B S S e B e e e Y A S S S
b Rt B St i e : : | [
o il
AT i ey T o S DG S e v e e Ll : { 1 -
G ST e e D J i
.. - .- REFERENCE
SEL g G e :] : i :
SR s e w o r B B0 e B S e b R B e e T]
.71:0?.o¢cq_cce¢oeo:zl.l i :
RV S L R e SO e 5 e b . 2% i
- : 1
: /|
e R SRR A |
) GO0 0 0 N A e e o 1
0 CinG EO L OD OO S oA A i Ao S
fatielile e FD 00 0 00 e s (g A g S s g
G0 m o L i o e e]
PR P e L LR e Sy e 5
:.cocc:.uu & B0 e o e e s A
B e oralerelelae e e i i e e g
oo i 0 T A L AL B D 6 8 e e R RO e B e e i o Sl
.vOOHHWH.HHHHﬁHHHOG.mmaal o e L E f.l..salle.,...w,.;
i 2 BB D e e ki B)i i ol e SR ; 2 i : . RoRiE
o L Qe R e e PO Bl i e e : o

T e e L S 4

A R G e 0 G B G 0 A e e BT D o i

RS e e+ R e e B e R R R e e ok g

; Gk B B0 e 0 e e e e e s e
w.n.OQHHHh....._..HHHu z Fo il it vl o B 0L A B S R T z.:.lll.liu,¢t

BT DD OIS S0 vt id 0 DHO I Db L e
Gl elate e e S b Shage s ot SRR e

bl ol S S iTs T L AE AE Fe o B s R el) o . A A U s A S as 1
e S
L0 BN be g D000 g0 60 0- s A e S 5

U e L R R e el it e o s e it
aca.o O 00 D e e o i ot e o T b . WA %
oo B0 000 O - B e SRt ,nT_,
R e R U] (A AR .,.”..
L R s A) O G R e e e -
AR N L T . m..<

R R gl o ; b
L g6 0D 0 00 D 000 e e e ey ek) Clark Eumaﬁ_mjﬂ.
|‘|K.a}n_0°=0ﬂ330500t‘..|l, e e .
e e B S OGO i e e 4

mmn¢lgzmawﬂ¢os.

APLUM Reference Manual

by
Clark Wiedmann

APL Group
University of Massachusetts Computing Center
Graduate Research Center 4
Amherst, Massachusetts 01002

Au 1975 by Clark Wiedmann
All rights reserved.

SECOND EDITION

First Printing, mmunmﬂwmn 1975
Second Printing, February 1976

Printed by :
Hamilton I. Newell, Inc.
Apherst, MA.

PREFACE

This manual describes a version of the programming language
APL developed by the University Computing Center of the
University of Massachusetts at Amherst. The system described
here, known as APLUM, was - developed under the direction of James
H. Burrill, who was responsible for the overall system design,
planning, and coordination, and who wrote a considerable portion
of the system. Other programmers on the project included Rick
Mayforth, who was responsible for system commands, system
functions, and system variables; Sheldon Gersten, who did work
on mixed functions and shared variables; Brian Arnold, who
worked primarily on output, format functions, and shared
variables; Jeff Dean, who worked on mixed functions, workspace
conversion and system functions; Judy Smith, who wrote inner
product; and Clark Wiedmann, who worked on function definition,
the file system, and mixed functions. In addition, Pat Driscoll
and Wendy Mayfield assisted with documentation. The Raytheon
Corporation provided assistance with many of the scalar
functions, as did the Canadian Development Division of Control
Data Corporation. The project was supported in part by a grant
from Control Data Corporation. Special thanks are due to the
entire staff of the University Computing Center for their
assistance with the APL project. Credit is also due to the
developers of several other versions of the APL language for the
features and careful design that guided us in the development of
APLUM.

Primary objectives of the design for APLUM were: to achieve
a very high level of performance on the CDC 6600 and CYBER
computers under the XRONOS operating system, to provide a
flexible file system, to incorporate system functions and
variables, to provide all system command capabilities to
user-defined functions, +to allow communication with programs in
other languages, and to allow all workspace areas (including the
symbol table and file buffers) to change size dynamically
according to changing needs. The system was also designed with a
storage management scheme that will enable future implementation

of arrays of arrays or future extensions to allow functions and
variables not in use to reside on secondary memory devices, thus
allowing an almost unlimited workspace size.

This edition is intended to describe version 2.12 of APLUM.
For information about recent changes, see the APLNEWS workspace
on the system. This is accessed by typing the APL command []LOAD
‘«APL1 APLNEWS'.

This book is arranged as a reference manual and not as a
teaching manual. The intent is to accurately describe particular
details of APLUM, but not to teach APL to the novice. Hence the
reader will find that this book lacks the wealth of examples,
problems, and exercises that are wusually found in a teaching
manual. Some previocus knowledge of APL is almost essential in
order to make use of this manual, and the following books are
recommended as possible introductions to the language:

APIL\ 360 Primer, Paul Berry, IBM Technical Publications,
New York, 1969. Covers in detail function definition
and many primitive functions and system commands, but
barely touches on matrices, higher-order arrays, and
many mixed functions. Recommended for the occasional
user of APL.

Handbook of APL Programming, Clark Wiedmann, Petrocelli
Books, N.Y., 1974. A comprehensive introduction for
the more advanced user of APL who will make extensive
use of the capabilities available.

Although this reference manual 1is intended for the reader
who already has some knowledge of APL, it is recognized that all
too often programmers are introduced to a new language through a
reference manual. Conseguently, a short introduction has been
provided so that the focllowing chapters will make some sense to
the APL novice. The introduction also attempts to emphasize some
of the more important features of the language to an extent that
the organization of later chapters does not allow.

Clark Wiedmann

Amherst, 1975

ii

Introduction.

Chapter 1.
Chapter 2.
Chapter 3.
Chapter 4.
Chapter 5.
Chapter 6.
Chapter 7.
Chapter 8.
Chapter 9.
Chapter 10.
Chapter 11.
Chapter 12.
aAppendix A.
Appendix B.
Appendix C.
Appendix D.
Appendix E.
INDEX

CONTENTS

A Sample Terminal Session
User Defined Functions

Statement Form and Order
of Evaluation

Scalar Functions

Array Concepts and Indexing
Mixed Functions

Composite Functions

System Functions and Variables
System Commands

File System

APL Public Libraries
Optimization of APL Programs
KRONOS Features for APLUM Users
Error Messages

Output Format

Character Sets and Terminals
APLUM Control Card

Numerical Limitations

idd

9-1
10-1
11-1
12-1
A-1
B~1
Cc-1
D-1
E~1

INDEX-1

Introduction. A Sample Terminal Session

This short introduction to APL shows a sample terminal
session from the time of signing on until the time of signing
off. This section attempts to emphasize some of the important
facilities of APL, and attempts to show the dynamic nature of APL
{which may not be evident from the following chapters).

SIGHING ON

The first step is to establish a telephone connection
tetween the terminal and the computer. This procedure varies
somewhat according to the installation and the equipment used.
Further information about telephone numbers, types of terminals
that are supported, accounting procedures, and restrictions
placed on use of computer rescurces should be c¢btained from the
installation. The following discussion assumes that an acoustic
coupler will be used and that the terminal is capable of printing
the APL symbols (a Selectric or an ASCII-APL terminal). Other
zerminals, such as a Model 33 Teletype, can be used (see
zppendix C) but they are much less satisfactory.

1. Turn on the terminal and the coupler (sometimes one
switch activates both). Dial the phone number for the

computer. At most installations the phone number
varies according to the type of terminal and the data
rate to be used. However, at the University of

Massachusetts = a single phone number is used
(413-545~1600) . You should soon hear a high-pitched
tone indicating the computer has answered the phone.
Place the telephone handset in the acoustic coupler.
Usually, one end of the acoustic coupler is marked
"cord" to indicate which end of the telephone handset
should be placed there. It is important +to match the
correct ends.

27 At most installations the system will begin to
print after a pause of a few seconds. However, at the
University of Massachusetts the user must take the
initiative by typing I= and RETURN for a Selectric
terminal, or) and RETURN for an ASCII-APL terminal.
These first characters identify the type of terminal
being used and the data transmission rate to the TEMPC
mini-computer that handles communications. Failure to
use the correct characters to identify the terminal is
likely to result in failure to communicate.

3. The system will print something like the following:

75/08/14,. 16.14.58,
UMASS CYBER 74, KRONOS 2.1.7 *C=*.
USER NUMBER:

The first line is the current date and time, and the
second line identifies the installation and version of
the operating system in use. Type your user number
where the system has reguested it and press RETURI.
The system will then regquest your password. Type it
over the blackened squares the computer provides (or
merely press RETURN if your wuser number has no
password). The system responds with something like:

TERMINAL 22,C0R
RECOVER/SYSTEM:

4. Type APLUM to begin APL processing if you are
using an ASCII-~-APL terminal (e.g., Teletype 38,
Tektronix 4013, or Memorex 1240 with APL keyboards).
At the University of Massachusetts other terminals that
print APL characters {e.g., Selectric terminals) may be
used without special considerations. However, for most
installations the wuse of such terminals requires the
use of APLUM commands of the form APLUM,TT=COR. See
Appendix C and Appendix D for details, The APL system
will identify itself as follows:

APLUM2.11 75/08/12, 08.57.22,.
NEW APLNEWS 75/08/06
CLEAR WS

The time and date on the top line indicate when the
present version of APL was generated. The message NEW
APLNEWS indicates when a news item about changes in the
APL system was entered. To access the news item, type
the command [(LOAD'«APL1 APLNEWS'. The message CLEAR WS
indicates that you have begun with a clear active
workspace.

