keys are not contiguous in the file, mass
storage use is not economical since empty reecord slots will
exist for unused keys. No CYBER Record Manager file
organization corresponds exactly to relative files; they are
implemented through word addressable files, with the COBOL
object time routines computing the word address of the
record from the integer key supplied.

Standard file organization has been retained only for com-
patibility with previous versions of COBOL. Standard files
reside on mass storage. Record access is by means of an
index, kept in' central memory during program execution,
which links a record's key with its physical location on the
file. Records are written to the file sequentially, but cannot
be read sequentially. They are read randomly according to
the contents of the key item. Because of the limited
processing available, and the inefficiency of the indexing
scheme, standard files are not recommended for new applica-
tions. Standard files are implemented through the FORTRAN
Extended mass storage input/output routines (such as
READMS and WRITMS), which in turn use CYBER Record
Manager word addressable file organization.

Direet file organization is useful for rapid access to files
when the order of records is not important. Records are
stored on mass storage randomly, according to a transforma-
tion of the primary key value known as hashing. Records ean
be read or written randomly by key, or they can be read
sequentially. Records read sequentially, however, are not
retrieved in any sorted order. Direct files are implemented
through CYBER Record Manager direct access file organi-
zation; they can be multiple index files.

Indexed sequential file organization maintains records in
order by primary key at all times. As records are written,
they are inserted in the appropriate place in sequential order.
Records can be read randomly, by specifying a key value, or
sequentially, in the order of key values. Indexed sequential
files are implemented through CYBER Record Manager
indexed sequential file organization; they can be multiple
index files.

Actual key files contain records whose key values specify the
actual location of a record in the file. Thus, records are
automatically in sorted order at all times. The keys are
generated by CYBER Record Manager. The records can be
accessed either randomly by actual key or sequentially.
CYBER Record Manager does not create an index of the
actual keys. Actual key files are implemented through
CYBER Record Manager actual key file organization; they
can be multiple index files.

MULTIPLE INDEX FILES

All files, except sequential files, must have a key associated
with each record. This key, called the primary key, is used by
CYBER Record Manager to locate the records in the file
when the file is read or written randomly.

Additional keys, called alternate keys, can also be defined for
direct, indexed sequential, and actual key files. The file ean
then be read using one of the alternate keys instead of the
primary key. The data file is not affected by the creation of
indexes for alternate keys. The indexes are kept on a
separate file, called the index file, which is defined in the
ASSIGN clause. A file with alternate keys defined is referred
to as a multiple index file.

Alternate keys can be defined through CCBOL statements
when the data file is created, or the index generation utility
(IXGEN) can be used to define alternate keys for an existing
file. IXGEN can also be used to define new alternate keys, or
to redefine or delete existing alternate keys. The IXGEN
utility is discussed in appendix C.

60436000 A

e

N

CYBER Record Manager creates an index for each alternate
key defined for a data file and updates the indexes whenever
the data file is updated, or whenever the index generation
utility is used to add, delete, or replace alternate keys.

When the data file is read by alternate key, the index file
entries for that alternate key are searched for the desired
alternate key value. The first primary key in the list of
primary keys associated with that alternate key value is used
to retrieve a record in the data file containing the desired
alternate key value. Subsequent records also containing that
alternate key value can be retrieved by executing a sequen-
tial read by alternate key.

Subsequent sections in this manual present detailed infor-
mation on defining alternate keys through COBOL statements
and reading by alternate key, along with general information
on creating and using direct access, indexed sequential, and
actual key files.

BUFFERS

Buffers are used for intermediate storage of data to be
transferred between the external device and central memory.
The number of records in a buffer depends on file organi-
zation and the type of blocking specified. From the buffer,
each READ statement transfers one record to the input
record area defined by COBOL. When a WRITE statement is
executed, one record is transferred from the output record
area to the buffer. For sequential files, transfer between the
buffer and the external device takes place only when it is
possible to ecompletely fill or empty the buffer; for other file
organizations, transfer can take place more often.

The buffer area required by a program can be assigned with
the RESERVE ALTERNATE AREAS clause of the Environ-
ment Division. If the clause is omitted, or if RESERVE NO
ALTERNATE AREAS is specified, the minimum buffer area is
assigned. The minimum buffer area is calculated by COBOL
from the File and Record Deseription entries. For some file
organizations, more efficient processing can be achieved by
assigning additional buffer areas, as deseribed in later
sections.

RECORD TYPES

The record type specification defines the format of every
reeord in a file and enables CYBER Record Manager to
determine the length of a record on a read or write. CYBER
Record Manager recognizes eight record types, six of which
are available to the COBOL user; D (decimal character
count), F (fixed length), R (record mark), T (trailer count),
W (control word), and Z (zero byte terminated). No single
COBOL clause determines the record type in all cases; the
COBOL compiler derives the record type indireetly from the
RECORD CONTAINS clause, the OCCURS eclause, or a suffix
attached to the implementor-name in the ASSIGN clause. If
none of these indications is present, the compiler assumes
fixed length (F type) records. Table 2-1 shows the record
types selected by the compiler according to RECORD
CONTAINS clause and File Description entry interactions.
File information table fields set for each record type are
listed in section 9.

‘Table 2-2 shows the record types permitted in conJunctlon
with each of the six file organizations.

TABLE 2-1. CORRESPONDENCE AMONG RECORD CONTAINS CLAUSE,
RECORD DESCRIPTION ENTRY AND RECORD TYPE

RECORD CONTAINS
Clause 01 Entries
(FD Entry) of
Same Length

Clause omitted - F

RECORD CONTAINS F
integer CHARACTERS
RECORD CONTAINS

integer-1 TO integer-2 . F
CHARACTERS

RECORD CONTAINS
integer-1 TO integer-2 D
CHARACTERS DEPENDING ON
data-name

RECORD CONTAINS
integer-1 TO integer-2 R
CHARACTERS DEPENDING ON
RECORD-MARK

Record Description Entry
01 Entries 01 Entry with
of OCCURS...
Different Length DEPENDING ON data-name
F T
error error
F T
D error
R error

60496000 A

2-3

TABLE 2-2. RECORD TYPE/FILE
ORGANIZATION COMBINATIONS

File
Organization

Record Type

Sequential X X X X X X
Relative

Stanaard

Direct

Indexed Sequential

L T

Actual Key

DECIMAL CHARACTER COUNT RECORDS
(D TYPE)

D type records are variable length records whose length is
specified by a field within each record. D type records are
defined by a RECORD CONTAINS clause of the form:

RECORD CONTAINS integer-1
TO integer-2 CHARACTERS
DEPENDING ON data-name

where integer-1 specifies the minimum record length in
characters and integer-2 specifies the maximum record
length in characters.

The data-name specified by the DEPENDING ON option is the
name of an elementary item in the 01 level entry for the
record. It must be a DISPLAY or COMPUTATIONAL-1 item.
In the example in figure 2-2 RLE is the data-name in the
DEPENDING ON clause; it is defined as the second elemen-
tary item of data record PAYREC.

FD PAYROLL
LABEL RECORDS OMITTED
RECORD CONTAINS 11 TO 80
CHARACTERS DEPENDING ON RLE
DATA RECORD IS PAYREC.

01 PAYREC.

02 SOC-SEC-NO PIC 9(9).
02 RLE PIC 9(2).
02 NAME-ADDRESS.
03 N-CHARACTER PIC X
OCCURS 69 TIMES.

Figure 2-2. D Type Records

The data-name specified by the DEPENDING ON option must
be located within the fixed-length portion of the record and
have a length of six or fewer characters. The COBOL
program sets the data-name to the desired record length prior
to record output; if it contains an integer outside the range
defined in the RECORD CONTAINS clause and an input/-
output statement is executed, a diagnostic is issued and the
program is sborted. If DEPENDING ON RLE were omitted in
the example, the compiler would default to a record type of
F, and a fixed record length of 80, as calculated from the 01
level entry for PAYREC.

FIXED LENGTH RECORDS (F TYPE)

Fixed length records all contain the same number of
characters, They are the record type selected by COBOL
when the Data Division entries for a file contain no indieation
that the records in the file can vary in length; that is, when
the DEPENDING ON option is omitted from the RECORD
CONTAINS clause in the File Description entry (or the clause
is omitted entirely), and the OCCURS DEPENDING ON
option is omitted from the Record Description entry.

The length of all records in a file with fixed length records is
computed by COBOL at compile time as the sum of all items
in the 01 level Record Description entry for the file. If
different 01 level entries for the same file specify record
formats with different lengths, the largest length specified is
used as the length for all records in the file. In this case, the
same input and output record areas are used for all record
formats in the file, and the length of the largest group item is
used as the length of the file's working storage area.

COBOL selects F type records for a file if the RECORD
CONTAINS clause is omitted, or is of the form:

RECORD CONTAINS integer CHARACTERS
or of the form:

RECORD CONTAINS integer-1 TO
integer-2 CHARACTERS

The integer values specified are not used to compute the
record length; they may be included for documentary
purposes. If the form:

RECORD CONTAINS integer CHARACTERS

is used, and different lengths are specified in 01 level entries,
an error results.

In the example shown in figure z-s, tne fixed length of each
record in the file PAYFILE is calculated as 80 characters; the
RECORD CONTAINS specification is not used.

FD PAYFILE
LABEL RECORDS OMITTED
RECORD CONTAINS 209 CHARACTERS
"DATA RECORD PAYREC.
01 PAYREC,)
02 SOC-SEC-NO PIC 9(9).
02 RATE PIC 9(3)V99.
02 HRS PIC 99V9.
02 FILLER PIC X(63).

Figure 2-3. F Type Records

RECORD-MARK RECORDS (R TYPE)

Record-mark records are of varying lengths and are termi-
nated by a special character. The right bracket
character] is assumed as the record mark unless the FILE
control statement defines another with the RMK parameter
(see section 9).

To specify the record mark, the programmer uses the
figurative constant RECORD-MARK, as follows:

RECORD CONTAINS 15 TO 80

CHARACTERS DEPENDING ON
RECORD-MARK .

60496000 A

S’

The record-mark character must then be placed in the last
character position of the record by a MOVE statement
preceding the WRITE statement for the record.

In the example shown in figure 2-4, the position of the
record-mark is specified by the entry:

03 N-CHARACTER PIC X
OCCURS 66 TIMES.

The record-mark would be placed with a statement of the
form:

MOVE RECORD-MARK
TO N-CHARACTER (sub).

prior to writing the record, where sub is an identifier or
constant with a value from 1 to 66.

FD PAYROLL
LABEL RECORDS OMITTED
RECORD CONTAINS 15 TO 80
CHARACTERS DEPENDING ON
RECORD-MARK
DATA RECORD IS PAYREC.
01 PAYREC.
02 SOC-SEC-NO PIC 9(9).
02 EMPLOYEE-NO PIC X(5).
02 NAME-ADDRESS.
03 N-CHARACTER PIC X
OCCURS 66 TIMES.

Figure 2-4. R Type Records

TRAILER COUNT RECORDS (T TYPE)

Trailer count records consist of a fixed-length header
followed by a variable number of fixed-length trailer items.
They result when the COBOL clause:

OCCURS integer-1 TO integer-2
TIMES DEPENDING ON data-name

is specified in the Record Description 01 level entry, as
shown in figure 2-5.

01 WEEKLY-OVERTIME-HISTORY.

02 SOC-SEC-NO PIC 9(9).

02 EMP-NO PIC X(5).

02 WEEK-COUNT PIC 99.

02 WEEKLY-ENTRY OCCURS
1 TO 52 TIMES DEPENDING ON
WEEK-COUNT.
03 HRS-WORKED PIC 99V89.
03 RATE PIC 99V99.

Figure 2-5. T Type Records

The data items defined by the OCCURS clause (the ocecur-
rences of WEEKLY-ENTRY in the example) are called trailer

items; in the actual records, a variable number of these items -

oceur, identical in length but different in content. The data-
name that is referenced in the DEPENDING ON option
(WEEK-COUNT in the example) is called the trailer count
field; it must be an elementary DISPLAY or COMPUTA-
TIONAL-1 item. When a record is read or written, the value
contained in the trailer count field defines the number of

60496000 A

trailer items in the record. This number, along with the fixed
length of the header (which consists of all the data items
before the trailer items) determines the length of the record.

CONTROL WORD RECORDS (W TYPE)

Control word records are preceded by a system-generated
header word that indicates the record length. Records can be
any length; the varying sizes are differentiated in the Record
Description 01 level entries included in the File Description.
The control word is processed only by CYBER Record
Manager; it is generated when the record is written. The
control word is then stored preceding the record. ‘When the
user issues a read request, the control word is removed before
the record is returned to the user.

Control word records are specified by the suffix -FW
appended to the implementor-name in the ASSIGN clause, as
shown in the following example:

SELECT PAYROLL-FILE
ASSIGN TO PAYFILE-FW

The clause:
"RECORDING MODE IS BINARY

must be included in the File Description entry when control
word records are specified; no RECORD CONTAINS clause is
required.

More than one record format can be defined for files with W
type records, and the formats can be fixed or variable in
length. The length of each record written is the length
required by the format; records are padded only to the next
word boundary.

ZERO BYTE RECORDS (Z TYPE)

Zero byte records are specified as fixed length by the COBOL
programmer, but are stored in compaet format. CYBER

- Record Manager marks the end of the record with a zero byte

terminator (which consists of 12 zero bits right-justified in a
central memory word) and automatically drops any trailing
blanks to reduce mass storage space; when the record is
retrieved, the blanks are restored and the record is returned
to the user program in its original state.

An exception is that blanks are not restored when records are
read from files with indexed sequential, direct access, or
actual key file organization. If the record read is shorter
than the input record area, the contents of the remaining
portion of the record area will therefore be irrelevant. Under
these circumstances, the program should blank out the input
record area before each read, or use some other means to
ensure the integrity of the record.

All files originally read by the card reader or destined for line
printer or card punch output must be defined with zero byte
records. Files assigned to INPUT, OUTPUT, or PUNCH in the
ASSIGN clause need no other specification to indicate zero
byte records; the COBOL compiler automatically forces Z
type records for these files. Zero byte records are specified
for a file other than INPUT, OUTPUT, or PUNCH by adding
the suffix -FZ to the implementor name specified in
SELECT ... ASSIGN:

SELECT ZFILE
ASSIGN TO PAYFILE-FZ

Appending -FZ to the implementor-name is necessary for any
file whose records were originally read through the ecard
reader, but which does not have the implementor-name
INPUT (such as a file to which the INPUT file has been
copied). Also, any file referenced by the UPON option of the
ACCEPT or DISPLAY statement must have zero byte
records, which ean be specified through the -FZ suffix.

Another way to specify Z type records for a file is through
the -P suffix, which indicates the file is to be formatted for
printing. When -P is appended to the implementor-name, the
compiler forces zero-byte records and reserves an extra
character at the beginning of each print line for carriage
control. WRITE with the ADVANCING option should be used
for these files to control carriage functions.

USE PROCEDURES

USE procedures allow the user to define processing in
addition to that provided by the system in the areas of label
handling, error checking, and key manipulation. The user
provides these procedures, which are entered whenever the
condition these procedures, which are entered whenever the
condition specified in the USE statement is encountered.

The USE procedures must be defined in the DECLARATIVES
section of the Procedure Division. Each USE procedure
consists of a section header followed by a USE statement,
followed by paragraphs containing the procedure fto be
executed.

Input/output statements can be included in a USE procedure,
but must not cause any input or output to be executed for a
file named in the USE statement. A file named in a USE
statement cannot he a sort file.

A USE procedure must not cause execution .of itself or
another USE procedure.

Four variations of the USE statement are discussed here; the
remainder are discussed in the COBOL 4 Reference Manual:

USE AFTER ERROR Follows input/output procedures
PROCEDURE provided by CYBER Record Man-
ager when an error oceurs.

Follow or precede standard and
nonstandard label writing and
checking procedures provided by
CYBER Record Manager.

USE BEFORE/
AFTER LABEL
PROCEDURES

USE FOR DUPLI-
CATE KEY

Executed on encountering dupli-
cate primary key values on
indexed sequential files.

USE FOR HASHING Used to compute randomizing
Kkey for direct files.

USE AFTER ERROR

USE AFTER ERROR PROCEDURE can be specified to
indicate one or more routines to be executed following an
input/output error., When such an. error occurs, CYBER
Record Manager returns an error code that indicates the type
of error. COBOL places this error code in the special
register ERROR-CODE before the USE procedure is entered.
The USE statement specifies the files for which the error
procedures are to be executed, as shown in figure 2-6.

USE AFTER ERROR PROCEDURE
file-name-1 [file-name-2] ...

Figure 2-6. USE Statement
for Error Processing

USE procedures are not executed for errors causing INVALID
KEY execution. The numbers assigned to ERROR-CODE are
the numbers associated with CYBER Record Manager diag-
nosties; these numbers are listed in the Record Manager
reference manual.

USE BEFORE/AFTER LABEL

By specifying USE BEFORE or AFTER LABEL PROCEDURE,
the user can provide additional processing to be performed
before or after input labels are checked or output labels are
prepared. The time when the additional processing takes
place and the files to be processed are specified in the USE
statement, as shown in figure 2-7.

BEFORE LABEL procedures can be used to modify the values
from which the label is created, or against whieh it is
checked. AFTER LABEL procedures can be used to process
label data not included in a VALUE OF clause.

BEGINNING and ENDING specify the type of labels to be
processed. If neither BEGINNING nor ENDING is specified,
the USE procedures are executed for both beginning and
ending labels. If neither REEL nor FILE is specified, the
procedures are executed for both reel and file labels. UNIT is
synonvmous with REEL.

USE FOR DUPLICATE KEY

If a USE FOR DUPLICATE KEY procedure is specified for an
indexed sequential file, and a duplicate primary key value is
encountered during file creation or updating, the record
containing the duplicate key is not written to the file;

BEFORE
USE { B on } STANDARD
BEGINNING REEL
ENDING FILE
UNIT
ON file-name-1 [file-name-2] ...

LABEL

{PROCEDURE
PROCEDURES

Figure 2-7. USE Statement for Labels

60496000 A

RN

S

instead, the USE procedure is executed, allowing the user to
decide what action is to be taken concerning the duplicate
key record.

The USE statement either lists the files to which the
procedure applies, or specifies that it applies to all indexed
sequential files, as shown in figure 2-8.

USE FOR DUPLICATE KEY ON

{ALL .
|file-name-1 [f ile-name~-2] ...

Figure 2-8. USE Statement for Duplicate Keys

USE FOR HASHING

Records 1n direct files are stored randomly in numbered home
bloeks. The key for the record is mapped onto a number, and
the record is stored in the corresponding block. The mapping
process is called hashing; the routine which executes the
mapping process is called the hashing routine. The USE FOR
HASHING procedures allow the user to provide his own
hashing routines. COBOL does not provide a hashing routine;
if no USE FOR HASHING procedures are specified, the
CYBER Record Manager default hashing routine is used.
Sample program 5 (section 6) contains an example of a USE
FOR HASHING procedure,

The USE statement either lists the files to which the

procedure applies, or specifies that it applies to all direct
files (see figure 2-9).

60496000 A

USE FOR HASHING ON

ALL
file-name-1 [file-name-2] ...

Figure 2-9. USE Statement for Hashing Procedure

The hashing procedure computes a number from the key to be
used by the system in locating the correct home bloek. When
the value is computed, it is placed in the special register
HASHED-VALUE, which is system-defined as a COMPUTA-
TIONAL-1 item. The value must lie between the limits of
zero and one less than the number of blocks in the file. (The
number of bloeks is given in the NUMBER OF BLOCKS clause
of the Environment Division.) If the value is not within these
limits, the INVALID KEY option is taken and the special
register ERROR-CODE is set.

When a direct file is opened for INPUT or I-O (that is, the file
already exists and is not being created), CYBER Record
Manager checks that the hashing routine supplied is the same
hashing routine that was used to write the file. A random
record is read from the file, and the hashing routine supplied
is called to compute the hashed value of the key. This value
is compared to the actual hashed value of the key, and a
diagnostie is issued if they do not agree. Therefore, the
hashing routine must be executable independent of the rest of
the program; it must use data only from the record itself. No
data should be picked up from any other work area of the
program unless the contents of that area can be assured later,
when the file is opened.

2-7

N’

e

N "

\~_/‘ d

SEQUENTIAL FILE ORGANIZATION 3

b e]

In a file with sequential organization, fixed or variable length
records reside on magnetie tape or mass storage in the same
physical order in which they were written. Each WRITE
statement causes the specified record to be stored immedi-
ately after the record written last; an end-of-information is
stored following the last record on the file after it-is closed.
Since records are always read and written one record at a
time in successive order, keys are not used on sequential
files.

Sequential file organization is best suited to files that are to
be read from the beginning and have records added only at
the ‘end of the file. Space is not allotted in advance for
additions; the end-of-information moves as new records are
appended. Record skips are not possible; a record cannot be
rewritten. Tape, punch eard, printer, and some mass storage
files are classified as sequential; all files not resident on mass
storage must have sequential organization.

RECORD TYPES

All six record types defined in COBOL can be specified for
sequential files:

D - Decimal count
F - Fixed length
R - Record mark
T - Trailer item
W - Control word
Z - Zero byte

Specifications needed to obtain the various record fypes are
described in section 2.

DEVICE TYPES

All files reside on one of two types of device: tape or mass
storage (punch card and line printer files reside on mass
storage while they are being processed by COBOL programs).
In addition, tape files are divided into two categories, which
differ primarily in the manner in which the size of physical
records is defined:

X and I tapes (NOS 1 only), and SI tapes (NOS/BE 1 and
NOS 1), as well as mass storage files, have formats in
which the physical record size is predefined by the
operating system. I tapes are the system default under
NOS 1, and SI tapes are the default under NOS/BE 1.
For these files, physical record size is the physical
record unit (PRU) size for the device as shown in
table 3-1.

S (stranger) and L (long record stranger) tapes have
formats in which the physical record size is defined by
the user; physical records on S tapes must be less than
or equal to 5120 characters.

Differences between these two formats are of importance to

the user only in the effect they have on the length and type
of blocks (discussed below).

60496000 A

TABLE 3-1. PRU SIZE BY DEVICE

Device PRU Size

Mass storage 640 characters

Coded SI tapes 1280 charaeters

Binary SI tapes 5120 characters

X or I tapes (NOS 1 only) 5120 characters

FILE DELIMITERS

Three kinds of boundary conditions are recognized by CYBER
Record Manager on sequential files. Their exact physical
representation depends on device type and other considera-
tions (see the Record Manager reference manual), but
boundaries in each category are treated identically by
CYBER Record Manager. The three kinds of boundaries, in
descending order of inclusiveness, are as follows:)

End-of-information (EOI). Every file has exactly one
end-of-information; it occurs immediately after the last
data record in the file. Trailer labels on magnetic tape
are past the end-of-information. On the file named
INPUT, end-of-information is equivalent to a 6/7/8/9
card. End-of-information is written after the last
record in a file when the file is closed with rewind.

End-of-partition (EOP). This boundary is sometimes
referred to as end-of-file. For all files, an EOP or EOI
encountered on input causes the AT END clause of the
READ statement to be executed. End-of-partition is
written when a file is closed with no rewind.

End-of-section (EOS). This boundary corresponds to the
end of a system logical record. On the file named
INPUT, an end-of-section is equivalent to a 7/8/9 card;
for this file, an EOS encountered on input causes the AT
END clause of the READ statement to be executed. On
other files, an end-of-section is ignored by COBOL.

BLOCK TYPES

In sequential files, records are grouped into larger units
called blocks to increase the efficiency of transfer between
memory and storage. Four block types are supported by
CYBER Record Manager and COBOL; the compiler derives
the block type from the BLOCK CONTAINS clause or from a
suffix attached to the implementor-name in the ASSIGN
clause. If neither of these indications is present, a default
block type is assumed which depends on the device type. The
block types selected by COBOL for different combinations of
device type and BLOCK CONTAINS specification are sum-
marized in table 3-2. In general, block types C and I are
more efficient than K and E because they are designed
specifically to take advantage of the characteristies of the
hardware on which COBOL 4 runs.

TABLE 3-2. BLOCK TYPES

BLOCK CONTAINS Clause Format | X Tapess;l’ l\I/I:’SfStorage S and L Tapes
Clause omitted C K; 1 record
per block
BLOCK CONTAINS integer CHARACTERS C E
BLOCK CONTAINS integer RECORDS K K
BLOCK CONTAINS integer-1 T0> integer-2 RECORDS C E
BLOCK CONTAINS integer-1 TO integer-2 CHARACTERS . C E

Although the BLOCK CONTAINS clause is also applicable to
file organizations other than sequential, as discussed in the
appropriate sections, it is used for a different purpose; the
four specific block types discussed in this section are
applicable only to sequential files.

K TYPE BLOCKS

K type blocks always contain a fixed number of records,
regardless of record length; thus the length of a block varies
according to the length of the records contained in the bloeck,
rather than the number of records. K blocking is specified in
COBOL as follows:

BLOCK CONTAINS integer RECORDS

where integer is the number of records in the block. The
number of records in the bloek is known as the blocking
factor.

K bloek type is the default block type in COBOL for S and L
tapes; if the BLOCK CONTAINS clause is omitted for files on
these devices, the compiler specifies a block type of K with
one record per block.

C TYPE BLOCKS ¢

C type blocks contain a fixed number of characters per block
determined by the device type. For Si, X, and I tapes, and for
mass storage, the block size is the same as the PRU size
(table 3-1); the COBOL compiler does not select C type
blocks for S or L tapes. The size of individual records is
irrelevant for C type blocks. On a write, if the record being
written is longer than the space left in the current bloek, the
block is filled with the first part of the record, and the
remainder of the record is written to the next block, or in as
many blocks as required.

C type blocking is selected by COBOL whenever the file
resides on an SI, I, or X tape, or mass storage device, and one
of the following clauses is included in the File Description
entry:
BLOCK CONTAINS integer-1 CHARACTERS
- BLOCK CONTAINS integer-1 TO integer-2 RECORDS
BLOCK CONTAINS integer-1 TO integer-2 CHARACTERS

as well as when the BLOCK CONTAINS clause is omitted.

Since the number of charaecters per block is fixed according
to device type, the integer-1 and integer-2 specifications in
the BLOCK CONTAINS clause are documentary only and
should correspond to the actual value used by CYBER Record
Manager to avoid confusion.

E TYPE BLOCKS

E type blocks, allowed on S and L tapes only, contain as many
complete records as can fit within a specified range. When
the COBOL compiler selects E type blocks, it defines a

.minimum block size in characters and a maximum block size

in characters. On a write, if a block being constructed is
already as large as the minimum block size, but writing the
current record to the block would cause it to exceed the
maximum bloek size, the bloek is terminated and the record
is written to the next block. A single record never spans
more than one block; thus, maximum record length must not
exceed maximum block length.

When a file resides on an S or L tape, and one of the following
clauses is included in the File Description entry, the COBOL
compiler specifies E type blocks and calculates the minimum
block size and the maximum block size:

BLOCK CONTAINS integer-1 CHARACTERS

Minimum block size is 0; maximum block size is
integer-1.

BLOCK CONTAINS integer-1 TO integer-2 RECORDS

Minimum and maximum block size are calculated from
integer-1, integer-2, and the maximum record size
according to the record type (section 2).

BLOCK CONTAINS integer-1 TO integer-2 CHAR-
ACTERS

Minimum bloek size is integer-1; maximum block size is
integer-2.

| TYPE BLOCKS

I type blocks always contain 5120 characters, regardless of
device type, and are used only for binary records. Records in
I type blocks can span more than one block, as with C type
blocks. Only W type records are allowed with I type blocks.

60496000 A

e

~ B
N

I type blocking is specified in COBOL by suffixing ~FIW to the
implementor-name in the ASSIGN clause:

SELECT PAYROLL-FILE
ASSIGN TO PAYFILE-FIW

The components of the suffix -FIW have the following
meanings:

F Format is being changed from the default
I The file is to have I type blocks
W The file is to have W type records

Because only W type records are allowed with I type blocks,
the suffix -FI is equivalent to -FIW.

If a file with I type blocks resides on magnetic tape, the
clause

RECORDING MODE IS BINARY

is necessary to ensure that the correct parity is used (since
the default recording mode is decimal).

BINARY RECORDPING MODE

Whenever records containing binary zeros are to be written to
or read from magnetie tape, the programmer must specify:

RECORDING MODE IS BINARY

If it is not specified, the COBOL compiler defaults to decimal
conversion mode and the files might be read or written
incorrectly.

Binary zeros occur under the following circumstances:

When type I blocks are specified. Block headers in I
type blocks might contain binary zeros.

When W type records are used. The control words
generated by CYBER Record Manager might contain
binary zeros.

When COMPUTATIONAL-1 or COMPUTATIONAL-2
data items are specified in a record. @ COMPUTA-
TIONAL-1 and COMPUTATIONAL-2 items might con-
tain binary zeros.

When any colons (display ecode 00) are contained in the

RECORDING MODE IS BINARY is always required when the
file resides on an X or I tape. Specifying RECORDING MODE
IS BINARY for SI tapes is not required but is recommended

- because packing density and transfer rate of data are

improved.

SPECIAL SYSTEM FILES

The files whose implementor-names are INPUT, OUTPUT,
and PUNCH have special, predefined characteristics which
differ from the default file structure assumed for other files.
These characteristies are summarized in table 3-3.

Carriage control applies only to print files. For any file that
is to be printed, whether or not the implementor-name is
OUTPUT, the first character in every line is interpreted by
the system as earriage control, and is not printed. (The first
character is listed, however, when a file is listed at a
terminal under NOS 1).

Any file whose block type is C and whose record type is Z can
be printed or punched in coded format; if it is to be printed,
allowance must be made for carriage control.

CREATING SEQUENTIAL FILES

Sequential files are created with the clauses and statements
described below. Clauses and statements such as CLOSE,
which must be specified for all files, and those that do not
require further explanation, are omitted from the descriptive
paragraphs.

ENVIRONMENT DiVISION

The Environment Division clauses used to establish a sequen-
tial file are shown in figure 3-1.

ORGANIZATION IS Optional, default is

SEQUENTIAL

RESERVE ALTERNATE
AREAS

Optional

Figure 3-1. Environment Division for

data. : Creating Sequential Files
TABLE 3-3. FILE STRUCTURE ATTRIBUTES FOR SPECIAL SYSTEM FILES
File Block Record Maximum Carriage Recordin
Name Type Type Record Control Mod g
, P Length Assumed ode
INPUT C Z 80 no decimal
OUTPUT C Z 140 yes decimal
PUNCH C Z 80 * no decimal

60496000 A

ORGANIZATION IS

The ORGANIZATION IS clause is optional for sequential files,
since sequential files are assumed when the clause is omitted.
If it is included, it should specify ORGANIZATION IS
SEQUENTIAL.

RESERVE ALTERNATE AREAS

Default buffer size can and should be increased with the
RESERVE ALTERNATE AREAS clause to improve sequential
file processing:

RESERVE integer ALTERNATE AREAS

If input/output activity on the system is heavy, smaller
buffers are more efficient; larger sizes are preferable if
memory space is not at a premium. The optimum number of
alternate areas to be reserved can only be determined by
comparing performance results for a particular application
when different buffer sizes are used. Four or five additional
alternate areas generally increase efficiency for S or L tapes;
more have minimal effect.

DATA DIVISION

The Data Division clauses applicable to sequential file
specification are shown in figure 3-2. ’

BLOCK CONTAINS Optional (see discussion of

block types above)

RECORD CONTAINS Optional (see record types,
section 2)

LABEL RECORD Required

Figure 3-2. Data Division for Sequential File

LABEL RECORD

The LABEL RECORD clause is required for all files, even
though only tape files can have labels.

For unlabeled tape files and all mass storage files, this clause
should specify:

LABEL RECORDS ARE OMITTED

Tape labels are either standard or nonstandard. A standard
label is one whose contents conform to the American
National Standards Institute format for Magnetie Tape Labels
for Information Interchange, X3.27-1969. This format is
deseribed fully in the Record Manager Reference Manual.
Any other label format is considered nonstandard.

If a tape has standard labels, the clause should specify:
LABEL RECORD IS STANDARD

Some fields in a standard label can be altered by means of a
VALUE OF clause; for example, the specification:

LABEL RECORD IS STANDARD
VALUE OF DATE-WRITTEN
IS 741002 .

sets the value of the DATE-WRITTEN field.

Nonstandard labels must be provided by means of the
specification

LABEL RECORDS ARE
data-name-1 [data-name-2] ...

and are discussed fully in the COBOL 4 Reference Manual.
Additional label processing may be performed through USE
procedures, described in section 2.

PROCEDURE DIVISION

The statements used for sequential file creation are shown in
figure 3-3.

OPEN OUTPUT Required
WRITE Required
CLOSE Required
USE BEFORE/ Optional
AFTER LABEL

Figure 3-3. Procedure Division for
Sequential File Creation

OPEN OUTPUT is the only form of the OPEN statement that
can be used for sequential file creation: -

OPEN OUTPUT file-name

When this form is specified, the file is made available for
creation through writing, For tape files, any beginning label
procedures specified by USE statements are executed and
label writing is performed. '

Beginning label procedures are not executed if the NO
REWIND option of OPEN OUTPUT is specified. In this case,
the system default label is written instead of a user provided
label. (This option is applicable only to multiple files on one
tape reel.)

The WRITE statement transfers a record from the reeord; L

area in memory to a buffer for output to an external device
and controls vertical spacing on printed output pages through
the ADVANCING option with BEFORE or AFTER:

WRITE record-name AFTER
ADVANCING identifier-1 LINES

Every file that was opened with an OPEN statement should be
closed with a CLOSE statement. However, the STOP RUN
statement automatically closes up to 53 files that were
opened by the COBOL program. During execution of the
CLOSE statement, an end-of-partition is written after the
last record in the file.

The USE BEFORE/AFTER LABEL PROCEDURE statement
allows the user to provide a routine to eheck or prepare labels
in conjunetion with the procedures provided by CYBER
Record Manager. USE procedures are discussed in section 2.

EXTENDING SEQUENTIAL FILES

The same Environment Division and Data Division clauses are
used for extending sequential files as for creating them.
Procedure Division statements used are shown in figure 3-4.

60496000 A

——

_///

N

S/

OPEN EXTEND Required
WRITE Required
CLOSE Regquired
USE BEFORE/ Optional
AFTER LABEL

Figure 3-4. Procedure Division for
Extending Sequential Files

Rewriting in place cannot be performed on an existing
sequential file. Although new records cannot be inserted,
they can be added at the end of an existing mass storage file.
This is accomplished by opening the file with an OPEN
EXTEND statement.

When the OPEN EXTEND is executed, the file is positioned
following the end-of-partition written by the last CLOSE
operation. This end-of-partition immediately follows the last
record that was written before the file was closed. WRITE
operations after the OPEN EXTEND continue from this
position.

OPEN EXTEND cannot be specified for tape files, or for mass
storage files that were closed with the NO REWIND option.

READING SEQUENTIAL FILES

The same Environment Division and Data Division clauses are
used for reading sequential files as for their creation.
Procedure Division statements that can be employed are
shown in figure 3-5.

OPEN INPUT Required
READ NEXT AT END Required
CLOSE Required
USE BEFORE/AFTER Optional
LABEL

Figure 3-5. Procedure Division for
Reading Sequential Files

When a file is to be read only, reading starts at the current
position, accesses the next record in sequence, and continues
accessing records until an end-of-partition (end-of-seetion for
the file INPUT) is encountered. AT END must be specified
for every READ statement to indicate action to-be taken
when this boundary is encountered. NEXT can optionally be
specified for documentation purposes:

READ NEXT file-name
AT END GO TO paragraph-name,

SAMPLE PROGRAM 1: USING
SEQUENTIAL FILES

Sample program 1, shown in figure 3-6, is a simple illustration
of a program using sequential files. The program reads 10
records from the card file CARD-A (implementor-name
INPUT) and writes them to the tape file FILE-A (imple-
mentor-name TAPEO1), FILE-A is then read, and the record

60496000 A

numbers of the first and tenth records are displayed to verify
that all 10 records were read. The input data for sample
program 1 is shown in figure 3-7 and the output in figure 3-8.

