60499300

(G2 CONTROL DATA

CYBER RECORD MANAGER
ADVANCED ACCESS METHODS
VERSION 2 | |
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 1 |
NOS 2 -
NOS/BE 1

60499300

(G5) CONTROL DATA

CYBER RECORD MANAGER
ADVANCED ACCESS METHODS
VERSION 2

REFERENCE MANUAL

cDC® OPERATING SYSTEMS:
NOS 1
NOS 2
NOS/BE 1

REVISION RECORD

Revision

A (03/31/78)

B (07/20/79)

€ (02/13/81)

D (05/14/82)

E (07/15/83)

F (12/16/85)

Description
Original release.

This revision reflects CYBER Record Manager Advauced Access Methods Version 2.1. Major
changes include the implementation of extended direct access and actual key files, and
the operation of the FLBLOK utility.

This revision moves most information on initial file organizations to appendix J,
describes the creation and use of system data compression routines, and reflects miscel—
laneous technical and editorial changes at PSR level 528.

This revision reflects the support of NOS Version 2. Major changes include the altera-
tion of FLBLOK utility output and an addition to appendix G on buffer allocation. This
revision also reflects miscellaneous technical and editoral changes at PSR level 564,

This revision drops reference to initial file organizations and documents only what was
called extended file organizations. Changes include an added feature to the FLSTAT
utility. This revision also reflects miscellaneous technical and editorial changes at
PSR level 577.

This revision reflects the support of the CYBER 170 800 Series models and the CYBER 180
Computer Systems. This revision also reflects miscellaneous technical and editorial
changes at PSR level 647,

REVISION LETTERS I, O, Q, AND X ARE NOT SED Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

© COPYRIGHT CONTROL DATA CORPORATION P. O. Box 3492

1978, 1979, 1981, 1982, 1983, 1985 SUNNYVALE, CALIFORNIA 94088-3492

All Rights Reserved

Printed in the United States of America or use Comment Sheet in the back of this manual
® ii 60499300 F

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision Page Revision

F=-1

G-1

G~2

H=1

H=2 thru H=6
I-1

J=1

J=2

K=1

K=2

Index-1 thru =7
Comment Sheet/Mailer
Back Cover

Front Cover
Title Page
ii

iiifiv

v

vi

vii

viii

ix

11

1=2

2=-1 thru 2-3
2=4

2=5 thru 2-9
3-1 thru 3-11
4]

4=2

4=3

b4

4=5

4=~6 thru 4-9
4=10

4-]11

4=12

4=13

5=1

tmmmEmmEmEmOROmO

5=3 thru 5-7
6~1 thru 6~7

[}
N U S W P e BN W N

thru 7-11

PPN
[N

U]

wmwwmrfwmbb

]
@w

B=9% thru B~15
B~16

B-17

B-18

C=1 thru C=4

D=1

D=2

D=3 thru D-6

D=7

D-8

D~9 thru D=-12
E~1

E=2

mEmODmOBOBOCEROEIHMOBoDOQOREOQCRORN BRSO EBOE O EME M =mEsmeEQssmee |

60499300 F iii/iv @

PREFACE

CONTROL DATA® CYBER Record Manager Advanced
Access Methods (AAM) Version 2.1 operates under control
of the following operating systems:

e NOS 1 and NOS 2 for the CONTROL DATA CYBER
180 Series; CYBER 170 Series; CYBER 70 Models 71,
72, 73, 74; and 6000 Series Computer Systems.

e NOS/BE 1 for the CDC® CYBER 180 Series; CYBER
170 Series; CYBER 70 Madels 71, 72, 73, 74; and 6000
Series Computer Systems.

NOS 2 supports only those file organizations previously
known as extended indexed sequential, extended direct
access, and extended actual key. Also, NOS 2 supports
only the Multiple-Index Processor (MIP) previously called
extended MIP,

This manual documents only those file organizations
previously called extended file organizations and refers to

The following manuals are of primary interest:

them as indexed sequential, direct access, and actual key.
Only the Multiple-Index Processor (MIP) previously called
extended MIP is documented in this manual.

FORTRAN user programs communicate with AAM through
calls to AAM subroutines. COMPASS programs
communicate with AAM directly through macro calls.
COBOL, PL/I, FORM, and Query Update automatically
access AAM input/output facilities. AAM input/output
facilities are available under the CDCS and TAF data
management environments.

This manual, which is intended as a primary document for
COMPASS programmers, presents background information
and operational specifications for AAM. Programmers
accessing AAM indirectly can use this manual as a source
for AAM termineology and concepts and can find specific
language interfaces in the appropriate reference manuals.
The user is assumed to be familiar with the operating
system at the installation and with file organization and
manipulation.

60499300 F

Publication

Publication Number NOS 1 NOS 2 NOS/BE 1
- COMPASS Version 3 Reference Manual 60492600 X X X

CYBER Record Manager

Advanced Access Methods

Version 2 User's Guide 60499400 X X X

NOS Version 1 Reference Manual

Volume 1 of 2 60435400 X

NQS Version 1 Reference Manual

Volume 2 of 2 60445300 X

NOS Version 2 Reference Set

Volume 3, System Commands 60459680 X

NQS Version 2 Reference Set

Volume 4, Program Interface 60459690 X

NOS/BE Version 1 Reference Manual 60493800 X

The following manuals are of secondary interest:
Publication

Publication Number NOS 1 NOS 2 NOS/BE 1

Common Memory Manager Version 1

Reference Manual 60499200 X X X

CYBER Loader Version 1

Reference Manual 60429800 X X X

Publication
Publication Number NOS 1 NOS 2 NOS/BE 1

CYBER Record Manager -
Basic Access Methods Version 1.5
Reference Manual 60495700 X X X

CYBER Record Manager
Basic Access Methods Version 1.5 .
User's Guide 60495800 X X X

NQS Version 1
Installation Handbook 60435700 X

NQS Version 2
Installation Handbook 60459320 X

NOS/BE Version 1 s
Installation Handbook 60494300 X

NOS/BE Version 1
System Programmer's
Reference Manual 60494100 X

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as described in this document.
Control. Data cannot be responsible for the proper functioning of
undescribed features or parameters.

63499300 F

CONTENTS

NOTATIONS

1. AAMFEATURES

File Organizations
AAM Macros

2. FILE STRUCTURES

Logical Structure
Physical Structure
File Organizations
Indexed Sequential File Structure
Data Blocks
Index Blocks
Actual Key File Structure
Actual Keys
Overflow
Direct Access File Structure
File Storage Allocation
File Blocking
Record Types
Decimal Character Count, D Type Records
Fixed Length, F Type Records
Record Mark, R Type Records
System Record, S Type Records
Trailer Count, T Type Records
Undefined, U Type Records
Control Word, W Type Records
Zero Byte, Z Type Records
Alternate Key Index File Structure

3. FILE INFORMATION TABLE

FILE Macro

FILE Control Statement

Run-Time Manipul ation
FETCH Macro
STORE Macro
SETFIT Macro

4. FILEPROCESSING

General Processing Information
File Information Table
File Statisties Table
OPENM Macro
Input/Output Macros
CL OSEM Macro
End-of-Data Routine

I Indexed Sequential Files
File Creation Run
Existing File Processing

Open Processing
Read Processing
Write Processing
Random Processing
Major Key Processing
File Updating

File Positioning
Overlap Processing

60499300 F

EEpEEEEEERE B
(R S i w)

)
QOO NSNS NN B B W AW AN NN b et et e

b
-

IS
IS Sy S

4-5
4-5
4-5
4-5

Actual Key Files

File Creation Run

Existing File Processing
Open Processing
Read Processing
Write Processing
File Updating
File Positioning
Overlap Processing

Direct Access Files

File Creation Run
Overflow
User Hashing Routine
Supplied Hashing Routine
Direct Access File Records

Existing File Processing
Open Processing
Read Processing
Write Processing
File Updating
File Positioning
Overlap Processing

5. FILE PROCESSING MACROS

Macro Execution

Processing Macros
CLOSEM Macro
DELETE Macro
FLUSHM Macro
GET Macro
OPENM Macro
PUT Macro
REPLACE Macro
REWINDM Macro
SEEK Macro
SKIP Macro
START Macro

6. MULTIPLE-INDEXFILES

Index File
Storage Structure
Ordering Keys
Block Size
Alternate Key Specification
Alternate Key Definition
RMKDEF Macro
Applicable FIT Fields
Alternate Key Processing
Alternate Key Access
File Updating
Index File Positioning
START Macro
Other Positioning Macros
Processing Only the Index File
Macro Processing .
FIT Fields for Index File Processing
Count Retrieval
Range Count Retrieval
Primary Key List Retrieval
Range List Retrieval

bbbbbbé—‘#-{-\bbl-\bb-l—\b-!—\
bt bt B pet e b et et b \D ND D \D \D D

NN NN e b

\n
1
—

) 1 U 1 1 U 1
OV WA A A I N e b e

. NICNEN

[+
0
—

[ﬂl&l 11 [
R NI N NV I N N S W VOl O WU

0\0\0\0\0\0\0\O\G'\O\OI\C\O\O\O\O\O\U’\U\U\U\

vii

7. UTLITIES

Indexed Sequential Files
FLSTAT Utility
FLSTAT Statistical Information
FLSTAT Alternate Key Information
FLBLOK Utility
Actual Key Files
Direct Access Files
FLSTAT Utility
Key Analysis Utility
CREATE Utility
Multiple-Index Files
MIPGEN Utility
MIPDIS Utility

APPENDIXES

A Standard Character Sets

B Error Processing and Diagnostics

C CGlossary

D File Information Table Structure

E Loading AAM

F Use of List-of-Files

G Buffer Allocation

H Data Compression and Data Encryption
I Future System Migration Guidelines

J Summary of FORTRAN Call Statements
K Concurrency and AAM Files

INDEX

FIGURES

1-1 COMPASS Format

2-1 Logical Structure of a Two-Level Indexed

Sequential File .

2-2 Physical Structure of an Indexed
Sequential File

2-3 Logical Structure of an Actual Key File

2-4 Actual Key Data Block Format

2-5 Actual Key Black and Overflow Record
Header Formats

2-6 Extended Actual Key Record Pointer
Format

2-7 Logical Structure of a Direct Access
File

2-8 Direct Access Block Header Format

2-9 Numbering Conventiors

2-10 D Type Record Example

2-11 F Type Recard Example

2-12 R Type Record Example

2-13 T Type Record Format

viii

~I
)
—

i 1 Ll 1
[V

\I\II\I\I\I\I

IS

PEVETYY
[
o\ DD
oo

FerI@TMPOEP
= b e bt o et b b et b

2-14 IndexFile togical Structure, MIP 2-8
2-15 Index File Physical Structure, MIP 2-9
3-1 FILE Macro F ormat 3-1-
3-2 FILE Control Statement Format 3-9
3-3 FETCH Macro Format 3-10
34 STORE Macro Format 3-10
3-5 STORE Macro Examples 3-10
3-6 SETFIT Macro Format 3-11
4-1 User Hashing Routine Example 4-11
5-1 CLOSEM Macro Format 5-2
5-2 DELETE Macro Format 5-2
5-3 FLUSHM Macro Format 5-2
5-4 Entry in List Referenced by FLUSHM Macro 5-2
55 GET, GETN, and GETNR Macra Formats 5-3
5-6 OPENM Macro Format 5-3
5-7 PUT Macro Format 5-5
5-8 REPLACE Macro Format 5-5
5-9 REWINDM Macro Faormat 5-6
5-10 SEEK Macro Format 5-6
5-11 SKIP Macro Format 5-6
5-12 START Macro Format 5-7
6-1 RMKDEF Macro Format 6~2
7-1 FLSTAT Control Statement Format for

Statistical Information 7-1
7-2 FLSTAT Utility Regular Output 7-2
7-3 FLSTAT Utility Expanded Output 7-2
T7-4 FLSTAT Control Statement Format far

Alternate Key Information 7-3
7-5 FLSTAT Utility Alternate Key Output 7-3
76 FLBLOK Control Statement Format 7-4
7-1 FLBLOK Utility Sample Output in Batch

Mode 7-5

7-8 FLBLOK Utility Sample Output in

Interactive Made 7-6
79 Key Analysis Qutput 7-8
7-10 KYAN Directive Format 7-8
7-11 Key Analysis as External Subroutine 7-9
7-12 CREATE Directive Format 7-9
7-13 CREATE Call Through COBOL 7-10
7-14 MIPGEN Control Statement Format 7-10
7-15 RMKDEF Directive Format, MIPGEN Utility 7-11
7-16 MIPDIS Control Statement Format 7-11
TABLES
1-1 AAM Macros ‘ 1-2
1-2 Applicability of Macros 1-2
2.1 Record Types and Length Descriptions 2-5
3-1 LFN and 1fn Interaction 3-1

3-2 FILE Macro Parameters by File

Organization 3-2
3-3 FILE Control Statement Parameters 3-9
34 Buffer Calculation Parameters 3-11
5 FIT Consistency Checks 5-4
7 FLBLOK Utility Output Descriptions 7

60499300 F

NOTATIONS

e e e s

The following notations are used throughout the manual
with consistent meanings

UPPERCASE

lowercase

60499300 C

In language syntax, uppercase
indicates a statement keyword or
character that is to be written as
shown.

In language syntax, lowercase
indicates a name, number, or symbol
that is to be supplied by the
programmer.

In language syntax, brackets indicate
an item that can be used or omitted.

In language syntax, braces indicate
that only one of the vertically stacked
items can be used.

In language syntax, a horizontal
ellipsis indicates that the preceding
optional item in brackets can be
repeated as necessary.

In program examples, a vertical
. ellipsis indicates that statements or
parts of the program have not been
shown.

Numbers that appear without a subscript are decimal
values. Other value formats are denoted as:

Neoon Value is decimal
N...nB Value is octal
NooonW Value is decimal, specified in words

AAM FEATURES 1

An interface between user programs and system
input/output routines is provided by the Advanced Access
Methods (AAM). AAM routines exist in the NOS and
NOS/BE operating systems. AAM provides consistent error
processing and maintenance of different file organizations.

AAM routines are used by some compilers and are available
for user programs. Use of AAM by compilers and user
programs extends input/output compatibility to both the
system and application program levels.

The primary task of AAM is record input/output for files
on supported devices. The various types of records and file
organizations must be identified for AAM. These and other
file characteristics must be set by the user in the file
information table (FIT). The FIT is divided into fields that
describe certain aspects of the file. Refer to appendix D
for the exact structure of the FIT.

The following terms are relevant to AAM and related
systems:

e AAM (Advanced Access Methods)

A file manager that processes indexed sequential,
direct access, and actual key file organizations and
supports the Multiple-Index Processor.

o BAM (Basic Access Methods)

A file manager that processes sequential and word
addressable file organizations.

e CRM (CDC CYBER Record Manager)

A generic term relating to both BAM and AAM as they
run under the NOS and NOS/BE operating systems.

¢ MIP (Multiple-Index Processor)

A processor that allows AAM files to be accessed by
alternate keys.

CDC offers guidelines for the use of the software
described in this manual. These guidelines appear in
appendix I Before using the software described in this
manual, the reader is strongly urged to review the contents
of this appendix. The guidelines recommend use of this
software in a manner that reduces the effort required to
convert application programs to future hardware or
software systems.

FILE ORGANIZATIONS

Three file organizations are supported by AAM:
e Indexed sequential

Records are in order by primary key and can be
accessed sequentially or randomly.

°® Direct access

Records are not in any recognized order and are
accessed by key manipulation.

e Actual key

Records are accessed by a primary key containing the
block and record number within the file.

AAM MACROS

The file information table is established for the file by the
FILE macro encountered at assembly time. The FILE
macro establishes the FIT in the field length of the user
program at the point at which it is called. This macro can
contain only the file name and file organization or it can
have user-specified parameters describing the particular
file. FIT fields are assumed by AAM through default
values when not specified as macro parameters. AAM
macros and functions are listed in table 1-1. Macros are
grouped according to their associated functions.

The applicability of some AAM macros depends on the file
organization established by the user. Table 1-2 indicates
the applicability of each macro to the various file
organizations and to files processed by MIP.

Macros are discussed according ta each file organization in
section 4, File Processing. Consequently, material is
presented redundantly for the benefit of a programmer who
uses this manual to reference a particular file
organization. The format of each macro and a general
description are presented in section 5, File Processing
Macros.

Macro statements are coded in COMPASS format. Fach
statement can contain a location field, a macro name in
the operation field, a variable field, and a comment field.
Any field is terminated by one or more blanks. A macro
statement begins in character position 1 of an 80-column
card image and continues through column 72. Columns 73
through B0 are used for sequencing. COMPASS coding
conventions are shown in figure 1-1.

Operation

Field Fieid

l Location

Variable
" Field

Comments
Field

Blank, asterisk, comma, One or more spaces

or first character of
location field

Figure 1-1.

60499300 E

COMPASS Format

1-1

TABLE 1-1. AAM MACROS TABLE 1-2. APPLICABILITY OF MACROS
Function Macro Action Taken File Organization
Macro Indexed .
File creation FILE Creates the file in- Sequen- | Actual | Direct | y.p
and maintenance formation table (FIT). tial Key Access
In addition to this
macro, a FILE control
statement is ayai]able CLOSEM X X X
E?Oz?pply FIT informa- DELETE X X X
FETCH Retrieves the value of FETCH X X X X
ified field i
ShePErT. o vleld dn FILE X X X X
FITOMP | Dumps the contents of a FITOMP X X X X
FI ile.
T to the error file FLUSHM g X X
STORE Sets a value in a FIT
field. GET X X X X
SETFIT | Sets values in fields GETN X X X X
of the FIT with values
supplied through the GETNR X X X X
FILE control statement. OPENM X X X X
File OPENM | Prepares a file for
initialization processing. PUT) X X X
and termination
FLUSHM. | Flushes buffers to REPLACE X X X
bring mass storage
fi]gs.inFO a state of REWINDM X X X X
equilibrium. RMKDEF X X X X
CLOSEM | Termi £i - ‘
e:g?;;?tes ile proc ‘ SEEK X X X %
Data transfer GET Transfers data from a SETFIT X X X X
file to the working
storage area. SKIP X X f
PUT Transfers data from the START X X
go;E}g? storage area to STORE X X X X
File updating DELETE | Deletes a record from a 1
file. SKIPFL macro only.
REPLACE | Replaces a record in a

file.

File positioning | SKIP

REWINDM

SEEK

START

Repositions a file
backward or forward.

Rewinds a file to
beginning-of-information
(BOI).

Provides an overlap
between input/output
and processing by
positioning while
processing.

Positions a file to a
record that satisfies a
specific condition.

Suggested column conventions are as follows:

1

2 thru 9
10

11 thru 16
17

18 thru 29

30

Comma (continuation), asterisk (com-
ment line), or other (beginning of new
statement)

Location field entry, left-justified

Blank

Operation field entry, left-justified
Blank

Variable field entry, left-justified

Beginning of comment

60499300 £

FILE STRUCTURES 2

A hierarchical data structure is recognized in a progression
from the character level to the largest grouping of data,
the file. The AAM user can describe file structure by file
crganization and record type.

LOGICAL STRUCTURE

The logical structure of an AAM file is user-controlled.
The following terms are applicable to the lagical file
structure and are used throughout this manual:

e Record

A record is a group of related characters. A character
is represented in six bits as internal display code. A
record is the smallest collection of information passed
between AAM and the user. The user defines the
structure and characteristics of records within a file
by declaring a record format. The beginning and
ending points of a record are implicit within each
format.

e Block

A block contains one or more records. Block structure
is interwoven with the physical recording format;
unlike other logical file structure declaraticns, the
block structure is transparent in use. AAM constructs
blocks from the records supplied by the user and

supplies the user with records as requested. The user .

is unaware of block boundaries.

e File
A file is a logically connected set of information; it is
the largest collection of information that can be
addressed by a file name. All data in a file is stored

between beginning-of-information (BOI) and end-of-
information (EOD).

PHYSICAL STRUCTURE

The following terms pertain to the physical means used to
record files:

e Input/output device

Any storage medium supported by the operating
system.

e Rotating mass storage (RMS)
Disk or disk pack.
e Mass storage device
Disk, disk pack, or extended memory.
e PRU device
All mass storage devices. The operating system
superimposes a physical structure over the

user-declared AAM file structure on all files that
reside on PRU devices.

60499300 £

e Physical record unit (PRU)

The smallest unit of information that can be
transferred between a peripheral storage device and
central memory. The PRU size is 640 characters.

e Short PRU

A PRU containing fewer than the 640 characters
defined for a PRU.

e System-logical-record

A group of PRUs terminated by a short or zero-length
P

AAM controls the physical file position; the user controle
only the logical file position.

FILE ORGANIZATIONS

The following paragraphs describe the structure of each
file organization.

NOTE

Refer to appendix I for recommended
access methods.

INDEXED SEQUENTIAL FILE STRUCTURE

An indexed sequential file consists of a file statistics table,
index blocks, and data blocks. Each block is an integral
number of PRUs less two central memory words and it
treated as a system-logical-record. Both index and datz
blocks are fixed-length blocks and must be the same size.

Each record in the indexed sequential file is identified by &
unigue primary key value. Records are stored in date
blocks in increasing primary key sequence. Index blocks
contain primary key information used to retrieve any
record in the file.

The file statistics table (FSTT) maintains file integrity by
preventing user actions that would destroy the file. Wher
the file is created, the user defines the file and key
structure, which must remain the same for the life of the
file. This information is stored in the FSTT and is used tc
guide processing as long as the file exists. If the user sets
a field in the FIT to a value that does not conform to the
FSTT, the value is rejected and the job is terminated. The
FSTT stores accumulated statistics related to the file
access; it also stores a default or user-supplied collating
sequence for ranking symbalic keys.

The logical structure of an indexed sequential file is showr
in figure 2-1. The blocks identified as DOl through DOS
are data blocks; those identified as 101 through 103 are the
first level index blocks and 111 is the primary or seconc
level index black.

2-1

11

101

DO1 D02 | D03 | DO4

D05

D06 | DO7 | DO8 | DO9

Figure 2-1. Logical Structure of a Two-Level Indexed Sequential File

The physical structure of an indexed sequential file is
shown in figure 2-2. FSTT is the file statistics table, DO1
through D09 are the data blocks, and 101 through 103 are
the index blocks.

When an indexed sequential file is created, data and index
block size, record size, and key characteristics must be
specified for AAM to construct the data blocks, index
blocks, and key entries for the file.

Data Blocks

A data block in an indexed sequential file contains a
header, user records, record pointers, and padding. The
size and characteristics of the data block are determined
by the setting of various fields in the FIT when the file is
created. The specific FIT fields that are used during file
creation are discussed in section 4, File Processing. The
formats of the fields are detailed in section 3, File
Information Table.

The two-word header in a data block an disk contains a
pointer that chains the block in a forward direction to
permit sequential reading without an index. It also
contains the size of the unused space, a record count, and
other flags and counts. An optional checksum can also be
included in the header.

User records in a data block can be fixed or variable
length. Only whole records can be in a data block; records
cannot span blocks. Records are stored in ascending
primary key sequence. The first record in the first data
block has the lowest primary key value in the file, and the
last record in the last data'block has the highest key value.

One or more record pointers are stored in a data block.
The record pointer is a 30-bit field; two record pointers are
stored in a word. The pairs of record pointers are stored at
the end of the data block beginning with the last word.
The record pointer contains the last word address plus 1 of
the record; the address is relative to the beginning of the
first record in the block. It also contains the number of
trailing characters that are not part of the record and
processing flags. If all records in the block are the same
length, only one record pointer is needed.

Padding in a data block is the amount of space that is not
to be used for writing records during file creation. This
space can then be used to insert new records during
subsequent runs that update the file. The amount of
padding is specified as a percentage of the total block
size. The default value of zero percent can be used for
files that are expected to grow mainly by sequential inserts
or by adding records at the end of the file.

Index Blocks

An index block in an indexed sequential file is structured
the same as a data block with a system-supplied header,
records, a record pointer, and padding. The size of an
index block is the same as the size specified for a data
block. Other index block characteristics are specified
through the FIT. Refer to section 4, File Processing, for
the specific FIT fields and to section 3, File Information
Table, for the format of the fields.

Index block records are created and maintained by AAM,
A record consists of a primary key value -and a PRU
number. The primary key value is the lowest key value in
the next lower leve! index block or in a data block; the
PRU number points to the beginning of the block. Records
within an index block are in ascending primary key
sequence.

Beginning-of-Information

End-of-Information

[FSTT

D01 I lO1|DO2lDOB IDO4] IOZl I11]DOS|DOGIDO7I IO3IDOSIDOQ

I N N T S

I D N N N

Figure 2-2. Physical Structure of an Indexed Sequential File

2-2

60499300 E

Index blocks are organized into as many levels as necessary
to ensure only one index block at the highest or primary
level. The-maximum number of levels that can exist for a
file is specified in the FIT; no more than 15 levels can be
specified.

An index black requires only one record pointer because all
records in the block are the same length. The record
pointer, which is the same as described for data blocks, is
stored in the last word of the index block.

Padding in an index block is the same as in a data block.
Data blocks and index blocks, hawever, do not have to have
the same percentage of padding. The default index block
padding factor is zero percent.

ACTUAL KEY FILE STRUCTURE

An actual key file consists of a file statistics table and a
number of data blocks. New data blocks are created at
end-of-information as the file grows. Block size can be
specified by the user or a default size can be determined
by the system. Padding can be defined for data biocks, or
block size can be defined to allow for an increase in record
size.

The data block contains a fixed number of slots for data
records that can be fixed or variable length. The block
number and slot number assigned to each record as it is
written are computed from the primary key of the record.
When a record is written on the file, the primary key can
be specified by the user or it can be determined by AAM.
. If a primary key value of zero is specified by the user,
AAM determines where to write the record and returns the
primary key to the user.

The logical structure of an actual key file is shown in
figure 2-3, The first block is the 126-word file statistics
table containing file information and a pointer to
end-of-information. The remaining blocks are fixed-length
data blocks. Data block format is shown in figure 2-4.

Block Header

Record A

Record B8

Padding

Record Pointer B | Record Pointer A

Beginning-of-Information
)

Block | Block Block

End-of-Information ..

Figure 2-3. Logical Structure of an Actual Key File

A block unable to accommodate one of its member records
will, in place of the record, contain an overflow pointer to
its physical location in the file. Data records within the
block are ordered by slot number with the smallest number
being the first record. Record pointers are placed at the
bottom of the block in inverse order of the data records. A
block checksum, if specified for the file, is contained in
the block header.

Actual Keys
Records are stored and retrieved by an actual key, which is

the primary key. The actual key specifies a record number
which is converted by AAM to a block and slot number.

60499300 £

Figure 2-4. Actual Key Data Block Format

Key length is specified by the user when the file is
created. Key length can range from 1 to 8 characters.
The key length determines the maximum file size. For
example, a key length of 2 limits the file to 4095 records.

Larger blocking factars (64 versus B) provide better storage
density for files with variable-length records; sight records
per block is the default blocking factor. Actual keys need
not be contained within the records.

Overfiow

Overflow occurs in two ways:

@ The user specifies the actual key for a write operation
and the specified block has insufficient empty space to
contain the new record.

e The user attempts to replace a record with a new
larger record and the block containing the old record
has insufficient empty space to contain the new record.

In either case, the record is inserted into a different block
that has enough empty space. This requires two record
slots; one in the original block cantaining the overflow
pointer and the second one in the other block containing
the record.

Logically, the overflow slot that contains the record is still
empty. If a GET macro is issued to retrieve a record from
that overflow slot, an error is issued. If a PUT macro is
issued to write a record in that slot, the overflow record is
moved to its proper location, if possible, or to another
empty slot. Thus the overflow pointer will either be
updated or replaced by the record. Overflow records will,
in all cases, require twao accesses to retrieve the record.

The formats of the block headers on disk and overflow
record headers are shown in figure 2-5. The formdt of a
record header is shown in figure 2-6.

2-3

.Block Header

59 58 51 38 24 11 5 0
Checksum Reserved for CDC 2
A Record Amount of Space in Free
O|p [Ynused| count Block Half Words Slots

Qverflow Pointer Record

59 38

58 Set to 1 when any records in the block are logically deleted.

25 0

Unused

Slot Number

First PRU Number of Block

Figure 2-5. Actual Key Block and Overflow Record Header Formats

289 2524 12 0
G
LWA+1 of
ucc CN)| Unused Record in
P Block

Unused character count

Set to 1 when record is
compressed

Last word address plus 1 of
record relative to start of
first record in block

29 thru 26
25

12 thru 0

Figure 2-6. Extended Actual Key Record Pointer Format

DIRECT ACCESS FILE STRUCTURE

A direct access file contains a file statistics table, home
blacks, and (under certain conditions) overflow .blacks. All
blocks are fixed length. The following terms have specific
meaning in relation to direct access files:

e Primary key
A primary key is a character string that is hashed to
produce the location of the home data block
containing the record (1 to 255 characters).

e Hashing
Hashing denotes the method of using primary keys to
search for relative home block addresses of direct
access records.

e Home block
A home block is a block whose relative address is
computed by hashing primary keys. A home block
contains synonym records whose keys hash to that
relative address.

e Synonyms

Synonyms are records whose keys hash to the same
home block.

° Overflow record

An overflow record is a record whose key has been
hashed to a home block that is already filled.

° Overflow block

An overflow block is the second or subsequent block in

-a chain that starts at a home block. It contains
overflow records and can contain records belonging to
more than one overflow chain.

° Chain

A chain consists of a home block and possibly overflow
blocks connected by forward pointers.

The relative position of records within a direct access file
is not important. A record is stored and retrieved by
hashing its primary key to produce the relative address of a
home block. When a home block is filled, the recard is
placed in a system-generated overflow block.

The logical structure of a direct access file is shown in
figure 2-7. FSTT is the file statistics table. H1 through
-6 are the home data blocks, and OV1 through OV3 are the
overflow blocks.

End-of-
Information

Beginning-of-
Information

[1

FSTT | H1|H2|[H3 | H4 | H5| H6 |OV1 [OV2 |OV3

Figure 2-7. Logical Structure of a Direct Access File

File Storage Allocation

Mass storage space is preallocated when a direct access
file is opened. Record storage and retrieval are by primary
key; the location of a record within a file is determined by
hashing the primary key to a relative block address.

60499300 F

Records are grouped in fixed-size blocks according to the
results of the primary key hashing. When more records
hash to a home block than the block can contain, overflow
blocks are created and linked to form a chain.

Extensive analysis of the record key structure, key range,
and key distribution is necessary to implement a randomly
organized file in an optimum manner. An ideal hashing
algorithm distributes records uniformly across all home
blocks. Because no single hashing routine can produce
optimum results for all data, a user-supplied hashing
routine can be used. Hashing routines are discussed in
further detail in section 4, File Processing.

File Blocking

Each direct access block (home or overflow) is an integral
number of PRUs less two central memory words and is
treated as a system-logical-record. Direct access block
header format is shown in figure 2-8. The two-word block
header is followed by the records ordered by ascending key
value. Half-word record headers are entered from the end
of the block.

The structure of a direct access record header is the same
as shown in figure 2-6 for actual key files.

RECORD TYPES

Eight external record types are supported; these record
types are listed in table 2-1. Except for S type records and
. W type records, each record type is described in detail in
the following paragraphs. AAM processes S and W type
records the same as U type records.

NOTE
Refer to appendix I for recommended record types.

When records are written on an AAM file, the record type
specification is used to compute the record length in
characters. This length is recorded in the header word that
accompanies each record in these files. When the record is
read, record type is ignored and the number of characters
indicated by the length field in the header is returned to
the program.

The numbering conventions for describing a record or the
position of a control field or key field in a record are
summarized in figure 2-9. All record lengths are specified
by character count. Values are normally unsigned positive
integers, counting in a decimal system. For AAM files, the
maximum record length (MRL) field in the FIT must not

TABLE 2-1. RECORD TYPES AND
LENGTH DESCRIPTIONS

Record Type Length Description
—_—— oo

A Tength field within the
record gives the length as
character count.

D - Decimal Character
Count

A11 records are the same
fixed length.

F - Fixed Length

A record mark character
spacified by the user ter-
minates the record.

=
1

Record Mark

The length is defined by
the user.

System Record

The fixed-length header
contains a trailer count
field that specifies the
number of fixed-length
trailers for the-record.

Trailer Count

—
]

The Tength is defined by
the user.

=
¢

Undef ined

The
the

length is defined by
user.

Control Word

The Tlength is determined
using the RL or FL field
and removing all full words
of blanks.

Zero Byte

DECIMAL CHARACTER COUNT, D TYPE RECORDS

Records in a file with D type records vary in length. The
length of an individual record is specified in a record
length field located within the record. The position of the
record length field is specified by two Ffields in the FIT.
The length field beginning character position (LP) field
indicates the character position (numbering from 0) in
which the record length field begins. The length field
length (LL) field specifies the number of characters in the
record length field, which cannot exceed six characters.

When a D type record is written, the record length field
cannot contain a value greater than the value of the

exceed 81870 characters. maximum record length (MRL) field in the FIT. The
59 58 51 38 29 24 11 5 0
Checksum Reserved for CDC 2
Ul A Unused Record Empty Half Words Overflow Block
R|D Count in Block Chain Pointer
59 Set to 1 when all records in the block are of equal size and only the first
record header is present in the block.
58 Set to 1 when any records in the block are logically deleted.
Figure 2-8. Direct Access Block Header Format
2-5

60499300 £

e Word 0 P et

Word 1 ———

e Word n ——————

(Relative Character Position in Word)

{Character Number)

01 2 3456789012734

01 2 3 45 6 7 8 910 111213 14 .

= Record Length m + 1 Characters {

01 23 456 7 8 9

Figure 2-9. Numbering Conventions

maximum length that can be specified in the MRL field is
81870 characters for AAM files. The length value
specified in the record length field is given as
right-justified display code filled with zeros or blanks. If
the COMP-1 (C1) field in the FIT is set to YES, the record
length field is a COMP-1 (binary) field. If the sign
overpunch (SB) field in the FIT is set to YES, the record
length field is a sign-overpunch field.

The minimum record length (MNR) field in the FIT
specifies the minimum number of characters for the D type
record. Minimum record length must be large enough to
contain the field specifying total record length and should

. be at least 10 characters to ensure a correct detection of

end-of-data conditions. The default value for the MNR
field is the sum of the values in the LP and LL fields;
however, the MNR field can be set to a greater value.

Figure 2-10 shows an example of a D type record. The

record length field is three characters in length (the LL -

field is set to 3) beginning in character position 22 (the LP
field is set to 22). The minimum number of characters in a
record is 25 (the sum of the values in the LL and LP fields).

0 ~%—————e Character position ——————3=199

[t F, characters {200) ————————epo

LP—‘

01 22 25 199
200
b
Length of
length field
-t 200 characters

Figure 2-10. D Type Record Example

FIXED LENGTH, F TYPE RECORDS

In a file with F type records, all records are the same
length. The number of characters in the F type records is
specified by the fixed length (FL) field in the FIT. The
maximum record length that can be specified for F type
records is 81870 characters for AAM files. Minimum
record length is 10 characters. An example of an F type
record is shown in figure 2-11; each record in the file
contains 200 characters as specified by the FL field.

Figure 2-11. F Type Record Example

Any value in the record length (RL) field in the FIT is
ignored. When a GET or PUT macro is issued, the value of
the fixed length (FL) field in the FIT determines the
number of characters that are transferred. A value must
be supplied for the FL field before the file can be.
successfully opened.)

RECORD MARK, R TYPE RECORDS

A special delimiting character, called a record mark,
terminates R type records. The record mark character,
which can be any character of the character set, is
selected by the user. The delimiting character is specified
in the record mark character (RMK) field in the FIT.

The size of an R type record cannot exceed the number of
characters specified by the value of the maximum record
length (MRL) field in the FIT. Maximum length that can be
specified for R type records is 81870 characters for AAM
files. Minimum record length should be at least 10
characters to ensure a correct detection of end-of-data
conditions.

When a GET macro is issued, all characters up to and
including the record mark character are transferred to the
working storage area. If the record mark character is not
found within the specified maximum recard length, the
maximum number of characters is transferred and an
excess data error is given.

Issuing a PUT macro causes all characters up to and
including the record mark character to be written on the
file. If the record mark character is not found within the
specified maximum record length, no data is written on the
file and an excess data error is given.

60499300 E

Figure 2-12 illustrates the use of R type records. The
maximum record length (MRL) field is set to 120 and the
record mark character (RMK) field is set to 62g, which is
the default right bracket (]) character. For a file read or
write operation, the right bracket character terminates the
record.

Record mark character

)

) MRL characters maximum (120) ___‘l

Figure 2-12. R Type Record Example

SYSTEM RECORD, S TYPE RECORDS

When S type records are specified, AAM processes the
records the same as U type records. Refer to the
description of U type records.

- TRAILER COUNT, T TYPE RECORDS

Records in a file with T type records consist of a
fixed-length header and a variable number of fixed-length
trailer items. The fixed-length header contains a count
field that specifies the number of fixed-length trailer
items in the record.

Five fields in the FIT are applicable to T type records and
must be specified.

HL Header length specifies the number of
characters in the fixed-length header.

TL Trailer length specifies the number of
characters in one fixed-length trailer item.

CcpP Starting character position specifies the
character position (numbered from 0) in
which the count field begins.

CL Count field length specifies the number of
characters (one through six) in the count field.

MRL Maximum record length specifies the
maximum number .of characters in any record.

The value in the count field is right-justified display code
with zera or blank fill. The COMP-1 (C1) field or the sign
overpunch (SB) field in the FIT can be set to YES to change
the count field to a COMP-1 or sign-overpunch field.

The count field, which is identified by the CP and CL fields
in the FIT, must be located in the fixed-length header
portion of the record. The value in the header length (HL)
field, therefore, cannot be less than the sum of the values
in the CP and CL fields.

The value in the HL field is the logical minimum record
length. The maximum length for a record is specified by
the maximum record length (MRL) field in the FIT; the
value in the HL field cannot exceed the value in the MRL
field. Maximum length that can be specified for T type
records is 81870 characters for AAM files. Minimum
record length indicated by HL should be at least 10
characters to ensure a correct detection of end-of-data
conditions. The logical structure of a T type record is
shown in figure 2-13.

UNDEFINED, U TYPE RECORDS

Files with U type records have records that are not
farmatted according to any of the supported record types.
The maximum vecord length (MRL) field in the FIT
indicates the maximum length for any record in the file.
The maximum record length that can be specified for U
type records is 81870 characters for AAM files.

When a GET macro is executed, the record length (RL)
field in the FIT is updated to indicate the number of
characters read. When a PUT macro is executed, the RL
field in the FIT must be set teo indicate the number of
characters to be written., The value in the RL field cannot
exceed the specified maximum record length. AAM

_maintains record pointers that define the length of the

stored record.

CONTROL WORD, W TYPE RECORDS

When W type records are specified, AAM processes the
records the same as U type records. Refer to the
description of U type records.

—i——count field ———|

n Trailers of length TL

n

cp

I—q——TL—-»

e o o N

<—TL—->|
1

Total length
HL+{n*TL}

Figure 2-13. T Type Record Format

60499300 E

2-7

ZERO BYTE, Z TYPE RECORDS

A Z type record has trailing blank suppression. Maximum
record size is indicated by the full length (FL) field in the
FIT; maximum length that can be specified for Z type
records is 81870 characters for AAM files.

When a record is read, the zero byte is stripped from the
record and blank padding is added to fill the working
storage area to (MRL+9)/10. If end-cf-infarmation is
encountered before the zero byte is found, it is possible the
file does not contain Z type records. At the conclusion of
a read operation, the record length (RL) field in the FIT is
set to indicate the number of characters read, not
including blank padding.

When a record is written, the value of the RL field
determines the processing that takes place. If the RL field
is set to a value greater than zero, the end of the record is
determined by searching backward from the character
position specified by the value of the RL field and
removing all full words of blanks.

If the RL field is set to zero when a record is being
written, the end of the record is determined by a backward
search for the last nonblank character in the working
storage area. The search begins in the character position
indicated by the FL field in the FIT; all full words of blanks
are removed.

ALTERNATE KEY INDEX
- FILE STRUCTURE

An index file is created and maintained by the
Multiple-Index Processor (MIP) whenever a data file has
alternate keys defined. The index file is automatically

created when the data file is created and updated-

whenever an update to the data file affects the index file.

The index file created and maintained by MIP contains an
index for each alternate key position defined for the file.
Within an index, each alternate key value is associated
with a primary key list of records containing that value.
The index file is created when the data file is created, ar
the MIPGEN utility can be used to create the index file for
an existing data file.

When the index file is created, the user can specify the
size of the index file blocks in a field in the data file FIT.
The block size is increased if necessary to the nearest
multiple of 640 characters minus 20. The default size for
index file blocks is the data block size.

Each alternate key index is ordered in ascending sequence
of alternate key values. The ordering of primary key
values within the primary key list associated with an
alternate key value can be controlled by the user. The
structure of primary key lists can be indexed sequential or
first-in first-out. Indexed sequential structure is most
efficient. The user can also specify that alternate key
values are unique, in which case each primary key list
contains only one value.

The index file is structured into three levels: a level 1
main file, level 2 subfiles, and level 3 subfiles. The level 1
main file contains descriptions of the alternate keys. A
level 2 subfile contains values for an alternate key and a
level 3 subfile contains primary key values for a specific
alternate key value. The logical structure of a MIP index
file is shown in figure 2-14.

The level 1 main file contains descriptions of all the
alternate keys defined for the data file. The description of
an alternate key includes the position, length, and type of
the key as well as information related to sparse keys.
Normally, all the descriptions can be contained in one
bloeck; however, if more than one block is required, the
main file has an indexed sequential structure.

Alternate
Key
Descriptions

Alternate Alternate Alternate
Key 1 Key 2 Key n
Subfile Subfile Subfile
Value-1 Value-2 Value-n
Primary Key Primary Key Primary Key
Subfile Subfile Subfile

2-8

Figure 2-14.

Index File Logical

Structure, MIP

60499300 E

Each level 2 subfile contains all the values for one of the
alternate keys. The level 2 subfiles have indexed
sequential file organization with index blocks and data
blocks. Each record in a data block contains an alternate
key value and the first primary key value associated with
it. Depending on the amount of. available space in the data
block and the size of the primary key list, the data block
might contain additional primary key values.

A level 3 subfile contains primary key values that cannot
be accommodated in the level 2 subfile. If alternate key
values are unique, level 3 subfiles are not needed. The

structure of the level 3 subfile is either indexed sequential
or first-in first-out as specified when the alternate key is
defined. Indexed sequential subfiles have index blocks and
data blocks. First-in first-out level 3 subfiles have data
blocks chained in a forward direction.

The physical structure of a MIP index file is shown in
figure 2-15. A block in the figure can be either an index
block or a data block. The block structure is identical to
block structure in an indexed sequential file. All blocks
within a subfile are chained together in a forward direction.

Main
ESTT File Block Block

Block Block

Block Block

Figure 2-15. Index Fiie Physical Structure, MIP

60499300 E

FILE INFORMATION TABLE 3

A file information table (FIT) is required for all AAM
files. Information in the table defines the file and
specifies how it is accessed. The FILE macro and the FILE
control statement are used to create and update the FIT.
The FILE macro assembles the FIT in the COMPASS
program at the address where the macro is encountered.
Pertinent information from the FILE control statement is
saved until the file is opened; the saved information is then
stored in the FIT and takes precedence over any
corresponding preexisting information. A blank FIT,
except for addressing information, file organization, and
logical file name, could be set up in the user program with
definition of file characteristics deferred until the file is
opened.

The STORE macro or the FILE control statement can be
used to change the setting of fields in the FIT. The fields
are identified by the keywords of the FILE macro. The
FETCH macro is used to retrieve the contents of a field in
the FIT; a FILE macro keyword identifies the field being
retrieved.

-AAM macros that request file operations can result in
. amendment of FIT fields. Certain macro operands are
stored in FIT fields before the request is performed and
values can be stored in FIT fields as a result of processing
the request. AAM also maintains certain fields in the FIT
to reflect the current state of the file.