IMMEDIATE EXECUTION MODE

You can now type APL expressions, What you type is
evaluated immediately. For example,

3+5 (You type this and press RETURN.)
8 (This is the computer's response.)

Pressing the RETURN key is your signal to the computer that you
have finished typing the line. The computer will not process the
line wuntil you press RETURN. The expressions you type are
interpreted as they appear on the paper. This is called the
principle of visual fidelity. You can space forward or backward
as much as you please as long as the final appearance of the
paper is what you intended. If you make a typing mistake you can
cancel the line by pressing ATTN and RETURN (for a Selectric
terminal) or BESC (for an ASCII terminal). You can revise the
line if you have not pressed RETURN. To revise the line, press
ATTN (for a Selectric _terminal) or LINE FEED (for an ASCII
terminal) then backspace until the type element is positioned
below the left-most character to be corrected. This cancels the
part of the line directly above and to the right of that
position. Then type any characters to replace those that were
removed.

The following examples show some simple calculations being
performed.

2x%3

3+2
125

Note that the APL system indents six spaces before allowing you
to type, but the system prints its response at the left margin.
This clearly distinguishes what you type from what the computer
types. The following example shows how arithmetic can be
performed with several numbers at the same time

2x1 2 3 4
2 4 6 8

The series of numbers on the right is called a vector. Each
element of the vector was multiplied by 2.

Values can be given a name and saved for later use. The
names are called variables. The process of giving a variable a
value 1is called assignment. The following examples show

assignment of values to variables 4 and 3.

A+4 .8

B+1 2 3 &4

A+B
5.8.6.8 7.8 8.8

Note that when the result of a calculation is not assigned to a
variable it is printed. The sum of the elements in a vector can
be found as follows:

B+1 2 3 4
+/B :
10

Any symbols on the keyboard can be used as values if they
are surrounded by quotes. For example,

GRADES+'4ABADCABAABADB'

The = symbol can be used to compare values. The result is 1
where a match is found and 0 otherwise. For example,

VA'=GRADES
1010010110100

The following example shows how a table of comparison values can
be produced:

'ABCD'o.=GRADES
10100101 101¢00
0100001001001
000021T00O0O0O0O0TO0OQ0
0001000000010

There is one row for each value in 'ABCD' and there is one column
for each value in GRADES. To f£ind the number of A's, B's, ('s,
and D's, add up the 1's in the four rows as follows:

+/('ABCD'e ,=GRADES)
6412

Below is an example of another comparison table using < instead
of =. Also, instead of using +/ to add the rows as in the last
exanple, +# is used to add up the columns. The symbol #, called
an overstrike, is formed by typing /, backspacing, and then
typing -. (Actually the two symbols comprising the overstrike
can be typed in either order.))

2 ,08 8,1 4.6 1.2 2.3 4.2 1.6
=

o

O OC O
OO0 O K
[= B e B &
[el el ol oS
cOoRRFEN
cooo ok
SO O, ®W
SO
cooo=

+#(2 .4 6 Bo.<V)
110420120

As shown, this operation classifies each value in ¥ according to
the number of values in 2 4 6 8 it exceeded. That is, a wvalue
between 2 and 4 is in class 1, a value between 4 and 6 is in
class 2, and a value between 6 and 8 is in <c¢lass 3. A user
defined function can be written to perform this operation:

VZ<«A CLASSIFY B
[1] Z++FAe.<BV

The f£irst V signals to the computer that you wish to define a
function. The first line shows that the function takes two

arguments (input values) and gives a result. The computer
numbered the next line with [1]. The v at the end indicates you
have completed typing the lines of the function. The function

can be used as follows:

6 8 CLASSIFY ¥
0120

Now it might be interesting to tabulate how many 0's, 1l's, 2's,
and so forth were in the last result, An APL, function can be
written to do this but it requires two more APL operations: The
largest value in a vector V is given by [/V; and 1§ gives the
integers 1 2 3 ... N. We use both of these as follows:

VZ+«TAB B
£l K«1(([/B)+1)
[23 K+K-1
[3] Z++/ (Ko .=B)V

TAB 0101213
243 1. ¢

TAB(2 4 6 8 CLASSIFY V)
33201

The following function will give a . crude histogram of these
results:

VZ+«HIST B
E13 P«[/B
[2] Z«((P+1)-1P)e.<B V¥

HIST 3 3 2 0 1

11000
11100
ld 30 4

A neater histogram can be mnomﬁommcw mmmwbmmso¢:mﬁwﬁwmﬂo nwm
HI5T functiocn: .

VHIST (Function definition is opened.)

[3] Z<' O'[2+1] (Another line is added.)
[ul ol (Display is requested.)

Y %<«HIST B
[1] P<[/B
[23 Z+{(P+1)-1P)°.<B
L3l Z+' O'[2+1]

v "
[4] v (pefinition is closed.)

Note that to add more to the function you first type V and the
name (but not Z«HIST B). The computer numbered the line [3].
Typing [0] on the next line caused the computer to list the
function. Finally, the V was typed to indicate that no more
lines were to be added. This function can now be used with the
two others as follows:

FIST TAB 2 4+ 6 8 CLASSIFY V
Bo
oo
ooo o

vyou can display the names of defined functions and variables as
shown below:

YENS
CLASSIFY HIST TAB

YVARS
A B GRADES K P v

7o save the functions and variables for wuse at some other

session, type
VSAVE MYWORK

The collection of functions and variables constitutes a
workspace. Here a workspace named MYWORK was saved. It 1is
Idvisable to save the workspace often if you are changing it in
order to minimize the amount of work that will be lost in the
event of a serious computer malfunction. (See Chapter 12 for the
procedure to follow to avoid losing work after a telephone
disconnect or minor computer malfunction) 7o remove all
functions and variables from the workspace you are now working
with, type

YCLEAR
NEW APLNEWS 75/08/086
CLEAR WS
YENS
(No functions.)
YVARS
(No variables.)

You can retrieve the MYWORK workspace as shown below:

YLOAD MYWORK

MYWORK 75/08/08 16:18:28
VENS

CLASSIFY HIST TAB

To terminate the session and sign off the computer, type)OFF

JOFF
A123456 LOG OFF, 18.12.,07
A123456 CP 0.012 SEC

www:osas this sample session was short a

mHWOﬂHOb of the _wwh coperations, it prcmﬁhmﬁwm owww MMMM M&MSMHW
APL is to experimentation. Programs can easily be develo mw .
mamww.mmnﬁm ms@ put together to do useful work. The mmeHWHH.Mn
MMmMMMBNOHSSMWHObmz in new combinations makes many problems EWQM

to solve. Many users of APL begin with the habit m .

by familiarity with other computer langua iti e
monolithic programs in one piece. It mmonmmmwmowqwmwwMFMm wmhmm
modular approach illustrated above is better. A s

Chapter 1. User-Defined Functions

Function definition mode allows the user to enter function
lines one at a time, remove lines, change lines, insert lines, or
display the function. In function definition mode, APL
statements entered are not executed or checked for errors, nor
are system commands executed. Most errors will be detected when
the statement is executed for the first time. System cormands
are illegal in the body of a function.

CREATING A FUNCTION

To enter function definition mode, type V and the function
header. The form for the function header should be determined by
how the function is used. The six possible forms are shown in
the following table.

Number of Arguments 0 1 2
No Result name name B A name B
Result Z+name Z+name B Z+A name B

The name of the function (represented by name in the table
above) can consist of any number of letters 4 to Z, underscored
letters 4 to £, digits 0 to 9, or the symbols _, &, or A4, but
must not begin with a digit. The function name must not be in
use for another global function or glckal variable. In the
table, Z is used as the result variable, 4 is the left argument,
and B is the right argument. Any other names could be used
instead, provided they are used consistently in the body of the
funection. Names of system functions cr variables must not be
used as the result variable or argument variables.

After any of the forms in the table, there can be a

semicolon and additional names separated by semicolons. The
additional names declare variables and functions to be local to

it

Summary of Function Definition.

Creating a Function

vZ+4 NAME B
Reopening Definition

VNAME
Display

roJ (Display all.)

[2.1] P+a15
Delete line [3]

[a3]
Replace line [3]

[3] Pe@+5x1W

Line Editing for line [3]

Extending line [5]
[s0o0]

Context editing for line [3]

[3]1 7/

[3] /.old phrase.
[3] /..new text
mmu\

[020]1 (pisplay from 20.)
[200] (pisplay line 20.)