Several lines in the program illustrate conecepts related to
sequential files (line numbers refer to the compiler-assigned
numbers to the left of the source lines).

Line 13 — Line 14

The SELECT eclauses link the file~-names used by the COBOL
program (CARD-A and FILE-A) with the logieal file names
(implementor-names) used by CYBER Record Manager and
the operating system (INPUT and TAPEO1).

Line 21

Labels for the tape file FILE-A are defined as being in ANSI
standard format.

Line 22

The BLOCK CONTAINS clause defines the block type as C
(fixed length character count). In the control statements for
this job, the REQUEST control statement specifying device
type residence for TAPEOL (FILE-A) defines it to be a tape
file in SI format. Since the RECORDING MODE clause is
omitted, the recording mode is assumed to be decimal. Bloek
size for a decimal tape file in SI format is automatically set
by CYBER Record Manager to 1280 characters; the
specification of 640 characters in the BLOCK CONTAINS
clause is ignored.

Line 23

The RECORD CONTAINS clause, in conjunction with the
Record Description entry, defines the record type as F (fixed
length) with a record length of 256 characters. The record
length is calculated from the Record Description entry; the
fact that the correct length is specified in the RECORD
CONTAINS clause is irrelevant.

Line 30 -

The file CARD-A, which is a mass storage file, is unlabeled.
The block and record specifications for this file are auto-
matically determined by the fact that the implementor-name
is INPUT; the record type is defined as Z (zero byte records)
and the block type is C (fixed length character count), with a
block size of 640 characters for mass storage.

Line 49

Since the implementor-name of CARD-A is INPUT, the AT
END clause is executed when the 7/8/9 card is encountered.
Line 45

When the OPEN OUTPUT statement is executed, ANSI

standard beginning labels are written to FILE-A, and the file
is opened with processing restricted to writing.

Line 56
When the CLOSE statement is executed, an end-of-informa-

tion followed by ANSI standard ending labels is written to
FILE-A.

3-5

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
0ool2
00013
00014
00015
00016
00017
00018
00019
00020

00021

00022
00023
00024
00025
00026
00027
00028
00029

00030

00031
00032

00033

00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
0005S
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070

IDENTIFICATION DIVISION.
PROGRAM-ID. SEQUENTIAL=-FILE-I-O.
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER.
0BJECT-COMPUTER. CYBER.

INPUT=-0QUTPUT SECTION.

FILE-CONTROL.
SELECT CARD=A ASSIGN 7O INPUT,
SELECT FILE~A ASSIGN TO TAPEOl.

DATA DIVISION.
FILE SECTION.

FO FILE-A
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 640 CHARACTERS
RECORD CONTAINS 256 CHARACTERS
DATA RECORD IS REC=-A.

01 REC~A.
03 REC-1D PICTURE X(3).
03 REC-NO PICTURE 9(3).
03 FILLER PICTURE X(250).
FD - CARD-A

LABEL RECQRDS ARE OQOMITTED
DATA RECORD IS DATA-A,
01 DATA-A PICTURE X{(80).

WORKING-STORAGE SECTION.
77 COUNT PICTURE 9(3).,
01 CARD-IMAGE,

03 CARD-ID PICTURE X(J3).
03 CARD=-NO PICTURE 9(3).
03 FILLER PICTURE X(74).

PROCEDURE DIVISION,

START-WRITE.
OPEN INPUT CARD=-A OUTPUT FILE-A.
MOVE 0 TO COUNT.

WRITE-REC,

READ CARD-A INTO CARD-IMAGE AT END GO TO END-WRITE.

WRITE REC~A FROM CARD~IMAGE.
ADD 1 TO COUNT.
IF COUNT IS LS 10

GO TO WRITE-REC.

END=-WRITE.
CLOSE FILE~A.

START-READ,
OPEN INPUT FILE-A.

READ-REC.
READ FILE-A AT END
GO TO END=-READ.
IF REC-NO = 1 DISPLAY #FIRST RECORD =

IF REC=-NO = 10 DISPLAY #LAST RECORDP = #£REC-NO.

GO YO READ-REC.

END-READ.
CLOSE FILE=A.
STOP RUN.

#REC~NO.

3-6

Figure 3-6. Sample Program 1: Processing Sequential Files

60496000 A

N P

N -

~”

e

AAAOO]
AAAQ0O2
AAA0O3
BBB004
BBB00S
€CCo06
cccoo?
cCccoo8
DDD00S
DDDO10

Figure 3-7. Input Data for Sample Program 1

FIRST RECORD
LAST RECORD

001
010

Figure 3-8. Output from Sample Program 1

Line 59

When the OPEN INPUT statement is executed, the beginning
labels on FILE-A are checked to ensure that they conform to
ANSI standard format. If they do, FILE-A is opened with
processing restricted to reading. If they do not, a fatal
diagnostie is issued.

Line 69

When the CLOSE statement is executed, the ending labels on
FILE-A are checked to ensure that they conform to ANSI
standard format. If they do not, a fatal diagnostie is issued.

SAMPLE PROGRAM 2: C TYPE
BLOCKS, Z TYPE RECORDS

Sample program 2, shown in figure 3-9, illustrates the use of
files with C type blocks and Z type records, referred to here
as CZ files. These files are important because their strueture
corresponds to that of the punch card files INPUT and
PUNCH and the print line file OUTPUT. Thus, a file created
with C type blocks and Z type records can be printed or
punched in a later job step. (It must be remembered that the
first character of every line in a print file is used for carriage
control and is not printed.) The files whose implementor-
names are INPUT, OUTPUT, ind PUNCH are defined as CZ
files by COBOL.

The purpose of sample program 2 is to compare records in
two files (CARD-FILE and CEE-ZEE-FILE), listing the equal
records on FIRST-PRINT-FILE and the unequal records on
SECOND-PRINT-FILE. The operator’s console is used to
display the total number of records in each category.

The input data for sample program 2 is shown in figure 3-10,
and the output is shown in figure 3-11.

60496000 A

Several lines of the program show alternative methods of
processing CZ files.

Line 17 —- Line 20

The special implementor-names INPUT and OUTPUT are
automatically interpreted by COBOL to mean that these files
have Z type records and C type blocks. For the file OUTPUT,
which is printed by default at the end of the job, the first
character of each line is used by the system for carriage
control; it is the user's responsibility to ensure that this
character position contains the desired carriage control
character, and not a character which is part of the
information to be printed.

The implementor-name suffix -P after PRINT2 is another way
to specify Z type records and C type blocks. In addition, -P
instruets COBOL to add an additional character in front of
each record to contain the carriage control character. When
-P is specified, every character position in the data record is
to be printed. The user cannot access the carriage control
character direectly, but must specify carriage control through
some form of the ADVANCING option of the WRITE
statement. The implementor-name suffix -FZ after DISC01
specifies that the record type for DISCO01 is to be Z. No
assumptions are made by COBOL about carriage control for
this file.

Line 36

PRINT-CONTROL, the first elementary item in the Record
Description for FIRST-PRINT-FILE, specifies a character
position that is to be set to indicate carriage control.

Line 47

The BLOCK CONTAINS specification for CEE-ZEE-FILE, in
conjunction with the file's mass storage residence (as deter-
mined by COBOL at execution time), defines the block type
as C; thus the file is a CZ file (since Z type records are
specified by the ASSIGN clause).

Lines 78, 80, 85, 94, 102, 103

All WRITE statements using the ADVANCING option imply
carriage control. The difference between the implementor-
names PRINT2-P (whose data record is REPORT-LINE) and
OUTPUT (whose data record is PRINT-LINE) is that for
PRINT2-P, the carriage control character is not within the
record, while for OUTPUT, the first character of the record
is set by COBOL to the appropriate character at the time the
WRITE statement is executed, regardless of its previous
contents.

Lines 104, 107, 108, 109

DISPLAY . .. UPON TUBE results in the specified infor-
mation being displayed at the operator's console, since TUBE
was equated to CONSOLE in the SPECIAL-NAMES paragre~h,
Lines 124, 125

The mnemonic NEW-PAGE, defined in the SPECIAL-NAMES

paragraph, is used in these WRITE statements to specify page
ejection before writing.

3-7

00001
00002
00003
00004
0000S
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
0003S
00036
00037
00038
00039
00040
00041
00042

00043

00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064

IDENTIFICATION DIVISION.
PROGRAM-ID. Cz-FILES.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER.
OBJECT-COMPUTER. CYBER.

SPECIAL-NAMES,
CONSOLE IS TUBE
#1# IS NEW-PAGE
TERMINA IS REMOTE.

INPUT=0UTPUT SECTION.
FILE-CONTROL .
SELECT CARD-FILE ASSIGN TO INPUT.
SELECT FIRST=PRINT-FILE ASSIGN TO OUTPUT.

SELECT SECOND-PRINT-FILE ASSIGN TO PRINT2-P.

SELECT CEE-ZEF-FILE ASSIGN TO DISCOl-FZ.

DATA DIVISION.
FILE SECTION.

FD CARD-FILE
LABEL RECORDS OMITTED
DATA RECORD CARD-IMAGE.
01 CARD-IMAGE.
02 CARD=-COLUMN PIC X OCCURS 80 TIMES.

FD FIRST-PRINT-FILE
LABEL RECORDS OMITTED
DATA RECORD PRINT=-LINE.
01 PRINT=-LINE.
02 PRINT=-CONTROL PIC Xe.
02 PRINT=-BODY PIC X(135).

FD SECOND~PRINT=-FILE
LABEL RECORDS OMITTED
DATA RECORD REPORT-LINE.
01 REPORT=LINE.
02 REPORT=-BODY PIC X(135).

FD CEE-ZEE-FILE
LABEL RECORDS OMITTED
BLOCK CONTAINS 640 CHARACTERS
DATA RECORD Z-RECORD.
01 Z-RECORD.
02 Z-CHARACTER PIC X OCCURS 80 TIMES.

WORKING=~STORAGE SECTION.
77 PAIR=-COUNT PIC 9(S5) VALUE ZERO.
77 MISS-COUNT PIC 9(5) VALUE ZERO.
77 HIT-COUNT PIC 9(5) VALUE ZERO.
77 sus PIC 99 COMP-]1,

PROCEDURE DIVISION.

OPEN=-ALL-FILES.
OPEN INPUT CARU-FILE CEE-ZEE-FILE.

OPEN OUTPUT FIRST=-PRINT=-FILE SECOND=-PRINT-FILE.

PERFORM PAGE-EJECTION.

3-8

Figure 3-9. Sample Program 2: C Blocks, Z Records (Sheet 1 of 2)

60496000 A

A

0006S
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
ooo08s
00087
ooo88
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
ool118
00119
00120
00121
00122
00123
00124
00125

READ=TWO-RECORDS .

READ CARD-FILE AT END GO TO WRAP-UP-1.
READ CEE-ZEE-FILE AT END GO TO PREMATURE-EOQF.
ADD 1 TO PAIR=-COUNT.
IF CARD-IMAGE NOT EQUAL Z-RECORD

ADD 1 TO MISS=COUNT

PERFORM UNEQUAL-REPORT
ELSE ADD 1 TO HIT-COUNT

PERFORM EQUAL-REPORT,

GO TO READ-TWO-RECORDS.

UNEQUAL-REPORT.,
MOVE CARD-IMAGE TO REPORT~BODY,.
WRITE REPORT-LINE AFTER ADVANCING 3 LINES.
MOVE Z-RECORD TO REPORT-B0ODY.
WRITE REPORT-LINE AFTER ADVANCING 1 LINES.
PERFORM CHARACTER=COMPARE
VARYING SUR FROM 1 BY 1
UNTIL SUB > 80.
MOVE CARD=-IMAGE TO REPORT-LINE.
WRITE REPORT-LINE AFTER ADVANCING 1 LINES.

CHARACTER-COMPARE.,
IF CARD~COLUMN (SUB) = Z-CHARACTER (5UB)
MOVE SPACE 710 CARD=-COLUMN (SUSB)
ELSE MOVE #+# TO CARD=-COLUMN (SuB).

EQUAL-REPORT.
MOVE CARD-IMAGE TO PRINT-BODY,
WRITE PRINT-LINE AFTER ADVANCING 1 LINES.

WRAP=-UP-1.,
READ CEE-ZEE=-FILE AT END GO TO FINAL~WRAP=-UP,

PREMATURE-EOF .

MOVE #FILES ARE OF UNEQUAL LENGTH # & # & & # & # & % g

TO PRINT=800Y REPORT-BODY.
WRITE PRINT-LINE AFTER ADVANCING S LINES.
WRITE REPORT=LINE AFTER ADVANCING 5 LINES.
DISPLAY # FILES UNEQUAL IN LENGTH # UPON TUBE.

FINAL-WRAP~-UP,

DISPLAY PAIR-COUNT # SETS COMPARED# UPON TUBE.
DISPLAY HIT-COUNT # EQUAL PAIRS# UPON TUBE.
DISPLAY MISS~-COUNT # UNEQUAL PAIRS# UPON TUBE.
CLOSE

CARD=FILE

CEE-ZEE-FILE

FIRST=PRINT=-FILE

SECOND-PRINT-FILE.
STOP RUN.

PAGE~EJECTION.

MOVE

#LISTING OF EQUAL IMAGESH® ®
TO PRINT~BODY.

MOVE

2L ISTING OF UNEQUAL I MAGE
TO REPORT=-BODY.,

WRITE PRINT-LINE AFTER ADVANCING NEW-PAGE.

WRITE REPORT-LINE AFTER ADVANCING NEW-PAGE.

S

#

60496000 A

Figure 3-9. Sample Program 2: C Blocks, Z Records (Sheet 2 of 2)

4679VQ4CT 9952333241000007456621870000000065 BBQ////7/4TC
46799693488 99355279 52766 3146680000002564319973 7347107 (415)
VQ4CT 8523346113795200014523368 7522913345 99999///+DF X (415)
VQ4CT 4087347440 95220 622302214 99///9+ NBG NBG 949 01665

VQ4CT 4087347440 95220 625663=14 99///9 NBG NBG see 01665

W6BGT 0113 6652 42035 4421 88520 66523 00014 00233 66 2241 /// +SD4
W6STC 013 S2033 652 77 s+ BGD 0123 K6632 4123 95236 4000 9999 NBG NB6
7/8/9 Card

4679Va4CT 995233324100000745662187000000006S BBQ////777C
46799693488 99355279 52766 3146680000002564319973 7347107 (415)
VO4CT 8523346113795200014523368 7522013345 99999///+DF X {(415)
VQ4CT 4087347440 95220 622302214 99///+ NBG NBG e99 01665

VQ4CT 4087347440 95220 625663=14 99///« NBG NBG sas 01665

WE6BGT 0113 6652 42035 4421 88520 66523 00014 00233 66 2241 /// +SDh4
W6STC 013 52033 652 // +9 BGD 0123 K6632 4123 95236 4000 9999 NEG NBS&

Figure 3-10. Input Data for Sample Program 2

LISTING OF EQUAL IMAGES

4679vQ4CT 9952333241000007456621870000000065 BBQ/////41C
46799693488 99355279 52766 3146680000002564319973 7347107 (415)
VQ4CT 4087347440 95220 622302214 99///+ NBG NBG sse 01665

VO4CT 4087347440 95220 625663-14 99///, NBG NBG sys 01665

W6STC 013 52033 652 // s+ BGD 0123 K6632 4123 95236 4000 9999 NBG NBG

LISTING OF UNEQUAL IMAGES

VQ4CT 8523346113795200014523368 7522013345 99999///4+DF X (415)
VQ4CT 8523346113795200014523368 7522913345 99999///+DF X (415)
. .

W6BGT 0113 6652 42035 4421 88520 66523 00014 00233 66 2241 /// +SD4
W6BGT 0113 6652 42035 4421 88520 66523 00014 00233 66 2241 /// +SD4
* .

3-10

Figure 3-11. Output from Sample Program 2

hSg

p——

RELATIVE FILE ORGANIZATION 4

Relative files are mass storage files with fixed-length records
in which a record key gives the ordinal of a record and
therefore its location in the file. A record ordinal is a
positive integer which identifies the relative physical location
of a record in the file. The first record in the file is
identified by ordinal 1, the second by ordinal 2, and so forth,
Relative files may be accessed sequentially, without
reference to the key, or they may be accessed randomly by
key.

Relative files are implemented through CYBER Record
Manager word addressable file organization. They are
unblocked; if the BLOCK CONTAINS clause occurs in the File
Description for a relative file, it is ignored.

Only F type records (fixed length records) are specified by
COBOL for relative files; the record length for all records in
a file is the longest length specified in any Record Descrip-
tion entry for the file., The RECORD CONTAINS specifi-
cation is not used.

For any program using a relative file, access mode is either
sequential or random. The file must be open for input,
output, or input/output. The Procedure Division input/output
statements permitted under the various access modes and
open conditions are shown in table 4-1 and described below.

RANDOM ACCESS

Random creation, reading, or updating of relative files
requires the inclusion of the clause ACCESS MODE IS
RANDOM in the Environment Division FILE-CONTROL para-
graph. The ACTUAL KEY clause in the same paragraph is
also required to specify the data item used to hold key values
for reading and writing records. The data item specified by
the ACTUAL KEY clause may be part of the record, but does
not have to be. On a write, only the data record itself is
written to the file; no index is maintained. A record key in a
relative file is simply the ordinal of that record, as defined
above, Key values must be integers greater than zero. The

first record in the file has ordinal 1 and key 1, and so forth.
The exact location of a record is calculated by COBOL from
the key.

Under random access, when a record is written to a file, the
value contained in the data item referenced in the ACTUAL
KEY clause is used as the record key. If the key is greater
than the key of any existing record, sufficient mass storage
space is allocated for the file to accommodate the record
being written and all intervening records. Thus a relative file
can contain unused mass storage space. For this reason,
relative files are inefficient when key values are widely
dispersed; they are more efficient when keys tend to be
clustered and the total range of keys is not great.

The FILE-LIMITS clause (discussed below) can. be used.to
place an upper limit on the number of records in a relative -
file.

SEQUENTIAL ACCESS

Any relative file can be accessed randomly or sequentially
regardless of the mode in which it was created. Sequential
access is indicated by the clause ACCESS MODE IS SEQUEN-
TIAL in the Environment Division FILE-CONTROL paragraph.

When relative files are written in sequential mode, the
ACTUAL KEY clause is ignored, and the contents of the key
item it references are not used to determine the location of
records. The ordinal values of records, however, are used to
determine if processing has exceeded the ranges specified in
the FILE-LIMITS clause, and the INVALID KEY clause (for
WRITE) or AT END clause (for READ) is activated if so.

File reading and writing proceed- just as for files with -
sequential organization. When a file is written, records are
added only at the end of the file. When the file is read,
records are returned to the user program in ordinal order
according to successive positions in the file. The key item is
updated to reflect the ordinal of the record read.

TABLE 4-1. ACCESS MODE AND OPEN STATUS COMBINATIONS, RELATIVE FILES

Random Access - Sequential Access
Statements Open Open Open Open Open Open

Input Output -0 Input Qutput -0
READ NEXT AT END Y N Y Y N Y
READ INVALID KEY Y N Y N N N
WRITE N N N N Y Y
WRITE INVALID KEY N Y Y N Y Y
REWRITE INVALID EEY N N Y N N Y
DELETE INVALID KI:;.Y N N Y N N Y
Create New File N Y N N Y N
Y = Allowed N = Not allowed

60496000 A 4-1

As table 4-1 shows, there is some overlap of funetion between
random and sequential access modes for relative files, When
the access mode is random, sequential reads are possible
through READ NEXT AT END. These reads proceed the same
as when access mode is sequential; keys are updated but not
used. When the access mode is sequential, random writes,
rewrites, and deletes are allowed (using the INVALID KEY
clause in each case). Random reads are not possible when the
access mode is sequential. In every case, the open status
must be correct for these operations to proceed.

CREATING RELATIVE FILES

COBOL clauses and statements particularly applicable to
creation of relative files are described below. Clauses that
would normally be included in any COBOL program, as well as
those that are discussed comprehensively elsewhere in this
user guide, are not included here.

ENVIRONMENT DIVISION

The Environment Division clauses used to establish a relative
file are shown in figure 4-1.

Specifying Relative File Organization

Relative file organization is indicated to COBOL when any of
the following conditions is true:

1. The clause ORGANIZATION IS RELATIVE is included in
the FILE-CONTROL paragraph.

2. The suffix -A is appended to the implementor-name in
the ASSIGN clause:

SELECT BLARGH ASSIGN TO QC-A

3. The FILE-LIMITS or ACTUAL KEY clause is included,
the ORGANIZATION IS clause does not specify any
other file organization, and the Z parameter is omitted
from the COBOL control statement.

4, The suffix -X is appended to the implementor-name in
the ASSIGN clause:

SELECT REL ASSIGN TO RELAT-X

The -X suffix additionally instructs COBOL to write each
record in the file beginning at a 64-word PRU boundary. This
option provides faster processing in random access mode, but
can result in unused mass storage space, depending on record
size. Once a file is created with the -X option, it must
always be used with the option, and always with random
access. A file created without the -X option cannot be used
with the option.

RESERVE ALTERNATE AREAS

RESERVE ALTERNATE AREAS can be included to increase
buffer size and speed processing for relative files to be read
or written sequentially:

RESERVE integer ALTERNATE AREAS

Additional buffer areas should not be specified for files to be
accessed randomly, however, because of the increase in time
required in locating and accessing a record. The NO option of
the RESERVE ALTERNATE AREAS clause can be used to
avoid an increase in buffer size, or the clause can be omitted.

FILE-LIMITS

The FILE-LIMITS clause can be used either in a program that
creates a file or in a program that updates an existing file.
Processing of the file is restricted to records with keys in the
intervals specified by pairs of operands associated with the
key word THROUGH:

FILE-LIMITS ARE 1 THROUGH 10
21 THROUGH 30 41 THROUGH 50

When a file is being created, only records with keys in the
specified intervals are written to the file; however, space is
allocated for intervening records if necessary to establish the
position of a subsequent record.

If the FILE-LIMITS clause shown above is specified whew a
file is created sequentially, the first 10 writes create records
1 through 10. On the next write, space is allocated for
records 11 through 20, and record 21 is written. After reecord
30 is written, the next write allocates space for records 31
through 40, and writes record 41.

Whether a file is being created or updated, an attempt to
randomly access a record whose key does not fall within an
interval specified in the FILE-LIMITS clause results in
activation of the INVALID KEY eclause.

If desired, the FILE-LIMITS clause can be used to establish a
maximum value for record keys, with no other restriction:

FILE-LIMIT IS 1 THRU 1000

In this example, only keys greater than 1000 cause execution
of the INVALID KEY clause. On a sequential write (a write
without the INVALID KEY option), records exceeding the file
limits are not written to the file, but no indication is made to
the user.

SELECT ... ASSIGN
ORGANIZATION IS RELATIVE
RESERVE ALTERNATE AREAS
FILE-LIMITS

ACCESS MODE

PROCESSING IS SEQUENTIAL
ACTUAL KEY

Required

Optional

Optional

Optional

Required

Documentary only
Required for random access

Figure 4-1. Environment Division Clauses for Creating Relative Files

60496000 A

e

—

ACCESS MODE

The ACCESS MODE clause is required for relative files.
When a file is created, the clause should specify the correct
access mode, If creation is to be random, the clause should
specify:

ACCESS MODE IS RANDOM
If ereation is to be sequential, the clause should specify:
ACCESS MODE IS SEQUENTIAL

ACTUAL KEY

A record accessed randomly is located through the key
specifying its relative position in the file; thus, the ACTUAL
KEY clause must be included for relative files for which
ACCESS MODE IS RANDOM is specified:

ACTUAL KEY IS data-name

The data-name in the clause should be in COMPUTA-
TIONAL-1 (integer) format; it must be an integer greater
than zero, and within the values specified by FILE-LIMITS,
and specifies the record ordinal. Specifying a key value of 72
on the first WRITE, for instance, creates a file with 71 empty
entries followed by record 72, unless otherwise restricted by
the FILE-LIMITS clause.

DATA DIVISION

Only one Data Division clause is specifically required for
relative files:

LABEL RECORD IS

Labels can optionally be used for relative file creation if
ACCESS MODE IS SEQUENTIAL is specified; any form of the
LABEL RECORD clause is permitted (see section 3).

If labels are not used, LABEL RECORD IS OMITTED is
required,

PROCEDURE DIVISION
Once the file specifications are established with Environment

and Data Division clauses, the statements shown in figure 4-2
are used to create a relative file.

USE AFTER ERROR Optional
USE BEFORE/AFTER LABEL Optional
OPEN OUTPUT Required

WRITE INVALID KEY
One required
WRITE

CLOSE Required

The programmer can specify USE AFTER ERROR PROCE-
DURE to indicate one or more routines to be executed
following an error in file creation. The USE BEFORE/AFTER
LABEL PROCEDURE statement allows the user to provide a
routine to check or prepare labels in conjunction with the
procedures provided by CYBER Record Manager. USE
procedures are discussed in section 2.

OPEN OUTPUT opens the file for creation with the WRITE
statement:

60496000 A

OPEN OUTPUT file-name

No other version of the OPEN statement can be used for
relative file creation.

Relative files are created either randomly or sequentially,
depending on the form of the WRITE statement used. If
WRITE is specified with the INVALID KEY option, ereation is
random; the ACCESS MODE clause can specify either
RANDOM or SEQUENTIAL. If the INVALID KEY option is
not present, creation is sequential; in this case, ACCESS
MODE IS RANDOM must not be specified.

USE AFTER ERROR Optional
USE BEFORE/AFTER LABEL Optional
OPEN OUTPUT Required

WRITE INVALID KEY)
’ One required

WRITE

CLOSE Required

Figure 4-2. Procedure Division Statements for
Creating Relative Files

For random creation, the user must specify an actual key
through the clause ACTUAL KEY IS data-item. The location
a record is written to is determined by the contents of the
key item when the WRITE statement is executed. The user
program is responsible for setting the data-item to the
desired record ordinal. If the contents of the data-item are
invalid or not within the ranges specified by the FILE-LIMITS
clause, the INVALID KEY clause is executed. The INVALID
KEY clause is also executed if an attempt is made to write a
record using the key of an existing record. (If the P option of
the COBOL control statement, requiring ANSI compatibility,
is in effect, the record is rewritten and INVALID KEY is not
executed.)

For sequential creation, any key specified by the ACTUAL
KEY clause is not used. Each record is written in the next
physical location after the last record written; the user has
no control over the location. An internal key is generated
and updated after each write, but the user cannot access this
key. If the FILE-LIMITS clause is used, writing is restricted
to the range. it specifies. If an attempt is made to write a
record past the last record allowed by the FILE-LIMITS
clause, the record is not written, but no indication is made to
the user. Therefore, to ensure that all desired records are
actually written to the file, the user program must keep track
of the number of records written, to see that file limits are
not exceeded.

PROCESSING EXISTING RELATIVE
FILES

Records in existing relative files can be read, written,
rewritten, or deleted. Access mode can be random or
sequential, and the file can be open for INPUT, OUTPUT, I-0,
or EXTEND. The various combinations of these options that
are permitted are shown in table 4-1.

The same Environment Division clauses are used for updating
as for creating files. FILE-LIMITS can be specified to
restrict file processing to particular portions of an existing
file.

4-3

The LABEL RECORD eclause in the Data Division is required.
If the file is already labeled, and is opened for I-O, labels are
checked. Other label processing takes place just as for
sequential files (see section 3).

The Procedure Division input/output statements used for
processing existing relative files are shown in figure 4-3.

USE AFTER ERROR Optional
USE BEFORE/AFTER LABEL Optional
OPEN Required
READ NEXT AT END Optional
READ INVALID KEY Optional
WRITE Optional
WRITE INVALID KEY Optional
REWRITE INVALID KEY Optional
DELETE INVALID KEY Optional
CLOSE Required

Figure 4-3. Procedure Division Statements for
Existing Relative Files

The USE statement allows the COBOL programmer to define
special processing for errors and labels. USE statements are
discussed in section 2.

The form of OPEN statement used depends on the type of
processing to take place (see table 4-1).

OPEN EXTEND allows records to be added after the last
record on a sequential update operation; it can be used only
with files for which ACCESS MODE IS SEQUENTIAL is
specified:

OPEN EXTEND file-name

Relative files are read sequentially by using the AT END
option of the READ statement:

READ file-name AT END
imperative-statement

This format is valid whether ACCESS MODE IS SEQUENTIAL
or ACCESS MODE IS RANDOM has been specified. Sequen-
tial reading results in the transfer to the input record area of
records in the order of their physical occurrence on the file.
The Key item defined by ACTUAL KEY IS is updated after
each read to the ordinal of the record just read, whether
access is random or sequential, If gaps exist where.no
records have been written (as a result of random writing or
FILE-LIMITS restrictions), they are skipped; only valid data is
returned to the user.

4-4

Random access reading of relative files takes place only when
ACCESS MODE IS RANDOM is specified. The format used is:

READ file-name
INVALID KEY imperative-statement

The user specifies the record to be read by setting the key
item to its key. The INVALID KEY clause is executed if the
contents of the key are invalid or not within the ranges
specified by the FILE-LIMITS clause.

When ACCESS MODE IS RANDOM is specified, sequential
and random reads may be intermixed. Each random read
reads a record according to the contents of the key item;
each sequential read reads the next record after the record
most recently referenced.

Writing of records on an update run is identical to writing
records on a creation run (discussed above), except that if the
file is open for I-O, and a sequential WRITE follows a READ,
the record just read is rewritten.

Existing records in a file opened for I-O can be replaced by a
REWRITE statement or deleted with a DELETE statement.
Both REWRITE and DELETE require an INVALID KEY clause;
the record to be rewritten or deleted is located by its key.
LAST can be specified with REWRITE or DELETE to indicate
that the contents of the record most recently accessed are to
be replaced; the contents of the actual key must not have
been changed since the last access. For both REWRITE and
DELETE, the INVALID KEY clause is executed if the
contents of the key item are invalid or not within the limits
specified by the FILE-LIMITS clause.

SAMPLE PROGRAM 3: PROCESSING
RELATIVE FILES

Sample program 3, shown in figure 4-4, creates a relative file
(FILE1) containing 10 records, then closes the file and
reopens it to read the records in order. The first and last
records are displayed. There is no input for the program; the
output is shown in figure 4-5.

Line 13 — Line 14

Relative organization is defined for FILE1 in two ways in this
program: through the suffix -A to the implementor-name,
and through the clause ORGANIZATION IS RELATIVE.
Either specification could have been omitted, but one of the
two is necessary.

Line 15

ACCESS IS RANDOM indicates that records in FILE1 are to
be read and written only by key in this program. Future

programs can process FILE1 sequentially. The PROCESSING
MODE clause is documentary only.

Line 16 — Line 17
The FILE-LIMITS clause is optional; in this format it limits

66496000 A

S

e

N

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010

00011

00012
00013
00014
00015
00016
00017
90018
00019
00020
60021
00022
00023
10024
60025
00026
00027
00028
60029
00030
00031
20032
200313
00034
00035
0600136
00037
00038
30039
00040
00041
00042
00043
00044

00045

00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068

IDENTIFICATION DIVISION.
PROGRAM-TID. RELATIVE-I-0,
ENVIRONMENT DIVISION.

CONF IGURATION SECTION.
SOURCE-COMPUTER. CYHER.
ORJECT-COMPUTER. CYHER.

INPUT-0UTPUT SECTION,
FILE-CONTROL .
SELECT FILET ASSIGM TO LFNl-A
ORGANIZATION IS RELATIVE
ACCESS IS RANROM PROCESSING IS SEQUENTIAL
FILE-LIMIT IS 4054
ACTUAL KEY IS ACf=KEY.

UATA DIVISION.
FILE SECTION.
Fr FILED RECORDING MODE IS DECIMAL

RECORD CONTAINS 2000 CHARACTERS
LAsEL RECORDS ARE OMITTED.

01 REC.
03 FILLER PICTURE X.
03 REZC=NO PICTURE 9(17).
03 FILLER PICTURE X(1982).

WORKINOG=STORAGE SECTION.
77 SO-MANY PICTUR: 9(la) VALUE 1S 106.
77 ACT-KEY PICTURE 9t4) VALUE IS 0¢.

PROCEDIRE DIVISION.
STaART-WRITE.

OPEN OUTPUT FILEL.
MOVE SPACES TO REC.

DISPLAY 2DIsPLAY FIRST AND LAST RECORD ONLY.#.

PERFORM WRITES SO-MANY TIMES.
CLOSE FILElL.

DISPLAY #FINISHED CREATING FILEZ.
GG TO START-READ.

WRITES.

ADD 1 10 ACT-K:oYe MOVE ACT-KEY TO REC-NO.
IF REC-NO EQ 1 OISPLAY REC.
If REC-NO EQ SN=-MANY DISPLAY REC,
WRITE REC INVALID KEY

DISPLAY ###INVALID KEY##%

DISPLAY #KfY = # ACT-KEY

STOP KiiNe

START=READ.
MOVE 0 TO ACT-xEY.
MOVE SPACES TO REC.
OPEN INPUT FILE}.
DISPLAY #START READING FILE#.

DISPLAY #DISPLAY FIRST AND LAST RECORD ONLY.#.

READ-IT.
ADD 1 TCG ACT=KEY.
READ FILELl INVALID KEY GO TO DONE-RUN.,
IF ACT-KEY NOT = REC=NO
DISPLAY ###ERROR###
DISPLAY #KEY = # ACT-KEY
DISPLAY #DISPLAY RECORD ON NEXT LINE#

60496000 A

Figure 4-4. Sample Program 3: Processing Relative Files (Sheet 1 of 2)

00069 DISPLAY REC

00070 STOP RUN.

00071 1F REC-NO EQ 1 DISPLAY REC.

00072 IF REC-NO EQ SO=-MANY DISPLAY REC.

00073 60 TO READ-IT.

00074

00075 DONE=-RUN.

00076 CLOSE FILEl.

00077 DISPLAY #TOTAL RECORDS REALD = # ACT-KEY.
00078 STOP RUNe.

Figure 4-4. Sample Program 3: Processing Relative Files (Sheet 2 of 2)

DISPLAY FIRST AND LAST RECORD ONLY.
00000000000000001

00000000000000010

FINISHED CREATING FILE

START READING FILE

DISPLAY FIRST AND LAST RECORD ONLY.
00000000000000001

00000000000000010

TOTAL RECORDS READ = 0011

4-6

Figure 4-5. Output from Program 3.

the number of records the file can contain to 4094.

The ACTUAL KEY clause is required to define the key item
for random reads and writes.

Line 24 — Line 25

The RECORD CONTAINS clause specifies the same record
length as the Record Desecription entry, 2000 characters.
COBOL selects F type (fixed length) records, and calculates
the record length from the Record Description entry; the
RECORD CONTAINS clause is ignored. The LABEL
RECORD eclause specifies an unlabeled file.

Line 37 — Line 53

The first part of the Procedure Division opens FILE1l for
output (line 38) and then creates the file by writing 10
records to it. The contents of each record are a 17-character
key, and 1983 characters of filler. The keys are generated by
successively incrementing ACT-KEY (line 47), the value of
the key is moved into the record (line 47), and the record is
written by a random write (line 50). The INVALID KEY
clause of the WRITE statement is activated, the key
displayed, and processing halted only if the file limit of 4094
records is exceeded. Because all key values from 1 to 10 are
used, there are no gaps in the file after it is created. In this
particular case, the file could just as well be created
sequentially; no key item would then be used. In line 42 the
file is closed.

Line 55 - Line 78

In line 58, FILE1 is reopened for input. The records are then
read from the file by a random read (line 64) after the key
item is ineremented (line 63). Because the values the key
item successively takes are the same as the values it took
when the file was created, the records are read in the order
they were written; this could also be.accomplished through
sequential processing.

60496000 A

e’

-__/

STANDARD FILE ORGANIZATION 5

h

Standard files are mass storage files whose records can be
accessed only randomly; access is by a key that uniquely
identifies the record. Sequential access is not possible. An
index is used to correlate record keys with locations in the
file; each record in the file requires one index entry.

Standard files are supported only for compatibility with
previous versions of COBOL, and should not be used for new
applications,

The index is constructed dynamically by COBOL execution
time routines, and is maintained in central memory. When
the file is closed, the index is written to the file.