FILE MACRO

The FILE macro constructs the file information table at
the address where the macro is encountered during
assembly; the FIT must be built before the file is opened.
The format of the FILE macro is shown in figure 3-1. The

interaction between Ifn and LFN=axxxxxx is shown in table"

3-1.

The FILE macro does not check fields for validity or
consistency. If the option specified for a field exceeds the
maximum specified size, it is truncated and an assembler
warning message is produced.

Misspelled or unrecognized parameters generate null
parameters; the referenced fields are set to zero. Null
parameters are ignored. Warning messages are generated
when overlapping fields are specified.

60499300 E

[fn] FIiLE [LFN=axxxxxx] [,keyword=option,] ...

Ifn Symbolic address where the FIT is assembled in
the COMPASS program; if the LFN=axxxxxx is
omitted or is the same name, logical file name
by which the file can be referenced.

LFN FIT field mnemonic for logical file name; if Ifn
is omitted, LFN must be specified with axxxxxx.

AXXXXXX Logical file name by which the file can be refer-
enced; if Ifn is omitted, symbolic address where
the FIT is assembled in the COMPASS program.

keyword Symbolic name of the FIT field.

option Selected option of the FIT field.

Figure 3-1. FILE Macro Format

. TABLE 3-1. LFN AND 1fn INTERACTION

COMPASS Contents of LFN
Statement Location Value Field in FIT
A FILE A A
FILE LFN=A A A
A FILE LFN=A A A
A FILE LFN=B A B

The FILE macro must specify the file organization (FO;
mnemonic for an AAM file. Any parameter not applicable
to the specified file organization is ignored and an error
type 4 is generated during assembly.

The values specified for the FILE macro parameters are
assembled into the FIT; parameters can be specified in any
order. Table 3-2 shows the FILE macro parameters
applicable to each AAM file organization. A detailec
explanation of each FIT field that can be specified by the
FILE macro parameters follows. The default value it
indicated for each field.

The option aexp represents an absclute expression; exp is
any COMPASS expression.

3-1

TABLE 3-2.

FILE ORGANIZATION

FILE MACRO PARAMETERS BY

p t Indexed Actual Direct

arameter Sequential Key Access
BCK X X X
BFS X X X
coT

CL X X X
cP X X X
CPA X X X
C1 X X X
DCA X X X
DCT X

DFC X X X
DP X X

DX X X X
EFC X X X
EMK X X X
ERL X X X
EX X X X
FL X X X
FLM X X X
FO X X X
FuB X X X
FWI X X X
HL X X X
HMB X
HRL X
P X

KA X X X
KL X X X
KP X X X
KT X

LFN X X X
LL X X X
LP X X X
MBL X X X
MKL X

MNR X X X
MRL X X X
NDX X X X
NL X

OF X

ON X X X
ORG X X X
PD X X X
PKA X X X
RB X X X
REL X X X
RKP X X X
RKW X X X
RMK X X X
RT X X X
SB X X X
TL X X X
WSA X X X
XBS X X X
XN X X X

3-2

BCK
Block checksum
BCK=NO (default) -
Checksums are not computed during file
creation. For a file created with checksums, no
checksumming is done during a read operation;
however, checksums are computed for blocks
written.
BCK=YES -
A checksum is computed before each block is
written and after it is read. The chécksum is part
of the block.
BFS
Buffer size

BFS=0 (default) -

AAM provides the buffer space; the amount of
common buffer space is increased by an amount
determined by AAM.

BF S=aexp -
The buffer size is the number of words specified;
maximum is 217-1 or 131000 words. If the

FWB field is set to zero, AAM increases the
amount of common buffer space allocated by BFS.

CDT
Collating sequence to display code conversion table;
ignored if the DCT field is zero (initial indexed sequential
files)

CDT=0 (default) ~

Conversion table is generated from the table
specified by the DCT field.

CDT=exp -

Conversion table is at the specified address.

CL
Trailer count field length (T type records)
CL=0 (defauit) -

For T type records, this field must be defined
before the file is opened.

ClL=aexp -

The length of the trailer count field is the
specified number of characters; maximum is 6.

60499300 E

CcP
Trailer count beginning character position (T type records)
CP=0 (default) -

The trailer count field begins in character
position 0.

CP=aexp -
The specified number is the beginning character

position, numbered from 0 on the left; maximum
is 81870 for AAM files.

CPA
Compression/encryption routine number or address
CPA=0 (default) -
Records are not compressed unless a system
routine was specified when the file was previously
opened.
CPA=aexp -~
The specified number identifies the system
compression routine to be used; must be less than
100g.
CPA=exp -

The user-supplied compression routine is at the
specified address; must not be less than 100g,

C1
COMP-1 format for length field (D or T type records)
C1=NO (default) -
The length field is in coded format.
Cl=YES -

The length field is in binary (COBOL COMP-1)
format.

DCA

Decompression/decryption routine address; required if the
CPA field specifies a user routine

DCA-=0 (default) -
If the CPA field specifies either no compression
or a system compression routine, AAM sets DCA
at open time if needed.

DCA=exp -
The user-supplied decompression routine is at the

specified address; DCA must be specified if a
user-supplied compression routine is specified.

60499300 E

DCT

Display code to collating sequence conversion table
(indexed sequential files)

DCT=0 (default) -
CDC conversion tables are used.
DCT=exp -
The user-supplied table is at the specified
address. For indexed sequential files, AAM
generates the collating sequence to display code
conversion tabie from the user-supplied table.
DFC
Dayfile control

DFC=0 (default) ~

Only fatal error messages are written on the
dayfile.

DFC=1 -
Error messages are written an the dayfile.

DFC=2 -
Statistics/notes are written on the dayfile.

DFC=3 -
Error messages and statistics/notes are written on
the dayfile.

DP

Data block padding factor (indexed sequential and actual
key files)

DP=0 (default) -

The installation default value is used for indexed
sequential files; O for actual key files.

DP=aexp -
Padding for the data block is the specified
percentage; maximum is 99.
DX
End-of-data exit
DX=0 (default) -
No end-of-data exit is specified.
DX=exp -
The routine at the specified address is enterec
when an end-of-data condition occurs. The

system stores a jump at the first address of the

routine and control passes to the first exescutable
statement, which is routine+l.

3-3

EFC

Error file control (file ZZZZZEG); The FITDMP macro
forces EFC=0to 2 and EFC=1 to 3

EF C=0 (default) -

No messages are written on the error file.
EFC=1 -

Error messages are written on the error file.
EFC=2 -

Statistics/notes are written on the error file.
EFC=3 -

Error messages and statistics/notes are written on

the error file.

EMK

Embedded key; examined when the file is opened for
creation

EMK=NO (default for indexed sequential and actual
key files) -

The key is not part of the record.
EMK=YES (default for direct access files) -
The key is embedded in the record; the RKW,

RKP, and KL fields define the position and length
of the key.

ERL
Trivial error limit
ERL=0 (default) -

An indefinite number of trivial errors s
permitted; no limit is specified.

ERL=aexp -
The specified number is the maximum number of

trivial errors allowed before a fatal error occurs;
maximum is 511.

EX
Error exit
EX=0 (default) -

No routine is entered if an error occurs; control is
returned to the user's in-line code.

EX=exp -

The routine at the specified address is entered
when an error occurs. The system stores a jump
at the first address of the routine and control
passes to the first executable statement, which is
routine+1.

3-4

FL
Fixed length (F type records) or full length (Z type records)
FL=0 (default) -

The field must be defined before the file is
opened.

Fl.=aexp -
For F type records, the specified number is the
record length in characters; 10 through 81870 for
AAM files.
For Z type records, the specified number

establishes the upper limit of characters or blank
padding moved to the working storage area.

FLM
File limit
FLM=0 (default) -
The file limit is not checked.
FLM=aexp -
The file limit cannot exceed the specified number
of records.
FO
File organization (no default value)
FO=AK -
The file has actual key file organization.
FO=IS -
The fil;?. has indexed sequential file organization.
FO=DA -

The file has direct access file organization.

FWB
First word address of user-supplied buffer
FWB=0 (default) -
AAM provides the buffer space needed.
FWB=exp -

The user buffer is at the specified address.

FWI
Forced write indicator
FWI=NO (default) -

Each buffer is written only when the buffer space
is needed for another input/output operation.

60499300 £

FWI=YES -
All buffers are written immediately after each
operation that modifies the buffer content. This
option increases file integrity by keeping the file
current; however, performance is degraded as
more input/output transfers are required.
HL
Header length (T type records)
HL.=0 (default) -

For T type records, this field must be defined
before the file is opened.

HL=aexp -
The fixed-length portion of the T type records is
the specified number of characters; maximum is
81870 for AAM files. Minimum is the sum of the
CP and CL fields.
HMB
Number of home blocks (direct access files)
HMB=0 (default) -
The field must be defined to open the file.
HMB=aexp -
The file contains the specified number of home
blocks; maximum is 224.1 or 16777215.
HRL

Hashing routine location; cannot be changed after file
creation (direct access files)

HRL =0 (default) -
The system-supplied hashing routine is used.
HRL=exp -
The user-supplied hashing routine is at the
specified address.
1P
Index block padding factor {indexed sequential files)
IP=0 (default) -

For indexed sequential files, the default value
zero is used.

IP=aexp -

The index block padding is the specified
percentage; maximum is 99.

60499300 E

KA
Key address
KA=0 (default) -
No address is specified for a key.
KA=exp -

The key value for the record to be processed is at
the specified address; for the GETN macra, the
key of reference is returned to the specified
address.

KL
Key length
KL.=0 (default) -

This field must be defined before the file is
opened.

KL =aexp.~
The key length is the specified number of
characters. The positive integer that can be
specified for the key length in indexed sequential
files depends on the key type defined by the KT
field.
KT=S or KT=U -
Symbolic key, maximum is the installation-
defined key limit (default is 255).
KT=I - :
Integer key, 10 characters must be specified
for the signed binary key-

KP

Beginning key position (all AAM files except indexed
sequential with KT=)

KP=0 (default) -
The key is word-aligned.
KP=aexp -
The key begins in the specified character position

within the KA field, numbered from 0 on the left;
maximum is 9.

KT
Key type (indexed sequential files)
KT=S (default) -
A collated symbolic key is a string of 6-bit
characters; sorted according to the sequence

indicated by the display code to collating
sequence conversion table.

3-5

KT=l -

An integer is a 10-character signed binary key;
sorted by the magnitude of the key values.

KT=U -
An uncollated symbolic key is a string of 6-bit
characters; sorted by the magnitude of their
binary display code values.
LFN
Logical file name (no default value)
LFN=axxxxxx -
The data file logical file name is one to seven
characters in length beginning with a letter.
LL
Length field length (D type records)
LL =0 (default) -

The field must be defined before the file is
opened.

LL=aexp -
The length of the length field is the specified
number of characters; maximum is 6.
LP
Length field beginning character position (D type records)
LP=0 (default) -
The length field begins in character position 0.
LP=aexp -
The length field begins in the specified character
position, numbered from 0 on the left; maximum
is 81870 for AAM files.
MBL

Maximum block length; should not be changed after the file
is opened

MBL=0 (default) -
The installation default size is used.
MBL=aexp -

The data block is the specified number of
characters in length. The specified size is
increased to an integral multiple of PRU size
minus two words. MBL should not be specified if
a value for the RB field is given for indexed
sequential files. If both are set, the value of the
RB field is ignored. For indexed sequential files,
MBL also specifies the length of the index blocks.

3-6

MKL

Major key length (indexed sequential files, symbolic key
type); must be set with STORE macro after the file is
opened.
MKL =0 (default) -
Major key length processing is not specified.
MKL=aexp -
The major key length is the specified number of
characters; maximum is the KL value. The file is
positioned at the first record with a key in which
the first specified number of characters matches

the major key. MKL is reset to zero after each
START or GET.

MNR
Minimum record length
MNR=0 (default) -
The minimum record length is zero characters.
Zero length records are not accepted in direct
access and actual key files.

MNR=aexp -

The minimum record length is the specified
number of characters; maximum is the MRL value.

MRL
Maximum record length
MRL=0 (default) -

This field must be defined before the file is
opened for creation.

MRL=aexp ~
The maximum record length is the specified
number of characters; maximum is 81870 for
AAM files. This establishes the upper limit of
characters moved to the working storage area.

The field must be specified for OPENM NEW and
is returned for OPENM OLD.

NDX
Index flag (multiple-index files)
NDX=NO (default) -

The data file can be accessed by primary or
alternate key.

NDX=YES -

Only the index file is accessed.

60499300 £

NL

Number of index block levels; used only when files are
created (indexed sequential files)

NL=0 (default) -
The installation default value is used.
NL=aexp -
The number specified is the expected number of

levels for the file; maximum is 15 for indexed
sequential files.

OF

Open flag; file positioning at OPENM time (indexed
sequential files)

OF =R (default) -
The file is rewound.
OF =E -

The file is positioned at end-of-information for
extend.

ON
01ld or new file
ON=0LD (default) -
The file is an existing file (FSTT exists).
ON=NEW -
The file is being created (FSTT to be
established). The PD field must also be set to
QUTPUT.
ORG
Currently supported file organization
ORG=NEW (default) - '
The file organization is currently supported
(previously known as extended).
PD
Processing direction
PD=INPUT (default) -
The file is open for input (read).
PD=0UTPUT -
The file is open for output (write).
PD=IOC -

The file is open far input/output (read and/or
write).

60499300 E

PKA
Primary key address
PKA=0 (default) -

The primary key is not returned on an alternate
key read operation.

PKA=exp -

The primary key is returned to the specified
address on an alternate key read operation.

RB
Recdords per block; used in block size calculation
RB=0 (default) -

RB is set to 1; the installation default is used if
MBL is also zero.

RB=aexp -
Blocking factor limit is 4095, For indexed
sequential files, RB should not be specified if the
MBL. field is specified.
REL
Key relation; relation of record key to key value at
location KA. REL is significant only for START operations
and index-only operations.
. REL=EQ -
This specifies an equal relation.
REL=GE -
This specifies a greater than or esqual relation.
REL=GT -

This specifies a greater than relation.

RKP
Relative key position (required if EMK is set to YES)

RKP=0 (default) -
The key is word-aligned starting at RKW position.
RKP=aexp -

The key begins in the specified position within
RKW, numbered from 0 on the left; maximum is 9.

RKW
Relative key word (required if EMK is set to YES)
RKW=0 (default) -

The key begins in the first word of the record.

3-7

RKW=aexp -

The key starts in the specified word (numbered
from 0) within the record.

RMK
Record mark character (R type records)
RMK=0 (default) -

The record mark character is the right bracket
(1D, which is 62g.

RMK=ccB -
The record mark character is the specified octal
value (ce); maximum is 77g,

RMK=1Rx -
The record mark character is the specified
character (x); any character is valid.

RMK=ce -

The record mark character is the specified
decimal value (ee); maximum is 63.

RT
Record type
RT=W (default) -

This specifies a control word record; however,
AAM processes this the same as RT=U.

RT=F -
This specifies a fixed length record.
RT=R -
This specifies a record mark record.
RT=Z -
This specifies a zero byte terminated record.
RT=D -
This specifies a decimal character count record.
RT=T -
This specifies a trailer count record.
RT=U -
This specifies an undefined record.
RT=S -

This specifies a system-logical-record; however,
AAM processes this the same as RT=U.

SB
Sign overpunch format for length field (D or T type records)
SB=NO (default) ~
The length field is in unsigned display code.
5B=YES -
The length field uses a COBOL sign overpunch
scheme.
TL
Length of the trailer portion (T type records)
 TL=0 (default) -

This field must be defined before the file is
opened.

Tl=aexp -
The length of the trailer portion .is the specified
number of characters; maximum is 131071,
WSA
Waorking storage area address
WSA=0 (default) -
No working storage area is spe'cified.
WSA=exp -
The working stor.age area is at the specified
address. This field must be set before any file
processing macro uses the working storage area.
It can be set by the GET, PUT, GETN, GETNR,
and REPLACE macros.
XBS
Index file block size (multiple-index files, MIP)
XBS=0 (default) -

The index file blocks are the same size as the
data file blocks.

XBS=aexp -

The index file blocks are the specified number of
characters.

XN
Index file name {(multiple-index files)
XN=0 (default) -

No accesses or updates by alternate key can be
performed.

XN=1fn -

The index file for alternate key access is the file
with the specified logical file name.

60499300 E

FILE CONTROL STATEMENT

The FILE control statement is used to specify file
information to update the FIT either when the SETFIT
macro is issued or the first time the file is opened in the
job step. FILE control statements are not processed if
NOFCP is set ta YES by the FILE or STORE macro. This
run-time control over file specification allows a single
program to process files with different record types.
Corresponding FIT fields have the value specified on the
last control statement encountered.

FILE control statements must be placed before any
program call in which the information in the statements is
to be used. Because processing of the FILE control
statement involves calling a central processor program, it
should not be placed within a load set sequence. For
example, the FILE control statement should not be placed
between the LOAD and EXECUTE control statements.

A FILE control statement cannot be continued to a second
card or card image, but the same logical file name can
appear on mare than one FILE control statement. If maore
than one FILE control statement appears for a given file,
the data on the first control statement can be overwritten
by the data on a subsequent caontrol statement when
overlapping fields occur in those statements. The FILE
control statement conforms to operating system coding
conventions.

When an error diagnostic is produced by FILE control
statement processing, the entire statement is ignored.
FILE control statement diagnostics are written on the
dayfile as soon as the error is encountered; diagnostics
name the faulty parameter and are self-explanatory.
Caontrol is then passed to the next EXIT control statement.
No EXIT is taken for advisory diagnostics.

The format of the FILE control statement is shown in
figure 3-2. Keywords can be specified in any order.
Keywords have the same meanings as described for the
FILE macro.

FILE{ifn{=axxxxxx] [,keyword=option] ...)
Ifn Name of the FIT; required.

TAXXXXXX Optional new name for the FiT; allows a
file to be requested by a new name with-

out reassembly.

keyword=option Symbolic name of the FIT field and the
option selected.

Figure 3-2. FILE Control Statement Format

If only the Ifn and FO parameters appear in the FILE
control statement and no subsequent FILE control
statement references that file, FIT fields for all
succeeding job steps are those specified in the program. If
the FILE control statement appears without any
parameters, FIT fields for all files revert back to those
specified in the program for all succeeding job steps until
another FILE control statement is encountered. Except for
the USE and OMIT parameters, all parameters valid in a
FILE control statement are valid in a FILE macro.

The FILE control statement parameters are listed in table
3.3. The various options for a keyword are separated by
the symbol. If the keyword is selected, one of the
options must be selected and the others must be omitted.
Parameter values are absolute and generally reference a
number of characters. Value formats are denoted as:

NoeoT Decimal value
n...nB QOctal value
Neooo NW Decimal value, specified in words

Descriptions of the FILE control statement parameters are
the same as for the corresponding FILE macro parameters.

TABLE 3-3. FILE CONTROL STATEMENT PARAMETERS

Keyword Options Keyword Options Keyword Options

BCK NO|YES FWI NO|YES of RIN|E

BFS O0ln...nin...nB HL Ojn...nin...nBln...n¥ OMIT macro name/macro name/...
CF R{NJU|RET|DET HMB 0lnn ON OLD [NEW

cL Oln...n|n...nB|n...nW IP O0jnn ORG NEW

cP Oin.c.nin...nBln...nW KL Oln...n{n...nB|n...n¥ PD INPUT |OUTPUT| IO

CPA O|n...n|n...nB KP Oin...njn...nB RB Oln...nfn...nB

c1 NO | YES KT S|T|Fju RKP Oln...nln...nB

DFC 0l11213 LFN Lfn RKW Oln...n{n...nB

bP 0|nn LL Oln...n{n...nB RMK 0]ceBliRx]cc

EFC ol1j213 LP Oln...nln...nB|n...n¥ RT wiF|rR|Z|D[T|UIS

EMK NO|YES MBL Olneeen|ne..nBin...nk s8 NO|YES

ERL 0{n...njn...nB MNR Oln...nln...nB|n...n¥ TL Ofn...njn...nB|n...nk

FL Oln...nine..nBln...n¥ MRL Oln...n{n...nB|n...n¥ USE macro name/macro name/...
FLM Ofn...n NDX NO|YES XN Lfn

FO IS|DAJAK NL Ofn...nin...nB XN Lfn

60499300 E

RUN-TIME MANIPULATION

The user can communicate with AAM through the FIT
without knowing the exact format of the FIT. This is done
with the FETCH, STORE, and SETFIT macros; FIT field
mnemonics are used in the FETCH and STORE macros.

FETCH MACRO

The FETCH macro retrieves the contents of a specified
FIT field by a reference to its mnemonics. The format of
the FETCH macro is shown in figure 3-3.

FETCH fit ,keyword,xi,f,m

fit Logical file name address of the FIT, or
any COMPASS expression giving the FIT
address.

keyword Any of the keywords in the FILE macro,

FILE control statement, or any of the
following:

BN Block number
BZF Busy FET address
ECT . Trivial error count
ES Error status

FNF Fatal/nonfatal flag
FP File position

LOP Last operation code
ocC Open/close flag
RC Recoerd count

RL Record length
WPN Write bit

Xi X register to receive the value of the
requested field.

f Number of the X register used to fetch the

FIT word; must be 1 through 5 (default
is B).

m Number of the’ X register used as a mask
(default is 7).

Figure 3-3. FETCH Macro Format

If the specified keyword represents a 1-bit field, the value
of the field is returned in the sign bit of the X register; the
contents of the remainder of the X register are undefined.
File names are returned left-justified with zero fill. All
other fields are returned right-justified with zero fill.

FIT field mnemonics can be any of the keywords used with
the FILE macro or any of the fields listed in figure 3-3.
The macro generates code to extract the requested value
from the FIT. The code expansion destroys values in user
registers Xf, Xm, Af, and Xi (which can be Xf or Xm).

STORE MACRO

The STORE macro places a user-determined value in a
specified FIT field at execution time. The format of the
STORE macro is shown in figure 3-4.

value
STORE fit,keyword= { option ; ,fs,m
Ri)

fit Address of the FIT or any COMPASS
expression giving the address.

keyword Any keyword described in connection with

- the FILE macro.

value Integer value associated with the keyword;
when the keyword represents a length, it is
specified in characters.

option Option associated with the keyword.

Ri Any register containing the proper value for
the keyword.

f Number of the X register used to fetch the
FIT word; must be 1 through 5 (default
is 5).

s Number of the X register used to store the
FIT word; must be 6 or 7 (default is 6).

m Number of the X register used as a mask
(default is 7).

Figure 3-4. STORE Macro Format

Most FIT fields listed in appendix D can be set symbolically
by the STORE macro. Some fields, such as the file
structure parameters, are protected against being changed
by the STORE macro. Other fields are not protected but
should not be changed after the file has been opened.

A field can be set by using the aption with the keyword or
by using a register to hold the option as shown in figure
3-5. Examples a and b have the same effect.

a. STORE fit, RL=10

b. SX1 10
STORE fit, RL=X1

c. STORE fit,FO=IS

Figure 3-5. STORE Macro Examples

The STORE macro generates code to store the requested
value in the FIT. This code expansion destroys the values
in user registers Xf, Xs, Xm, Af, As, and Xi (which can be
Xf, Xs, or Xm).

60499300 £

SETFIT MACRO

The SETFIT macro sets fields in the FIT according to
information provided in the FILE control statement. This
normally occurs when the OPENM macro is executed. The
SETFIT macro makes it possible for system routines to
obtain information, such as run-time buffer requirements,
needed by other system routines. The format of the
SETFIT macro is shown in figure 3-6.

SETFIT fit

fit Address of the FIT or register containing the
address of the FIT.

Figure 3-6. SETFIT Macro Format

The SETFIT macro is valid only for a closed file. Any
attempt to execute this macro for an open file results in an
error. Once the FILE control statement values are placed
in the FIT, the macro sets the processed flag (PDF) field to
inhibit further FILE control statement processing when the
OPENM macro is executed. The flag is cleared during
subsequent OPENM processing. :

If the buffer size (BFS) field is zero for an existing file, the
parameters from the file statistics table are placed in the
FIT; the buffer size returned to the BFS field is based on
these values. After a buffer is calculated, the open/close
(OC) field and first word address of the buffer (FWB) field
are cleared.

For a new file, the SETFIT macro should not be issued
unless sufficient information exists for buffer
calculations. Parameters needed for buffer calculation are
shown in table 3-4.

TABLE 3-4. BUFFER CALCULATION PARAMETERS

60499300 E

Orgamlition User Must Supply Parameter ogsggfgtﬂtsgzpaged Parameter
Indexed Key Tength KL Maximum block length MBL
Sequential

Key type KT Index block padding factor 1P
Max imum record length MRL Data block padding factor opP
Index block specification NL
Embedded key E'MK
Cdmbression routine CPA
Direct Home block number HMB Blocking factor R8
Access
Key length KL Embedded key EMK
Maximum block Tength MBL or Compression routine CPA
Maximum record length MRL and
Minimum record length MNR

Actual Maximum block length MBL or Blocking factor RB

Key Maximum record length MRL and
Minimum record length MNR
3-11

@

" FILE PROCESSING 4

M

This section provides general processing information and
explains by file organization the logical operations of
processing AAM files. Macros and FIT fields are discussed
as applicable to the type of processing for each file
organization. The macros and their parameters are
described in general in section 5, File Processing Macros.
Detailed explanations of the FIT fields are in section 3,
File Information Table. Processing of multiple-index files
is discussed in section 6, Multiple-Index Files.

GENERAL PROCESSING iNFORMATION

Certain processing procedures are common to all AAM file
organizations. These procedures are explained in the
following paragraphs. Processing unique to each file
organization is discussed by file organization.

FILE INFORMATION TABLE

Before an AAM file can be processed, the file information
table (FIT) must be established. This provides the name by
which the file can be referenced and defines the file
structure and processing limitations. The FIT contains
fields that are referenced whenever AAM processes the
file. FIT fields can be set befaore file processing by the
FILE control statement, FILE macro, SETFIT macro, or
STORE macro.

FILE STATISTICS TABLE

A separate creation run is necessary for AAM files. This
creation run establishes the file statistics table (FSTT),
which becomes a permanent part of the file. The FSTT
contains FIT fields that cannot be changed for the life of
the file. When the file is opened for processing after its
creation run, the FIT fields are automatically established
from information in the FSTT of the file.

OPENM MACRO

All files must be initialized using the OPENM macro.
Applicable default values are inserted into FIT fields far
certain values not supplied before executing the OPENM
macro. AAM also performs certain consistency checks on
FIT fields when the file is opened. Refer to the OPENM
macro description in section 5 for the FIT fields that are
checked.

INPUT/OUTPUT MACROS

The GET, GETN, and GETNR macros read records from a
file. A working storage area must be established to pass
data to the program from a file storage device. The user
defines the warking storage area (WSA) by supplying an
address for the WSA field in the FIT. A GET macro
transfers data from the buffer area, which is set up either
by the user or by AAM when the file is opened, to the
working storage area.

60499300 F

The PUT macro is used to write records to the file. A
working storage area must be established to pass data from
the program to a file storage device. The PUT macro
transfers data from the warking storage area to the buffer
area, which is set up either by the user or by AAM when
the file is opened. The maximum record length (MRL) field
in the FIT must be set by the user on a file creation run
and becomes a permanent part of the file. The value
specified in the MRL field becomes the upper limit on the
number of characters that can be transferred. ‘

CLOSEM MACRO

At completion of processing, all files must be closed by the
CLOSEM macro. Any remaining records of an output file
are written from the buffer to the file storage device, the
openfclose (OC) field in the FIT is set to closed, and
control is returned to the user. Execution of the CLOSEM
macro causes the FSTT to be updated; if requested, file
statistics are written to the error file ZZZZZEG.

END-OF-DATA ROUTINE

The end-of-data exit (DX) field in the FIT specifies the
address of a user routine for processing an end-of-data

condition. End-of-data occurs when beginning-of-
infarmation (BOI) or end-of-information (EOD is
encountered while attempting a data transfer or

positioning operation.

Control is passed to the address (DX)+1; a jump back to the
user in-line return code is stored at the DX address. The
file position (FP) field indicates the specific end condition
(BOI or EQI).

When file position is at EOI, the GETN macro transfers
control to the end-of-data exit. If continued GETN macros
are issued without repasitioning the file, the GETN macro
issues an error and transfers control to the error exit (if
specified) instead of to the end-of-data exit. No GETN
macro that passes control to the end-of-data exit causes
data to be transferred to the working .storage area.
Control is passed to the end-of-data exit only when
end-of-information is encountered. The FP field is not set
until the file is logically at the end of information.

For indexed sequential and actual key files, control is
transferred to the end-of-data exit whenever a SKIP macro
encounters EOI or BOL A trivial error condition is
produced by successive SKIP macros after end-of-data has
been encountered.

INDEXED SEQUENTIAL FILES

The indexed sequential file organization is well suited for
applications that require reasonably efficient storage and
retrieval of records both randomly and sequentially by
primary or alternate key. A primary key is a unique

4-1

identifier defined by the user for each record within an
indexed sequential file. Primary and alternate keys can be
in any of the following forms:

e 60-bit signed binary (10 characters)
e Symbolic (1 to 255 contiguous 6-bit characters)

e Uncollated symbolic (1 to 255 contiguous 6-bit
characters)

The value of the primary key determines the location of
the record in the file. Characters within a symbolic key
are collated according to the standard CDC collating
sequence or according to a user-supplied collating
sequence. Any user collating sequence has meaning for
ranking keys only; it is stored with the user file in the
FSTT. Numeric keys are ardered by value. Keys within an
indexed sequential file can be a part of the record
(embedded) or not a part of the record (nonembedded).
Refer to the CYBER Record Manager Advanced Access
Methads Version 2 User Guide for information on defining a
user-supplied collating sequence.

Refer to the CYBER Record Manager Advanced Access
Methods Version 2 User Guide for information on defining a
user-supplied collating sequence.

FILE CREATION RUN

A separate creation run is necessary for an indexed
sequential file. This can be done through the FORM utility
or through a source program. The FSTT is created when
the indexed sequential file is created.

The efficiency with which an indexed sequential file can be
processed is influenced by two fields in the FIT: maximum
block length (MBL) and buffer size (BFS). On a creation
run, the user has the option of specifying these values
directly or accepting system defaults calculated by AAM.
The FLBLOK utility, which is described in section 7, can
be used to calculate suggested values for the MBL and BFS
fields.

If the MBL field is not specified directly, the value is
calculated from the values of the following fields in the
FIT:

DP Data block padding

KL Key length

MNR Minimum record length

MRL Maximum record length

RB Records per block
A number of fields in the FIT determine the size and
characteristics of data and index blocks during file
creation. Data and index blocks must be the same size;

padding percentages, however, can be different. The
following FIT fields are used to calculate data block size:

DP Data block padding
KL Key length
KT Key type

MBL Maximum block length

MNR Minimum record length

MRL Maximum record length

RB Records per block
The FIT fields used to calculate index block size are as
follows:

P Index black padding

KL Key length

MBL Maximum block length

MNR Minimum record length

MRL Maximum record length

NL Number of index levels

RB Records per block
Certain FIT fields must be set by the user before the file is
opened on a creation run; otherwise, a fatal error occurs.
These fields can be specified in the FILE control
statement, FILE macro, or STORE macro. Any attempt to

change these fields after file creation is ignored without
comment. The FIT fields that must be set are as follows:

FO File organization
KL Key length
KT Key type

LFN L.ogical file name
MRL Maximum record length
ORG Currently supported file organization. Must
be set to NEW (default is NEW)
If the primary key is embedded in the record, the following
FIT fields must also be set:

EMK Embedded key, set to YES

RKP Relative key position; character position
within RKW in which the key begins

RKW Relative key word; word in which the key
begins

Other FIT fields that must be defined before the file is
opened on a creation run can be set by the user or can
assume default values. These fields remain the same for
the life of the file and attempts to change them are
ignored.

BCK Block checksum; default is no checksums

DCT Display code to collating sequence conversion
table; default is CDC conversion table

DP Data block padding percentage; release
default is 0

P Index block padding percentage; release
default is O

MBL Maximum block length, data and index
blocks; default is calculated by AAM

60499300 F

MNR Minimum record size; cannot exceed value of
MRL; default is O

NL Number of index levels; maximum is 15;
release default is 1

RB Records per block; should not be specified if
MBL. is specified; release default is 2

XBS Index file block size; default is data file
block size (MBL)

Some FIT fields that can be specified before the file is
opened for creation are in effect only until another
OPENM macro is executed. Attempted changes are
ignored without comment or error until the file is opened
again; the values in the FIT are then used to accomplish
the open. Default values are assumed without comment if
the following fields are not set:

BFS Buffer size; default is buffer size calculated
by AAM

FwB First word address of the buffer; default is
buffer address provided by AAM

Two FIT fields, CPA and DCA, specify compression and
decompression routines that are to be used with the file.
Generally they should be set, or allowed to default to 0, at
open time (whether new or old) and not be altered until the
next CLOSEM. Any change would risk causing an abort,
except for two possibilities:

1. CPA could be set to 0 at any time between OPENM
and CLOSEM to prevent any further compression of
records.

2. If no compression was selected when the file was
created, DCA could be altered at any time without
causing any effect whatever.

At open-new timé, the user has the following choices for
CPA and DCA:

1. Set CPA=0 (the default value), which excludes all
compression and decompression for the life of the file;
DCA will never be significant thereafter. CPA must
never be set nonzero during the life of the file; this
could cause an abort, or at the very least a nonfatal
error, whenever a PUT or REPLACE is attempted.

2. Set CPA to the actual address of a user-supplied
compression routine, and DCA to that of the
corresponding user-supplied decompression routine.
The fields should not be changed until the file is
closed. It is the user's responsibility to ensure that
whenever the file is opened in the future as an old file
the same routines are available and are pointed to by
CPA and DCA. The only exception is that CPA can at
any time be set to O to stop compression until the next
CLOSEM. ’

3. Set CPA to an integer in the range 1 through 63 to
select system-supplied compression and decompression
routines. CPA=l specifies the release routines;
CPA=2 through 63 specifies installation-defined
routines. When the file is opened, AAM loads the
routines and stores their addresses into CPA and
DCA. The user must not alter CPA or DCA until the
file is closed, except to stop compression by setting
CPA=0.

60499300 E

Two FIT fields have no default value and must be set
before being used by a file processing macro. If the
following fields are not set before required, a fatal error
occurs:

KA Key address

WSA Working storage area

When records are written to a file on a creation run, the
primary keys should be in ascending sequence for a more
efficient run.

The old/new file (ON) field must be set to NEW and the
processing direction (PD) field to OUTPUT for a file
creation run. These fields can be set by using FIT
manipulation statements or by setting the processing
direction (pd) parameter to NEW in the OPENM macro.
Setting the pd parameter to NEW sets the ON field to NEW
and the PD field to OUTPUT.

EXISTING FILE PROCESSING

Indexed sequential files must reside on mass storage
devices for processing. After file creation, however, the
file can be dumped to tape with a COPYBF statement or a
permanent file dump routine. The file can be returned
later to mass storage for processing.

Open Processing
Before an existing file can be opened, the user must call
for construction of the FIT by specifying the logical file
name and the file organization. When the file is opened,
values from the FSTT are returried to the following FIT
fields:

KL Key length

KT Key type

MBL. Maximum block length

MNR Minimum record length

MRL Maximum record length

NL Number of index levels

RKP Relative key position

RKW Relative key word

The RKW and RKP fields are set to 0 and 10, respectively,
if the key is not embedded in the record.

A default value is assumed without comment if the
following FIT fields are not set before opening the file:

BCK Block checksum; default is no checksums
BFS Buffer size; default is buffer size calculated
by AAM

FwB First word address of the buffer; default is
buffer address provided by AAM

4-3

Two FIT fields, CPA and DCA, specify compression and
decompression routines that are to be used with the file.
Generally they should be set, or allowed to default to O, at
open time and not be altered until the next CLOSEM. Any
change would risk causing an abort, except for two
possibilities:

1. CPA could be set to 0 at any time between OPENM
and CLOSEM to prevent any further compression of
records.

2. If no compression was selected when the file was
created, DCA could be altered at any time without
causing any effect whatever.

At open-old time, the user should set these fields
depending on what was done when the file was created:

1. If CPA was 0 when the file was created, compression
was excluded for the life of the file. Whenever the
file is opened, AAM automatically sets CPA and DCA
to O.

2. If CPA was an integer in the range 1 through 63 when
the file was created, system-supplied compression and
decompression routines were specified for the file.
CPA=1 specifies the release routines; CPA=2 through
63 specifies installation-defined routines. Whenever
the file is opened, these routines are automatically
loaded, and CPA and DCA are automatically set to
point to them.

3. -If CPA was any value greater than 63, it was assumed
to be the address of a user-supplied compression
routine. The same routine and its corresponding
decompression routine must be supplied by the user at
every subsequent open, and CPA and DCA must be set
by the user to point to them. AAM calls the
compression subroutine and-checks to ensure it is the
same routine that was used during creation; if it is
not, a fatal error is declared.

Two FIT fields have no default value and must be set
before being used by a file processing macro. If the
following fields are not set before required, a fatal error
aceurs:

KA Key address

WSA Working storage area
Other fields that can be set before the file is opened but
need not be set until required by a file processing macro
are as follows:

DFC Dayfile control

EFC Error file control

ERL Trivial error limit

EX Error exit

FLM File limit

Fwi Forced write indicator

KP Beginning key paosition

MKL Major key length
The MKL field is reset to zero after execution of a GET,

SEEK, or START macro. The other fields remain in effect
until changed.

44

The first time an existing file is opened after its creation
run, the ald/new file (ON) field in the FIT must be changed
from NEW to OLD. This can be done through the FILE
macro, FILE control statement, or STORE macro or by
specifying any option except NEW in the processing
direction (pd) parameter of the OPENM macro.

An existing file can be positioned at end-of-information
during open processing. This position is established by
specifying the E option in the open flag (of) parameter of
the OPENM macro or by setting the open flag (OF) field in
the FIT to E through the STORE macro, FILE control
statement, or FILE macro before the file is opened.

Read Processing

Records can be read from the file randomly by key value or
sequentially by position. The key of reference for a read
operation can be the primary key or any alternate key
defined for the file. The file must be open for input or for
input/output.

The GET macro is used for a random read operation. The
relative key word (RKW), relative key position (RKP), and
key length (KL) fields in the FIT determine whether the
read operation is by the primary key or by one of the
alternate keys. For a nonembedded primary key, RKW and
RKP must be set to 0 and 10, respectively. The key value
at the address specified by the key address (KA) field is
used to locate the record to be read. The user must set the
KA field to the address of the key value. A trivial error
condition results if the specified key is not found in the
file; however, the file position is altered to point to where
the record should exist.

Sequential reading is accomplished by the GETN and
GETNR macros. The GETN macro returns the next

sequential record to the working storage area. The GETNR
macro performs this same function; however, control
returns immediately to the user if input/cutput is required
to complete the request. The macro can be issued
repeatedly until the transfer of the record is complete, ar
the input/output status can be monitored for completion
before issuing the GETNR macro again.

If KA is not zero, both GETN and GETNR return the key
value at the location specified by KA and KP upon
completion of the record transfer.

Write Processing

New records are added to an existing indexed sequential
file with the PUT macro. Records are inserted by primary -
key value. For a nonembedded primary key, the user must
set the KA field in the FIT to the address of the key value.
Execution is faster if the records to be inserted are sorted
by primary key in ascending order.

Random Processing

Random processing implies index blaock manipulation as
well as record processing. If the user cannot allow AAM to
use the Common Memory Manager (CMM), maximum
efficiency is gained by allowing buffer space for one index
block for each index level and space for two data blocks.
This number of index blocks allows the primary index block
to remain in memory while processing the other index and

60499300 E

data blacks. Two data blocks provide input/output/
compute overlap. The user can direct AAM to allocate this
amount of buffer space by setting the buffer size (BFS)
field and by not setting the first word address of the buffer
(FWB) field. Refer to appendix. G for a detailed description
of buffer allocation.

If no input/output is in progress for the file, a write is
initiated for any data block that satisfies the following
conditions:

e The block was altered by the preceding macro.
o The block is not the object of the current macro.

This permits a high degree of input/output/compute
overlap; however, if the forced write indicator (FWI) field
in the FIT is set, each modified block is written
immediately.

Major Key Processing

The major key feature is available with the GET, SEEK,
and START macros. It allows the user to perform a search
on the leading characters of a symbalic key. Major key
processing on primary keys applies only to collated
symbolic keys. Major key processing on alternate keys
applies to collated or uncollated symbolic keys. When the
major key length (mkl) parameter is specified in the GET
macro, the record returned to the working storage area is
the first one encountered with a major key that matches
the specified majar key value. Presumably, the user wishes
to examine a subset of records defined by the major key;
the subset is processed using the GETN or GETNR macro
to access the records belonging to the subset.

The START macro can also include the mkl parameter.
When it is specified, the file is positioned at the first
record containing a major key that matches the specified
major key value. A record is not returned to the working
storage area by the START macro.

When the mkl parameter is specified in the SEEK macro,
. AAM initiates transfer into the buffer of an index block or
the data block containing the first occurrence of the major
key. Other program processing can occur while the
transfer is taking place.

The file position (FP) field in the FIT can be checked for
the status of the block transfer. The FP field has the value
0 if an index block is being transferred or the value 20g
if a data block is being transferred. If the value of the FP
field is 0, another SEEK macro can be issued and a check
made of the FP field. This can be done repeatedly until
the data block is transferred into the buffer. The GET
macro can then be issued to transfer the record containing
the first oceurrence of the major key from that data block
in the buffer to the working storage area. The GET macro
can be issued when the FP field contains 0, but then there
is no overlap in processing.

File Updating

The DELETE macro physically removes the key and its
associated record from the file. The key address (KA) field
in the FIT must be set to point to the address of the
primary key value for the record to be deleted. If the
deleted record is the only one in the data block, the block
is linked into a chain of deleted blocks to be used when new
blocks are required for file expansion. If the delete
operation results in an empty index block, the block is
linked into the chain of deleted blocks.

60499300 C

The REPLACE macro replaces an existing record with the
record in the working storage area. The primary key value
for the record in the working storage area must be the
same as the primary key value for an existing record. For
a nonembedded primary key, the KA field must be set to
point to the primary key for the working storage area
record.

File Positioning

When the OPENM macro is executed, positioning of the file
depends on the open flag (of) parameter in the macro. If R
(rewind) is specified, the file is positioned at the first
record, .which is the record with the lowest primary key
value. If E (end-of-information) is specified, the file is
positioned after the last record, which is the record with
the highest primary key value. Omitting the parameter
causes the current value of the OF field in the FIT to be
used. File positioning remains unchanged until one of the
following macros is executed: GET, GETN, GETNR,
REWINDM, SKIP, or START.

The GET macro, which accesses a record randomly, alters
the file position to the record returned by the macro. The
GETN macro, which accesses a record sequentially,
advances the file position one logical record and returns
that record unless the file is positioned at
end-of-information. The GETNR macro also advances the
file position one logical record when it returns a record.

The REWINDM macro positions the file tc
beginning-of-information; execution of the GETN or
GETNR macro then returns the first record in the file
The SKIP macro positions the file forward or backward the
specified number of records; the file is positioned at
beginning-of-information or end-of-information if the skip
count is too large.

The START maecro positions the file according to e
specified key value and key relation; the file is positionec
at the record with a key value that is equal to (EQ),
greather than or equal to (GE), or greater than (GT) the
specified key value. If the specified key value does not
exist in the file, the file is positioned at the record with
the next greater key value.

Overlap Processing

In response to a user program request for a record, AANM
locates the data block by searching the index blocks anc
transfers the data block from mass storage to the buffe:
area. The record is then transferred to the workinc
storage area. The execution time to do this can be
overlapped with program processing by using the SEEKk
macro or the GETNR macro.