Insert a line between [2] and [3]

i lumn 8.)
{3081 (Line 3, co .
N (The line is printed.} .
C& wfmwmxHH (Type / to remove, 1 to insert 1 space.)
L33 P+ +5x1 N (Type additions in the spaces.)

.0ld phrase.new phrase (To replace.)}

(To delete.)
(To extend.)
(To display the line and then
extend it.)

the function. (Local variables and functions are discussed later
in this chapter.)

The function header is line [0] of the function. After
entering a v and a header, function definition 1is said to be
open. The system then types [1] on the next line to invite the
user to enter 1line [1] of the function. The user can then type
function lines, and the.system continues to number lines. When
the last line has been entered, function definition mode can be
terminated by typing a v at the end of a line or on a line by
itself. The v is recognized as long as it is the last nonblank
character on the line, even if the line is a comment,

Upcn an attempt to close definition, the function header is
checked for duplicate use of names, and statement labels are
checked for duplication with names used in the header or names
used for labels on other statements. In addition, the form of
the header is checked for correctness. Any of these errors
causes the message DEFN ERROR and display of the header or the
line with the incorrect label. The error should be corrected,
then v should be typed toattempt to close definition again.

REOPENING DEFINITION

To add more lines to a function, first reopen definition by
typing Vv and the name. No other header information should be
used--use of other header information causes the system to assume
you are mistakenly attempting to create a new function having the
same name as an old function. (The header can be changed after
definition is open by treating it as line [0] and revising it as
described below.) After definition of the function has been
opened, the system types the number the next line will have.
The user can type additional lines in the same manner as when the
function was created.

OVERRIDING THE LINE NUMBER

After the system types a line number, the user can override
that line number by providing a different one, For example,
assume the system printed [4] because line [4] was expected. The
user could type (2] to override the [u4] if he wants to enter a
new line [2]. He could type the new line [2] on the same line he
types the line number, or, he can type only the overriding line
number and press RETURN, after which the system would type [2].
After line [2] is provided, the system would continue by
nunbering the next line with [3].

To insert a new line between lines, use a fractional line
number, For example, [3.2] could be used to insert gz line
between lines 3 and 4. No more than & digits are allowed after
the decimal point. The system continues to number subsequent
lines by incrementing the last position of the overriding line

=3

number until another overriding line number is used. Thus, after
[(3.98] would follow [3.99], [4l, [u.01], and so forth.

To remove a line, use a request of the form [a3]. The tilda
before the overriding line number indicates that the line should
be deleted. More than one line number can be provided (e.g.,[A3
g 1,6]). Note that a 1ine cannot be replaced by & blank line by
overriding a line number with the number of the line to be

deleted and pressing RETURN.

Line [0] (the header) can be replaced like any other line,
but it cannot be deleted. If the new line [0] causes the name of
the function to change, the old function remains as it was when
function definition was opened, and a function having the new
name is produced when definition is closed. The function name
cannot be changed to the name of a global function or variable.

When function definition is closed, all lines are renumbered
with consecutive integers. Because line numbers can change, use
of labels for all branching is recommended.

If a WS FULL error Occurs during function definition,
function definition mode is closed automatically, and all
functions and variables remain as they were when function

definition was opened.

DISPLAY OF FUNCTIONS

when function definition mode is open, the entire function
can be displayed by typing [0l. To display only line 3 of the
function, type [301. To display all lines from line [3] on, type
COs]. TIf you interrupt the display (see ‘Appendix C}, function
definition remains open unless a closing vV appeared in the same
line as the request for display.

LINE EDITING

Line editing can be used to change individual characters in
a line. To begin line editing, type something of the form [3081,
where 3 is the number of +the line to be revised, and 8 is the
approximate position in the line where the first change is to be
made. The system then prints the 1ine and unlocks the keyboard
below the 8th character. Use spaces Or backspaces to position
the typeball to the position to be changed. Type / under a
character to delete it, or type a digit 1 to 9 to insert 1 to 8
spaces before the character, or type 4 below it to insert S
spaces, B for 10 spaces, ¢ for 15 spaces, and so on up to # for
40 spaces. To replace a character, You must delete that
character (which closes up the line leaving no new space) and
type a 1 hefore the next character to provide space for the
replacement character. After +the changes are specified and

1-4

RETURN is pressed th i
pre 2 e system prints the revised i i
MM ﬁwwmmOmpﬁvcn of the first inserted space or at Wwwmmmma mewm
ﬁvaw if no spaces were inserted. Type in any ne h acte ﬁﬂm
1e spaces and then press RETURN. v characters in

If line editing causes th i

; : ; e line number to ¢

Wwwwﬁﬁumsmpzm intact, mm@ a new line with the wwwﬂmmz the old

womwwwwn. HMOﬁUMNﬂMmm a line, use the form [300] The thwwmmpm
ne causes th i I

keyboard to unlock at the end of mw.ppnm ke ko jpeinded mnd. e

Note that line editing should
L not be used with i
Mwwﬂﬂmmmm not print ﬂdw APL character set, The APL memmMamzmH
i owmmmwmoo:uw of mwsmwm.wmh characters printing as more wmmm
er on such terminals, so the position wh h 5
are made can be somewhat unpredictable. SEE Changes

CONTEXT EDITING

. nmmwmmwvmmwwwsmw memwm Hmmwmnoam:n of the first occurrence
] . er phrase. Context editi i
MMHM nMstspmsw than Hwbn editing when the o:mﬁmmwwwﬂm mewMMwmw
Hmn:»wmm wwmw mmbw:mwwwsm. msm prior display of the line is me
=d, a is changed is th i i
expecting next. The editing command has w:mmmwwwm the syscem is

/.0ld phrase.new phrase

The / signals that what foll i
S 1 ows is an editin r
MMBWMWWHHHNMHMMMHMOMmMMH Mﬁm / is the symbol nﬁwmmammMWmmmm GMMM
i e irst phrase and the beginni
Mmmmwmwmwwwwmm %MM Mm%@ow can be wused as long mm 5%Mbmnnmwmwwm
: elimiter can opti 1
g : elin ptionally be us
Mﬁ Mmm wwwmmm\ but: if Pn.wm not, the new bamem is mmmcﬂwmﬁwm mam
o re mm& %MmMOmeccﬂmwms of the type element (except that Mﬁq
t th considered part of the phra
MMHMM mewormm for the old phrase. If the @ommmwwmmmmawm w%mdms
= Qhﬁmm Mnmm mbm the new phrase is inserted at that woMﬁﬁochm
she oo HMSMmmmwwm empty, the new phrase is inserted at ﬂ:m end
g > o .UO#S Mﬂm Hmwwmomamﬂﬁ_ ﬁrM system prints the corrected
. : 2 o bhrase and new phrase are e
system prints the line and unlocks the keyboard to mHHOWMMWm HMWM

to be extended. If the i
nessage old phrase is not found, the error

13: PHRASE NOT FOUND

MMUMMWM#MmWﬁHbWZOszﬁﬂwmw:wrm line number can be changed using
ext edit . vhen the line number is changed i
remains intact and the revised line is wmmmm MO .ﬁﬁMSwﬂMWMwWMd%

mwwgmwm Sditing reguesp ~To Jasordccely Gotend, JREF EHiOR 1

- N W1 % i1 e

requests: ng examples illustrate useful editing
it

/ FOUR.SIX (FOUR is replaced by SIX)

L3505 (A comma is used as the delimiter
because periods occur in the phrase.)

[31 /.X1 Y+, (Deletion of X1Y¥Y+; (3] was used to

override the line number that had
been printed by the system.)

. 5l (To extend the line with ;C)

. (To extend the line with infdrmaticn from

the keyboard.)

FUNCTION DEFINITION SHORTCUTS

In general, a line you type in furction definition mode is
used up before you are regquired to type another line. For
example, you can type [03]7V to display line [3] and then close
function definition. Or, you can type VFN[3]P<1NV to open
definition, override the line number with [31, provide a new line
[3], and close definition. A v at the end of a statement is
always recognized, but other editing reguests at the end are
interpreted as being part of the line. Hence VFN[3]1P+«1N[u0lV
would cause line [3] to be P«1¥[40]. It would not cause display
of line [4] after replacing line [3].

LINE SEPARATOR

You ecan use the diamond symbol (the overstrike x for a
Selectric terminal) as an input 1line separator for function
definition mode. The parts separated by diamonds are used as if
they were entered consecutively from the keyboard except that the
normal line number prompt is suppressed. However, input lines
for line editing requests must still be entered separately from
the keyboard. Any diamonds preceded by an odd number of gquotes
are considered to be part of character constants and not line
separators. If an error occurs, any remaining lines are
discarded and input is again reguested from the keyboard. The
following example shows use of the line separator to define a
function and then display it:

VZ<NEXTLINE N % Z«CFREAD N x Z<(v\Z=' ")/Z = [0OJV
VZ«NEXTLINE N

[1] 2+«CFREAD N

[2] Z+(v\Z=z' ') /2
v

The purpose of the line separator is to reduce waiting time when
the computer responds slowly. The diamond is allowed as a line
separator only in function definition mode and should not be
confused with the use of the same symbol in other versions of APL
to allow multiple executable APL statements on a line.