Standard files are implemented through CYBER Record
Manager word addressable file organization; the files are
unbloeked, and the BLOCK CONTAINS clause is ignored.

Records may vary in length, but since COBOL always
specifies W type records for standard files (whether or not
the -FW suffix is used in the ASSIGN clause), the RECORD
CONTAINS clause is ignored. The OCCURS clause may be
used in the Record Description entry.

Standard file organization is efficient insofar as mass storage
space is not wasted, and only one access is needed per record.
On the other hand, the necessity for one index entry per
record means that the index can require an arbitrarily large
amount of central memory space; therefore, the file organi-
zation is best for small files.

FILE STORAGE

Records oceur on a standard file in the order they are
written. Key values need not be sorted; the key value has no
bearing on either the file size or the order in which records
are stored. The sixth record written lies in the sixth record
position in both the index and the file; the ninth written lies
in the ninth position, and so forth. In the example shown in
figure 5-1, records with actual key values of 1, 3, 7, and 4
were written to a standard file in that order and stored as
shown. Their keys were stored in an index and associated
with a word address as shown at the right.)

CREATING STANDARD FILES

Creation of standard files involves the COBOL clauses
described below. Clauses and statements such as CLOSE,
which must be specified for all files, and those that do not
require further explanation, are omitted from the descriptive
paragraphs. Clauses and statements that apply only to
existing files are described under Updating Standard Files and
Reading Standard Files.

ENVIRONMENT DIVISION

The Environment Division clauses used in establishing a
standard file are shown in figure 5-2.

Defining File Organization

Standard file organization is normally specified by including
the clause ORGANIZATION IS STANDARD in the FILE-
CONTROL paragraph of the Environment Division. However,
if the Z option is specified on the COBOL control statement,
requiring compatibility with COBOL 3, and the ACTUAL/-
SYMBOLIC KEY clause is specified (as required for standard
files), standard file organization is assumed by COBOL as the
default in the absence of the ORGANIZATION -clause.
However, the Z option might cause undesired side effects (see
the COBOL 4 Reference Manual).

RESERVE ALTERNATE AREAS

Use of the RESERVE ALTERNATE AREAS clause is not
recommended because CYBER Record Manager handles
buffer requirements efficiently in its absence, and random
access requires more time to locate and access a record when
larger buffers are specified. If the clause is used, however,
each additional area specified is allotted either an additional
640 characters or the number of characters in the largest
record, whichever is greater.

RECORD 1
Standard RECORD 3
File
Records RECORD 7
RECORD 4

1 Address
3 Address
Index Table
7 Address
4 Address

Figure 5-1. Standard File Structure

60496000 A

SELECT... ASSIGN
ORGANIZATION IS STANDARD

RESERVE ALTERNATE AREAS
FILE-LIMITS

ACCESS IS RANDOM
ACTUAL/SYMBOLIC/RECORD KEY

Required

Required in absence of Z
control statement option

Optional
Optional
Regquired
Required

Figure 5-2. Environment Division for Creating Standard Files

FILE-LIMITS

A FILE-LIMITS clause should be specified for all standard
files to indicate the total number of records. If it is omitted,
no more than 4095 records can be written. FILE-LIMITS
cannot be used to restriet processing to a portion of a
standard file; only the following format can be used:

FILE-LIMITS IS integer

ACTUAL/SYMBOLIC/RECORD KEY

A Kkey defined by the ACTUAL KEY, SYMBOLIC KEY, or
RECORD KEY clause must be specified for record access:

ACTUAL KEY IS data-name

The key ean be either within the record or not. An actual key
is more efficient than a record or symbolie key; it must be an
integer greater than zero and less than or equal to the FILE-
LIMITS specification, and must consist of 14 or fewer digits.
It should be described as COMPUTATIONAL-1 (integer); it
must not be described as COMPUTATIONAL-2 (floating
point). A symbolic key or record key is a string of one to
seven charaecters. It should not be deseribed as either
COMPUTATIONAL~1 or COMPUTATIONAL-2.

DATA DIVISION

Only one Data Division clause is specifieally required in
declaring standard files:

LABEL RECORD IS OMITTED

Labels cannot be used with standard files, but the clause
specifying that they are to be omitted is required.

PROCEDURE DIVISION

The input/output statements used to create a standard file
are shown in figure 5-3.

USE AFTER ERROR PROCEDURE can be used with OUTPUT
or I-O or with one or more file names to indieate routines to
be executed following an error in file creation. USE
procedures are deseribed in section 2.

USE AFTER ERROR Optional
OPEN Required
WRITE INVALID KEY Required
CLOSE Regquired

Figure 5-3. Procedure Division Statements to
Create Standard Files

Although OPEN OUTPUT is usually required for opening a file
for creation, OPEN I-O can be used for standard files; this
option is provided to allow compatibility with earlier versions
of COBOL. The format is:

OPEN OUTPUT file-name
or;
OPEN I-0 file-name

Only WRITE INVALID KEY can be used to write a new
record:

WRITE record-name
INVALID KEY imperative-statement.

The INVALID KEY clause is executed if an attempt is made
to write more records than allowed by the total specified in
FILE-LIMITS, or if a bad key value is encountered.

UPDATING STANDARD FILES

Standard files can be updated with reeord additions, inser-
tions, and overwrites. Records cannot be deleted. The
Environment and Data Division clauses are the same as for
file creation.

Procedure Division statements used for file update are shown
in figure 5-4.

USE AFTER ERROR PROCEDURE can be specified with I-O.

INVALID KEY is required with the READ and WRITE
statements. Any attempt to read a record with a key that
does not exist or to access a record beyond the FILE-LIMITS
specification activates the INVALID KEY clause. An existing
record can be rewritten (overwritten) with a new record
having the same key value through the WRITE statement; the
new record must not be longer than the old record.

60496000 A

N

USE AFTER ERROR Optional
OPEN I-O Required
READ INVALID KEY Required
WRITE INVALID KEY Required
CLOSE Required

Figure 5-4. Procedure Division Statements for
Updating Standard Files

READING STANDARD FILES

Read-only processing for standard files is achieved by
specifying the same Environment Division clauses as for
updating and using the Procedure Division statements shown
in figure 5-5.

USE AFTER ERROR Optional
OPEN Required
READ INVALID KEY " Required
CLOSE Required

Figure 5-5. Procedure Division Statements for
Reading Standard Files

READ functions the same as for updating. USE procedures
may be used to define additional processing for errors. USE
statements are deseribed in section 2.

SAMPLE PROGRAM 4:
USING STANDARD FILES

Sample program STANDARD-I-O-EXAMPLE, shown in its
entirety in figure 5-6, creates and then updates a standard
file, DSKFILE. The original records for the file are contained
on a card file, CRDFILE. When a code indicating the end of
creation is encountered on CRDFILE, DSKFILE is closed and
reopened for updating. A third file, PRTFILE, is maintained
to print a record of transactions during file creation and
updating. Sample input for this program is shown in
figure 5-7, and the output that would result from this input is
shown in figure 5-8.

Line 19

The ORGANIZATION IS STANDARD clause is the normal way
of specifying standard files.

60496000 A

Line 20 —- Line 22

The FILE-LIMIT clause used here could have been omitted,
since the maximum number of records it specifies, 4095, is
the default. ACCESS IS RANDOM is required for standard
files. The ACTUAL KEY clause identifies the data item used
for reading and writing.

Line 29

This form of the LABEL RECORDS clause is required for
standard files.

Line 52 — Line 54

The record format for DSKFILE includes one character to
indicate the last operation on the record, four characters for
the record key, and 75 characters for the actual data itself.

Line 57

The most efficient keys for standard files are actual keys
described as COMPUTATIONAL-1.

Line 58 — Line 68

MESSAGE-AREA contains various messages to be included in
the printed record of transactions for the program.

Line 80 — Line 87

Records are read one at a time from CRDFILE into CRDREC
and moved into PRTREC (for PRTFILE) and DSKREC (for
DSKFILE). The format of records in DSKFILE is the same as
the format of records in CRDFILE.

Line 88 — Line 91

In order to write a record to DSKFILE, the proper key value
must be moved to the actual key ACT-KEY. The INVALID
KEY option of the WRITE statement is required for standard
files.

Line 106 — Line 116

To update the file DSKFILE, transaction requests are read
from the card file CRDFILE, The transactions requested are
either to read a record and replace it with the new record
contained on the card (code 2) or simply to read the record
(any other code). All transactions are written to PRTFILE
(which will be printed at the end of the job, since its
implementor-name is OUTPUT).

Line 117 — Line 126
It is not necessary to move a key value to ACT-KEY just
before this write request because the record that was just

read is being rewritten, and ACT-KEY is therefore already
set to the correct value.

5-3

00001
00002
90003
00004
0000%
0000~
00007
00004
00009
00C10
0C011
3C012
99011
00014
00015
J0o1ée
ceol?
0001k
00019
00020
€0021
uoope?
20023
00024
00062%
00026
20027
06025
00029
0003¢
00031
00037
00033
30034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069

FOENTIFICATION DIVISION.
PROGRAM=ID. STANDARD=1=-0-EXaMPLE.
ENVIRONMENT DIVISION.

CONF IGURATION SECTION.
SOURCE-COMPUTER, CYBER.
ORJECT~COMPUTER. CYBER,

INPUT=-0UTPUT SECTION.
FILE-CONTROL .
SELECT CROFILE
ASSIGN TO INPUT.
SELECT PRTFILE
ASSIGN TO OUTPUT.
SELECT DSKFILE
ASSIGN TG DISKaL
ORGANIZATION 15 STANDARD
FILF=LIMIT 1S 4095
ACCESS IS RANDNM
ACTUAL KEY 1S ACT=KEY,

DATA DIVISICN,

FILE SECTION.

FI> CRDF ILE
LABEL RECOKDS arE OMITTED
DATA RECORD IS CRDREC,

01 CRDREC.
05 STBCODE PICTURE 9.
05 STuKty PICTURE 314).
05 STDATA PICTURE X(75}.

FU)' PRIFILE
LABEL RECORDS arE oMITTED
DATA RECURD IS PRTREC,

01 PRTREC,

05 SPACE-CONTROL PICTURE X

05 MESS=TYPE PICTURE X(30).
05 STLCUDE PICTURE 9.

05 FILLER PICTURE X(5).
05 STOKRY PICTURE 9(4).
05 FILLER PICTURE X(5).
05 STDATA PICTURE X(75),

FD DSKFILE
LABEL RECORDS ARE OMITTED
DATA RECORD IS DSKkKEC,

01 DSKREC.
0S5 STDCODE PICTURE G
05 STOKEY PICTURE 9(4).
05 STDATA PICTURE X(75;.

WORKING-STORAGE SECTION.

77 ACT-KEY
01 MESSAGE-AREA.

PICTURE 9(4) COMP-1,

05 INV~-READ-KEY PICTURE X(28) VALUE IS

guae INVALID KEY ON READ #uegz,
05 INV=-WRITE=-rEY PICTURE X(28) VALUE IS

#aut INVALID KEY ON WRITE s#awnz,
05 NEW-REC PICTURE X(14) VALUE IS)

NEW RECORD#.
05 OLD-REC PICTURE X(14) VALUE IS

OLD RECORD#.
05 UPD-wEC PICTURE X(18) VALUE IS

* UPCATED RECORD#.

Figure 5-6. Sample Program 4: Processing Standard Files (Sheet 1 of 2)

60496000 A

S

S~

N

R

00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111

00112
00113
00114
00115
00116
00117
00118
00119
00120
00121

00122
00123
00124
00125
00126
00127
00128
00129
00130
00131

00132
00133
00134

PROCEDURE DIVISION,
CREATION SECTION.

BEGIN.
OPEN INPUT CROFILE
OUTPUT PRTFILE DSKFILE.
MOVE #0# TO PRTREC.

CREATE=-REC.

READ CROFILE

AT END

GO TO END-QF-JOB.

IF STDCODE OF CRDREC NOT = 0

CLOSE DSKF ILE

GO TO UPDATE,
MOVE CORRESPONDING CRDREC TO PRTREC DSKREC.
MOVE NEW-REC TO MESS=-TYPE OF PRTREC.
MOVE STOKEY OF CRDREC TU ACT=KEY.
WRITE DSKREC

INVALID KEY

MOVE INV=-WRITE=-KEY YO MESS=TYPE OF PRTREC.

WRITE PRTREC.,
GO TO CREATE-REC,

UPDATE SECTION,

REBEGIN,
OPEN I-0 OSKFILE.
GO TO UPDATE-REC.

GET=-NEXT,.
READ CROFILE
AT END
GO TO END=-OF=J0B.

UPDATE-REC,
MOVE STOKEY OF CRDREC TO ACT=-KEY,
READ DSKFILE
INVALID KEvY
MOVE CORRESPONDING CRDREC TO PRTREC

MOVE INV-READ~KEY 70 MESS=-TYPE OF PRTREC

WRITE PRTREC

GO TO GET-NEXT.
MOVE CORRESPONDING DSKREC YO PRTREC.
MOVE OLD-REC TO MESS-TYPE OF PRTREC.
WRITE PRTREC.
IF STDCODE OF CRDREC = 2

MOVE CORRESPONDING CRUDREC TO PRTREC DSKREC

WRITE DSKREC
INVALIN KEY

MOVE INV-WRITE-KEY TO MESS~-TYPE OF PRTREC

WRITE PRTIREC

GO TO GET=-NEXT.
MOVE UPD=-REC TO MESS-TYPE OF PRTREC.
WRITE PRTREC.
GO TO GET-NEXT,

END-OF-JOBR SECTION.

ENOD=-EXAMPLE,
CLOSE CROFILE
PRTFILE
DSKFILE.

STOP RUN.

60496000 A

Figure 5-6. Sample Program 4: Processing Standard Files (Sheet 2 of 2)

01000
01001
01003
01004
01005
01006
01007
01008
01009
01010
99993
21001
21009
21013
11015
211016
11017

OF ALL THE SHIPS UPON THE SEtA,
THIS ONE 1SN#T THE ONE FOR ME.

TESTING 1-2-3

FOUR SCORE AND SEVEN YEARS AGO
WAS 87 YEARS AGO.
TEST DATA LINEZ 1}
TEST DATA LINE 2

RHUBARB
RUEBARB
RUDEBARB

THIS ONE AIN#T THE ONE FOR ME#,
RUE DE LA BARY

RUBBISH
RUBBISH
RURBISH

THIS IS AN ADDED RECORD

Figure 5-7. Standard File Program Input

L 22)

L 23]

* 35 &

LX)

%33

NEwW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEwW

NEw

KRECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD

INVALID KEY ON

oLD

RECORD

UPDATED RECORD

oLD

RECORD

UPDATED RECORD

INVALID KEY ON

INVALID KEY ON

INVALID KEY ON

INVALID KEY ON

READ ##%

READ #u#
READ 34 3 3¢
READ #s#

READ #u#

0 1000
0 1001
0 1003
0 1004
0 1005
0 1006

1007
0 1008
0 1009
0 1010
9 9999
0 1001
4 1001
0 1009
2 1009
2 1013
1 1015
2 1101

1 1017

OF ALL THE SHIPS UPON THE SEA,
THIS ONE ISN#T THE ONE FOR ME.
TESTING 1-2-3

FOUR SCORE AND SEVEN YEARS A&O
WAS 87 YEARS AGO.

TEST DATA LINE 1

TEST DATA LINE 2

RHUBARB

RUEBARS

RUDEBARB

THIS ONE ISN#T THE ONE FOR ME.
THIS ONE AIN#T THE ONE FOR MEZ,
RUEBARS

RUE DE LA BARB

RUBBISH

RUBBISH

RUBBISH

THIS IS AN ADDED RECORD

Figure 5-8. Standard File Program Output

60496000 A

~—’

DIRECT FILE ORGANIZATION 6

A direct file is a mass storage file in which the location of a
record is determined by a randomizing computation, called
hashing, performed on its primary key. This randomizing
process results in the dispersal of records throughout the file,
so that the physical order of records in the file is different
from any logical order by key, as well as from the order in
which they were written. No primary key index is maintained
for direct files; in order to locate a record, given its key, the
same computation is performed as was performed when the
record was written. Direct files are implemented through
CYBER Record Manager direct access file organization.

Any of the record types described in section 2 can be used
with direct files; they eannot be labeled.

A direct file always has one primary key and can optionally
have from 1 to 255 alternate keys. The data item defined as
the primary key must have a fixed location and length within
the record format. Each record must have a unique primary
key value; duplicate primary key values are not allowed for
direct files.

Every direct file contains a user-specified number of blocks
known as home blocks. A unique positive integer is assigned
to each home block. Whenever a record is accessed
randomly, the hashing computation is performed on the
primary key value specified by the user. The result of the
computation is an integer that identifies one of the home
blocks. This block is the one the record is written to or read
from. Alternate keys are not hashed.

A hashing routine can be provided by the user as a USE FOR
HASHING procedure (section 2); otherwise, the system pro-
vides a hashing routine by default.

CYBER Record Manager provides a key analysis utility that
can be used to test a user-defined hashing routine by
determining the distribution of records obtained with that
hashing routine. The key analysis utility is- diseussed in
appendix C.

Any program using direct files must specify either ACCESS IS
RANDOM or ACCESS IS SEQUENTIAL (SEQUENTIAL is
default). The file must be open for input, output, or
input/output. The Procedure Division input/output state-
ments permitted under the various access modes and open
conditions are shown in table 6-1 and are described in more
detail below.

FILE STORAGE

A direct file, as it exists on mass storage after creation,

consists of a file statistics table, a user-defined number of -
home blocks, and any overflow blocks established by the

system.

FILE STATISTICS TABLE

The file statistics table (FSTT) is an internal table created
and used by CYBER Record Manager. The table is preserved
on the file after the file is closed, so that information about
the file is available to CYBER Record Manager in subsequent
runs using the file. The information that is maintained
includes statistics about transactions on the file and file
structure specifications such as number of home blocks, size
of blocks, key length and location, and maximum and
minimum record size. The user should not attempt to change
any of these specifications once the file has been created;
COBOL allows some of these specifications to be omitted in
subsequent programs, as deseribed under Processing Existing
Direet Files.

TABLE 6-1. ACCESS MODE AND OPEN CONDITION COMBINATIONS, DIRECT FILES

Random Access Sequential Access
Statements Open Open Open Open Open Open
Input Output I-0 Input Output I-0
Create New File N Y N N N N
READ INVALID KEY Y N Y N N N
READ KEY IS INVALID KEY YM N YM N N N
READ AT END Y N Y Y N 'Y
START KEY INVALID KEY YM N ™M YM N M
WRITE INVALID KEY Y N
REWRITE INVALID KEY N N
DELETE INVALID KEY N N N Y
Y = Allowed N = Not allowed YM = Allowed multiple index only
60496000 A 6-1

HOME BLOCKS

Home blocks are mass storage areas reserved for a direct file
when it is created. The user must specify the number of
home blocks the file is to contain through the NUMBER OF
BLOCKS clause. Once this number is defined, it cannot be
changed.

All home blocks for a file are the same size. The user can
define the length of the blocks through the BLOCK CON-
TAINS or RECORD-BLOCK CONTAINS clause. If both these
clauses are omitted, COBOL will calculate a default block
size calculated from the size of the largest record defined in
the File Description entries, and from other file structure
specifications. COBOL increases the size of user-defined
blocks, if necessary, to an integral multiple of physical record
unit {PRU) size, which is 64 words for mass storage, less one
word. This length is calculated to utilize mass storage most
efficiently.

Record distribution among the blocks is determined by
hashing the keys. The number of records allotted to a block
depends on the results of hashing. Because of the randomness
of the hashing procedure, some blocks will have unused space
at the end, as shown in figure 6-1.

KEYA KEYB KEYC

KEYD
KEYE KEYF
KEYG

Figure 6-1. Unused Space in Home Blocks

Records whose keys hash to the same value are chained
‘together to ensure ultimate access by primary key to any
desired record. If the home block determined by the hashing
routine cannot accommodate another record, an additional

block, called an overflow block, is allocated and a pointer to
the corresponding overflow block is placed in the home block.
Each additional overflow block requires an additional access;
thus, it is usually more efficient to specify a large number of
small home blocks, rather than a small number of large home
blocks, so that the need for overflow blocks is reduced.

Even though the home block containing a record or a pointer
to the record is located by a hashed key, final access to the
record is by its unhashed key. Therefore, two records with
identical unhashed primary keys cannot coexist on one file.

OVERFLOW BLOCKS

Overflow blocks are automatically allocated and written by
CYBER Record Manager; the COBOL program does not need
to acknowledge their existence in any way. They are the
same size as home blocks. When an overflow block is
required, it is assigned in the same manner that home blocks
are assigned. Leftover records from more than one home
bloek ean occupy an overflow block. If the unhashed key of a
record accessed by primary key cannot be found in its home
block, the overflow block is searched. Overflow blocks can
point to further overflow blocks, if necessary. Home blocks
and the overflow blocks associated with them are illustrated
in the diagram in figure 6-2.

The diagram shows that excess records from home bloeks 1
and 2 are stored in overflow block 3, along with excess
records from overflow block 2. Excess records from home
block 4 are assigned to overflow block 2. Exeess records
from home bloeks 3, 5, and 6 are allocated to overflow
block 1.

Actual residence of overflow records depends on the setting
of an installation parameter. The three possible options are:

1. Abort - no overflow allowed

2. Overflow to other home blocks only. In this case, the
amount of mass storage allocated remains constant
throughout the life of the file.

3. Overflow to other home blocks and overflow blocks, the
choice to be made by CYBER Record Manager

ir ; 'y / \

Home Home Home Home Home Home Overflow | Overflow Overflow
Block Block Block Block Block Block Block Block Block
1 2 3 4 5 6 1 2 3
A A A A A A
BOI EOI

Figure 6-2. Overflow Blocks

60496000 A

~—

. ;

S

CREATING DIRECT FILES

Direct files can be created in one of two ways: by COBOL
language statements, or through the CREATE utility. When
COBOL statements are used, home blocks are moved from a
central memory buffer to mass storage each time a record is
written, When the CREATE utility is used, all records that
hash to a given home block can be created at once, and the
amount of writing time required is thus reduced. Since the
amount of time saved with CREATE is significant only when
the file contains 1000 or more records, the utility is
inefficient for files with fewer records. CREATE is called
through control statements (see appendix C).

Direct file creation through COBOL involves the clauses
deseribed below. COBOL statements whose operation does
not depend on file organization are not included. Clauses and
statements that apply only to existing files are deseribed
under Processing Existing Files.

ENVIRONMENT DIVISION
The Environment Division clauses-used to establish a direct

file with COBOL language statements are shown in
figure 6-3.

SELECT ... ASSIGN
The SELECT . . . ASSIGN clause is required for all files:

SELECT file-name
ASSIGN TO implementor-name

If the file is a multiple index file, the file used to hold the
alternate key indexes must also be defined in the ASSIGN
clause:

SELECT file-name ASSIGN TO
data-file-name index-file~name

The second form might appear in a program as:

SELECT EMPLOY-FILE
ASSIGN TO EMPLOY EMPLMIP

in which EMPLOY would be the direct file created and
EMPLMIP would be the index file that contains the index of
alternate keys.

Preservation of the index file associated with every multiple
index data file is the user's responsibility. In particular, since
both files are normally permanent files, control statements to
save both files should be included in the job that creates the
files, and control statements to attach both files are needed
in subsequent jobs that reference the data file. The index file
must be attached by every job using the data file, whether or
not alternate keys are used in the job.

RESERVE ALTERNATE AREAS

The RESERVE ALTERNATE AREAS clause provides buffer
space for one additional home block to be assigned, regardless
of the value specified. Thus the clause is meaningful only in
the following format:

RESERVE 1 ALTERNATE AREA
If the clause is omitted or RESERVE NO ALTERNATE
AREAS is specified, the minimum buffer space allotted is

derived from the block and record information provided by
the user.

FILE-LIMITS

The FILE-LIMITS clause can be used to set the maximum
number of records that can exist in the file at any time.
FILE-LIMITS cannot be used to restriet processing to a
portion of a file. Only the format:

FILE-LIMIT IS integer
can be used. If the FILE-LIMITS clause is omitted, there is

no precise limit to the number of records that can be written.

ACCESS IS RANDOM

Direct files can only be written randomly; thus ACCESS IS
RANDOM is required on a creation run.

ACTUAL/SYMBOLIC/RECORD KEY

Every direct file has exactly one primary key defined by one
of the following clauses:

ACTUAL KEY IS data-name

SELECT . . . ASSIGN
ORGANIZATION IS DIRECT
RESERVE ALTERNATE AREAS
FILE-LIMITS

ACCESS IS RANDOM
ACTUAL/RECORD/SYMBOLIC KEY
ALTERNATE RECORD KEY
NUMBER OF BLOCKS
RECORD-BLOCK CONTAINS

Required

Required

Optional

Optional

Required

Required

Required for multiple-index files
Required »

Optional

Figure 6-3. Environment Division for Direct Files Creation

60496000 A

6-3

SYMBOLIC KEY IS data-name -
RECORD KEY IS data-name

where data-name defines the key item. The key item must be
entirely. within the record as specified by the Record

Description entry. The length and relative location of the.

key must be the same for every program using the file.
Length of a record or symbolic key can be from 1 to 255
characters; length of an actual key can be from 1 to 9
characters. An actual key must be a COMPUTATIONAL-1
item.

If the system hashing routine is used (no USE FOR HASHING
procedure is provided by the user), the usage of the item is
irrelevant; for purposes of hashing, only the length of the
item and its contents, considered as a bit string, are of
importance to CYBER Record Manager. If the user does
provide a hashing routine, the usage of the item can be taken
into account, as all processing of the key is then under user
control. If the direct file is a multiple index file, the key
defined by the ACTUAL/SYMBOLIC/RECORD/KEY clause is
the unique primary key; alternate keys must be defined
through the ALTERNATE RECORD KEY clause.

ALTERNATE RECORD KEY

The ALTERNATE RECORD KEY clause can be used only if
an index file, in addition to the direet file, is defined through
the ASSIGN clause, and then it is required. When alternate
keys are specified, records in the file can be accessed on a

key other than the primary key specified in the ACTUAL/-
SYMBOLIC/RECORD KEY clause. At least one alternate key
must be defined for multiple index files, and as many as 255
can be specified. The alternate key specifications must
immediately follow the primary key specification:

RECORD KEY IS data~-name-1
ALTERNATE RECORD KEY IS data-name-2
ALTERNATE RECORD KEY IS data-name-3

The index file specified in the ASSIGN clause is used to hold
alternate key indexes which are established and maintained
automatieally by CYBER Record Manager for multiple index
files. One index is created for each alternate key field.
Within the index, one entry is made for each alternate key
value encountered as records are written. A primary key
value is associated with each alternate key value for each
data record with that alternate key value. The alternate key
entries are Kkept in sorted order by CYBER Record Manager.
Every time a record is added or deleted, the index file is
updated to reflect all the alternate key values of the record
in question. Index file structure is shown in figure 6-4.

If the DUPLICATES option of the ALTERNATE RECORD
KEY clause is not specified, alternate key values must be
different for each record in the file. In this case, a duplicate
value encountered on a write causes execution of the
INVALID KEY clause. If DUPLICATES is specified, duplicate
values are allowed. The order of primary key values within a

Alternate Key Value 1
Primary Key Value 1,1
Primary Key Value 1,2

L
L]

L]
Primary Key Value 1,n

Alternate Key Value 2

Primary Key Value 2,1
Primary Key Value 2,2
[3
[]

Primary Ke.y Value 2,m

[]
L]
Alternate Key Value p

Primary Key Value p,1
Primary Key Value p,2
L]

i L J
Primary Key Value p,q

Alternate Key 1 °

Alternate Key N

Alternate Key Value 1

Primary Key Value 1,1
Primary Key Value 1,2
*

°
®
Primary Key Value 1,n

Alternate Key Value 2

Primary Key Value 2,1
Primary Key Value 2,2
L]

‘ [
Primary Key Value 2,m

Alternate Key Value p

Primary Key Value p,1
Primary Key Value p,2
L]

.
Primary Key Value p,q

Figure 6-4. Index File Structure

60496000 A

N

-

p—

set of duplicates depends on the presence or absence of the
INDEXED option. If INDEXED is omitted, primary key values
associated with a given alternate key value are maintained in
the order in which they are written to the file (first in, first
out). If INDEXED is specified, the primary keys are kept in
the same order as primary keys in an indexed sequential file
{section 7). Performance in file updating is considerably
enhanced when INDEXED is specified.

Alternate keys can overlap and differ in length, but none can
begin in the same location as the primary key or any other
alternate key. The alternate key fields defined at file
creation are normally retained for the life of the file, but
they can be changed or altered, at user option, by using the
IXGEN utility (see appendix C).

If the ALTERNATE RECORD KEY clause is omitted, the file
does not have multiple index status and access can be only
through the primary key.

NUMBER OF BLOCKS

The NUMBER OF BLOCKS clause must be specified for
direct file creation to establish the number of home bloeks to
be used and to reserve the blocks on mass storage. With most
hashing schemes, a better distribution is achieved if the
number of home blocks is defined as a prime number:

NUMBER OF BLOCKS IS 73

If the available space in a home block is exceeded, an
overflow block is assigned and performance is degraded. For
this reason, block sizes should be small and the number of
home blocks should be large.

RECORD-BLOCK CONTAINS

The RECORD-BLOCK CONTAINS clause can be used in lieu
of the BLOCK CONTAINS clause to specify the bloek size of
a direct file at creation:

RECORD-BLOCK CONTAINS integer RECORDS
or:
RECORD-BLOCK CONTAINS integer CHARACTERS

If the RECORDS option is used in the clause, COBOL
converts the number of records to characters based on the
maximum record length specified. If the CHARACTERS
option is used, the size must be greater than zero and must
not exeeed 327,670 characters. In both cases, COBOL adjusts
the block size up to a multiple of 640 characters (PRU size)
less 10 characters (one word). If the RECORD-BLOCK
CONTAINS clause is omitted, the BLOCK CONTAINS clause
in the Data Division can be used to specify record block size.
If both clauses are used, BLOCK CONTAINS takes prece-
dence. If both clauses are omitted, a default block size
calculated from other clauses is specified.

DATA DIVISION

The clauses used in the Data Division to declare direct files
are shown in figure 6-5.

60496000 A

BLOCK CONTAINS Optional

LABEL RECORD IS OMITTED Required

Figure 6-5. Da.a Division Clauses for
Direct File Creation

BLOCK CONTAINS

BLOCK CONTAINS should be used if the RECORD-BLOCK
CONTAINS clause is not used:

BLOCK CONTAINS integer RECORDS
or:

BLOCK CONTAINS integer CHARACTERS

If RECORDS is specified, COBOL converts the number of
records to characters based on the maximum record size and
rounds the bloek size up to a multiple of 640 characters less
10. The same rounding occurs if CHARACTERS is specified.
The caleulated bloek size is then used for both home and
overflow blocks. If the clause is omitted and a RECORD-
BLOCK CONTAINS clause is not defined for the file, the
default size is calculated from the other clauses provided.

LABEL RECORD

Labels cannot be used with direct files; the clause LABEL
RECORD IS OMITTED is required.

PROCEDURE DIVISION

The statements used to create a direct file are shown in
figure 6-6.

USE AFTER ERROR Optional
USE FOR HASHING Optional
OPEN OUTPUT Required
WRITE INVALID KEY Required
CLOSE Required

Figure 6-6. Procedure Division Statements for
Creating Direct Files

USE AFTER ERROR PROCEDURE can be used with OUTPUT
or with one or more file names to indicate routines to be
executed following an error in file ereation.

The programmer can specify the USE FOR HASHING eclause
to define a hashing routine other than the system routine to
hash the record key.

USE procedures are discussed in section 2.

6-5

Direct files must be opened for creation with OPEN
OUTPUT:

QPEN OUTPUT file-name
WRITE must be used with the INVALID KEY option:

WRITE record-name
INVALID KEY imperative-statement

The key item must be set before each WRITE is executed.
When the WRITE statement is processed, the record is added
to the bloek indicated by the hashed key value. If the block is
full, an overflow bloek is assigned to hold the leftover record.
If the key already exists or the total number of records in the
file exceeds the specifications of the FILE-LIMITS clause, the
INVALID KEY clause is executed.

PROCESSING EXISTING
DIRECT FILES

Records can be added, deleted, rewritten, or read when an
existing direct file is open for I-O. Access can be by
alternate key (if alternate keys have been defined) or by
primary key. An existing direct file open for INPUT can only
be read. Operations permitted for each open condition are
shown in table 6-1.

Because of the file statistics table described above, it is not
necessary to repeat specification of block size and number of
home blocks; the clauses NUMBER OF BLOCKS, RECORD-
BLOCK CONTAINS, and BLOCK CONTAINS can be omitted
on an update run. If they are included, however, they must
specify the same values as those with which the file was
created. Except for optional omission of these clauses, the
Data and Environment Division clauses used when updating a
direct file are the same as those used when the file is
created.

Procedure Division statements used for updating a direct file
are shown in figure 6-7.

USE AFTER ERROR Optional

USE FOR HASHING Optional
OPEN INPUT

One Required

OPEN I-O0

READ INVALID KEY Optional
WRITE INVALID KEY Optional
REWRITE INVALID KEY Optional
DELETE INVALID KEY Optional

READ KEY IS INVALID KEY Optional; used for

multiple index only

START KEY INVALID KEY Optional; used for

multiple index only
READ NEXT AT END Optional

CLOSE Required

Figure 6-7. Procedure Division for Updating Direct Files

6-6

PRIMARY KEY ACCESS

In order to access a record in a direct file by primary key, the
INVALID KEY option must be included in the input/output
statement. When this option is used, the contents of the key
item defined in the ACTUAL/SYMBOLIC/RECORD KEY
clause are hashed and used to determine the location of the
desired record. Access takes place in the same manner
whether or not the file is a multiple index file. The INVALID
KEY clause is executed when the key. specified does not
match the key of any record in the file (READ, REWRITE,
and DELETE only), when writing the record would cause the
FILE-LIMITS specified to be exceeded (WRITE oniy), or when
the key provided duplicates the key of an existing record
(WRITE only). Whenever an input/output error occurs, the
special-register ERROR-CODE is set to the number of the
CYBER Record Manager error that has occurred. These
numbers are listed in the Record Manager Reference Manual.
It is advisable for a program to check the contents of
ERROR-CODE whenever the INVALID KEY clause is
executed.

READ INVALID KEY locates a record according to the
contents of the primary key item and returns it to the input
record area.

WRITE INVALID KEY adds a new record to the file; the
number of the home block it is written to is determined by
hashing the contents of the primary key item.

REWRITE INVALID KEY replaces an existing record by a new
record with the same primary key. Following the rewrite, the
new record is no longer available in the output record area.

DELETE INVALID KEY removes an existing record from the
file and frees the space it occupied for records written
subsequently.

ALTERNATE KEY ACCESS

READ KEY IS INVALID KEY reads a multiple index file
record by alternate key:

READ file-name KEY IS data-name
INVALID KEY imperative-statement

The data-name specified as the objeet of the KEY IS option
must be an item previously defined as an alternate key by the
ALTERNATE RECORD KEY clause. When this statement is
executed, the index file is searched until the index entries for
the alternate key value that matches the contents of data-
name are located. The record whose primary key value
occurs first in the entries for the alternate key value is
returned to the input record area. If DUPLICATES was not
specified in the ALTERNATE RECORD KEY clause, only one
primary key value is associated with the alternate key value.
If DUPLICATES was specified, the record returned by READ
KEY IS INVALID KEY is the record whose primary key occurs
first in the group of primary keys associated with the
alternate key value. The data-name referenced in the KEY IS
option can be a leading portion of an alternate key item,
rather than the whole item. In this case, the first key value
in the index file whose leading portion matches that provided
by the user determines the record read.

START KEY INVALID KEY is used to position a multiple
index file without reading a record:

START file-name

KEY relational-operator data~-name
INVALID KEY imperative-statement

60496000 A

—~—

»

F\N__/

AN

Relational-operator must be one of the following:

IS EQUAL TO

IS=

IS GREATER THAN
IS >

IS NOT LESS THAN
IS NOT <

The data-name must be an alternate key item, or the leading
portion of an alternate key item.