The SEEK macro initiates the transfer of an index or date
block from mass storage to the buffer; the macro ther
returns control to the user program, which can perforn
other aperations while the read is in progress. To find oul
when the read is complete, the user program can check the
campletion bit in the FET to which the busy FET addrest
(BZF) field of the FIT points. Bit 0 of the word at addrest
BZF will change from O to 1 at completion. To find oul
whether an index or a data block is being (or has just been
read, the user program can test the FP field of the fit

4-5

FP=0 for an index block or 20g for a data block. The
basic procedure for using SEEK with GET to achieve
overlap is as indicated in the following steps:

1. Issue a SEEK with the given key.

2. Wait until the completion bit is 1. Presumably this
time is partly used for work not related to I/O, or for
1/O on a different file.

3. Test FP, Ifitis 0, return to step 1.

4, If FP is not 0, it should be 203, The data block
cantaining the wanted record (if the file contains a
match to the given key) is already in memory.

5. Issue a GET with the same key. This accesses the
proper data block, which is already in memory, and
returns the wanted record or reports the error.

The SEEK itself never returns a record to the working
storage area.

The following list illustrates the use of SEEK to overlap
GET operations on two different files:

SEEK key AonFILEL
SEEK key X on FILE2
GET key A on FILEL
SEEK key B on FILEl
GET key X on FILE2
SEEK key Y on FILE2

Before each SEEK or GET, the user program would wait
until the completion bit for that file was 1. Then FP would
be tested, and if it was nonzero, the final GET, instead of
another SEEK, would be done.

In the followingx list, however, the effect of the first SEEK
on each file would be nullified by the second SEEK an that
file, which uses a different key; this illustrates that two

GETs on a single file cannot be overlapped with each other
by using SEEK:

SEEK key A on FILEl
SEEK key X on FILE2
SEEK key B onFILEl
SEEK key Y on FILE2
GET key A on FILEL
GET key X on FILE2
GET key B on FILE1
GET key Y on FILE2

All the SEEKs would be completely wasted. The effect of
SEEK would also be nullified by a later PUT, DELETE, or
REPLACE.

The GETNR macro can be wused to read records
sequentially, while overlapping the block reads with central
processar activity, or with I/O on a different file.

GETNR, like SEEK, returns control te the user program as
soon as a block read is initiated. The procedure for using
GETNR is as follows:

1. Issue a GETNR.

2. If FP is 0, wait until the completion bit (the rightmost
bit of the word to which BZF points) is 1 and then
return to step 1.

3. If FP is not 0, the action is complete. The record and
key value have been returned (or not) and FP has been
set to 20g or 100g, as if the preceding operation
had been a GETN rather than a GETNR.

ACTUAL KEY FILES

The actual file organization provides fast random access to
records in the file. Random access usually requires one
access per record. The primary key for a record is its
storage location (record number within the file). The user
must preserve primary keys if the file is to be accessed
randomly by primary key.

FILE CREATION RUN
A separate creation run is necessary for an actual key file.
This can be done through the FORM utility or a source

program. The FSTT is created when the actual key file is
created.

Certain FIT fields must be set by the user before the file is
opened on a creation run; otherwise, a fatal error occurs.
These fields can be specified in the FILE control
statement, FILE macro, or STORE macro. Any attempt to
change these fields after file creation is ignored without
comment. The FIT fields that must be set are as follows:

FO File organization

KL Key length (in characters)

LFN l.ogical file name

MNR Minimum record length

MRL Maximum record length

RT Record type

Three FIT fields that must be defined for file creation can
be specified by the user or can assume default values.

BCK Block checksum; default is no checksums

DP Data block padding percentage; release
default is 0

MBL Maximum block length; default is calculated
by AAM
If the primary key is embedded in the record, the following
FIT fields must also be set:
EMK Embedded key, set to YES

RKP Relative key position; character position
within RKW in which the key begins

RKW Relative key word; word in which the key
begins

If the MBL field is not specified directly, the value is
calculated from the values in the following fields:

MNR Minimum record length

MRL Maximum record length

RB Records per block
The value specified for the MBL field should be at least
(15*RB)+(10*RBY*((MNR+MRL)/2). AAM increases the
block size, if necessary, to use mass storage efficiently.

Resulting blocks are an integral multiple of physical record
unit (PRU) size minus two central memory words.

60499300 E

The following FIT field must be selected before the file is
created if the option is to be used during the life of the file:

RB Records per block

Some FIT fields that can be specified before the file is
opened for creation are in effect only until another

OPENM macro is executed. Attempted changes are .

ignored without comment until the file is opened again; the
values in the FIT are then used to accomplish the open.
Default values are assumed without comment if the
following fields are not set:

BFS Buffer size; default is buffer size calculated
by AAM

FwWB First word address of the buffer; default is
buffer address provided by AAM

The old/new file (ON) field must be set to NEW and the
processing direction (PD) field to OQUTPUT for a file
creation run. These fields can be set by using FIT
manipulation statements or by setting the processing
direction (pd) parameter to NEW in the OPENM macro.
Setting the pd parameter to NEW sets the ON field to NEW
and the PD field to OUTPUT.

Two FIT fields, CPA and DCA, specify compression and
decompression routines that are to be used with the file.
Generally they should be set, or allowed to default to 0, at
open time (whether new or old) and not be altered until the
next CLOSEM. Any change would risk causing an abort,
except for two possibilities:

1. CPA could be set to 0 at any time between OPENM
and CLOSEM to prevent any further compression of
records.

2. If no compression was selected when the file was .

created, DCA could be altered at any time without
causing any effect whatever.

At open-new time, the user has the following choices for
CPA and DCA:

1. Set CPA=0 (the default value), which excludes all
compression and decompression for the life of the files
DCA will never be significant thereafter. CPA must
never be set nonzero during the life of the file; this
could cause an abort, or at the very least a nonfatal
error, whenever a PUT or REPLACE is attempted.

2. Set CPA to the actual address of a user-supplied
compression routine, and DCA to that of the
corresponding user-supplied decompression routine.
The fields should not be changed until the file is
closed. It is the user's responsibility to ensure that
whenever the file is opened in the future as an old file
the same routines are available and are pointed to by
CPA and DCA. The only exception is that CPA can at
any time be set to O to stop compression until the next
CLOSEM.

3. Set CPA to an integer in the range 1 through 63 to
select system-supplied compression and decompression
routines. CPA=1 specifies the release routines;
CPA=2 through 63 specifies installation-defined
routines. When the file is opened, AAM loads the
routines and stores their addresses intc CPA and
DCA. The user must not alter CPA or DCA until the
file is closed, except to stop compression by setting
CPA=0.

60499300 E

If EMK=NO the key value at the address specified by the
key address (KA) and key position (KP) fields in the FIT
determines where the record is written. If EMK=YES, the
key value in the record pointed to by RKW and RKP
determines where the record is written. The user can do
either of the following:

e The key value can be set to zero; this allows AAM to
determine the key value associated with the record.

e The key value can be set to a properly formatted key;
this tells AAM where to store the record. ’
Only the following macros can be used during a creation
run:
OPENM
REWINDM
PUT

CLOSEM

EXISTING FILE PROCESSING

Actual key files must reside on mass storage for
processing. After file creation, however, the file can be
dumped to tape with a COPYBF statement aor a permanent.
file dump routine. The file can be returned later to mass
storage for processing.

Open Processing
Before an existing file can be opened, the user must call
for construction of the FIT by specifying the logical file
name and the file organization. When the file is opened,
values from the FSTT are returned to the following FIT
fields:

KL Key length

MBL Maximum block length

MNR Minimum record length

MRL. Maximum record length

RB Records per block

RKP Relative key position

RKW Relative key word

If EMK=NO, AAM sets RKW=0, RKP=10.

A default value is assumed without comment if the
following FIT fields are not set before the file is opened:

BCK Block checksum; default is no checksums
BFS Buffer size; default is buffer size calculatec
by AAM

FwB First word address of the buffer; default ic
buffer address provided by AAM

Two FIT fields, CPA and DCA, specify compression and
decompression routines that are to be used with the file.
Generally they should be set, or allowed to default to 0, at
open time and not be altered until the next CLOSEM. Any
change would risk causing an abort, except for two
possibilities:

1. CPA could be set to 0 at any time between OPENM
and CLOSEM to prevent any further compression of
records.

2. If no compression was selected when the file was
created, DCA could be altered at any time without
causing any effect whatever.

At open-old time, the user should set these fields
depending on what was done when the file was created:

1. If CPA was 0 when the file was created, compression
was excluded for the life of the file. Whenever the file
is opened, AAM automatically sets CPA and DCA to 0.

2. If CPA was an integer in the range 1 through 63 when
the file was created, system-supplied compression and
decompression routines were specified for the file.
CPA=1 specifies the release routines; CPA=2 through
63 specifies installation-defined routines. Whenever
the file is opened, these routines are automatically
loaded, and CPA and DCA are automatically set to
point to them.

3. If CPA was any value greater than 63, it was assumed
to be the address of a user-supplied compression
routine. The same routine and its corresponding
decompression routine must be supplied by the user at
every subsequent open, and CPA and DCA rnust be set
by the user to point to them. AAM calls the
compression subroutine and checks to ensure it is the
same routine that was used during creation; if it is
not, a fatal error is declared.

Other FIT fields that can be set before the file is opened
but need nat be set until required by a file processing
macro are as follows:

DFC Dayfile control

DX End-of-data exit

EFC Error file control

ERL Trivial error limit

EX Error exit

FLM File limit

FWI Forced write indicator

KP Beginning key position
The first time an existing file is opened after its creation
run, the ald/new file (ON) field in the FIT must be changed
from NEW to OLD. This can be done through' a FIT
manipulation macro or by specifying any option except
NEW for the processing direction (pd) parameter in the
OPENM macro.
Read Processing
The GET macro is used to read records randomly by key

value. The relative key word (RKW), relative key position
(RKP), and key length (KL) fields in the FIT determine

4-8

whether the read operation is by the primary key or by one
of the alternate keys. For a nonembedded primary key,
RKW and RKP must be set to 0 and 10, respectively, The
key value at the address specified by the key address (KA)
and key position (KP) fields is used to locate the record to
be read. The user must set the KA field to the address of
the key value and the KP field to the character position
within KA that begins the key value.

When a record is read, the number of characters retrieved
is returned to the record length (RL) field in the FIT. If
the requested record is not found, a trivial error results.

Execution of the GETN macro causes the next sequential
record to be placed in the working storage area. The first
time the GETN macro is issued after the file is opened or
after any rewind request, the first recqrd in the file is
retrieved. The next GETN macro retrieves the next
sequential record. Any empty record position is ignored.
Overflow records are returned as they are encountered.
An overflow record occupies two slots; the first slot is the
one where the record should be and the second slot is the
one that actually contains the record. The record is
returned when the first slot is encountered. If the key
address (ka) parameter is specified in the GETN macro, the
primary key of the record retrieved is returned to the
specified address.

The GETNR macro performs the same function; however,
control returns immediately to the user while an input
process may be concurrently taking place. The macro can
be issued repeatedly until the transfer of the record is
complete, or the status can be monitored for completion
through the busy FET address (BZF) field before issuing the
GETNR macro again.

Write Processing

The PUT macro is used to add a record to an existing
actual key file. The key value at the address and position
specified by the key address (KA) and key position {(KP)
fields in the FIT must be unique or zero; otherwise, the
request is ignored. When a key value is specified, it must
not extend the file by more than one block. A key value of
zero causes AAM to determine the location for the record;
the key value is returned to the user at location KA. If a
block cannot accommodate a record with a user-specified

‘key, the record is placed elsewhere by AAM; the value of

the original key does not change for user program purposes.

The maximum acceptable key value depends on KL and RB
as follows:

e The key value must not result in increasing the file
length by more than one block. If KL=n, a maximum
key value of 2 to the nth power -1 is automatically
effective.

e If KL is greater than 4, hardware considerations
prevent the file from approaching the upper limit of
key value.

e IfKL isl, 2, 3, or 4, the maximum possible key values
are 63, 4095, 262143, and 16777215, respectively.
Dividing this maximum by the blocking factor (RB)
yields a quotient and a remainder; the quotient is the
maximum number of data blocks possible, and the
remainder is the number of key values at the high end
of the range that are not acceptable.

60499300 E

e If, for example, KL is 2 and RB is 4, the maximum
possible key value is 4095. Dividing this by & yields a
quotient of 1023 and a remainder of 3. This means
that the highest 3 values are unacceptable, or in other
words the range of usable key values is 1-4092,

e Considering an extreme case in which KL is 1 and RB
is 80, dividing 63 by 80 yields a quotient of 0 and a
remainder of 63, which implies that no keys are

acceptable; in this case, RB would be automatically

adjusted to 63 to allow keys 1-63 to be used.
Considering another extreme case in which KL is 1 and
RB is 32, only key values 1-32 could be used.

An index for actual key files is not maintained by AAM.,
For subsequent random reading by primary key value, the
user is responsible for preserving primary keys of records
written on the file. A multiple-index file can be created to
maintain an index for actual key files.

File Updating

After a file has been created, records in the file can be
deleted or replaced. The DELETE and REPLACE macros
are used to update an actual key file.

A record can be eliminated from an existing file with the
DELETE macro. The record indicated by the key value at
location KA is logically removed from the file. If the
requested record cannot be found, the request is ignored
and a trivial error results.

The REPLACE macro is used to replace an existing record
with a new record. The existing record is specified by the
key value at location KA and position KP. The new record
is in the working storage area. The new record need not be
the same size as the record being replaced.

File Positioning

When the OPENM macro is executed, the file is positioned
at the first record in the file. File positioning remains
unchanged until one of the following macros is executed:
GET, GETN, GETNR, REWINDM, or SKIP. The GET,
GETN, and GETNR macros, which are used to read records,
position the file at the record retrieved.

The SKIP macro positions the file forward or backward the
specified number of records to the beginning of ancther
record. Only small skips should be made because each
intervening record is read and counted. The SKIP macro
does not return a record to the working storage area.

Skipping stops if beginning-of-infarmation or end-of-
information is reached. An informative message is issued
if skipping or sequential reading is attempted past the file
boundary, but no error exit is taken. Any end-of-data exit
is executed only if end-of-information is encountered. A
skip count of zero is interpreted as a no-op.

The use of the REWINDM macro is more efficient than
extensive backward skipping of records. This macro
positions the file to beginning-of-information, which is the
start of the user data record with the lowest key.

60499300 E

Overlap Processing

In response ta a user program request for a record, AAM
determines the block needed and transfers it from mass
storage to the buffer area. The specified record is then
transferred to the working storage area. The execution
time to-do this can be overlapped with program processing
by using the SEEK and GETNR macros.

The SEEK macro initiates the transfer of a data block from
mass storage to the buffer; the macro then returns control
to the user program, which can perform other operations
while the read is in progress. To find out when the read is
complete, the user program can check the completion bit
in the FET to which the busy FET address (BZF) field of
the FIT points. Bit 0 of the word at address BZF will
change from 0 to 1 at completion.

Upon completion of a SEEK, the user should issue a GET
with the same key, either to get the wanted record or to
learn that the file contains no record with that key.

Similarly, SEEK could be used as a preliminary to a
REPLACE or DELETE operation to overlap some of the 1/O
time with other work.

The GETNR macro can be used to'read records sequentially
while overlapping the block reads with central processor
activity or with I/O on a different file. GETNR, like
SEEK, returns control to the user program as soon as a
block read is initiated. The procedure for using GETNR is
as follows:

1. Issue a GETNR.

2. If FP is 0, wait until the completion bit (the rightmost
bit of the word to which BZF points) is 1, and then
return to step 1. '

3. If FP is not 0, the action is complete. The record and
key value have been returned (or not) and FP has been
set to 20g or 1008, as if the preceding operation
had been a GETN rather than a GETNR.

DIRECT ACCESS FILES

The direct access file organization is well suited for
applications that require rapid access by key value. Direct
access files can be accessed either randomly or
sequentially by primary or alternate key; however, records
accessed sequentially by primary key are not logically
ordered.

FILE CREATION RUN

A separate creation run is necessary for a direct access
file. This can be done through the FORM utility, the
CREATE utility, or a source program.

Mass storage for a direct access file is preallocated.
Before the file is opened on a creation run, the user must
specify the size and number of home blocks to be
preallocated. The number of home blocks is specified by
setting the number of home blocks (HMB) field in the FIT.
The key analysis utility, which is described in section 7,
can be used to test various values of HMB.

4-9

The user has the option of specifying the home block size
directly or accepting a system default, The maximum
block length (MBL) field is set by the user to specify home
block size. If the MBL field is not set by the user, AAM
calculates the value for the MBL field from the values in
the following FIT fields:

MNR Minimum record length
MRL Maximum record length

RB Records per block; default is 2

A number of fields must be set by the FILE control
statement, the FILE macro, or the STORE macro before
the file is opened for a creation run. If these fields are
specified for an existing file, the new values are ignored
without comment. A fatal error occurs if the following
fields are not set on a creation run:

HMB Number of home blocks
KL Key length

LFN Logical file name

MNR Minimum record length

MRL Maximum record length

If the primary key is not embedded in the record, the
embedded key (EMK) field must be set to NO.

The EMK field set to YES (default) indicates the primary
key is embedded in the record. In this case, the primary
key is assumed to begin in the first character position of
the record. If the primary key is in another position, the
position must be specified before the file is opened. The
following FIT fields, which cannot be changed after the file
is opened for a creation run, describe the key position
within the record:

RKP Relative key position

RKW Relative key word

Default values are used without comment if certain FIT
fields are not set before the file is opened for a creation
run. These fields are effective only until the file is opened
again; attempted changes are ignored without comment
until another OPENM macro is executed. At that time, the
values in the FIT are used to accomplish the open. These
fields are as follows: :

BCK Block checksum; default is no checksums

BFS Buffer size; default is buffer size calculated
by AAM

FwWB First word address of the buffer; default is
buffer address provided by AAM

The old/new file (ON) field must be set to NEW and the
processing direction (PD) field to QUTPUT for a file
creation run. These fields can be set by using FIT
manipulation statements or by setting the processing
direction (pd) parameter to NEW in the OPENM macro.
Setting the pd parameter to NEW sets the ON field and the
PD field to OUTPUT.

Two FIT fields, CPA and DCA, specify compression and
decompression routines that are to be used with the file.
Generally they should be set, or allowed to default to 0, at
open time (whether new or old) and not'be altered until the
next CLOSEM. Any change would risk causing an abort,
except for two possibilities:

1. CPA could be set to 0 at any time between OPENM
and CLOSEM to prevent any further compression of
records.

2. If nro compression was selected when the file was
created, DCA could be altered at any time without
causing any effect whatever.

At open-new time, the user has the following choices for
CPA and DCA:

1. Set CPA=0 (the default value), which excludes all
compression and decompression for the life of the file;
DCA will never be significant thereafter. CPA must
never be set nonzero during the life of the file; this
could cause an abort, or at the very least a nonfatal
error, whenever a PUT or REPLACE is attempted.

2. Set CPA to the actual address of a user-supplied
compression routine, and DCA to that of the
corresponding user-supplied decompression routine.
The fields should not be changed until the file is
closed. It is the user's responsibility to ensure that
whenever the file is opened in the future as an old file
the same routines are available and are pointed to by
CPA and DCA. The only exception is that CPA can at
any time be set to O to stop compression until the next
CLOSEM.

3. Set CPA to an integer in the range 1 through 63 to
select systemn-supplied compression and decompression
routines. CPA=1 specifies the release routines;
CPA=2 through 63 specifies installation-defined
routines. When the file is opened, AAM loads the
routines and stores their addresses into CPA and
DCA. The user must not alter CPA or DCA until the
file is closed, except to stop compression by setting
CPA=0.

The user has the option of specifying a user hashing
routine. The following FIT field gives the location of a
routine that cannot be changed for the life of the file:

HRL Hashing routine location; default is the
system hashing routine

Two fields in the FIT have no default value and must be set
before being used by a file processing macro. If the
following fields are not set before required, a fatal error
occurs:

KA Key address

WSA Working storage area

Only the following macros can be used on a file creation
run:

OPENM
REWINDM
PUT
CLOSEM

60499300 C

Overflow

Overflow blocks are éreated to handle any overflow
records ocecurring.

User Hashing Routine

At file creation time, the user has the option of selecting a
user hashing routine instead of the system hashing routine.
This option is controlled by the hashing routine location
(HRL) field in the FIT.

If the symbolic entry point name of the user hashing
routine is MYHASH, the user should code
HRL ==XMYHASH in the FILE macro. Parameters needed
by the user hashing routine are passed as follows:

SAl ARRAY
RJ =XMYHASH
The array contains the addresses of the following:
ARRAY Key length (KL)
ARRAY+l Key value
ARRAY+2 Number of home blocks (HMB)
ARRAY+3 Hashing result

The key is presented to the user hashing routine
left-justified and zero-filled to {Ki.+9)/10 words.

AAM then converts the value to a relative physical record
unit (PRU) number. The hashing routine could be coded as
shown in figure 4-1. Upon return to AAM from any hashing
routine, the remainder of the hashed key divided by the
value of the HMB field is used as the ordinal of a home
data block.

MYHASH DATA 0

Computation

BX6 Xi STORE HASH RESULT
SA2 A1+3 GET ADDRESS FOR
HASHED RESULT
SA6 X2 STORE HASH RESULT
EQ MYHASH RETURN TO AAM/DA

Figure 4-1. User Hashing Routine Example

Supplied Hashing Routine

When the HRL field is not set to the address of a user
hashing routine, the system-supplied hashing routine is
used. The system hashing routire folds the word-aligned
key into one word using the integer add instruction. If the
folded key is an 18-bit integer or an 18-bit packed integer,
no further hashing is done; otherwise, the folded key is
hashed using the shift and divide instructions to produce a
48-bit result. This hashed key is the ordinal of a home data
block on mass storage.

A prime number of home blocks is recommended when the
supplied hashing routine is used. This generally produces a
more uniform distribution of records than a nonprime
number.

60499300 E

Direct Access File Records

All record types are allowed for direct access files. When
creating the file through a source language, W type records
are the default. When using the FORM utility, W type
records are the default.

EXISTING FILE PROCESSING

Direct access files must reside on mass storage for
processing. After file creation, however, the file can be
dumped to tape with a COPYBF statement or a permanent
file dump routine. The file can be returned later to mass
storage for processing.

Open Processing
Before an existing file can be opened, the user must call
for construction of the FIT by specifying the logical file
name and the file organization. When the file is opened,
values from the FSTT are returned to the following FIT
fields:

HVB Number of home blocks

KL Key length

MBL Maximum block length

MNR Minimum record length

MRL Maximum record length

RKP Relative key position; character position
within RKW in which the key begins

RKW Relative key word; word in which the key

begins

If a user hashing routine was specified at file creation
time, the following field must be set before the file is
opened:

HRL Hashing routine location

If the following fields are not set before the file is opened,
the default value is assumed without comment:

BCK - Block checksum; default is no checksums
BFS Buffer size; default is buffer size calculated
by AAM

FwB First word address of the buffer; default is
buffer address provided by AAM

Two FIT fields, CPA and DCA, specify compression and
decompression routines that are to be used with the file.
Generally they should be set, or allowed to default to 0, at
open time and not be altered until the next CLOSEM. Any
change would risk causing an abort, except for two
possibilities:

1. CPA could be set to 0 at any time between OPENM
and CLOSEM to prevent any further compression of
records.

2. If no compression was selected when the file was

created, DCA could be altered at any time without
causing any effect whatever.

4-11

At open-old time, the wuser should set these fields
depending on what was done when the file was created:

1. If CPA was 0 when the file was created, compression
was excluded for the life of the file. Whenever the
file is opened, AAM automatically sets CPA and DCA
to O.

2. If CPA was an integer in the range 1 through 63 when
the file was created, system-supplied compression and
decompression routines were specified for the file.
CPA=1 specifies the release routines; CPA=2 through
63 specifies installation-defined routines. Whenever
the file is opened, these routines are automatically
loaded, and CPA and DCA are automatically set to
point to them.

3. If CPA was any value greater than 63, it was assumed
to be the address of a user-supplied compression
routine. The same routine and its corresponding
decompression routine must be supplied by the user at
every subsequent open, and CPA and DCA must be set
by the user to point to them. AAM calls the
compression subroutine and checks to ensure it is the
same routine that was used during creation; if it is
not, a fatal error is declared.

Two FIT fields that have no default value must be set
before being used by a file processing macro; otherwise, a
fatal error occurs. These fields are as follows:

KA Key address

WSA Working storage area
A number of FIT fields can be set before the file is opened
but need not be set until required by file processing
macros. These fields are as follows:

DFC Dayfile control

DX End-of-data exit

EFC Error file control

ERL Trivial error limit

EX Error exit
FWI Forced write indicator
KP Beginning key position

The first time an existing file is opened after its creation
run, the old/new file (ON) field in the FIT must be changed
from NEW to OLD. This can be done through a FIT
manipulation macro or by specifying any option except
NEW in the processing direction (pd) parameter of the
OPENM macrao.

Read Processing

A direct access file can be read randomly by primary or
alternate key using the GET macro. It can also be read
sequentially by the GETN and GETNR macros. The file

must be open for input or input/output.

For the GET, GETN, and GETNR macros, the number of
characters read is that of the actual length of the record
as it is carried in the file. The value of the record length
(RL) field in the FIT is ignored. At the completion of a
read operation, the RL field is set to the length of the
record returned.

4-12

With the GET macro, records are located using the key
value at the address indicated by the key address (KA) and
key position (KP) fields in the FIT. If the requested record
cannot be found, a trivial error occurs.

The first GETN macro executed after an OPENM or
REWINDM macro retrieves the first record in the file. A
subsequent GETN macro retrieves the next sequential
record. If the key address (ka) parameter is specified in
the macro, the primary key of the record retrieved is
returned to the specified address. All home blocks are
processed first and then any overflow blocks. Intervening
GET and DELETE macros are allowed and do not alter the
sequential position of the file. REPLACE macros are
allowed if the new record is the same length as the old
one. If a PUT macro or a REPLACE macro with a
different size record is followed by a GETN or GETNR
macro, a trivial error results and the file position is lost.
Any other function has no effect on sequential reading or
file positioning.

Write Processing

Records are written to a direct access file with the PUT
macro. The user must set the key of the record to be
unique. If the EMK field was set to YES at creation time,
the key must be in the same position within the record as
when the file was established.

File Updating

The DELETE macro logically removes an existing record
from a file. The record associated with the specified key
is flagged as deleted and the space is available to store
another record in the file. If the requested record is not
found, a trivial error results and the request is ignored.

The REPLACE macro can be used to replace a record in
the direct access file with a record in the working storage
area. The record to be replaced is located by hashing the
key specified by the relative key word (RKW), relative key
position (RKP), and key length (KL) fields in the FIT. If
the file was created with EMK set to NO, then the record
to be replaced is located by hashing the key specified by
the key address (KA), key position (KP), and key length
{KL) fields in the FIT. Replacement records need not be
the same size as the records replaced unless the file is
being .processed sequentially,. A REPLACE macro that
changes the record size invalidates further sequential
processing.

File Positioning

The REWINDM macro is used to position the file to
beginning-of-information. The file must be open when the
macro is executed. The REWINDM macro resets the
sequential pasition so that the next GETN macro returns
the first record in the direct access file.

Overlap Processing

In response to a user program request for a record, AAM

locates the desired home block by hashing the key and then
transfers the home block to the buffer area. The specified

record is then transferred to the working storage area.
The execution time to do this can be overlapped with
program processing by using the SEEK macro.

60499300 E

The SEEK macro initiates the transfer of a data block from
mass storage to the buffer; the macro then returns control
to the user program, which can perform other operations
while the read is in progress. To find out when the read is
complete, the user program can check the completion bit
in the FET to which the busy FET address (BZF) field of
the FIT points. Bit 0 of the word at address BZF will
change from 0 to 1 at completion.

Upon completion of a SEEK, the user should issue a GET
with the same key, either to get the wanted record or to
learn that the file contains no record with that key.

Similarly, SEEK could be used as a preliminary to a

REPLACE or DELETE operation to overlap some of the 1/0
time with other work.

60499300 C

The GETNR macro can be used to read records sequentially
while overlapping the block reads with central processor
activity or with I/O on a different file. GETNR, like
SEEK, returns control to the user program as soon as a
block read is initiated. The procedure for using GETNR is
as follows:

1. Issue a GETNR.

2. If FP is D, wait until the completion bit (the rightmost
bit of the word to which BZF points) is 1, and then
return to step 1.

3. If FP is not 0, the action is complete. The record and
key value have been returned (or not) and FP has been
set to-20g or 100g, as if the preceding operation
had been a GETN rather than a GETNR.

FILE PROCESSING MACROS 3

The macros described in this section are used for
processing the AAM files established with the FILE macro
and FILE control statement. All macros reside on
COMPASS system text IOTEXT, which must be specified
by the S=IOTEXT parameter on the COMPASS control
statement at assembly time. The macros conform to
COMPASS syntax; the location, operation, and variable
fields are separated by one or more blanks. When using the
COMPASS system texts, SYSTEXT and IOTEXT, it-is
necessary for you to reconstruct your program so that you
have separate IDENTS for the SYSTEXT and IOTEXT
macros. Once your programs is restructured, you can then
use SYSTEXT to assemble the module containing the
macros. Information shared by the modules should be
placed in a common block.

When using the COMPASS system texts, SYSTEXT and
IOTEXT, it is necessary for you to reconstruct your
program so that you have separate IDENTS for the
SYSTEXT and IOTEXT macros. Once your program is
restructured, you can then use SYSTEXT to assemble the
module containing the macros. Information shared by the
modules should be placed in a common block.

In the macro parameter strings, the fit parameter is
required; all others are optional and positional. When an
optional parameter is omitted, the parameter position must
be marked by a comma; however, trailing commas can be
omitted. For example, the format of the OPENM macro is:
- OPENM fit,pd,of

If the pd parameter is not specified in the OPENM macro,
the format is:

OPENM fit, ,of

The first parameter of every macro (fit) identifies the file
information table for the referenced file. If the address
specified by the fit parameter is invalid, the results are
indeterminate. The fit parameter can specify any of the
following:

Ifn Location field name of the first word of the
FIT; ane through seven alphabetic or numeric
characters

Rn Any A, B, or X register containing the FIT
address

exp Any COMPASS expression giving the FIT
address

Only parameters applicable to the file organization
specified in the FIT should be set. Supplying parameters
applicable to other file organizations could cause erroneous
results.

MACRO EXECUTION

The current contents of the FIT are used for macra
execution. If a parameter is omitted, the default value is
valid only if the respective FIT field has not been
previously set to a different value. A field in the FIT can
be set by any of the following:

60499300 F

e FILE macro parameter

e FILE control statement parameter, which can override
defaults during open processing

° SETFIT macro, which can call for FILE control
statement processing without full open processing

o STORE macro, which can set individual fields before
or after open processing.

e Default, which can be set during open processing

e Macro parameter that is moved to the F1T before file
processing occurs (a zero value in a parameter list
moves a zero to the FIT field; a null value does not
affect the FIT field)

Registers are not saved or restored. It should be assumed
that all reqisters are destroyed during macro execution.

Static loading for AAM uses the STLD.RM macro and new
parameters in the FILE control statement. Refer to
appendix E for details on static loading.

The user macros, with the exception of the FETCH, FILE,
STLD.RM, and STORE macros, generate code as follows:

e When syntax errar checking is completed, all nonnull
’ parameters following the FIT address are placed in
registers.

¢ Register B6 is set to the end of the macro expansion
as the return address.

e A jump to the proper AAM entry point is generated in
the top of a word; bits indicating which parameters
were specified with the macro are set in the bottom of
the word.

e The FIT address is placed in register AD; if it is
already in AO, no code is generated.

e Register Bl is set to 1; if Bl=1 pseudo-op is in effect,
no code is generated.

PROCESSING MACROS

Several macros are available for processing AAM files.
These macros are described in this section. The FETCH,
FILE, SETFIT, and STORE macros are described in
section 3, File Information Table.

CLOSEM MACRO

The CLOSEM macro terminates file processing and
positions the file as specified. It should be the last macro
issued for a file. The format of the CLOSEM macro is
shown in figure 5-1.

When the CLOSEM macro is executed for a file opened for
output, any infarmation in the file buffer is written on the
file as part of file termination. If end-of-information has
moved and the file is a NOS/BE permanent file, an

EXTEND is issued. If unload (U) or return (RET) is
specified in the CLOSEM macro, close processing is as
follows:

e If it is a permanent file, it is detached from the job
and returned to the permanent file manager.

o If it is not a permanent file, mass storage space
assigned to the file is released.

CLOSEM fitef
fit Address of the FIT.
cf File positioning after close processing:

R Rewind (default)

N No rewind

U Unload; release buffer space and
remove name from the active
file list.

RET Return; release buffer space and
remove name from the active
file list. -

DET Detach; release buffer space and
remove name from the active
file list.

Only the fit parameter can be specified as a register.

Figure 5-1. CLOSEM Macro Format

Close processing for a file varies according to the value
" specified for the cf parameter of the CLOSEM macro.

s Rewind (R)

The file is rewound.
o No rewind (N)

The file is not rewound.
e Unload (U)

The file is rewound. The open/close flag (OC) field in
the FIT is cleared. If the file is a permanent file, it is
detached from the job and returned to the permanent
file manager. Any scratch mass storage space
assigned to the file is released.

e Return (RET)
The processing is the same as for unload.
e Detach (DET)

The file is not rewound. The open/close flag (OC)
field in the FIT is cleared. The DET option should be
used when there is a possibility the FIT could be
destroyed. The DET option removes the FIT from the
list of effective FITs. :

A CLOSEM request for a file that has never been opened,
or a file that has been closed but not unloaded or reopened,
has the following effects:

e TheFIT error status redundant close is set.
e File positioning is the same as for an open file.
° Control is returned to the error exit.

5-2

DELETE MACRO

The DELETE macro removes a record from the file. If the
requested record is not found, a trivial error results and
the request is ignored. The format of the DELETE macro
is shown in figure 5-2.

DELETE fitexkakp

fit Address of the FIT.

ex Address of the error routine.

ka Address of the primary key for the record to
be deleted.

kp Beginning character position of the primary key.

Parameters can be specified as registers.

Figure 5-2. DELETE Macro Format

Applicable parameters by type of file organization for the
DELETE macro are as follows:

Indexed sequential
Direct access
Actual key

fit,ex,ka,kp
fit,ex,ka,kp
fit,ex,ka,kp

When the DELETE macro is executed, the specified record
is either flagged as deleted or physically removed from the
file. If the requested record is not found, a trivial error
results and the request is ignored.

FLUSHM MACRO

The FLUSHM macro processes one or more file buffers as
if a CLOSEM macro had been issued; the files, however,
remain open. Blocks with pending writes and the updated
FSTT are written on the file. If end-of-information has
moved and the file is a NOS/BE permanent file, an
EXTEND is issued. The format of the FLUSHM macro is
shown in figure 5-3.

FLUSHM fitlist

fitlist Address of the list of FIT address entries.

Figure 5-3. FLUSHM Macro Format

The list referenced by the fitlist parameter contains a
one-word entry for each file to be flushed. A word of
binary zeros terminates the list. The one-word entry is
formatted as shown in figure 5-4.

59 17 0

file name fit

Figure 5-4. Entry in List Referenced by FLUSHM Macro

The file name, which is specified in display code, is used as
a consistency check. The address of the FIT is specified in
the lower bits of the word.

60499300 F

GET MACRO

The GET macro retrieves data from a file and delivers it to
the working storage area. The file must be open for input
or for input/output. The GET macro retrieves a record
randomly by key value. The GETN and GETNR macros
retrieve records sequentially by file position. The formats
of the macros are shown in figure 5-5.

GET fit,wsa,0,ex,ka,kp,mkl
GETN fit,wsa,ex,ka

GETNR fit,wsa,ex,ka

fit Address of the FIT.

wsa Address of the working storage area to which
the user record is returned.

ex Address of the error routine.

ka Address of the key for the record to be read.
kp Beginning character position of the key.

mkl Major key length in characters; can be used only

for a symbalic key in an indexed sequential file.
Reset to zero after each GET.

Parameters can be specified as registers; if parameters are
not specified, values in appropriate FIT fields are used.

Figure 5-5. GET, GETN, and GETNR Macro Formats

Applicable parameters by type of file organization for the
GET macro are as follows:

Indexed sequential fit,wsa,0,ex,ka,kp,mkl

Direct access fit,wsa,d,ex,ka,kp

Actual key fit,wsa,d,ex,ka,kp

The GET macro transfers a record from a file to the
specified working storage area. The location referenced by
the ka parameter contains the key value for the record to
be read. If no record in the file has a matching key value,
a nonfatal error occurs. The record length (RL) field in the
FIT is updated to indicate the number of characters in the
record retrieved from the file. If the operation is not
successful, the RL field is not defined.

If the record is longer than specified by the maximum
record length (MRL) field in the FIT, an excess data error

occurs. Control is passed to the error exit after.

transferring to the working storage area the number of
characters specified by the MRL field. A record greater
than the maximum record length is prevented from
overwriting a portion of the calling program or other
preserved information. Control is transferred to the user
end-of-data exit (DX field in the FIT) by a GET request
that detects end-of-information.

The GETN macro is used to read records sequentially. The
next record in sequence by paosition on the file is retrieved
and transferred to the specified working storage area. If
the ka parameter is an address, the primary key value is
returned to the location pointed to by ka; if ka is 0, the
primary key value is not returned. The RL. field is updated
to indicate the number of characters in the record
retrieved from the file. If the operation is not successful,
the RL field is not defined.

60499300 £

Applicable parameters by type of file organization for the
GETN macro are as follows:

Indexed sequential fit,wsa,ex,ka

Direct access fit,wsa,ex,ka

Actual key fit,wsa,ex,ka

The GETNR macro causes the next sequential record to be
transferred to the working storage area the same as the
GETN macro. The difference is that the GETNR macro
returns control to the user if the request initiates block
transfer to the buffer. The user can continue issuing the
GETNR macro until transfer is complete. The file position
(FP) field in the FIT is set to 20g (EOR) when transfer of
the record is complete. While intermediate reads are being
performed (index blocks or MIP index file blocks), the FP
field is set to O.

Unnecessary GETNR requests can be avoided by monitoring
the status of the input/output processing. The busy FET
address (BZF) field in the FIT contains the address of the
input/output status word. When the low order bit of the
status word is set to 1, input/output processing is complete
and a GETNR macro will start a new block read or return a
record to the working storage area. If the low order bit is
set to 0, a GETNR macro immediately returns control te
the user.

OPENM MACRO

Before a file can be read or written, the file must be made
available by the OPENM macro. Macros that affect the
FIT (FILE, STORE, FETCH, and SETFIT) can be executed
before the file is opened. Any file manipulation macro,
however, is valid only after the file has been opened. Error
procedures are initiated if attempts are made to access an
unopened file. The farmat of the OPENM macro is shown
in figure 5-6.

OPENM fit,pd,of
fit Address of the FIT.

pd Type of processing:

INPUT File is opened for read only
{default).

OUTPUT File is opened for write only.

1-0 File is opened for read and
write.
NEW A new file is being created; sets

the PD field to OUTPUT and
the ON field to ' NEW.

of Open flag; file positioning at open time:
R File is rewound before any other
open procedures are performed
(defauit).
E File is positioned immediately

before the end-of-information.

Only the fit parameter can be specified as a register.

Figure 5-6. OPENM.Macro Format

5-3

Applicable parameters by type of file organization for the
OPENM macro are as follows:

Indexed sequential fit,pd,of
Direct access fit,pd
Actual key fit,pd

The OPENM macro prepares a file for processing by
creating and linking all required system tables for a file
and by translating user-supplied parameters into
appropriate values in the relevant tables. When the
OPENM macro is executed, the following events occur:

o FILE control statement processing occurs unless it has
been suppressed by previous execution of the SETFIT
macro. The PDF field in the FIT is set by the SETFIT
macro to inhibit reprocessing of the FILE control
statement. The PDF field is cleared by the OPENM
macro.

® The FIT is checked for logical consistency; depending
on the file organization, additional checks are made
for required fields and defaults are supplied where
needed.

e Buffer parameters are processed.

e If no error has been detected, the open/clase flag (OC)
field in the FIT is set to open and control transfers to
the user.

Complete open processing occurs when the first OPENM
macro in a job step is issued. If a file is closed and then
reopened, FIT verification and FILE control statement
processing are not repeated if the close flag (CF) field in
the FIT is set to R-or N. ‘

Any error detected during open processing sets the error
status (ES) field in the FIT. If a user error routine is
specified by the error exit (EX) field in the FIT, contral is
transferred to the routine. If the user routine corrects the
condition that caused the error and executes another
OPENM macro, processing of the file can continue;
otherwise, the open/close (OC) field in the FIT indicates
the file is not open (set to 0) and further file access is
prohibited.

Conditions investigated during FIT consistency checks are
listed in table 5-1. Buffer fields are also investigated.
The settings of the first word address of the buffer (FWB)
field and buffer size (BFS) field determine the method of
buffer allocation. If the FWB field is zero, the Common
Memory Manager (CMM) must be present or an error
ocecurs. For an indexed sequential file, the buffer pool
limit is increased by the default amount if the BFS field is
also zero; otherwise, it is increased by the amount
specified by the BFS field.

When the FWB field is not zero, an error occurs if the BFS
field is zero. If the BFS field is also nonzero, the specified
buffer space is partitioned into table areas for AAM,
blocks for the data file, and (if needed) blocks for the MIP
index file. A minimum of two blocks must be allocated for
each file or CMM must be present; otherwise, an error
occurs. The buffer pool amount must be increased to
accommodate two blocks per file.

TABLE 5-1. FIT CONSISTENCY CHECKS

Condition Action
_— e

RT=D, LL=0 Error
RT=T, and CL, HL, or TL=0 Error
RT=Z, FL=0 Error
RT=F, FL=0 Error
RT=T, HL not greater than CL+CP Error
MRL, MBL=0, BT=K, E Error

Data compression can be established for an AAM file at
the time it is created. Once data compression is selected,
it must be specified for the life of the file. The
compression routine address (CPA) and decompression
routine address (DCA) fields in the FIT point to the
routines to be used for data compression. These fields can
originally be specified when the file is created or at any
subsequent time the file is opened. Whenever the file is
opened after that time, the routine addresses must be
supplied in the CPA and DCA fields. Refer to appendix H,
Data Compression, for more detailed information.

The timing of the setting of the parameters for the
processing of each file organization in relation to the
OPENM macro is important. These parameters differ for
each file organization. The requirements for specific
parameters are discussed under open processing for each
file organization; refer to section 4, File Processing. The
following shows the possible relationships between the
OPENM macro and the FIT parameters:

e For file creation, certain parameters must be set
before executing the OPENM macro; otherwise, a
fatal error occurs. If these parameters are specified
for an existing file, the new values are ignored without
comment.

e Certain paramet‘ers must be selected before the file is
created if the option is to be used during the life of
the file.

e Certain parameters are optional at file creation. If
these parameters are not specified, default values are
used. Values specified after file creation are ignored.

[Certain parameters must be set prior to open time;
otherwise, default values are assumed without
comment. These parameters are effective only until
another OPENM macro is executed.

® Certain parameters need not be set until they are
required by file processing commands. Once set, these
parameters remain in effect until changed.

@ Certain parameters have no default and must be set

prior to use by a file processing command; otherwise,
a fatal error occurs.

60499300 E

PUT MACRO

The PUT macro transfers data from the working storage
area to a file. The file must be open for output or
input/output. The format of the PUT macro is shown in
figure 5-7.

PUT fit,wsa,rl,ex, ka,kp
fit Address of the FIT.

wsa Address of the working storage area from which
the user record is transferred.

r Number of characters to be written.

ex Address of the error routine.

ka Aeress of the primary key for the record to be
written.

kp Beginning character position of the primary key.

Parameters can be specified as registers; if parameters are
not specified, values in appropriate FIT fields are used.

Figure 5-7. PUT Macro Format

Applicable parameters by type of file organization for the
PUT macro are as follows:)

Indexed sequential fit,wsa,rl,ex,ka,kp

Direct access fit,wsa,rl,ex,ka,kp

Actual key fit,wsa,rl,ex,ka,kp

Any errors detected during' PUT macro execution cause
transfer to the error routine if one is specified. If the
error is excess or insufficient data, no data has been
transferred; for other errors, the data is unreliable.