LOCALIZATION OF VARIABLES AND FUNCTIONS

edm variables local to a function include all variables
appearing in the function header and all statement wmwwwz
<mﬁmmv~mm that are not local to any function are called mwowmw
<mﬁ¢mUHmm. When execution of a function begins the local
<mn+mwpmm take precedence over any other msBOﬁwOBm,msm quHmUMmm
having ﬂvm same names. Other variables that were in effect
vmmoww this function was called (that is, those not local to this
mcsowwon~ which are called variables global to the function)
remain accessible. When execution of the function is completed
the variables local to it vanish, thus releasing storage mwmnm
for mﬁ:mﬁ uses, and any variables or functions global to the
function become accessible again.

As wxmnsﬂwos of the function begins, the argument variables
are assigned the values of ‘the arguments in the expression

%b<@Wpsm the mzﬁnﬂwonu If the function modifies the arguments,
it is actually changing a copy of the original arguments. (See
Chapter 11 for storage Hamwwnmﬁwosm.v The label wvariables are

also assigned scalar integer values of the line numbers on which
they appear. These variables are locked to prevent them from
vmkua assigned inappropriate values. (However, they can be given
improper values if they are first erased and then given a value.)
evm result variable and any other variables 1listed after the
first semicolon in the header have no initial wvalue.

A function can also have another function local to it if it
:mm. the second function's name in its header. As for local
qmﬂpmvwmm*. the local function is undefined as execution of the
main function begins. The local function can then be defined by
use of [FX or [ICOPY with [IEFV having 1 as its value {the normal
case =--see ﬂbmwﬂmw 7 for details about 0OFX, OCOPY, and 0ENV}.
When mxmmcnvﬁz of the main function completes, the function
local ao.wﬁ will vanish, just as a local variable would, and any
temporarily inaccessible function or variable having the same
name would again become accessible.

FUNCTIOI EXECUTION

@z=0ﬂwos.mxmnsﬂmoﬂ begins when the name of +the function is
encountered in an expression being executed and any arguments
have been w<mHzmwmQ. The system must save information about how
far execution has progressed in the calling line in order to be
able to m<m5ﬁﬁmwww return to it and continue processing. The
state indicator is a summary of this information and is available

to the user. Execution of a function begins with establishment
of 1local variables as discussed in the last section. Then
mﬁnmﬁ# for branching, the statements are executed in order MHO%
first to last. After the last statement has been executed, the
4m~:m last assigned to the result variable is returned to Umﬁummm
in the calling expression, and all local variables wvanish.

L=

Branching can be used to control which statement will be
executed next. A branch statement consists of a branch arrow
followed by an expression that returns a result. The value must
be a scalar or a vector, and unless it is an empty vector, the
first value must be a nonnegative integer. If an empty vector is
used, the next statement is performed, If the value is a scalar
or vector, its first element is used as the number of the line to
be executed next. If the value is 0 or exceeds the largest line
number, the function exits. The following examples show useful
branch statements. Close examination of the expressions to the
right of the arrows should show how they generate appropriate
line numbers:

+5x14<1y (Branch to line 5 if 4 is less than 14. Note
that this will not work in O=origin.)
+(A=3)/8 (Branch if A equals 3 to line 8.)

+(L1,L2,03)[2+xB]
(Branch to [i1 if B is negative, to L2 if
zero, or to L3 if positive.)

+(A>»>20 18 13 2)/LS5,L4,L3,L2
(Branch to 5 if 4 is greater than 20, branch
to Ly if greater than 18 but not 20, to line
L3 if greater than 13 but not 18, to L2 if
greater than 2 but not 13, or go to the next
line if A is less than or equal to 2.)

STATE INDICATOR

Any lines that call for execution of another function cannot
be completed until the other function has exited, Such
unfinished lines are called pendent lines. If an error causes a
halt at a line of a function, +that halted line is said to be
suspended. The state indicator is a record of all pendent and
suspended lines of functions. It omits partially executed lines
entered in immediate execution mode, lines entered for guad
input, and lines used as arguments +to the execute function. The
state indicator with variables, displayed by the system command
}SIV, shows what lines are pendent or suspended and also shows
variables local to functions. An abbreviated form, displayed by
the system command)SI, omits names of label variables and names
appearing in the header after the first semicolon. For example:

VSTV
[31%%«PRINT B;X;K:LIMIT:L1:L2
(4] 8IMU K:L3

V5T
[31*Z«PRINT B
[u] SIMU K

In both examples above, the most recently invoked 1line is shown
first. An asterisk marks a line that is suspended. Here, line
[4] of SIMU called PRINT, and execution of PRINT halted at line
[3] because ©0f an error. The)SIV display shows the full
function header followed by a colon and names of statement labels
separated by colons. If the function has no statement labels, no
colons appear.

shows that the variable X currently
to PRINT, The other ¥ local to SIMU
is no longer accessible. However, the label variable 3 local
to SIMU still has its value because no variable 13 is local to
PRINT. 1In general, the current value associated with a variable
name is that for its first occurrence on the state indicator. If
it does not appear on the state indicator, the current value is
that of any global variable Jw<wam that name.

The)87V display
accessible is the one local

A branch in immediate execution mode can be used to restart
execution of the most recent suspended function. For example,
+5 would cause execution of PRINT to continue at 1line 5.
Usually, the function would be corrected or values of variables
would be changed before proceeding. To remove the most recent
suspension and the pendent lines that led to it, type a branch
arrow with nothing +to the right. A beginning user of APL often
begins a new execution of a function without removing the old
one, causing a large number of suspensions to accumulate. These
unnecessary suspensions waste space and can lead to confusion by
allowing local variables to make global variables inaccessible.
When a suspension occurs, it is a good practice to either make
corrections and continue execution or clear the state indicator
by use of the niladic branch (see Chapter 2). An excessive
number of suspensions can be eliminated by use of 0 [SAVE 'name'’
(see Chapter 7).

The information the system keeps about pendent lines can
become invalid if the pendent functions are altered, replaced, or
erased. The system responds by printing 14: ST DAMAGE and
surrounding with brackets the names of the affected functions on
the state indicator display. Execution of the affected functions
cannot be resumed. Experienced users are expected to avoid ST
DAMAGE if they intend to continue execution of a halted function.
Certain changes to suspended functions can also lead to SI DAMAGE
--specifically, altering the function header or changing the
number or relative order of statement labels.

HALTING A FUNCTION
While a function is running, it can be halted by an

interrupt (see App. C). However, when the keyboard is unlocked,

g

interpreted - as an
To halt a function

the interrupt on some terminals is
revise the line being entered.
requesting guote-quad input, type the overstrike @ (formed from
0, U, and T). This results in suspension as if an error had
occurred. To halt a function requesting gquad input and remove it
and all related pendent lines from the state indicator, use a
branch arrow with nothing to the right.

use of
attempt to

TRACE AND STOP CONTROLS

effect for a

Any stop, trace, and timing controls in
is used to

function are cleared if function definition mode
change the function in any way.

LOCKED FUNCTIONS

A function can be locked by using # (Vv overstruck by ~) in
place of V when opening o closing function definition. Locking
a function prevents display of the function and prevents its
definition from being reopened. An attempt to open definition of
a locked function results in the error message DEFN ERROR. A
locked function cannot be unlocked; if you will want to change a
locked function at a later date, keep an unlocked copy of the
function in another workspace protected by a password or keep a
printed listing of the function. If closing definition of the
function results in SI DAMAGE, the request to lock the function
is ignored.

Chapter 2. Statement Form and Order of Evaluation

This chapter discusses the form of legal APL statements and
ﬂﬂm OH@mH of evaluation of statements. Restricting the
mwmn:mmpwn to "APL statements" means that system commands (which
mwm.mwmdpsmcpmrmg by beginning with a right parenthesis) are not
of Hsﬁmﬂmmﬂ here. The meaning of a statement is determined in
mmﬁw by yﬁm. form, but mainly by the functions used and the
m:<pﬂousm5ﬁ in which they are used. This chapter discusses the
Hnm«:mnom of form on meaning and leaves the functions and
environment to be discussed in several other chapters.

SPACES

The use of spaces in an APL statement is usually unimportant
to the meaning of the statement except for a few cases:

(1) Names must be separated from other names by spaces
and names must be separated from digits of a number ﬁm
the right by spaces. (Also, a name beginning with #
rust be separated from digits to the left.) Otherwise
they would run together and appear to be all one nmam”
ﬂOﬁqummwws spaces in the middle of a nane would make
it appear to be two names.

(2) Numbers next to one another must be separated by
spaces, and spaces cannot appear within a number.

(3) Spaces within a character constant
any other character
value of the constant.