Execution of the START statement establishes the key of
reference by positioning the index file to the first alternate
key value that meets the specified condition. The search
begins either from the current key of reference or from the
beginning of the index file if the key of reference has not yet
been established. The key that satisfies the condition
becomes the new key of reference. If the comparison is not
satisfied by any alternate key value, the INVALID KEY clause
is executed.

Successful execution of READ INVALID KEY or START
establishes a key of reference for purposes of future access
to the file. The key of reference is the primary or alternate
key of the record read or located. Once the key of reference
has been established, it can only be changed by execution of
another START or READ INVALID KEY statement.

If the READ is by primary key (KEY IS is omitted), the new
key of reference is the primary key value read. Subsequent
sequential reads return records in their order in the data file;
any index file positioning established by START or READ
KEY IS INVALID KEY is lost. If the READ is by alternate
key, the new key of reference is the alternate key value, and
subsequent sequential reads return records in the order their
keys oceur in the index file entries.

The importance of the key of reference is that it determines
the order in which records are read by subsequent READ
NEXT AT END statements. READ NEXT AT END specifies
sequential reading of records. If a key of reference has been
established, records are returned to the user program in the
order in which their primary keys occur in the alternate key
index. When the last record with a given alternate key value
has been read, the special-register ERROR-CODE is set to
1000. No other indication is made that the end of the list for
that alternate key value has been reached. The next time
READ NEXT AT END is executed, if the key of reference has
not been changed, the first primary key in the list for the
next alternate key value is used to read a record from the
data file,

If READ NEXT AT END is executed before a key of
reference has been established, reading of the records in the
data file takes place according to the physical order of
records in the file; the alternate key index is not referenced.

READ ONLY PROCESSING

When a direct file is opened for INPUT, only READ INVALID
KEY and READ NEXT AT END can be used; if the file is a
multiple index file, READ KEY IS INVALID KEY and START
can also be used. In other words, any of the information in
the file can be acecessed, but no changes can be made to the
file itself. This kind of processing is called read-only
processing; it is very useful to protect the file from
accidental alteration.

For a file without multiple index structure, if the acecess
mode is sequential, only READ NEXT AT END can be
executed. In this case, records are read in the physical order
in which they oceur on the file. Since direct file records are

60496000 A

scattered, the order in which they are returned by sequential
reads bears no relation either to the order in which they were
written, or to any logical, key-oriented order. Therefore, this
method of access is primarily useful when all the records in
the file are to be read, and the order in which they are read is
not important.

For a multiple index file, when. the access mode is sequential,
the START statement can be executed as well as READ
NEXT AT END. The START statement positions the file at
the first primary key value or alternate key value satisfying
the specified comparison. Subsequent execution of READ
NEXT AT END returns records in an order that depends on
whether the key specified by START was a primary or
alternate key. If primary, records are returned in physical
order (the same as for a non-multiple-index file). If
alternate, records are returned in order by alternate key;
within each alternate key value, records are returned in the
order written, or, if INDEXED was specified in the ALTER~
NATE KEY clause, in order by primary key.

SAMPLE PROGRAM 5: USING
DIRECT FILES

Sample program 5, shown in figure 6-8, uses the direct file
RANFILE to maintain a table of word occurrences. Each
record in RANFILE contains a count of the number of
occurrences of a given word in the card file TEXT-FILE, as
well as a list of those occurrences. TEXT-FILE contains the
text of the program itself; word occurrences are identified by
the number of the line that the word occurs in. Once the
table is built, it is interrogated by queries from a second card
file, QUERY-FILE. An example of output from this program
is shown in figure 6-9.

Line 13 — Line 18

Among the FILE-CONTROL clauses for RANFILE are the
SELECT and ASSIGN clauses, required for all files. The
clause RESERVE 1 AREA specifies that one extra area is to
be reserved for use as a buffer; this is the maximum number
of extra areas that can be reserved for direct files.
ORGANIZATION IS DIRECT is required for direct files;
ACCESS IS RANDOM is required for direct file creation. The
SYMBOLIC KEY clause indicates that the key item is
SOURCE~-WORD, which is within the fixed length portion of
the record format for RANFILE, as required. ACTUAL or
SYMBOLIC KEY could have been used instead; all three are
the same for direct files. The NUMBER OF BLOCKS clause
(required) specifies a prime number, as recommended above.

Line 19 — Line 20

The ASSIGN clauses for QUERY-FILE and TEXT-FILE both
use the -FZ suffix, since both files originated as card files but
neither currently has the implementor-name INPUT. -FZ
ensures Z type records for these files; the BLOCK CONTAINS
clauses used ensure C type bloeks.

Line 27 — Line 28

The clause LABEL RECORDS OMITTED is required. The
BLOCK CONTAINS clause could have been omitted, in which
case COBOL would compute a block size based on largest
record size. Since 5110 characters is specified (eight PRUs
less one word), the block size is not rounded up.

6-7

00001
gan02
03003
000 04
00005
00306
80007
80508
00009
ogrio
03011
06212
00013
00014
¥0015
00016
60017
00018
00019
00420
03321
gun22
§0c23
00024
gup2s
00026
09027
gon2s
00029
00630
00031
60032
00033
0u0 34
00035
00036
03037
00038
33039
00040
00041
00042
03043
000 &4
00045
00040
00047
00048
00049
00450
00051
90052
30053
056054
80055
03056
gacs7
ggoss
80059
60060
80061
ggoe2
03063
00064

IDENTIFICATION DIVISION,.
PROGRAM=~ID. WORD-LOCATOR.
ENVIRONMENT DIVISION.,

CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER,
0BJECT-COMPUTER. CYBER, -

INPUT=-0UT2UT SECTION.
FILE-CONTROL .
SELECT RANFILE ASSIGN 7O DISCOYL
RESERVE 1 AREA
ORGANIZATION IS DIRECT
ACCESS MODE IS RANDOM
SYMBOLIC KEY IS SOURCE-WORD
NUMBER OF BLOCKS IS 10t.
SELECT AQUERY-FILE ASSIGN QUERIES-FZ.
SELECT TIXT-FILE ASSIGN SJURCE-FZ.

DATA DIVISION.
FILE SECTION.

FD RANFILZ
LABEL RECORDS OMITTED
BLOCK CONTAINS 5110 CHARACTERS
DATA RESORD IS RANREC.
01 RANREC,
02 SJURCZ«WORD PIC X(30).
02 OCCURRENCE=-COUNT PIC 939,
02 LINE-OCCURRENCE PIC 9(5) OCCURS

1 T0 100 TIMES DEPINDING ON OCCURRENCE-COUNT.

FD TEXT-FILE
LABEL RECORDS OMITTED
ALOCK CONTAINS 640 CHARACTERS
DATA RECORD SOURCE~REC.
€1 SOURCE-REC.
82 SZQ=-NO PIC 9(6).
02 FILLER PIZ X,
02 TEXT=-CHARACTERS.
03 IN=CHAR PIC X O3CURS 65 TIMES.
62 FILLER PIC X(8).

FD QUERY-FILE
LABEL RECORDS OMITTED
BLOCK CONTAINS 6483 CHARACTERS
DATA RECORD OQUERY-REC.
01 QUERY-REC.
62 QUERY PIC X(30).
82 FTLLER PIC xI(50),

WORK ING-STORAGE SECTION.

77 SUB-A PIC 99 COMP-1 VALUE 70,

77 SUB-3 PIC 99 COMP-{.,

77 LINE-COUNT PIC 91(5) VALUE 0.

77 SUB-C PIC 99 COMP-1.

.77 GARBAGE PIC 9(7) COMP-1,

01 WORD.

02 W-ZHARACTER PIC X OCCURS 30 TIMES.
01 RE-WORD REDEFINES WORD,

02 36-BITS PIC X{h) OCCURS 5 TIMES,

6-8

Figure 6-8. Sample Program 5: Direct Files (Sheet 1 of 3)

60496000 A

S’

S

s

:_//

00065 g1 WORK-FIELD. '

00066 02 BINARY=-ITEM PIC 9(7) COMP-1.,

80067 02 SPLITTER REDEFINES BINARY-TTEM,

ggoes 03 EXPONENT PIC X(4).

00069 03 MANTISSA PIC X(5).

00070 A

00071 PROCEDJRE DIVISION.

0go72

00073 DECLARATIVES.

80074

00075 HASHER SECTION.

00076

00077 USE FOR HASHING ON RANFILE.

00078

00079 HASH-PARA.

000 80 MOVE SOURCE-WORD TO WORD.

00081 MOVE ZEROES TO BINARY-ITEM HASHED-VALUE,

00082 PERFORM 36-BIT-ADDER VARYING SuUB-C

00083 FROM 1 BY 1 UNTIL Sus-C = 6.

000 84 DIVIDZ HASHED-VALUE BY 101

00085 GIVING GARBAGE REMAINDER BINARY-ITEM.

00086 MOVE BINARY-ITEM TO HASHED-VALUE,

00087 GO TO DECLARATIVE-EXIT.

0go8s

60089 36-BIT-ADDER.

00090 MOVE 36-BITS (SUB-C)} TO MANTISSA.

00091 ADD BINARY-ITEM TO HASHED-VALUE.

00092

080093 DECLARATIVE-EXIT.

00094 EXIT.

00095 END DECLARATIVES.

00096

60097 START.

gooas OPIN INPUT TEXT-FILE.

63099 OPEN OCUTPUT RANFILE.

60100

00101 CREATE~MORE-RECS .

00102 PERFORM CREATE~INITIAL-REC 2 TIMES

00103 CLOSE RANFILE.

00104 OPEN I-0 RANFILE.

001905

00106 MAIN-BUILD=~LOOP,

60107 PERFORM GET-A-WORD THU GAW-EXIT.

60108 MOVE WORD TO SOURCE=-WO0D.

00109 READ RANFILE INVALID C<EY GO YO CREATE-NEW.

001190

00111 UPNDATE-EXISTING.

go112 IF OCCURRENCE=-COUNT = 99

00113 NISPLAY WORD # OCCURS TOO OFTEN - OCCURRENZE DROPPEDZ

00114 GO TO MAIN-BUILD-LIOP.

00115 ADD 1 TO OCCURRENCE-COUNT

00116 MOVE LINE-COUNT TO LINZ-OCCURRENCE (OCCURRENCE-COUNT).

00117 REWRITE RANREC INVALID KEY DISPLAY # FAULT 1 # STOP RUN.

00118 GO TO MAIN-BUILD-LOOP.

00119

00120 CREATE~NEW.

00121 MOVE WORD TO SOURCE=-WORD.

00122 MOVE 1 TO OCCURRENCE-COUNT,

60123 MOVE LINE-COUNT TO LINZ~-OCCURRENCE (1).

00124 WRITE RANREC INVALID KEy DISPLAY RANREC STOP RUN.

00125

00126 DONE -CREATING.

80127 GO TO MAIN-BUILD-LOOP.

00128

00129 QUERY=-PHASE.

00130 CLOSE RANFILE.

00131 OPEN INPUT RANFILE.

Figure 6-8. Sample Program 5: Direct Files (Sheet 2 of 3)

60496000 A 6-9

00132
00133
00134
00135
00136
00137
60138
00139
001460
00141
00142
00143
03144
00145
09146
00147
00148
00149
63150
03151
00152
00153
00154
00155
00156
80157
00158
001%9

03161
00162
00163
00164
00165
00166
00167
09168
00169
00170
00171
00172
00173
60174
00175
00176
00177
00178
00179
00180
go181
00182
00183
00184
00185
001386
00187
60188
00189
00190
0019t
00192
00193
00194
0gL95
00196
80197

0160

CLOSE TEXT-FILE.
OPEN INPUT QUERY-FILE.

OUERY-LOOP,
READ QUERY=-FILE AT EN) GO TO WRAP-UP,
MOVE QUERY TJ) SCURCE-WORD.
READ RANFILE INVALIO KEY GO TO NO-SUCH-WORD,
EXAMINE QUERY REPLACING ALL SPACES BY z%#,
DISPLAY
QUERY
2 IS FOUND 2
OCCURRENCE -COUNT
2 TIMES AS FOLLOWS #.
PERFORM LINE-DISPLAY VARYING SUB-A
FROM 1 BY 1 UNTIL SUS=-A > OCCURRENCE-COUNT.
GO TO QUERY-LOOP, :

LINE=-DISPLAY,
IF SuB-A = 1
DISPLAY # LINES 2 LINE-OCCURRENCE (SUB-A)
ELSE NISPLAY 2 z LINE~OCCURRENCE (SUB=A).,

NO~SUCH-WNRD,
EXAMINE QUERY REPLACTING ALL SPACES B8Y #z*z,
DISPLAY # NO OCrURRENCES FOR % QUERY,
GO TO QUERY=-LIOOP.

GE T= A=-WGQRD,

IF Sun-A > §5

PERFORM CARD-READ
MOVE 1 TO SUB-A.

IF IN-CHAR (SUB-A) = SPACE
ADD 1 TO SuB-A

G) T3 GET-A-WORD.,

MOVE 1 TO SuUB-8.

MOVE SPAGCES TO WORD,

pE EL .
IF sSue-8 > 30
PERFORM SKIP-WORD YNTIL IN-CHAR (SUB-A) = 3PACES
G0 TO GET-A=WORD.
MOVE IN-CHAR {(SUB=-A) T3 W-CHARACTER (SUB-B).
ADD 1 YO SuB-A sSus-8.,
IF IN-CHAR {SUB-A) NOT = SPACFS GO TO PEEL.
IF SuUB=3 > 1 AND W-CHARACTER (SUB=RB = 1) = #.#
MOVE SPACE TO W-CHARACTER (SUB-B - 1).

GAW-EXIT.
EXIT.

SKIP-WORD.
ADD 1 TO SuR=-A.

CARD-READ.
READ TEXT-FILE AT END 30 TO QUERY-PHASE.,
ADD 1 TO LINE-COUNT,
EXAMINE TEXT-CHARACTERS REPLASING ALL #{# BY S>ACE.
EXAMINE TEXT-CHARACTERS REPLACING ALL #)# BY SPACE.

COEATE-INITIAL-REC,
PERFORM GET-A-WORD THRU GAW-EXIT,.
PERFORM CREATE-NEW.

WRAP-UP,
CLOSE RANFILE QUERY-FILE.
STIP RUN.

6-10

Figure 6-8. Sample Program 5: Direct Files (Sheet 3 of 3)

60496000 A

RN

~

K_/

NI

LINES 00109
00117
00124
00138

INVALID##aseneaasniaaasasessiar IS FOUND 004 TIMES AS FOLLOWS

RLOCK_q*mm*-x:-mm*ssa*an#**u*%**ﬁ IS FOUND 001 TIMES AS FOLLOWS

Figure 6-9. Output from Sample Program 5

Line 30 — Line 34

The DEPENDING ON option in the Record Description entry
for RANFILE instructs COBOL to select T type records.
The fixed length header for these records consists of
SOURCE-WORD and OCCURRENCE-COUNT; each instance
of LINE-OCCURRENCE is one trailer item. The record
length varies from 38 to 533 characters. SOURCE-WORD
contains the word whose occurrences are tabulated; it also
serves as the primary key, to be hashed on record access.
OCCURRENCE-COUNT keeps a count of the number of
times the word occurs in the file, and LINEFOCCURRENCE
contains the line number of each occurrence. Only the first
99 oceurrences of each word are tallied.

Line 36 — Line 53

The File Description entries for TEXT-FILE and QUERY-
FILE indicate that both files are to contain 80-character
records. Type C blocking is selected by COBOL for both
files.

Line 55 — Line 69

The Working-Storage Section defines various entities used
during program execution. SUB-A, SUB-B, and SUB-C are
used as subseripts in the program. LINE-COUNT keeps a
count of the records in TEXT-FILE in case the program deck
is punched without sequence numbers. This count is then
used to fill in LINE-OCCURRENCE in the output file
RANFILE. WORD, redefined by RE-WORD, is a work area
used in the hashing routine. WORK-FIELD is used to
compute the hashed value of the key.

Line 73 — Line 95

A simple example of a hashing routine is provided here. The
user does not have to provide a hashing routine; the CYBER
Record Manager default hashing routine is used if none is
provided. Whatever hashing routine is used must be used by
every program accessing the direct file.

After the hashed value is computed, it must be placed in
HASHED-VALUE, a COBOL special-register defined as an
eight-digit COMPUTATIONAL-1 (integer) item. The com-
puted value must lie between zero and the number of blocks
specified in the NUMBER OF BLOCKS clause minus 1.

Line 97 — Line 104

TEXT-FILE is opened as an input file and RANFILE is
opened as an output file (required for ereation). Execution
of CREATE-MORE-RECS causes two initial records to be
written to RANFILE with TEXT-FILE used as the input
source file. Two is. an arbitrary number selected to ensure
that the initial creation terminates before duplicate words
are encountered on TEXT-FILE.

60496000 A

Line 106 — Line 109

Now that two records exist on RANFILE, the file is
reopened as an input/output file to allow checking for
multiple occurrences of words on TEXT-FILE. When the
INVALID KEY clause of the READ statement is executed
(the record does not already exist on RANFILE), additional
records are written to.RANFILE by executing the CREATE-
NEW paragraph.

Line 111 — Line 118

UPDATE-EXISTING is performed when the READ of
RANFILE is successful. This paragraph updates existing
records on RANFILE by inerementing OCCURRENCE-
COUNT and storing another entry in LINEFOCCURRENCE.
Only 99 entries for LINEFOCCURRENCE can be stored in
each record; if a word occurs more than 99 times the excess
record entries are dropped and a message is displayed on the
console indicating the word. ‘

Line 120 — Line 124

When CREATE~-NEW is performed, a new record is added to
RANFILE,

Line 126 — Line 147

When TEXT-FILE is exhausted, RANFILE is closed as an
input/output file and reopened as an input file, and QUERY-
FILE is opened to select and display information from
RANFILE.

Line 149 — Line 157

When a QUERY entry matches an entry on RANFILE, the
word is displayed along with the number of times it occurred
and the first line number on which it oceurred. If no match
is found, a message to that effect is displayed and followed
by a display of the missing word.

Line 159 — Line 189
The paragraphs from GET-A-WORD to CARD-READ read
input from TEXT-FILE, character by character, and format
words to be used in RANFILE. Terminators and some
special characters are changed to blanks before words are
placed on RANFILE.,
Line 191 — Line 197

Executing CREATE-INITIAL-REC causes a record to be
placed on RANFILE.

When all processing is finished, RANFILE is closed and the
run is completed.

6-11

SAMPLE PROGRAM 6: USING

MULTIPLE INDEX DIRECT FILES

Sample program 6, shown in figure 6-10, creates a multiple
index direct file (NAME-FILE), closes it, and reopens it in
read-only mode. One primary key, KEY-1, and three
alternate keys, PERS-NO, COLOR, and TEAM-TI, are defined
for NAME-FILE; COLOR and TEAM-TI are not used for
record access in this program. The jnput for the program is
shown in figure 6-11, and the output in figure 6-12.

Line 13 — Line 14

CRDFILE and CARD-FILE are successive sections on the
card file INPUT; their file structure characteristies are
implicitly established by the implementor-name INPUT.
CRDFILE econtains the original records that NAME-FILE is
created from; CARD-FILE contains a key used to position
NAME-FILE for reading.

00001 IDENTIFICATION DIVISION.

00002

00003 PROGRAM-ID. DIRECT-ACCESS-MIP.
00004

00005 ENVIRONMENT DIVISION.

00006 .

00007 CONFIGURATION SECTION.

00008 SOURCE-COMPUTER. CYBER.

00009 OBJECT-COMPUTER. CYBER.

00010

00011 INPUT-0UTPUT SECTION.

00012 FILE-CONTROL»

00013 SELECT CRDFILE ASSIGN TO INPUT,
00014 SELECT CARD~-FILE ASSIGN TO INPUT.
00015 SELECT NAME-FILE ASSIGN OFILE MIP2
00016 ORGANIZATION IS DIRECT

00017 ACCESS 1S RANDOM

00018 NUMBER OF BLOCKS IS 20

00019 SYMBOLIC KEY IS KEY-l

00020 ALTERNATE RECORD KEY IS PERS-NO
00021 ALTERNATE RECORD KEY IS COLOR DUPLICATES
ggggg ALTERNATE RECORD KEY IS TEAM-TI DUPLICATES.
00024 DATA DIVISION.

00025

00026 FILE SECTION.

00027

00028 FO CRDFILE

00029 LABEL RECORDS ARE OMITTED

00030 DATA RECORDS ARE CARD=-REC.
00031 01 CARD-REC.

00032 02 IN-KEY] PIC X(18).
00033 02 IN=AMT PIC 9(8).

00034 02 IN-COLOR PIC X(8).

00035 02 1-DATE-A PIC 9(S).

00036 02 IN-RANKI PIC X(20).
00037

00038 FD CARD-FILE

00039 LABEL RECORDS ARE OMITTED

00040 DATA RECORDS ARE CARD-RECORD.
00041 01 CARD-RECORD.

00042 02 INPERS~NO PIC 9(4).

00043 02 FILLER PIC X(76).
00046

00045 FD NAME-FILE

00046 LABEL RECORDS ARE OMITTED

00047 BLOCK CONTAINS 640 CHARACTERS
00048 DATA RECORDS ARE PERS-REC.
00049 01 PERS-REC.

00050 02 KEYv=-le.

00051 03 FILLER PIC X(6).

00052 03 PERS=NO PIC 9(4).

00053 03 CIvy PIC X(8).

00054 02 AMT PIC 9(6)V99.
00055 02 COLOR PIC X(8).

00056 02 DATE=-A PIC 9(5).

6-12

Figure 6-10. Sample Program 6: Direct Access Multiple Index (Sheet 1 of 2)

60496000 A

N’

N

S

S
00057 02 RANK.
00058 03 TITLEA PIC X(11).
00059 03 TEAM-TI PIC X(9).
— 00060 .
00061 WORKING-STORAGE SECTION.
00062
00063 PROCEDURE DIVISION.
N 00064
00065 CREATE=RANDOM~FILE.
® 00066 OPEN INPUT CROFILE
00067 OUTPUT NAME=FILE.
N— 00068
00069 READ1.
00070 READ CRDFILE AT END GO TO END-CREATE.
00071 MOVE IN=-KEY1l 7O KEY~-1l.
— 00072 MOVE IN-COLOR TO COLOR.
: 00073 MOVE IN-AMT TO AMT.,
00074 MOVE I-DATE~A TO DATE-A.
: 00075 MOVE IN=-RANK]l TO RANK,
~— o 00076 WRITE PERS-REC INVALID KEY DISPLAY
00077 #INVALID KEY IS # KEY-1
00078 GO TO END-RUN.
00079 GO TO READ1.
— 00080
00081 END~-CREATE,
00082 CLOSE CRDFILE, NAME-FILE.
00083 .
~ 00084 INITIALIZE-ALL.
00085 OPEN INPUT NAME-FILEs CARD-FILE.
00086
00087 SELECT=-REC, i
e’ 00088 READ CARD-FILE AT END GO TO END=-RUN.
00089 MOVE INPERS~NO TO PERS-NO.
00090 START NAME=-FILE KEY IS = PERS=NO
00091 INVALID KEY DISPLAY #INVALID KEY - KEY IS# INPERS~NG
00092 GO TO END=RUN.
00093
00094 READ-1I1.
‘ 00095 READ NEXT NAME-FILE AT END GO TO END-RUN.
AN 00096 DISPLAY PERS-REC.
00097 GO TO READ-I1.
00098 :
00099 END-RUN.
R 00100 CLOSE NAME-FILEs CARD~FILE.
00101 STOP RUN.
N .
~ Figure 6-10. Sample Program 6: Direct Access Multiple Index (Sheet 2 of 2)
N
PERSONQOO79BROOKF IES04978508BROWN 72123DRAFTSMAN ASST TRS
PERSONO123CHICAGO 00300198BLUE 69043PROGRAMMER VICE PRES
.) PERSONO4S56CHICAGO 00215835PURPLE 69152CLERK PRESIDENT
~ PERSONO796WINNETKAQ07923548LUE 691BTTYPIST COMMITTEE
PERSON22T2HINSDALESQO0S53916YELLOW 72189TRAINEE COMMITTEE
PERSONZ4SIEVANSTONOO254981BROWN T0219MANAGER CHAIRMAN
— PERSON3313CICERO 06061472YELLOW 732900PERATOR V CHAIRMAN
PERSON3796BATAVIA 21356379YELLOW 70123PROGRAMMER MEMBER
PERSON484SCHICAGO 70275138YELLOW T71301ENGINEER SECRETARY
PERSON4B9OBATAVIA 10213576PURPLE T70154ANALYST MEMBER
N PERSONS167LA GRANG02426554BLUE 69265SECRETARY TREASURER
~ PERSONS968LYONS 08AB2394BROWN T4012SECRETARY MEMBER
PERSON6594CHICAGO 01597624PURPLE 69152ENGINEER COMMITTEE
PERSON68G4LYONS 30637732PURPLE T71368CLERK~-TYP MEMBER
. PERSONT7156WESTERN 043489108LUE 70077MANAGER COMMITTEE
~ PERSONT7S9B8CHICAGO 01795842BROWN 692150PERATOR COMMITTEE
"
Figure 6-11. Input for Sample Program 6
\\/'
60496000 A 6-13

PERSON2459EVANSTON25498100BROWN T0219MANAGER CHAIRMAN
PERSON3313CICERO 06147200YELLOW 732900PERATOR V CHAIRMA
PERSON3796BATAVIA 85637900YELLOW 70123PROGRAMMER MEMBER
PERSON484SCHICAGO 27513800YELLOW 71301ENGINEER SECRETARY
PERSON4B90BATAVIA 21357600PURPLE 70154ANALYST MEMBER
PERSONS5167LA GRANG42655400BLUE 6926SSECRETARY TREASURER
PERSON5968L YONS 68239400BROWN T4012SECRETARY MEMBER
PERSON6594CHICAGO 59762400PURPLE 69152ENGINEER COMMITTEE
PERSONG6894LYONS 63773200PURPLE T71368CLERK-TYP MEMBER
PERSONT1S6WESTERN 84891000BLUE 70077TMANAGER COMMITTEE
PERSON7S98CHICAGD 79584200BROWN 692150PERATOR COMMITTEE

Figure 6-12. Output from Sample Program 6

Line 15

The ASSIGN clause for NAME-FILE lists two implementor
names. The first, OFILE, is the data file for the user records;
the second, MIP2, is the index file for the alternate key
indexes. Within the COBOL program, only the COBOL file-
name, NAME-FILE, is used; CYBER Record Manager pro-
cesses both files in a manner invisible to the user. Outside
the COBOL program, the files must be treated as two
separate files, with different logical file names identical to
the implementor-names.

Line 16 — Line 18

The ORGANIZATION, ACCESS, and NUMBER OF BLOCKS
clauses are similar to those in sample program 5; specifying
20 home blocks is inefficient, but not illegal.

Line 19 - Line 22

. One primary key and three alternate keys are defined for
NAME-FILE. The SYMBOLIC KEY clause is used for the
primary key; RECORD KEY or ACTUAL KEY would produce
identical results. Duplicate alternate key values are not
allowed for PERS-NO, but are allowed for COLOR and
TEAM-TI. Since INDEXED is omitted for both COLOR and
TEAM-TI, primary key values within an alternate key value
entry for either of these keys are stored in the order in which
they are encountered (first in, first out).

Line 46 — Line 47
The LABEL RECORDS clause is required. Although BLOCK
CONTAINS specifies 640 characters, the actual data block

size will be 1270 instead of 640 (next highest PRU multiple,
minus 10 characters).

6-14

Line 65 — Line 82

NAME-FILE is opened for output and created in a fairly
straightforward manner from the records on CRDFILE, using
the WRITE INVALID KEY statement. Since no hashing
routine has been provided, record location is determined by
the system-provided hashing routine. NAME-FILE is closed
after creation,

Line 88

CARD-FILE contains a single card, which in turn contains a
single key value. The output shown in figure 6-12 is the
result of using the key value 2459.

Line 90

The START statement specifies an alternate key, PERS-NO.
The index file is positioned within the entries for PERS-NO at
the subentries for the value 2459, Alternate key values are
unique for PERS-NO. The START statement positions the
file but does not read any records.

Line 95

Successive execution of READ NEXT AT END results in the
suceessive reading of the records of NAME-FILE in the order
in whieh the values of PERS-NO (subsequent to 2459) oceur in
the index file. Since alternate key values are maintained in
order in the index file, and since duplicate salternate key
values are not allowed for PERS-NO, each execution of
READ NEXT AT END returns the record with the next
highest value for PERS-NO. Sequential reading begins with
the value established by the START statement, 2459. The
program output shown in figure 6-12 confirms the order in
which the records of NAME-FILE are read.

60496000 A

—

.

N

INDEXED SEQUENTIAL FILE ORGANIZATION 7

e ——————— e T R e R

Indexed sequential files are mass storage files in which
records are maintained in sorted order by primary key.
Records can be accessed individually, by key, or successive
records can be accessed sequentially; the advantages of
random access are therefore combined with those of sorted
sequential access. Random access is possible in indexed
sequential files because CYBER Record Manager creates and
maintains an index linking each record's key with its location
in the file. Sorted sequential access is possible because
CYBER Record Manager ensures that the physical order of
records is always the same as their logical order by key. The
index is maintained in index blocks (separate from the data
blocks containing user records), which are a part of the file.
Any of the record types discussed in section 2 ean be used
with indexed sequential files; the files cannot be labeled.
COBOL indexed sequential files are implemented through
CYBER Record Manager indexed sequential file organization.

An indexed sequential file always has one primary key and
can optionally have up to 255 alternate keys. The primary
key is defined through the RECORD/SYMBOLIC KEY eclause.
The primary key index remains part of the data file itself.
The primary key is a character string of any length up to an
installation defined limit; it may be described as COMPU-
TATIONAL-1, COMPUTATIONAL-2, or alphanumerie. If the
file is a multiple index file, the primary key must be part of

the record, and key values cannot be duplicated. If the file is
not a multiple index file, the key need not be part of the
record, and key values can be duplicated if the DUPLICATES
option of the RECORD/SYMBOLIC KEY clause is specified.

Indexed sequential files are multiple index files when an index
file is specified in the ASSIGN clause, and the ALTERNATE
RECORD KEY clause is used. The alternate keys cannot
begin at the same location as the primary key or each other,
but they can overlap and vary in length. Alternate keys must
be within the record. They can be duplicated in value only if
the DUPLICATES option of the ALTERNATE RECORD KEY
clause is selected.

The access mode under which an indexed sequential file can
be processed can be either random or sequential. In addition,
the file can be open for input, output, or I-O. Table 7-1
shows the relationship between access mode, open status, and
input/output verbs allowed.

FILE STORAGE

An indexed sequential file on mass storage consists of a file
statisties table, the data blocks that contain the user records,
and the index.

TABLE 7-1. ACCESS MODE AND OPEN CONDITION COMBINATIONS, INDEXED SEQUENTIAL FILES

Statements Random Access Sequential Access
Open Open Open Open Open Open

_ Input Output -0 Input Output I-0
Create New File N Y N N N
READ INVALID KEY ’ Y N Y N N N
READ MAJOR INVALID KEY Y* N Y* N N N
WRITE INVALID KEY N Y Y N N N
REWRITE INVALID KEY N N N N N
REWRITE LAST INVALID KEY N N Y* N N Y*
DELETE INVALID KEY N N Y N N N
DELETE LAST INVALID KEY N N Y* N N Y*
READ KEY IS INVALID KEY YM N M N N N
START KEY INVALID KEY YM N YM ™M N YM
READ NEXT AT END N N
SKIP Y N N
Y = Allowed N = Not allowed YM = Allowed for multiple index files only

Y* = Allowed for non-multiple-index files only
60496000 A 7-1

"FILE STATISTICS TABLE

The file statistics table (FSTT) is an internal table created
and used by CYBER Record Manager. The table is written to
the file after the file is closed, so that information about the
file is available to CYBER Record Manager in subsequent
runs using the file. The information that is maintained
includes statistics about transactions on the file and file
structure specifications such as size and padding of data and
index blocks, key length, and maximum and minimum record
size. The user should not attempt to change any of these
specifications once the file has been created; COBOL allows
some of these specifications to be omitted in subsequent
programs, as desecribed under Proecessing Existing Indexed
Sequential Files,

DATA BLOCKS

In order to transfer and store data more efficiently, records
in indexed sequential files are grouped into units called data
blocks.

All data blocks are the same size. They contain both user
records and keys pointing to those records. The records are
stored near the beginning of the block, the keys are stored at
the end of the block, and data padding lies between them.
Figure 7-1 shows the appearance of the blocks,

The records at the beginning of the block and the key entries
at the end of the block are maintained in the same sorted
order.

Padding can be specified for data blocks through the DATA-
PADDING clause {described below). New data blocks might
be created when existing records are added at file update or
replaced with larger records. If necessary, CYBER Record
Manager relocates existing records and keys so that records
are always in physical and logieal order for sequential access.

INDEX BLOCKS

The primary key index for an indexed -sequential file is
subdivided into blocks called index blocks. (The alternate key
indexes, if any, are not part of the data file but are kept on a
separate index file.) Division into blocks enables more
efficient index manipulation and record access. All index
creation and manipulation are completely taken care of by
COBOL and CYBER Record Manager; the only way in which
the user becomes involved is in the optional specification of
certain file structure parameters when the file is created.

When an indexed sequential file is ereated, COBOL deter-
mines an index bloek size that remains constant throughout
the life of the file, This size ean be indicated by the user
directly through the INDEX-BLOCK CONTAINS clause. If
this clause is omitted, COBOL calculates an appropriate
block size based on other file structure specifications. Key
entry size is also calculated, thus implicitly establishing the
maximum number of key entries per index block.

A percentage of padding for index blocks can also be
specified, through the INDEX-PADDING clause. When this
clause is specified, index blocks are created with the
specified percentage of unused space, so that later file
updating can add new records without requiring index
reorganization.

The simplest structure for an index sequential file involves
only one index block, as shown in figure 7-2. The block
contains one key entry for each data block in the file; each
key entry indicates the lowest key value to be found in its
associated data block. A record is located by finding the two
key entries that bracket its key value; the record is written
to or read from the data block associated with the lower of
the two key values. For example, in figure 7-2, the record
whose key is 5 is known to be in the second block because its
key value occurs between key 4 and key 10.

If, during creation or updating, more than one index block
becomes necessary (in other words, the number of data blocks
exceeds the number of key entries per block), additional
levels of indexing are established. A file with several levels
of indexing is shown in figure 7-3. When several levels exist,
the lowest level consists of a single block, Entries in this
block point to the index blocks at the next higher level, and
so forth. Entries in the highest level index bloek point to
data bloeks. The same bracketing principle is used for each
level of indexing as for a file with one level of indexing. For
example, in figure 7-3 the record whose key value is 27 is
found in the fifth block by successively bracketing the key
value 27 in higher levels of indexes, until the key entry
pointing to the fifth data block is found.

CREATING INDEXED SEQUENTIAL
FILES

COBOL clauses applicable to indexed sequential file creation
are described below. Clauses and statements such as CLOSE,
which must be specified for all files, and those that do not
require further explanation, are omitted from the deseriptive
paragraphs. Clauses and statements that apply only to
existing files are described under Processing Existing Indexed
Sequential Files,

RECORD 1 RECORD 3 RECORD 5 RECORD 7 RECORD n
RECORD 2 RECORD 4 RECORD 6 RECORD 8 RECORD n+1
PADDING PADDING PADDING PADDING o o o PADDING

KEY 2 KEY 4 KEY 6 KEY 8 KEY n+1
KEY 1 KEY 3 KEY 5 KEY 7 KEY n
Figure 7-1. Padding of Data Blocks
7-2 60496000 A

S~

N

*°

N

Data Blooks Contain Records and Keys.