The length of a record being written is determined by the
record length (RL) field in the FIT. For U, S, and W type
records, the RL field can be set by the ri parameter in the
PUT macro. For F, Z, R, T, and D type records, AAM uses
certain FIT fields and the content of the record in the
working storage area to determine record length for the
RL field; the value of the RL field is determined as follows:

e F type records
Record length is taken from the FL field in the FIT.
e Z type records

Record length is taken from the RL field in the FIT or
from the FL field if the RL field is set to zero. The
end of the record is determined by searching backward
from the character position specified by the value of
the RL or FL field and removing full words of blanks.

e R type records

Record length is determined by scanning the record in
the working storage area for the terminating record
mark character, which is specified by the record mark
(RMK) field in the FIT. An error occurs if the record
mark is not found within the maximum record length.

60499300 E

e T type records

Decimal count is extracted from the record and used
to calculate the record length. Length and location of

. the count field in the record (CL and CP fields), length
of the header (HL field), and length of the trailers (TL
field) are obtained from the FIT.

e D type records

Decimal character record length is extracted from the
record. Length and location of the character count
field in the record (LL and LP fields) are obtained
from the FIT.

In all preceding cases, the length of the record transferred
is stored in the RL field in the FIT at the end of the PUT
macro operation.

REPLACE MACRO

An existing record in a file is replaced by a record from
the working storage area when the REPLACE facro is
executed. The new record can be smaller or larger than
the original record; however, record length cannot exceed
the size specified by the maximum record length (MRL)
field in the FIT. The format of the REPLACE macro is
shown in figure 5-8.

REPLACE fit,wsa,rl,ex, kakp

fit Address of the FIT.

wsa Address of the working storage area with the
new record.

rf Length (in characters) of the new record.

ex Address of the error routine.

ka Address of the primary key for the record to
be replaced. :

kp Beginning character position of the primary key.

Parameters can be specified as registers.

Figure 5-8. REPLACE Macro Format

Applicable parameters by type of file organization for the
REPLACE macro are as follows:

Indexed sequential fit,wsa,rl,ex,ka,kp

Direct access fit,wsa,rl,ex,ka,kp

Actual key fit,wsa,rl,ex,ka,kp

Replacement records need not be the same size as the
record being replaced except for a direct access file being
processed sequentially. A larger replacement record in a
direct access file can cause overflow of records, which
leaves the sequential position undefined. If the requested
record is not found, a trivial error results and the request
is ignored.

5-5

REWINDM MACRO

The REWINDM macro positions a file to beginning-
of-information, which is the beginning of the first data
record in the file. The file must be open when the macro is
issuede. A GETN macro issued immediately after the
REWINDM macro returns the first record. The format of
the REWINDM macro is shown in figure 5-9.

REWINDM fit
fit Address of the FIT or register containing the
address.

Figure 5-9. REWINDM Macro Format

SEEK MACRO

Program execution time can be shortened through the use
of the SEEK macro, which allows overlapping of central
memory processing and input/output activity. The SEEK
macro initiates block transfer to the buffer; it does not
return a record to the user. The user can then continue
processing while the transfer occurs. The format of the
SEEK macro is shown in figure 5-10.

SEEK fit,ex,ka kp,mkl

fit Address of the FIT.

ex Address of the error routine.

ka Address of the key for the desired record.
kp Beginning character position of the key.
mkl Major key length in characters.

Parameters can be specified as registers. If the ex, ka, kp,
and mki parameters are not specified, values in appropriate
FIT fields are used.

Figure 5-10. SEEK Macro Format

Applicable parameters by type of file organization for the
SEEK macro are as follows:

Indexed sequential fit,ex,ka,kp,mkl
Direct access fit,ex,ka,kp
Actual key fit,ex,ka,kp

When the SEEK macro is executed, control returns to the
user program once a read is initiated. The FP field is set
to zero if the transfer of an index block has been initiated;
it is set to 20g (EOR) if a data or home block is being
transferred.

The user can monitor the FP field or the busy FET address
(BZF) field. By monitoring the BZF field, the user can
avoid issuing SEEK macros with the same key, which would
return immediately because the file was busy. The BZF
field in the FIT is set by AAM and points to an input/output
status word. When the low order bit of the status word is
set, the current SEEK macro input/output is complete and
another operation can be profitably issued for the file.

Normally, the SEEK macro is followed by a macro such as
GET or DELETE accessing the record referenced by the
SEEK macro. An operation on some other record not
already in the buffer can negate the action of the SEEK
macro by writing over the. data transferred by it. The
record is not moved into the working storage area until a
GET macro is executed. If a call is made before the seek
operation is complete, processing continues reading blocks
from the point where the SEEK calls were discontinued.

SKIP MACRO

The SKIP macro repositions an indexed sequential or actual
key file in a forward or backward direction a specified
number of logical records. It does not return a record to
the working storage area. Only small skips are
recommended because each record must be read and
counted for proper positioning. The format of the SKIP
macro is shown in figure 5-11.

SKIPdL fitcount

d Direction of skip:
F Forward
B - Backward
fit Address of the FIT.

count Number of logical records to be skipped. A null
parameter resuits in a zero count.

The fit and count parameters can be specified as registers.

Figure 5-11. SKIP Macro Format

When the SKIP macro is executed, user parameters are
checked, records in the file are read, the file is positioned
according to the number of records to be skipped, and
control returns to the user. A negative skip count is not
allowed; the request is ignored and an error is issued. If
the skip operation encounters end-of-infarmation or
beginning-of-information before the skip count s
exhausted, control is transferred to the end-of-data routine
with the appropriate file position set.

START MACRO

The START macro positions an indexed sequential file or
an alternate key index file to a record that meets a
specific condition, but does not transfer the record to the

60499300 E

working storage area. The START macro also updates the
area pointed to by the KA field. The file is positioned in
the same manner as for a GET macro except that GET uses
REL=EQ even if the REL field has been set to a different
value. The format of the START macro is shown in
figure 5-12.

The file is positioned according to the key relation (REL)
field in the FIT and the current value at the key address
(KA) location. The REL field specifies the desired relation
between the value at lacation KA and the key of the record
at which the file is to be positioned. Relations that can be
specified are EQ (equal to), GT (greater than), and GE
(greater than or equal to). The file is positioned at the
beginning of the record that satisfies the relation. If the
mk! parameter is specified, the file is positioned relative
to the major key specified for an indexed sequential
symbolic key.

Apart from index-only processing, START is the only
operation for which REL is significant.

60499300 E

START fit,ex,kakp,mkl

fit Address of the FIT.

ex Address of the error routine.

ka Address of the key for positioning the file.
kp Beginning character position of the key.
mkl Major key length in characters; can be used

only for a symbolic key in an indexed sequential
file. Reset to zero after each START.

Parameters can be specified as registers. |f the ex, ka, kp,
and mkl parameters are not specified, values in appropriate
FIT fields are used.

Figure 5-12. START Macro Format

5-7

MULTIPLE-INDEX FILES

B S e

All AAM files have a primary key associated with each
record to provide random access to the file. In addition,
alternate keys can be defined for records in an AAM file.
Alternate keys provide the means to access records by
more than one field in a record.

Primary key values must be unique within the file.
Alternate keys, which can overlap each other and the
primary key, need not have values unique to the record or
to the file. Alternate keys must be contained within the
minimum record size.

The original data file structure is not affected by alternate
key processing. The Multiple-Index Processor (MIP)
creates an index file on the creation run for a
multiple-index file. On subsequent runs, the index file is
updated as necessary when the data file is updated. The
index file must be made available to the updating program.

For existing AAM files, the MIPGEN utility is available to
assist in creating the index file for alternate key
processing and to add new fields or delete fields for an
existing index file. Refer to section 7 for a description of
the MIPGEN utility.

INDEX FILE

The index file is created and updated automatically by
MIP. It is identified by the index file name (XN) field in
the FIT. The index file, which is-defined when the file is
created, must be made available whenever the data file is
updated or is accessed by alternate key. Alternate keys
can be defined by the user on the creation run.

STORAGE STRUCTURE

The index file contains an index for each alternate key
defined for the data file. Within an index, each alternate
key value is associated with a keylist of the primary keys
for records containing that value.

Ordering Keys

Each alternate key index is ordered by alternate key
value. The ordering of the primary key list for a given
index is controlled by the user through a parameter that
can be specified when the alternate key is defined by the
RMKDEF macro or directive. The ordering of the list is as
follows:

e If the parameter is omitted or U is specified, each
value of the alternate key must be unique. The
primary key list for each alternate key value consists
of only one primary key value.

e If F is specified for the parameter, the ordering of
primary key values is first-in first-out. The primary
keys are stored in the order in which their
corresponding records are created.

60499300 E

e If I is specified for the parameter, the primary keys
are stored in ascending sequence of primary key
values. Numeric keys are in numeric order; symbolic
keys are in collating sequence order.

Block Size

The size of the index file blocks is determined when the
data file is created. The index block size (XBS) field in the
data file FIT specifies the number of characters in a
block. A value specified for the XBS field is rounded
upward if necessary to the nearest multiple of 640
characters minus 20. The default index file block size is
the data file block size.

ALTERNATE KEY SPECIFICATION

A record can be accessed by the primary key or by any
alternate key defined for the file. Alternate keys can be
defined when the data file is first created or after the file
is created.

Alternate Key Definition
There are two ways to define alternate keys:
For a new file:

Using the RMKDEF macro in a COMPASS
program; or using the RMKDEF call statement in
a FORTRAN program; or using the ALTERNATE
RECORD KEY CLAUSE in a COBOL program.
Alternate keys can be defined by these methods
only when the file is first created.

For an existing files

Using the RMKDEF directive in the MIPGEN
utility to define alternate keys and to create the
index file. The MIPGEN utility is described in
section 7.

The paragraphs that follow describe the RMKDEF macro
only.

RMKDEF Macro

The RMKDEF macro is used to describe an alternate key
field on a file creation run. The macro must be used once
for each alternate key field in the record. The RMKDEF
macros must be executed after the OPENM macro and
before the first PUT macro. An RMKDEF macro that
defines the primary key is ignored without comment. The
format of the RMKDEF macro is shown in figure 6-1.

6-1

RMKDEF fit,kw,kp,k! ki kf ks kg,ke,nl,ie,ch
fit Address of the FIT for the data file.

kw Word of the record where the key starts, count-
ing from zero; default-is zero.

kp Beginning character position of the key:
0 to 9 for symboli¢c key
0 for signed binary key

ki Key length, in characters:
1 to 255 for symbolic key
10 for signed binary key

ki 0 (reserved)}.

kf Key type:
Oor$S Symbolic
torl integer

20ry Uncollated symbolic

ks Substructure for each primary key list in the
index:

U Unique {(default)
| Indexed sequential

F First~in first-out

kg For a repeating group, number of characters in
the group where the key resides.

ke For a repeating group, number of occurrences;
zero for T type records, and a number for a repeat-
ing group embedded within the record.

nl Null suppression:
0 Null values are recorded (default)
N Null values are not recorded

A null value is all spaces {symbolic key) or all
zeros {signed binary key).

ie Include/exclude sparse control character:

E Exclude alternate key value if the
record contains a sparse control
character (default)

I Include alternate key value if the
record contains a sparse control
character

ch Characters that qualify as sparse control charac-
ters; up to 36 letters and digits can be specified
as a character string.

Figure 6-1. RMKDEF Macro Format

The kg and ke parameters refer to an alternate key that is
a repeating group. For example, a repeating group is
described in COBOL by an OCCURS n TIMES clause. If the
same alternate key value occurs more than once in a data
record, the primary key is entered in the index only ance
for that value; therefore, a primary key associated with an

6-2

alternate key value indicates that the value occurs at least
once in the record. Alternate key fields can overlap in a
record; for example, first name, last name, and whole
name can all be defined as alternate keys.

The nl, ie, and ch parameters are used to define sparse
keys. These are alternate keys for which only certain
values are of interest to the user. A sparse key is defined
by specifying null suppression or sparse control characters.

Null suppression is specified by the nl parameter. The
primary key for a record that has a null alternate key value
is not included in the alternate key index. A null value is
all spaces for a symbolic key or all zeros for an integer key.

The ie and ch parameters are used when indexing of
alternate key values is to be controlled by a sparse control
character. The one-character field containing the sparse
control character must be in the fixed-length portion of
the record. The ie parameter specifies whether to include
or exclude the alternate key values for records that
contain a sparse control character. The ch parameter
specifies the sparse control characters applicable to the
alternate key being defined.

The sparse control character field is identified by an
RMKDEF macro that must appear before the macro
defining the alternate key and its sparse control
characters. This macro is specified in the following format:

RMKDEF fit,kw,kp,0

The kw and kp parameters specify the position of the
sparse control character. The zero kl parameter indicates
that the field is a sparse control character field.

APPLICABLE FIT FIELDS

Several FIT fields are applicable to multiple-index file
processing. These fields and their respective uses are as
follows:

FP File position; when the index file is being
accessed, 10g indicates the end of primary
keys associated with a given aiternate key
value. 100g indicates the end of the
alternate key list.

KL Key length; number of characters in a
primary or alternate key.

KNE Key not equal; 1 indicates the key in process
is not the same key specified by the KA
field. KNE is set only after an operation for
which a GE relation was specified.

MRL Maximum record length; when the primary
key lists are being retrieved, MRL indicates
the length of the working storage area.

NDX Index flag;s 1 indicates an index only
operation; 0 indicates a data record operation.

PKA Primary key address; when accessing records
by alternate key, the primary key for a
record is returned to the specified address.

RC Record count; number of records containing
the value of the key at location KA.

REL Key relation; relation of the key value at

location KA to the key at which the file is
positioned; can be EQ, GT, or GE.

60499300 £

RL Current record length.

RKP Relative key position; character position of a
primary or alternate key within the word
specified by the RKW field. For a
nonembedded primary key, setting RKP=10
and KL equal to the number of characters in
the primary key before performing a
REWIND, GET, or START switches the key
being referenced from an alternate key back
to the primary key.

RKW Relative key word; word in which a primary
or alternate key begins.

XBS Index file block size; number of characters in
an index file block.

XN Index file name; logical file name of the
- index file.

ALTERNATE KEY PROCESSING

Defining alternate keys for a file allows the user to access
records by fields other than the primary key. Two files are
involved with alternate key processing. The data file
contains-records that have unique primary keys. The index
file contains alternate key values and their associated
primary keys. Both files must be made available to the
program. Reading by alternate key can be random or
sequential.

ALTERNATE KEY ACCESS

To access a data record by an alternate key, the alternate
key position must first be established in the FIT. The
relative key word (RKW), relative key position (RKP), and
key length (KL) fields must be set for the desired alternate
key. These three fields are set for the primary key by open
processing; thereafter, the user is responsible for setting
them when changing access from primary to alternate key
or from one alternate key to another. The index flag
(NDX) field in the FIT must be set to zero to access a data
record.

The alternate key defined by the RMKDEF macro refers to
a position within a record. The GET macro is used to
retrieve a record with a specific value in the alternate key
position. When the GET macro is executed, the RKW,
RKP, and KL fields in the FIT define the alternate key
position in the record. The ka, kp, and mkl macro
parameters establish the alternate key location that
contains the value for the record to be retrieved. The first
primary key associated with the alternate key value
determines the record returned to the working storage
area. The format of the GET macro is:

GET fit,wsa,0,ex,ka,kp,mkl

When the GET macro is executed successfully, a record is
returned to the location specified by the wsa parameter,
the index file is positioned, and the following FIT fields are
set:

PKA Primary key address; address of location that
contains the primary key of the record
retrieved.

RC Record count; number of records that contain
the alternate key value.

60499300 E

RL Record length; number of characters in the
record returned to the working storage area.

If the operation is unsuccessful, the fields are not defined.

Once a GET macro has been executed to establish an inde»
file position, the record for the next primary key in the
index can be accessed by the GETN macro. When the indes
file is positioned past the last primary key in the index, nc
record is returned to the working storage area, the file
position (FP) field is set to EOI, and any specifiec
end-of-data exit is taken. An informative error message i
written on the error file ZZZZZEG.

After execution of a GETN, the file position (FP) field ir
the FIT can have one of three values:

A good record was returned to the working
storage area. FEither the next record wil
have a different alternate key value, whict
means the end of a keylist (EOK) has beer
reached, or end-of-information (EOI) will be
encountered.

L] lUB

A good record was returned to the working
storage area and the next record has the
same alternate key value as this record.

e 20g

e 100g End-of-information (EOI) was encountered.

If a different alternate key value is encountered during
execution of the GETN macro, that value is moved tc
program location KA.

The format of the GETN macro is:
GETN fit,wsa,ex,ka

Execution of the GETN macro returns a record to the
working storage area. The primary key for the record i
moved to the program location indicated by the primary
key address (PKA) field in the FIT.

FILE UPDATING

Updating a multiple-index file is basically the same a:
updating any other AAM file. The only difference is thal
the logical file name of the alternate key index file must
be specified in the FILE control statement by the XN
parameter. The index file is automatically updated when ¢
data file update affects the index file.

The PUT and REPLACE macros are used to write anc
rewrite records. For MIP when the primary key i
embedded, it is not necessary to set FIT fields for the
primary key; that is, the RKW, RKP, KL, KA, and KF
fields do not have to be set. The KA and KP fields must be
set for nonembedded keys. The position of the primary key
in the record is constant for the file and the address in the
working storage area (WSA) field is the address of the
record to be written or rewritten.

The DELETE macro is used to delete a record from the
file. The RKW, RKP, and KL fields in the FIT do not have
to be set; however, the key address (KA) and key positior
(KP) fields must be set for the primary key because the
WSA field is not required for the DELETE macro.

The index file position and the RKW, RKP, and KL fields
are not changed by execution of the PUT, REPLACE, or
DELETE macro. A series of GETN macro requests can be
interrupted by update requests without losing alternate key
sequence.

INDEX FILE POSITIONING

The alternate key index file is positioned when a GET
macro accesses a record by alternate key. The index file
can also be positioned without returning a record. The
START, SKIP, and REWINDM macros change the position
of the index file.

START Macro

The START macro positions the index file to the first
primary key for a given alternate key value. The value is
at the location specified by the key address (KA) field in
the FIT, The format of the START macro is:

START fit,ex,ka,kp,mkl

The key relation (REL) field in the FIT determines the
positioning of the index file in relation to the value at
location KA. The REL field has three possible values:

EQ The index file is positioned at the alternate
key value equal to the value at location KA.
The default for the REL field is EQ. If an
equal key value is not in the index, trivial
error 506 results.

GT The index file is positioned "at the first
alternate key value greater than the value at
location KA.

GE The index file is positioned at the first
alternate key value greater than or equal to
the value at location KA. If an equal key
value is not in the index, the key not equal
(KNE) field in the FIT is set to 1.

After the START macro is executed, the record count (RC)
field in the FIT is set to the number of primary keys for
the alternate key at which the index file is positioned.

Apart from index-only processing, START is the only
macro for which REL is significant.

Other Positioning Macros

In addition to the START and GET macros, the index file
position is changed by the SKIP and REWINDM macros.
When a change is made from one alternate key index to
another, the index position must be established by a
REWINDM, GET, or START macro.

The SKIP macro is used to skip forward a number of
primary keys from the current position. The format of the
SKIP macro is:

SKIP fit,n
The index file is positioned at the first primary key in the
alternate key index by the REWINDM macro. The format
of the REWINDM macro is:

REWINDM fit

6-4

PROCESSING ONLY THE INDEX FILE

The alternate key index file can be accessed to retrieve
information related to the alternate keys. Primary key
lists or counts of primary keys for either a single alternate
key value or a range of values can be retrieved. Obtaining
this information from the index file has no effect on the
data file.

In order to access the index file, the index flag (NDX) field
in the data file FIT must be set to YES. If the OPENM
macro is executed with NDX set to YES, only the index file
is opened for processing. The index file must be an
existing file at open time. If the NDX field is set to YES
when the file is opened, it cannot be reset to NO until
after the file has been closed.

" MACRO PROCESSING

The index file is accessed through execution of various
macros. Only those macros described in the following
paragraphs can be used with the index file.

The OPENM macro and the CLOSEM macro open and close
the index file. Execution of these macros does not affect
the data file.

The REWINDM macro positions the index file at the
beginning of the alternate key index from which
information is to be retrieved. The alternate key is
determined by the relative key word (RKW), relative key
position (RKP), and key length (KL) fields in the data file
FIT. The file is positioned at the first value for the
designated alternate key.

The index file can be positioned at a specific value of an
alternate key through execution of the START macro. The
RKW, RKP, and KL fields in the FIT specify the alternate
key for file positioning. The alternate key value at the
location indicated by the key address (KA) field in the FIT
and the condition designated by the key relation (REL)
field determine the positioning at a specific value within
the alternate key index. When the relational condition is
EQ, the file is positioned at the alternate key value equal
to the value at location KA; if an equal value cannot be
found in the index, the file is positioned at the next higher
value. For the GT relational condition, the file is
positioned at the next higher value than the value at
location KA. The GE relational condition causes the file to
be positioned at a value equal to or greater than the value
at iocation KA,

The GET macro is used to retrieve the primary keys for an
alternate key value. The alternate key to be accessed is
determined by the RKW, RKP, and KL fields in the FIT.
The alternate key value at location KA and the condition
specified in the REL field determine the positioning of the
index file. Execution of the GET macro positions the index
file at the desired alternate key value and returns as many
of its associated primary key values as the working storage
area can contain.

The GETN macro can be executed after the GET macro to
retrieve additional primary key values associated with the
alternate key value. It can also be executed after a
REWINDM, START, or SKIPFL macro to begin returning
primary key values from the position established by the
previous macro. Primary keys are returned to the working
storage area until one of the following conditions occurs:

e The working storage area is full.

60499300 E

e The end of the list of alternate key values is reached
(end-of-information).

e . The index file is positioned at the beginning of a
primary key list for an alternate key that is greater
than the key at location KA when the value of the
REL field in the FIT is GT or GE; or the index file is
positioned at the beginning of a primary key list for an
alternate key that is equal to the key at location KA
when the value of the REL field is GE or EG.

The key address (KA) field in the FIT must be set for the
GETN macro when the index file is being accessed. If
primary key list retrieval is to be terminated according to
a key value, the KA field must point to the location
containing the key value. If the KA field is set to G,
primary key list retrieval terminates only if the working
storage area is filled or if end-of-information is reached.
This is the same as if the key value at location KA is
greater than any possible value for the alternate key.

The SKIPFL macro is used to count the number of primary
key values for one or more alternate key values; the
primary key values are not returned to the working storage
area. The counting can be terminated by a key value in the
same manner as the GETN macro. Counting can also be
specified for a number of alternate key values or to
end-of-information.

FIT FIELDS FOR INDEX FILE
PROCESSING

Index file processing involves user setting of several fields

in the FIT. In addition, AAM sets certain FIT fields during -

macro execution. The following FIT fields can be set by
the user:

KA Key address; location of the user-supplied
key value for START and GET macros and for
GETN and SKIPFL macros that use a key.

KL Key length; number of characters in the
alternate key being accessed.

KP Key position; position of user-supplied key
value at location KA.

MKL Major key length; number of characters,
which is less than the full length of the
alternate key, in the user-supplied symbolic
key value. For primary key processing in
MIP, MKL applies only to collated symbolic
keys (KT=S). For alternate key processing in
MIP, MKL applies to collated or uncollated
symbolic keys (KT=S or U).

MRL Maximum record length; length of the
warking storage area in characters; should be
a multiple of 10 characters because each
primary key value returned begins on a new
word boundary.

NDX Index flag; must be set to YES for index file
access only. .

REL Key relation; indicates the relation to be
satisfied between the user-supplied key value
and the index file key value; possible
relations are EQ, GE, and GT; for initial MIP,
LE and LT can also be used.

60499300 E

RKP Relative key position; beginning character
position of the alternate key within the word
specified by the RKW field.

RKW Relative key word; word in which the
: alternate key being accessed begins.

WSA Working storage area; location into which
primary key lists are returned.

The following FIT fields are set by AAM during exescution
of the START, GET, GETN;, and SKIPFL macros: .

FP File position; set to indicate the position of
the index file when control returns to the
user:

0 Middle of primary key list
10 End of primary key list
100g End-of-information
KNE Key not equal; for an operation involving a
key, indicates whether or not the current
alternate key value matches the

user-supplied key value:
8] Equal key values

1 Higher user-supplied key value
ar end-of-information

MKL Major key length; reset to 0 after a
user-supplied value has been npted. For
primary key processing in MIP, MKL applies
only to collated symbolic keys (KT=S). For
alternate key processing in MIP, MKL applies
to cr;llated or uncollated symbolic keys (KT=5
or U).

PTL Primary key total; number of primary key
values transferred to the working storage
area during execution of the GET or GETN
macro.

RC Record count. After a START or after a
GET that did not run to completion (FP=0),
RC contains the number of primary keys
associated either with the given alternate
key value or, if there is no match in the file
or REL=GT, with the next higher alternate
key value. After a GET that did run to
completion, the number of associated
primary keys is found in RL instead of RC.

RL Set by the GET, START, SKIPFL, and GETN
macros as follows:

GET Set to the value in the PTL
field.

START Set to zero.

SKIPFL Set to- the number of
primary key values that
have been skipped.

GETN Increased by the number of
primary key values
transferred to the working
storage area; cleared on
entry only if the file
position from the last
operation was end-of-
keylist (EOK).

6-5

COUNT RETRIEVAL

The primary key values associated with a given alternate
key value are counted by executing the START macro. The
RKP, RKW, and KL fields in the FIT must be set to
identify the alternate key. Because a specific alternate
key value is involved, the major key length (MKL) field is
set to O for full length key comparison and the key relation
(REL) field is set to equal (EQ). The format of the START
macrao is as follows:

START fit,ex,ka,kp

The fit parameter specifies the address of the data file FIT
with which the index file is associated. The file is
positioned at the alternate key value that is equal to the
value at the location specified by the ka parameter; the
record colnt (RC) field in the FIT contains the number of
primary keys associated with the alternate key value. The
key not equal (KNE) field is set to 0 or 1 depending on
whether or not the desired value has been found.

The file position (FP) field in the FIT is set during
execution of the START macro. It is set to 10g if the
index file is positioned at an alternate key value. If,
however, the user-supplied key value is greater than all
existing values for the alternate key, the FP field is set to
100g,

RANGE COUNT RETRIEVAL

The number of primary keys associated with a range of
consecutive alternate key values can be determined by
executing a REWINDM or START macro and then a SKIPFL
macro. The beginning and end of the range can be
specified in various ways.

The beginning of the range indicates the first alternate key
value for which primary keys are to be counted. The key
value is specified as one of the following:

@ The first alternate key value in the file; execution of
the REWINDM macro positions the index file to this
point.

e The first alternate key value that is not less than a
specified value; the REL field in the FIT is set to GE
and the START macro is executed to reach this
position in the index file.

e The first alternate key value that is greater than a
specified value; the REL field in the FIT is set to GT
and the START macro is executed to reach this
position in the index file.

If a major key is specified for the START macro, only the
number of characters in the major key are used for
comparison. If the REL field is set to EQ or GE, the file is
positioned at the first alternate key value with leading
characters that match the major key. If no such key
exists, the file is positioned at the next logical alternate
key value. If the REL field is set to GT, the file is
positioned at the first alternate key value with leading
characters greater than the major key value.

The end of the range, which is the last alternate key value
to be included in the range count, is specified by setting
various FIT fields before executing the SKIPFL macro.
The last key value is determined as follows:

e If the key address (KA) field is set to 0, the last
alternate key value in the index is the end of the range.

6-6

e If the KA field points to a location that contains an
alternate key value and the key relation (REL) field is
set to GT, all key values not exceeding the value at
location KA are included in the count.

e If the KA field points to a location that contains an
alternate key value and the REL field is set to GE, all
key values less than the value at location KA are
included in the count.

After the SKIPFL macro is executed, the RL field in the
FIT contains the number of primary key values for all the
alternate key values within the specified range.

PRIMARY KEY LIST RETRIEVAL

The list of primary keys for a specific alternate key value
can be retrieved by executing the GET macro. The major
key length (MKL) field in the FIT should be set to 0 for a
full-length alternate key comparison and the key relation
(REL) field should be set to EQ for an equal comparison.
When the GET macro is executed, the key not equal (KNE)
field is set to O if the alternate key value is found in the
index file or to 1 if it is not found. The format of the GET
macro is:

GET fit,wsa,0,ex,ka,kp,mkl

Execution of the GET macro causes the primary key values
associated with the alternate key value to be transferred
to the working storage area. Transfer of primary key
values terminates when the last primary key value has been
transferred or when the working storage area has been
filled. The following FIT fields indicate the status of a
successful primary key list retrieval:

FP File position; set to 10g when all primary
keys have been transferred; otherwise, set
to 0.

PTL Primary key total; number of primary keys
transferred to the warking storage area.

RC Record .count; the total number of primary
keys associated with the alternate key value
if not all of these keys have been delivered
(FP=0). If all the primary keys have been
delivered (FP=10g), the total number of
primary keys is found in RL.

RL Same as the PTL field after a GET operation
(the number of primary key values delivered
by the GET). If all the primary keys have
been delivered (FP=10g), RL contains the
total number of primary keys.

If the operation is unsuccessful, the fields are not defined.

If the FP field is set to 10g, the entire primary key list
has been retrieved. In this case, the PTL and RL fields
contain the same value. The index file is positioned at the
beginning of the primary key list for the next alternate key
value.

The FP field set to 0 indicates that additional primary keys
are associated with the alternate key value. The RC field
contains a value greater than the PTL and RL fields, which
contain equal values. The number of additional primary
keys is given by the difference between RC and RL. The
remaining primary keys can be retrieved by executing the
GETN macro after making the working storage area
available for use again. Primary keys are transferred until

60499300 E

the end of the list is reached or the working storage area is
filled. Additional GETN macros can be executed to
complete transfer of the primary key list. The FP field in
the FIT is set to 10g when the last primary key in the list
is transferred to the working storage area.

The normal purpose of primary key list retrieval is to
determine the primary key values for a specific alternate
key value. If the major key length (MKL) field in the FIT is
set to a value other than 0, more than one alternate key
value could satisfy the condition of the REL field. The
GETN macro execution would then continue until the index
file is positioned at an alternate key value that does not
satisfy the condition specified by the REL field.

Whenever a GETN macro is executed, the RL field is
incremented by the number of primary keys transferred to
the working storage area; the PTL field indicates the
nurmnber of primary keys transferred during execution of the
macro most recently executed (GET or GETN). The final
value in the RL field (when the FP field contains 10g)
should equal the value in the RC field after execution of
the GET macro, which should also equal the total of the
values in the PTL field after execution of the GET macro
and all subsequent GETN macros.

RANGE LiST RETRIEVAL

The primary key lists for a range of consecutive alternate
key values can be retrieved through execution of a START
macro followed by execution of one or more GETN
macros. The beginning of the range of alternate key values
is established in the same manner as for the range count
retrieval; that is, the REWINDM macro can be used to

60499300 E

position the index file to the first alternate key value, or
the START macro can be used to position the file to a
specific alternate key value.

Once the beginning of the range has been established, the
GETN macro is executed to transfer primary keys to the
working storage area. To determine when the primary key
lists for the range of alternate key values have all been
transferred, the file position (FP) field in the FIT must be
checked for a value of 10g (end-of-keylists) or 100g
(end-of-information) after execution of the GETN macro.

The end of the range of alternate key values is determined
by the setting of certain fields in the FIT:

e If the key address (KA) field is set to 0, the end of the
range is end-of-information.

e If the KA and key position (KP) fields are set to
indicate an alternate key value and the key relation
(REL) field is set to GT, the end of the range is the
last alternate key value that is not greater than the
one indicated by the KA and KP fields.

e If the KA and KP fields are set to indicate an
alternate key value and the REL field is set to GE, the
end of the range is the last alternate key value that is
less than the one indicated by the KA and KP fields.

Whenever the GETN macro is executed, the FP field in the
FIT should be checked. If it is equal to l0g or 100g,
all the desired primary key lists have been retrieved. If

is equal to 0, however, the working storage area should be
made available for retrieval of more primary keys and
another GETN macro should be issued.

6-7

UTILITIES 7

oo R

Several utility routines are provided for use with AAM
files. Utilities are available for:

e Printing statistics

e Displaying alternate key fields (as defined by MIPGEN)
for definition checking

e Estimating the optimal block and buffer sizes for
indexed sequential files

e Performing key analysis for direct access files
e Creating direct access files

e Creating an index file for alternate key access to an
existing file

The utilities are called by operating system control
statements. File dumping and reloading functions are
handled by FORM and permanent file utilities.

INDEXED SEQUENTIAL FILES

Two utilities are provided for use with indexed sequential
files. These utilities print statistics and suggest block and
buffer sizes.

FLSTAT UTILITY

The FLSTAT utility is primarily used for displaying
statistical information about an AAM file. This utility has
a secondary function; it displays those fields in records of
an AAM file that have been designated by a set of
RMKDEF directives. (RMKDEF directives work through
the MIPGEN utility, which is explained later in this
section.)

FLSTAT Statistical Information

The FLSTAT can be used to display statistical information
about an indexed sequential, direct access, actual key, or
index file. When used for this purpose, the format of the
FLSTAT control statement is shown in figure 7-1.

FLSTAT(Lfn,sfn)

Lfn Logical file name of the AAM file
about which the information is wanted.

sfn - Logical file name of the file on which
the information is to be written;
default is OUTPUT.

Figure 7-1. FLSTAT Control Statement
Format for Statistical Information

60499300 E

FLSTAT(lfn) means the same as FLSTAT(1fn,OUTPUT).

The amount of information output by the FLSTAT utility
depends on whether or not an installation option is
selected. (Refer to the Installation Handbook for details.)
Figure 7-2 shows the output generated for a data file and
an index file when the installation option is not selected.
Figure 7-3 shows the output generated for the same two
files when the option is selected.

FLSTAT uses values from the file statistics table (FSTT).
The FSTT can be updated only if the AAM file is attached
with write or write modify permission. If the file is
attached with read or read modify permission, those
FLSTAT statistics relating to file usage (transactions,
calls) might not be accurate. Those statistics describing
size of file or key information are not affected.

FLSTAT Alternate Key Information

" For existing AAM files, an FLSTAT option can display

which fields will become alternate keys as a result
RMKDEF directive definitions.

The purpose of this secondary FLSTAT function is to aid a
user who is about to use the MIPGEN utility on an indexed
sequential, direct access, or actual key file. Part of the
input to MIPGEN is a set of RMKDEF directives, defining
the fields of each record that are to become alternate
keys. The second, third, and fourth parameters on a
RMKDEF directive are RKW, RKP, and KL, defining the
position and length of a field. The user might not be
certain that these values define the desired fields. In that
case, FLSTAT can be used to check the fields. When used
for this purpose, the format of the FLSTAT control
statement is as shown in figure 7-4.

FLSTAT(1fn,,RMKDEF) is equivalent to:
FLSTAT(fn,0UTPUT,RMKDEF,INPUT).

When the statement is entered interactively and the
default INPUT is allowed to occur, the user is prompted to
enter RMKDEF directives.

FLSTAT first lists the RMKDEF directives that were
specified, up to nine directives. The utility then copies the
first 20 records of the file, 100 characters per line.

FLSTAT labels the fields that are defined by the RMKDEF
directives using the following scheme: 1l's are placed under
the field defined by the first RMKDEF directive, 2's are
placed under the field defined by the second RMKDEF
;lixgective, and so on. A sample output is shown in figure

7-1

STATISTICS FOR FILE RELFIT

ORGANIZATIQN======= IS

CREATION DATE==w=== 07/08/78
DATE OF LAST CLOSE-~ 07/086/78
TIME OF LAST CLOSE= 18.35.37.

FILE IS NOT MIPPED
COLLATION IS STANDARD

PRIMARY KEY INFORMATION

KEY IS NOT EMBEDDED

TYPE -= COLLATED SYMBOLIC

LENGTH IN CHARACTERS ======- - 10
MAXIMUM RECOREC SIZE 100
MINIMUM RECORD SIZE 0

TOTAL TRANSACTIONS

NUMBER OF PUTS =====- 10
NUMBIR OF GETS ===== -0
NUMBER OF DELETES ~=-= 0
NUMBER OF REPLACES ~-- 0
NUMBZIR OF GETNEXTS =-=- 2
CIO CALLS FOR FILE
NUMBER OF READBS ~=---= 2
NUMBZIR OF WRITES ===~= 2
NUMBIR OF RECALLS ==-- 0
NUMBER OF REWRITES == 2
NUMBER OF BLOCKS==ww=== 1
NUMBER OF EMPTY BLOCKS- 0

BLOCK SIZE IN PRUS====-= 2
NUMBER OF DATA RECCRODS~ 10

FILE LINGTH IN PRUS &
NUMBER OF INOEX LEVELS IN USE)]

STATISTICS FOR FILE INDEXF

ORGANIZATION==w=== - MIP

CREATION DATE====~= 08723778
DATE OF LAST CLOSE~ 08/23/78
TIME OF LAST CLOSE= 15,4448,

PRIMARY KEY INFORMATION
KEY IS NOT EMBEDDED
TYPE =~ CCLLATED SYMBOLIC
LENGTH IN CHARACTERS ==~==-=- 5

ALTERNATE KEY INFORMATION
CHARACTERS IN LARGEST KEv=-= 20

PRIMARY KEY SUBSTRUCTURES
NUMBZR CF UNIQUE == &
NUMBER OF =IS=- -- 2
NUMBER OF FIFO -- 1

NUMBER OF BLOCKS===e==w
NUMBER OF EMPTY BLOCKS=-
BLOCK SIZE IN PRUS=w====
NUMBER OF DATA RECORDS-

~N oo

FILE LENGTH IM PRUS 34
MAX NUMBER CF LEVEL 2 INDEX LEVELS
MAX NUMBER OF LEVEL 3 INDEX LEVELS

&
4

STATISTICS FOR FILE RELFIT

ORGANIZATION======= IS

CREATION DATE===-=- 07/11/78
DATE OF LAST CLOSE- 07/11/78
TIME OF LAST CLOSE~- 07.22.11.

FILE IS NOT NMIPPED
COLLATION IS STANDARD

PRIMARY KXEY INFORMATICN
KEY IS NOT EMBEDDED
TYPE -~ COLLATED SYMBOLIC
LENGTH IN CHARACTERS ~==-=~==-~- 10

MAXIMUM RECORC SIZE 100
MINIMUM RECORD SIZE 0

TOTAL TRANSACTIONS
NUMBZR OF PUTS =-=-=-= 10
NUMBER OF GETS ~=c=-= g
NUMBER OF DELETES --= 0
NUMBZR OF REPLACES -- 0
NUMBER OF GETNEXTS -=- 2
NUMBER OF SEEKS ===-=- 2
NUMBZIR OF GETNRS ===« 2

CIO CALLS FOR FILE
NUMBER OF READS =-==-- 2
NUMBER OF WRITES ==-- 2
NUMBER OF RECALLS =--- 10
NUMBZIR OF REWRITES == 2

NUMBER OF BLOCKS ====-= 1
NUMBER GOF ENMPTY BLOCKS~ 0
BLOCK SIZE IN PRUSw==-- 2

NUMBER OF DATA RECORDS~- 10

FILE LENGTH IN PRUS &
NUMBER OF INDEX LEVELS IN USE 0

STATISTICS FOR FILE INDEXF

ORGANIZATION=====-~= MIP

CREATION DATE-~=---- 09713778
DAYE OF LAST CLOSE- 09/13/78
TIME OF LAST CLOSE~ 14.3%.21.

PRIMARY KEY INFORMATION
KEY IS NOT EMBEDDED
TYPE -~ COLLATED SYMBOLIC
LENGTH IN CHARACTERS ===<==-= 5

ALTERNATE KEY INFORMATICN
CHARACTERS IN LARGEST KEY=-~- 20

PRIMARY KEY SUBSTRUCTURES
NUMBIR OF UNIQUE -- &
NUMBER OF ~IS- -2
NUMBZIR OF FIFO -~ 1

NUMBER OF BLCCKS=======
NUMBER OF EMPTY BLOCKS=-
BLOCK SIZE IN PRUS=-=--
NUMBER OF DATA RECOROS-

~N oo

FILE LENGTH IN PRUS 34
MAX NUMBER OF LEVEL 2 INJEX LEVELS &
MAX NUMBER OF LEVEL 3 IMIEX LEVELS &

7-2

Figure 7-2. FLSTAT Utility Regular Qutput

Figure 7-3. FLSTAT Utility Expanded Output

60499300 C

RMKDEF

© FLSTAT(Lfn).

FLSTAT(L fn,sfn,RMKDEF ,dfn)

Lfn Logical file name of the AAM file
about which the information is wanted.

sfn Logical file name of the file on which
the information is to be written;
default is OUTPUT.

The value RMKDEF.
fied, FLSTAT displays alternate key
information; it suppresses statistical
information that would be produced by
Any explicit value other
than RMKDEF results in an error, and
no output is produced.

dfn Logical file name of the file that
contains the set of RMKDEF directives;
default is INPUT.

When this is speci-

Figure 7-4. FLSTAT Control Statement
Format for Alternate Key Information

The following should be noted:

On a record, information beyond 1000 characters is
ignored.

Up to nine directives are shown. All those after the
ninth are ignored. ‘

Where keys overlap, the field of overlap is marked
with the higher digit.

Any specification of a repeating group by an RMKDEF
directive is ignored.

FLBLOK UTILITY

The FLBLOK utility is an aid to the user in creating an
indexed sequential file. The utility provides a method of
comparing the effects of different values in some essential
FIT fields. The output information is based on stepping the
maximum block length (MBL) field through its possible
values and calculating file characteristics. In indexed
sequential files, MBL applies to both index and data blocks;
therefore, the content of MBL determines how many index
and data records can fit in a block. MBL has major effects
on both the physical structure and the performance
characteristics of the file. The main purpose of the utility

is to indicate the best MBL. value.

RMKDEF (FLRECS,0,0,2,
RMKDEF (FLRECS,3,3,20
RMKDEF (FLRECS,4,3,7,
RMKDEF (FLRECS,5,3,11
RMKDEF (FLRECS,6,3,11

49
11
38
11
42
11
46
1
39
11
4l
11
4
11
39
11
42
11
34
11
38
1
51
11
33
11
4
11
34
1
40
11

RM NOTE

0,s,D)
a,s, 1)
,5,1)
0,s,1)
0,s,1)

4
0
4
I 4
ADAM'S RIB
BRINGING UP BABY
CASABLANCA
DECEPTION
ELIZABETH AND ESSEX

IN OUR TIME

JOAN OF PARIS

MR SMITH GOES TO WASHINGTON
NOW VOYAGER

OF HUMAN BONDAGE

2
3
4

THE ADVENTURES OF ROBIN HOOD4

THE AFRICAN QUEEN
THE INVISIBLE MAN
THE LITTLE FOXES
THE LITTLE MINISTER

THE PHILADELPHIA STORY

1010 ON LFN FLRECS 640

2
1

3

TRACY HEPBURN .
22222222223333333222444444444455555555555
HEPBURN GRANT
22222222223333333222444444444455555555555
HENREID BERGMAN RAINES LORRE
22222222223333333222444444444455555555555
DAVIS HENREID RAINES
22222222223333333222444444444455555555555
FLYNN DAVIS DEHAVILLAND
22222222223333333222444444444455555555555
LUPINO HENREID
22222222223333333222444444444455555555555
HENREID
22222222223333333222444444444455555555555
RAINES STEWART
22222222223333333222444444444455555555555
HENREID DAVIS RAINES
22222222223333333222444444444455555555555
DAVIS HOWARD PARKER HENREID
22222222223333333222444444444455555555555
FLYNN RAINES DEHAVILLANDRATHBONE
22222222223333333222444444444455555555555
B0GART HEPBURN
22222222223333333222444444444455555555555
RAINES
22222222223333333222444444444455555555555
DAVIS MARSHALL
22222222223333333222444444444455555555555
HEPBURN
22222222223333333222444444444455555555555
HEPBURN GRANT STEWART
22222222223333333222444444444455555555555

60499300 £

Figure 7-5. FLSTAT Utility Alternate Key Output

7-3

The FLBLOK utility increases MBL (stepping by PRU) until
the file can be built in the number of index levels indicated
by the value of the NL. parameter an the FLBLOK control
statement. As” MBL is increased through its maximum
possible value of 128 PRUs, the file characteristics are
computed.