: are treated as
in the constant and affect the

(4) Spaces 1in a comment (except for
are preserved by the system.
neaning to the APL system,
the reader of the comment.

trailing spaces)
Although they have no
they may be important to

FUNCTION DEFINITION AND SYSTEM COMMANDS

As execution begins for statements entered in immediate
execution mode, entered in response to quad wumnw. or used as
arguments to the execute function (but excluding statements in
the body of a function), a check is made to determine if the
first nonblank character on the line is v, #, or). In these
cases the statement is preconverted to UmmoB@ a .omww to the
function OFp (a program that performs function Qmmpﬂpﬂy@u mode)
or [SY (a program that performs system commands) with the
original 1line as a character argument, mww.mxmawwm. .qm%mmmu
becomes [FD 'VFNL60]1'. To preserve the original meaning, any
guotes in the original statement become double gquotes after the
conversion. Any comment at the end of the original mwmmemaﬁ
becomes part of the argument to [OFP or [5Y. The discussion that
follows assumes that any such preconversion has already been
performed.

COMMENTS

A comment may be entered in immediate mmmnnﬂwos mode or may
appear in a function line. Comments begin with ﬁﬁw symbol a and
extend to the right to the last nonblank on the 1line. The part
of the line following the comment symbol is not executed. This
allows the wuser to intersperse descriptive text with APL
statements. The following example shows a comment ﬁmm&. in
immediate execution mode to add a description to the ~printed
transcript of the session:

K«2x1§ a TO GENERATE 2 4 6, ETC.

The following discussion makes no further mention of comments,
although a comment may appear at the end of any line, or the
comment may constitute the entire line.

CONSTANTS

Constants represent numbers or characters. For mxmﬂwwm,
.14 5.2 9 is a numeric constant-vector, and 'ABCD' 1is a
character constant-vector. Constants consisting of one character
or number are scalars, while those having more components or no
components are vectors.

An unsigned-number is defined to be any of the following:
digits

digits.digits

.digits

where digits represents one or more of the digits 0123456789,
The italic notation used here is used throughout this book to

denote a term having a special definition. Here, digits
represents a sequence of digits, not the letters ¢ i ¢ i ¢ and s.
Hence the following numbers are examples of unsigned-numbers:

3.4
.05
58

However, an unsigned-number cannot end with a decimal point.
Hence, 3. would not be legal.

‘A number has any of the following forms:

unsigned=number
“unsigned-number
unsigned=number exponent
“unsigned number exponent
The symbol ~ is used te express a negative number--the minus
symbol cannot be used in its place. An exponent has one of the
following forms:

Edigits

E digits
The E can be read "times 10 to the power." S0, 1E23 means
1x10%23, and 3,2F 3 is the same as ,0032. A numeric-constant 1is
formed from one or more number, Separated by spaces.

A character-constant is of the form:

fsymbols'
where symbols represents any number of APL symbols, including
no symbols. The symbol ' in a character-constant is represented
by two quotes., For example,

tTmr g
il

Quotes must always appear in pairs. An expression with an odd
number of quotes results in a SYNTAXY ERROR.

The term constant means either a numeric-constant or a
character-constant.

FUNCTIONS
Functions are cof three kinds:

(1) System functions, which have names that begin with [J or
0, are used to communicate with the APL system.

2-3

(2) User-defined functions, which have names formed in the
same way as variable names, are the only ones the user can
define.

(3) Primitive functions (except those produced by operators)
are symbolized by single characters such as +, x, i, etc.

For the purposes of this chapter, the important features of
functions are the number of arguments they require and whether
they return results. Functions can be monadic (one argument),
dyadic (two arguments), or niladic (ho arguments). If rfunction
is used to denote a function that returns a result and function
is used to denote one that does not, the six possible forms are:

(Dyadic, returns a result.)
{Monadiec, returns a result.)
(Niladic, returns a result.)
{Dyadic, no result.)
(Monadic, no result,)
(Niladic, no result.)

dyadic-rfunction
monadic-rfunction
niladic-rfunction
dyadic=function
monadic-function
niladic=-function

For some primitive functions and system functions the same
symbol or name is used for two distinct functionsg-=-one monadic
and the other dyadic. The dyadic function is used if there is a
left argument, and the monadic function is used if there is no
left argument.

Dyadic user-defined functions can be wused without a left
argument, but if the function regquires a value for its left
argument, a VALUE ERROR results. The following example is a
function that can be used without a left argument provided its
right argument is not negative:

Vi<«A F1 B
[1] Z<«2xB
[2] +(B=20)/0
[3] Z«<Z+4 ¥

F15
10

F1 "1
05: VALUE ERROE
Fi[3] Z2+Z+4

/

5 F1 "1

3

The function 0ON¥C, described in Chapter 7, can be used to check
whether the left argument has a value. This could be wused to
write user-defined functions that have distinct monadic and

dyadic forms in analogy to distinct primitive functions having
the same symbol,

Whether a hame refers to a function or a wvariable is a
matter that can be decided only when the line begins to execute.
Also, whether a function actually returns a result may depend on
circumstances. For example, if a user-defined function was
defined to return a result, but the result variable was not
assigned a value prior to exit from the function, a VALUE ERROR
results if the expression calling the function requires a result.

OPERATORS

An operator is a special kind of function that takes
functions as arguments and produces functions as results.
Following are examples of four types:

™

4%+.%B (Inner Product.)
Ao ,xB (Outer Product.)
+/B (Reduction.)

+\B (Scan.)

The operators are the period, /, and \. In place of the : and x
in the above examples, any dyadic scalar function symbols could
be used. These operators are discussed in detail in Chapter 6,
but for the present, it is important +to note that the forms
exemplified by #.x and °.x represent dyadic functions that return
results, and +/ and #\ represent monadic functions that return
results.

The axis operator is used to specify the coordinate along
which an operation is to be performed. Only a few functions can
be used with the axis - operator and further details are discussed
with +those functions. The operator is wused in the form
function-symbol[valuel], For example:

¢L21B .
+/[1]B

VARIABLES

A variable is a name that might be associated with a value,
The variable-name is formed from any segquence of the letters 4 to
Z, underscored letters 4 to £, digits 0 to 9, or the symbols 4,
4, or _, but the name cannot begin with a digit. System
variables are special variables with names that begin with 0 or
M. The rest of the name can be composed in the same way as normal
variable names. Only the system variables recognized by the

system can be used--the user cannot invent new ones.

An indexed-variable 1is of the form:

variablel[1ist]

having no value associated with it can be used

A variable-name 1
of an assignment arrow; otherwise a

only immediately to the left
VALUE ERROE will result.

VALUES

A value is any of the following:

variable

constant
indexed-variable
monadic-rfunction value
left-argument dyadic-rfunction value
niladic-rfunction
left-argument
variable-name+value
indexed-variable+value
(value)

+value

The last case has the further restriction that the -+ may appear
only as the first character of a line.

Use of an indexed-variable to the left of a specification
arrow sets +the values of elements of the variable without
changing the shape of the variable. Used elsewhere,
returns parts of a value.

The assignment arrow can be used to give a value to a
variable or to change the value of a variable. The result of the
assignment (not to be confused with the value of the variable) is
the value used on the right. Consequently,
csame as the two statements B[1 2]«3 and A<«3. Similarly,
the same as [«B and A4<H; but 4+«[0+«B is not the
A<0O.

A«<[+B is

The operations to find a value occur in right to left order.
Hence, 3x2+4 means 3x{23%4). When a dyadic function 1is

the index

4«B[1 2]+3 is the

same as [+B and

encountered, the right argument is preserved while the expression

producing the left argument is evaluated. Hence,
A+3
(A4) x4

12

However, it is poor programming practice to take advantage of the
right argument being preserved; some APL systems produce a
different result in cases like the one above.

2-6

More generally, !

any value encountered in

the right to
For exanple,

left scan is preserved.

A+t 5 6
AL3 2 1]+4
A

6 5 4

(On moﬂm.bmw systems the result would be 4 5 4 or 6 5 & because
the variable on the right is not preserved, while on other
systems such operatiocns are prohibited.) However, the followin
example shows a case where the value is not preserved because wrm
scan has not reached the variable:

A+2
A+A+3

LEFT ARGUMENTS

A left-argument is any of the following:

variable

constant
constant[list]
indexed=-variable
(value)
(value)[list]
niladie~-rfunction

For example, 3 can be used as a left a
: rgument, ALPHA can be used
as a left argument, mﬁm..umm_mmu can be used wm a left argument
but 2x3 cannot unless it is enclosed in parentheses. In mmonh
v

in 2x3%5 the 3 would actually b
; . lly be used as the left argument to

EXPRESSIONS

An expression 1is the same as a thnm exc i

T ept that it need
not return a mecHﬁ that can be used for maummnmmnn operations
An expression is any of the following:)

monadic-function value
left-argument dyadic-function value
niladic-function

value

g

The last case, called niladic branch
y can be used onl as the
HmmeOmw character om a line, The branch with no Wchm or
expression to the «right causes exit from the executing function
and from all other functions on the state indicator up to any
2=7

previous suspension,
LISTS
A 1ist is of the form:

list-element
list-element;list-element
list-element;list~element;list element ...