Record 1

Record 2

Record 3

Padding

Key 3

Key 2

Key 1

Record 4

Record 10

Record 5 B

Padding

Key 5

Key 4

Record 11

Record 12

Record 20

Padding

Key 20

Key 12

Key 11

Key 1 '
Key 4

Key 10

Key 10

A

Figure 7-2. File with One Level of Index Block

Record 1 Record 11 Record 22 Record 36
Record 4 Record 7 Record 17 - . Record 29
Record 12 Record 21 ecord 27 Record 73
Record 5 Record 28 Record 92
Padding Padding Padding Padding Padding Padding Padding
Key 5 Key 28 Key 92
Key 4 Key 12 Key 21 Key 27 Key 73
Key 1 Key 7 Key 11 Key 17 Key 22 Key 29 Key 36
A \
Key 1 l E Key 17 [Key 29
level 1 Key 7 Key 22 Key 36
index
Key 11
blocks hid
A A [
Key 1 l
levei O Key 17
index Key 29
block
Figure 7-3. File with Two Levels of Index Bloek
60496000 A 7-3

ENVIRONMENT DIVISION

Environment Division clauses used to establish an indexed
sequential file are shown in figure 7-4.

RESERVE ALTERNATE AREAS

RESERVE ALTERNATE AREAS can be used to increase the
buffer area to accommodate additional index and data bloeks:

RESERVE integer ALTERNATE AREAS

Buffer size information is not a fixed part of an indexed
sequential file; consequently the RESERVE ALTERNATE
AREAS clause can be changed after the file is created. Each
additional area reserved is large enough for one index block
and one data block. Up to 63 additional index and data blocks
can be specified by the integer value. If the integer value is
1, one additional index block and one additional data bloek
are assigned; an integer value of 5 adds five index blocks and
five data blocks, and so on.

If RESERVE ALTERNATE AREAS is omitted or RESERVE
NO ALTERNATE AREAS is specified, COBOL uses a formula
based on other specifications provided to calculate the
minimum area.

RECORD/SYMBOLIC KEY

A record or symbolic key must be specified for record aceess:
RECORD KEY IS data~-name

or:
SYMBOLIC KEY IS data-name

The system does not distinguish between record and symbolic
keys; all references to SYMBOLIC KEY are processed exactly
the same as for RECORD KEY. The key need not be part of
the data record unless the file is to be multiply indexed. It
can be deseribed as a COMPUTATIONAL-1 (integer) key:

77 INT-KEY PICTURE 9(6)
COMPUTATIONAL-1.

or as a COMPUTATIONAL-2 (floating-point) key:

77 FP-KEY USAGEIS
COMPUTATIONAL-2.

or as a character string:
77 CH-KEY PICTURE X(8).

The character string can be any length less than or equal to
the installation-defined maximum.

For non-multiple-index files only, key values can be dupli-
cated if the following format of the RECORD/SYMBOLIC
KEY clause is specified:

RECORD KEY IS data-name
WITH DUPLICATES

When this format is used, records whose keys duplicate those
of records already in the file can be written. The records
with the same key value are all contiguous, and are referred
to as a duplicate key group. The order of records within the
group is the same as the order in which they were written. If
DUPLICATES is not specified in the RECORD/SYMBOLIC
KEY clause, and an attempt is made to write a record whose
key duplicates that of an existing record, the INVALID KEY
clause of the WRITE statement is executed, and the record is
not written.

ALTERNATE RECORD KEY

The ALTERNATE RECORD KEY clause can be used only for
multiple index files. An index file, in addition to the indexed
sequential data file, must be defined through the ASSIGN
clause, in which case the ALTERNATE RECORD KEY clause
is required. When alternate keys are specified, records in the
file can be accessed on a key other than the primary key
specified in the RECORD or SYMBOLIC KEY clause. At
least 1 alternate key must be defined for multiple index files,

SELECT ... ASSIGN
ORGANIZATION IS INDEXED SEQUENTIAL
RESERVE ALTERNATE AREAS
FILE-LIMITS

ACCESS IS RANDOM
RECORD/SYMBOLIC KEY
ALTERNATE RECORD KEY
INDEX-LEVEL 1
INDEX-BLOCK CONTAINS f
INDEX-PADDING
RECORD-BLOCK CONTAINS
DATA-PADDING

Required
Required
Optional
Optional
Required
Required

Required for multiple-index files

One required

Optional
Optional
Optional

Figure 7-4. Environment Division Clauses for Creating Indexed Sequential Files

60496000 A

and as many as 255 can be specified. The alternate key
specifications must immediately follow the primary key
specification:

RECORD KEY IS data-name-1
ALTERNATE RECORD KEY IS data-name-2
ALTERNATE RECORD KEY IS data-name-3

The index file specified in the ASSIGN clause is used to hold
alternate key indexes which are established and maintained
automatically by CYBER Record Manager. One index is
created for each alternate key field. Within the index, one
entry is made for each alternate key value encountered as
records are written. For each record with a given alternate
key value, one primary key subentry is associated with the
alternate key entry. The alternate key entries are kept in
sorted order by CYBER Record Manager. Every time a
record is added or deleted, the index file is updated to reflect
all the alternate key values of the record in question. Index
file strueture is shown in figure 6-4.

If the DUPLICATES option of the ALTERNATE KEY clause is
not specified, alternate key values must be unique for each
record in the file. In this case, a duplicate alternate key
value encountered on a write causes execution of the
INVALID KEY clause. If DUPLICATES is specified, duplicate
alternate key values are allowed. The order of primary key
subentries within an alternate key entry depends on the
presence or absence of the INDEXED option. If INDEXED is
omitted, primary key values associated with a given alternate
key value are maintained in the order in which they are
written to the file (first in, first out). If INDEXED is
specified, the primary keys are kept in sorted order by value.
Performance in file updating is considerably enhanced when
INDEXED is specified.

Alternate keys can overlap and differ in length, but none can
begin in the same location as the primary key or any other
alternate key. The alternate key fields defined at file
creation are normally retained for the life of the file, but
they can be changed or altered, at user option, through the
IXGEN utility (see appendix C).

If the ALTERNATE RECORD KEY clause is omitted, the file
does not have multiple index status and access ean only be
through the primary key.

Index Block Size Calculation

when an indexed sequential file is created, an index block
size is calculated which remains constant throughout the life
of the file. Index block size is not necessarily the same as
data block size. The size of index blocks is important in the
future efficient processing of the file. If the size is too
small, index bloek splitting occurs too frequently, and a large
number of index levels can become necessary. Each
additional level of index requires an additional mass storage
access for each record. Index blocks that are too large, on
the other hand, require excessive amounts of central memory.
Therefore a balance should be struck in selecting index bloek
size. The ESTMATE utility, discussed in appendix C, can be
used to calculate an optimum index block size.

The COBOL user is not required to specify index block size
directly. If desired, however, the size can be specified
through the clause:

INDEX-BLOCK CONTAINS
integer CHARACTERS

60496000 A

Any size between 1 and 327,670 characters may be specified.
COBOL rounds up the value specified to the next highest
multiple of PRU size (640 characters), minus 10 characters.
If the INDEX-BLOCK CONTAINS clause is omitted, COBOL
caleulates an appropriate index block size from information
provided by the clauses INDEX-LEVEL, INDEX-PADDING,
and FILE-LIMITS, and from the Key entry size as determined
by the key length.

INDEX-LEVEL is specified as follows:

INDEX-LEVEL IS integer

The integer can be from 1 to 63. This specification is used in
conjunction with the FILE-LIMITS clause; the default for
FILE-LIMITS is 4094. An index block size is caleulated such
that, when the file contains the number of records indicated
by FILE-LIMITS, it will have the number of index levels
specified by the INDEX-LEVELS clause. Since this value is
used only when the file is created, subsequent processing can
result in the file actually having more index levels than
originally specified. INDEX-LEVEL is ignored if INDEX-
BLOCK CONTAINS is present, or if specified for an existing
file.

FILE-LIMITS is specified as follows:
FILE-LIMITS IS integer

In addition to its use in index block size calculation, FILE-
LIMITS restricts the number of records that the file can
contain to the value specified by integer. This restrietion is
only valid for the duration of the program in which it is
specified; FILE-LIMITS may be omitted, or specified with a
different value, in any program.

The format of INDEX-PADDING is as follows:
INDEX~-PADDING IS integer PERCENT

The integer, from 0 to 99, specifies the percentage of space
which is to be left unused when an index bloek is created.
INDEX-PADDING ecan only be specified once, when the file is
created, but the value specified is valid throughout the life of
the file. Unused space allows for the addition of records to
the file without the necessity for index block splitting.

Data Block Size Calculation

Like index block size, data block size can be specified
directly or indirectly. Direct specification is through the
BLOCK CONTAINS clause (deseribed under Data Division) or
the RECORD-BLOCK CONTAINS clause in one of the
following formats:

RECORD-BLOCK CONTAINS
integer RECORDS

or:

RECORD-BLOCK CONTAINS
integer CHARACTERS

If RECORDS is used, COBOL converts the value to char-
acters based on the maximum record size. If CHARACTERS
is used, the value specified is accepted. In both cases, block
size is rounded up to the next multiple of PRU size (640
characters), less 10 characters. If both RECORD-BLOCK
CONTAINS and BLOCK CONTAINS are specified, BLOCK
CONTAINS takes precedence. If neither clause is specified,
COBOL calculates a data block size based on average record
length, key length, and the DATA-PADDING specification.

DATA-PADDING is specified as follows:
DATA-PADDING IS integer PERCENT

The integer, from 0 to 99, specifies the percentage of space
which is to be left unused when a data block is created; the
default value is 0 (no padding). DATA-PADDING can only be
specified once, when the file is created, but the value
specified remains valid throughout the life of the file.
Unused space allows for the addition of records to the file
without the necessity for data block splitting.

DATA DIVISION

Data Division clauses applicable to indexed sequential files
are shown in figure 7-5.

BLOCK CONTAINS Optional

LABEL RECORD IS OMITTED Required

Figure 7-5. Data Division Clauses for
Creating Indexed Sequential Files

BLOCK CONTAINS

BLOCK CONTAINS can be used to specify data block size if
the RECORD-BLOCK clause is not used:

BLOCK CONTAINS integer RECORDS
or:

BLOCK CONTAINS integer CHARACTERS
If RECORDS is used, COBOL converts the number of records
to characters and rounds the bloek size up to the next highest
multiple of 640 characters less 10. If CHARACTERS is
specified, the block size is rounded up in the same manner, If
the clause is omitted and a RECORD-BLOCK CONTAINS

clause is not used for the file, COBOL calculates data block
size based on other file structure specifications.

LABEL RECORD

Indexed sequential files cannot have labels; the LABEL
RECORD clause is required in the following format:

LABEL RECORD IS OMITTED

PROCEDURE DIVISION

The clauses used to create an indexed sequential file are
shown in figure 7-6.

USE AFTER ERROR Optional
OPEN OUTPUT Required
WRITE INVALID KEY Required
CLOSE Required

Figure 7-6. Procedure Division Clauses for
Creating Indexed Sequential Files

USE AFTER ERROR PROCEDURE ecan be used to define
additional error processing. USE procedures are discussed in
section 2.

OPEN OUTPUT is the only form of the OPEN statement that
can be used for indexed sequential file creation:

OPEN OUTPUT file-name
WRITE INVALID KEY must be used to create records:
WRITE record-name INVALID KEY

INVALID KEY procedures are executed if file limits are
exceeded, if key contents are invalid, or if the key duplicates
that of an existing record, and DUPLICATES was not
specified in the RECORD/SYMBOLIC KEY clause.

When an indexed sequential file is created, the records
written to the file must be in sorted order by key value. (This
restriction does not apply to records written on subsequent
update runs.) The COBOL SORT facility, described in the
COBOL Reference Manual, can be used to sort a file
containing the records prior to creating the indexed sequen-
tial file.

PROCESSING EXISTING INDEXED
SEQUENTIAL FILES

An existing indexed sequential file open for I-O can have
records added, deleted, rewritten, or read. Acecess can be by
alternate key (if alternate keys have been defined) or by
primary key. An existing indexed sequential file open for
INPUT can only be read.

Because of the file statisties table described above, it is not
necessary in a program using an existing indexed sequential
file to repeat clauses related to index and data block
strueture. Thus, the clauses INDEX-LEVEL, INDEX-BLOCK
CONTAINS, INDEX-PADDING, RECORD-BLOCK CON-
TAINS, DATA-PADDING, and BLOCK CONTAINS can all be
omitted; the values specified when the file was created will
be used again. If they are included, however, they must
specify the same values as when the file was created. Except
for optional omission of these clauses, the Data and Environ-
ment Division elauses used when using an existing indexed
sequential file are the same as those used when the file is
created.

Procedure Division statements used for updating an indexed
sequential file are shown in figure 7-7.

USE AFTER ERROR PROCEDURE can be used with I-O or
with one or more file names to specify routines to be
executed following an input/output error. ‘

USE FOR DUPLICATE KEY can be specified to cause a
duplicate primary key specification to be ignored and a
specified procedure to be executed instead.

USE procedures are described in Section 2.

PRIMARY KEY ACCESS

In order to access a record by primary key, the INVALID KEY
option must be included in the input/output statement. When
this option is used, the contents of the key item defined in
the RECORD/SYMBOLIC KEY clause are used to determine
the location of the desired record. Access takes place in the

60496000 A

o .

USE AFTER ERROR Optional
USE FOR DUPLICATE KEY Optional
OPEN INPUT
One required

OPEN -0

READ INVALID KEY Optional
READ MAJOR INVALID KEY Optional
WRITE INVALID KEY Optional
REWRITE INVALID KEY Optional
REWRITE LAST INVALID KEY Optional
DELETE INVALID KEY Optional
DELETE LAST INVALID KEY Optional

READ KEY IS INVALID KEY Optional; multiple

index files only
START KEY INVALID KEY Optional; multiple
index files only

READ NEXT AT END Optional
SKIP Optional
CLOSE Required

Figure 7-7. Procedure Division Statements for
Indexed Sequential Files

same manner whether or not the file is a multiple index file.
The INVALID KEY clause is executed when the key specified
does not match the key of any record in the file (READ,
REWRITE, and DELETE only), when writing the record would
cause the FILE-LIMITS specified to be exceeded (WRITE
only), and when the key provided duplicates the key of an
existing record and DUPLICATES was not specified in the
RECORD/SYMBOLIC KEY clause (WRITE only). Whenever
an input/output error occurs, the special-register ERROR-
CODE is set to the number of the CYBER Record Manager
error that has occurred. These numbers are listed in the
CYBER Record Manager Reference Manual. It is usually
good practice for a program to check the contents of
ERROR-CODE whenever the INVALID KEY clause is
executed.

READ INVALID KEY locates a record according to the
contents of the primary key item and returns it to the input
record area.

WRITE INVALID KEY adds a new record to the file in the
appropriate place in sequential order.

REWRITE INVALID KEY replaces an existing record with a
new record with the same primary key. Following the
rewrite, the new record is no longer available in the output
record area.

DELETE INVALID KEY removes an existing record and its
index entries from the file.

The format:
READ file-name MAJOR KEY

IS data-name INVALID KEY
imperative-statement

60496000 A

can be used for indexed sequential files that are not multiple
index files to read a record by major key. The major key
defined by data-name is a data item within the key item
defined by the RECORD/SYMBOLIC KEY clause. The major
key must be less than or equal to the full key in length, and
must be a leading portion of the key item. When the READ
MAJOR KEY statement is executed, the record returned is
the first record in the file for which the contents of the
major key portion of the key agree with the contents of data-
name. Sequential reads can then be used to return all the
records with the same major key value.

Duplicate Keys:

If an indexed sequential file is not a multiple index file,
duplicate primary key values are allowed when the DUPLI-
CATES option is specified in the RECORD/SYMBOLIC KEY
clause. A duplicate key is a key that is identical to the key
of a record already in the file. If DUPLICATES is omitted,
and a duplicate key is encountered on a write, the new record
is not written to the file. Instead, the USE FOR DUPLICATE
KEY procedure (if any) is executed, followed by the INVALID
KEY clause. If DUPLICATES is specified, and a USE FOR
DUPLICATE KEY procedure is provided, the USE procedure
is executed, followed by the INVALID KEY clause. If no USE
procedure is provided, the new record is written to the file.
Because the records in the file are in sorted order by primary
key, all records with the same primary key value are
contiguous; their order within the group is the same as the
order in which they were written.

When a READ INVALID KEY statement specifies a primary
key value associated with a group of duplicates, the first
record in the group is returned. This is the only record in the
group that can be accessed randomly; the remaining records
can only be accessed by READ NEXT AT END statements.
After execution of READ NEXT AT END, the key item is set
to the key of the record read; therefore, by checking the
contents of this item after a read, the program can determine
when the end of the group of duplicates has been passed.

A READ NEXT AT END statement may be followed by either
a REWRITE or DELETE statement with the LAST option
specified to rewrite or delete the record just read by the
READ statement. The contents of the key item must not
have been altered since the read. In this way, some or all of
the records in a group of duplicates can be rewritten or
deleted.

ALTERNATE KEY ACCESS

READ KEY IS INVALID KEY reads a multiple index file
record by alternate key:

READ file-name KEY IS
data-name INVALID KEY
imperative-statement

The data-name specified as the object of the KEY IS option
must be an item previously defined as an alternate key by the
ALTERNATE RECORD KEY clause. When this statement is
executed, the index file entry for the alternate key value that
matches the contents of data-name is located. The record
whose primary key value occurs first in the subentries for the
alternate key value is returned to the input record area. If
DUPLICATES is not specified in the ALTERNATE RECORD
KEY clause, only one primary key value is associated with the
alternate key value. If DUPLICATES is specified, the record
returned by READ KEY IS INVALID KEY is the record whose
primary key ocecurs first in the group of primary keys
associated with the alternate key value. The data-name
referenced in the KEY IS option can be a leading portion of
an alternate key item, rather than the whole item.

START KEY INVALID KEY is used to position a multiple
index file without reading a record:

START file-name KEY relational-operator
data-name INVALID KEY imperative-statement

The relational operator must be one of the following:

IS EQUAL TO
IS =

IS GREATER THAN
IS >

IS NOT LESS THAN
IS NOT <

The data-name can be a primary or alternate key item, or a
leading portion of a key item.

Execution of the START statement establishes the key of
reference by positioning the index file to the first alternate
key value that meets the specified condition. The search
begins either from the current key of reference or from the
beginning of the index file if the key of reference has not yet
been established. The key that satisfies the condition
becomes the new key of reference. If the comparison is not
satisfied by any alternate key value, the INVALID KEY clause
is executed.

Successful execution of READ INVALID KEY or START
establishes a key of reference for purposes of future access
to the file. The key of reference is the primary or alternate
key of the record read or located. Once the key of reference
has been established, it can only be changed by execution of
another START or READ INVALID KEY statement.

If the READ is by primary key (KEY IS is omitted), the new
key of reference is the primary key value read. Subsequent
sequential reads return records in their order in the data file;
any index file positioning established by START or READ
KEY IS INVALID KEY is lost. If the READ is by alternate
key, the alternate key value is the new key of reference, and
subsequent sequential reads return records in the order their
keys occur in the index file entries.

The importance of the key of reference is that it determines
the order in which records are read by subsequent READ
NEXT AT END statements. READ NEXT AT END specifies
sequential reading of records. If the key of reference is an
alternate key, records are returned to the user program in the
order in which their primary keys ocecur in the alternate key
index. When the last record with a given alternate key value
has been read, the special-register ERROR-CODE is set to
1000. No other indieation is made that the end of the list for
that alternate key value has been reached. The next time
READ NEXT AT END is executed, if the key of reference has
not been changed, the first primary key in the list for the
next alternate key value is used to read a record from the
data file.

If READ NEXT AT END is executed before a key of
reference has been established, records in the data file are
read according to the physical order of records in the data
file; the alternate key index is not referenced.

READ ONLY PROCESSING

When an indexed sequential file is opened for INPUT, only the
statements READ INVALID KEY and READ NEXT AT END
can be used; if the file is a multiple index file, READ KEY IS
INVALID KEY and START can also be used. In other words,
any of the information in the file can be accessed, but no
changes can be made to the file itself. This kind of
processing is called read-only proeessing; it is particularly
useful when the file is to be protected from accidental
alteration.

7-8

For a non-multiple-index file, if the access mode is sequen-
tial, only READ NEXT AT END ecan be executed. In this
case, records are read in the physiecal order in which they
oceur on-the file (that is, in sorted order by key).

For a multiple index file, when the access mode is sequential,
the START statement can be executed as well as READ
NEXT AT END. The START statement positions the file at
the first primary key value or alternate key value satisfying
the specified comparison. Subsequent execution of READ
NEXT AT END returns records in an order that depends on
whether the key specified by START was a primary or
alternate key. If primary, records are returned in primary
key order (the same as for a non-multiple-index file). If
alternate, records are returned in order by the alternate key;
within each alternate key value, records are returned in the
order written, or, if INDEXED was specified in the ALTER-
NATE KEY clause, in order by primary key.

SAMPLE PROGRAM 7:
USING INDEXED
SEQUENTIAL FILES

Sample program 7, shown in figure 7-8, creates an indexed
sequential file (RANFILE), updates the file by accessing it
randomly, and reads the file by accessing it sequentially, The
purpose of the program is to create a file containing all the
odd prime numbers less than a specified value (500 in this
case) through a modified Eratosthenes' sieve method.

Line 15 —- Line 24

The FILE-CONTROL clauses for RANFILE provide specific
values for file structure parameters. ORGANIZATION IS
INDEXED and ACCESS IS RANDOM are required. SYM-
BOLIC KEY is used; RECORD KEY could have been used,
with the same results. RESERVE ALTERNATE AREAS is
optional; specifying 10 areas results in allocation of a central
memory buffer large enough for 10 index blocks and 10 data
blocks. The INDEX-BLOCK CONTAINS and RECORD-
BLOCK CONTAINS clauses specify the same block size,
10230, which will not be rounded up because it is exactly 16
PRUs minus one word. Padding is also specified for both
kinds of blocks. The values selected in this program are not
presented as recommendations for effieient processing, but
only illustrate these clauses.

Line 39

MAX is the upper limit of the list of primes to be computed.

Line 44

The method used for generation of primes is to write all the
odd numbers to RANFILE in two batches, and then to
eliminate those that are discovered to be composite (non-
prime).

Line 46 — Line 53

RANFILE is opened for output, as required for indexed
sequential file creation. The first stage of prime number
generation is to write to RANFILE all the odd numbers that
are 3 greater than a multiple of 4. After this is done, the file
is closed.

60496000 A

N’

e

00001
0oco2
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
ooo1l8
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068

IDENTIFICATION DIVISION.
PROGRAM-1ID. ERATOSTHENES-SIEVE.
ENVIRONMENT DIVISION.

CONF IGURATION SECTION.
SQURCE=-COMPUTER. CYBER.
OBJECT-COMPUTER. CYBER.

SPECIAL~NAMES.
CONSOLE IS TuBE.

INPUT=-0UTPUT SECTION,

FILE~CONTROL.

SELECT RANFILE ASSIGN TO DISCOL
RESERVE 10 ALTERNATE AREAS
ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM
SYMBOLIC KEY IS KEY-HOLE
INDEX~BLOCK CONTAINS 10230 CHARACTERS
RECORD~BLOCK CONTAINS 10230 CHARACTERS
INDEX-PADDING IS 15 PERCENT
DATA-PADDING IS 50 PERCENT.

DATA DIVISION,.
FILE SECTION.

FD RANFILE
LABEL RECORDS OMITTED
DATA RECORD IS REC.

01 REC.
02 KEY~-HOLE PIC 9(10).
02 PRIME-MARK PIC X.
02 BoDY PIC X(69).

WORKING-STORAGE SECTION.
TT MAX PIC 9(5) VALUE 500.
77 EDIT-FIELD PIC Z(9)9.
77 INCREMENT PIC 9(10).
77 KEY=STORE PIC 9(10).

PROCEDURE UDIVISION.

CREATION.
OPEN OUTPUT RANFILE.
MOVE ALL # INITIAL RECORD # TO BODY.
MOVE SPACE TO PRIME-MARK.,
PERFORM RECORD-CREATION
VARYING KEY-HOLE FROM 3 BY 4
UNTIL KEY-HOLE GREATER THAN MAX.
CLOSE RANFILE.
GO TO UPDATE-PORTION.

RECORD-CREATION.
WRITE REC INVALID KEY DISPLAY # FAULT 1# STOP
MOVE KEY=-HOLE TO INCREMENT.

UPDATE=-PORTION,

OPEN I-0 RANFILE.

SUBTRACT 2 FROM INCREMENT.

MOVE ALL # INSERTION RECORD # TO 80DY.

PERFORM INSERTION
VARYING KEY-HOLE FROM INCREMENT BY -4
UNTIL KEY-HOLE < 3.

GO TO START=SIEVE.

RUN.

60496000 A

Figure 7-8. Sample Program 7: Using Indexed Sequential Files (Sheet 1 of 2)

7-9

READ RANFILE IMVALID KEY DISPLAY # FAULT 3# STOP RUN.
READ RANFILE AT END GO TO SIEVE-COMPLETE.

IF PRIME-MARK NOT = ### GO TO BASE-FQUND.

REWRITE REC INVALID KEY DISPLAY # FAULT 4# STOP RUN.
MULTIPLY KEY=HOLE #Y 2 GIVING INCREMENT.

EY-STORE.
If KEY-STORE GREATER THAN MAX GO TO START-SIEVE,

DELETE RECORD FROM RANFILE INVALID KEY PERFORM NOTHING.

EDIT-FIELD,

00069 INSERTION.
00070 WRITE REC INVALID KEY DISPLAY #
00071

00072 START-SIEVE.

00073 MOVE 3 TO KEY~-HOLE.

00074

00075

00076 SEARCH-FOR=BASE

00077

00078

00079 GO TO SEARCH-FOR-BASE.

00080

00081 BASE-FOUND,

00082 MOVE ##2 TO PRIME-MARK.
00083

00084

00085 MOVE KEY~HOLE TO KEY~STORE.
00086

00087 SIEVE.

00088 ADD INCREMENT TO K

00089

00090 MOVE KEY=STORE TO KEY=HOLE.
00091

00092 GO TO SIEVE.

00093

00094 SIEVE-COMPLETE.,

00095 CLOSE RANFILE.

00096 OPEN INPUT RANFILE.

00097 DISPLAY # PR I ME NUMBERS #,.
00098

00099 SEQ-READ-LOOP.

00100 READ RANFILE AT END GO

00101 MOVE KEY-HOLE TO EDIT=-FIELD.
060102 DISPLAY #

00103 GO TO SEQ-READ-LOOP.

00104

00105 WRAP-UP .

00106 CLOSE RANFILE. STOP RUN.
00107

00108 NOTHING.

FAULT 2#.

TO WRAP~UP,

Figure 7-8. Sample Program 7: Using Indexed Sequential Files (Sheet 2 of 2)

Line 57

The WRITE INVALID KEY statement writes a record to
RANFILE, using one of the generated odd numbers as the
symbolie key. The keys are thus written to the file in sorted
order by key, as required for indexed sequential files.

Line 60 — Line 67

The remainder of the odd numbers less than 500 (except for 1)
are inserted in their proper places in the file. Reecord
insertion need not be in sorted order; in fact, these records
are inserted in reverse order.

Line 69 — Line 92

The sieving of the odd primes takes place from line 69 to
line 92. The data item PRIME-MARK is used to flag
composite numbers. The file is first read sequentially until a
prime number is found, then the number found is used as a
base to eliminate subsequent numbers that are multiples of
the base number. The records having composite numbers as
keys are deleted from the file.

7-10

Line 94 — Line 103

After all the nonprime numbers have been deleted from
RANFILE, it is closed and reopened for INPUT. All the
records in the file are read sequentially and displayed. The
output for this program is shown in figure 7-9.

SAMPLE PROGRAM 8:

MULTIPLE INDEX
INDEXED SEQUENTIAL FILES

Sample program 8, shown in figure 7-10, illustrates the use of
multiple index indexed sequential files. The program creates
a multiple index file, NAME-FILE, closes it, and reopens it
for read-only processing. The original records, as well as

query records to read NAME-FILE, are on the file INPUT. -

The input for the program is shown in figure 7-11, and the
output in figure 7-12.

Line 15

The ASSIGN clause for NAME-FILE specifies implementor-

names for the data file, OFILE, as well as the index file,
MIP2. Processing of MIP2 within this program is transparent

60496000 A

R

3

N

to the user, but the file must be preserved by the user
through control statements subsequent to the COBOL control
statement.

Line 16 — Line 18

The clauses ORGANIZATION IS INDEXED SEQUENTIAL and
ACCESS IS RANDOM are required. The INDEX-BLOCK
CONTAINS clause is optional; if it were omitted, INDEX-
LEVEL would be required, so that COBOL could calculate
index block size. Since the INDEX-PADDING and DATA-
PADDING clauses are omitted, no padding is allowed for
when new blocks are created.

Line 19 — Line 22

One primary key, KEY-1, and three alternate keys, PERS-NO,
COLOR, and TEAM-TI are defined. DUPLICATES is speci-
fied for COLOR and TEAM-TI. For these keys, more than
one record can have the same alternate key value; the
primary key subentries within the alternate key value entries
in the index file are arranged in the order records are
written.

Line 46 — Line 47

The LABEL RECORDS clause is required. The BLOCK
CONTAINS clause is optional, and when included specifies the
size of data blocks.

Line 63 — Line 80

Creation of NAME-FILE begins when it is opened for
OUTPUT. The records of CRDFILE (which is actually the
next section on the INPUT file) are read and transferred
directly to PERS-REC with no modification. The WRITE
INVALID KEY statement is then used to write the records to
NAME-FILE. At the end of creation, NAME-FILE and
CRDFILE are closed.

Line 85 - Line 99

NAME-FILE is reopened for INPUT in order to read selected
tecords. The file CARD-FILE consists of a single record,
which contains a value for the alternate key PERS-NO. This
value is used to position NAME-FILE by means of the START
statement (lines 88 through 90). For this execution of the
program, the value used is 2459. Since PERS-NO is an
alternate key rather than a primary key, the index file, rather
Jian the data file, is searched for the specified value of
L'ER3-NO. When the index entry for this value is located, so

60496000 A

FRIME NUMBERS

491
499

Figure 7-9. Output from Program 7

is the corresponding primary key value (which is unique for
PERS-NO). When READ NEXT AT END (line 93) is executed,
therefore, the primary key value is used to retrieve a record
from the data file, Subsequent iterations of READ NEXT AT
END read records from NAME-FILE in the order in which the
alternate key values for PERS-NO occur in the index file (as
shown in figure 7-12). When the last entry for PERS-NO in
the index file is passed, the AT END clause is executed, and
the files are closed (line 98).

7-11

000G
06062
000073
30094
00005
000C+A
000G7
0000~
00009
00010
00011
0eol12
60013
S 0601a
00015
00016
ugo17
00014
060019
20620
00021
00022
0023
00024
0002%
000626
60027
00028
00029
00030
60031
20032
00033
00034
00035
00036
00037
00038
00039
00040
000461
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
20059
90060
00061
00062
00063
00064
00065
00066

INDERTIFICAYION DIVISION.
PROGRAM=1D. INDEX=EQ-MIP,
ENVIRONMENT DIVISION,

CONF IGURATION SECTION,
SQURCE-COMPUTER. CYBER.
OBJECT=-COMPUTER. CYHER.,

INPUT=-CUTPUT SECTLION,.
FILF-CONTROL .
SELECT CROFILE ASSILN TO INPUT.
SELECT CARD=FILE ASSIGN TO INPUT.
SELECT NAME=F It E ASSIGN OUFILE MIP2
ORGANIZATION 1% InDEXEL SEGUENTIAL
ACCESS IS RANDOM
TNDFEX~RLOCK COWTAINS 5110 CHARACTERS
SYMBOLIC KEY Is kEy-l
ALTERNATE RECOWD XEY 1S PERS=NO
ALTERNATE RECORD KEY IS COLOR DUPLICATES
ALTERNATE RECORD KEY 1S TEAM=TT DUPLICA.ES.

DATA DIVISIONM.
FILE SECTION.

FB) CrDFILE

LABEL RECORDS ARE OMITTED

DATA RECORDS ARE CARD=-REC.
01 CARD-REC.

02 IN-xEvl PIC X(18).

02 IN=-AMT PIC 9(a).

02 IN=COLOR PIC X(B),.

02 1-DATE~A PIC 9(5),

02 IN-RANK]1 PIC X(20).

FO CARD-FILE
LABEL RECORDS ARE OMITTED
DATA RECORDS ARE CARU-RECORD,
01 CARD-RECORD,
02 INPERS-NO PIC 9(4).
0z FILLER PIC X(76).

FO NAME-FILE
LABEL RECORDS aRE OMITTED
BLOCK CONTAINS 5110 CHARACTERS
DATA RECORDS AWE PERS-REC,
01 PERS~-RtC.
02 KEY-l.
03 FILLER PIC X(6).
03 PERS-NO PIC 9(4).
03 CIty PIC X(8).

02 AMT PIC 9(6)V99,
02 COLOKR PIC Xx(8).

02 DATE-~-A PIC S(S).

02 RANK.

03 TITLEA PIC X(11).
03 TEAM=TI PIC X{(9).

PROCEDURE DIVISION,
CREATE-RANDOM-FILE.

OPEN INPUT CRODFILE
QUTPUT NAME-FILE.

Figure 7-10. Sample Program 8: Multiple Index Indexed Sequential Files (Sheet 1 of 2)

7-12

60496000 A

N

N

Page 7-13 is missing from the original CDC manual.

Page 7-14 is missing from the original CDC manual.

ACTUAL KEY FILE ORGANIZATION 8

“

An actual key file is a mass storage file in which a primary
key associated with each record identifies directly the actual
location of the record on the file. This key, called the actual
key, is a bit string whose contents are system-oriented rather
than data-oriented. No primary key index or hashing routine
is needed or used for an actual key file,

Any of the record types desecribed in section 2 can be used
with actual key files. Labels are not supported.

Logically, an actual key file can be regarded as a series of
record slots, each with an associated ordinal. Record slots
are in order according to their ordinals. (Although relative
files can be similarly described, their structure and pro-
cessing differ from actual key files.) Once a slot is
established by writing a record to it, it remains in existence
for the life of the file, If a record is deleted, its slot
becomes available for a new record. In the lifetime of a file,
it is possible that several unrelated records could successively
occupy the same slot.

The actual key of a record is the ordinal of the slot the
reeord is written to. A key item for random access is defined
through the clause:

ACTUAL KEY IS data-name

The contents of the key item are checked on every random
access to the file. On a write, if the value of the key item is
0, CYBER Record Manager writes the record to an unoccu-
pied record slot, and sets the key item to the ordinal of that
slot, thus providing the user with the actual key of the
record. Thereafter, the user accesses the record randomly by
means of the system-assigned actual key value,

The key item defined by the ACTUAL KEY clause does not
have to be contained within the record, unless the file is a
multiple index file.

Because records in actual key files are automatieally in order
by slot ordinal, access to these files can be either random or
sequential.

An actual key, being an internally defined entity, has no
logical connection with the record it identifies. This usage of

‘keys differs from that in direct and indexed sequential file

organizations. In these file organizations, keys are provided
by the user; typically, they contain information that has
external meaning, such as employee name or inventory part
number. Actual keys, on the other hand, have no purpose
other than unique identification and loeation of records.
Alternate Kkeys can be defined for actual key files, however,
providing the ability to access the file by externally meaning-
ful keys.

Physically, an actual key file is divided into a series of blocks
called data blocks. A fixed number of record slots is
associated with every block in the file. Each block contains a
descriptor for each slot in the block, whether the slot is full
or empty. The bloek also contains the records corresponding
to each slot, unless one or more of these records is too large
to fit in the bloek. In this case, the overflow records are
written to other blocks, but their descriptors remain in the
original block. The number of data blocks in a file is
restricted only by the optional FILE-LIMITS clause. Mass

60496000 A

storage is not allocated in advance; when records are written,
new blocks are added to the file as necessary. Blocks
containing overflow records are not different structurally or
logically from other blocks in the file.

Actual key files provide relatively fast random access of
reecords, since no time is consumed by index block searches or
key hashing. Less mass storage space is used than for indexed
sequential files, since no index blocks exist; if an actual key
file contains a very large number of unoccupied record slots,
however, mass storage use is less efficient. The principal
disadvantage of actual key files is the necessity for the user
to keep track of the generated actual key values. As the key
has no logical connection with the contents of the record, it
is an additional piece of arbitrary information that must be
maintained. The user normally establishes some mechanism,
such as a second file, whereby a record's actual key is linked
with some more meaningful piece of data.