A variety of file description parameters are input to the
FLBLOK utility by the user. The format of the FLBLOK
control statement is shown in figure 7-6. For best results,
all input parameters should be specified. Special care
should be taken when specifying NR and RL as follows:

NR NR is the total number of records the file is
expected to contain. This is not necessarily
the file limit (FLM) that is related to the
output field record capacity.

RL RL is the average record length. Note that
for nonembedded keys, AAM appends the key
to the record; therefore, KL should be added
to the RL specified to FLBLOK. While the
number is usually an estimate, FLBLOK
results depend heavily on this parameter. If
the user has a knowledge of the data, a
better number than that calculated by AAM
can be used (given only the maximum and
minimum record length, AAM uses a mean
average). If most of the records are of a
specific length, a mode average should be
used by setting RL to that specific length. If
the records are well distributed, a median
average should be used by setting RL so half
the records are larger and half are smaller.

FLBLOK,Ifn,keyword=value,keyword'—"value, PN
Ifn Output file name; default is OUTPUT.

keyword Any of the following:

NR An integer indicating the number
of records; default is 100 000.
Under NOS, a maximum of
7 digits can be specified; under
NOS/BE, a maximum value of
1073 341 823 can be specified.

KL An integer indicating the key
length in characters; default is 10.

RL An integer indicating the average
record length in characters: default |
is 80. Add KL for nonembedded
keys.

I An integer indicating index pad-
ding percentage; default is 0.

DP An integer indicating data pad-
ding percentage; default is Q.

NL An integer indicating the highest
number of index levels to be
printed; default is 3. Possible
values smaller than or equal to
NL are printed.

MRL An integer indicating the maximum
record length in characters; add KL
for nonembedded keys. Default is
RL (fixed length records).

Figure 7-6. FLBLOK Control Statement Format

7-4

The input deck structure consists only of a job statement,
the FLBLOK control statement, and a 6/7/8/9 card image.

FLBLOK utility output in batch mode is shown in figure
7-7. When the output file is connected to a terminal, only
essential information is provided as shown in figure 7-8.

-For batch and ‘interactive mode, the printout indicates

when the number of index levels decreases (MBL. is at a
minimum for that NL). For batch mode only, the printout
also indicates when disk usage decreases within a specific

Unless disk usage is critical, performance and buffer
information should provide the criteria for choosing MBL.
The smallest MBL for a given number of index levels yields
the best random performance and the smallest buffers. If
moving to a smaller number of index levels improves
random performance, the smaller number of index levels
should be used. If random performance between two levels
is close, sequential performance and buffers should be
taken into consideration. Although scarce system
resources can reorder the list, the usual hierarchy for
selecting MBL is:

1. Random performance

N

Sequential performance
3. Buffer size
4. Disk usage (batch mode only)

Columnar information printed by the FLBLOK utility in
both batch and interactive modes is listed and described in
table 7-1.

ACTUAL KEY FILES

One utility is provided for use with actual key files. The
FLSTAT utility displays either statistical information
concerning an actual key file since file creation time, or it
displays information about alternate key definitions. This
utility is discussed in this section under indexed sequential
files.

DIRECT ACCESS FILES

Three utilities are provided for use with direct access
files. These utilities analyze the effectiveness of a hashing
routine and create a direct access file. All three utilities
require the Common Memory Manager (CMM) to be present
within the current version of the operating system.

FLSTAT UTILITY

The FLSTAT utility displays either statistical information
concerning a direct access file since file creation time, or
it displays information about alternate key definitions.
This utility is discussed in this section under indexed
sequential files.

KEY ANALYSIS UTILITY

The key analysis utility tests hashing routines for
effectiveness in producing uniform distribution of recaord
keys in a file. A uniform distribution optimizes processing
time. The key analysis utility can be called by reading the
input file and calling the key analysis utility to process the
file on a record-by-recard basis.

60499300 E

apoyy yoleg ut IndInG sjduwes AMIBA MOTETd "L-L 3inbid

“L-f a1gef 835

P T T Ty R e R R e e S a2y S L T

¥ 0SLE = 1EW 1S3\ 318YEONd »
» £6/9°1L [1:72 SLLi/sttl nSLE /2675 051712 L/g90° 297 5/051€ 1 *
26722 655 1524182 ROUL/OLLL 6872t 1/580° 262 §/0281 1 *
* ittt il il bt bbbl »
29/6°€ 1R 1997655 71697 /89167 RS/E cisaLt u9e 2/0521 ? ®
* 19/2°0L £82 LLY7LYs 2452/5262 BZ/§ 7I55¢” 69§ L7065 2 3
= L
& (WOONYY/°D3S) (SQUOM) (WOQNYY/*D3S) (@30avd/ " XYW) (XIONT/YLIVQ) (WOANVHE/"B3IS) (SN¥dISOY0IZY (SNY¥d/SHYHI) N x
» "XOHdY IWIL 3215 (SauoMy 371§ 5q0334 NI %3078 139 ¥3d N HLTM (18W) ST3IAIT
¥ 139 NSTG "N¥L ¥344N8 ¥I44N8 “4¥3d A112VdV3 ¥3d $355320V oSN wSTQ HIDNIT XIONI »
% TING LYy-998 WNWINTW 037004-NON 3114 SQ¥013Y ELYRERYS WAWINT W M08 HIBWNN =
: ® ® ® © @ ® ® ®@ O
» £
B Er R R R R R R R R R R e R R R R AR L e L3
® %
® 5 = (IN)ST3AIT XIANT 340 ¥IBWAN .
3 S = (dI)ONIGOYd Y078 XIANT o = (dQIDNIGEYd X018 viva x
® ost = (YW HLONTT Q¥0I3Y WNWIXYW 0sl = (T¥)HLINIT QH0I3Y 3IIVHIAY ®
B st = () (SHILIVHYHIIHIONTT AN 000t = (UN)SCHOIIM 40 HIBWAN IV1IO0L x
¥ »
® ©ONAY STHL @3SN S3NVA ¥3ILIWYHVd .
L3 L
® Te=TINYGL=IN0G L= TEN =41 7 0=d 0/ 0S L=TH D00L=¥N" 7507814 ¢ LINIWILYLS TOHINOD »
R ®
. ALVWTLIST HI13WVEVY FTT4 IVIININGIS OIXIANT »
* *
EE T2 2SR R R R R R R e R e R R R R R R A e R A A R e L A L R R S e e i L L g

P T e i b e bl

¥ 081 = 78W 1538 318vEOdd ®
* 09/4" 1995 ELYB/ELYS 0RS9LL/OLIZZL 028/%51L L/200° 2496 £9/02%42 L *
* §6/6° §9LY 690276902 95518/2658 B2L/2L1L L/600" 9896 95706622 3 *
* 6%/9" [A21% £RGS/EESS 29269159218 995748 L/tio” 0696 82/08L1 3 ®
* 8%/9" €19 LYES/LYSES 08254%/9128Y S95/98 Lzt 5696 22/08221 L ®
¥ shiL” £262 LBEY/LBEY 2610879541 v99/89 L/s10° 2926 22/080%1 3 ®
E 3 m—etesesm e —————— e e e »
® §8/8° 192 S92%/519€ ¥906L5L/ L1418 £95/95 2/8L0° ¥026 8L/04%1L 2 »
* £2/2°1 2891 PAVEIPPI LEY2SZL/LSL0BYL 102/ 2/250" 2746 0L/05£9 4 *
® 12/5%1 [£:1%) sN22/569L 00%719/997589 09L/92 2/290° 52001 8/0208 2 *
¥ 697271 €501 696171051 0091LLY/68255Y 091712 2/290° 68001 2108%Y 2 ®
® 89/6°1 526 £69L/6081L 002652/892582 ozL/eL ?71950° 76001 9/06.€ 4 =
® 99/2°2 264 e/ 0000§L/S25691L 00L/StL 2/290" 20101 S/061€ 2 =
* §9/4°2 699 LBLL/S26 26871/89928 62121 2/580° vELOL v/0L52 2 ®
* 99/9°¢ ¥ §26/55L 62E1£/965%5 6576 2/t 810t §/0481 2 ®
» &
® (WOONYYH/"D3IS) (SQHOM) (WOGNVY/*D3S) (0300Yd/ *XYW) (XIANT/YLVG) (WOONYH/*DIS) (SN¥d)SQY0IIM (SN¥Ud/SUYHI) [T
» “X0¥dV IWIL 371S (SQdoM) 3ITS SQH0I3Y NI 078 139 ¥3d BN HLTH (1) ST =
* 139 NSIG *NdL ¥344N8 ¥344ng "3 ALIOVdY) ¥3d 5355323 39¥Sn ASTQ HION3T X3GNT &
» TING L9-9v8 WNWINTK 03700d-NON 3114 HELEEL] 39YY3AY WIWINTW A3078 HIGWAN @
: ® ® ® ®© ® ® © 0
» %
¥ P Y R R R e R e e R R e R A R e A R AR R R e L AR R i L
¥ »
® H = (INISTIAIT XIANT 40 HIGWNN ®
* 1 = (d41)DNTAAYd %3078 X3IONT d = (40)IN1AAYd %3078 V1vQ ®
» 00% = (THWIHIINIT QHOII¥ WNWIXVW o0z = (TWIHIINIT QHOITY IIVHIAY »
* 4 = (%) (SHILIVHYHIIHLONIT AN 00008 = (¥N)SQHOIIM J0 ¥IBWON TVIOL »
x %
= ¢ NN STHL G3SN S3INTVA ¥ILIWVAV s
2 ¥
® *00%="T8W’ 2=’ 6 =dT '0=da "00005 =¥N"S2=11 002="14 " 1Nd1N0 ¥01874 © INFWILVLIS TOHINGD @
¥ x
@ JIYWTLSI BIL3WYHYd 3714 IVIININDIS GIXIONT i
® »
.ﬂ’ldll!&lldk&tuiltil.««t«lel«:alalud&ii.««uc««««&K«Auu«c«c««««tcu«cna««::aa«n:uuu««an««n-n<«~<anqaua-:uulk«l««nu«u«:uc«««.ﬁcl«ldllc

7-5

60499300 £

INDEXEb SEQUENTIAL FILE PARAMETER ESTIMATE
CONTROL STATEMENT : FLBLOK,OUTPUT,RL=200,KL=25,NR=30000,0P=0
,IP=5,NL=2,MRL=400.

MAXIMUM RECORD LENGTH(MRL) = 400 NUMBER OF INDEX LEVELS(NL) = 2
AVERAGE RECORD LENGTH(RL) = 200 DATA BLOCK PADDING(DP) = 0
KEY LENGTH(CHARACTERS)(KL) = 25 INDEX BLOCK PADDING(IP) = 5
() TOTebeUMBER 0F(§;CORDS(NR) = 30000
4
OT sLock 844=41 ACCESSES NON-POOLED (&) MAXTIMUM
NO. LENGTH DISK GET PER BUFFER MIN. FILE
NDX. (MBL) TIME EST. GET SIZE(WDS) BUFFER CAPACITY
LVLS (CHARS/ (SEQ./ (SEQ./ (SEQ./ SIZE IN
(NL) PRUS) RANDOM) RANDOM) RANDOM) (WORDS) RECORDS
2 1870/3 3.6/64 11172 733/925 541 34596
1 14030/22 .7/45 .015/1 4381/4381 2973 31756
‘ PROBABLE BEST MBL = 14030
. INDEXED SEQUENTIAL FILE PARAMETER ESTIMATE
CONTROL STATEMENT : FLBLOK,,NR=1000,RL=150,DP=0,IP=5,MRL=150
,KL=15,NL=4,
MAXIMUM RECORD LENGTH(MRL) = 150 NUMBER OF INDEX LEVELS(NL) = &
AVERAGE RECORD LENGTH(RL) = 150 DATA BLOCK PADDING (DP) = 0
KEY LENGTH(CHARACTERS) (KL) = 15 INDEX BLOCK PADDING(IP) = 5
TOTAL NUMBER OF RECORDS(NR) = 1000
3
(:) BLOCK 844-41 ACCESSES NON-POOLED (:) MAXIMUM
NO. LENGTH DISK GET PER BUFFER MIN. FILE
NDX. (MBL) TIME EST. GET SIZE (WDS) BUFFER CAPACITY
LVLS (CHARS/ (SEQ./ (SEQ./ "(SEQ@./ SIZE IN
(NL) PRUS) RANDOM) RANDOM) RANDOM) (WORDS) RECORDS
2 590/1 10.2/61 .333/2 347/411 . 283 2523
1 1870/3 2.7/32 .083/1 7317731 539 1116
PROBABLE BEST MBL = 1870
TSee Table 7-1.
Figure 7-8. FLBLOK Utility Sampie Output in Interactive Mode
TABLE 7-1. FLBLOK UTILITY OUTPUT DESCRIPTIONS
No. Message Significance Description
@ Number of index levels (NL) Informational An indication of the number of
disk accesses per random get.
@ Block length (MBL) Needed in the FIT An indication of the best values
for MBL; applies to both index
and data block length.
@ 844-41 full track disk An approximate performance

Informational
get time approximation -

estimate calculated from the
number of disk accesses per get,
using the formulas supplied;
provides a good basis for
comparison. For best results,
users should calculate
individual performance using
average accesses per get and
installation system mass storage
characteristics.

60499300 E

TABLE 7-1. FLBLOK UTILITY OUTPUT DESCRIPTIONS (Continued)
No. Message Significance Description
(:) Average accesses per Informational A system independent performance
get number. Sequential accesses per
get assume a set of sequential
gets. Equations used to derive
real performance from these
-numbers are:
random performance =
random accesses x block get
time
sequential performance =
sequential accesses x block
get time
block get time =
disk seek time + (disk
retrieval time x MBL in PRUs)
»(:) Non-pooled performance Informational (can be A good approximation of what the

buffer size

Minimum buffer size

Maximum file capacity
in records

Probable best MBL

Minimun disk usageT

©

i) Records per block!

used in the FIT)

Informational (can be
used to set BFS in
the FIT)

Can be used in the
FIT

Informational (can be
used in the FIT)

Informational

Informational

buffer will be in a non-pooled
situation. Generally, it is
best to let AAM set buffer size.

Minimum buffer sizes without
severe performance degradation.

The maximum number of records
of length RL that will fit into
the file. The number is
calculated on a file just
created from sorted records. If
the file grows too large,
another level of index will be
added and result in severe
performance degradation. It
might be useful to set FLM to
this maximum quatity to help
flag the oversize situation.

An indication of the best value
for MBL from all possible values.

A probable lower bound on disk
usage, usually unreachable. The
calculation is made on the
assumption that the file has
just been created using sorted
records of length RL. The
number is provided for purposes
of comparison on FLBLOK runs
only.

The number of data records in
each data block and number of
records associated with each
index block.

TOutput on batch runs only

60499300 E

The same hashing routine can be used for up to five tests
varying the number of home blocks for each test. It is also
possible to test up to five hashing routines with the same
number of home blocks. The number of synonym records
produced by each hashing routine is.counted and the
resulting information written to a file named KEYLIST.
The file KEYLIST must be rewound and copied to the file
OUTPUT for the results to be printed. Output can show
synonym records only, standard deviations only, or both.
The format of the output from the key analysis utility is
shown in figure 7-9.

The key analysis utility is called through a source
program. The format of the KYAN directive is shown in
figure 7-10. The directive begins in column 1. Al
parameters must be declared; no default values are
provided.

-

HOME BLOCK entryl . entry5
0 XXX ... XXX
1 XXX ... XXX
n XXX ... XXX

STANDARD DEVIATION
entryl . . . entryb

XX.XX XX XX

Figure 7-9. Key Analysis Output -.

KYAN(LFN=axxxxxx,MRL=i, KL=}, RKP=k, RKW=,
H1=entry1,hmb1,option1, ... H5=entry5,hmbb5,option5)

Logical file name of the file containing the
user hashing routines; if the default hashing
routine is used, LFN is set to zero.

AXXXXXX

i Maximum record length in characters.
j Key length in characters.

k Relative key position within relative key
word {(RKW), counting from O.

| Relative key word in which the key begins,
counting form O.

entryl ... 5 Entry point names of hashing routines to
be tested; SDAHASH must be specified to
test the system-<supplied hashing routine.

hmb1 ... 5 Number of home blocks.

option1 ... 5 Qutput options:
S Synonyms only
D Standard deviations only

B Synonyms and standard deviations

Figure 7-10. KYAN Directive Format

If a continuation statement is to be used for the first
KYAN or subsequent statement, all 80 columns must be
filled. A slash (/) in column 80 indicates continuation to a
subsequent statement. A maximum of seven statements
can be wused. Parentheses must enclose the entire
parameter list; no embedded blanks are allowed.

Possible error messages that are printed on the user's
dayfile are as follows:

e NOT ENOUGH FIELD LENGTH USE nnnnnn.

The run is terminated because the field length cannot
accommadate the internal tables.

e [LLLEGAL PARAMETER IN INPUT CARD

The run is terminated because the KYAN directive
contained a bad parameter.

e ENTRYi- SYNONYM‘LIMIT EXCEEDED

Maore than 4095 records have been hashed to the same
home block. Processing terminates on the specific
entry but continues on the other entries.

e ENTRYi-BAD KEY ENCOUNTERED

A specific key hashes outside the home block area.
This key is ignored and processing continues.

e MORE THAN 25 BAD KEYS ENCOUNTERED
The run is terminated.

The key analysis utility can be entered through a source
program written in COMPASS, COBOL.,, or FORTRAN. The
field length requirement is the sum of the space needed by
the source program, the hashing routines to be tested,
AAM, SDAKYAN, and internal tables. The space needed
by AAM varies as a function of the input file organization.
The number of central memory words required for internal
tables is the largest home block value specified.

The key analysis utility has two entry points: SDAKEYH
and SDAENDH. The COMPASS user must open the input
file and read the records one by one. As each record is
read, the user program sets register Al to point to the
location of the key address and issues a return jump to
SDAKEYH. A return jump to SDAENDH must be used to
terminate use of the KYAN directive.

For a COBOL program, the linkage is as followss

ENTER SDAKEYH USING data-name.

ENTER SDAENDH.
The data name contains the record key and must be an
elementary item in the Working-Storage or the
Common-Storage Section of the COBOL program.
For a FORTRAN program, the linkage is as follows:

CALL SDAKEYH (KA)

CALL SDAENDH
KA is the address of the record key.
An example of a deck structure using the key analysis
utility as an external subroutine is shown in figure 7-11.
Hashing routines to be tested are assumed to be in

relocatable binary format on a permanent file named
MYHASH.

60499300 £

Job statement

USER statement

CHARGE statement
ATTACH(MYHASH)
Compiler call

LGO.

REWIND(KEYLIST)
COPYBF(KEYLIST,OUTPUT)

7/8/9

User program source deck
7/8/9
KYAN(LFN=MYHASH, . . .)
6/7/8/9

Figure 7-11. Key Analysis as External Subroutine

CREATE UTILITY

The CREATE utility is available only when Sort/Merge has
been installed. This utility can be used to create direct
access files with embedded keys from a call through a user
program. A direct access file is produced more. rapidly
when the CREATE utility is used than when such a file is
produced by reading input and calling AAM to write each
record. The CREATE utility should be used for files
containing 1000 or more records.

In general, the CREATE utility hashes the key from an
input record and prefixes the key to the record.
Sort/Merge is then used to sort the hashed keys. After the
sort operation, the prefixed keys are removed and the
CREATE utility uses AAM to produce the direct access file.

A job using the CREATE utility involves the following:

e FILE control statement to describe input and output
files

e Loader control statement to load AAMLIB for
Sort/Merge: LDSET, LIB=AAMLIB

e CREATE directive on the file INPUT

The format of the CREATE directive is shown in figure
7-12. The second and third parameters are omitted when
the default hashing routine is selected. Any operating
system separator, as well as embedded blanks, can be used
between parameters.

CREATE(ln,hash,hfl)

Ifn Logical file name of the output file {same as
specified in a FILE control statement for a
direct access file).

hash User hashing routine entry point.

hfl Name of the file containing the hashing routine
in relocatable binary form.

Figure 7-12. CREATE Directive Format

All input and direct access file characteristics (other than
defaults) must be specified with FILE control statements.
AAM modules must be loaded. If a user hashing routine is
used, the routine must also be loaded.

60499300 E

The FILE control statement used to define the direct
access file structure must specify the following parameters:

Ifn Logical file name

FO FO=DA file organization

HMB Number of home blocks

MNR Minimum number of characters in any record
MRL Maximum number of characters in any record
KL Number of 6-bit characters in the key

BFS Number of words in the buffer; default buffer
size is 260 words; the buffer must be able to
hold at least one home block

Additional file structure parameters can be included in the
FILE control statement.

When the CREATE utility is called, the user must cause
the input file to be read. After each record is read, the
user must place the key in the record and give control to
the utility at entry point SDACRTU. The key address, the
working storage address, and the total record length must
be passed to the CREATE utility. At the end of file
processing, the user calls CREATE at entry point
SDAENDC.

The source program must not reference the direct access
file being created. A FILE control statement must be used
to describe file structure. If key position is not
left-justified at location KA, the key position (KP) field
must be set by the FILE control statement. The two entry
points used in calling the CREATE utility from a source
program are SDACRTU and SDAENDC.

The appropriate data name, variable name, or list
parameters for working storage area (WSA), key address
(KA), and record length (RL) are provided in calls with

SDACRTU as follows:
e COBOL
ENTER SDACRTU USING wsa,ka,rl
e FORTRAN
CALL SDACRTU wsa,ka,rl
e COMPASS

A pointer to a comparable thrée-parameter list is
stored in register Al; the call to SDACRTU uses a
return jump.

The RL field must be specified as an integer in a
COMPASS or FORTRAN program. In a COBOL program,
the RL field must be specified by a COMP-1 item.

An example of a COBOL source code call to the CREATE
utility is shown in figure 7-13; the Identification,
Environment, and Data Divisions are assumed. This

procedure illustrates that portion of a job in which the user
reads sach record, enters SDACRTU for hashing, and

enters SDAENDC after all records are read to complete
direct access file creation.

7-9

PROCEDURE DIVISION.
START.
OPEN INPUT Ifn.
PERFORM A n TIMES,
A READ Ifn INTO SDA-WSA AT END GO TO B.
MOVE xx TO RL.

ENTER SDACRTU USING SDA-WSA, key,ri.
B ENTER SDAENDC.

CLOSE ifn.

STOP RUN.

Figure 7-13. CREATE Call Through COBOL

MULTIPLE-INDEX FILES

Two utilities are provided for use with files processed by
the Multiple-Index Processor (MIP).

MIPGEN UTILITY

The MIPGEN utility is used to create an index file for
alternate key access to an existing AAM file. This utility
can also be used to define additional alternate keys for a
file or to remove alternate keys from a file. The existing
data file must not be an empty file. Key specifications can
define overlapping fields.

A job using the MIPGEN utility involves the following:

e A FILE control statement to identify the existing
AAM file, to specify the logical file name of the index
file, and to specify the index file block size (if user
does not want it the same as data file block size)

e An RFL control statement to specify a field length of
65000g plus the size of the buffer to process the file
(a larger field length improves efficiency; adding
15000g is suggested)

® A MIPGEN control statement to identify the existing
data file, the source of additional control information
(RMKDEF directives), and a list file for output from
the utility

® A set of RMKDEF directives on the file INPUT ar
other file of card images

When the index file is created, each alternate key must be
defined by an RMKDEF directive. Up te 255 alternate
keys can be defined.

Alternate key definitions can be added to or purged from
an existing index file only through the MIPGEN utility.
Each alternate key to be added to or purged from the index
file must be specified in an RMKDEF directive.

7-10

The format of the MIPGEN control statement is shown in
figure 7-14. The format of the RMKDEF directives
expected by the MIPGEN utility is shown in figure 7-15.
The kg and kc parameters are used together and refer to a
key that is a repeating group, such as that which results
from the COBOL clause OCCURS n TIMES.

MIPGEN(prifile,directs,Lfile)

prifile Logical file name of the existing in-
dexed sequential, direct access, or
actual key file.

directs Name of the file containing the RMKDEF
directives; optional; default is INPUT.

Lfile Name of the file that contains the
output Listing from MIPGEN; optional;
default is OUTPUT.

Figure 7-14. MIPGEN Control Statement Format

The structure of primary key lists is specified by the ks
parameter. For efficiency in processing, indexed
sequential structure is recommended. First-in first-out
structure can also be specified; however, the ordering of
primary keys generated by the MIPGEN utility should not
be assumed to be the same order in which the data file
records were created.

The nl, ie, and ch parameters are used to define sparse
keys. An alternate key is defined as a sparse key when all
values of the key are not desired to be indexed. Sparse
keys cause short indexing operations that save disk space,
computer time for index file maintenance, and search
time. A sparse key is a result of either null suppression or
sparse control characters.

The nl parameter specifies null suppression for an alternate
key. If null suppression is specified, the alternate key
index does not include primary keys for records that have
null values for the alternate key. All spaces for a symbolic
key and all zeros for an integer key are null values.

The ie and ch parameters are used when indexing of
alternate key values is to be controlled by a sparse control
character. The one-character field containing the sparse
control character must be in the fixed-length portion of
the record. The ie parameter specifies whether to include
or exclude the alternate key values for records that
contain a sparse control character. The ch parameter
specifies the sparse control characters applicable to the
alternate key being defined; up to 36 letters and digits can
be specified as a character string.

The sparse control character field is identified by an
RMKDEF directive that must appear before the directive
defining the alternate key and its sparse ‘control
characters. This directive is specified in the following
format:

RMKDEF(prifile,rkw,rkp,0)

60499300 E

prifile

rkw

rkp

ki

kf

ks

kg

ke

ni

ch

RMKDEF (prifile,rkw,rkp, ki,0,kf ks kg,ke,nl,ie,ch)

Logical file name of the existing indexed sequential,
direct access, or actual key file; required.

Relative word in the record in which the alter-
nate key begins, counting from O; required.

Relative beginning character position within the
relative key word (rkw), counting from 0;
required.

Number of characters in the key, 1 to 255;
required.

Required to mark position for the reserved field.

Key format, required:
0 or S Symbolic
Torl Integer
2 or U Uncollated symbolic

3 or P Purge alternate key definition
from the index

Substructure for each primary key list in the
index; optional:
U Unigque (default)

| Indexed sequential; recommended
for efficiency in processing

F First-in first-out

Length in characters of the repeating group in
which the key resides.

Number of occurrences of the repeating group;
zero for T type records, and a number for a repeat-
ing group embedded within the record.

Null suppression; a null value is all spaces
(symbolic key) or all zeros (integer key):

0 Null values are indexed (default)

N Null values are not indexed

Include/exclude sparse control character:

| Include aiternate key value if the
record contains a sparse control
character

E Exclude alternate key value if the
record contains a sparse control
character

Characters that qualify as sparse control charac-
ters; up to 36 letters and digits can be specified
as a character string.

The rkw and rkp parameters identify the position of the
sparse control character. The zero key length parameter
indicates that the field is a sparse control character field.

MIPDIS UTILITY

The MIPDIS utility temporarily or permanently
disassociates an index file from its associated AAM data
file. If the primary and alternate key fields are not
updated during the disassociation, the index file can be
reassociated with the data file.

Whenever a data file that has an associated index file is
opened, a safety lock in the file statistics table requires
the index file to be present. The MIPDIS utility removes
this requirement.

Disassociation of an index file from the data file is useful
under various circumstances. One instance occurs when a
data file that has an associated index file is no longer being
accessed by alternate key. In this case, the index file is no
longer needed and can be disassociated from the data file.

Indexed sequential files are sometimes reorganized to
reclaim extraneous padding caused by block splitting and to
redistribute it evenly throughout the file. Actual key files
and direct access files also can be reorganized for similar
reasons. The reorganization is accomplished through either
the FORM utility or a user program. The index file can be
disassociated from the data file before the reorganization.
After the reorganization, the index file is still valid for the
data file and can be associated with the data file again by
the MIPDIS utility. This eliminates the need to create a
new index file through the MIPGEN utility or during the
creation of the restructured data file.

While the data file is disassociated, any changes to the
primary or alternate key values are not reflected in the
index file. This can result in errors when updating or
accessing the file by alternate key.

The format of the MIPDIS control statement is shown in
figure 7-16. This control statement can be wused to
disassociate or associate an index file with its data file.

MIPDIS(Ifn1,da,ifn2)
Ifn1 Logical file name of the data file.

da Disassociate/associate index file:
D Disassociate from data file

A Associate with data file

n2 Logical file name of the index file; not required
for disassociation.

Figure 7-15. RMKDEF Directive Format,
MIPGEN Utility .

60499300 E

Figure 7-16. MIPDIS Control Statement Format

7-11

STANDARD CHARACTER SETS ‘ A

M

CONTROL DATA operating systems offer the following
variations of a basic character set:

e CDC 64-character set

e CDC 63-character set

@ ASCII 64-character set

e ASCII 63-character set

Table A-1 shows these character sets. The set in use at a
particular installation was specified when the operating
system was installed or deadstarted.

Depending on another installation option, the system
assumes an input deck has been punched either in 026 or in
029 mode (regardless of the character set in use).

Under NOS/BE, the alternate mode can be specified by a

26 or 29 punched in columns 79 and 80 of the job statement
or any 7/8/9 card. The specified mode remains in effect

60499300 C

through the end of the job unless it is reset by specification
of the alternate mode on a subsequent 7/8/9 card.

Under NOS, the alternate mode can be specified by a 26 or
29 punched in columns 79 and 80 of any 6/7/9 card, as
described for a 7/8/9 card. In addition, 026 mode can be
specified by a card with 5/7/9 multipunched in column 1,
and 029 mode can be specified by a card with 5/7/9
multipunched in column 1 and a 9 punched in column 2.

Graphic character representation appearing at a terminal
or printer depends on the installation character set and the
terminal type. Characters shown in the CDC Graphic
column of table A-l are applicable to BCD terminals;
ASCII graphic characters are applicable to ASCII-CRT and
ASCII-TTY terminals.

Several graphics are not common for all codes. Where
these differences in graphics appear, assignment of
collation positions and translation between codes must be
made. Tables A-2 and A-3 show the CDC and ASCII
character set collating sequences.

TABLE A-1. STANDARD CHARACTER SETS
cDC ASCIt
Display Hollerith External .
Code Graphic Punch BCD Craphic foog o,
{octal) (026) Code
oot : {coton) it 8-2 00 : {colon) T 8-2 072
01 A 12-1 61 A . 1241 101
02 B 12-2 62 B 12-2 . 102
03 C 12-3 63 C 12-3 103
04 D 12-4 64 D 12-4 104
05 E 1256 65 E 125 105
06 F 12-6 66 F 126 106
07 G 127 67 G 12-7 107
10 H 128 70 H 128 110
11 | 12-9 71 | 129 m
12 J 11-1 41 J 111 112
13 K 11-2 42 K 112 113
14 L 11-3 43 L 13 114
15 M 114 44 M 114 115
16 N 116 45 N 115 116
17 0 11-6 46 0 11-6 117
20 P 11-7 47 P 117 120
21 Q 11-8 50 Q 118 121
22 R 119 51 R 119 122
23 S 0-2 22 S 0-2 123
24 T 0-3 23 T 03 124
25 u 04 24 U 04 125
26 \ 05 25 \Y) 05 126
27 w 0-6 26 w 06 127
30 X 07 27 X 07 130
31 Y 08 30 Y 0-8 131
32 4 09 31 F4 09 132
33 0 0 12 0 0 060
34 1 1 01 1 1 061
35 2 2 02 2 2 062
36 3 3 03 3 3 063
37 4 4 04 4 4 064
40 5 5 05 5 5 065
41 6 6 06 6 6 066
42 7 7 07 7 -7 067
43 8 8 10 8 8 070
44 9 9 11 9 9 071
45, + 12 60 + 1286 053
46 ; 1 40 . 11 055
47 1184 54 11-84 052
50 / 01 21 / 01 057
51 (084 34 (1285 050
52) 1284 74) 11-8-6 051
53 $ 11-8-3 53 $ 11-8-3 044
54 = 8-3 13 = 8-6 075
55 blank no punch 20 blank no punch 040
56 , {comma) 0-8-3 33 , {comma) 083 054
57 . {period) 12-8-3 73 . (period) 12-8-3 056
60 = 0-8-6 36 # 8-3 043
61 [8-7 17 { 12-8-2 133
62] 0-8-2 32] 11-8-2 135
63 o% Tt 8-6 16 9% Tt 084 045
64 = 8-4 14 " {quote) 8-7 042
65 ~ 0-8-5 35 _ {underline) 0-8-5 137
66 v 110 52 ! 12-8-7 041
67 A 087 37 & 12 046
70 t 1185 55 ' (apostrophe) 85 047
7 } 11-8-6 56 ? 08-7 077
72 < 120 72 < 12-8-4 074
73 > 11-8-7 57 > 086 076
74 < 8.5 15 @ 84 100
75 2 1285 75 \ 08-2 134
76 - 12-8-6 76 - {circumflex) 11-8-7 136
77 ; (semicolon) 12-8-7 77 ; {semicolon) 11-8-6 073

TTwe|ve zero bits at the end of a 60-bit word in a zero byte record are an end of record ‘mark rather than
t Ttwo colons.
In installations using a 63-graphic set, display code 00 has no associated graphic or card code; display

code 63 is the colon {8-2 punch).

vield a blank (55g).

The % graphic and related card codes do not exist and translations

60499300 C

TABLE A-2. CDC CHARACTER SET COLLATING SEQUENCE

Collating Coliating
Sequence cDC Display | External Sequence CDC " Display | External
Decimal/Octal Graphic Code BCD Decimal/Octal Graphic Code BCD
- F—: — e = — |
00 00 blank 55 20 32 40 H 10 70
01 01 < 74 15 33 41 | 1 71
02 02 % 63t 16t 34 42 v 66 52
03 03 { 61 17 35 43 J 12 41
04 04 - 65 35 36 44 K 13 42
05 05 = 60 36 37 45 L 14 43
06 06 A 67 37 38 46 M 15 44
07 07 ! 70 55 39 47 N 16 45
08 10 } 71 56 40 50 o} 17 46
09 11 > 73 57 41 Bi P 20 47
10 12 > 75 75 42 52 Q 21 50
1 13 - 76 76 43 53 R 22 51
12 14 . 57 73 44 54)| 62 32
13 15) 52 74 45 55 S 23 22
14 16 : 77 77 46 56 T 24 23
15 17 + 45 60 47 57 U 25 24
i6 20 $ 53 53 48 60 Y 26 25
17 21 * 47 54 49 61 W 27 26
18 22 - 46 40 50 62 X 30- 27
19 23 / 50 21 51 63 Y 31 30
20 24 , 56 33 52 64 Z 32 31
21 25 (51 34 53 65 : oo f nonet
22 26 = 54 13 54 66 0 33 12
23 27 * 64 14 55 67 1 34 01
24 30 < 72 72 56 70 2 35 02
25 31 A 01 61 57 71 3 36 03
26 32 B 02 62 58 72 4 37 04
27 33 C 03 63 59 73 5 40 05
28 34 D 04 64 60 74 6 41 | o6
29 35 E 05 65 61 75 7 42 07
30 36 F 06 66 62 76 8 43 10
31 37 G 07 67 63 77 9 44 11
Tln instalfations using the 63-graphic set, the % graphic does not exist. The : graphic is display code 63,
External BCD code 16.

60499300 B

TABLE A-3. ASCII CHARACTER SET COLLATING SEQUENCE
Collating ASC|‘I Display | ASCII Collating ASCI.I Display | ASCII
Sequence Graphic Code Code Sequence Graphic Code Code
Decimal/Octal | Subset Decimal/Octal | Subset
00 00 blank 55 20 32 40 @ 74 40
01 01 ! 66 21 33 41 A 01 41
02 02 " 64 22 34 42 B 02 42
03 03 # 60 23 35 43 Cc 03 43
04 04 $ 53 24 36 44 D 04 44
05 05 % 63t 25 37 45 E 05 45
06 06 & 67 26 38 46 F 06 46
07 07 ' 70 27 39 47 G 07 47
08 10 { 51 28 40 50 H 10 48
09 11) 52 29 41 51 i 11 49
10 12 * 47 2A 42 52 J 12 4A
1 13 + 45 2B 43 53 K 13 48
12 14 56 2C 44 54 L 14 4C
13 15 - 46 2D 45 55 M 15 4D
14 16 . 57 2E 48 56 N 16 4E
15 17 o/ 50 2F 47 57 o) 17 4F
16 20 0 33 30 48 60 P 20 50
17 21 1 34 31 49 61 Q 21 51
18 22 2 35 32 50 62 R 22 52
19 23 3 36 33 51 63 . S 23 53
20 24 4 37 34 52 64 T 24 54
21 25 5 40 35 53 65 U 25 55
22 26 6 41 36, 54 66 Vv 26 56
23 27 7 42 37 55 67 W 27 57
24 30 8 43 38 56 70 X 30 58
25 31 9 44 39 57 71 Y 3 59
26 32 : 00t 3A 58 72 2 32 5A
27 33 ; 77 3B 59 73 [61 5B
28 34 < 72 3C 60 74 \ 75 5C
29 35 = 54 3D 61 75] 62 5D
30 36 > 73 3E 62 76 -~ 76 5E
31 37 ? 71 3F 63 77 _ 65 5F
Tln installations using a 63-graphic set, the % graphic does not exist. The : graphic
is display code 63.

60499300 B

e

ERROR PROCESSING AND DIAGNOSTICS B

AAM checks user requests to ensure proper processing. If
results are not satisfactory, an error condition exists and
the following occurs:

e A three-digit octal error code is returned to the error
status (ES) field in the FIT.

e For a fatal error, the fatal/nonfatal (FNF) field is set
in the FIT.

e The error exit is taken if the user has set the error
exit (EX) field in the FIT.

The dayfile control (DFC) field and the error file control
(EFC) field in the FIT determine the disposition of error
messages and notes/statistics. Depending on the setting of
these two fields, error messages and statistics/notes are
written to the dayfile and/or the error file ZZZZZEG.

ERROR COMMUNICATION

Regarding errors, AAM and the user communicate through
the following FIT fields:

ECT Trivial error count
- ERL Trivial error limit

ES Error status

EX Error exit

The ES field is a 9-bit field that is set to an octal value
after AAM has attempted error resolution and is ready to
return control to the user. When an attempt is made to
execute an input/output request after an error, AAM does
not clear the ES field. If the request is not legal, AAM
increments the ECT field and proceeds with execution. If

a subsequent error is detected, the ES field reflects the.

most recent error. The user is responsible for clearing the
ES field when an error exit (EX) is not supplied; the ES
field is checked after every macro call.

FIT fields relevant to error processing and their meanings
are as follows:

DFC Dayfile controls set by the user to control the
listing of error messages on the dayfile.

DFC=0 Only fatal error messages to
the dayfile (default).

DFC=1 Error messages to the dayfile.
DFC=2 Statistics/notes to the dayfile.

DFC=3 Error messages and statistics/
notes to the dayfile.

60499300 C

EFC Error file control; set by the user to control
the listing of error messages on the error file.

EFC=0 No error file entries (default).
EFC=1 Error messages to the error file.

EFC=2 Statistics/notes to the error
file.

EFC=3 Error messages and statistics/
notes to the error file.

ERL Trivial error limit; if not specified, the value
is zero, no error account is accumulated, and
an indefinite number of trivial errors is
permitted; if a value is specified, the job is
terminated when the value of the ECT field
reaches the value specified for the ERL field.

EX Error exit; an 1B8-bit field that is interpreted
as follows:

EX=0 No user error routine; control is
returned as a normal exit; the
ES field is set to an error code.
If a fatal error is encountered,
the message is output to the
dayfile.

EX#0 When a fatal or trivial error
occurs, control is transferred to
EX+1; a jump to the user in-line
return address is stored in the
EX field and the ES field is set
to an error code..

FNF Fatal/nonfatal flag; set to 1 for fatal errors.

ERROR FILE PROCESSING

When the error file control (EFC) field is set to a nonzero
value, error messages and/or statistics/notes are written to
the error file ZZZZZEG. The error file is always flushed at
an abnormal termination. At the completion of a job step,
the error file buffer is flushed if all files are closed. The
CRMEP control statement can be used to process the error
file and control the listing of information from the error
file on the output file. The format of the CRMEP control
statement is shown in figure B-1.

CRMEP(parameteFoption1/option2/ ... loption,, ...}

parameter Mnemonic specifying type of error file proc-
essing and listing.

option Selected setting of the specified parameter.

Figure B-1. CRMEP Control Statement Format

B-1

The parameters, options, and defaults for the CRMEP
control statement are listed in table B-1. The first default
listed in the table is set if neither the parameter nor the
-option is specified. The second default listed is set if the
parameter is specified without an option. More than one
option can be specified with a parameter; more than one
parameter can be specified in one CRMEP control
statement. If a parameter is incorrectly specified, the
CRMEP control statement ignores the incorrect parameter
-and those following it.

The capability to dump the contents of the FIT to the error
file for subsequent processing is provided by the FITDMP
macro. When the FITDMP macro is executed, the FIT is
written to the error file ZZZZZEG as note number 1000.

The error file control (EFC) field in the FIT must be set to
2 or 3 to ensure that notes are written to the error file;
EFC=0 is forced to 2 and EFC=1 is forced to 3. The
CRMEP control statement can then be used to display the
FIT on the output file. The format of the FITDMP macro
is shown in figure B-2.

FITDMP fit,id
fit Address of the FIT to be dumped.
id Address of the FIT display identifier.

Figure B-2. FiTDMP Macro Format

TABLE B-1. CRMEP CONTROL STATEMENT PARAMETERS

Parameter Option First Default Second Default Description
N X Select notes.
-N X Omit notes.
F X X Select fatal error
messages.
-F Omit fatal error
messages.
D X X Select data manager
Lo messages.
-D Omit data manager
messages.
T X Select trivial error
messages.
-T X Omit trivial error
messages.
Select messages asso-
SF 1fny/1fny/ .../ 1fny AN Al ciated with specified
files.
. Omit messages asso-
OF 1fny/1fng/ .../ 1fng ' None None ciated with specified
files.
- Hardware and parit Select only specified
SN | mnoy/mnoz/.../mnop ATl errorsp Y message numbers.
Error messages Omit only specified
ON mno1/mno2/.../mnop None 142 and 143 gn]y message numbers.
L 1n UTPUT LIST Specify output file
blank Return unload of
error file performed
i at end of processing.
RU 0 X Error file position
at EOI at end of
processing.
Specify page width
72 (connected file) 72 {connected file) for CRMEP output file
PH pw 132 (unconnected file) 132 {(unconnected file) (range can be 40-160
characters).
B-2 60499300 C

The id parameter is an optional parameter that is used to
display an identifier for the FIT dump. The FIT display
identifier at the location specified by the id parameter
consists of 10 characters of displayable information.

ERROR CONDITION PROCESSING

When an error condition is encountered, the error status
(ES) field is set to the appropriate error number. For a
trivial error, the trivial error limit (ERL) field set to zero
allows unlimited trivial errors. If the ERL field is greater
than =zern, the trivial error count (ECT) field is
incremented and compared with the ERL field as follows:

e If the ECT field is less than the ERL field, control is
passed to the error exit if specified or to the user's
in-line code. If control passes to the in-line code, the
user is responsible for checking the error status.

e If the ECT field is equal to the ERL field, the ES field
is set to 356 (trivial error limit reached) and the
fatal/nonfatal (FNF) field is set. Control is returned
to the error exit if specified or to the user's in-line
code.