The list, if used for an index, must have one list element for
each dimension of the array being indexed.

A list-element can be:

vacant
value
expression

An expression that does not give a result can be used in a list
used for indexing and is treated as if the list element were
vacant. A list element is vacant if there is nothing at all in
that position. For example, F[3;] illustrates a 1list having a
vacant list-element.

The elements of a list are evaluated in right to left order.
Hence

A+3 .3 A+5

is not an
and output.

gives 4 a final wvalue of 3. Note that the semicolon
APL function. Lists can only be used for indexing
Expressions like the following are illegal:

3p(43B)
Also, the statement

3pd;:B
is eguivalent to

(3p4);B
not

3p(4:B8)

The expressions separated by semciolons are evaluated separately,
then their results constitute the list.

LINES AND IMPLICIT OUTPUT
A Iine is any of the following:

value
expression
list
vacant

printed in left to
character and

When a jine 1s a Iist, the list elements are
right order. The list can contain a mixture of
numeric values as shown below:

X<3u
'"THE VALUE OF X IS: ';X
TEE VALUE OF X IS: 34

Scalar and vector list elements are printed on the same line (if
0P# has not been exceeded), but printing of a matrix or array of
higher rank begins on a new line, and any subseguent vector or
scalar begins on a new line. ™ List elements that are vacant or
that produce no results are skipped over.

If the first list element is a niladic branch, no output is
produced. If the first list element is a branch with a value to
the right, the value of the branch is printed along with the
other list elements, then the branch is taken.

When the 1line is a value, the value is printed unless a
specification or branch occured as the last operation. Hence,
3+2 would print a result, but 4«3+2 or even (4+3+2) would not.

STATEMENTS

a label. The
the line. For

A statement 1is either a 1Iine or a line with
label is a variable-name and colon placed before
example:

REPEAT;»ux1X=Y

a statement entered in immediate

A label on execution mode, for
guad input, or in the argument to the execute function is
ignored.

QUAD AND QUOTE-QUAD

The system variables [J and [l are used for input and output.
When they are assigned a value, the system prints the value.
When their values are used in an xpression, the system reads
input from the keyboard to provide the value.
keyboard unlocks (normally

When [input 1is requested, the

in

w

v

i in). Any characters typed
with the type element at the left Emwmpsv. .
are returned as a vector, except that a mpﬁmwm character gives a

scalar.

the system prints [J: and then on

i is reguested
Micn I 2P ﬂ : keybcard. Any

the next line indents six spaces and unlocks the

APL expression that returns a result can be entered. If the
expression is incorrect or momm not preduce a result, an error
message is printed and the input request 1s repeated. For
example,
A<D
0=

B (This is the input line.)
05: VALUE ERROR
B

O: ¢ (The input request is repeated.)

2x14
A
2 4 6 8

A branch in quad input does not actually effect a branch.

The [J can be used for output to conserve lines in a program.
The statement [l«4+«B has the same effect as the two statements A+B

and [«B.

symbol, when used for output, is wwwmrﬂwm different
from [J used for output. OHmHBmeww. APL output Hm.mowwosw& by a
carriage return so that the next input or output will begin on a
new line. However, when quote-guad Hm.ﬁmmm for output, the extra
carriage return is suppressed. This mH+osm the program to
continue output on the same line or to give output and then
request input on the same line. For example,

The 0

VZ<ASK B
[L] MeD
[2]1 Z<M ¥
P<ASK ‘'AGE? '
AGE? 38
B
38 (Note leading blanks in the result.)

The leading blanks show where the typeball was w@m»ﬂwosmm when
the keyboard was unlocked. The person who was typing could have
backspaced and replaced the blanks .ipw: other characters. Any
leading blanks can be removed by using (v\B=' ')/B<[. MNote that
OP¥ is not ignored when [output 1s used. If the nnaumw of

a carriage

printed characters reaches [PW, the system inserts 1 ca
return in the output and indents 6 spaces before continuing the
output.

Chapter 3. Scalar Functions

The class of scalar functions includes those functions that
can be defined for scalar arguments and then can be extended to
other arguments through element-by-element extension. That is,
if the function is monadic, the result has the same dimensions as
the argument, and the elements of the result are found by
applying the function to all elements of the argument. For the
dyadic functions the following rules apply:

1, If the arguments have the same shape, the result has
that shape and is formed by applying the function to
the corresponding elements of the arguments.

2. If cne argument is a one-element array and the other
is not, the result has the shape of the one that is not
one element. The one-element argument is used with
each element of the other argument to form the result.

3. If both arguments are one-element arrays, the result
has the larger of the ranks of the arguments.

For the dyadic - functions, the arguments must either have
identical shapes or at least one must be a one-element array.
Any other arguments produce a RANK ERROR if +their ranks differ,

or a LENGTH ERROR if their ranks match but dimensions differ,
The following examples illustrate some of these rules:

O«4+3 3p19

1 2 3
4 5 6
7 8 8
-4 (A monadic scalar function.)
1 T2 73
"4 75 Tg
7 78 "9

H
Fhofh ke

¢ il

ol z
H

0

+

gurmary of Scalar Functions.

must not be 1.

Dyadic Function Monadic Function
A+B sum of 4 and B. +B Same as 0+B.
addition 3+5«~>8 Plus
A-B A minus B. -B o Same as 0-B5.
subtraction -4 1 Additive
Inverse
AxB Product of 4 xB Sign of B.Same
Times and B. Signunm as (B»0)-B<0 _
2x4++8 x3 ¢ 2«»1 0 1
B A divided by B. £ Same as 1+B.
mwwwmm Division vuwD is not || Recip- Hot allowed if B
allowed except that rocal is 0. +.2+*5
0:0 is defined to
be 1. 3:2¢+1.5
AlB Larger of 4 and _ ﬁm. i «m B is an
Maximum B. 3[5++5 ~1[5+> 1 Ceiling integer, the
result 1s
+hat integer.
Otherwise the
smallest integer
greater than B.
[2.5 3+«=+3 3
ALB Smaller of A and LB Hm B is an
tMinimum B. 3L5¢=+3 Floor integer, the
T1175¢+ 5 result is
that integer.
otherwise the larg-
est integer less
than B.
L2.5 3+=+2 3
A*B 4 to the B *B s to the B
Power power. A may Exponent- [power (e is
be zero if B ial 2.718281828...)
is not negative.
0x0 is defined to ke
1. If A4<0, B must
be representable as
a rational fraction
with an odd
denominator.
AeB Base 4 logar- ®B zwd:umw (base e)
Logarithn ithm of B. 4 Natural logarithm of B.
must be positive and Logarithmn

Summary of Scalar Functions, Continued.

A|B The remainder of B | B Absolute Value of
Residue divided by 4. Magnitude |B. |3 0 ~3«»3 0 3
More precisely, ’
B-Ax|B+4+4=0
A'B Number of combi- 1B Factorial of B
Combinations| nations of B Factorial {for nonnegative
of things taken 4 integers. Otherwise
at a time for the mathematical
positive integer gamma function of
arguments. More B+1. Not defined
generally A!B for negative
<> (!B)s(!4)x1B-4 integers.
AOB The argument A 7B A random choice
Circular determines which Roll from 15. Depends on
function from the current origin.
following table
is applied to B. ~B B must consist of
4 must be an NOT 1's or 0's.
integer in the ~1++0 ~0+>1
range 7 to 7
OB Pi times B
Pi.times lo01++3.14159...
N __NoB (-F)oB
0 (1-B%x2)x.5 (1-B%2)*.5
1 sin B arc sin B
2 cos B arc cos B
3 tan B arc tan B
b (1+B%2)*.5 (1+4B*2)%.5
5 sinh B arc sinh B
6 cosh B arc cosh B
7 tanh B arc tanh B
A=B Equal Result is 1 if the
A#B Not equal relation holds, 0
A<B Less than otherwise.
A>B Greater than
A<B Not greater than 325 6 3 1«20 0 1 1
AZ=B Not less than
AAB AND Elements of A B AaB AVE ANB AWB
AvB OR A and B 1 4 1 1 0 0
AB HAND must be 1's 0 1 0 1 1 0
AwB HOR or 0's. 1 0 0 1 ok 0
AnBe+~AAB 0 0 0 4] & 1
AwB<>~AVE
3-3

g

e

oxd (Scalar argument and matrix argument.)
2 4 B
g8 10 12
14 16 18

A+4 (Two arguments with identical shapes.)
2 4 B
8 10 12
14 16 18

p(1 1p4)*(1 1 1p3) (The larger rank prevails.)
i & I

The table at the beginning of this chapter describes most of
the functions in complete detail. Most of these functions are
familiar mathematical functions or incorporate very simple
concepts. Therefore, the discussion below deals with only a few
of the less familiar functions or special cases.