In particular, actual key files are especially suitable as
multiple index files. In a typical application, actual key
values are assigned, and alternate key indexes built, as the
original records are written. Subsequent random access to
the file is only through alternate key values. Since each
access by alternate key requires a read of the data file by
primary key, and since actual key access is the fastest form
of primary key access, an alternate key read of an actual key
file is more efficient than an alternate key read under any
other file organization.

The access mode under which an actual key file can be
processed can be either random or sequential. In addition,
the file can be open for INPUT, OUTPUT, or I-O. The
Procedure Division statements that can be used with various
combinations of access mode and open status are shown in
table 8-1 and deseribed in more detail below.

FILE STATISTICS TABLE

The first physical part of an actual key file on mass storage is
an internal table called the file statisties table (FSTT). This
table is created and maintained by CYBER Record Manager.
The table is preserved on the file after the file is closed, so
that information about the file is available to CYBER Record
Manager in subsequent runs using the file, The information
that is maintained includes statisties about transactions on
the file and file structure specifications such as key length,
maximum and minimum record length, block size, and number
of records per block. The user should not attempt to change
any of these specifications once the file has been created;
COBOL allows some of these specifications to be omitted in
subsequent programs, as described under Processing Existing
Actual Key Files.

CREATING ACTUAL KEY FILES

Actual key file creation involves the clauses deseribed below.
Clauses and statements such as CLOSE, which must be
specified for all files, and those that do not require further
explanation, are omitted from the descriptive paragraphs.
Clauses and statements that apply only to existing files are
deseribed under Processing Existing Actual Key Files.

8-1

TABLE 8-1. ACCESS MODE AND OPEN CONDITION COMBINATIONS, ACTUAL KEY FILES

Statements Random Access Sequential Access

Open Open Open Open Open Open

Input Output -0 Input Output I-0
Create New File N Y N N N N
SKIP Y N Y Y N Y
START KEY INVALID KEY YM N YM M N YM
READ NEXT AT END N Y Y N Y
READ INVALID KEY N Y N N N
READ KEY IS INVALID KEY ™ N M N N N
WRITE INVALID KEY N Y Y N N N
REWRITE INVALID KEY N N N Y
DELETE INVALID KEY N N Y N N Y
Y = Allowed N = Not allowed YM = Allowed multiple index only

ENVIRONMENT DIVISION ACTUAL KEY

The Environment Division clauses involved in creating an
actual key file are shown in figure 8-1.

SELECT... ASSIGN Required
ORGANIZATION IS ACTUAL KEY Required
FILE-LIMITS Optional
ACCESS IS RANDOM Required
ACTUAL KEY Required

ALTERNATE RECORD KEY Regquired for
multiple-index

files

Figure 8-1. Environment Division for
Creating Actual Key File

FILE-LIMITS

The FILE-LIMITS clause is optional and establishes the
maximum number of records that can exist at any time:

FILE-LIMITS IS integer

FILE-LIMITS cannot be used to restrict processing to a
portion of a file. Only the records in the file at any given
time are affected by the FILE-LIMITS clause; records written
to the file and subsequently deleted are not included in the
total.

The primary key for an actual key file must be specified
through the clause:

ACTUAL KEY IS data-name

The key item must be within the data record if the file is a
multiple index file, but does not have to be otherwise. The
key must be a COMPUTATIONAL-1 item with a PICTURE
from 1 to 8 characters. -

ALTERNATE RECORD KEY

The ALTERNATE RECORD KEY clause can be used only if
an index file, in addition to the actual key data file, is
defined through the ASSIGN clause, and then it is required.
When alternate keys are specified, records in the file can be
accessed on a key other than the primary key specified in the
ACTUAL KEY clause. At least 1 alternate key must be
defined for multiple index files, and as many as 255 can be
specified. The alternate key specifications must immediately
follow the primary key specification:

ACTUAL KEY IS data-name-1
ALTERNATE RECORD KEY IS data-name-2
ALTERNATE RECORD KEY IS data-name-3

.

The index file specified in the ASSIGN clause is used to hold
alternate key indexes which are established and maintained
automatically by CYBER Record Manager for multiple-index
files. One index is created for each alternate key field.
Within the index, one entry is made for each alternate key
value encountered as records are written. For each record

60496000 A

Ry

with a given alternate key value, one primary key subentry is
associated with the alternate key entry. The alternate key
entries are kept in sorted order by CYBER Record Manager.
Every time a record is added or deleted, the index file is
updated to reflect all the alternate key values of the record
in question. Index file structure is shown in figure 6-4.

If the DUPLICATES option of the ALTERNATE KEY clause is
not specified, alternate key values must be different for each
record in the file. In this case, a duplicate value encountered
on a write causes execution of the INVALID KEY eclause. If
DUPLICATES is specified, duplicate values are allowed. The
order of primary key values within a set of duplicates depends
on the presence or absence of the INDEXED option. If
INDEXED is omitted, primary key values associated with a
given alternate key value are maintained in the order in
which they are written to the file (first in, first out). If
INDEXED is specified, the primary keys are kept in the same
order as primary keys in an indexed sequential file (section 7).
Performance in file updating is considerably enhanced when
INDEXED is specified.

Alternate keys can overlap and differ in length, but none can
begin in the same location as the primary key or any other
alternate key. The alternate keys defined at file creation are
normally retained for the life of the file, but they can be
changed or altered, at user option, by using the IXGEN utility
(see appendix C).

If the ALTERNATE RECORD KEY clause is omitted, the file

does not have multiple index status and access can only be
through the primary key.

DATA DIVISION

Data Division clauses applicable to actual key files are shown
in figure 8-2.

BLOCK CONTAINS Optional

LABEL RECORD IS OMITTED Required

Figure 8-2. Data Division for File Creation

BLOCK CONTAINS

The BLOCK CONTAINS eclause for actual key files is used in
the following format:

BLOCK CONTAINS integer RECORDS

COBOL uses the value specified both to establish the fixed
number of record slots per data block, and to calculate the
data block size, based on average record length. If the
BLOCK CONTAINS clause is omitted, the number of records
per block is determined by installation default (eight records
per block in the release system).

LABEL RECORD

Labels are not supported on actual key files; the LABEL
RECORD clause is required in the following format:

LABEL RECORD IS OMITTED

60496000 A

PROCEDURE DIVISION

Procedure Division statements applicable- to actual key file
creation are shown in figure 8-3.

USE AFTER ERROR Optional
OPEN OUTPUT Required
WRITE INVALID KEY Required
CLOSE Required

Figure 8-3. Procedure Division for File Creation

USE AFTER ERROR PROCEDURE can be used to define
additional processing to be executed following an error. USE
procedures are discussed in section 2.

OPEN OUTPUT is the only form of the OPEN statement that
can be used for actual key file creation:

OPEN OUTPUT file-name
WRITE INVALID KEY must be used to create records:

WRITE record-name INVALID KEY
imperative-statement

During file creation, the key item is reset to 0 before each
execution of the WRITE INVALID KEY statement, and the
system generates successive actual key values and returns
them to the key item. in sequential order during file
creation. The INVALID KEY clause is executed only when
file limits are exceeded.

PROCESSING EXISTING ACTUAL
KEY FILES

An existing actual key file open for I-O can have records
added, deleted, rewritten, or read. Access can be by
alternate key (if alternate keys have been defined), by
primary key, or sequentiaily. An existing actual key file open
for INPUT can only be read.

Because of the file statistics table described above, it is not
necessary to repeat the BLOCK C™NTAINS clause in a
program using an existing actual key file. If it is included,
however, it must specify the same value as that with which
the file was created. Except for optional omission of this
clause, the Data Division and Environment Division clauses
used when updating an actual key file are the same as those
used when the file is created.

Procedure Division statements used with an existing actual
key file are shown in figure 8-4.

8-3

Optional

USE AFTER ERROR
OPEN INPUT 1
One required

OPEN I-O ‘

READ INVALID KEY Optional
WRITE INVALID KEY Optional
REWRITE INVALID KEY Optional
DELETE INVALID KEY Optional

READ KEY IS INVALID KEY Optional; multiple

index files only
START KEY INVALID KEY Optional; multiple
- index files only

READ NEXT AT END Optional
SKIP Optional
CLOSE Required

Figure 8-4. Procedure Division for
Existing Actual Key Files

USE AFTER ERROR PROCEDURE can be used with IFO or
with one or more file names to specify routines to be
executed following an input/output error.

PRIMARY KEY ACCESS

In order to access a record in an actual key file by primary
key, the INVALID KEY option must be included in the
input/output statement. When this option is used, the
contents of the key item defined in the ACTUAL KEY clause
are used to determine the location of the desired record.
Access takes place in the same manner whether or not the
file is a multiple index file, The INVALID KEY clause is
executed when the key specified does not match the key of
any record in the file (READ, REWRITE, and DELETE only),
when writing the record would cause the FILE-LIMITS
specification to be exceeded (WRITE only), when the key
provided duplicates the key of an existing record (WRITE
only), and when the key is not in a valid format for the file
(any statement). Whenever an input/output error occurs, the
special-register ERROR-CODE is set to the number of the
CYBER Record Manager error that has oceurred. These
numbers are listed in the Record Manager Reference Manual.
It is advisable for a program to check the contents of
ERROR-CODE whenever the INVALID KEY clause is
executed.

READ INVALID KEY locates a record according to the
contents of the primary key item and returns it to the input
record area. The primary key item must be set to the slot
ordinal of the desired record before the READ statement is
executed.

WRITE INVALID KEY adds a new record to the file. If the
value of the primary key item is 0, CYBER Record Manager
writes the record to any available vacant slot, creating a new
data block if necessary, and returns the ordinal of the slot
selected to the key item as the actual key. If any records
have been deleted from the file, the location selected for the
new record is unpredictable, as is its consequent relative
position among the other records in the file.

REWRITE INVALID KEY replaces an existing record with a
new record with the same primary key. The primary key item
must be set to the slot ordinal of the record to-be replaced.
Following the rewrite, the new record is no longer available
in the output record area.

DELETE INVALID KEY removes an existing record from the
file -and frees the space it occupied for records written
subsequently. The primary key item must be set to the slot
ordinal of the record to be deleted.

ALTERNATE KEY ACCESS

READ KEY IS INVALID KEY reads a multiple index file
record by alternate key:

READ file-name KEY IS data—name
INVALID KEY imperative statement

The data-name specified as the object of the KEY IS option
must be an item previously defined as an alternate key by the
ALTERNATE KEY clause. When this statement is executed,
the index file entry for the alternate key value that matches
the contents of data-name is located. The record whose
primary key value occurs first in the subentries for the
alternate key value is returned to the input record area. If
DUPLICATES is not specified in the ALTERNATE RECORD
KEY clause, only one primary key value will be associated
with the alternate key value. If DUPLICATES is specified,
the record returned by READ KEY IS INVALID KEY is the
record whose primary key occurs first in the group of primary
keys associated with the alternate key value. The data-name
referenced in the KEY IS option can be a leading portion of
an alternate key item, rather than the whole item.

START KEY INVALID KEY is used to position a multiple
index file without reading a record:

START file-name KEY
relational-operator data-name
INVALID KEY imperative-statement

The relational-operator must be one of the following:

IS EQUAL TO

IS =

IS GREATER THAN
s>

IS NOT LESS THAN
IS NOT <

The data-name must be an alternate key item, or the leading
portion of an alternate key item.

Execution of the START statement results in positioning of
the index file to the first alternate key value that meets the
specified condition. The search begins from the current key
of reference or from the beginning of the index file if no key
of reference has been established yet. The key that satisfies
the condition becomes the new key of reference. If the
comparison is not satisfied by any alternate key value, the
INVALID KEY clause is executed.

Successful execution of READ INVALID KEY or START KEY
INVALID KEY establishes a key of reference for purposes of
future access to the file. The key of reference is the primary
or alternate key of the record read or located. Once the key
of reference has been established, it can only be changed by
execution of another START or READ INVALID KEY state-
ment.

60496000 A

-

If the READ is by primary key (KEY IS is omitted), the new
key of reference is the primary key value read. Subsequent
sequential reads return records in their order in the data file,
which is actual key order. Any index file positioning
established by START or READ KEY IS INVALID KEY is lost.
If the read is by alternate key, the new key of reference is
the alternate key value, and subsequent sequential reads
return records in the order their keys occur in the index file
entries.

The importance of the key of reference is that it determines
the order in which records are read by subsequent READ
NEXT AT END statements. READ NEXT AT END specifies
sequential reading of records. If the key of reference is an
alternate key, records are returned to the user program in the
order in which their primary keys oceur in the alternate key
index. When the last record with a given alternate key value
has been read, the special-register ERROR-CODE is set to
1000. No other indication is made that the end of the list for
that alternate key value has been reached. The next time
READ NEXT AT END is executed, if the key of reference has
not been changed, the first primary key in the list for the
next alternate key value is used to read a record from the
data file,

READ ONLY PROCESSING

When an actual key file is opened for INPUT only, the
statements READ INVALID KEY and READ NEXT AT END
can be used; if the file is a multiple index file, READ KEY IS
INVALID KEY and START can also be executed. In other
words, any of the information in the file can be accessed, but
no changes can be made to the file itself. This kind of
processing is called read-only processing; it is useful when the
file is to be protected from accidental alteration.

For a non-multiple-index file, if the access mode is sequen-
tial, only READ NEXT AT END can be executed. In this
case, records are read in the physical order in which they
occur on the file; this is the same as actual key order. This
method of access is primarily useful when all the records in
the file are read, and the order in which they are read is not
important.

For a multiple index file, when the access mode is sequential,
the START statement can be executed as well as READ
NEXT AT END. The START statement positions the file at
the first primary key value or alternate key value satisfying
the specified comparison. Subsequent execution of READ
NEXT AT END returns records in an order that depends on
whether the key specified by START was a primary or
alternate key. If primary, records are returned in physical
order (the same as for a non-multiple-index file). If
alternate, records are returned in order by the alternate key;
within each alternate key value, records are returned in the
order written, or, if INDEXED was specified in the ALTER-
NATE KEY clause, in order by primary key.

SAMPLE PROGRAM 9: USING
ACTUAL KEY FILES

Sample program 9, shown in figure 8-5, illustrates the use of
an actual key file to sort a sequential file. Records are read
from an unsorted sequential file (UNSORTED-FILE) and a tag
file (TAGFILE) is constructed containing the record keys. At
the same time, the records are written to an actual key file
(SAKFILE). Each record in the tag file links the key of a
record in the sequential file with the actual key of the same
record in the actual key file, The tag file is then sorted. The
sorted tag file is read sequentially, and the full records are

60496000 A

extracted from the actual key file and written to the
sequential output file (SORTED-FILE). Although this method
may seem like an unnecessarily complicated answer to a
problem (sorting files) that is easily solved in COBOL, in fact
there are cases in which this procedure is more effective than
a conventional sort. In particular, a file with very long
records (longer than those in this program) can be more easily
sorted by using a tag file. The records in the tag file are
shorter than the records in the original file, and therefore the
tag file can be sorted more quickly than the original file. An
interesting feature of this program is that the actual key file
created here is only of temporary importance; it can be
dispensed with after the program is executed.

Output for the program is shown in figure 8-6.

Line 14 — Line 19

The FILE-CONTROL clauses for SAKFILE include the re-
quired clauses SELECT . . . ASSIGN, ORGANIZATION IS,
ACCESS MODE, and ACTUAL KEY. The FILE-LIMITS clause
restriets the uitimate size of SAKFILE. The clause RESERVE
5 ALTERNATE AREAS specifies that enough buffer space be
allocated to hold five data blocks simultaneously. Extra
buffer space for actual key files is not necessarily more
efficient, and is in fact less efficient when processing is very
random.

Line 30 -- Line 35

The Data Division clauses for SAKFILE include the required
clause LABEL RECORDS OMITTED, The BLOCK CONTAINS
clause uses the RECORDS format; this is more efficient than
specifying the number of characters, since COBOL converts
characters per block to records per block anyway.

Line 59 — Line 68

SAK-KEY is the key item for SAKFILE. It is not within the
record format for SAKFILE, since it has no place in the
original record format for UNSORTED-FILE, but is only used
temporarily. The remainder of the items in the Working-
Storage Section are used in the random generation of key
values for the original records of UNSORTED-FILE. UN-
SORTED-FILE is created entirely within this program, but
normally it would be an existing file.

Line 74 -- Line 84

Lines 74 through 84 are the skeleton of the program, calling
into execution all the other lines of the Procedure Division.
First UNSORTED-FILE is opened for output and created.
Then it is closed and reopened for input. The SORT
statement (lines 80 through 83) sorts TAGFILE, and, through
the input procedure FIRST-PASS, creates TAGFILE and
SAKFILE, It also, through the output procedure LAST-PASS,
writes the records of SAKFILE to the output file
SORTEDFILE, in the order determined by TAGFILE.

Line 86 — Line 98

The input procedure reads records from UNSORTED-FILE and
writes them to SAKFILE. The Kkeys of the records in
UNSORTED-FILE are extracted and written to TAGFILE
along with the corresponding actual keys. SAK-KEY is set to
0 (line 90) prior to each execution of WRITE INVALID KEY
(line 93) thus requesting the system to generate the actual
keys. The RELEASE statement (line 95) releases the records
of TAGFILE for sorting.

00001
90002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
0001R
00019
000290
00021
00022
00023
00024
00025
00026
00027
0002#
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
06045
00045
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069

IOENTIFICATION DIVISION.
PROGRAM-1ID. " SAKDEMO.
ENVIRONMENT DIVISION,

CONF IGURATION SECT1ON.
SOURCE~COMPUTER. CYBER.,
O0BJECT-COMPUTER. CYBER.

INPUT-0UTPUT SECTION,.

FILE-CONTROL
SELECT SAKFILE ASSIGN TO FILESAK
ORGANIZATION IS ACTUAL KEY
ACCESS MODE RANDOM
ACTUAL KEy 1S SAK-KEY
FILE-LIMIT 35000
RESERVE 5 ALTERNATE AREAS.
SELECT UNSORTED=-FILE ASSIGN FILEIN
RESERVE S ALTERNATE AREAS.
SELECT SORTEDFILE ASSIGN FILEOUT
RESERVE 5 aALTERNATE AREAS.
SELECT TAGFILE ASSIGN TAGS.

UATA DIVISION.
FILE SECTION.

F SAKFILE
LABEL RECORDS OMITTED
BLOCK CONTAINS (6 RECORDS
DATA RECORD SAK=REC.

01 SAK=REC.
02 FILLER PIC x{(160).

FD UNSORTED-FILE
LABEL RECORDS (OMITTED
BLOCK CONTAINS 640 CHARACTERS
DATA RECORD WUNS=-REC.
01 UNS=-REC.
02 RANDOM~KEY PIC 9(S).
02 REST PIC X(155),

FO SORTEDFILE
LABEL RECORDS OMITTED
BLOCK CONTAINS 640 CHARACTERS
DATA RECORD SORTED.
01 SORTED.
02 FILLER PIC X(160).

SD TAGFILE
LABEL RECORDS OMITTED
DATA RECORD TAG.

01 TAG.
02 SYMB=KEY PIC 9(5).
02 TAG-KEY PIC 9(S).

WORKING-STORAGE SECTION.
77 SAK~-KEY PIC 9(5) COMP~-1l.

77 LARGE-PRIME PIC 9(7) COMP~-1 VALUE #388593.

77 SEED PIC 9(5)V99 COMP-1 VALUE 4679.
77 RANDOM-NUMBER PIC 9(7) COMP-1.
01 OOUBLE-NUMBER.
02 FULL-LENGTH PIC 3(7)V3(T).
02 SPLITTER REDEFINES FULL-LENGTH.
03 INTEGRAL PIC 9(7).
03 FRACTIONAL PIC 9(7).

8-6

Figure 8-5. Sample Program 9: Using Actuel Key Files (Sheet 1 of 2)

60496000 A

e

e

S’

00070 PROCEDURE DIVISION.

00071

00072 EXECUTE SECTION.

00073

00074 START,

00075 OPEN OUTPUT UNSORTED=-FILE.

00076 PERFORM RECORD~GENERATION 500 TIMES.

00077 CLOSE UNSORTED-FILE.

00078 OPEN INPUT UNSORTED=-FILE.

00079 OPEN OUTPUT SAKFILE.

00080 SORT TAGFILE

00081 ON ASCENDING KEY SYMB=-KEY

00082 INPUT PROCEDURE IS FIRST-PASS

00083 QUTPUT PROCEDURE IS LAST-PASS.

00084 STOP RUNe.

00085

00086 FIRST-PASS SECTION.

00087

000838 READ=-LOOP,

00089 READ UNSOURTED=FILE AT END GO TO END-OF-FIRST=PASS.

00090 MOVE ZERO TO SAK-KEY.

00091 MOVE RANDOM=-KEY TO SYMB=KEYe.

00092 MOVE UNS=-REC TO SAK-REC.

00093 WRITE SAK-REC INVALID KEY DISPLAY #FAULT 1# STOP RUN.

00094 MOVE SAK-KEY TO TAG-KEY.

00095 RELEASE TAG.

00096 GO TO READ-LOOP.

00097 END=-OF=-FIRST~PASS.,

00058 CLOSE UNSORTED-FILE SAKFILE.

00099

00100 LAST-PASS SECTION.

00101

00102 GET-READY.

00103 OPEN OUTPUT SORTEDFILE INPUT SAKFILE.

00104 WRITE-LOOP,

00105 RETURN TAGFILE AT END GO TO END~OF-LAST=-PASS,

00106 MOVE TAG-KEY TO SAK=-KEY.

00107 READ SAKFILE INVALID KEY DISPLAY #FAULY 2% STOP RUN.

00108 MOVE SAK-REC TO SORTED.

00109 WRITE SORTED.

00110 GO TO WRITE~-LOOP.

00111 END-OF-LAST-PASS.

0ol1le CLOSE SORTEDFILE SAKFILE.

00113

00114 RECORD-GENERATION SECTION,

00115

00116 GEN=-A=-REC.

00117 ADD 1 TO SEED.

00118 DIVIDE LARGE-PRIME BY SEED GIVING FULL-LENGTH.

00119 ADD INTEGRAL FRACTIONAL GIVING RANDOM-NUMBER.

00120 MOVE RANDOM=-NUMBER TO RANDOM-KEY.

00121 MOVE ALL # THEQUICKBROWNFOX - # TO REST.

00122 WRITE UNS-REC.

00123

00124 GEN=-A-REC-EXIT.

00125 EXITe

Figure 8-5. Sample Program 9: Using Actual Key Files (Sheet 2 of 2)

60496000 A 8-7

OWNFOX THEQUICKBROWNOOBG6O TH JICKBROWNFOX THEQUICKBROWNFOX THEQUICKBRC
CKBROWNFOX THEQUICKBROWNFOX THEQUICKBROWNO1178 THEQUICKBROWNFOX THEQUIC
EQUICKBROWNFOX THEQUICKBROWNF THEQUICKBROWNFOX THEQUICKBROWNO1531 THE
THEQUICKBROWNFOX THEQUICKBRO FOX THEQUICKBROWNFOX THEQUICKBROWNFOX
(028 THEQUICKBROWNFOX TwEQUIC ROWNFOX THEQUICKBROWNFOX THEQUICKBROWNFC
OWNFOX THEQUICKBROWNF OX THE J1ICKBROWNFOX THEQUICKBROWNFOX THEQUICKBRU
CKBROWN02471 THEBUICKBROWNFOX THEQUICKBROWNFOX THEQUICKBROWNFOX THEQUIC
EQUICKBROWNFOX THEQUICKBROWNO 36 THEQUICKBROWNFOX THEQUICKBROWNFOX THE
THEQUICKBROWNFOX THEBUICKB NFOX THEQUICKBROWN02940 - THEQUICKBROWNFOX
ox THEQUICKBROWNFOX TwEQU KBROWNF OX THEQUICKBROWNFOX THEQUICKBROWNOZ
OWNFOX THEQUICKBROWNFOX T UICKBROWNFOX THEQUICKBROWNFOX THEQUICKBRC
CKBROWNFOX THEQUICKBROWNFOX THEQUICKBROWNFOX THEQUICKBROWNFOX THEQUIC
EQUICKBROWNFOX THEQUICKBROWNF - THEQUICKBROWNFOX THEQUICKBROWNFOX THE
THEQUICKBROWNO3487 THE®UICKBR NFOX THEQUICKBROWNFOX THEQUICKBROWNFOX
0x THEQUICKBROWNFOX TMEQUI ROWNO36843 THEQUICKBROWNFOX THEQUICKBROWNF O
QWNFOX THEQUICKBROWNFOX THE JICK@ROWNFOX THEQUICKBROWNO3854 THEQUICKBRC
CKBROWNFOX THEQUICKBROWNFOX (REQUICKBROWNFOX THEQUICKBROWNFOX THEQUIC
EQUICKBROWNFOX THEQUICKBROWNFO THEQUICKBROWNFOX THEQUICKBROWNFOX THE
THEQUICKBROWNFOX THEQUICKBRO, FOxX THEQUICKBROWNFOX THEQUICKBROWNFOX
4063 THEQUICKBROWNFOX THEAUI BROWNFOX THEQUICKBROWNFOX THEQUICKBROWNFOQ
OWNFOX THEQUICKBROWNO40SS T JICKBROWNFOX THEQUICKBROWNFOX THEQUICKBRO
CKBROWNFOX THEQUICKBROWNFOX HEQUICKBROWN04210 THEQUICKBROWNFOX THEQUIC
EQUICKBROWNFOX THEQUICKBROWNFO THEQUICKBROWNFOX THEQUICKBROWN(Q4229 THE
THEQUICKBROWNFOX THEQUICKBRO FOX THEQUICKBROWNFOX THEQUICKBROWNFOX
ox THEQUICKBROWNFOX THEQUIC -FROWNF OX THEQUICKBROWNFOX THEQUICKBROWNFQ
OWNFOX THEQUICKBROWNFOX THE JICKBROWNFOX THEQUICKBROWNFOX THEQUICKBRO
CKBROWNOS030 THEQUICKBROWNFOX THEQUICKBROWNFOX THEQUICKBROWNFOX THEQUIC
EQUICKBROWNFOX THEQUICKBROWNO 55 THEQUICKBROWNFOX THEQUICKBROWNFOX THE
THEQUICKBROWNFOX THEQUICKBR NFOX THEQUICKBROWNOS5433 THEQUICKBROWNFOX
ox THEQUICKBROWNFOX THEQUI BROWNFOX THEQUICKBROWNFOX THEQUICKBROWNOS
OWNFOX THEQUICKBROWNFOX TH UICKBROWNFOX THEQUICKBROWNFOX THEQUICKBRG
CKBROWNFOX THEAUICKBROWNFOX THEQU ICKBROWNF OX THEQUICKBROWNFOX THEQUIC
EQUICKBROWNFOX THEQUICKBROWNF THEQUICKBROWNFOX - THEQUICKBROWNFOX THE
THEQUICKBROWNO6572 THEQUICKBR NFOX THEQUICKBROWNFOX THEQUICKBROWNFOX
033 THEQUICKBROWNFOX THEQUIC BROWNO6SE5S THEQUICKBROWNFOX THEQUICKBROWNFC
OWNFOX THEQUICKBROWNFOX TH UICKBROWNFOX THEQUICKBROWNO6767 THEQUICKBRC
CKBROWNFOX THEQUICKSROWNFOX : THEQUICKBROWNFOX THEQUICKBROWNFOX THEQUIC
EQUICKBROWNFOX THEQUICKBROWNF THEQUICKBROWNFOX THEQUICKBROWNFOX THE
THEQUICKBROWNFOX THERUICKBR NFOX THEQUICKBROWNFOX THEQUICKBROWNFOX
8528 THEQUICKBROWNFOX THEOUI ROWNFOX THEQUICKBROWNFOX THEQUICKBROWNFQ
OWNFOX THEQUICKBROWNO8580 THE ' ICKBROWNFOX THEQUICKBROWNFOX THEQUICKBRO
CKBROWNFOX THEQUICKBROWNFOX HEQUICKBROWNOB900 THEQUICKBROWNFOX THEQUIC
EQUICKBROWNFOX THEQUICKBROWNFQ, THEQUICKBROWNFOX THEQUICKBROWNOB902 THE
THEQUICKBROWNFOX THEQUICKBR NFOX THEQUICKBROWNFOX THEQUICKBROWNFOX
ox THEQUICKBROWNFOX TREQUI ROWNFOX THEQUICKBROWNFOX =~ THEQUICKBROWNFQ
OWNFOX THEQUICKBROWNFOX THE 'ICKBROWNFOX THEQUICKBROWNFOX THEQUICKBRC
CKBROWNO9791 THEQUICKBROWNFOX HEQUICKBROWNFOX THEQUICKBROWNFOX THEQUIC
EQUICKBROWNFOX THEQUICKBROWNOS, 3 THEQUICKBROWNFOX THEQUICKBROWNFOX THE
THEQU ICKBROWNFOX THEQUICKBR FOX THEQUICKBROWNO9967 THEQUICKBROWNFOX
(02 THEQUICKBROWNFOX THEQUIC ROWNFOX THEQUICKBROWNFOX THEQUICKBROWNI1O

Figure 8-6. Output from Sample Program 9

Line 100 — Line 112

The output procedure acecepts the sorted records of TAGFILE
through the RETURN statement (line 105) and uses them to
read SAKFILE randomly (line 107). The records of SAKFILE
are thus read in the order of the original keys from
UNSORTED-FILE. The records are then written to SORTED-
FILE in this order, ensuring that the records are in order on
SORTEDFILE,

Line 114 — Line 125

The original records for UNSORTED-FILE are generated in
lines 114 through 125. The key of each record is generated
through a random number procedure, and the rest of each
record is filled with irrelevant data.

SAMPLE PROGRAM 10: MULTIPLE
INDEX ACTUAL KEY FILES

Sample program 10, shown in figure 8-7, illustrates the use of
actual key files with multiple index structure defined. The
program creates an actual key file, NAME-FILE, based on
records contained on the card file CRDFILE, and then reads
selected records based on information on the card file CARD-
FILE. One primary key, PERS-NO, and one alternate Key,
DATE-A, are defined for NAME-FILE. Sample input for
program 10 is shown in figure 8-8, and sample output in
figure 8-9.

60496000 A

o

N

N

00001
00002
00003
S 00006
00005
00006
00007
N 00008
00009
00010
00011
S 00012

- 00013

00014
00015
N 00016
00017
00018
. 00019
N 00020
00021
00022
00023
N : 00024
0002sS
00026
00027
N 00028
00029
00030
00031
S 00032
00033
00034
00035
00036
00037
00038
00039
— 00040
00041
00042
00043
N ’ 00044
’ 00045
00046
00047
et 00048
00049
00050
00051
S 00052
00053
000S4«
00055
R 00056
00057
00058
00059
R 00060
= 00061
00062
00063
N’ 00064
0006S
00066
00067
R 00068
00069

IDENTIFICATION DIVISION.
PROGRAM=-IDe ACTUAL~-KEY=MIP.
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER.
0BJECT-COMPUTER. CYBER.

INPUT=-QUTPUT SECTION.
FILE~CONTROL.
SELECT CRDFILE ASSIGN 7O INPUT.
SELECT CARD=-FILE ASSIGN TO INPUT.
SELECT NAME-FILE ASSIGN -OFILE MIP2
ACCESS IS RANDOM
ORGANIZATION IS ACTUAL KEY
ACTUAL KEY IS PERS-NO
ALTERNATE RECORD KEY IS DATE~A DUPLICATES.

DATA DIVISION.
FILE SECTION.

FD CRDFILE
LABEL RECORDS aRE OMITTED
DATA RECORDS ARE CARD-REC.
01 CARD-REC.
02 IN-KEY,
03 IN-Kl PIC X(6).
03 IN-K2 PIC 9(4).
03 IN-K3 PIC X(8).
02 IN-AMT PIC 9(8).
02 IN-COLOR PIC X(8).
02 I-DATE-A PIC 9(S).
02 IN=-RANK1 PIC X(20).

FD CARD=-FILE
LABEL RECORDS ARE OMITTED
DATA RECORDS ARPE CARD=-RECORD.
01 CARD=-RECORD. :
02 INPERS-NO PIC 9(5).
02 FILLER PIC X(75).

FD NAME-FILE
LABEL RECORDS ARE OMITTED.
BLOCK CONTAINS 5110 CHARACTERS
DATA RECORDS ARE PERS~REC.
01 PERS-REC.
0z KEY=-1.
03 Kl PIC X(6).
03 PERS=NO PIC 9(4) USAGE COoMP-1.
03 CITY PIC X(8).

02 AMT PIC 9(6)V99.

02 COLOR PIC Xx(8).

02 DATE-A PIC 9(5) USAGE COMP-1.
02 RANK.

03 TITLEA PIC X(11).
03 TEAM-T1 PIC X(9).

PROCEDURE DIVISION.

CREATE-RANDOM~F ILE .
OPEN INPUT CRDFILE
OUTPUT NAME-FILE.

READL .
READ CRDFILE AT END GO TO END-CREATE.
MOVE IN=-K1 TO Kl.

60496000 A

Figure 8-7. Sample Program 10: Multiple Index Actual Key Files (Sheet 1 of 2)

00070 MOVE ZEROS TO PERS~-NO.

00071 MOVE IN-K3 TO CITY.

00072 MOVE IN=AMT TO AMT.

00073 MOVE IN-COLOR TO COLOR.

00074 MOVE 1~DATE~A TO DATE-A.

00075 MOVE IN-RANK1 10 RANK.,.

00076 WRITE PERS=-REC INVALID KEY DISPLAY
00077 #INVALID KEY IS # PERS~-NO

00078 GO YO END=RUN.

00079 GO T0 READI1.

00030

00031 END-CREATE.

00082 CLOSE CRDFILEs NAME-FILE.

00083 :

00084 INITIALIZE-ALL.

00085 OPEN INPUT NAME-FILEs CARD-FILE.
00086 ’)

ooo87 SELECT-REC, .

0008y READ CARD=FILE AT END GO TO END=RUN.
00089 MOVE INPERS~NO TO DATE-A

00090 START NAME=-FILE KEY IS = DATE-A
00091 INVALID KEY DISPLAY #INVALID KEY - KEY IS
00092 GO TO END=RUN.

00097 ’

0009« READ-IT.

00095 READ NEXT NAME-FILE AT END GO TO END-RUN.
noo9I6 DISPLAY K1 PERS-NO CITY AMT COLOR DATE~A RANK.
00097 GO TO READ~II.

00098

00099 END=-RUN.

00100 CLOSE NAME-FILEs CARD-FILE.

00101 STOP FUN.

DATE-A

Figure 8-7. Sample Program 10: Multiple Index Actual Key Files (Sheet 2 of 2)

PERSNONOOTIBROOKF IEQ04973508R0WN 72123DRAFTSMAN ASST TRS
PERSONO0123CHICAGO 0030019RBLUE A9043PROGRAMMER VICE PRES
PERSONO4S6CHICAGO 00215835PURPLE 69152CLERK PRESIDENT
PERSONO796WINNETKAQO 7923548LUE 69187TYPIST COMMITTEE
PERSONZ27ZHINSDALESO0S3G1I6YELLOW T72189TKRAINEE COMMITTEE
PERSONZ4SIEVANSTONOOG25438318ROWN 7021 9MANAGER CHAIRMAN
PERSON33I3CICERD 06061372YELLOW T732900PERATOR V CHAIRMAN
PERSON3796BATAVIA 21356379YELLOW 70123PROGRAMMER MEMBER
PERSON4B4SCHICAGO 7027513RYELLOW 71301ENGINEER SECRETARY
PERSON&4BIOBATAVIA 10213575PURPLE T0154ANALYST MEMBER
PERSONS16TLA GRANGO242655S4BLUE 69265SECRETARY TREASURER
PERSONSI6BLYONS 0RAR2394HBROWN T4012SECRETARY MEMBER
PERSONG6S94CHICAGO 01597624PURPLE 6HI152ENGINEER COMMITTEE
PERSONG6894L YONS 30A37732PURPLE T1368CLERK~-TYP MEMBER
PERSONT7T1S6AWESTERN 04348910BLUE TO0TTMANAGER COMMITTEE
PERSON759BCHICAGO 017958428R0OWN 692150PERATOR COMMITTEE

Figure 8-8. Input for Sample Program 10

Line 15 — Line 19

The FILE-CONTROL clauses for NAME-FILE include required
clauses SELECT . . . ASSIGN, ACCESS IS RANDOM,
ORGANIZATION IS, and ACTUAL KEY. Additionally, one
alternate key is defined by the ALTERNATE RECORD KEY
clause; duplicate values are permitted for this key. The first

8-10

file defined by the ASSIGN clause, OFILE, is the actual key

data file; the second, MIP2, is the index file.