When a file is accessed sequentially and end-of-
information is encountered, the file position (FP) field is
set to indicate EOIl and an informative message is issued.
If the end-of-data exit (DX) field has been set, the exit is
taken. If another access beyond end-of-information is
attempted without repositioning the file, a fatal error
status is given for an indexed sequential file and a trivial
error status is given for direct access and actual key files.
If the error exit (EX) field is set, that exit is taken. If the
FNF field is set and any AAM function is attempted on the
file, a 115 error is generated and the job is aborted.

CLASSES OF ERRORS

Syntax errors are diagnosed by AAM; the messages are
self-explanatory. System errors are detected by the
operating system. Execution errors, occurring during
execution of input and output requests, are subdivided into
call errors and invalid input/output requests.

CALL ERRORS

Call errors are undetectable parameter errors. For
example:

GET X1

If register X1 does not contain the valid FIT address, an
unpredictable AAM error, mode error, or DO0 error can
result.

INVALID INPUT/OUTPUT REQUESTS

Requests for illegal input/output operations produce the
following general types of errors:

FIT Content of address given as
the FIT address does not pass
a test for plausibility. It does
not contain a legal logical file
name in bits 59 through 18, or
the FIT has inconsistencies.

60499300 D

Input/output requests or
specifications illegal on the
type of file specified by the
file organization (FO) field in
the FIT.

File organization

Input/output requests illegal
for the record type specified
by the record type (RT) field
in the FIT.

Record type

OPENM/CLOSEM Input/output requests illegal
for files opened or closed as
specified by the open/close
(OC) field and/or the old/new

file (ON) field in the FIT.

Input/output requests that
would violate the processing
direction limitations speci-
fied by the processing
direction (PD) field in the FIT.

Processing direction

Input/output requests illegal
for the file position given by
the file position (FP) field in
the FIT.

File position

Input/output requests illegal in
the context of the last
operation.

L.ast operation

Key Attempts to access or write
records whose keys are not
within the range of keys
defined for a file.

Data Errors in data specification,
such as inconsistency between
the amount of data requested
and the amount actually
present, illegal field present in
the data, required field is
absent, or parity error.

Device " Input/output requests iilegal
on the device upon which the
file resides.

All errors are either fatal or nonfatal. Some nonfatal
errors are trivial in that no user action is required. Fatal
errors usually indicate incorrect parameter specification
and incomplete or contradictory information provided by
the user as program errors. A fatal error message is
always printed on the dayfile.

Trivial errors are usually data errors, such as attempting to
insert a record already in the file or to replace or delete a
record that does not exist. If a trivial error message is
printed, the key and type of error are part of the error
message. The record associated with the trivial error is
dropped; however, the file position might be altered.

If the error exit (EX) field in the FIT has been set to the
address of an error routine, any error causes a transfer of
control to the address in EX+1 for a recovery routine after
the error has been resolved. Fatal errors inhibit any
further attempts to perform input/output on the file using
AAM; such attempts cause the job to terminate. If the EX
field is not set, an error sets the error status (ES) field and
returns control to the calling program. The user should
clear the ES field after an error is processed.

AAM is in the user's field length and is subject to
destruction by the user.

B-3

DIAGNOSTICS

Error messages that can be output by AAM are listed in

table B-2. The messages are in order by error code. The

Action

table contains the following information:

Code

Message

Significance

Octal value corresponding to the error

condition.

Diagnostic output; varies depending on

the setting of the DFC and EFC fields
and the parameters specified in the
CRMEP control statement.

Meaning of the message.

Severity

the error condition.

Type of erraor;
following:

F Fatal

T Trivial

Suggestion for the user to recover from

can be any of the

TIF Trivial under some conditions,
fatal under other conditions

Table B-3 is a list of notes and informative messages that

can be output.

TABLE B-2. DIAGNOSTICS
Code Message Significance Action Severity
001 INVALID FO File organization must be in- Correct the file organization F
dexed sequential (IS), direct field. .
access (DA), or actual key .
(AK).
002 FIT/FILE ORGANIZATION The file organization Check to see that the correct F
MISMATCH specified does not match any file is being processed or
opened files. that the FO field is speci-
fied correctly.
006 FIRST BLOCK IS NOT A The first block in the file If a file is being created, F
FSTT must be the file statistics check that the pd parameter
table (FSTT). For an indexed is specified in the OPENM
sequential file, the ORG macro or the ON field is
field must be set for the set to NEW. If the problem
correct file organization. persists and a mismatch
Possibly a mismatch exists between new and old file
between the currently organizations does not exist,
supported file organization follow site-defined
(formerly extended) and an procedures for reporting
old one (initial). software errors or
operational problems.
030 INVALID RT Record type must be W, S, Z, Correct the record type T
F, R, T, D, or U; it must field.
conform to other file speci-
fications, such as FO,
031 RT=F/Z AND FL=0 For fixed length F or zero Specify the FL field. T
byte terminated Z type
records, a maximum record
length must be specified for
the FL field in the FIT.
032 RT=T AND HL OR TL=0 For T type records, the Correct the header length T
header length (HL) must be or the trailer length field.
large enough to hold the :
trailer count field defined
by the CP and CL fields. The
length of the trailer count
field must be given in the TL
field and must be at least
one character long.
B-4 60499300 E

TABLE B-2. DIAGNOSTICS (Contd)

Code Message Significance Action Severity

033 RT=D AND LL=0/RT=T AND For D type records, the LL Specify the length of the T
CL=0 field in the FIT must provide D type record length field.

the length of the record

field that specifies record

length.

For T type records, the CL Specify the length of the
field in the FIT must provide trailer count field of the
the length of the field that T type record.

specifies the number of

trailer items. .

035 RT=T/D, MRL EXCLUDES For T and D type records, the Check that for D type records T

CONTROL FIELD record must contain a field LP+LL is less than MRL. -For
jdentifying record length. T type records, CP+CL must
. be less than MRL. The posi-
tion count for LP and CP
begins with 0.

036 RL INCONSISTENT WITH For T type records, the fixed For T type records, check T

RECORD DESCRIPTION header length (HL) must in- that the count field is with-
clude a field CL characters in HL. For D type records,
long, beginning at CP, to check that the length field
identify trailer item count. is within MNR. The current
CL and CP for T type records record is ignored. Positions
and LL and LP for D type CP and LP are counted from 0.
records must be contained
within the value specified
by MNR.

037 RT=D/T AND CL/LL > 6 For D and T type records, the Correct the length of the T

. length of the count field count field.
must be one to six character
positions.
040 REDUNDANT OPEN A file must be closed before Correct the program to close T
open processing, such as the file before open proc-
buffer allocation or FILE essing.
control statement processing,
takes place. A redundant
open call is ignored.

050 NUMBER OF FILES The installation defines the Check with a local analyst F
PERMITTED TO BE OPEN number of AAM files that can for the 1limit on the number
SIMULTANEQUSLY HAS be open at one time because of files that can be open at
BEEN EXCEEDED buffers are limited by one time.

central memory available.
Default release value is 10
files of each organization.

051 SETFIT DISALLOWED ON Open processing would have Change the placement of the T
OPEN FILE already processed the FILE SETFIT macro.

control statement. The
SETFIT macro processes FILE
control statements without
full open processing.

052 FILE NOT CLOSED AFTER The possibility exists that ‘Rerun the program that up- T
LAST UPDATE/CONDITION the file has internal errors. dated the file.

QUESTIONABLE The most likely cause is a
system crash that prevented
closing of the file.
053 NO HOME RECORD The OLD parameter has been Check that the correct file T
specified when opening an name has been specified, or
empty direct access file. cgange the OLD parameter to
NEW.
60499300 D B-5

TABLE B-2. DIAGNOSTICS (Contd)

Code Message Significance Action Severity

054 FILE TLLEGALLY An existing file has been Change the program to open F
EXTENDED {EOI MOVED) opened without extend permis- with extend permission.

sion and information has been
written beyond the old EOI.

055 FILE NONEXISTENT, The logical file name speci- Check that the logical file F
CANNOT OPEN-QOLD fied does not match any name is correctly specified.

existing file or the index
file is not attached for a
MIP file.

060 REDUNDANT CLOSE Either a second call to Correct the program to eli- T
CLOSEM was issued, or an minate the redundant close
attempt was made to close operation.
an unopened file. The
operations requested by
the CF field are performed
before the error is issued.

070 OUTPUT REQUEST, A file opened with read only If the file is to be written, T
PD=INPUT OR READ ONLY permission or with PD set to set the PD field in the FIT
PERMISSION INPUT cannot be written. The to QUTPUT or 10 before open-

write statement is ignored. ing the file and check the
file permissions.

071 INPUT REQUEST, A file opened with PD set to If the file is to be read, T
PD=0UTPUT OQUTPUT cannot be read. The set the PD field in the FIT

read statement is ignored. to INPUT or I0 before
opening the file.

074 MUST HAVE CMM FOR To have multiple FITs for one Correct the program to allow T
MULTIPLE -ACCESS file, CMM must be used. The CMM to be loaded.

file is not opened.

075 UBS MAY NOT BE USED A file that is to be accessed Correct the program to eli- T
FOR MULTIPLE ACCESS by more than one FIT cannot minate the user-supplied

have user-supplied buffer buffer.
space for any of the FITs.

100 CANNOT SEQUENTIALLY A sequential read or SKIPFL The file must be repositioned F
POSITION BEYOND FILE is not possible with the file if further access is desired.

BOUNDS at EOI. A SKIPBL is not pos- Repeated access attempts with
sible with the file at BOIL. file at the end cause the
. fatal error flag to be set.
110 FILE NOT OPEN A file must be opened before Correct the program to open T
it can be read or written. the file before reading or
Omission of required FIT writing, or correct omissions
field parameters or incon- or inconsistencies in FIT
sistencies in specified fields.
parameters inhibit open.
115 OUTSTANDING FATAL A fatal error prevents future Correct and rerun. F
ERROR ON THE FILE access to the file with the
' error, but it does not cause
job termination unless the
user attempts further opera-
tions on the file.
B-6 60499300 E

TABLE B-2.

DIAGNOSTICS (Contd)

Code

Message

Significance

Action

Severity

117

130

135

136

142

143

PUT OR REPLACE OF
LARGER RECORD ILLEGAL
AFTER GETN

RT=W, BAD CONTROL
WORD, FILE DEFECTIVE
OR MISPOSITIONED

RMS READ PARITY ERROR

RMS WRITE PARITY ERROR

EXCESS DATA

INSUFFICIENT DATA

60499300 E

Sequential read of a direct
access file is possible only
if the existing records are
not disturbed. Writing any
new record or increasing
existing record size prevents
subsequent sequential
access. In a direct access
file, replacing an existing
record with a smaller one
also prevents subsequent
sequential access.

Record type was specified as
W. This message indicates
the records being read are
not, in fact, W type records.

The operating system returned
a parity error status after a
read, or block length is
incorrect.

The operating system returned
a parity error status after a
write.

In a write, no information is
written to the file; the user
has supplied RL greater than
FL/MRL or the record mark
character for an R type rec-
ord was not found before MRL
characters.

On a read, no information is
transferred to the working
storage area; the record
length exceeds the FL/MRL
defined. For GET macro proc-
essing, the following condi-
tions cause an error:

z No zero byte found
before FL characters

R No record mark found
before MRL

T,D Control field RL > MRL
U RL > MRL
F Excess data cannot occur

Control information in the
record being read (length
calculated by fields such as
CP and CL) specifies a length
for each record. The record
existing in the file is
smaller than the specified
_length. A1l characters
available are returned.

Correct the program.

Check that the existing file
is correctly described, for-
matted, and positioned.

Recreate the file on a good
device.

Recreate the file on a good
device.

Correct the inconsistency
between the RL and FL or MRL
fields. ’

No action is required.

T/F

T/F

B-7

TABLE B-2. DIAGNOSTICS (Contd)
Code Message Significance Action Severity
146 USER HEADER LENGTH The attempted PUT or REPLACE Check the user header length T
ERROR macro is rejected because the and the record length for
user header length is incon- inconsistencies.
sistent with the record
Tength,
147 CHECKSUM ERROR IN DATA There is a conflict between Follow site-defined proce- F
OR INDEX BLOCK the Toading checksum and com- dures for reporting software
puted checksum in either the errors or operational prob-
data block or index block. Tems.
150 FILE NOT ON RMS Indexed sequential, direct Correct the control statement T/F
access, and actual key files to ensure a valid device
must be created on a disk, assignment.
drum, or family pack.
165 ILLEGAL FILE NAME The LFN does not consist of Correct the LFN or the FIT F
one to seven letters and address.
digits, the first being a
letter.
166 FIT INCOMPLETE - A required parameter is mis- Refer to section 4 of this F
CANNOT CREATE FILE sing, or information for the manual for parameters re-
FIT field is not specified quired during file creation.
correctly.
167 RECORD LENGTH OUTSIDE Minimum and maximum record Correct the program to write T
MIN-MAX RANGE -- length, MNR and MRL, estab- records within the estab-
REQUEST IGNORED 1ish the absolute record lished Timit, or recreate the
1imit for the life of the file changing MNR and MRL.
file.
For D or T type records, the Check to see that the CL/CP
control field specified is fields or the LL/LP fields
outside the value specified are specified correctly.
by the RL field, or it is not
within the values specified
by the MNR and MRL fields.
170 RECORD SIZE EXCEEDS A1l data blocks or home Correct the RL or MBL field. T/F
BLOCK SIZE QR IS blocks must hold at least
NEGATIVE one record plus control
information.
171 INCORRECT HASHING The hashing routine used to Check that the correct rou- F
ROUTINE create a direct access file tine is available to the job
must be used for all subse- or that the HRL field has not
quent access. been changed. The routine
name can be different each
time, but the results pro-
duced cannot differ.
172 ERRONEQUS KL OR RKP The key length (KL) or rela- Correct the KL or RKP field. F
FIELD SPECIFIED tive key position (RKP) field
is not specified properly for
the key type.
174 FIT INCOMPLETE FOR BFS Record length range MRL and Refer to section 3 of this T
CALCULATION MNR, blocking factor RB, or manual for parameters re-
other key characteristics quired for BFS calculation.
required for buffer size
calculation have been
omitted.
175 REQUESTED DATA OR The data block or index block Correct the data or index F
INDEX BUFFER TOO LARGE size cannot exceed 131071. block size.
B-8 60499300 C

TABLE B-2. DIAGNOSTICS (Contd)
Code Message Significance Action Severity
176 MAXRECSZ IN FSTT The MRL field in the FIT is Correct the inconsistency be- T
EXCEEDS MRL IN FIT, less than the maximum record tween the current MRL value
WSA MAY BE TQO SHORT size recorded in the FSTT. and the MRL value used when
the file was created.
200 BAD FSTT LINKED TO FIT The FSTT field in the FIT Correct the program to avoid T
does not point to a valid destroying the FSTT field.
FSTT when the file is being
closed.
201 FILE CONTAINS BAD Some data blocks in the file The file should be recreated T
BL.OCKS have checksum or parity as soon as possible.
errors, Updating is not
allowed.
202 FILE IS RUINED The file structure has been The file must be recreated. F
destroyed. The file is no
longer usable.
203 MIP FUNCTION ATTEMPTED The file is a multiple-index Close the data file. Set the T
WITHOUT MIP FILE file, but the index file is XN field in the FIT to the
not present. index file name and reopen.
Attach the index file.
204 KEY POSITION OUT OF The starting character posi- Correct the KP field. F
RANGE tion of a key is defined by
positions 0 through 9, count-
ing from the left of a word.
205 MINIMUM RECORD SIZE Minimum record length (MNR) Correct the MNR field. F
OUT OF RANGE must be at least one charac-
ter but no more than maximum
record length (MRL) and must
contain the key.
206 KEY NOT CONTAINED The embedded key must be Check for proper RKW, RKP, F
. WITHIN RECORD within the record. KL, MNR, and MRL. Minimum
and maximum record lengths
(MNR and MRL) are in charac-
ters; relative key word (RKW)
is in words, starting from O;
relative key position (RKP)
is in 6-bit field, 0 through
9, counting from O on the
left.
207 MINIMUM RECORD SIZE Required parameter MRL must Correct the inconsistency be- F
EXCEEDS MAXIMUM be equal to or larger than tween the MRL and MNR fields.
MAR.
215 OUTSTANDING FATAL In a concurrent environment, Rerun the program when the F
ERROR IN ALTERNATE FIT a fatal error has been de- original problem has been
tected in an alternate FIT. corrected.
223 CHECKSUM ERROR IN FSTT A conflict exists between the Follow site-defined F
loading checksum and the com- procedures for reporting
puted checksum in the FSTT. software errors or
operational problems.
245 FUNCTION NOT VALID FOR The function attempted is not Correct the program. T
THIS FO valid for the file organiza-
tion indicated in the FIT.
B-9

60499300 E

TABLE B-2. DIAGNOSTICS (Contd)
Code Message Significance Action Severity
250 FILE RMS LIMIT The user has exceeded the Correct the problem and F
EXCEEDED (AK) mass storage limit as speci- rerun.
fied in the LIMIT control
statement or installation-
defined limit.
252 SYSTEM RMS LIMIT No more mass storage was Consult a system analyst; T/F
REACHED available for the file. perhaps the installation pa-
rameter 1imit was exceeded.
253 FILE LIMIT REACHED - The number of records cur- Recreate the file increasing T
RECORD NOT INSERTED rently in the file cannot the value of FLM.
exceed the 1imit that the
user specified with FLM.
300 NO READ PERMISSION To be read, a permanent file Attach the file with the F
must be attached with read required read permission.
permission.
301 NO WRITE OR MODIFY A permanent file requires Attach the file with the F
PERMISSION proper required access per- modify permission.
missions. Modify permission
is required for any updating
operation.
302 NO EXTEND OR ALLOCATE A permanent file requires Attach the file with the F
PERMISSION extend permission before new required extend permission.
records can be inserted.
304 NOT ALLOWED TO CREATE The OVF option selected re- Change the OVF option if T
OVERFLOW BLOCKS (DA) quires original home blocks overflow blocks can exist.
to accommodate all records. :
New records "are ignored
because all home blocks are
full.
321 DATA STRUCTURES MUST If WSA or KA is provided as Word align WSA and/or KA. F
BE WORD ALIGNED a CHARACTER type data struc-
ture, it must be word aligned
within that structure.
324 PROCESSING DIRECTION A file opened for INPUT can- Correct the inconsistency F
NOT CONSISTENT WITH not be written; a file copened between the PD field and
REQUEST for QUTPUT cannot be read. the input/output operation.
333 ILLEGAL CALL TO An unexpected jump to a diag- Follow site-defined proce- F
DIAGNOSTIC ROUTINE nostic routine has occurred. dures for reporting software
errors or operational prob-
Tems.
335 HIERARCHY TABLE " Index level has increased too For indexed sequential T/F
OVERFLOW rapidly for AAM; update oper- files, close and reopen
ation has not been performed. the file. For other files,
rerun the program starting
with the update transaction
that caused the overfiow.
336 BAD FIT ADDRESS The user or the system has Correct the program and re- F
destroyed system tables. load it.
B-10 60499300 E

TABLE B-2. DIAGNOSTICS (Contd)

Code Message Significance Action Severity
345 INSUFFICIENT CMM SPACE Not enough CMM space exists Release some CMM, if any is T
AVAILABLE to open the file. To open a being used by the user pro-
file requires enough free CMM gram, or increase the amount
space to load any rare cap- of memory available to the
sules required, and to allow Job.
two of the largest blocks to
be in memory at the same
time. The file is not
opened.
346 CMM NOT AVAILABLE AND A new block for the list-of- Correct the program so that F
THERE IS NO LIST OF files cannot be allocated, the pointer is not destroyed.
FILES ADDRESS and the LOF$RM entry point A default 1ist with 65g
has been cleared. entries is supplied.
347 FDL ERROR CODE n Either CMM is not loaded when Check the load sequence or T
ON CAPSULE axxxxxx FDL is called to Toad a cap- map to see if CMM is loaded.
sule or the AAMLIB file is Fix the static load calls
not valid. to load the proper routines.
If using local libraries,
check for a valid AAMLIB
file.
352 FILE TO BE CLOSED IS The logical file name Check that the logical file T
NOT KNOWN specified does not match any name is correctly specified.
existing file.
354 BUFFER SPACE SUPPLIED A buffer specified by the BFS Increase the BFS value. T/F
IS INSUFFICIENT FOR field is not large enough to
1/0 hold at least the larger of
one block specified by MBL+2
or one physical record unit
for the file's resident de-
vice. A record written on a
connected file on NOS/BE is
larger than the current
buffer.
355 CODE MODULES REQUIRED Routines necessary for proc- Refer to appendix E for the T
FOR I/0 NOT LOADED essing have not been loaded. correct static loading pro-
cedures.
356 TRIVIAL ERROR LIMIT Error count ECT equals the Correct the errors. F
REACHED user-defined error limit ERL,
resulting in a fatal error.
357 UNABLE TO OBTAIN SPACE Required space cannot be Supply a value for the FWB F
FOR BUFFER allocated. CMM is not avail- field or delete the OMIT=CMM
able and the FWB field is parameter.
zero.
370 FATAL 1/0 ERROR Either a block with an incor- Correct the program. F
rect length was encountered
or the operating system
detected an error in the file
or in the way the file was
being used.
372 F0=1S INDEX STRUCTURE The indexed sequential Reorganize the file to.allow F
FULL 15 LEVELS file has filled 15 levels more indexes per block.
of indexing, which is
the maximum allowed. Further
updating is not permitted.
403 SKIPBL DISALLOWED A backward skip is not pos- Correct the program. T
sible for D, R, and T type
records.
60499300 E B-11

TABLE B-2. DIAGNOSTICS {(Contd)
Code Message Significance Action Severity’
404 SKIPFL DISALLOWED FOR No forward record skip is Correct the program. T
RT=U : possible for U type records.
415 ONLY PUT ALLOWED During file creation, only Correct the program to elimi- T
DURING INITIAL PUT macros are valid between nate all macros except PUT.
CREATION open and close.
417 CANNOT REPLACE WITH The REPLACE statement is Correct the program. T
LARGER RECORD IN ignored.
SEQUENTIAL MODE
421 WSA NOT SPECIFIED - For read or write, the Specify the WSA field for the T
REQUEST IGNORED location of the record in read or write operation.
the user field length is
required.
422 SEEK NOT ALLOWED IN The SEEK macro is ignored Close and reopen the file for T
SEQUENTIAL MODE because it is not allowed random processing if SEEK is
during sequential processing. desired.
424 CANNOT GET 1IN The GET macro cannot be used Use the GETN macro. T
SEQUENTIAL MODE - in sequential mode.
GETN ASSUMED
425 CANNOT SKIP BACKWARD The SKIP macro is ignored Correct the program. T
IN SEQUENTIAL MODE because backward skips are
not allowed in sequential
mode.
426 GETN NOT ALLOWED On a file creation run, only Correct the program to elimi- T
DURING FILE CREATION the PUT macro is allowed nate all macros except PUT.
- REQUEST IGNORED between open and close.
427 GET, SEEK INVALID IN Opening an indexed sequential | Open the file for input/ T
SEQ MODE file for INPUT establishes a output if GET and SEEK are
sequential mode of operation desired.
in which access by key is
prohibited.
441 MAJOR KEY WITH Key type (KT) must be S for Correct the KT field. F
SYMBOLIC KEYS ONLY major key actions.
442 INVALID ACTUAL KEY - The key is not valid; the Correct the KA field. T
REQUEST IGNORED request is ignored.
444 NEW KEY LESS THAN Records should be sorted by Sort the records into ascend- T
PREVIOUS KEY IN ascending key before an in- ing sequence.
INITIAL CREATION dexed sequential file is
created. An out-of-order
key is ignored.
445 KEY NOT FOUND - FILE The key does not exist in the No action is required. T
POSITION MAY BE file. Position is changed
ALTERED - REQUEST for indexed sequential,
TGNORED actual key, or MIP only if
the operation was GET or
START. File position is
unchanged for direct access
files. ’
446 DUPLICATE KEY FOUND - A duplicate key has been Change the duplicate key T
FILE POSITION ALTERED found. The request is indicator if duplicate keys
- REQUEST IGNORED ignored. are allowed, or check the
key field of the current
record.
B-12 60499300 E

TABLE B-2. DIAGNOSTICS (Contd)
Code Message Significance Action Severity
447 KEY ADDRESS NOT The file cannot be read ran- Correct the program to spec- T
SPECIFIED ~ REQUEST domly if a key is not given. ify the key address (KA)
IGNORED field.
452 FILE POSITIONING ERROR An attempt was made to posi- Correct the program to check F
tion the file beyond EOI. the FP field or specify the
DX field.
501 INDEX FILE NOT COM- Information in the file sta- Check that the proper index T
PATIBLE WITH CRM FILE tistics table for a multiple- file has been specified.
index file does not agree
with index file information.
502 SPECIFIED KEY NOT The key position specified by Correct the RKW, RKP, or KL T
DEFINED the RKW, RKP, and KL fields field.
for an alternate key does not .
correspond to an alternate
key definition in the index
file.
503 DUPLICATE ALTERNATE A1l alternate key values must Specify indexed sequential T
KEY ERROR be unique if the index struc- structure if more than one
ture for a multiple-index alternate key is to have the
file has been specified as same value.
unique. ’
504 SEQUENTIAL OPERATION End-of-information has been Correct the program. T
BEYOND EOI ATTEMPTED encountered. No further se-
quential operations, such as
GETN or a system search for a
key, are possible until the
index file is repositioned by
a user statement.
505 ERROR IN RMKDEF The parameters used with the Check that letters and digits F
PARAMETER RMKDEF macro have been speci- appear properly; also, that
fied incorrectly. the file name given in RMKDEF
corresponds to the name of
the data file.
506 ALTERNATE KEY NOT A key value specified does Action depends on program T
FOUND not match any alternate key processing of keys.
value in the index file.
507 *%%AAM MALFUNCTION For an indexed sequential Follow site-defined proce- F
n kkx file, an impossible condition dures for reporting software
has been encountered. This errors or operational prob-
condition probably occurred lems.
when part of the executable
code of AAM was altered by
an agency other than AAM.
The code n specifies the
condition that has occurred:
n=l FIAAT POSKEY1 bad
n=2 FIAAT POSKEY3 bad -
FIFO
n=3 Intermediate block
reached with all keys
too low
n=4 Attempt to go up from -
primary
B-13

60499300 E

TABLE B-2.

DIAGNOSTICS (Contd)

Code

Message

Significance

Action

Severity

511

512

515

520

521

523

524

525

RMKDEF ONLY AFTER
OPEN-NEW - IGNORED

CRM DATA FILE MODIFI-
CATIONS ILLEGAL WITH
NDX=YES

NO INDEX FILE
SPECIFIED

CHANGED KEY TYPE

CHANGED KEY SIZE

NO KEY DEFINED

KEY SIZE ILLEGAL

MAJOR KEY SIZE ILLEGAL

n= Error in removing one
level of hierarchy

n= Compression buffer size
bad

n=7 Running total of CMM
too high

Index file not opened

Attempt to use a busy
FIX cell

Attempt to chain an
already chained block

Attempt to read or
write PRU 0

Attempt to write a
block being read

UBS free block count
bad

Attempt to unchain
block not chained
n=17 Empty count less than
zero

The RMKDEF macro can be used
only on a creation run.

If NDX is set to YES, the
PUT, DELETE, and REPLACE
macros are not allowed.

No name has been specified
for the XN field on an IXGEN
or file creation run for a
multiple-index file.

The key type (KT) specified
on the file creation run can-
not be changed for the life
of the file.

The key Tength (KL) specified
on a file creation run cannot
be changed for the life of a
file.

Key type (KT), key lengt
(KL), and key address ?KA)
must be defined.

The size of the key is not
valid for the file organiza-
tion or record type.

MKL must be at least 1 and
less than the full key
defined by KL.

Correct the program.

" Correct the program.

Specify an index file for the
N field.

Change the KT field.

Change the KL field.

Define the key fields.
Correct the KL field.

Correct the MKL field.

60499300 E

TABLE B-2. DIAGNOSTICS (Contd)
Code Message Significance Action Severity
526 HASHED KEY OUTSIDE The user has changed hashing Check the HRL field in the F
HOME BLOCK AREA routines. The hashing rou- FIT to verify that the cor-
tine in use is limited in the rect hashing routine is in
range of keys that it can use, otherwise, the user
successfully process. should 1imit the selection
of keys to a narrower range.
527 ATTEMPT TO REDEFINE An RMKDEF directive attempted Correct the RMKDEF directive. F
SPARSE CONTROL to redefine the sparse con-
CHARACTER trol character. .
530 PADDING FACTOR OUT "OF Padding can be specified as 0 Correct the padding percent- F
RANGE to 99 percent. age.
532 FILE ALREADY EXISTS, Two files in one program can- Check the PD field in the FIT F
CANNOT OPEN-NEW not have the same name. This or the pd OPENM parameter.
can occur during an attempt The ON field must be changed
to open a data file that has from NEW for file access af-
a disassociated index file ter creation run.
and the index file is still
present. If a disassociated index file
is present when a data file
is opened, reassociate the
files by MIPDIS; or return
the index file; or set XN to
0 in the FIT.
534 MRL EXCEEDS MAX The value of the MRL field Correct the MRL field in the T
ALLOWED RECORD SIZE is greater than 81870 char- FIT.
acters. The file is not
opened.
535 NO DECOMPRESSION For files that have user- Correct ‘the DCA field in the F
ROUTINE SUPPLIED supplied compression, no DCA FIT or make the routine
value was specified on OPENM available.
OLD. For files that have
system-supplied compression,
the decompression routine in
a user or system library was
not made available to job
steps referencing the file.
The file is not opened.
536 NO OR WRONG COMPRES- For files that have user- Correct the CPA field in the F
SION ROUTINE SUPPLIED supplied compression, either FIT or make the routine
no CPA value was specified on available.
OPENM OLD or the CPA value
identified a different com-
pression routine from the one
specified when the file was
created. For files that have
system-supplied compression,
the CPA value specified a
routine in a user or system
Tibrary that was not made
available to job steps refer-
encing the file. The file is
not opened.
540 FIFO KEY SUBSTRUCTURE For alternate keys in repeat- Correct the RMKDEF directive. F
NOT ALLOWED IN ing groups, the key must be
REPEATING GROUPS unique or stored in an in-
dexed sequential substruc-
ture.
B-15

60499300 E

TABLE B-2.

DIAGNOSTICS (Contd)

Code Message Significance Action Severity
541 PURGE ILLEGAL - An attempt was made through Correct the MIPGEN RMKDEF F
SPECIFIED ALT KEY NOT MIPGEN to purge an alternate directive.
KNOWN key that did not exist.
542 NEW KEYDEF MATCHES ONE The key was not defined to be Correct the MIPGEN RMKDEF F
ALREADY KNOWN - KEYDEF unique. directive.
REJECTED
544 PADDING REQUESTED T0O The block size and padding Correct the DP or IP field in F
LARGE percentage requested would the FIT and reopen the file.
not allow the data block
to contain one maximum record
on create or would not allow
three index records per
index block. The file is
not opened.
545 CANT OPEN NEW FOR The processing direction must Correct the PD or ON field in T
INPUT be set to OUTPUT on a file the FIT and reopen the file.
' opened as a new file,
546 -PRIMARY KEY NOT FOUND A primary key in the alter- Disassociate the data file F
nate key index file cannot be and create a new index file
found in the data file. The using the MIPGEN utility.
data file and index file have
been modified inconsistently.
B-16 60499300 F

TABLE B-2. DIAGNOSTICS (Contd)

Code Message Significance Action Severity
547 BAD STRUCTURE FOUND IN The block being Tlooked at Follow site-defined proce- F
FILE contains an impossible dures for reporting software

counter or pointer. errors or operational prob-
Tems .
550 CANNOT COMPRESS - KEY To compress records, the pri- Change the key position if T
POSITION INVALID mary key must either be non- the file is to be compressed.
embedded or begin in the
first character position.
The file is not opened.
551 REL MUST BE EQ, GT OR An invalid REL value was de- Set the REL field to a cor- T
GE tected. The operation is not rect value.
performed.
552 NO DATA FILE PROCES- The OPENM macro was issued For data file proccessing, F
SING PERMITTED - FILE ~with the NDX field set to 1 close the file, set the NDX
OPENED FOR INDEX ONLY (index file processing only). field to 0, and then reopen
the file.
553 OVERFLOW RECORD NOT A record written to the file Follow site-defined -proce- F
FOUND - FILE BAD is not accessible. dures for reporting software
errors or operational prob-
lems.
554 PROCESSING REQUIRES Incorrect permanent file Attach file with correct per- T
READ, EXTEND, AND usage. missions.
MODIFY PERMISSIONS
555 INDEX FILE NON- On OPENM OLD, a data file is Attach the MIP file. F
EXISTENT found to have an associated
MIP file, but the MIP file is
not present.
556 OPEN FAILURE System CIO OPEN request Check the CODE and STATUS F
failed. field in the FIT.
712 NEGATIVE OR OVERSIZED One of the parameters indi- Correct the program. F
ARGUMENT--WSA, SKP, cated was erroneously speci- ’
OR LA fied when a macro was issued.
713 NEGATIVE OR OVERSIZED One of the parameters indi- Correct the program. F
ARGUMENT--RL, ST, OR cated was erroneously speci-
LBL fied when a macro was issued.
714 NEGATIVE EX OR DX A negative value was speci- Correct the program. F
PARAMETER fied for the EX or DX field.
715 NEGATIVE OR OVERSIZED Either the WA or KA field was Correct the program. F
ARGUMENT--WA OR KA erroneously specified.
716 NEGATIVE OR OVERSIZED Either the PTL or the KP Correct the program. F
ARGUMENT--PTL OR KP field was erroneously
specified.
717 NEGATIVE OR OVERSIZED One of the parameters indi- Correct the program. F
ARGUMENT--MKL, POS, cated was erroneously speci-
GPS, OR TRM. fied when a macro was issued.
720 DEVICE CAPACITY The CIO read driver has Check the job dayfile for the T
EXCEEDED encountered an error. specific head driver error.
721 ERROR DETECTED BY A system and/or hardware Check the job dayfile for a F
OPERATING SYSTEM error that cannot be cor- system and/or hardware error
rected has been encountered. message.
60499300 C 8-17

TABLE B-3. NOTES OR INFORMATIVE MESSAGES

Code Message Code Message
1000 FIT DUMP 1025 DATA BLOCK SIZE AND BLOCKING FACTOR
BOTH SET
1001 FILE OPENED
1026 EOI ENCOUNTERED ON SKIP OR GETN
1002 FILE CLOSED
: 1027 THE KEY IS
1003 NUMBER OF INDEX LEVELS
‘ 1030 ERROR ENCOUNTERED DURING
1004 **xxNUMBER OF GETS THIS OPEN
1031 One of many general comments output
1005 ***NUMBER OF PUTS THIS OPEN by AAM routines
1006 ***NUMBER OF REPLACES THIS OPEN 1032 THE KEY IS THE KEY IN OCTAL
IS
1007 **kNUMBER OF DELETES THIS OPEN
1033 ***NUMBER OF GET NEXTS THIS
1010 ***TOTAL DISKAREA*** __ .. WORDS OPEN
1011 GETN REACHED EOI 1034 ***NUMBER OF ACCESSES THIS OPEN
1012 SKIP REACHED FILE BOUNDARY BEFORE 1035 ***TOTAL NUMBER OF RECORDS
EXHAUSTING SKIP COUNT
1036 *#**TQTAL NO. OF OVERFLOW
1013 END OF INFORMATION ENCOUNTERED RECORDS
1014 BEGINNING OF INFORMATION ENCOUNTERED 1037 **%NO. OF AVAILABLE PRIMARY INDEX
- ENTRIES
1015 FILE LIMIT REACHED, LINEAR SEARCH
FOR SPACE INITIATED 1040 ***RECORDS/HOME-BLK CREATED THIS
OPEN
1016 ILLOGICAL SUCESSIVE SEEK REQUESTS :
1041 ***RECORDS/OVF-BLK CREATED THIS
1017 CANNOT CHECKSUM A FILE CREATED : - OPEN
WITHOUT CHECKSUMS
1042 #**(OVERFLOW BLOCKS CREATED THIS
1020 TILLOGICAL TO CHANGE THE KEY BEFORE OPEN
SEEK FUNCTION COMPLETED :
1043 ***TOTAL NUMBER OF HOME BLOCKS
1021 HOME BLOCKS EMPTY--HASHING ROUTINE
NOT VERIFIED 1044 ***TgEAL NUMBER OF HOME BLOCKS
IN USE
1022 DELETED LAST RECORD
1046 PADDING NO LONGER HONORED
1023 EMPTY FILE OPENED
1047 SERIAL PASS OF FILE FOR SPACE
1024 IS ERROR RECOVERY
1137 THE FOLLOWING BLOCK CONTAINS A

PARITY ERROR

B-18 60499300 C

GLOSSARY C

AAM (Advanced Access Methods) -
A file manager that processes indexed sequential,
direct access, and actual key file organizations and
supports the Multiple-Index Processar.

Actual Key -
The primary key for a record in a file with actual key
organization, which indicates the storage location of
the record.

Actual Key (AK) File -
A mass storage file in which each record is stored at
the location indicated by the primary key. For actual
key files, the primary key is a record number that
AAM converts to the storage location of the record.
Access is random or sequential.

Alternate Key -
A key other than the primary key by which an indexed
sequential, direct access, or actual key file can be
accessed.

BAM (Basic Access Methods) -
A file manager that processes sequential and word
addressable file organizations.

Beginning-Of-Information (BOI) -
The start of the first user record in a file.

Block -
A logical or physical grouping of records to make more
efficient use of hardware. All files are blocked. See
also Data Block, Home Block, Index Block, and
Overflow Block.

Block Checksum -
A number used to check that the contents of a data
block have not been altered accidentally; a means of
ensuring data integrity. Block checksums can be
requested for files through use of the BCK parameter
in the FILE control statement or FILE macro.

Character -
A letter, digit, punctuation mark, or ‘mathematical
symbol forming part of one or more of the standard
character sets. Also, a unit of measure used to
specify block length, record length, and so forth.

Circular Buffer -
A temporary central memory storage area that
contains data durin input/output operations.
Routines that process I/O treat the first word of the
buffer area as contiguous to the last word of the
buffer area.

Close -
A set of terminating operations performed on a file
when input and output operations are complete. All
files processed by AAM must be closed.

Combined Input/Output (CIO) -

An operating system routine that performs input and
output.

60499300 E

Compression -
The process of condensing a record to reduce the
amount of storage space required. The user can supply
a compression routine or use a system-supplied
routine. See Decompression.

Concurrency -
Simultaneous access to the same data in a data base
by two or more applications programs during a given
span of time.

Creation Run -
All processing of a file, from open to close, the first
time the file is written or made into an AAM file.
Files must be created in a separate creation run during
which only write operations on the file being created
are allowed.

CRM (CYBER Record Manager) -
A generic term relating to the common products BAM
and AAM.

Data Block -
A block in which user records are stored in an indexed
sequential or actual key file. Data block structure is
defined by the user, or AAM defaults are accepted.
Contrast with Index Block for indexed sequential files.

Decompression -
The process of expanding a compressed record to
restore it to its original size. The user can supply a
decompression routine or use a system-supplied
routine. See Compression.

Decryption -
The process of condensing and reformatting an
encrypted record to restore it to its original size and
format. The user supplies a decryption routine. See
Encryption.

Default -
A value assumed in the absence of a user-specified
value declaration for the parameter involved. VYalues
for many defaults are defined by the installation.

Direct Access (DA) File -
A file containing records stored randomly in home
blocks according to the hashed value of the primary
key in each record. Files must be mass storage
resident. All allocation for home blocks occurs when
the file is opened on its creation run. Access is
random or sequential.

Directives -

The instructions that supplement processing defined by
a control statement or by a program call for execution
of a utility function or member of a product set.
Directives do not appear in the control statement
record; they are usually in a separate record of the
file INPUT ‘or a file referenced in a control statement
call. Directives are required for execution of FORM,
the CREATE utility, and EDITLIB among others.

Embedded Key -
A primary key that is contained within the record.

Encryption -
The process of expanding and reformatting a record.
The wuser supplies an encryption routine. See
Decryption.

End-Of-Information (EOI) -
The end of the last user record in a file.

Extended Memory -
Any extension to central memory.

Field -
A portion of a word or record; a subdivision of
information within a record; also, a generic entry in a
file information table identified by a mnemonic.

Field Length -
The area in central memory allocated to a particular
jobs the only part of central memory that a job can
directly access. Contrasts with mass storage space
allocated for a job and on which user's files reside.

File -
A logically related set of information; the largest
collection of information that can be addressed by a
file name. It starts at beginning-of-information and
ends at end-of-information. Every file in use by a jab
must have a logical file name.

FILE Control Statement -
A control statement that supplies file information
table values after a source language program is
compiled or assembled but before the program is
executed. In applications such as those with a control

statement call to the FORM utility, a FILE control

statement must be used. Basic file characteristics
such as organization, record type, and description can
be specified in the FILE control statement.

File Information Table (FIT) -
A table through which a user program communicates
with AAM. For direct processing through AAM, a user
must initiate establishment of this table. All file
processing executes on the basis of information in this
table. The user can set FIT fields directly or use
parameters in a file access call that sets the fields
indirectly. Some product set members set the fields
automatically for the user.

File Statistics Table (FSTT) -
A table generated and maintained by AAM to collect
statistics about each file. The FSTT is a permanent
part of a file and contains information such as
organization type, size of blocks, number of current
accesses, and so forth.

Flushing -
The method of processing file buffers and updating the
file statistics tables as if close operations had been
requested without actually closing the files.

Hashing -
The method of using primary keys to search for
relative home block addresses of records in a file with
direct access storage structure.

Home Block -

A block in a file with direct access storage structure
whaose relative address is computed by hashing keys. A
home black contains synonym records whose keys hash
to that relative address. If all the synonym records
cannot be accommodated in the home block, an
overflow block can be created by the system. A user
creating a direct access file must define the number
of home blocks with the HMB parameter in the FILE
control statement.

Index -
A series of keys and pointers to records associated
with the keys.

Index Block -
For an indexed sequential file, a block with ordered
keys and pointers to the data blocks and other index
blocks, forming a directory of the records within a file.

Indexed Sequential (IS) File -
A file organization in which AAM maintains files in
sorted order by use of a user-defined primary key,
which need not be within the record. Keys can be
integer or symbolic; access is random or sequential.
Files contain index blocks and data blocks.

Installation Option -
One of several alternate means of processing that is
selected when AAM is installed at a computer
installation. Once an option is selected, all subsequent
use of AAM is governed by the selection. For all
options or limits defined as installation options, the
user should consult with a system analyst to determine
the valid limits.

Integer Key -)
A 60-bit signed binary key used with indexed
sequential files. Integer keys are sorted by
magnitude. See Symbolic Key.

Job Step -
The execution of a control statement.

Key -
A group of contiguous characters or numbers the user
defines to identify a record in an AAM file.

Key Analysis Utility (KYAN) -
A utility program that provides information about
hypothetical record distribution for a file with direct
access organization. The utility reads the key of each
record in the file and determines the home block
where the record would reside.

LDSET -
The loader control statement. Various parameters
include:
LB Make available the named library
USE l_oad the routines named

STAT Static loading requested

OMIT Inhibit loading of the routines named

60499300 E

Load Set -
A group of loader control statements beginning with a
call that causes information to be loaded into central
memory and ending with a call for execution of a
loaded program. Nonloader statements must not
appear in a load set.

Logical File Name -
The name given to a file being used by a job. The
name must be unique for the job and must consist of
one to seven letters or digits, the first of which must
be a letter.

Macro -
A single instruction that when compiled into machine
code generates several machine code instructions.

Maintenance Run -
A program or job to wupdate an existing file;
technically refers to that part of the job from file
open to file close.

Major Key -
The leading characters of a symbolic key in an indexed
sequential file.

Mass Storage -
A disk pack that can be accessed randomly. Extended
memory is not considered mass storage.

Master File -
A file containing information about a set of entities.
All information about a single entity constitutes a
record in the file. A master file is normally kept up to
date by a maintenance run.

Multiple-Index File -
An indexed sequential, direct access, or actual key file
that has alternate keys defined.