FLOOR AND CBILING

The functions floor and ceiling always return an exact
integer. The result depends on the value of [cr as follows: If
(|B-NINT B)s0¢Tx(1+|NINT B) the result is NINT B, where NINT B is
the nearest integer to 5. Otherwise, the result is the least
integer larger than B for ceiling, or the largest integer smaller
than B for floor. Hote that B-LB can be negative in cases where
O0CT is not zero and B is slightly less than an integer.

POWER

In keeping with proper mathematics, the power function deces
not allow taking square roots of negative numbers (e.g., “1x.5),
but it does allow -taking cube roots of negative numbers (e.g.,
“1x:3). To distinguish these cases, the power function attempts
to represent the right argument P as a rational number F:lM, where
¥ is an integer and M is the least integer such that (¥:M)=|P.
Note +that (N:M)=|P depends on f¢cr. If the left argument is
negative and the rational representation has an even denominator,
the power function gives a DOMAIN ERROR. If the left argument is
negative and the rational fraction has an odd denominator, the
result is negative if the numerator is odd and is positive if the
numerator is even.

RESIDUE

The residue Function is slightly more sopisticated than the
definition in the table. For example, 2|2-.5x0CT would give the
improper negative result -.5x0CT. The actual algorithm returns
zero if B-Ax|B:iAd+A=0 would give a result having a sign opposite
to the sign of 4.

COMBINATIONS-COF

The combinations-of function returns limit values of A!B if
4, B, or B-A are negative integers. That is, the result is zero
if 4, B, and B-4 are all negative integers or if B is not &
negative integer but either 4 or B-4 is a negative integer.

CIRCULAR FUNCTIONS

The domains and ranges of the circular functions are given
below.

N NoB Domain Range (-N)OB Domain Range

0 (1-B%2)*.5 12]|B 1272

it sin B 12|22 | arc sin B 12| B (0.5)2]2

2 | cos B 12|Z| arc cos B 1z|F (Zz0)AZs01
3 tan B arc tan B (0.5)2]2

i (1+B%2)%.5 152 (T1+B%x2)%.5 1<|B 0<Z

5 sinh B "l arc sinh B

6 cosh B 12 arc cosh B 1<B 0<%

7 tanh B 12|Z | arc tanh B 12| B

RELATIONAL FUNCTIONS

The functions = and= are the only scalar functicns that can
be used with arguments of character type. Characters can be
compared with numbers, but the result always shows inequality.
For numeric 4 and B, the result for 4=B is 1 if |B-A is not
greater than OCTx|[B. The three conditions A<B, A=B, and A>B are
always exclusive. For example, if A=B gives 1, then A>B and A<B
give 0. The range where two numbers are considered equal 1is
illustrated below:

A<B A=B A>B

T T T
m1DQﬁx_m m m+mﬁ%x_m

Note that when B is zero, A=B gives 1 only if 4 is exactly zero.

¥
|
|
{
b
i

Chapter 4. Array Concepts and Indexing

An APL array can be visualized as an arrangement of values
along n orthogonal coordinates, where n is 0 to 75 for this

particular APL system. The gositions along the coordinates are
numbered 1, 2, 3, etc. in l-origin, and they are numbered 0, 1,
2, ete. in N-origin. The number of elements along a ccordinate

can be 0 or more. The lengths of the array along the coordinates
are called the dimensicns of the array, and the numbher of
coordinates is called the rank of the array. The names scalar,
vector, and matrix are used to denote arrays of rank 0, 1, and 2,
respectively. No special names exist for arrays of rank greater

than 2. The APLUM system has an arbitrary 1limit of 75 as the
maximum rank of an array, but in practice, this limit is so
large that it 1is not restrictive. Contrary to common casual

practice in mathematics, an APL array has a definite rank--a
one-element vector is not the same as a scalar, and a matrix with
one row or column is not a vector. ’

The last coordinate of an array is conventionally considered
to be the column coordinate, the second from last coordinate is
the row coordinate, and the third from last coordinate is the
plane coordinate. The following examples show how various arrays
can be formed and displayed:

3 (A scalar.)
3

4 (A vector.)
12 3 4

2 3p16 (A matrix.)
12 3
4 5 8

2 3p'ABCDEF' (A matrix of characters.)

ABC
DEF

R

Summary of Chapter 4.

Function Description
pB Returns a vector containing the
Size dimensions of B. The result
has 0 elements for a scalar B,
1 element for a vector, and 2
elements for a matrix.
VpB Forme a result having the dimensions
Reshape specified by the left argument and
having elements taken from the
right argument in odometer order.
. B The result is a vector contalning
Ravel all elements of B in odometer
order.
R+B[I1;I2; The result has as dimensions

I33 ... 3IND | (pT1),(0T2),(pI3), ... ,(pIN)

Indexed and contains those elements of
selection B for which their first
index is in I1 and their
second index is in I2, etc.
If a list element is wvacant, all
possible index values are used.
R[I1;72;I3; The indicated elements of &
cve 3IN]<B are set to corresponding values
Indexed from B. Either B must

specification|be a one-element array, or the
dimensions of B must match
(pI1),(pI2),(pI3), ... ,(pIN)
except that dimensions of 1 are
ignored. If a list element is
vacant, all possible index values

are used.

RN

13

21

2 3 4pi2u (Two planes, three rows, four columns.)
2 3 4
6 7 8

10 11 12

14 15 18
18 19 20
22 23 24

m_

The last example shows that a rank-3 array is printed as a number
of matrices separated by 1 blank line. A rank-4 array would be
printed as a number of rank-3 arrays separated by two blank
lines, and in general, a rank-¥ array is displayed as a number of
arrays of rank ¥-1 separated by #-2 blank lines. An empty array
prints as a blank line.

One often visualizes an array as a spatial arrangement of
values., The spatial conceptualization leads to use of terms like
"shape of array" and "vector along the Xth coordinate." These
terms are important enough to give precise meanings for them. We
define the "shape of an array" to be the result given by the size
function (to be discussed in this chapter). As a conseguence, a
vector and a one-row matrix have different shapes, even though
they mayv bhe visualized to lock the same (and in fact, the system
prints them identically). We define "a vector along the Xth
coordinate" to be a vector of those elements in the array for
which the coordinates other than the &Xth are the same, and the
Ith element of the vector has I as its Xth coordinate in the
array--that is, a line of values aligned in the direction of the
Kth coordinate.

RESHAPE: R+VpB

The reshape function was used in some of the previous
examples to form arrays. The function forms a result having the
dimensions specified by the vector (or scalar) left argument and
having elements taken from the right argument. Elements are
taken in first to last order, and if they are exhausted, they are
used again beginning with the first. The right argument must
not be empty unless the result will be empty--"reshape never
makes something cut of nothing."

ORDERING OF ELEMENTS

The elements of an array are considered to be ordered. The
reshape function takes elements according to this ordering. The
ordering is the same as the order in which the elements are
printed by a terminal. The order is called odometer order
because the indices (coordinate positions) wvary in the same way
as the digits of an odometer. For example, for an array 43
having dimensions 2 3 4 the elements in odometer order are:

Joi b
LT

b
s e

1w

A4301;1;1]
A3f131;21]
430131531
A3l1;1;4]
Aali;231]
A3l1;32;32]

A3[2:334]

SIZE: R<pB

The size function returns a vector of the dimensions of its
right argument. Because there is one element in the result for
each dimension of B, the result has 0 elements for a scalar 3, 1

element for a vector, 2 elements for a matrix, and 50 forth.
Note that bhecause pB has one element for each dimension om.m~
ppB gives the rank of B as a one-element vector, The mOwwOﬁybm
examples illustrate the size function for arrays of wvarious
ranks:
p3d (A scalar.)
(A blank line indicates an empty vector
result.)
pp3
0
p13 (A vector.)
3
pp1d
1
p2 3p16 (A matrix)
2 3
pp2 3p1B
2
p2 3 5p130 (A rank-3 array.)
2 35
pp 2 3 5p130
3

RAVEL: Z+,B

containing all
order. For

a vector result
odometer

function returns
the right argument in

The ravel
the elements of
example:

,2 3016 (Changing a matrix to a vector.)

1.2 34 586

p.3 (Changing a scalar to a vector.)
1

The ravel function can be used to determine the number of
elements in an arbitrary array. The number of elements in B is
BB (Note that the ravel function could be omitted 1in this
expression if B were always a vector.)