Line 63 — Line 82

NAME-FILE is opened for output and created with records

from CRDFILE.

o’

“ .

_/'

S

1\..—“

PERSONOQOSBATAVIA 85637900YELLOW T70123PROGRAMMER MEMBER
PERSONOOL1O0BATAVIA 21357600PURPLE 701S4ANALYST MEMBER
PERSONOOOSGEVANSTON25498100BROWN 70219MANAGER CHAIRMAN
PERSONOOO9CHICAGD 27513800YELLOW 71301ENGINEER SECRETARY
PERSONOO14LYONS 63773200PURPLE 71368BCLERK-TYP MEMBER
PERSONONCG1BROOKF IE4S785000BROWN 721230DRAFTSMAN ASST TRS
PERSONOOOSHINSDALEOS391600YELLOW 72189TRAINEE COMMITTEE
PERSONOOOT7CICERO 0614T200YELLOW T732900PERATOR V CHAIRMA
PERSONOO12LYONS 68239400BROWN T4012SECRETARY MEMBER
Figure 8-9. Output from Sample Program 10
Line 84 — Line 101 NEXT AT END statement read the records of NAME-FILE in
the order their primary key values occur on the index file,
NAME-FILE is reopened for input and read. A single key is following the alternate key value 70123 for DATE-A. The AT
read from CARD-FILE (line 88); the key value read is 70123 END clause is executed on the next read after the last key
in this case. The START statement positions the index file value for DATE-A has been read.

based on this key value. Subsequent iterations of the READ

60496000 A

8-11

N’

FILE CONTROL STATEMENT 9

The FILE control statement establishes file strueture specifi-
cations different from, or in -addition to, those usually
established by COBOL. This faecility is implemented by
assigning values to fields in the file information table (FIT).

Every file processed through CYBER Record Manager must
have a valid file information table at the time the file is
opened. For files referenced in COBOL programs, the COBOL
compiler establishes a table for each file during compilation
and sets fields in the table to appropriate values based on the
clauses and statements that process the file. These tables
become part of the compiled object program: Most of the
file information table fields needed for a given file are set
during compilation, but some might be reset by the COBOL
execution time routines. For example, the block type (BT)
field for a sequential file is reset if the COBOL execution
time routines determine " that the block type originally
selected is inappropriate for the device on which the file
actually resides. (Device residence cannot be determined at
compile time.) In most cases, however, the values selected
during compilation remain in effect throughout program
execution,

If one or more FILE control statements have been provided
for a file, the values they specify are placed in the file
information table when the file is opened during program
execution.

The FILE control statement has two uses of interest to the
COBOL programmer. The first is to enable other processors
or languages to use files created through COBOL programs.
For example, a FORTRAN Extended 4 program can read a
COBOL-created file if a FILE control statement specifies the
same file structure produced by the original COBOL program.
Even file structures not provided as part of standard
FORTRAN input/output (sueh as D, R, or T type records, or K
or E type blocks) can be specified through the FILE control
statement. There are limitations, however, on the changes
that can be made in this way. For instance, standard
FORTRAN Extended input/output cannot successfully read an
indexed sequential, direct, or actual key file, regardless of
any parameters specified on the FILE control statement.

In order to specify the correct parameters in the FILE control
statement, it is necessary to know what file information table
fields are used by COBOL and how they are used. Tables 9-1
through 9-8 deseribe the fields and values used by COBOL for
each of the six file organizations, six record types, and four
block types. These tables also describe the specifications
within the COBOL program that are used to set these fields.

The second use of the FILE control statement is to alter or
supplement default COBOL file processing. File information
table field settings provided by the FILE control statement
take effect when the file is opened at execution time, and
override specifications established in the table by COBOL
during compilation. Thus, file structures other than those
defined in the source program result when the program is
executed. Although the system will not prevent it, a FILE
control statement should not in general be used for this
purpose. The COBOL language contains within it adequate
provision for virtually any type of file processing likely to be
of value to the programmer. Furthermore, unexpected
consequences can result when the user overrides the file
information table values already compiled in a program.
However, a small number of file information table fields

60496000 A

provide processing options not available through COBOL, and
can be safely set by a FILE control statement accompanying
execution of a COBOL program. These fields are shown in
table 9-9.

None of the tables in this section provide much detail about
the file information table fields they list. Such detail is
beyond the scope of this user guide. For more information
about the use, settings, and default values of these fields, the
reader is referred to the Record Manager Reference Manual.

FILE CONTROL
STATEMENT USAGE

The format of the FILE control statement is:
FILE(ifn,field=value,field=value, . . ., field=value)

1fn Logical file name (COBOL imple-
mentor-name)

field File information table field mnemonic,
as listed in the tables in this section

value Value to be placed in corresponding
field

When a FILE control statement is encountered in a job
stream, its parameters are stored on a temporary file for
subsequent reference by processing programs. If subsequent
FILE control statements are encountered in a job for a given
file, the information on them is stored together with that of
the previous statements. When multiple specifications appear
for any specifie parameter, the last specification encountered
is used. When a program that references a given file is called
for execution, the prestored parameters are set in the file
information table when the file is opened (provided an LDSET
statement has been included, as explained below).

The sequence of events can be illustrated as follows:
1. The following control statement is encountered:
FILE(PAYFILE,BT=C,RT=Z)
The block type (BT) and record type (RT) parameters
are placed in temporary storage in association with the
name PAYFILE.
2. The following control statement is encountered:
FILE(PAYFILE,RT=F,FL=80)
A new record type parameter (RT=F) that cancels the
existing one (RT=Z) is stored, and the fixed length
parameter (FL) is added to the parameters that already
exist for the file named PAYFILE.
3. The following control statement is encountered:
LDSET(FILES=PAYFILE)
The LDSET control statement indicates that the loading

operation must include the code modules required for
processing of the file PAYFILE. In this case, the

9-1

9-2

modules necessary for sequential file organization are
to be loaded, and those pertaining to C blocks and F
records. The LDSET statement must be in the same
load set as the statement calling for execution of the
object program.

The following control statement is encountered:
LGO.

The loader loads the program currently on LGO (the
compiled COBOL program) and consults the temporary
storage area where the FILE control statement infor-
mation is stored. From information found there, it
determines the routines that are to handle C blocking
and F records, and loads the routines. It also loads a
special routine, PDF.RM, to be used in the next step in
the sequence.

The following statement is to be executed from the
loaded program:

OPEN INPUT PAYROLL-FILE.

The file name PAYROLL-FILE was associated with the
logical file name PAYFILE in the ASSIGN statement of
the COBOL program. The file is now to be opened for
input processing.

Before opening the file, CYBER Record Manager
ascertains that PDF.RM has been loaded as specified by
the LDSET control statement. When absolute programs
(such as programs with overlay structure) are loaded,
the LDSET control statement is ignored; consequently,
PDF.RM must be loaded by the compiler. This is

accomplished by placing the statement ENTER
"PDF.RM" immediately after a STOP statement in the
Procedure Division of the COBOL program. The
ENTER statement is never executed. The external
reference generated by the ENTER statement causes
the loader to load PDF.RM. When the file is opened,
the OPEN statement processing detects that PDF.RM is
present. PDF.RM is then entered; it searches the
temporary file that contains the FILE statement param-
eters. It places the parameters associated with the file
named PAYFILE in the correct fields in the file
information table for PAYFILE. The file is then
opened. All subsequent file processing operations for
PAYFILE use the information contained in the file
information table.

FILE CONTROL
STATEMENT EXAMPLES

The examples shown in figures 9-1 through 9-13 illustrate the
correspondence between COBOL Environment and Data
Division clauses and file information table fields. In each
case, the COBOL clauses used to define a sequential file with
specific block and record types are shown, followed by the
FILE control statement that would communicate the same
information to a different processor reading the file. The
parameters on the FILE control statement are then explained.
The block and record type combinations illustrated here are
those most likely to be specified in a COBOL program. These
examples assume that the file resides on an appropriate
device; if not, COBOL will change the block type at
execution time.

60496000 A

N

S

TABLE 9-1. FIT FIELDS BY RECORD TYPE

Mnemonic

Desecription

Setting

For D type records:

RT
MNR
MRL

Lp

LL

Record type

Minimum record length
Maximum record length
Start of count field

Length of count field

D (decimal character count)

integer-1 from RECORD CONTAINS

integer-2 from RECORD CONTAINS

Length of items preceding data-name in DEPENDING ON option

Length of data-name in DEPENDING ON option

For F type records:

RT

FL

Record type

Fixed length

F (fixed length)

Length of longest Record Description entry

For R type records:

RT

RMK
MRL

Record type
Record mark character

Maximum record length

R (record mark)
Right bracket character @ (62B)

Calculated from Record Desecription

For T type records:

RT
MNR
MRL

Ccp

CL

HL

TL

Record type

Minimum record length
Maximum record length
Start of trailer count field
Length of trailer count field
Header length

Length of trailer item

T (trailer count)

Caleulated from integer-1 in OCCURS option

Calculated from integer-2 in OCCURS option

Length of items preceding data-name in DEPENDING ON option
Length of data-name in DEPENDING ON option

Length of items preceding subject of OCCURS clause

Length of subject of OCCURS clause

For W type records:

RT
MRL
RL

Record type
Maximum record length

Record length

W (control word)
Length of longest Record Description entry

Length of specified Record Description entry
(reset for each WRITE)

For Z type records:

RT
FL

Record type

Fixed length

Z (zero byte terminated)

Length of longest Record Description entry

60496000 A

9-3

TABLE 9-2. FIT FIELDS BY BLOCK TYPE

Mnemonic Description Setting
For K type blocks:
BT Bloek type K (fixed number of records per block)
RB Number of records per block integer-1 value from BLOCK CONTAINS ... RECORDS;

1 if clause omitted

For C type blocks:

BT

MBL

Block type

Fixed block length

C (character count)

Predefined; value depends on device type

For E type blocks:

BT
MNB

MBL

Block type

Minimum block length

Maximum block length

E (exact records)
integer-1 from BLOCK CONTAINS ... CHARACTERS

integer-2 from BLOCK CONTAINS ... CHARACTERS

For I type blocks:

BT Block type 1 (internal control word)
MBL Fixed block length Predefined as 5120
TABLE 9-3. FIT FIELDS FOR SEQUENTIAL FILES
Mnemonic Description Setting

FO File organization 8Q (sequential)

BT Block type From BLOCK CONTAINS

RT Record type From RECORD CONTAINS and other clauses (section 2)

CM Conversion mode Binary if so specified by RECORDING MODE; decimal otherwise

LFN Logical file name - Implementor-name in ASSIGN

BFS Buffer size Caleulated from RESERVE . .. ALTERNATE AREAS

PD Processing direction As specified by OPEN; OUTPUT if OPEN EXTEND

OF Open action N (NO REWIND), E (EXTEND) if specified in OPEN; R (rewind)
otherwise

CF Close action N (NO REWIND), U (LOCK) if specified in CLOSE; R (rewind)
otherwise

VF End of volume action U (unload)

DX End of data exit From AT END clause of READ statement

EX Error exit From USE AFTER ERROR procedure

ULP User label processing YES if USE BEFORE/AFTER LABEL procedures declared;
NO otherwise

LX User label routine From USE BEFORE/AFTER LABEL procedure

LA User label location From data-names in LABEL RECORDS

LBL Length of label area Calculated from data-names in LABEL RECORDS

9-4

60496000 A

N’

TABLE 9-4. FIT FIELDS FOR RELATIVE FILES

N
Mnemonic Description Setting
. | =
N~ FO File organization WA (word addressable)
RT Record type Set from RECORD CONTAINS and other clauses (section 2)
~ LFN Logical file name Implementor-name in ASSIGN
BFS Buffer size Calculated from RESERVE . .. ALTERNATE AREAS
~ PD Processing direction As specified by OPEN; OUTPUT if OPEN EXTEND
OF Open action N (NO REWIND), E (EXTEND) if so specified in OPEN; R (rewind)
) otherwise
p—
CF Close action R (rewind)
VF End of volume action U (unload)
P
DX End of data exit From AT END clause of READ statement
- EX Error exit From USE AFTER ERROR procedure or INVALID KEY eclause
N
N’
TABLE 9-5. FIT FIELDS FOR STANDARD FILES
Mnemonic Description Setting
S FO File organization WA (word addressable)
RT Record type From RECORD CONTAINS and other clauses (section 2)
N’ LFN Logical file name Implementor-name in ASSIGN
BFS Buffer size Calculated from RESERVE . .. ALTERNATE AREAS
N PD Processing direction As specified by OPEN
OF Open action R (rewind)
~— CF Close action R (rewind)
VF End of volume action U (unload)
~— EX Error exit From USE AFTER ERROR procedure or INVALID KEY clause
—
"
z_’/
v 60496000 A 9-5

TABLE 9-6. FIT FIELDS FOR DIRECT FILES

Mnemonic Deseription Setting
FO File organization DA (direct access)
RT Record type From RECORD CONTAINS and other clauses (section 2)
LFN Data file name implementor-name-1 in ASSIGN
XN Index file name implementor-name-2 in ASSIGN
BFS Buffer size Calculated from RESERVE . .. ALTERNATE AREAS
PD Processing direction As specified by OPEN
HMB Number of home blocks From NUMBER OF BLOCKS
MBL Size of home blocks From BLOCK or RECORD-BLOCK CONTAINS, or caleulated
OVF Overflow record residence Overflow records can be in both home and overflow bloeks
RB Records per block From BLOCK or RECORD-BLOCK CONTAINS (used only to
caleulate MBL)
RKW Beginning word of key From Record Description
RKP Key position within RKW From Record Description
KL Key length From Record Description
HRL Hashing routine From USE FOR HASHING procedure
DX End of data exit From AT END clause of READ statement
EX Error exit From USE AFTER ERROR procedure or INVALID KEY eclause
KA Key loeation on access From ACTUAL/RECORD/SYMBOLIC KEY
REL Alternate key comparison From relational-operator in START statement
NDX Index record indicator Index or data file search for START statement

60496000 A

[y

. -

~—

S’

N

TABLE 9-7. FIT FIELDS FOR INDEXED SEQUENTIAL FILES

Mnemonic Description Setting
FO File organization Indexed sequential
RT Record type From RECORD CONTAINS and other clauses (section 2)
LFN Data file name implementor-name-1 in ASSIGN
XN Index file name implementor-name-2 in ASSIGN
BFS Buffer size Calculated from RESERVE . .. ALTERNATE AREAS
PD Processing direction As specified by OPEN
MBL Data bloek length From BLOCK or RECORD-BLOCK CONTAINS, or calculated
RB Records per block From BLOCK or RECORD-BLOCK CONTAINS (used only to
calculate MBL)
DpP - Data block padding From DATA-PADDING
IBL Index block length From INDEX-BLOCK CONTAINS or calculated
ip Index bloek padding From INDEX-PADDING
NL Number of index levels From INDEX-LEVEL (used only to caleulate IBL)
KT Key type According to usage of key item
KL Key length From Record Description
OF Open action R (rewind)
DX End of data exit From AT END clause of READ statement
EX Error exit From USE AFTER ERROR procedure or INVALID KEY clause
KA Key location on access From RECORD/SYMBOLIC KEY
KP Key position within KA word From RECORD/SYMBOLIC KEY
DKI Duplicate key permission YES if DUPLICATES in RECORD KEY, NO otherwise
MKL Major key length Length of key item named in READ MAJOR INVALID KEY
RKW Starting word of key From Record Deseription (multiple index files only)
RKP Position of key in RKW word From Record Description (multiple index files only)
REL Alternate key comparison From relational-operator in START statement
NDX Index record indicator Index or data file search for START statement
60496000 A 9-7

TABLE 9-8. FIT FIELDS FOR ACTUAL KEY FILES

Mnemonic Description Setting
FO File organization AK (actual key)
RT Record type From RECORD CONTAINS and other clauses (section 2)
LFN Data file name implementor-name-1 in ASSIGN
XN Index file name implementor-name-2 in ASSIGN
BFS Buffer size Calculated from RESERVE ... ALTERNATE AREAS
PD Processing direction As specified by OPEN
MBL Data block length From BLOCK CONTAINS or caleulated
RB Records per block From BLOCK CONTAINS or calculated
KL Key length From Record Description
DX End of data exit From AT END clause of READ statement
EX Error exit From USE AFTER ERROR procedure or INVALID KEY clause
KA Key location on access From ACTUAL KEY eclause .
RKW Starting word of key From Record Description (multiple index files only)
RKP Position of key in RKW From Record Description (multiple index files only)
REL Alternate key comparison From relational-operator in START statement
NDX Index record indicator Index or data file search for START statement
TABLE 9-9. OTHER FILE CONTROL STATEMENT PARAMETERS
Mnemonie Description Applicability Notes
BCK Bloek checksum option FO=IS, DA, AK
DP Data block padding percent FO=IS, DA, AK IS, DA: specified through DATA-PADDING
clause; AK: specified through FILE control
statement only) ’
EO Bad data disposition FO=5Q Determines system action after USE AFTER
ERROR procedure
ERL Trivial error limit All file organizations COBOL default is 3
EXD Extended diagnosties FO=8Q, WA
FwWi Force write option FO=IS, DA, AK
MUL Record length multiple BT=K, E
| PC Padding character BT=K, E
RMK Record mark character RT=R Required if character other than 62B (right
bracket character) is to be used as RECORD-MARK
SDS Dayfile statisties All file organizations
SPR Suppress read ahead FO=SQ
TRC Trace option FO=IS, DA
9-8 60496000 A

S

“ ;

COBOL clauses:

SELECT EE-TEE ASSIGN FILEET
RESERVE 4 ALTERNATE AREAS.

FD EE-TEE
LABEL RECORDS OMITTED
RECORD CONTAINS 10 TO 40 CHARACTERS
BLOCK CONTAINS 5 TO 15 RECORDS.
01 ET-REC.
02 STUFF PIC 9(5).
02 ET-KEY PIC 9(3).
02 VARY-PART PIC XX OCCURS 1 TO 16 TIMES DEPENDING ON ET-KEY.

Corresponding FILE control statement:
FILE(FILEET,BT=E,RT=T,MBL=600,MNB=50,HL=8,TL=2,CL=3,CP=5,CM=YES,MRL=40,LT=U)

FILEET Logical file name from ASSIGN clause

BT=E E bloek type given by format BLOCK CONTAINS
integer-1 TO integer-2 RECORDS

RT=T Type T records resulting from RECORD CONTAINS
integer-1 TO integer-2 CHARACTERS and DEPENDING
ON option in File Description entry

MBL=600 Maximum bloek length set at 600, since maximum
record size is 40 characters and each block contains a

and BLOCK CONTAINS
MNB=50 Minimum block size set at 50 with minimum of

10 characters per record and 5 records per bloek,
stated in RECORD CONTAINS and BLOCK CONTAINS

HL=8 Fixed-length portion of T record is 8 characters,
determined by 02 level entries describing ET-REC
TL=2 Length of trailer portion of T record is 2, determined
by PIC XX in 02 level entry deseribing VARY-
PART
CL=3 Number of charaecters in key field is 3, defined
by ET-KEY PIC 9(3)
CP=5 Beginning character position of key item. ET-
KEY PIC 9(3) occupies character positions 6 through 8.
CM=YES Conversion mode corresponds to RECORDING
MODE IS DECIMAL (COBOL defaults to CM=YES)
MRL=40 Maximum record length
of 40 characters specified by RECORD CONTAINS
clause
LT=U File is unlabeled, as indicated by LABEL RECORDS

OMITTED clause

- maximum of 15 records, given by RECORD CONTAINS -

Figure 9-1. E Type Blocks, T Type Records (First Example}

60496000 A

COBOL clauses:

SELECT EE-TEE ASSIGN FILEET
RESERVE 4 ALTERNATE AREAS.

FD EE-TEE
LABEL RECORDS OMITTED
BLOCK CONTAINS 5000 TO 5120 CHARACTERS
DATA RECORD TEE-REC.
01 TEE-REC.
02 FIXED-PART.
03 HEAD-INFO PIC X(12).
03 FURTHER-INFO PIC X(8).
03 OCCURRENCE-COUNT PIC 9(2).
02 TABLE.
03 ELEMENT OCCURS 1 TO 99 TIMES DEPENDING ON OCCURRENCE-COUNT.
04 HOURS PIC 99.
04 RATE PIC 99V99.

Corresponding FILE control statement:

FILE(FILEET,BT=E,MNB=5000,MBL=5120,RT=T,HL=22,TL=6,CP=20,CL=2,MRL=616,CM=YES,LT=U)

FILEET Name of file, as stated in SELECT ... ASSIGN
clause :

BT=E E block type, given by format of BLOCK CONTAINS
‘integer-1 TO integer-2 RECORDS

MNB=5000 Minimum block size is set at 5000 characters,
indicated by integer-1 in BLOCK CONTAINS
clause

MBL=5120 Minimum block size is set at 5120 characters,
indicated by integer-2 in BLOCK CONTAINS
clause

RT=T Record type is-T, determined by Record Description

HL=22 Fixed-length portion of T record is 22 characters,

sum of FIXED-PART item lengths

TL=6 Length of trailer portion is § characters, sum
of character positions in TABLE description

CP=20 Beginning character position of trailer count field
of record is position 20 (counted from 0), determined
by location of OCCURRENCE-COUNT

CL=2 Length of trailer count field is 2, speéified by
OCCURRENCE-COUNT field size

MRL=616 Maximum record length is 616 characters

CM=YES Decimal conversion mode (COBOL default)

LT=U Unlabeled file, declared by LABEL RECORDS

OMITTED clause

Figure 9-2. E Type Blocks, T Type Records (Second Example)

9-10 60486000 A

___/’

N

COBOL clauses:

SELECT KEY-DEE ASSIGN FILEKD

FD KAY-DEE

LABEL RECORDS OMITTED
BLOCK CONTAINS 15 RECORDS

RECORD CONTAINS 5 TO 30 CHARACTERS DEPENDING ON D-KEY.

01 KD-REC.
02 D-KEY PIC 9999.
02 MISC PIC X(26).

Corresponding FILE control statement:

FILE(FILEKD,RT=D,BT=K,RB=15,MRL=30,MNR=5,MBL=450,MNB=75,LP=0,LL=4,CM=YES)

FILEKD

RT=D

BT=K

RB=15

MRL=30

MNR=5

MBL=450

MNB=75

LP=0

LL=4

CM=YES

Name of file ereated, as given in ASSIGN clause
Type D records, indicated by RECORD CONTAINS
integer-1 TO integer-2 CHARACTERS DEPENDING
ON data-name

K block type, given by BLOCK CONTAINS integer
RECORDS

Number of records per block in BLOCK CONTAINS

Maximum record length is 30 characters, in RECORD
CONTAINS clause

Minimum record length is 5, in RECORD CONTAINS

clause

Maximum bloek length is 450 characters, product
of 30 characters for each of 15 records, specified
by RECORD CONTAINS and BLOCK CONTAINS

Minimum bloek length is 75 characters, product
of 5 characters for each of 15 records, given by
BLOCK CONTAINS and RECORD CONTAINS

Beginning charaeter position of length field is
0,'since D-KEY is in positions 0 through 3

Number of characters in length field is 4; D-KEY
PIC 9999

Corresponds to RECORDING MODE IS DECIMAL

Figure 9-3. K Type Blocks, D Type Records (First Example)

60496000 A

9-11

COBOL clauses:

FD

01

SELECT KAY-DEE ASSIGN FILEKD
RESERVE 4 ALTERNATE AREAS,

KAY-DEE
LABEL RECORDS OMITTED
BLOCK CONTAINS 10 RECORDS
RECORD CONTAINS 14 TO 80 CHARACTERS DEPENDING ON LENGTH-COUNT
DATA RECORD DEE-REC,
DEE-REC.
02 FIXED-PART.
03 HEADING-PORTION PIC X(10).
03 LENGTH-COUNT PIC 9(4).
02 STRING-PART.
03 CHARACTER PIC X OCCURS 66 TIMES.

MOVE LENGTH TO LENGTH-COUNT.
WRITE DEE-REC.

Corresponding FILE control statement:

FILE(FILEKD,BT=K,RB=10,MNB=140,MBL=800,MNR=14,MRL=80,RT=D,LP=10,LL=4,CM=YES)

FILEKD Name of file created, given in ASSIGN clause
BT=K K block type, given by BLOCK CONTAINS

RB=10 Number of records per block in BLOCK CONTAINS
MNB=140 Minimum block size is 140 characters; product

of 10 records, each containing minimum of 14
characters; specified by BLOCK CONTAINS and
RECORD CONTAINS

MBL=800 Maximum block length of 800 characters, product
of 10 records, each containing 80 characters maximum;
specified by BLOCK CONTAINS and RECORD

CONTAINS
MNR=14 Minimum record length is 14 in RECORD CONTAINS
RT=D D record type, specified by format of RECORD
CONTAINS
LP=10 Beginning character position of length field, LENGTH-
COUNT of FIXED-PART, is 10
LL=4 Length of record length field, LENGTH-COUNT,
is 4
CM=YES Recording mode is decimal

9-12

Figure 9-4. K Type Blocks, D Type Records (Second Example)

60496000 A

COBOL clauses:

FD EE-R

01 ER-REC.

FILEER

BT=E
RT=R
RMK=62B
MNR=10
MRL=20

MBL=200

MNB=50

CM=YES

SELECT EE-R ASSIGN FILEER
RESERVE 4 ALTERNATE AREAS,

LABEL RECORDS OMITTED
RECORD CONTAINS 10 TO 20 CHARACTERS DEPENDING ON RECORD-MARK
BLOCK CONTAINS 5 TO 10 RECORDS.

02 R-M-O PIC X OCCURS 20 TIMES.

Corresponding FILE control statement:

FILE(FILEER,BT=E,RT=R,RMK=62B,MNR=10,MRL=20,MBL=200,MNB=50,CM=Y ES)

Name of file as given in ASSIGN clause

E block type, given by BLOCK CONTAINS clause
format

R record type, given by RECORD CONTAINS
format

Record-mark character display code is 62 octal;
B specifies oetal

Minimum record length is 10 characters, in RECORD
CONTAINS

Maximum record length is 20 characters, in RECORD
CONTAINS

Maximum block length is product of 20 characters
per record and 10 records per block, defined in
RECORD CONTAINS and BLOCK CONTAINS

Minimum block length is 50, product of 10 blocks
and 5 records per block, given by BLOCK CONTAINS
and RECORD CONTAINS

Corresponds to RECORDING MODE IS DECIMAL

Figure 9-5. E Type Blocks, R Type Records (First Example)

60496000 A

9-13

COBOL clauses:

SELECT EE-R ASSIGN FILEER -
RESERVE 4 ALTERNATE AREAS.

FD EE-R
LABEL RECORDS OMITTED
BLOCK CONTAINS 1 TO 30 RECORDS
RECORD CONTAINS 14 TO 80 CHARACTERS DEPENDING ON RECORD-MARK
DATA RECORD R-REC.
01 R-REC.
02 HEADER-PORTION PIC X(13).
02 STRING.
03 STRING-CHARACTER PIC X OCCURS 66 TIMES.

MOVE RECORD-MARK TO STRING-CHARACTER (SUB).
WRITE R-REC.

Corresponding FILE control statement:

FILE(FILEER,BT=E,MBL=2400,MNB=14,RT=R,MNR=14,MRL=80,RMK=62B,CM=YES)

FILEER Name of file created, as given in ASSIGN clause
BT=E E block type, given by BLOCK CONTAINS clause
MBL=2400 Maximum block length is 2400 characters, produect

of 30 records per block and 80 characters per
record, as given in BLOCK CONTAINS and RECORD
CONTAINS

MNB=14 Minimum block length of 1 record per block and
14 characters per record included in BLOCK CONTAINS
and RECORD CONTAINS

RT=R R record type, given by RECORD CONTAINS

MNR=14 Minimum record length of 14, as determined by
RECORD CONTAINS

MRL=80 Maximum record length, given by RECORD CONTAINS

RMK=62B . Record-mark character display code is 62 octal;

octal is indicated by B
CM=YES Corresponds to RECORDING MODE IS DECIMAL

Figure 9-6. E Type Blocks, R Type Records (Second Example)

60496000 A

e

RN

COBOL clauses:

FD EYE-W

01 IW-REC-1 PIC X(20).
01 IW-REC-2 PIC X(30).

IWFILE

BT=I
RT=W
MRL=30

MNR=20

CM=NO

LABEL RECORDS OMITTED
RECORDING MODE BINARY.

Corresponding FILE control statement:

SELECT EYE-W. ASSIGN TO IWFILE-FIW
RESERVE 4 ALTERNATE AREAS.

FILE(IWFILE,BT=L,RT=W,MRL=30,MNR=20,CM=NOQ)

Name of file created, as given in ASSIGN clause

I block type, specified by -I suffixed to implementor~
name

W record type, specified by -W suffixed to implementor-
name

Maximum record length is 30, derived from larger
of two records, IW-REC-1 and IW-REC-2

Minimum record length is 20, smaller of two records

Corresponds to RECORDING: MODE IS BINARY

Figure 9-7. I Type Blocks, W Type Records (First Example)

60496000-A

9-15

COBOL clauses:

SELECT EYE-W ASSIGN TO IWFILE-FIW
RESERVE 4 ALTERNATE AREAS.
FD EYE-W
LABEL RECORDS ARE OMITTED
RECORDING MODE BINARY
DATA RECORDS ARE SHORT MEDIUM LONG.
01 SHORT. :
02 FILLER PIC X(50).
01 MEDIUM.
02 FILLER PIC X(80).
01 LONG.
02 FILLER PIC X(120).

.

WRITE LONG.

WRITE SHORT.

WRITE MEDIUM.

Corresponding FILE control statement:
FILE(IWFILE,BT=L,RT=W,MNR=50,MRL=120,CM=NO)

IWFILE Name of file created, as given in ASSIGN clause

BT=I 1 block type, specified by ~I suffixed to implementor-
name IW-FILE

RT=W W record type, specified by ~W suffixed to implementor-
name

MNR=50 Minimum record length is 50 characters, in record

deseription SHORT

MRL=120 Maximum record length is 120 characters, in record
description LONG

CM=NO . Corresponds to RECORDING MODE IS BINARY

9-16

Figure 9-8. I Type Blocks, W Type Records (Second Example)

60496000 A

S

A, .

COBOL clauses:

SELECT KAY-EFF ASSIGN FILEKF RESERVE 4 ALTERNATE AREAS.

FD KAY-EFF
LABEL RECORDS OMITTED
BLOCK CONTAINS 10 RECORDS
DATA RECORD F-REC.

01 F-REC.
02 FILLER PIC X(80).

MOVE DATA TO F-REC.
WRITE F-REC.

Corresponding FILE control statement:

FILE(FILEKF,BT=K,RT=F ,RB=10,FL=80,MBL=800,MNB=800,CM=YES)

FILEKF Name of file as given in ASSIGN clause

BT=K. K block type, denoted by format of BLOCK CONTAINS

RT=F F record type, determined by format of RECORD
CONTAINS

RB=10 Number of records per block, in BLOCK CONTAINS

FL=80 Fixed-length record is 80 characters, specified

by data record description F-REC

MBL=800 Maximum block length is 800 characters, product
of 80 characters per record (PICTURE clause)
and 10 records per block (BLOCK CONTAINS
clause)

MNB=800 Minimum block length, given by same parameters
as MBL in this example

CM=YES Implied by absence of RECORDING MODE statement

Figure 9-9. K Type Blocks, F Type Records

60496000 A

9-17

COBOL clauses:

SELECT CEE-EFF ASSIGN FILECF

FD CEE-EFF
LABEL RECORDS OMITTED.
01 CF-REC SIZE 50.

Corresponding FILE control statement:

FILE(FILECF ,BT=C,RT=F,FL=50,CM=YES,MBL=640)

FILECF

. BT=C

RT=F

FL=50
CM=YES

MBL=640

File name, as given in ASSIGN clause:

C block type, assigned when no BLOCK CONTAINS
clause is specified

F record type, automatically assigned when RECORD
CONTAINS clause is absent

Record length is 50 characters

! Cox‘responds to.RECORDING MODE IS DECIMAL
, (DECIMAL is default)

Max1mum bloek length is 640 characters; mass

- 'storage device is assumed

9-18

Figure 9-10. C Type Blocks, F Type Récords (First Example)

60496000 A

S

{x

pN—

COBOL clauses:

SELECT CEE-EFF ASSIGN FILECF
RESERVE 4 ALTERNATE AREAS,

.

FD CEE-EFF
LABEL RECORDS OMITTED
BLOCK CONTAINS 640 CHARACTERS
DATA RECORD F-REC.
01 F-REC.
02 FILLER PIC X(80).

MOVE DATA TO F-REC.
WRITE F-REC.

Corresponding FILE control statements:
FILE(FILECF,BT=C,RT=F,FL=80,CM=YES)
FILECF

BT=C
RT=F
FL=80

CM=YES

Name of file created, given in ASSIGN clause

C block type, given by format of BLOCK CONTAINS
clause

F record type, assigned automatically
by default .

Fixed-length of record is 80 charaecters, given by
description of F-REC

Conversion mode corresponds to RECORDING
MODE IS DECIMAL

Figure 9-11, C Type Blocks, F Type Records (Second Example)

60496000 A

9-19

COBOL clauses:

SELECT CZ-FILE ASSIGN FILECZ-FZ

FD CZ-FILE

LABEL RECORDS OMITTED.

01 CZ-REC SIZE 50.

Corresponding FILE control statement:

FILE(FILECZ,BT=C,RT=Z,FL=50,CM=Y ES,MBL=640)

FILECZ
BT=C

RT=Z

FL=50
CM=YES
- MBL=640

Name given to file created

C block type, automatically assigned if no BLOCK
CONTAINS clause is used

Record type Z, specified by appending ~-FZ to
implementor-name in ASSIGN clause

Record length is 50 characters
Corresponds to RECORDING MODE IS DECIMAL

Maximum bloek length is 640 characters; disk
device assumed

9-20

Figure 9-12. C Type Blocks, Z Type Records (First Example)

60496000 A

N

.
e

(

COBOL clauses:

SELECT CZ-FILE ASSIGN FILECZ-FZ
RESERVE 4 ALTERNATE AREAS.

FD CZ-FILE
LABEL RECORDS OMITTED
BLOCK CONTAINS 640 CHARACTERS
DATA-RECORD F-REC.
01 F-REC.
02 FILLER PIC X(80).

MOVE DATA TO F-REC.
WRITE F-REC.

Corresponding FILE control statement:
FILE(FILECZ,BT=C,RT=Z,FL=80,CM=YES)
FILECZ

BT=C
RT=Z
FL=80

CM=VES

Name of created file

C block type, given by format of BLOCK CONTAINS
clause .

Z record type, given by -FZ appended to implementor-
name in SELECT/ASSIGN clause

Fixed-length record is 80 characters, given by
F-REC size description

Corresponds to RECORDING MODE IS DECIMAL

- Figure 9-13. C Type Blocks, Z Type Records (Second Example)

60496000 A

9-21

N’

S

N’

STANDARD CHARACTER SET A

Control Data operating systems offer the following variations
of a basie character set:)

CDC 64-character set

CDC 63-character set

ASCII 64-character set

ASCIH 63-character set
These character sets are listed in table A-1. The set in use at
a particular installation was specified when the operating
system was installed.
Depending on another installation option, the system assumes
an input deck has been punched either in 026 or in 029 mode

(regardless of the character set in use). The user, however;
may specify the alternate mode by a 26 or 29 punched in

60496000 A

columns 79 and 80 of the job card or any 7/8/9 card. The
specified mode remains in effect through the end of the job
unless it is reset by specification of the alternate mode on a
subsequent 7/8/9 card.