Multiple-Index Processor (MIP) -
A processor that allows AAM files to be accessed by
alternate keys.

Nonembedded Key -
A primary key that is net physically contained within
the record. A nonembedded key appears before the
record when stored in a data block.

Open -
A set of preparatory operations performed on a file
before input and output can take place; required for
all AAM files.

Overflow Block -
A block added to the file by AAM for use when the
home blocks in a direct access file are full.

Owncode -
A routine written by the user to process certain
conditions. Control passes automatically to user
owncode routines defined in the FIT for:

DX End-of-data condition

EX Error condition

60499300 E

Padding -
The free space reserved in a file at creation time to
accommodate additional records; specified as a
percentage figure.

Permanent File -
A file on a mass storage permanent file device that
can be retained for longer than a single job. It is
protected against accidental destruction by the system
and can be protected against unauthorized access.

Physical Record Unit (PRU) -
The smallest unit of information that can be
transferred between a peripheral storage device and
central memory. The PRU size is permanently fixed
for all mass storage devices.

Primary Key -
A key whose value uniquely identifies a record and
determines the location of the record in the file. A
primary key must be defined when a file is created.
Primary keys must be used to update a file. Contrast
with Alternate Key.

PRU Device -
A mass storage device in which information has a
physical structure governed by physical record units
(PRUs).

Random Access -
Access method by which any record in a file can be
accessed at any time in any order; applies only to mass
storage files. See Sequential Access.

Record - '
The largest collection of infarmation passed between

AAM and a user program in a single read or write
operation.. The user defines the structure and
characteristics of records within a file by declaring a
record format. The beginning and ending points of a
record are implicit in each format.

Record Slot Number -
The position of a record within a block in an actual
key file; specified by the low-order bits of the primary
key.

Release System -
A software system delivered to a customer. In
installing a system, the customer, but not an individual
applications programmer, can use default values or
parameters that differ from the release system.

Rewind -
To position a file at beginning-of-information.

Sequential Access -
A method in which only the record located at the
current file position can be accessed. See Random

Access.

Sparse Key -
An alternate key that is used infrequently. Only those
alternate key values of interest are included in the
index file.

Symbolic Key -

A key consisting of 1 to 255 &-bit characters. These
keys are sorted according to the sequence indicated by
the display code to collating sequence conversion
table. Also called collated symbolic key. See
Uncollated Symbolic Key.

Synonym Records -

C-4

Direct access file records whose primary keys hash to
the same home block.

Uncollated Symbolic Key -
A key consisting of 1 to 255 6-bit characters. These
keys are sorted by the magnitude of their binary
" display code values. See Symbolic Key.

Working Storage Area -
An area within the user's field length intended for
receipt of data from a file or transmission of data to a
file.

60499300 E

FILE INFORMATION TABLE STRUCTURE

A file information table (FIT) must be associated with
every file that uses AAM. For normal language
requirements, compilers generate the FIT automatically;
users writing in high level languages need not be concerned
with the FIT and its generation. The COMPASS user is
responsible for supplying the FIT; the FILE macro is
provided to create the FIT. Word and bit designations are
illustrated in figure D-1.

The FIT is activated by an OPENM request for the file.
After the file is opened, FIT fields can be updated with the
FILE control statement or the STORE macro, with
information from the processing macros, or by AAM as a
result of processing the file. Information in the FIT can be
retrieved with the FETCH macro. In figure D-1, the fields

60499300 C

enclosed in parentheses can be accessed by the FETCH
macro but cannot be changed. If a STORE macro is
attempted on these fields, an assembly diagnostic results.
Blank fields are reserved for CRM or CDC.

The FIT fields are listed by word and bit position in
table D-1. For the convenience of the user, the COMPASS
symbols are included with the applicable FIT field values.
Generally, any particular file organization or record type
requires only a small portion of the total information
specified here. The first ten words of the FIT are used by
AAM for communicating with the operating system.

For the reader's convenience, the FIT fields are listed
alphabetically with their word positions in table D-2.

decimal —a- 59 53 47 41 35 29 23 17 1 05 00 octal
0 LFN Reserved for CDC
3 {CMPLT)
‘IRl Reserved F| Reserved
1 (OVT) S for coc || forcoc | (PO | 30D Fwe 1
2 0 Reserved for CRM 2
3 o Reserved for CRM 3
4 Reserved for CDC Reserved for CRM 4
H
5 Reserved for CRM/INTERCOM ¢ Reserved for CRM 8
1
6 Reserved for CDC 6
7 Reserved for CRM (return address stack} 7
8 Reserved for CDC (FET extension) 10
9 Reserved for CDC (label field) 1
L
10 LBL g {FP) ULP|LT LA 12
C
11 RL bOF[CF [vF| RT | BT | FO Lx 3
12 FL Ri ed for CRM DX 14
WAL eserved for
P
13 EFC ECT ERL E SES ES EX 15
14 Reserved for instalation 16
{BAL)
HL P P] o
Dla| R 17
15 MNR EO Ftt o WSA
. " S PC MUL HRL »
R]] kL [l _or]
(FNF)——-t B| |
Not c sl cp
8
17 OC) PD | eod J, J - N BFS 27
HMB {LOP}
18 PTL | {RC}) 22
(WPN). o
M VNO WA 75
1 - NL BN)
Bck——TT [Py
PM RB PKA 4
0 MNB | i 2
1 1
XN
21 X85S 25
MEN] PNO
L
22 Reserved for CAM LAC N Reserved for CRM %
23 Reserved for CRM 27
INKIFIF]
24 P| FLM KA 30
IXIE] I [B]
2% Reserved for CRM (82F) 3t
26 Reserved for CRM coT Reserved for CRM 32
27-29 Reserved for CRM 33-35
(SOL) e
30 Reserved for CRM EQIWA a6
N RKW RKP KP KL P Reserved for CARM 37
32 iBL . l I KT |REL CPA A0
33 Reserved for CRM DcA 41
34 Reserved for CRM 42

Figure D-1. File Information Table

60499300 E

60499300 C

TABLE D-1. STRUCTURE OF THE FIT
Word Bits FEQ%d Description Contents ggmgg%s
===
0 59-18 LFN Logical file name of the data file.

17-1 Reserved for CDC.

1] CMPLT FET complete bit; cannot be changed
by the user.

1 59-48 DvT FET device type; cannot be changed
by the user.

47 Reserved for CRM.

46 RDR Read release.

45-37 Reserved for CDC.

36 FF File flush by operating system on
abnormal termination (BAM only).

35-30 Reservgd for CDC.

29-24 DC Disposition code; cannot be changed
by the user. Refer to operating
system manual for possible settings.

23-18 Length of FIT minus 5; set to 30ig.

17-0 FWB First word address of the user
buffer.

2 59-18 Zero-filled field.
17-0 Reserved for CRM.

3 59-18 Zero-filled field.
17-0 Reserved for CRM.

4 59-34 Reserved for COC.

33-0 Reserved for CRM.

5 59-24 Reserved for CRM/INTERCOM.

23-22 ASCII ASCII character set bits for
INTERCOM terminals (BAM only).

21-0 Reserved for CRM.

6 Reserved for CDC.
7 Reserved for CRM (return address
stack).
8 Reserved for CDC (FET extension).
9 Reserved for CDC (label fields).
D-3

D-4

Disconnect (BAM only)

TABLE D-1. STRUCTURE OF THE FIT (Contd)
. it .
Word , Bits Fgéld Description Contents ggmggfs
10 59-36 LBL Label area length in characters (BAM
. only).
35 LCR Label check/creation for input/
output tape (BAM only).
34 Reserved for CRM.
33-27 FpP File position (in octal); cannot be 0 Mid logical record
changed by the user.
1 BOI =80I=
Beginning-of-information
2 BOF =B0F=
Beginning-of-file
10 EOK =EQK=
End-of-keylist
20 EOR =EQR=
End-of-record
100 EOT =E01=
End-of-information
26-24 uLp User label processing (BAM only).
23-22 LT Label type (BAM only).
21-0 LA Label area address {BAM only).
11 59-3 | RL Current record length in characters.
35 ™ Conversion mode (EC to IC) (BAM
only).
34-33 OF Open flag; positioning of the file 00 Rewind (default) ==
at OPENM time.
01 R =R=
Rewind
10 N =N=
No rewind
11 E =E=
Extend
32-30 CF Close flag; positioning of the file 000 Rewind (default) ==
at CLOSEM time.
001 R =R=
Rewind
010 N =N=
No rewind
on U =U=
’ Unload
100 RET =RET=
Return
101 DET =DET=
- Detach
110 DIS =DIS=

60499300 C

TABLE D-1. STRUCTURE OF THE

FIT (Contd)

60499300 C

Word Bits F?é%d Description Contents ggmgé?s
29-28 VF End-of-volume flag (BAM only).
27-24 RT Record type. 0000 W =WT=
. Control word
0001 F =FT=
Fixed length
0010 R =RT=
Record mark
0011 2 =1T=
Zero byte
0100 D =pT=
Decimal character count
0101 T =TT=
Trailer count
0111 U =UT=
Undefined
1000 S =ST=
System-logical-record
23-21 BT Biock type (BAM only).
20-18 FO File organization. 000 SQ =SQ=
Sequential (BAM only)
001 WA =WA=
Word addressable
(BAM only)
011 s =1S=
Indexed sequential
101 DA - =pA=
Direct access
110 AK =AK=
Actual key
17-0 LX Label routine exit address (BAM
only).
12 59-36 MRL Maximum record length in characters;
when retrieving primary keys from an
alternate key index, working storage
area length in characters.
FL Fixed length of an F type record, or
full length of a Z type record, in
characters.
35-18 Reserved for CRM.
17-0 DX End-of-data exit address.
13 59 NOFCP No FILE control statement 0 NO =N0=
processing. FILE control statement
processed at SETFIT or
OPENM. :
1 YES =YES=
FILE control statement
not processed.
D-5

TABLE D-1. STRUCTURE OF THE FIT (Contd)

Word Bits F?é%d Description Contents) ggmgﬁfs
58 Reserved for CRM.
57-56 DFC Dayfile control for error messages. No dayfile messages
except fatal errors
Error messages to
dayfile
Statistics/notes to
dayfile
Errors and statistics/
notes to dayfile
55-54 EFC Error file control. The FITDMP No error file messages
macro forces EFC=0 to 2 and EFC=1
to 3. Error messages to error
file
Statistics/notes to
error file
Errors and statistics/
notes to error file
53-45 ECT Trivial error count.
44-36 ERL Trivial error limit.
35 Reserved for CRM.
34 PEF Parity error flag (BAM only).
33-31 Reserved for CRM.
30-27 SES System parity error severity (BAM
only).
26-18 ES Error status (octal value).
17-0 EX Error exit address.
14 Reserved for installation.
15 59-36 HL Header length in characters; T type
records.
MMR Minimum record length.
35-33 Reserved for CRM.
32-30 EO Error option (BAM only).
29 Reserved for CRM.
28 BAL Buffer allocated by CRM; cannot be
changed by the user.
27 STFT Internal SETFIT flag used for CRM
processing.
D-6 60499300 C

TABLE D-1. STRUCTURE OF THE FIT (Contd)

60499300 E

. Fit L COMPASS
Word Bits Field Description Contents Symbo]
26 PDF SETFIT macro FILE statement flag;
cannot be changed by the user.
25 SBF Suppressed buffer 1/0 flag (BAM
only).
24 SPR Suppress read ahead (BAM only).
23 Reserved for CRM.
22 O0RG Currently supported file 0 oLD =0LD=
organization. Initial AAM no
longer supported
1 NEW (default) =NEW=
Previously known as
extended AAM
21-0 WSA Working storage area address.
16 59-36 TL Trailer length in characters; T type
records.
35-30 CL Count field length in characters; T
type records.
LL Length field length in characters;
D type records.
RMK Record mark character; R type
records. :
29-24 PC- Padding character (BAM only).
23-18 MUL Multiple of characters per K or E
type block (BAM only).
26-18 MKL Major key length in characters
(indexed sequential fi}es).
17-0 HRL Hashing routine address (direct
access files).
15-9 pp Data block padding percent {indexed
sequential and actual key files).
17 59 FNF Fatal/nonfatal flag; cannot be 0 Nonfatal
changed by the user.
1 Fatal
58-57 oc Open/close flag. .00 Never opened =NOP =
01 Opened =QPE=
10 Closed =CL0=
D-7

TABLE D-1. STRUCTURE OF THE FIT (Contd)

'

Word Bits F?ggd Description Contents gngQ?S
56-54 PD Processing direction. 000 Input (default) ==
001 INPUT =INPUT=
Input
010 OUTPUT =QUTPUT=
Output
011 10 =10=
Input/output
53-48 Reserved for CRM.
a7 BSF Round PUTs down to *8 bits (BAM
only).
46 cl COMP-1; format for the CL/LL field; 0 NO =N0=
T or D type records. Display code
1 YES =YES=
Binary
45 o Sign overpunch; overpunch option for 0 NO =N0o=
CL/LL field; T or D type records. No overpunch
1 YES =YES=
Overpunch
44.21 cp Trailer count beginning character
position (numbered from 0); T type
records.
LP Length field beginning character
position (numbered from 0); D type
records.
20 Reserved for CRM.
19 -CNF Connected file flag (BAM only).
18 BBH Buffer below highest high address
(BAM only).
17-0 BFS Buffer size in words.
18 59-36 HMB Number of home blocks (direct access
files).
PTL Partial transfer length (BAM only);
number of keys moved to working
storage area for a GET or GETN on an
alternate key index.
35-30 LoP Last operation code; cannot be
changed by the user (BAM only).
35 WPN Write bit; the upper bit of LOP is 0 Last operation was not a
a 1-bit subfield that can be write
accessed separately; cannot be
changed by the user. 1 Last operation was a
write
D-8 60499300 C

TABLE D-1. STRUCTURE OF THE

FIT (Contd)

60499300 E

Word Bits Fiégd Description Contents ggmgg?s
29-0 RC Record count; count of full records
read or written since the file was
opened. The count is not adjusted
for repositioning and backspacing
operations. For a multiple-index
file, the number of records with
this alternate key value. This
field cannot be changed by the user.
19 59-36 MBL Maximum block length in characters.
35-30 VNO Current volume number of the multi-
volume sequential file (BAM only).
NL Number of levels of index blocks
(indexed sequential files).
29-0 BN Block number of the current block
(sequential files); cannot be
changed by the user (BAM only).
WA Current position word address, set
by GET and PUT macros (BAM only).
20 59 BCK Block checksum. 0 NO =N0=
No checksumming of
blocks
1 YES =YES=
Checksumming of blocks
58 PM Processing mode. 0 Random =RPM=
1 Sequential =SPM=
51-30 DeT Address of the display code to
’ collating sequence conversion table
(indexed sequential files).
59-36 MNB Minimum block length in characters
(BAM only).
29-18 RB Number of records per block (actual
key files) or average number of
records (indexed sequential and
direct access files).
17-0 PKA Primary key address; address to
receive primary key on an alternate
key access (AAM files).
21 59-18 XN Logical file name of the alternate
key index file associated with the
data file.
17-0 XBS Index file block size (AAM files).
59-24 MFN Multifile set name (BAM only).
23-0 PNO Multifile position number (BAM
only).
D-9

TABLE D-1. STRUCTURE OF THE FIT (Contd)
Word Bits Fil%d Description Contents ggmgg?s
22 59-46 Reserved for CRM.
45-40 LAC Last action performed on the file;
used by compiler languages to com-
municate with each other.
39-36 LNG Last compiler language to have used 0 Unknown
the file.
1 FORTRAN
2 COBOL
3 PL/I
4-7 Reserved
35-0 Reserved for CRM.
23 Reserved for CRM.
24 59 NDX Index flag. 0 NO =N0=
Data file is accessed
1 YES =YES=
Index file only is
accessed
58 KNE Key ngt equal (multiple-index 0 Key match found
files).
1 No key match found
57 FWI Forced write indicator. 0 NO =N0=
No forced write
1 YES =YES=
Forced write
56 FPB File position bit (system routine 0 EOI not reached
use only); or EOI reached random
operation (multiple-index files). 1 EOI reached
55 ON 01d or new file. 0 oLD =0LD=
01d file
1 NEW =NEW=
Creation run
54 Reserved for CRM.
53-24 FLM File Timit, records per file.
23 EMK Embedded key flag. 0 NO =N0=
Key is not part of the
record
1 YES =YES=
Key is included in the
record
21-0 KA Key address of the key value for
record processing.
25 59-18 Reserved for CRM.
17-0 BZF Busy FET address; cannot be changed
by the user.
D-10 60499300 E

60499300 E

TABLE D-1. STRUCTURE OF THE FIT (Contd)
. Fit s s COMPASS
Word Bits Field Description Contents Symbol
26 59-48 Reserved for CRM.
47-30 coT Address of the collating sequence to
display code conversion table.
29-0 Reserved for CRM.
27 Reserved for CRM.
28 Reserved for CRM.
29 Reserved for CRM.
30 59 SOL S/L tape bit; cannot be changed by
the user (BAM only).
58-21 Reserved for CRM.
20-0 EOIWA End-of -information word address (BAM
only).
31 59-48 RKHW Relative key word.
47-44 RKP Relative key position in RKW.
43-40 KP Beginning character position of the
key.
39-31 KL Key length in characters.
-30-24 P Index block padding percent
(indexed sequential files).
23-0 Reserved for CRM.
32 41-30 Reserved for CRM.
29-27 KT Key type (indexed sequential files). 000 Symbolic (default)
001 S =SKT=
Symbolic (if user
specified symbolic)
010 1 =EIKT=
Integer
011 F =FKT=
Floating
011 U =UKT =
Uncollated symbolic
26-24 REL File position key relation (indexed i EQ =EQ=
sequential and multiple-index Equal
files). REL is significant only
for START operations and index-only 3 GE =GE=
operations. Greater than or equal
5 LT
6 GT =GT=
Greater than
17-0 CPA Compression routine address.
D-11

TABLE D-1. STRUCTURE OF THE FIT (Contd)
Word | Bits F';;t]: d Description Contents g%gg?s
33 59-18 Reserved for CRM.
17-0 DCA Decompression routine address.
34 Reserved for CRM.
TABLE D-2. ALPHABETIZED SUMMARY OF FIT FIELDS
FIT Field Word FIT Field Word FIT Field Word
ASCII 5 FNF 17 oc 17
BAL 15 FO 11 oF 11
BBH 17 FpP 10 ON 24
BCK 20 FPB 24 ORG 15
BFS 17 FWB 1. PC 16
BN 19 FWI 24 PD 17
BT 11 HL 15 PDF 15
BZF 25 HMB 18 PEF 13
B8F 17 HRL 16 ~ PKA 20
coT 26 P 31 PM 20
CF 11 KA 24 PNO 21
CL 16 KL 31 PTL 18
M 11 KNE 24 RB 20
CMPLT 0 KP 31 RC 18
CNF 17 KT 32 RDR 1
cp 17 LA 10 REL 32
CPA 32 LAC 22 RKP 31
c1 17 LBL 10 RKW 31
0C 1 LCR 10 RL 11
DCA 33 LFN 0 RMK 16
DecT 20 LL 16 RT 11
DFC 13 LNG 22 SB 17
DP 16 LOP 18 SBF 15
vt 1 LP 17 SES 13
DX 12 LT 10 SOL 30
ECT 13 LX 11 SPR 15
EFC 13 MBL 19 STFT 15
EMK 24 MFN 21 T 16
EO 15 MKL 16 uLp 10
EOIWA 30 MNB 20 VF 11
ERL 13 MNR 15 VNO 19
ES 13 MRL 12 WA 19
EX 13 MUL 16 WPN 18
FF 1 NDX 24 WSA 15
FL 12 NL 19 XBS .21
FLM 24 NOFCP 13 XN 21
D-12 60499300 E

LOADING AAM A -

AAM has been divided into functional capsules that are
loaded by relocatable controlling routines at execution
time. This method of dynamic loading requires a program
to be compatible with the Common Memory Manager
(CMM). Static loading is available for programs that are
not compatible; however, static loading could involve a
field length penalty of as much as 1400g words. AAM
uses. dynamic loading unless static loading is specified
through a control statement or a macro.

More information about the Common Memory Manager and
the CYBER Loader can be obtained from their respective
reference manuals.

DYNAMIC LOADING

For dynamic loading, all AAM macros reference entry
points in the controlling routines CTL$RM and CTRL$AA.
The controlling routines, which process parameters and
diagnose certain types of errors, are loaded at relocatable
load time or overlay generation time. The controlling
routines load and transfer control to the Fast Dynamic
L.oader (FDL) capsule containing the proper AAM
controller in fixed-position fixed-length blocks. The
controller then loads the FDL capsules needed to process
the macro.

Do not .overlay the controlling routines CTL$RM and
CTRL$AA because unknown results, including bad jump
addresses to service routines, occur if these routines are
overlayed. To prevent the controlling routines from being
overwritten, make them part of the (0,0) overlay by
specifying the FILE macro in the (0,0) overlay.

The OPENM/SETFIT capsule is loaded when the first
OPENM or SETFIT macro is encountered. If the SETFIT
macro occurs first, the FILE control statement parameters
are processed, the dynamic AAM cantroller capsule is
loaded, and control is transferred to that capsule. The
required AAM processor capsule is then loaded, the buffer
size is calculated, and control is returned to the user.

When the OPENM macro occurs before a SETFIT macro,
the SETFIT functions are performed first. Open processing
then occurs. The file is opened, FIT consistency checks are
performed, and control is returned to the user. The open
processing capsule is unloaded when a macro other than
OPENM, SETFIT, STORE, or FETCH is encountered. For
optimum efficiency in loading, the open processing for all
files should be completed before other processing is
specified. The AAM processor capsule remains loaded.

When the first macro that requires a buffer is encountered,
a buffer is allocated through CMM in a fixed-position
fixed-length block. The capsules required to perform the
function specified by the macro are loaded; control
transfers to the capsules and then back to the user.
Generally, the capsules required to process these functions
remain in memory until all files requiring them have been

60499300 E

closed. Some capsules are loaded while a series of
operations are being performed and are unloaded when
additional memory space is needed to load another capsule.

The CLOSEM capsule is loaded when the CL.OSEM macro is
encountered. An additional AAM capsule might be loaded
to close the file and release buffer space. The CLOSEM
capsule unloads any capsules no longer needed for
processing and unloads itself after closing the last file.

The AAM controller capsule, processing capsules, and
dynamic buffers are loaded above the highest high address;
however, they are not destroyed by overlay swapping.
Because of this, it is possible to swap overlays without first
closing the AAM files.

STATIC LOADING

Static loading is provided for the cases where the user is
managing memory and the program cannot be compatible
with CMM. It should only be used as a short term
conversion aid. Long term support of static loading is not
to be provided. Two methods are available for designating
which capsules need to be statically loaded. One method is
control statement oriented and the other method is macro
oriented.

CONTROL STATEMENTS

Static loading can be specified through the LDSET and
FILE control statements. The STAT option must be
specified in the LDSET control statement and the USE and
OMIT parameters must be specified in the FILE control
statement. One FILE control statement must be included
for each file to ensure that all necessary routines are
loaded. The file organization (FO), the OLD/NEW FO
qualifier (ORG), record type (RT), and index file name (XN)
parameters must be specified on the same or a previous
FILE control statement as the USE and OMIT parameters.
These three parameters cannot be specified in a FILE
control statement following the one that specifies the USE
and OMIT parameters.

The USE and OMIT parameters are formatted as follows:
USE:mnl/mnzl. . ./mnn
OMIT=mny/mng/. ../mny

In both parameter formats, mn is a macro name. The
functions of the USE and OMIT parameters are listed in
table E-1. The USE and OMIT parameters can be used in
more than one FILE control statement; the results are
cumulative. If the STAT option is specified in the LSDET
control statement and the USE parameter is not specified
in the FILE control statement, no processing capsules are
loaded.

E-1

TABLE E-1. USE AND OMIT- PARAMETER FUNCTIONS

Parameter o¥oM%gigs List of Macros
USE A11 capsules Capsules performing

are loaded. functions specified
by the macro list are

Toaded.

OMIT A11 previously | Capsules performing
loaded capsules| functions specified
are unloaded. by the macro list are
unloaded.

Fl Lé(ISFl .E,FO=IS,RT=2,USE=OPENM/PUT/CLOSEM)
LDSET(STAT=ISFILE)

Load set to write the file.

FILE{ISFILE,OMIT=PUT,USE=GET)
LDSET(STAT=ISFILE)

Load set to read the file.

In the example shown in figure E-1, the program to write
the file ISFILE uses static loading and contains the
OPENM, PUT, and CLOSEM macros. The program to read
the file ISFILE also uses static loading. The PUT macro is
not contained in that program; the OMIT parameter
specifies that the capsule for that macro is to be
unloaded. The GET macro is contained in the program and
the capsule for that macro is to be loaded. The USE
parameter is still in effect for the OPENM and CLOSEM
macros.

STLD.RM MACRO FORMAT

Another method of specifying static loading is through the
STLD.RM macro. The format of the STLD.RM macro is
shown in figure E-2. This macro must be specified once
for each file organization.

E-2

Figure E-1. Static Loading Example

{fo) STLD.RM USERT={r), USE={f),OMIT=(c),O0RG=(n)

r Record type list; record types are separated by
commas.
f AAM functions {macro names); functions are

separated by commas.

c CMM or FDL; CMM omits CMM and FDL, FDL
omits FDL only.

n Currently supported AAM file. NEW must be
specified for macro to work.

Figure E-2. STLD.RM Macro Format

60499300 £

USE OF LIST-OF-FILES F

W

The NOS and NOS/BE operating systems maintain a pointer
to the list-of-files, which is a table of the name and FET or
FIT address of all active files for each control point. This
pointer is set and accessed by the SETLOF and GETL.OF
macros. A complete description of this feature can be
found in volume 2 of the NOS Reference Manual and the
System Programmer's Reference Manual for the NOS/BE
operating system.

AAM maintains and uses this list-of-files. To alter this
list, a user must follow a procedure that is compatible with

AAM.

60499300 C

AAM maintains an entry point in its relocatable loaded
routines called LOF$RM. The content of this entry point is
the address of the current list-of-files. The purpose of this
pointer is to minimize the number of GETLOF monitor
calls required. The user is encouraged to use this pointer
instead of calling the GETL.OF macro.

If a user program that coexists with AAM moves the
list-of-files, it must update the LOF$RM pointer in
addition to calling the SETLOF macro. Also, if a user
program adds a new entry to the end of the list-of-files, it
must ensure that the next word is zero because AAM does

not initialize the list-of-files block to zero.

F-1

BUFFER ALLOCATION | G

M

Buffer space for AAM files can be allocated either through
Common Memory Manager {pooled buffer space) or by the
user (user buffer space). The values at open time in the
first word address of a buffer (FWB) and buffer size (BFS)
fields of the FIT are used to determine whether Common
Memory Manager (CMM) or the user will control buffer
allocation.

POOLED BUFFER SPACE

If FWB equals zero, then buffer space is provided through
CMM. The file can be open through more than one FIT at
the same time, provided that FWB is zero in all of them.

To limit the amount of buffer space AAM requests from
CMM,; AAM calculates a total called TARGET whenever an
OPEN or CLOSE is executed. When a buffer is needed,
AAM checks TARGET before requesting more buffer space
from CMM. If the size of the new buffer would make the
current buffer space total greater than TARGET, old
buffers are released to CMM to reduce the current buffer
space total enough to accommodate the addition of the
new buffer. The method of choosing buffers to be released
is described later in this appendix.

CALCULATING TARGET

All files currently open are used in calculating the value of
TARGET. The TARGET contribution of each file is
calculated by scanning all the FITs through which the file
is open as follows:

@ Add BFS to the file's TARGET contribution for all the
FITs in which BFS does not equal zero. (This gives the
user a way of controlling TARGET if necessary.)

@ Allocate ane block for each FIT in which BFS equals
zero. To this number of blocks

Add 1 block for a direct access or actual key file.

* Add 2 blocks for an indexed sequential file with
zero or one level of indexing.

Add 5 blocks for an indexed sequential file with
more than one level of indexing.

Multiply the new number of blocks by the size of a
data file block. Add this result to the file's TARGET
contribution. ’

@ Allocate one block for each FIT in which BFS equals
zero and an alternate index file (MIP file) is specified.
To this number of blocks
Add 3 blocks if there is only one alternate key.
Add 5 blocks otherwise.
Multiply the new number of blocks by the size of a

MIP file block, and add the result to the file's
TARGET contribution.

60499300 E

Finally, the value resulting from adding .each file's
TARGET contribution is increased by 2000g words to
accommodate AAM capsules, which are loaded when
needed and unloaded automatically if unused for a long
time.

The current field length can impose an upper limit on
TARGET. When TARGET is to be adjusted (because of an
OPEN or CLOSE operation), AAM calculates the new value
of TARGET and uses statistics requested from CMM to
adjust TARGET downward, if necessary.

CONTROLLING TARGET
A user program can control TARGET in one of two ways:

e By using BFS. If BFS does not equal zero in every
open FIT, then TARGET is simply the total of all the
BFS values.

@ By storing a value in entry point AAMSBL (an entry
point in the statically loaded portion of CRM).
AAMSBL normally contains a value of 377777g; any
other value found in AAMS$BL is used as an upper
bound on TARGET. However, TARGET will never be
reduced below the minimum amount of buffer space
needed to process the individual file currently open
with the largest block requirements. (Execution is
very slow if TARGET is equal to the minimum.) The
value in AAM$BL, which can be set at any time during
program execution, is checked and used by AAM only
at file open and close time. If a user sets a value in
AAMS$BL that is not large enough to allow AAM to
process the open files, AAM will increase TARGET to
accommodate the worst case file. The user's program
is not aborted and the value in AAM$BL is not reset by
AAM. AAM will calculate an internal value for
AAMS$BL based on the minimum number of buffers
required to process the worst case file.

TARGET sets the upper bound on the amount of CMM
space used for block buffers for the files currently open.
The buffer space is pooled; therefore, if only one file is
active, all the buffer space could be allocated to the active
file's buffers. If all files are active, the files will compete
for buffer space. The 2000g words for an AAM capsule
that is infrequently present in memory will provide
additional buffer space when rare capsules are not loaded.

USER BUFFER SPACE

If FWB is not equal to zero when a file is opened, then
buffer space is provided directly by the user. The address
of the user buffer space is in FWB and the length is BFS
words. BFS should be large enough to contain the following:

@ The FSTT (file statistics table) -- 130 words.

@ If there are alternate keys, the FSTT of the alternate
key index file and its FET -~ 139 words.

@ The FIT extension -- up to 168 words.

@ Space for the data file ~- 3 block buffers.

@ Space for the alternate key index file, if any -- 3 block
buffers.

@ If compression is used, space for the compression
buffer -~ 1 block buffer.

If BFS is longer than the minimum, the extra space is
divided between extra block buffers for the data file and
extra block buffers for the alternate key index file, if any.

Once allocated to a file, the user buffer space (with its
alternate key index file, if any) cannot be used by any
other file and can be addressed only through this FIT.

If the user explicitly disables CMM, a minimum space of
two blocks (three blocks if the file is compressed) must be
allocated for each file. If the minimum space is not
allocated, an error message is issued and the file is not
opened. If CMM is not explicitly disabled by the user,
TARGET is increased by the difference between the user
buffer space and the minimum requirement.

BUFFER CHAINING
AND ALLOCATION

File block buffers, whether provided directly by the user
program or obtained from CMM, are bi-directionally
chained in two chains. The first chain, an ownership chain,
is formed by all block buffers of a given file. This chain
associates the block buffers with the file. Unused block
buffers, which exist only in user-provided buffer space, are
also chained in this way because they belong directly to the
file. (Unused block buffers in CMM space are immediately
given back to CMM; therefore, the block buffers do not
appear in AAM chains). Ownership chains are not part of
the strategy of buffer allocation.

The second chain, the kick-out chain, consists of linkages
between all block buffers of every open file (including
those that have user-provided buffer space).

The basic strategy of buffer management is to move a
buffer to the top of the kick-out chain when the buffer is
accessed and to release the buffer at the bottom of the
kick-out chain as space is needed. Therefore, blocks

gradually migrate to the tail of the kick-out chain due to
lack of use. The exceptions to this strategy are as follows:

® Whenever any index block of an indexed sequential file
is referenced, the index block is moved to the top of
the chain, and then the primary index block of the
same file, if present in memory, is moved to the top of
the chain.

® Whenever AAM's attention moves, within an indexed
sequential or actual key file, from one data block to
another, the new data block goes to the top of the
chain. The old data block is pushed down past all the
index blocks and all the capsules that may be in the
chain.

® AAM scans the kick-out chain twice, from bottom to
top, when choosing the blocks that will be released to
make room for the new blocks. On the first scan, only
blacks that have not been altered, and, therefore, do
not need to be written out, are released. However, if
a block exactly the right size is found, it is chosen
immediately and written out if necessary, and the
search is ended. If no such block is found and the total
space from the blocks released is not enough, a second
scan is made, and altered blocks are written out and
released until there is enough space for the new blocks.

@ An AAM capsule goes to the top of the kick-out chain
when it is loaded, and whenever it is executed. On
loading or executing, the capsule is given a count of
three.” When the capsule drifts to the bottom of the
chain, the count is reduced by one. If the result is
zero, the capsule is unloaded. If the result is not zero,
the capsule goes to the top of the chain.

® A buffer in the user buffer space can be used only for
its own particular file. ‘

PERFORMANCE
CONSIDERATIONS

If AAM is allowed to control buffer space, by leaving FWB
and BFS equal to zero in all FITs, and not setting a limit in
AAMSBL, then performance will not suffer because of
insufficient buffer space. Performance will be better when
all the open files have the same block size because CMM
will not have to be called very often to reallocate space.

60499300 D

DATA COMPRESSION AND DATA ENCRYPTION H

AAM supports data compression modules. These modules
contain routines that enable the user to manipulate the
size and format of data records when the records are
passed between the working storage area (WSA) and a data
file, as shown in figure H-1. Routine X1 compresses,
expands, or reformats the records when they are passed to
the file. Routine X2 restores the records to their original
size and format when they are retrieved from the file.

@ wsa

Routine X1 Routine X2

Data File

@ . Installation-defined system routines
e User-supplied routines

Data compression is specified by setting the compression
routine address (CPA) field in the FIT. For a system
routine, the CPA field is set to 1 for the release routine or
to an integer in the range 2 through 63 for an
installation-defined routine. For a user-supplied routine,
the CPA field is set to the address of the entry point name
of the user subroutine that compresses records. When a
user-supplied routine is specified for the CPA field, the
decompression routine address (DCA) field must be set ta
the address of the entry point name of a user subroutine
that decompresses records.

Data compression can be established for the life of a file
only on the file creation run. Once data compression has
been selected, the method of compression must be the
same for the life of the file. The same compression and
decompression routines must be specified as long as the
file exists. However, after data compression has been
selected, it can be stopped by setting the CPA field to zero.

The compression and decompression routines are called by
AAM with register Al pointing to the vector shown in
figure H-2.

Figure H-1. Routines Used to Manipulate Size
and Format of Data Records

Compression modules ¢an conserve disk storage space by
deleting consecutive accurrences of specific characters in
data records. For example, a compression routine can
delete strings of blanks in records before the records are
written to the file. A decompression routine restores the
blanks to the records when the records are read.

Compression modules can cause disk storage space for a
file to increase. AAM conserves space in data blocks that
contain records of uniform length by having a single
half-word record pointer for the block. If one of the
records decreases in size, as by the compression of a string
of blanks, the block no longer contains records of uniform
length and AAM creates half-word record pointers for
every record in the block. This can result in a net loss of
space.

A compression module can be coded to perform as an
encryption module. Encryption modules are used to
reformat and expand data records. The length of the
encrypted records must be within the number of characters
specified by the maximum record length (MRL) field in the
FIT. A decryption routine restores the records to their
original size and format when the records are read.

Because AAM handles compression and encryption modules
in the same manner, the following discussion is limited to
compression modules.

Three types of compression and decompression routines can
be provided to AAM for use on a file:

o Release system routines

60499300 £

(A1)—s{ address of cell containing fwa of record
address of cell containing length of record (char)

address of cell containing rel word of start of
key

address of cell containing rel char pos of start of
of key

address of cell containing length of key
address of cell containing fwa of destination
address of cell containing length of destination

address of cell to contain length of product

Figure H-2. Vector Used by Compression/
Decompression Routines

The primary key for records in a compressed file can be
embedded or nonembedded. If the key is embedded, it
must begin in the first character position of the first
word. If the key is not embedded, the key length
parameter must be zero. The primary key can be any type
that is valid for the file organization.

AAM sets up a destination area to receive the record
produced .by the compression or decompression routine.
The compression routine stores an identifier in the first
word of the destination area. This identifier is also stored
in the COMPACT field in the file statistics table (FSTT)
when data compression is first selected. On subsequent
runs when the file is opened, the identifier produced by the
compression routine is verified against the identifier in the
FSTT to ensure that the proper compression routine has
been specified. The length of the destination area is the

length indicated by the MRL field plus ten characters for
the identifier. A decompression routine does not store an
identifier in the destination area; the key/record starts at
the first word. Figure H-3 shows the format of the
destination area.

word 1 Identifier
word 2-m Key {If embedded) X
word m*-n

X Record

*word m+1 if the key is a multiple of 10 characters. Word 2
if a nonembedded key.

Figure H-3. Destination Area Format

The type of compression is noted in the SYSCOMP field in
the FSTT. This field indicates whether system-supplied or
user-supplied routines are used for compression and
decompression of records.

SYSTEM-SUPPLIED ROUTINES

A system-supplied compression routine is identified by an
integer value in the range 1 through 63. The integer is
specified for the CPA field; AAM sets the DCA field for
the corresponding system decompression routine.

When a system-supplied compression routine is specified at
create time, the routine number is stored in the SYSCOMP
field in the FSTT, and the identifier is stored in the
COMPACT field in the FSTT. The specified compression
routine and its associated decompression routine are
loaded, and the locations of the routines are stored in the
CPA and DCA fields in the FIT. The user must ensure that
these FIT fields are not changed as long as the file exists;
however, the CPA field can be set to zero to stop
compression of records.

When a compressed file is opened, the routine number
stored in the FSTT causes the appropriate system routines
to be loaded. The CPA and DCA fields are set by AAM to
the locations of these routines.

RELEASE ROUTINE

Compression routine number 1 attempts to shorten record
length by compressing consecutive occurrences of display
coded blanks, zeros, and colons. Up to 18 occurrences of
the character are compressed into two characters. The
first character is an escape character (<), which indicates
the beginning of a compressed string. The six bits of the
second character are used as follows:

H-2

® A two-bit code indicating the compressed character:

00 Colon ‘ (00g)
01 Zero (33g)
10 Blank (55g)
11 = Escape character (<) (72g)

® A four-bit count indicating the number of occurrences
of the compressed character.

Compression is not performed for one or two occurrences
of the zero, colon, or blank. The repeat count, therefore,
does not reflect the actual count; it designates how many
more than three characters appear consecutively.

Compression is performed for all natural occurrences of
escape characters (<) in a record to distinguish these
characters from those that indicate the beginning of
compressed strings in compressed records. One or more
occurrences of the escape character anywhere in a record
result in compression of that record, even if a longer
record is produced. For example, a single occurrence of
the escape character in a record is indicated by two
characters in the compressed record. One character
indicates a compressed string and another indicates the
character code and repeat count.

INSTALLATION-DEFINED ROUTINES

The wuser (system analyst) can create system
compression/decompression routines in addition to the
standard release routines. After the additional routines
are installed, they are called when the file is created by
setting the CPA field to an integer between 2 and 63.
AAM then dynamically loads and links the appropriate
routines.

The source code for installation-supplied compression and
decompression routines must be built into a capsule that
meets the internal requirements of AAM. The following
paragraphs explain the source code for setting up a simple
compression/decompression routine. This example assumes
a 50-character record with a 5-character key embedded at
the beginning of the record. The compression routine
discards every other character of the record; the
decompression routine replaces the discarded characters
with blanks.

Figure H-4 shows the code that sets up the capsule name
and linkage to the compression and decompression
routines. The code is described as follows:

@ The IDENT statement identifies the capsule name.
This statement is of the form CMPR$nn where nn is
between 02 and 63. The integer nn is specified in the
CPA field in the FIT at file creation time. The
standard AAM open routine internally recognizes CPA
2 through 10. If CPA 11 through 63 are used, the
system analyst must include the numbers used in a
table near OPNMDAA.315 in the module OPNM$AA.,

° The LCC statements are loader directives that can

reside either in the source as LCCs or in the control
statement load sequence that builds the capsule. In
both cases, the group must be AAM$CTL and the
capsule must be CMPR$nn.

160499300 C

03152022533336000001

0
1
1 00000000000000000003 +
2 00000000000000000010 +

EXPAND

CMPR$03

COoMP

IDENT CMPR3$03 .
Lcc GROUP($SAAMSSCTLS)
LCC CAPSULE($CMPR$303%)
ENTRY CMPR$03

VFD 42/0LCMPR$03,18/1
BSS 0

VFD 42/0,18/CCOMP

VFD 42/0,18/CEXPAND

Figure H-4. Code Used to Set Up Capsule Name and Linkage to Compression/Decompression Routines

e The remaining statements set up a three-word block
that must reside in the capsule. Figure H-5 shows the
format of the three-word block. The format is
described as follows:

CMPR$nn (address x) is declared an entry point.
The word at x-1 is the AAM capstat word. The
capstat word contains the name of the capsule
(CMPR$nn) and a capsule activity count (1).
AAM uses the capsule activity count to determine
when to unload the capsule.

The words at x and x+1 contain the addresses of
the compression and decompression routines,
respectively. Note that the loader does not allow
nonstandard relocation in capsules. Standard
relocation requires 18-bit addresses in one of the
three standard parcels of a computer words
therefore, the addresses at x and x+1 are coded as
VFD 42/0,18/addr instead of VFD 60/addr. This
problem concerns orly COMPASS programmers
since compilers such ' as FORTRAN always
generate standard relocation.

The formal parameters are as listed in figure H-2.
Because the fwa parameters are indirect addresses, any
FORTRAN or COBOL compression routine requires a
COMPASS interface to adjust the parameter list. Figure
H-6 shows code that replaces the indirect pointers in the
parameter list used by the FORTRAN compression and
decompression routines. The code restores the indirect
addresses to the list when control is returned from the
FORTRAN routines.

Figure H-7 shows the FORTRAN compression and
decompression routines called from the COMPASS portion
of the capsule.

Figure H-8 shows the load map for the capsule CMPR$03.
The following statements generate the capsule:

LOAD,bin.
NOGO,CAPS.

60499300 C

The CAPS file contains the modules in capsule format.
The capsule can now be added to AAMLIB with the LIBGEN
and SYSEDIT statements for NOS or with the EDITLIB
statement for NOS/BE. AAM will then load and link the
capsule when needed by files with CPA set to the
appropriate value at file creation time. Subsequent runs do
not require that CPA be specified since CPA information is
recorded in the FSTT for the file.

The capsule can also be added to a user library with the
LIBGEN or EDITLIB statements. AAM will load and link
the capsule from the user library if the library file is
declared a global library with the LIBRARY statement.
Routines on a user library must be made available to each
job step that references the file.

USER-SUPPLIED ROUTINES

User-supplied compression and decompression routines are
specified by setting the CPA and DCA fields in the FIT to
the routine entry points. AAM communicates with the
compression routine through the list of arguments specified
in figure H-2. :

The compression routine must set the compressed record
length parameter. If the record can be compressed, the
record length returned to AAM is the number of characters
in the compressed record plus ten characters for the
identifier. If the compression routine makes the record
longer instead of shorter, a negative number must be
returned. This informs AAM that the original record
should be used.

When a file is compressed by a user-supplied routine, the
user is responsible for maintaining the correct routine
entry points in the CPA and DCA fields.

When the file is opened, the CPA field is checked for a zero
value. If it is set to zero, no compression or decompression
is performed. ’

When a compressed record is retrieved from the file, the
decompression routine is called to restore the record to its
original state. The record passed to the routine does not
include the identifier. The decompression routine must
return the decompressed record length. If the
decompressed record exceeds the size of the destination
area, a negative number must be returned. Returning a
negative number produces an error, and the record is not
transferred.

-=——42 bits

P et 18 Dits

x-1 CMPR$nn 1] Capstat word
CMPR$nn X Comcm':e::;on
x+1 Expansion
Address
Figure H-5. Three-Word Block Residing in Capsule
3 0400400003 + CCOMP EQ *+4000008
4 0100000015 + RJ PATCH
5 0100000000 X RJ =XCOMP
6 0100000024 + RJ RESTORE
7 0400000003 + EQ ccomp
10 0400400010 + CEXPAND EQ *+400000B
11 0100000015 + RJ PATCH
12 0100000000 X RJ =XEXPAND
13 0100000024 + RJ RESTORE
14 0400000010 + EQ CEXPAND
*
* _PATCH- REMOVES THE INDIRECT POINTERS IN THE -APLIST- FOR THE OLD
* AND NEW RECORD AREAS.
*
15 0400400015 + PATCH EQ *+400000B
16 74610 SX6 Al
5160000031 + SA6 SAVEAL
53210 SA2 X1 PTR TO PTR TO OLD RECORD
17 10722 BX7 X2
54710 SA7 Al PTR REMOVED
10611 BX6 X1
20 5160000032 + SA6 SAVEAPQ SAVE OLD REC PTR FOR RESTORE .
54110 SAl Al REFRESH Al WITH NEW VALUE
21 5021000005 SA2 Al+5 PTR TO PTR TO NEW RECORD
53320 SA3 X2
10733 BX7 X3
22 54720 SA7 A2 PTR REMOVED
10622 BX6 X2
5160000033 + SA6 SAVEAPN SAVE NEW REC PTR FOR RESTORE
23 0400000015 + EQ PATCH
*
* L.RESTORE- PUTS THE INDIRECT POINTERS FOR THE OLD AND NEW RECORD
* AREAS BACK INTO THE -APLIST-.
* .
24 0400400024 + RESTORE EQ *+400000B
25 5120000031 + SA2 SAVEAL OLD APLIST POINTER
5130000032 + SA3 SAVEAPO
26 5140000033 + SA4 SAVEAPN
10633 BX6 X3
10744 BX7 X4
27 20 SA6 X2
5272000005 SA7 X245
53120 SAl X2
30 0400000024 + EQ RESTORE
31 1 SAVEAL BSS 1
32 1 SAVEAPQ BSS 1
33 1 SAVEAPN BSS 1
34 END
Figure H-6. Code that Adjusts the Parameter List

H-4

60499300 C

RN b b et e bt et b e e et
CLOWRNOANEBWRIFOWO N OIS WRN -

N
—

LRI NN NN NN
COUNNOTEWN

OO0

(o}

OO

SUBROUTINE COMP (OLDREC, OLDRL, KEY, KP, KL, NEWREC, NEWLEN,NEWRL)
IMPLICIT INTEGER (A-Z))

CHARACTER OLDREC*100

CHARACTER NEWREC*100

-COMP- REMOVES EVERY OTHER CHARACTER FROM EACH RECORD. -COMP- ASSUMES
THAT THE KEY IS EMBEDDED AT THE BEGINNING OF THE RECORD.

SET -PASSWORD- INTO FIRST WORD OF DESTINATION
NEWREC (1:10) = 'PASSWORD'
NEWRL = 10 + KL

EXIT IF THIS IS A PASSWORD VERIFICATION CALL FROM CRM

IF (KL .EQ. 0) RETURN
NEWREC (11 : KL+10) = OLDREC (1 : KL)
DO 100 I =KL + 1, OLDRL, 2
NEWRL = NEWRL + 1

100 NEWREC (NEWRL:NEWRL) = OLDREC (I:I)
RETURN

-EXPAND- REPLACES THE CHARACTERS DELETED BY -COMP- WITH BLANKS.

ENTRY EXPAND {OLDREC, OLDRL, KEY, KP, KL, NEWREC, NEWLEN, NEWRL)
NEWRL = KL
NEWREC (1 : KL) = OLDREC (1 : KL)
DO 200 I = KL + 1, OLDRL
NEWREC (NEWRL+1 : NEWRL+1) = OLDREC (I:I)
NEWREC (NEWRL+2 : NEWRL+2) = ' '
200 NEWRL = NEWRL + 2
RETURN
END

60499300 C

Figure H-7. Compression/Decompression Routines

H-5

dey peo £O$HAWD '8-H enbid

*3000 NOILVZITYILINI ONY QIV=SAS N3IML3g NI
"AYVHEIT IWIL NAY S04 IZIVILINI - S70d

"IWYN 3714 V N3AID 114 NV 31VI07
*SITLITTLIN “ISIW T4
ONIAYOT 3NSdYI 104
*SILLITILA AYVYEIT LJ3080 Nv¥l¥0d

"HOLAI¥ISI0 ¥ILIVUVHI WHOd - §72d
*141Y0SENS ITGIVYVA WHO4 - S04

ISTT Y3L13Wvdvd Ad0J - SN1d

31YNILYINOD ONV 3JAOW ¥3LIVAYHI
0=1d03NILNOYANS

SIN3WWOD

0Es
0€s

0€s
0¢€s
0ES
0¢€s

0€s
0¢gs

0€S
0€s
I X£9¢ 829
0€s

JYYMOUVH T3AIT

SSVdHO)
SSYdW0)

9°¢

9't

9°€ SSYdWO0I
9°€ SSYdWOD
9°€ SSVdWOJ
9°€¢ SSYdWO0D
9°€ SSVdWOD
9°€ SSVdWOD
9°€ SSYdW0D
9°€ SSYdWOD
0§

NL3
9°€ SSYdW0I

3N YSSI0Yd

92/60/08
92/60/08

92/60/08
92/60/08
92/60/08
92/60/08

92/60/08
92/60/08

92/60/08
92/60/08
¥1/11/08
¥1/11/08

ilva

Sdvd JT1I4 OL NILLTYM

826-5°T ¥3av01 ¥39AD

gI7SNL4-1S
gI76NL4-1S

gI7T6NL4-TS
9I7SNL3-T1S
8I7TGNLd-TS
§I7GNLA-T1S

8I1GNL4-TS
gI7ISNL3-TS

gI16N14-1S

I7GNLA-TS
091
09

3114

1
4%
1
91
S91
€9
95¢1
€L
113
{
éc
ST
00¢
9
¥Se
99¢
123

HLI9NTT

19¢2¢
XA
922t
2voe
§59¢
¢LSe
14531
1¢¢1
S911
a1l
¥ell
L011
£09
109
Set
IA)

€

Ssayaav

=QIVSAS
=AYLNSD
/ON3"d1S/
=114139
=1L0A04
104=124
=SAS¥04
/1N3=124/
/3" 124/
/°01°dv/
=034

=SAd
/°01°50/
=1dJ
=3A0WHD
dh0D
£0$YdWD

%2074

*SINIWNDISSY 33078 OGNV WYY90¥d

§29¢

TLISWY

dNnoyd

== H19N3T 37NnSdY¥2

£03UdWI

3INSdvI

£0$Y¥dWI - d¥W GY01

60499300 C

H-6

FUTURE SYSTEM MIGRATION GUIDELINES i

e

This appendix contains programming practices
recommended by CDC for users of the software described
in this manual. When possible, application programs based
on this software should be designed and coded in
conformance with these recommendations.

Two forms of guidelines are given. The general guidelines
minimize application program dependence on the specific
characteristics of a hardware system. The feature use
guidelines ensure the easiest migration of an application
program to future hardware or software systems.

GENERAL GUIDELINES

' Good programming techniques always include the following
practices to avoid hardware dependency:

e Avoid programming with hardcoded constants.
Manipulation of data should never depend on the
occurrence of a type of data in a fixed multiple such
as 6, 10, or 60.

@ Do not manipulate data based on the binary
representation of that data. Characters should be
manipulated as characters, rather than as octal
display~-coded values or as 6-bit binary digits.
Numbers should be manipulated as numeric data of a
known type, rather than as binary patterns within a
central memory word.

e Do not identify or classify information based on the
location of a specific value within a specific set of
central memory word bits.

e Avoid using COMPASS in application programs.
COMPASS and other machine-dependent languages can
complicate migration to future hardware or software
systems. Migration is restricted by continued use of
COMPASS subroutines embedded in programs using
higher-level languages, and by COMPASS owncode
routines used with CDC standard products. COMPASS
should only be used to create part or all of an
application program when the function cannot be
performed in a higher-level language or when
execution efficiency is more important than any other
consideratian.

60499300 E

FEATURE USE GUIDELINES

The recommendations in the remainder of this appendix
ensure the easiest migration of an application program for
use on future hardware or software systems. These
recommendations are based on known or anticipated
changes in the hardware or software system, or comply
with proposed new industry standards or proposed changes
to existing industry standards.

ADVANCED ACCESS METHODS

The Advanced Access Methods (AAM) offer several
features within which choices must be made. The
following paragraphs indicate preferred usage.

Access Methods

The recommended access methods are indexed sequential
(1S), direct access (DA), and multiple index processor (MIP).

Record Types

The recommended record types are either F for fixed
length records, or W for variable length records. Record
length for W records is indicated in the control word; the
length must be supplied by the user in the RL FIT field on a
put operation and is returned to the user in RL on a get
operation.

FORTRAN Usage

The following machine-independent coding practices are
encouraged for a FORTRAN programmer using AAM:

e Initialize the FIT by FILExx calls or by the FILE
control statement.

e Modify the FIT with STOREF calls.

e Use FORTRAN 5 CHARACTER data types when
working with character fields rather than octal values
of display code characters; specify lengths of fields,
records,-and so forth, in characters rather than words.

e Manipulate records containing character data as a
CHARACTER array or variable, not as INTEGER. The
working storage area (WSA), for example, should be
declared as CHARACTER.

SUMMARY OF FORTRAN‘ CALL STATEMENTS

)

This appendix includes the general formats of FORTRAN
calls to AAM for indexed sequential, actual key, and direct
access file organizations. The following conventions are
used: ’

e Words in uppercase must appear exactly as they are
shown.

e Words in lowercase are generic terms that represent
the words or symbols supplied by the programmer. In
most instances, the terms are the same as actual
names of FIT fields. These fields can be constants or
integer variables.

¢ Subroutines FILExx and STOREF require speci-
fications of field and value. The word field denotes
the name of a FIT field; it must be a character string
in left-justified format. The word value denotes the
value to be placed in the field; it must be a character
string in left-justified format for symbolic aptions, an
integer representation for numeric options, or a
program name or variable name (for example, owncode
exits and waorking storage area).

¢ Function IFETCH requires a field specification. The
word field denotes the name of a FIT field; it must be
a character string in left-justified format. The word
variable denotes an integer variable in which the value
of the FIT field will be returned.

® Except for CALL FILExx, the order of parameters is
fixed so that all parameters positioned to the left of a
desired option must be specified. A parameter list can
be truncated at any point after the fit; middle
parameters cannot be defaulted. If a parameter is not
applicable to a particular file organization and its
position is needed in a statement, a zero must be
specified as indicated in the formats. If a parameter
is applicable to the file organization but not applicable
to the record type, a zero must be specified to mark a
needed position. Zeros should never be used for
applicable fields meaning a parameter is not intended.
A zero or the address of the constant zero will be used
as the parameter.

INDEXED SEQUENTIAL FILE
ORGANIZATION

CALL CLAOSEM (fit,ef)

CALL DL.TE (fit,ka,kp,0,ex)

CALL FILEIS (fit,field,value, . . . ,field,value)
CALL FITDMP (fit,id)

CALL GET (fit,wsa,ka,kp,mkl,0,ex)

CALL GETN (fit,wsa,ka,ex)

60499300 F

CALL GETNR (fit,wsa,ka,ex)
IFETCH (fit,field)

CALL IFETCH (fit, field, variable)
CALL OPENM (fit,pd,of)

CALL PUT (fit,wsa,rl,ka,kp,0,ex)
CALL REPLC (fit,wsa,rl,ka,kp,0,ex)
CALL REWND (fit)

CALL RMKDEF (lfndata,rkw,rkp,kl,0,kf,ks,kg,ke,nl,ie,ch)
CALL SEEKF (fit,ka,kp,mkl,ex)
CALL SKIP (fit,+count)

CALL STARTM (fit,ka,kp,mkl,ex)

CALL STOREF (fit,field,value)

ACTUAL KEY FILE ORGANIZATION
CALL CLOSEM (fit,cf)

CALL DLTE (fit,ka,kp,0,ex)

CALL FILEAK (fit,field,value, . .. ,field,value)
CALL FITDMP (fit,id)

CALL GET (fit,wsa,ka,kp,0,0,ex)

CALL GETN (fit,wsa,ka,ex)

CALL GETNR (fit,wsa,ka,ex)

IFETCH (fit,field)

CALL IFETCH (fit, field, variable)

CALL OPENM (fit,pd)

CALL PUT (fit,wsa,rl,ka,kp,0,ex)

CALL REPLC (fit,wsa,rl,ka,kp,0,ex)

CALL REWND (fit)

CALL RMKDEF (1fndata,rkw,rkp,kl,0,kf ks,kg,ke,nl ie,ch)
CALL SEEKF (fit,ka,kp,0,ex)

CALL SKIP (fit,+count)

CALL STOREF (fit,field,value)

J-1

DIRECT ACCESS FILE ORGANIZATION
CALL CLOSEM (fit,ef)

CALL DLTE (fit,ka,kp,0,ex)

CALL FILEDA (fit,field,value, . . . ,field,value)

CALL FITDMP (fit,id)

CALL GET (fit,wsa,ka,kp,0,0,ex)

CALL GETN (fit,wsa,ka,ex)

CALL GETNR (fit,wsa,ka,ex)

IFETCH (fit,field)

J-2

CALL IFETCH (fit, field, variable)
CALL OPENM (fit,pd)

CALL PUT (fit,wsa,rl,ka,kp,0,ex)
CALL REPLC (fit,wsa,rl,ka,kp,0,ex)
CALL REWND (fit)

CALL RMKDEF (Ifndata,rkw,rkp,kl,0,kf ks,kg,ke,nl,ie,ch)

CALL SEEKF (fit,ka,kp,0,ex)

CALL STOREF (fit,field,value)

60499300 F

CONCURRENCY AND AAM FILES

e L

INTRODUCTION

Concurrency is a state in which two or more users or jobs
can access a single AAM file at the same time.

An AAM file can be shared among any number of read-only
users. Each user is unaware of the other users, and the
content of the file is stable (unchanging).

Problems arise when users want to update the AAM file in
addition to reading it.

The NOS and NOS/BE permanent file management systems
require that no more than one job or user update a
particular file at any moment. The permanent file
manager prevents this fram occurring by letting no more
than one job have any kind of modification privileges on
that file at any moment.

In addition, AAM requires that no job or user may read an
AAM file while another job is updating it. If this is
attempted, the jobs or users reading the file will get
unpredictable outcomes. The job may work, or get
incorrect results, or get AAM errors, or even abort.

CONCURRENCY: THE CORRECT
SOLUTION

True multiple read/multiple update concurrency of an AAM
file is reliably achieved only through a single central
program that coordinates the reads and updates of many
other users. Examples of such a program are TAF
(Transaction Facility on NOS), CDCS (Cyber Database
Control System on NOS and NOS/BE), and CVRM
(Concurrent Version of Record Manager on NOS). When
one of these programs is used to achieve conecurrency on an
AAM file, that program is the single job that reads or
updates the file. All reads and updates from the muitiple
users of the file are performed by the central program,
which in turn provides records and status information back
to the user or job which had made the request.

If you are using TAF, CDCS, or CVRM to perform the
reads and updates on your AAM files, then full concurrency
is already available to you and you do not need to read any
further.

The rest of this appendix identifies techniques that
approach full concurrency without using one central
program.

NOTE

We strongly urge you to use a product like TAF,
CDCS, or CVRM in achieving concurrency on your
AAM files. The alternative techniques described
below are not 100 percent reliable. Use these
techniques at your own risk.

60499300 F

ALTERNATIVE TECHNIQUES

The following information is provided for those
programmers who find the risk of unreliable retrievals less
important than the need for some kind of concurrency. We
hope this information will help you to minimize your risk,
and help you identify problems when they occur.

CONCURRENCY BY REPEATED
ATTACH/OPEN, CLOSE/RETURN

One approach to the problem is to organize the job
updating the file to ATTACH, OPEN, makes changes,
CLOSE, and RETURN the file far all of its updates. The
jobs that read the file would ATTACH, OPEN, read...,
CLOSE, and RETURN the file for all of their accesses.

The updating job attaches the file with M=W to have
exclusive access and ne concurrent readers. The attaches
of the file must be done in a way that either waits or tries
again if the file is busy. If the updates are short enough,
the readers of the file are not adversely affected.

This technigue does not allow true concurrency (except by
readers only), and has the danger on NOS of the updating
job being locked out by the readers of the file. Another
disadvantage is the expense of additional overhead.
However, the results of retrieval programs are reliable
since they are not accessing the file during an update.
Query Update (QU/CRM) uses this style of file access to
simulate concurrency.

CONCURRENCY BY PERMANENT
FILE ATTACH MODES

One of the primary techniques of simulating concurrency is
the use of multiple read/single update permanent file
access.

On NOS, the updater attaches the file with M=M or M=U,
and each reader attaches the file with M=RM or M=RU.

On NOS/BE, the updater attaches the file with RW=1,
which prevents CN permission. ™MD, EX, and RD
permissions are still needed. Each reader attaches the file
with MR=1, which prevents CN, MD, and EX permissions.

In this appendix, an M=RM user refers to a reader of the
file, and an M=M user refers to an updater of the file.

An AAM file is a complex structure of different types of
blocks in a disk file. The physical order of blocks in the
file is not critical. Often, the block containing the next
sequence of records is not contiguous with the current
block. Adding records at the logical end of the file can
alter blocks in the middle, at the beginning, or at the end
of the file. The effect is unpredictable. Even changing a
single recard can affect many blocks in the file.

For efficiency, AAM does not immediately flush these
changes to disk, but keeps the blocks in memory for
awhile. At these times, the current contents of the file is
a combination of blocks in memory and blocks on disk, with
the altered memory blocks taking priority over their disk
counterparts.

During the time altered blocks exist in memory, AAM
ensures that bits are set in the FSTT, both in memory and
on disk, to indicate that the file is in a state of change.
These bits are cleared when the file is flushed or closed
and the disk copy is completely up to date.

If another control point tries to read this file using M=RM,
it can look only at the disk blocks, which generally contain
some of the changed blocks, but rarely all of them. This
can cause the file to appear to be in a ruined state because
the set of blocks on disk is inconsistent. AAM cannot
distinguish this situation from that of a truly ruined file.

The symptoms of this problem are hard to predict. An
M=RM user of the file could open the file at a time when
the FSTT indicates there is nothing wrong with the file.
Later, AAM could read in some altered blocks which could
cause various AAM internal errors. At this time, the FSTT
on disk would have some bits set to indicate the file was
being updated. The AAM ‘errors correspond to the
different combinations of reading some blocks that are
current and some blocks that are not current. The blocks
that are not current have been changed in memory for the
job updating the file, but have not yet been written to disk.

To minimize the possibility of errors, set FIT field FWI to
YES. This tells AAM to force-write all altered blocks to
disk as soon as they are changed. This minimizes the
amount of time the file is on disk in an inconsistent state.
However, it increases the job overhead of processing an
AAM-update request.

This still does not eliminate the problem. A single AAM
update can affect many blaocks, and each of these must be
flushed to disk before the operation is considered
complete. An M=RM job that accesses the file for very
short periods may execute correctly. However, it can still
read blocks from the file while the updated blocks are
being written to the file. An M=RM job that accesses the
file for long periods of time runs the risk that blocks it
holds in memory may have been changed on disk, and
pointers to other blocks may no longer be valid. In both of
these cases, an M=RM reader of the file can receive a
variety of fatal or non-fatal AAM errors.

AVOIDING ERROR 202 IN RETRIEVAL PROGRAMS

AAM sets flags in the FSTT whenever a file is In an
indeterminate state, and clears those flags whenever the
file is closed or flushed. AAM recognizes a potentially
corrupt file by the presence of these flags in the FSTT.

If a job opens an AAM file that has one of these flags set,
the job is informed of the potentially corrupt nature of the
file by an error status such as 202 (File Ruined). COBOL
and FORM jobs will terminate upon receiving this error
status, but FORTRAN users and others that get control
after the open can recognize the error and try again later.

If one job reads an AAM file while another job is updating
it, it is likely that the reader will find the file in an
apparently corrupted state. Note that the AAM job
reading the file cannot distinguish between a corrupted file
and one actively being updated by another job.

A new flag has been defined in the FIT. If this flag is set
befare the open, AAM bypasses one of the checks that
issues error 202, allowing the file to be opened. Set this
bit at your risk, because it directs AAM to read a file
otherwise considered unusable.

You can try using this bit to salvage information from a
damaged file by copying records to a new file and checking
them carefully. Do not set this bit for a job that updates
the file because you might cause a corrupted but
salvageable file to become completely destroyed and
useless.

This risky bit is unnamed, and is in the sign bit (leftmost
bit) of the 30th word of the FIT (i.e., FIT+29). Setting the
bit can cause the job to read incorrect information, receive
unpredictable errors, or aborts. However, if the possibility
of salvaging records from a partially corrupted file is more
important to you than the associated risk, set this bit at
your own risk, and never set it if you are going to update
the file.

Files read with this risky bit set can get other AAM errors,
such as 547 or 546, or get incorrect results. Setting the bit
merely bypasses an AAM error trap. The bit does not make
the results of the retrieval any more reliable.

SUMMARY

True concurrent access to CRM files under NOS and
MNOS/BE can be accomplished by having a single program
coordinate all the updates and reads on the file. CDCS is a
good example of such a program. Attempts to achieve
concurrent access through the use of permanent file access
modes such as M=M and M=RM, often appear to work, but
eventually fail with incorrect results, AAM errors, or, in
rare instances, mode errors.

We discourage the use of M=M and M=RM to achieve

concurrency on AAM files. For similar reasons, we also
discourage the user of M=U/M=RU and M=A/M=RA.

60499300 F

w

AAM
Defined 1-1
Dynamic loading E-1
Actual key 2-3
Actual key files
Block headers 2-3
Checksum 2-3, 4-6
Creation 4-6
Data blocks 2-3
Deleting records 4-9
File positioning 4-9
File statistics table 2-3
Logical structure 2-3
MIPGEN utility 7-10
Open processing 4-7
Overflow 2-3
Overflow record header 2-3
Overlap processing 4-9
Physical structure 2-3
Primary key 2-3, 4-6
Read processing 4-8
Replacing records 4-9
Structure 2-3
‘Write processing 4-8
Alternate key
Index 2-8, 6-1
Index file 2-8
Indexed sequential files 4-2
MIPGEN utility 7-10
Multiple-index files 6-1
Read processing 6-3
Repeating group 6-2; 7-10

BAM 1-1
BCK field
FILE macro parameter 3-2
FIT structure D-9
BFS field
Buffer calculation 3-11
FILE macro parameter 3-2
FIT structure D-8
Paooled buffer space G-1
User buffer space G-l
Block
Defined 2-1
MBL field 3-6,D-9
Size calculation 3-6

Buffer
Allocation G-1
BFS field 3-2

Calculation 3-11
Chaining and allocation G-2
Close processing 5-1
FLBLOK utility 7-3
FLLUSHM macro 5-2
FwB field 3-4,D-3
FWI field 3-4,D-10
Open processing 5-4
Pool limit 5-4
Pooled buffer space G-1
User buffer space G-1
BZF field
FIT structure D-11
GETNR macro 5-3
Overlap processing 4-5, 4-9, 4-1
SEEK macro 5-6 :

60499300 F

INDEX

CDT field
FILE macro parameter 3-2
FIT structure D-11
CF field
Close processing 5-2
FIT structure D-4
Character sets A-1
Checksum
Actual key files 2-3, 4-6
BCK field 3-2, D-9
Direct access files 2-5, 4-10
Indexed sequential files 2-2, 4-2
CL field
FILE macro parameter 3-2
FIT structure. D-7
T type records 2-7
CLOSEM macro
Dynamic loading E-1
File processing 4-1
Format 5-2
Index file processing 6-4
Collating sequence
CDT field 3-2, D-11
DCT field 3-3, D-9
Indexed sequential files 2-1, 4-2
Common Memory Manager
Buffer allocation G-1
Dynamic loading E-1

Concurrency
AAM Files K-1
ATTACH K-1
CLOSE K-1
OPEN K-1
RETURN K-1
CP field

FILE macro parameter 3-3
FIT structure D-8
T type records 2-7
CPA field
Data compression H-1
FILE macro parameter 3-3
FIT structure D-13
Open processing 5-4
CREATE utility 7-9
Creation run
Actual key files 4-6
Direct access files 4-9
Indexed sequential files 4-2
Multiple-index files 6-1
PD field 3-7, D-8
CRM 1-1
CRMEP control statement B-1
C1 field
D type records 2-6
FILE macro parameter 3-3
FIT structure D-8
T type records 2-7

D type records
Cl field 3-3,D-8
Defined 2-5
LL field 3-6, D-7
LP field 3-6,D-8
sSB field 3-9, D-8
Write processing 5-5

Data block
Actual key files
Defined 2-3
FIT fields 4-6
Padding 2-3, 3-3, 4-6
Direct access files
Defined 2-4
Data block {(Contd)
Direct access files (Contd)
Fit fields 4-9
Header 2-5
Indexed sequential files
Defined 2-1
FIT fields 4-2
FLBLOK utility 7-3
Header 2-2
Padding 2-2, 3-3
Record pointers 2-2
MBL field 3-6, D-9
Data compression
Buffer allocation G-2
CPA field 3-3, D-13
Description H-1

Established by OPENM macro 5-4

System-supplied routine H-2
User-supplied routines H-3
Data decompression
DCA field 3-3, D-13
Description H-1
Data decryption
DCA field 3-3, D-13
Description H-1
Data encryption
CPA field 3-3,D-13
Description H-1
Dayfile control
DFC field 3-3,D-6
Error processing B-1
DCA field .
Data decompression H-1
FILE macro parameter 3-3
FIT structure D-13
Open processing 5-4
DCT field
FILE macro parameter 3-3
FIT structure D-9
DELETE macro
Actual key files 4-9
Alternate key processing 6-3
Indexed sequential files 4-5
Format 5-2
DFC field
Error processing B-1
FILE macro parameter 3-3
FIT structure D-6
Direct access files
Blocking 2-5
Chain 2-4
Checksum 2-5
CREATE utility 7-9
Creation 4-9
Deleting records 4-12
File postioning 4-12
File statistics table 2-4
Hashing 24
Hashing routine 4-11, 7-8
Home blocks 2-4, 4-9
Key analysis utility 7-4
Logical structure 2-4
MIPGEN utility 7-10
Open processing 4-11
Overflow 4-11
Overflow blocks 2-4
Overlap processing 4-12

| Index-2

Direct access files (Contd)
Primary key 2-4, 2-5, 4-9
Read processing 4-12
Replacing records 4-12, 5-5
Structure 2-4
Synonym records 2-4, 7-8
Write processing 4-12

Directives
CREATE 7-9
FLBLOK 7-3
KYAN 7-4
RMKDEF 7-8

DP field
FILE macro parameter 3-3
FIT structure D-7

DX field
End-of-data routine 4-1
FILE macro parameter 3-3
FIT structure D-5

Dynamic loading E-1

ECT field
Error processing B-1, B-3
FIT structure D-6
EFC field
Error processing B-1
FILE macro parameter 3-4
FIT structure D-6
EMK field
FILE macro parameter 3-4
FIT structure D-11
End-of-data
DX field 3-3, D-5
GET macro 5-3
Routine 4-1
End-of-information
File positioning 4-5
GET macro 5-3
ERL field
Error processing B-1, B-3
FILE macro parameter 3-4
FIT structure D-6
Error file
EFC field 3-4, B-1
Error processing B-1
Error messages
Codes and descriptions B-4
DFC field 3-3, B-1,D-6
EFC field 3-4, B-1,D-6
Key analysis utility 7-8
Error processing B-1
Errors
Classes B-3
Error exit 3-4, B-1
Excess data 2-7, 5-3
Trivial error limit 3-4, B-1
ES field
Error communication B-1
Error condition processing B-3
FIT structure D-6
EX field
Error processing B-1, B-3
FILE macro parameter 3-4
FIT structure D-6

F type records

Defined 2-6

FL field 3-4, D-5

Write processing 5-5
Fast Dynamic Loader E-1
FETCH macro 3-10

60499300 F

File
Defined 2-1
Limit 3-4
Logical structure 2-1
Physical structure 2-1
Specification 3-9

FILE control statement
Format 3-10
OPENM macro 5-3
SETFIT macro 3-11
Static loading E-1

File information table
Consistency checks 5-4
Creation 1-1, 3-1
Dump to error file B-2
FETCH macro 3-10
FILE control statement 3-10
FILE macro 3-1
File processing 4-1
FITDMP macro B-2
Macro parameter 5-1
Nurnbering conventions 2-5
Relationship to open processing 5-4
SETFIT macro 3-11
STORE macro 3-10
Structure D-1

FILE macro
Establish FIT 1-1
Format 3-1

Null parameters 3-1
File organization
Defined 2-1
FO field 3-4,D-5
File statistics table
Actual key files 2-3
Direct access files 2-4
File processing 4-1
Indexed sequential files 2-1
FIT (see File information table)
FITDMP macro B-2
FL, field
F type records 2-6
FILE macro parameter 3-4
FIT structure D-5
Z type records 2-8
FLBLOK utility 7-3
FLM field
FILE macro parameter 3-4
FIT structure D-11
FLSTAT utility
Alternate key information 7-1, 7-3
Statistical information 7-1
FLUSHM macra 5-2
FNF field
Error processing B-1, B-3
FIT structure D-7
FO field
FILE macro parameter 3-4
FIT structure D-5
Static loading E-1
FORTRAN call statements J-1
FP field
Alternate key processing 6-3
End-of-data processing 4-1
Error processing B-3
Indexed sequential files
Major key processing 4-5
Overlap processing 4-5
FIT structure D-4
GETNR macra 5-3
Index file position 6-4
Index file processing 6-6
Primary key list count 6-6
Primary key list retrieval 6-6
SEEK macro 5-6

60499300 F

FWB field
Buffer calculation 3-11
FILE macro parameter 3-4
FIT structure D-3
Pooled buffer space G-l
Useér buffer space G-1
FWI field
FILE macro parameter 3-4
FIT structure D-10

GET macro
Alternate key processing 6-3
Actual key files
File positioning 4-9
Read processing 4-8
Direct access files 4-12
Indexed sequential files
File positioning 4-5
Major key processing 4-5
Read processing 4-4
File processing 4-1
Format 5-3
Index file processing 6-5
Primary key list retrieval 6-6
GETN macro
Actual key files
File positioning 4-9
Read processing 4-8
Alternate key processing 6-3
Direct access files
File positioning 4-12
Read processing 4-12
End-of-data condition 4-1
File processing 4-1
Format 5-3
Index file processing 6-5
Indexed sequential files
File positioning 4-5
Major key processing 4-5
Read processing 4-4
Primary key list retrieval 6-6
GETNR macro
Actual key files
File positioning 4-9
Overlap processing 4-9
Read processing 4-8
Direct access files
Overlap processing 4-12
Read processing 4-12
File processing 4-1
Format 5-3
Indexed sequential files
File positioning 4-5
Major key processing 4-5
Overlap processing 4-5
Read processing 4-4

Hashing
Direct access files
Defined 2-4
File storage allocation 2-4
Routine
HRL field 3-5, D-7
Key analysis utility 7-4
System-supplied 4-11
User-supplied 4-11
HL field
FILE macro parameter 3-5
FIT structure D-6
T type records 2-7
HMB field
FI.E macro parameter 3-5
FIT structure D-8

Home blocks
Defined 2-4
Direct access files 4-9
HMB field 3-5,D-8
Primary key 2-4

HRL field .
Direct access files 4-10
FILE macro parameter 3-5
FIT structure D-7

Index blocks
Indexed sequential files
FIT fields 4-2
FLBLOK utility 7-3
Levels 2-2
MBL field 3-6, D-9
Padding 2-3
Primary key 2-1
Record pointer 2-2
IP field 3-5,D-12
Index file
Buffer allocation G-1
File positioning 6-4
File processing 6-5
MIP
Block size 2-8, 6-1
File structure 2-8
MIPDIS utility 7-11
MIPGEN utility 7-10

Primary key list structure 2-8

XBS field 3-8,D-9
NDX field 3-6,D-10
Storage structure 6-1
XN field 3-8, 6-1, D-9

Indexed sequential files
Checksum 2-2
Collating sequence 2-1
Creation 2-1, 4-2
Data blocks 2-2
Deleting records 4-5
File positioning 4-5
File statistics table 2-1
FLBLOK utility 7-3
FLSTAT utility 7-1
Index black levels 3-7
Index blocks 2-2
Logical structure 2-1
Major key processing 4-5
MIPDIS utility 7-11
MIPGEN utility 7-10
Open processing 4-3
Overlap processing 4-5
Physical structure 2-2
Primary key 2-1, 4-2
Random processing 4-4
Read processing 4-4
Record pointers 2-2
Replacing records 4-5
Structure 2-1

Input/output status word 4-4, 5-6

IP field
FILE macro parameter 3-5
FIT structure D-12

KA field
FILE macro parameter 3-5
FIT structure D-11
Index file processing 6-5, 6-7
Key analysis utility 7-4

B Index-4

Key definition
KA field 3-5,D-11
KL field 3-5, D-12
KP field 3-5,D-11
KT field 3-5, D-12
Key position
RKP field 3-7, D-11
RKW field 3-7, D-11
KL field
Alternate key processing 6-3
FILE macro parameter 3-5
FIT structure D-12
Index file processing 6-5
Indexed sequential files 4-2
KNE field
Alternate key processing 6-3
FIT structure D-10
Index file processing 6-5
Primary key list count 6-6
Primary key list retrieval 6+7
KP field
FILE macro parameter 3-5
FIT structure D-11
Index file processing 6-5
KT field
FILE macro parameter 3-5
FIT structure D-12

L.LDSET control statement
STAT option E-1
Static loading E-1
LFN field
FILE macro parameter 3-1, 3-6
FIT structure D-3
List-of-files F-1
LL field
D type records 2-5
FILE macro parameter 3-6
FIT structure D-7
LP field
D type records 2-5
FILE macro parameter 3-6
FIT structure D-8

Macro
Coding conventions 1-1
CLOSEM 5-1
DELETE 5-2
Execution 5-1
FETCH 3-10
FILE 3-1
FLUSHM 5-2
Format 5-1
Function 1-2
GET 5-3
GETN 5-3
GETNR 5-3
Index file processing 6-5
OPENM 5-3
Parameter default value 5-1
PUT 5-5
REPLACE 5-5
REWINDM 5-6
RMKDEF 6-1
SEEK 5-6
SETFIT 3-11
SKIP 5-6
START 5-7
STORE 3-10
System text 5-1

60499300 F

Majar key
Indexed sequential files 4-5
MKL field 3-6,D-7
Multiple-index files
Primary key list retrieval 6-6
Range count retrieval 6-6
MBL field
FILE macro parameter 3-6
FIT structure D-9
Home block size (actual key files) 4-6
Migration guidelines I-1
MIP (see Multiple-Index Processar)
MIPDIS utility 7-11
MIPGEN utility 7-10
MKL field
FILE macro parameter 3-6
FIT structure D-7
Index file processing 6-6
MNR field
D type records 2-6
FILE macro parameter 3-6
FIT structure D-6
MRL field
Alternate key processing 6-2
D type records 2-6
FILE macro parameter 3-6
FIT structure D-5
Index file processing 6-5
Output file processing 4-1
R type records 2-6
T type records 2-7
U type records 2-7
Multiple-Index Processor (MIP)
Alternate key access 6-1
Block size 6-1
Defined 1-1
File updating 6-4
Index file
Count retrieval 6-6
Positioning 6-4
Primary key list retrieval 6-6
Range count retrieval 6-7
Range list retrieval 6-7
Structure 2-8, 6-1
MIPDIS utility 7-11
MIPGEN utility 7-10
Null suppression 6-2, 7-10
RMKDEF macro 6-1
Sparse control character 6-2, 7-10

NDX field
Alternate key processing 6-2
FILE macro parameter 3-6
FIT structure D-10
Index file processing 6-4, 6-5
NL field
FILE macro parameter 3-7
_FIT structure D-9
Null suppression 6-2, 7-10

OC field
CLOSEM macro 4-1, 5-2
FIT structure D-7
SETFIT macro 3-11

OF field
FILE macro parameter 3-7
FIT structure D-4

OMIT parameter

: FILE control statement 3-9

Format E-1

ON field
FILE macro parameter 3-7
FIT structure D-10

60499300 F

OPENM macro
Dynamic loading E-1
Error processing 5-4
File positioning
Actual key files 4-9
Indexed sequential files 4-5
File processing 4-1

Format 5-3
Index file processing 6-4
ORG field

FILE macro parameter 3-7
FIT structure D-7
Overflow blocks, direct access files 2-4, 4-11
Overflow records
Actual key files 2-3, 4-8
Direct access files
Defined 2-4
File creation 4-11

Padding
Actual key files 3-3; 4-6
DP field 3-3, D-7
Indexed sequential files
Data block 2-2, 3-3
Index block 2-2, 3-5
IP field 3-5, D-12
PD field
FILE macro parameter 3-7
FIT structure D-8
PKA field
Alternate key processing 6-3
FILE macro parameter 3-7
FIT structure D-9
PM field D-9
Primary key
Actual key files
Defined 2-3, 4-6
File updating 4-9
Read processing 4-8
Write processing 4-8
Direct access files
Defined 2-4, 4-9
File updating 4-12
Key position 4-12
Read processing 4-12
Indexed sequential files
Data block entry 2-2
Data compression H-1
Defined 2-1, 4-2
Embedded key 4-2
EMK field 3-4, D-11
File updating 4-5
Index block entry 2-2
Major key processing 4-5
PKA field 3-7, D-9
Read processing 4-4
Write processing 4-4
Primary key list
Count retrieval 6-6
MIP structure 2-8
Ordering of keys 6-1, 7-8
Range count retrieval 6-6
Range list retrieval 6-7
Retrieval of key values 6-6
PRU
Defined 2-1
Device 2-1
PTL field
FIT structure D-8
Index file processing 6-5
Primary key list retrieval 6-6
PUT macro
Actual key files 4-8
Alternate key processing 6-4

Index-5

PUT macro (Contd)
Direct access files 4-12
File processing 4-1
Format 5-5
Indexed sequential files 4-4

R type records
Defined 2-6
RMK field 3-8,D-7
Write processing 5-5
RB field
FILE macro parameter 3-7
FIT structure D-9
RC field
Alternate key processing 6-3
FIT structure D-9
Index file processing 6-5
Primary key list count 6-6
Primary key list retrieval 6-7
Record
Data compression H-1
Definition 2-1
Mark 2-6, 3-8
Maximum length field 3-6
Minimum length field 3-6
Type field 3-8

Types 2-5
Register use 3-11, 5-1
REL field

Alternate key processing 6-4
FILE macro parameter 3-7
File positioning 5-7
FIT structure D-12
Index file
Count retrieval 6-6
Positioning 6-4 .
Primary key list retrieval 6-6
Processing 6-5, 6-6
"Range count retrieval 6-6
Range list retrieval 6-7
REPLACE macro
Actual key files 4-9
Alternate key processing 6-4
Direct access files 4-12
Format 5-5
Indexed sequential files 4-5
REWINDM macro
Actual key files 4-9
Direct access files 4-12
Format 5-6
Index file
Positioning 6-4
Primary key list retrieval 6-7
Processing 6-5
Range count retrieval 6-7
Indexed sequential files 4-5
RKP field
Actual key files 4-6
Alternate key processing 6-3
Direct access files 4-10
FILE macro parameter 3-7
FIT structure D-11
Index file processing 6-6
Indexed sequential files 4-2
RKW field
Actual key files 4-6
Alternate key processing 6-3
Direct access files 4-10
FILE macro parameter 3-7
FIT structure D-11
Index file processing 6-6
Indexed sequential files 4-2

i Index-6

RL field
Actual key file processing 4-8
Alternate key processing 6-3
Direct access file processing 4-12
F type records 2-6
FIT structure D-4
Index file pracessing 6-6, 6-7
U type records 2-7
Z type records 2-8
RMK field
FILE macro parameter 3-8
FIT structure D-7
R type records 2-6
RMKDEF directive 7-10
RMKDEF macro

Format 6-2
Sparse keys 6-2
RT field -

FILE macro parameter 3-8
FIT structure D-5
Static loading E-1

S type records 2-7
SB field
D type records 2-6
FILE macro parameter 3-8
FIT structure D-8
T type records 2-7
SEEK macro
Actual key files 4-9
Direct access files 4-12
Format 5-6
Indexed sequential files
Major key processing 4-5
Overlap processing 4-5
SETFIT macro ..
Dynamic loading E-1 .
FILE control statement processing 3-9
Format 3-11
Signed binary key 4-2
SKIP macro
Actual key files 4-9
End-of-data condition 4-1
Format 5-6
Index file
Positioning 6-4
Processing 6-5
Range count retrieval 6-6
Indexed sequential files 4-5
Sparse keys 6-2, 7-10
START macro
Farmat 5-7
Index file
Count retrieval 6-6
Positioning 6-4
Primary key list retrieval 6-7
Processing 6-5
Range count retrieval 6-6
Range list retrieval 6-7
Indexed sequential files
File positioning 4-5
Major key processing 4-5
Static loading
FILLE control statement E-1
LDSET control statement E-1
Statistics/notes
Codes and messages B-18
DFC field 3-3, B-1, D-6
EFC field 3-4, B-1,D-6
STLD.RM macro E-2
STORE macro 3-10

60499300 F

Symbolic key W type records 2-7

Defined 4-2 Working storage area

Major key processing 4-5 File processing 4-1
Synonym records 2-4 WSA field 3-8, D-7
System-logical-record 2-1 WSA field

FILE macro parameter 3-8
FIT structure D-7
T type records Index file processing 6-6
CL field 3-2,D-7
CP field 3-3, D-8
Cl field 3-3,D-8

Defined 2-7 ; XBS field

HL field 3-5,D-6 Block size 6-1

SB field 3-8, D-8 FILE macro parameter 3-8

TL field 3-8, D-7 FIT structure D-9

Write processing 5-5 Multiple index file processing 6-3
TARGET G-1 XN field
TL field FILE macro parameter 3-9

FILE macro parameter 3-8 FIT structure D-9

FIT structure D-7 Index file 6-1

T type records 2-7 Multiple index file processing 6-3

Static loading E-1

U type records

Defined 2-7 .
Write processing 5-5 Z type records
USE parameter Defined 2-8
FILE control statement 3-9 FL field 3-4, D-5
Format E-1 Write processing 5-5

60499300 F Index-7

INI ONOTY LND

MANUAL TITLE:

PUBLICATION NO.:

REVISION: F

This form is not intended to be used as an order blank.
welcomes your evaluation of
additions or deletions, or general comments

references).

CYBER Record Manager Advanced Access Methods Version 2
Reference Manual

60499300

Please reply

(GP) CONTROL DATA

FIRST CLASS

this manual.

COMMENT SHEET

PERMIT NO. 8241

POSTAGE WILL BE PAID BY ADDRESSEE

BUSINESS REPLY MAIL

Technology and Publications Division

Mail Stop: SVL104

P.O. Box 3492

Sunnyvale, California 94088-3492

No reply necessary

Control Data Corporati
Please indicate any errors,
on the back (please include page numb

suggest

MINNEAPOLIS, MN.

NG POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

NAME

COMPANY :

STREET ADDRESS:

CITY/STATE/ZIP:

TAPE

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AND TAPE

n

TAP

JRPORATE HEADQUARTERS, P.0. BOX O, MINNEAPOLIS, MINN 55440 - , LITHO IN USA.
\LES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD ,

(G2 CONTROL DATA