Under NOS 1, the alternate mode can be specified also by a
26 or 29 punched in columns 79 and 80 of any 6/7/9 card, as
deseribed above for a 7/8/9 card. In addition, 026 mode can
be specified by a card with 5/7/9 multipunched in column 1,
and 029 mode can be specified by a card with 5/7/9
multipunched in column 1 and a 9 punched in column 2.

When the 63-character set is used, the display code character
00 is converted to a space (display code 55¢).

No conversions occur when the 64-character set is used.

Tables A-2 and A3 show the CDC and ASCII character set
collating sequences respectively.

.

*Ajuo 1ndut 10} paldadoe aise sayound (6Z0) 11JSV Pue {9z0) Yiiia|joH aleussrje ayy |1y
.Awmmv 3ue|q e pIBtA % 21a093/11DSY WOl suoiie|sueRIl pue 1SIXa 10U Op $8p0d pied palejar pue odlydesb 9 ayy
*(yound z-g) uoj09 3yl si1 £9 apod Aeidsip !ap0o3 pJed 1o diydesb paleidosse ou sey Qp 9pod Aedsip ‘18s oiydesb-gg e Buisn suonejelsul ujfl
‘2591 DT |euIaIxXa 01 PallaAuod S| yew
8UI|-}O-puUg °SUOJOD OM] URY) 13Yled daew m:__JSuv:u se palaidiaiul ale piom 1G-Q9 B JO puad ayl 1e S1q 049z 210W 10 3A]PM] §

TABLE A-1. STANDARD CHARACTER SETS

€L0 98l LL L8ZL L (uojooiwas) ! (uojodnwas) - S90 S S0 S ot S S
9el L8l 9L 9-8-Z1L 9L {x3]3WN2J19)~ L ¥90 ¥ ¥0 ¥ (£ 14 ¥
el 280 St g8Ct Gl \ Z €90 € €0 £ 9e € £
oot v-8 Sl 58 17 ® > 290 4 20 z GE Z 4
9L0 980 LS gLt €L < < 190 L 10 L ve 1 t
144021 +4iz-8-ClL 090 0 zL 0 €€ 0 0
¥L0 10 8-l zL 100-Z1L zL > > zeL 60 e 60 ze V4 Z
LL0 180 96 981l 73 ¢ t el 80 ot 80 1€ A A
LY0 S8 [+1¢] G8 1L ot {aydonsode) , il ocl L0 Lz L0 o€ X X
90 4} Lg {80 L9 B v Lz 90 oz 90 Lz M M
1141011 T8 1L 9zl 50 =74 S0 9z A A
L0 10 £-8-CL Zs i00-11 99 i A 14} $0 vz -0 (*74 n n
LEL 580 Sg G-8-0 59 {auipsapuny « 174 €0 £z £0 vz 1 1
Zv0 L8 vt ¥-8 v9 (a10nby) |, #+ €zl 0 zz 0 £z S S
10 80 9l 98 14€9 % % zel 61l 1§ 6L 44 H H
SEl 8l ze 280 z9 [[1zt gL 0S 8ll 1z 0 0
€el 8zl L1 (-8 19]] ozl -1l iy Lt oz d d
£¥0 €8 9€ 9-8-0 09 # = LiL ol 9 91t Ll o] (o}
950 £8¢el €L €82l LS (potsad) - {potiad) - 9Ll Gl St Gl 91 N N
S0 €80 €g £80 9§ (ewwoo) * {ewwo3) St viL 24 Ay Si W W
ov0 yound ou oz yound ou 55 yuelq Jueiq vLL 1l v el 4 R 1
G40 98 € €8 ¥S = = gLl AN} A4 AN} gL > b
12 00) €81l £5 e8Il €S $ $ 4N (RN} (% 1Ll zL r r
150 5811 vL 8t 4} { { Lt 6zl 1L 6Zl L | |
0S0 G-8Zi vE ¥-8-0 (e})) oLt 8-zl oL 8zl oL H H
£S0 1-0 1z t-0 0S / / L0l Lzl L9 L-ZL L0 9 9
zs0 8Ll vS 8Lt LY * * 901 9l 99 9-z1 90 4 4
560 1t oy Lt 9 - - S0l gl 59 5zZ1 50 3 3
£60 98-zl 09 4} Sp + + volL vzl ¥9 vzl ¥0 a a
LL0 6 L 6 44 6 6 €0l £zl £9 £zt £0 o) 2
0.0 8 ol 8 A7 8 8 zo!l -zl 29 A4} z0 | 9
190 L L0 L 4% L L 101 L1 19 -zt 10 v v
990 9 90 9 I 9 9 zLo 8 00 z8 1400 I
apo) {620) apo) (920) 8pod 18sang dydesn apod | (620) apod (920) apod wsang | awydesn
oSy young aong yaung Aeydsig aydesg 200 11OSY | ydung aog young Aeydsiq | owydesn foJake]
1108SY [eutaix3 | yiud||oH 1108V 110SY | reuwsaix3 | yrusjoH 110SY

S43S H3ILOVHVHI AYVANVLS

60496000 A

TABLE A-2. CDC CHARACTER SET COLLATING SEQUENCE

CDC CHARACTER SET
COLLATING SEQUENCE

Collating Collating .
Sequence- CcDC Display | External Sequence CcDC Display | External
Decimal/Octal Graphic Code BCD Decimal/Octal Graphic Code BCD
00 00 blank 55 20 32 40 H 10 70
01 01 < 74 15 3 41 I 1" 71
02 02 % 63 T 161 34 42 v 66 52
03 03 [61 17 35 43 J 12 41
04 04 - 65 35 36 44 K 13 42
05 05 = 60 36 37 45 L 14 43
06 06 A 67 37 38 46 M 15 44
07 07 t 70 55 39 47 N 16 45
08 10 | 71 56 40 50 0 17 46
09 11 > 73 57 41 51 P 20 47
10 12 > 75 75 42 52 Q 21 50
11 13 - 76 76 43 53 R 22 51
12 14 . 57 73 44 54] 62 32
13 15) 52 74 45 55 S 23 22
14 16 ; 77 77 46 56 T 24 23
15 17 + 45 60 47 57 U 25 24
16 20 $ 53 53 48 60 \Y; 26 25
17 21 * 47 54 49 61 w 27 26
18 22 - 46 40 50 62 X 30 27
19 23 / 50 21 51 63 Y 31 30
20 24 , 56 33 52 64 Z 32 31
21 25 (51 34 53 65 : oot nonet
22 26 = 54 13 54 66 0 33 12
23 27 # 64 14 55 67 1 34 01
24 30 < 72 72 56 70 2 35 02
25 31 A 01 61 57 71 3 36 03
2% 32 B 02 62 58 72 4 37 04
27 33 C 03 63 59 73 5 40 05
28 34 D 04 64 60 74 6 41 06
29 35 E 05 65 61 75 7 42 07
30 36 F 06 66 62 76 8 43 10
31 37 G 07 67 63 77 9 44 11

External BCD code 16.

60496000 A

tIn installations using the 63-graphic set, the % graphic does not exist. The : graphic is display code 63,

TABLE A-3. ASCIl CHARACTER SET COLLATING SEQUENCE

ASC!l CHARACTER SET
COLLATING SEQUENCE

Collating ASCI.I Display | ASCH Collating ASCI‘I Display | ASCII
Sequence Graphic Code Code Sequence Graphic Code Code
Decimal/Octal | Subset Decimal/Octal Subset
00 00 blank 55 20 32 40 @ 74 40
01 01 ! 66 21 33 41 A 01 41
02 02 " 64 22 34 42 B 02 42
03 03 # 60 23 35 43 C 03 43
04 04 $ 53 24 36 44 D 04 44
05 05 % 63t 25 37 45 E 05 45
- 06 06 & 67 26 38 46 F 06 46
07 07 ’ 70 27 39 47 G 07 47
08 10 (51 28 40 50 H 10 48
09 11) 52 29 11 51) 11 49
10 12 * 47 2A 42 52 J 12 1A
11 13 + 45 2B 43 53 K 13 4B
12 14 , 56 2C 44 54 L 14 4c
13 15 - 46 2D 45 55 M 15 4D
14 16) 57 2E 46 56 N 16 4E
15 17 / 50 2F 47 57 0 17 4F
16 20 0 33 30 48 60 P 20 50
17 21 1 34 31 49 61 Q 21 51
18 22 2 35 32 50 62 R 22 52
19 23 3 36 33 51 63 S 23 53
20 .24 4 37 34 52 64 T 24 54
21 25 5 40 35 53 65 §] 25 55
22 26 6 41 36 54 66 Vv 26 56
23 27 7 42 37 55 67 w 27 57
24 30 8 43 38 56 70 X 30 58
25 31 9 44 39 57 71 Y 3 59
26 32 : 007} 3A 58 72 Z 32 5A
27 33 : 77 3B 59 73 [61 5B
28 34 < 72 3C 60 74 \ 75 5C
29 35 = 54 3D 61 75] 62 5D
30 36 > 73 3E 62 76 ~ 76 5E
31 37 ? 71 3F 63 77 65 5F

+1In installations using a 63-graphic set, the % graphic does not exist. The : graphic is display code 63.

60496000 A

R

N

AN

—

GLOSSARY B

%

Actual Key — Integers used in a random access file. When a
READ or WRITE is executed, the key value is used to
locate or place a logical record. Also, a file organi-
zation,

ANSI — The American National Standards Institute. In this
manual, ANSI is used to denote the 1968 version of the
ANSI COBOL standard (X3.23-1968).

BOI (Beginning-of-Information) — The start of the first user
record in a file, System information such as tape labels
of sequential files or indexes does not affect beginning-
of-information.

Block — A physieal grouping of records.

Blocking — The method by which a specified number of
records is organized within a block and handled as a unit
to inerease input-output efficieney.

Buffer — A temporary storage area that allows input/output
devices to operate independently of the central pro-
cessing unit.

Checksum — System verification of data accuracy. Block
checksums can be requested for direet, indexed sequen-
tial, and actual key files (see CYBER Record Manager
User's Guide).

Data Block — A block in which user records and keys are
stored in an indexed sequential file. The user specifies
bloek size or a blocking factor. CYBER Record
Manager manipulates data blocks to keep records in
sequential order by key.

Declaratives — COBOL statements that invoke procedures
defined in the Procedure Division to be executed when a
condition occurs that cannot be tested with standard
COBOL procedures.

Default — The system-supplied value employed when the user
does not define a parameter.

Direct File — A file that contains records stored randomly in
home blocks according to the hashed value of the key in
each record. The file must be mass storage resident.
All allocation for home blocks occurs when the file is
opened on its creation run.

Directives — Instructions that supplement processing defined
by a control statement or program call for execution of
a utility funetion or member of a produet set.

EOI (End-of-Information) — The point beyond which no records
exist on a given file. Trailer labels are past end-of-
information.

File — A logically related set of information; the largest
collection of information that can be addressed by a file
name, Starts at beginning-of-information and ends at
end-of-information.

FILE Control Statement — A control statement that contains

parameters used to build the file information table for
processing.

60496000 A

FIT (File Information Table) — A table through which a user
program communicates with CYBER Record Manager.
All file processing executes on the basis of fields in the
table.. CYBER Record Manager manipulates the FIT for
the COBOL user; FIT fields are initially set by COBOL
source statements.

FSTT (File Statistics Table) — A table generated and
maintained by CYBER Record Manager to collect
statisties about direct, indexed sequential, and actual
key files. The FSTT is a permanent part of a file; it
contains information such as file organization, block
size, and number of current aceesses. The COBOL user
cannot agecess the FSTT.

Hashing — The process of mapping keys to produce a relative
home block address for records in a file with direct
organization.

Home Block — A block in a direct file; the relative address of
the block is computed by hashing keys. A home block
contains synonym records whose keys hash to that
relative address. If all the synonym records do not fit
in the home block, an overflow block might be created
by the system. When the direct file is ereated, the user
must define the number and size of the home blocks
with COBOL statements.

Index — A series of keys and pointers to records associated
with the keys.

Index Block ~ A block with ordered keys and pointers to data
blocks and other index blocks. Used for indexed
sequential files to form a directory of the data blocks
within the file.

Key — Group of contiguous characters or numbers the user
defines to identify a record in an indexed sequential or
direct access file.

L Tape — Long record stranger magnetic tape. PRU size is
not restricted.

LDSET - Loader control statement; when a FILE statement is
used, an LDSET statement containing the FILES param-
eter is necessary.

Loeal File —- File maintained only for duration of the run unit.

Major Key — The leading characters of a record or symbolic
key in an indexed sequential file,

Mass Storage — A disk or disk pack that ean be accessed
randomly as well as sequentially.

Multiple-Index File — A file containing an index that
associates primary and alternate keys in cross-refer-
ence form. The file can be accessed on any of the
alternate keys.

Overflow Bloek ~ A block created by CYBER Record Manager
for use when home blocks in a direct file are full.

Padding — Free space reserved in a file at creation to

aceommodate additional records; specified as a
percentage figure.

Permanent File — A file on a mass storage permanent file
device that is protected against accidental destruction
by the system and can be protected against unauthor-
ized access or destruction. A CATALOG (SCOPE 3.4)
or SAVE or DEFINE (KRONOS 2.1) is required to make
a file permanent.

Physical Record — On magnetic tape, information between
inter-record gaps. It need not contain a-fixed amount
of data.

PRU (Physical Record Unit) ~ The smallest unit of informa-

tion that can be transferred between a peripheral
storage device and central memory. The PRU size is
permanently fixed for all operating system devices; the
concept does not apply to S/L devices. PRU sizes are
given in table 3-1.

Random Access File — A file from which records can be
retrieved in a nonsequential manner.

Record — A group of 6-bit characters; the smallest collection
of information passed between CYBER Record Manager

and the user. The user defines the structure and’

characteristies of records within a file by declaring a
record format. The beginning and ending points of a
record are implicit in each format.

‘Record Ordinal — A number that specifies a record's position

in a series of records.
Reel —Synonymous with volume.

Run - File accesses encompassing file open through close.
Reopening a file in a single program constitutes a
second run.

S Tape — A magnetic tape with recording format of physical
records containing the contents of 512 central memory
words of binary information or 128 words of coded
information. A stranger tape.

Sequential Access — Records read or written record-by-record
from the beginning to the end of a file; access by
specifying successive positions.

Source Code — A COBOL user program that must be compiled
or assembled before execution.

Symbolic Key — A charaeter string used to specify a record in
a random access file. Used only for standard, direct,
and indexed sequential files.

Utility Routines — Operating system routines that provide
functions used universally with most programs. Such
routines include input-output, diagnostics, CREATE,
sorting routines, and the multiple-index capability
(IXGEN).

Volume ~ A reel of magnetic tape or one sequential disk pack.
A given file can encompass more than one volume.

60496000 A

-

S’

~

o

UTILITIES o

CYBER Record Manager provides utilities which help the
programmer define efficient file structures and create files.

ESTMATE UTILITY

The efficiency with which an indexed sequential file can be
processed is influenced by the size of its data blocks and
index blocks, the number of index levels, and the size of the
buffer in the user field length in central memory. COBOL-~
calculated default values might not be the best for a
particular file.

The utility ESTMATE can be used to calculate index block
length, data block length, and buffer length. ESTMATE uses
a description of the file records and keys to produce
suggested sizes for blocks and the central memory buffer,
based on various possible blocking factors, padding factors,
and index levels. Buffer length can then be specified directly
through the BFS parameter on the FILE control statement, or
indirectly through the RESERVE ALTERNATE AREAS clause.

Usually, the ESTMATE utility is run as a separate job.
Program results are printed on the standard OUTPUT file
with values for each directive. When only one set of
parameters for a ‘file structure is given to ESTMATE,
parameters can appear on the ESTMATE control statement.
Otherwise, the deck structure is:

Job control statement

ACCOUNT statement if required by the operating
system

ESTMATE control statement
7/8/9
Directives deseribing possible file structure parameters

6/7/8/9

On the ESTMATE control statement parameters may appear
in any order:

.ESTMATE(NR=x,KS=x,MR=x,MI=x)
NR Approximate number of records in file
KS Key length in characters; number of char-
acters in alphanumeric key; must be speci-
fied as 10 for COMPUTATIONAL-1 and
COMPUTATIONAL-2 key items
MR Maximum number of characters in record

MI Minimum number of characters in record

All subsequent calculations are based on the above file
definition.

When only one set of block parameters is to be used, the
following parameters also can appear on the ESTMATE
control statement:

NL Number of desired index levels, 1 through 63

60496000 A

BF Blocking factor (number of reeords per
block) for average size records in data
bloeks

PI Index block padding percentagen, 0 through
99

PD Data block padding percentage, 0 through 99

An empty directive section should be provided if any
processing occurs after ESTMATE. ESTMATE always reads a
section from the INPUT file; therefore, the INPUT file must
be positioned correctly for any subsequent processing.

Directives have the format below. The * in column 1 is
required. Parameters on directives must appear in the order
listed and may be separated by spaces, commas, or' other
special characters. Installation default values are substituted
for any parameters not specified by the user.

*nl,bf,pi,pd

nl Number of index levels anticipated, 1
through 63 :

bf Blocking factor for average size records in
data blocks

pi Index block padding percentage, 0 through
99

pd Data block padding percentage, 0 through 99

Output from ESTMATE shows the number of words for the
buffer and blocks. Figure C-1 illustrates two versions of a
job deek under NOS/BE 1 and the resulting output (the same
in both cases).

The buffer referenced in the output is the buffer within the
user field length that holds index and data blocks manipulated
by CYBER Record Manager. By default, a size greater than
minimum is provided. For an indexed sequential file, a larger
buffer often increases processing efficiency. The suggested
buffer size should be used if possible,

CREATE UTILITY

The CREATE utility can be called through a COBOL program
to create a direct file. The default hashing routine or a user-
supplied hashing routine may be used.

CREATE should be used for large files (more than 1000
records). It significantly reduces creation time, since all
records that hash to a given home block can be written in one
mass storage access. Otherwise, a home bloeck must be
transferred from the central memory buffer to mass storage
for each record to be written.

CREATE hashes the key of an input record and prefixes the
hashed key to the record. After all records have been read,
CREATE calls Sort/Merge to sort records according to the
hashed key results. When the sort is complete, CREATE calls
CYBER Record Manager to create a direct file. The hashed
keys are removed; they do not become part of the direct file
records.

Sample Job Deck 1 ' Sample Job Deck 2

ESTJOB,CM40000,T10. ESTIMAT,CM40000.
ESTMATE,NR=8000,KS=10,MR=500,MI=450, ESTMATE(MI=450,MR=500,KS=10,NR=8000)
NL=3,BF=30,PI=5,PD=4. 7/8/9 '
6/7/8/9 *3,30,5,4
: 6/7/8/9
Output:

* &é*#*ﬁﬂ#&*#Qﬁ**#*#****&#*%*##&*####*##%##**ﬂ*%#ﬂ#ﬁ*#*ﬁ***&*###*#9##**###“#‘***%# #

%

@
ESTMATE s NR=HO00 +KS=10sMR=500sMI=4S0eNL=39BF=304P1=5+PD=4.

##ﬁ%##%!}##ﬁ%*é#%i#####*######%%*i&#é#*ﬁ###***ﬁ****#***#%#**###Q**Qé’#ﬁ###%#

INDEXED SEGWUENTIAL FILE ESTMATE

* %k x X KE & ¥ P kK kTS LSS B RE R EE & X

NUMBER OF RECORDS= 8000 KEY SI1ZE= 10 CHARACTERS
MINIMUM RECORD S1ZF= 45 WORDS MAXIMUM RECORD SI17E= S0 wWOrDS
NUMRER INDEX DATA MINIMUM SUGGESTED
OF I~NDEX ACCESS BLOCK BLOCK BUFFER BUFFER
LEVELS MODE SIZE ‘ SI1ZE SiZ€ STZE
{»OKDS) (WORDS) (WORDS) (WORDS)

3 RANDOM 63 1535 1768 3442

3 SEQUENTIAL 153% 1627 3164

B R X % XEE & k& X XS S E R eSS S S S S

3548 3% 35 3625 31 88 33 31 48 4 48 38 35 38 35 35 48 35 35 35 45 3 4 38 35 35 36 35 45 3 38 35 48 35 38 35 31 31 3 33 41 2F 38 3 3 38 36 35 38 35 3F 45 38 38 2 41 38 34 31 3 4 44 40 2b 38 3 ST SR ST SR AP I B 3 3

Figure C-1. ESTMATE Example

The key for each input record must be in the record. The FILE control statement must include the following
CREATE cannot combine a separate key with a record. parameters or accept the default noted:
A job using CREATE must contain: LFN Logical file name
FILE control statement to deseribe the direct file FO File organization FO=DA required
strueture, including the key position in the record
HMB Number of home blocks
_ Execution of source program that reads a record and
calls CREATE MBL Number of characters in home block. May
be specified or calculated by the methods
CREATE directive in a separate section on the job discussed in section 6.
INPUT file
MNR Minimum record length in characters

A FILE control statement must be used to deseribe file .
structure. The direct file cannot be defined within a user MRL Maximum record length in characters

program calling CREATE.

C-2 60496000 A

\"w/

KL Key length in characters

RKW Word in record in which key begins, counting
ten 6-bit fields to a word. Words numbered
from 0. Default 0.

RKP Position in word described by RKW in which
key begins, counting 6-bit fields 0-9 left to
right. Default 0.

RT Record type, plus any other parameters
needed to complete record description.
Default is Z type records with MRL defining
FL.

Values in the SDACRTU call in a program cannot override
key position existing at file open.
CREATE DIRECTIVE
The CREATE directive has the format:
CREATE(dafile,hash,héshlfn)
dafile Name of direct file; required

hash Entry point to user hashing routine. If

omitted, default hashing routine is used.
hashlfn Logical file name of file containing user
hashing routine; required only if a user
hashing routine is used

Only one input directive is possible. Parameters may be
separated by any legal separator. Embedded blanks are
allowed. The directive must be terminated by a period or
right parenthesis.

User hashing routines must be in relocatable binary format.

The file identified in the CREATE directive must be made
local to the job prior to the utility call.

CREATE CALLS IN SOURCE PROGRAMS

When CREATE is used in a source program, two calls to
library routines are needed:

SDACRTU Must be called for each record, so the
key will be hashed and affixed to that
record

SDAENDC Called once after all records are read,

so records will be sorted and inserted
into direct file

The user must read each record and call SDACRTU with
parameters identifying the key in the record, the reecord
location, and the number of characters in the record. After
all records are read, SDAENDC must be called to complete
direct file creation.

SDACRTU ecall parameters:
ENTER SDACRTU ka recarea length.
ka Key item in record identified by recarea. If
key is not left-justified in the word ka, the
RKP parameter of the FILE control state-
ment must be used to specify alignment.

recarea Record name

60496000 A

length Integer record length in characters
SDAENDC is called by:
ENTER SDAENDC

The source program must not reference the direct file being
created.

KEY ANALYSIS UTILITY

The key analysis utility helps the user select a hashing routine
or the number of home blocks that best suits a particular file.
Ideally, a good hashing routine results in & uniform
distribution of records in all home blocks, with no overflow
blocks.

When the records hashed to a home block exceed the block
size, ‘an overflow block must be used. Consequently, at least
two mass storage accesses are required to read each record
that could not be accommodated in the original home block,
with a resulting increase in execution time. Any record in a
home block that is not filled, on the other hand, can always
be read with a single mass storage access. Faster execution
time is gained, but mass storage requirements for the file
might be greater if no overflow blocks exist.

The key analysis utility provides information about hypo-
thetical record distribution for the file. By changing the
number of home blocks or the routine that distributes records
among those bloeks, the user can balance mass storage
requirements and access time considerations before actual
file creation. The utility reads the key of each record in the
file and determines the home block where the record would
reside. After all keys are examined, statisties are output.

Results from the utility are written to a file named KEYLIST.
The user must rewind KEYLIST and copy it to OUTPUT if the
results are to be printed. A successful execution produces
the message:

END KEY ANALYZER

USER HASHING ROUTINES

A user hashing routine to be run with the key analyzer utility
must have the following characteristics:

Be in relocatable binary format on the file identified in
the LFN parameter of the KYAN directive. (Relo-
catable binary format results from normal COBOL
compilation.)

Have an entry point identified in the H parameter of
the KYAN directive.

Execution must result in an integer value in the lower
bits of a word. CYBER Record Manager divides this
value by the number of home blocks to obtain the
hashed key. The division uses only the lower 48 bits of
the user provided integer.

If the routine with the entry point named on the KYAN
directive is not available to the analyzer the following
message appears:

KEY ANALYZER CANNOT LOCATE name

During key analysis, the utility might output several messages
indicating a faulty hashing routine:

ENTRYn — SYNONYM LIMIT EXCEEDED

More than 4095 keys hash to the same home block using
the routine identified by Hn on the KYAN directive.
The key analyzer discontinues use of this routine for the
remainder of the run.

ENTRYn - BAD KEY ENCOUNTERED

The routine identified by Hn produces a value outside
the range of the number of home blocks. - This key is not
counted in the output. If 26 of these messages appear
for any one hashing routine, the job is terminated with
the message MORE THAN 25 BAD KEYS EN-
COUNTERED.

KEY ANALYZER EXECUTION

The user ean call the key analysis utility through a COBOL
program. The user must supply a KYAN directive in a
separate section in the job deck to deseribe the proposed file
parameters.

KYAN Directive

Format of the KYAN directive is given below. All param-
eters must be specified in the order shown; no default values
exist. The parameter list, which must be enclosed in
parentheses, may -contain extra blanks after commas, but
blanks cannot be embedded within a parameter. If only one
hashing routine is to be used, the parameter list must be
terminated by a right parenthesis after the output format
option parameter of that routine. Up to five routines can be
specified.

When all parameters cannot be contained on a single line, as
many as six continuation lines can be added for one KYAN
directive. =~ Column 80 must contain a slash to indicate
continuation in column 1 of the next line.

Directive format is:

KYAN(LFN=lfn,MRL=mr]l,KL=kl,RKP=rkp,
RKW=rkw,H1=entry,hmb,outopt,...,
H5=entry,hmb,outopt)

1fn Name of file containing any user supplied
hashing routines in relocatable binary
format

mrl Maximum record length in characters

k1 Key length in characters

rkp Character position of start of key in word

designated by the RKW parameter

rkw Relative word in record in which the key
begins, counting the first word as 0 with 10
charaeters in each word

n Hashing routine identifier 1-5 for user docu-
mentation purposes only. It may be omitted.
The three parameters immediately following
apply to each entry name.

Entry point name of hashing routine. The

entry
entry point for the default routine is
SDAHASH.

hmb Number of home blocks

outopt Output option:

S For each -home block list the number
of keys that hash to that bloek
(synonyms)

D Output only standard deviation of
reeords in all blocks

B Output both synonyms and standard
deviation

As many as five hashing routine entry points can be listed on
the KYAN directive. The user has the option of specifying
five different routines or specifying the same entry point
more than once and varying the number of home blocks
associated with the entry point. Any combination of entry
points and home blocks can be specified, including both the
default and user supplied routines, but noc more than five
routines can be called for key analysis through one KYAN
directive.

The default hashing routine resides on a system library and is
always available to the calling job. (Nevertheless, when only
the default hashing routine is specified, the LFN parameter is
still required; any file name can be used in this case.). When
several user supplied hashing routines exist, they must all
reside on the file identified by the LFN parameter.

Calling Key Analysis Utility Through COBOL

In a COBOL program, the key analysis utility is identified by
SDAKEYH and SDAENDH, the two entry points to the
COMPASS coded utility program. SDAKEYH must be entered
repeatedly after each record is read so that each key ean be
hashed; when all keys are read and processed, SDAENDH
must be entered to write output to the file KEYLIST. To
examine the utility output, the user should rewind KEYLIST
and copy it to the file OUTPUT or otherwise cause it to be
printed.

When the utility is entered the first time, it expects the next
unexecuted section in the job INPUT file to contain the
KYAN directive. The utility, itself, calls for loading the file
containing the hashing routines. The user should ensure that
the file is available to the job, but should not load the hashing
routines.

If more than one hashing routine entry point is given on the
KYAN directive, each key is examined by each hashing
routine before control returns to the user program.

The general structure of a job deck for a COBOL program
call to the key analyzer is:

Job control statement

COBOL.

LGO.

Output file KEYLIST to printer

7/8/9

COBOL program that executes SDAKEYH for each data
record and SDAENDH after all records have been
processed as outlined in the language sections

7/8/9 '

KYAN directive

6/7/8/9

60496000 A

e’

~_

T

Field length requirements for execution of a source program
using the key analysis utility are inereased by 1600 words
plus the largest number of home blocks specified.

KEY ANALYZER OUTPUT

Information output from the B option is shown in figure C-2.

name of hashing routine
entry point

HOME BLOCK SDAHASH

home block —=0 13- number of records
number 1 0 that would appear
2 0 in home blocks

STANDARD DEVIATION
SDAHASH
8.06

information in this column
applies to named entry point

Figure C-2. Key Analyzer Output

In an ideal situation, the hashing routine would resuit in the
same number of records in each home block, and that number
would be a value equal to the blocking factor implicitly
defined by the user when maximum record size and number of
home blocks are specified on the KYAN directive. The key
analyzer does not attempt a distribution based on any implied
bloeking; it simply keeps count of the results of the hashing.

IXGEN UTILITY

The IXGEN utility can be used either to define alternate keys
and an index file for an existing file that does not have them,
or to define or modify alternate keys for an existing multiple
index file. The data file must be indexed sequential, actual
key, or direet. The IXGEN utility can only be called by
control statements. It reads directives from a file and
creates or modifies an index file according to those directives
and the contents of the data file.

CONTROL STATEMENTS
The IXGEN control statement has the following format:
IXGEN(ifndata,lfndir)
Ifndata Logical file name of the data file

1fndir Logical file name of file containing
directives. Optional; default is INPUT.

The SYSIO and COBOL libraries must be made available
before the IXGEN utility is called. Either a LIBRARY
control statement or an LDSET control statement can be
used.

IXGEN requires a field length of at least 70000. A larger
field length will improve the efficiency of IXGEN.

60496000 A

A FILE control statement is also necessary to specify the file
organization of the data file and to identify the index file.
The FO parameter must be set to IS, AK, or DA; the XN
parameter must be set to the index file name.

If the file named by the XN parameter does not exist, IXGEN
will create a file; if it exists, IXGEN will modify it. In either
case, the alternate key definitions are read from the
directive file.

RMKDEF DIRECTIVES

Input to IXGEN is in the form of RMKDEF directives, found
on the directive file, Each directive defines one alternate
key.

RMKDEF(Ifndata,rkw,rkp,kl,0,kf, ks, kg,ke)
Required parameters:

1fndata Logical file name of the data file

rkw Relative word within the data record
where the key begins, counting the
first word (ten 6-bit characters in each
word) as 0

rkp Relative position within the word de-
fined by rkw where the key begins,
counting 6-bit fields 0-9, left to right

kl Length of key in characters, must be
1-255

0 Required to mark position for reserved
field

kf Key format, may be any one of the
following:

0 Character string, similar to
KT=8 for indexed sequen-
tial files

1 Signed binary, similar to
KT=F and KT=I for indexed
sequential files. The
length of the key must be a
multiple of 6 bits

2 Unsigned binary, deseribed
in COBOL as PICTURE 9.
No existing file primary
key will have this desig-
nation.

When a key is being deleted, kf is used
to indicate the action, rather than the
format of the key:

3 Purge alternate key from
index

Optional parameters:

ks Structure for primary keylists for this alter-
nate key may be either of the following:

U Unique; default

I Indexed sequential; recom-
mended for efficiency in pro-
cessing

C-5

If kg and ke are used, ks must be specified as U:

kg Length in characters of repeating group
where key resides

ke Occurrences of group; must be used if kg is
selected. ke is 0 if group defined by COBOL
OCCURS DEPENDING ON clause.

When the index file is created, the first RMKDEF directive
must define the primary key for the file. Each alternate key
must also be defined with a directive. Normally, one
RMKDEF directive defines one key; however, when the

 alternate key exists within a repeating group such as the

trailer item of a T type record, as many keys are defined as
there are occurrences of the group.

60496000 A

4

h

A implementor-name suffix 4-2
Actual key files 8-1, 9-8
Alternate keys

defining 6-4, 7-4, 8-2

using 6-6, 7-7, 8~4

Binary recording mode 3-3
BLOCK CONTAINS 3-1, 6-5, 7-5, 8-3
Block types 3-1, 9-4
Blocks

actual key files 8-1

direct files 6-2

indexed files 7-2

sequential files 3-1
Buffers 2-3

direct 6-3

indexed 7-4

relative 4-2

sequential 3-4

standard 5-1

C type blocks 3-2, 9-18

Character set A-1

COBOL/Record Manager interface 1-1
Collating sequence A-2

CREATE utility C-1

Data type records 2-4, 9-11
Data blocks 7-2

Data file 2-2

Device type 3-1

Direct file organization 6-1, 9-6
Duplicate keys 2-6, 7-7

E type blocks 3-2, 9-9, 9-13
End-of-information 3-1
End-of-section 3-1
End-of-partition 3-1

Error processing 2-6
ESTMATE utility C-1
Extending files 3-4

F type records 2-4, 9-17, 9-19

FILE control statement 9-1

File information table 2-1, 9-1

File organizations 2-2

File statistics table 6-1, 7-2, 8-1
FILE - LIMITS 4-2, 5-2, 6-3, 7-5, 8-2
FIT 2-1

Hashing 2-7, 6-1
Hashing routine 2-7
Home blocks 6~2

I implementor-name suffix 3-3

I type blocks 3-2, 9-15

Implementor-names 2-1
system-defined 2-2, 3-3

60496000 A

INDEX

Index blocks 7-2

Index file 2-2

Indexed sequential files 7-1, 9-7
INPUT file 2-2, 3-3

IXGEN utility C-5

K type blocks 3-2, 9-11, 9-17
Keys - see also alternate keys
actual 8-2
analyzer utility C-3
duplicate 2-6
indexed 7-4
relative files 2-2, 4-1, 4-3
standard files 5-2

Label processing 2-6, 3-4
LDSET Statement 9-1
Logical file name 2-1

Magnetic tape 3-1
Mass Storage 3-1
Multiple index files 2-2

NUMBER OF BLOCKS 6-5

Ordinal

actual key files 8-1

relative files 4-1
Overflow blocks, direct files 6-2
OUTPUT file " 2-2, 3-3

Padding, blocks 7-2
Primary key — see also key
access by 6-6, 7-6, 8-4
PUNCH file 2-2, 3-3
PUNCHB file 2-2

R type records 2-4, 9-13
Random access

actual key files 8-2

direct files 6-3

indexed files 7-5

relative files 4-1

standard files 5-1)
RECORD CONTAINS clause 2-3
Record types 2-3, 9-3
RECORDING MODE 3-3
Relative files 4-1, 9-5
RESERVE ALTERNATE AREAS 2-3

see also buffers

Sequential access
actual key 8-5
direct 6-7
indexed 7-8
relative 4-1

Index-1

Sequential files 3-1, 9-4
SKIP 7-1, 8-2
Standard files 5-1, 9-5

T type records 2-5, 9-9
Tapes 3-1

USE procedures 2-6

Index-2

W implementor — name suffix 2-5
W type records 2-5, 9-15
Word addressable

relative files 4-1

standard files 5-1

X implementor-name suffix 4-2

Z type records 2-5, 9-20

60496000 A

oy

CUT ON THIS LINE

COMMENT SHEET

@ B CONTROL DATA
CORPORATION
TITLE: CYBER Record Manager Guide for COBOL

PUBLICATION NO. 60496000 REVISION A

This form is not intended to be used as an order blank. Contro! Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: POSITION:

COMPANY
NAME :

ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE

. TAPE

FOLD

TAPE

FOLD

TAPE

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

S—
BUSINESS REPLY MAIL — w
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. []
Sass— ':":-:’
S z
POSTAGE WILL BE PAID BY SE—— o
CONTROL DATA CORPORATION E— 3
Publications and Graphics Division —
215 MOﬁC"APIl'k Drive [
Sunnyvale, California 94086 —
————
]
SusEa——
EE——
- T T T T T T T T T T TFowp
TAPE ’