INDEXED SELECTIOHN: ReB[T1;72:;I3; ... ;IN]
Indexed selection chcoses
which all indexes occur
example, if M is a matrix,
its row index
gives those elements
in the

those elements of an array for
in the respective list elements. For

M[3;4] gives the element having 3 as
and 4 as its column index. Similarly, M[2 3;4 5]
in the second and third rows that are also
fourth and fifth columns. If a list element is wvacant,
N is used, where ¥ is the length along that coordinate. The
index values must be integers in the range of coordinates of
elements in 5. The index list for an array of rank X must have
Ko=d] semicolons. The result R has the dimensions
(pI1),(pI2),(pI3)s ... ,(pIN). Hence the rank of B 1is the sum
of the ranks of the indices. If the indices are vectors, the
result satisfies

RLK1:K2;K3;5 .. wkauummhpmwpumwmhﬁthHmmNmum . e SLNEXNDD
When the indices are not all vectors, the result 154

((pI1),(pI2).{pILl), vuo. S(pIN})pBL,I13,T2;,13;5 «.. s, IN]

Indexed selection cannot be applied to a scalar. The following
examples show indexed selection applied to vectors and matrices:

V<3 6 9 12
Vi1]
3
. Viul
12
¥Ls] (An error results from a request
07: INDEX ERROR for an element that does not exist.)
¥Ls]
/
V[5;:6] (Because V is a vector, its rank is
06: RANK ERROR incompatible with the index list.)
VL5367
/

o

o

v[1 2 1 1 2]
36 3 3 6

OeM<3 t4p112
1 2 3 &

5 6 7 B8
g 10 11 12
M[2;3]
7
M[2; 1] (Row 2, all columns.)
56 7 8
ML ;3] (A1l rows, column 3.)
3 ¥ oad
M[2;3 4]
7 8
M1 2 133 13
3 1
7 B,
a1
O«¥«3 5p2 3 2 3 4 2 3 53 o9 B 34
2 3 234
2 353 2
1.:4 1 49 1
vo_lgx' K]
_l_le
- X (A matrix of characters.)
(. ’
INDFEXED SPECIFICATION: ROTLAT25T85 o oo 3 IN]+B

Indexed specification allows setting of selected elements of
R. The index list indicates elements to be set in the same way
as for indexed selection (see previous secticn). The
restrictions on 1list elements are also the same as for indexed
selection. The array B must be a scalar (or one-~element array)
or must have dimensions (pI1),(pI2),(pI3), ... ,(pIN) except that
dimensions of length 1 are ignored in the comparison. If B is
not a scalar (or one-element array), the elements of B are taken
in odometer order and placed in appropriate locations in R. If
two elements of B are placed in the same position in R, the last
one in odometer oxder in B prevails. Both R and B must be of the
same type (i.e., character or numeric). The shape of R is not
changed by the operation. R must not be a scalar.

V<3 6 9
vizl+«"1

v

3 1 9

k&K
* H Kk

Q00
k

Joo

O

O+x
O*=

10

10

v[2 31«10 12
v
12

VL3 31«15 16
14
16

OeM+2 3p'*!

M[1;1 2 3]+to!
M

HO;1T<'0"
M

ML1;2 3]eT+x!
M

(A scalar

(All rows,

is used repeatedly.)

column 1.)

s

e

¥h bl

Chapter 5. Mixed Functions

The class of mixed functions includes all functions that are
not system functions, composite functions, or scalar functions.
Because few patterns exist between the mixed functions, they must
be discussed individually to describe the arguments they allow
and the results they produce. Chapter 4 already discussed the
three mixed functions reshape, size, and ravel.

EXCEPTION RULES

Most of the mixed functions have "normal"” cases for which
the results are relatively simple to express in terms of the
arguments. They also generally have additional special cases
that are convenient but are treated as exceptions. The following
are some of the reasons these exceptions are allowed:

Exceptions to overcome notational difficulty. There is
no way to represent an empty numeric vector constant in
an expression, and 10 is inconvenient to use as a left
argunent because it must be surrounded by parentheses.
Hence ''pB is allowed in place of (10)pB. However,
the only other case where an empty character argument
is allowed where a nonempty character argument would
not be is the catenate function. (However, the system
functions 0S70P, [ITRACE, and [LTIME also allow empty
character left arguments.) Another class of exceptions
to overcome notational difficulty arises because it is
not possible to type a one-element vector constant.
Because a constant consisting of a single character or
number is a scalar, many functions allow a scalar in
place of a one-element vector. However, the Lleft
argument for index-of and the arguments to grade up and
grade down are not allowed to be scalars.

R

Summary of

Mixed Functions Presented in Chapter 5.

Summary of

Mixed Functions Presented in Chapter

Grade down

Function Description, Examples
1B Produces a vector of the first
Index B integers. 15++1 2 3 & 5
generator
V1B For each element of B gives
Index-of the first index in the vector
¥ where the element is found
or 1+pV (in l-origin) if the
element is absent from V.
5 6 7 816 5 2¢+2 1 5
AeB Returns 1 for each element of
Membership 4 that occurs in B and returns
0 for other elements of 4.
1 3 52 3++0 1 0
§1752 Chooses S1 random numbers from
Deal 152 without any duplications.
AV The Ith element of the vector
Grade up result is the index in Vv of
the rth smallest value in V.
VLAV] gives V sorted in increasing
order. #3.3 5.2 1.1+>3 1 2
yv The Ith element of the vector

result is the index in V of

the Ith largest value in V.

VI§v] gives V sorted in decreasing
order.

A,LK1B Joins 4 and B along the Xth
Join coordinate. 1 2 3,4 5«=*
12 3 4 5
V/LXIB The result includes elements
Compress along the xth coordinate of B for

which there are corresponding 1's
in v and does not include elements
for which there are 0's in V.

10 1/1 2 3«1 3 1 0 1/'ABC'+=+14C"

Continued.
Function Description, Examples
Mvﬁmum ﬂxﬁmsmm @w inserting zeros (if B
xpan is numeric) or blanks (if B is of
mwmﬁmonmﬂ type) where there are 0's
in ¥ and selects consecutive
elements along the Kth coordinate
of B where there are 1l's in ¥
1 01 0\3 4«3 0 4 0 ’
1 0 1\'AB'+>'4 B!
A+B Selects the first (if A[x]>
"
Take last (if ACkl<0) |4[Kk] MHMBMW#MH
along the Kth coordinate of B
If |A[LK] exceeds (pB)[X]1, ’
zeros or blanks are used as the
extra elemgnts. 3+1 2 3 4 5+»1 2 3
34+ YABCDE '«=»"(CDE? Ltl 2«1 2 0 0
A+B Drops the first (if A[X]>
Drop last (if A[KJ<0) |4LKk] mHMMQMMm
along the Xth coordinate of B
If |A[K] exceeds (pB)LKJ, .
E.»m kth dimension of the result
1s zero, 3+1 2 3 4 S<«=4 5
3YTABCDE"++'AB"'
$LKIB Reverses the order of
Reverse along the Kth noonmphmmwmwmnwW
$¢5 6 T«+7 6 5 GrABCD"++"'DCBA!
ASLK]E Shifts vectors along the Kth
Rotate owowmwﬁmﬁm of B in a negative
m«wmonhon (for 4>0) or positive
direction (for 4<0).
2¢d1 2 3 4 5++3 4 5 1 2
2¢'ABCDE'++'DEABC!
{3 Reverses i
- i coordinates of B.
transpose
A8 Interchanges coordina
Dyadic according to 4. ks
transpose The xth coordinate of the result

corresponds to the (4=K)/1p4
coordinate of B.

DR

Summary of Mixed Functions Presented in Chapter 5, Continued.

Function Description, Examples
ALB Evaluates B as a number
Base represented in a number system
value having radices 4.
2 2 211 0 1+=+5 10 10 1012 3 U4+-+234
ATB Represents B in the number system
Represent having radices 4.
2 2 275+«=+1 0 1 10 10 10T296+«+Z 9 6
2B Executes the character vector B
Execute as an APL statement.
2 '"15'++1 2 3 4 5
vB Produces a character array represen-
Monadic tation of B. Except for treatment
format of lines longer than [FPW,
7B looks exactly like. B when printed.
A¥B Represents columns of B
Dyadic according to the format specified
format by pairs of numbers on 4. The
first element of a pair in 4 is
the width of the field (0 to have
the system choose a width), and the
second element of the pair gives the
number of digits beyond the decimal
if positive. If the second element
of the pair is negative, its absclute
value determines the total number of
digits, and exponential format is
used.
BB Matrix inverse of B. Same as
Matrix IBE where I is an identity
inverse matrix.
ABEB Solution to a system of equations
Matrix (for a square matrix B) or least
divide squares regression coefficients

(if B has more rows than columns).
Same as (HB)+.x4.

Exceptions to ignore dimensions of 1. At times it is
convenient to treat a row or column of an array as a
vector, while at other times it is more convenient to
treat it as a matrix. Consequently, some flexibility
has been built into functions to allow extra or missing
dimensions of 1.

Generalized scalar extension. The dyadic scalar
functions allow a scalar argument tc be used repeatedly
with all elements of the other argument. More
generally, some mixed functions allow a single vector,
plane, etc. to be wused repeatedly with parts of the
other argument.

ARRAY TYPES

An array, even 1if it is empty, is either of character type
or nureric type. Those mixed functions that rearrange elements
of an array or select elements of an array always return a result
having the same type as the right argument. For example,
0p'ABCD' gives an empty result of character type.

AXIS OPERATORS

For several of the mixed functions (and composite functions)
an axis operator can be used tc specify the coordinate along
which the operation is to be performed. If no axis is specified,
the last coordinate is assumed. Alternate symbols can be used to
perform the operations along the first coordinate. These forms
are: :

Last coordinate First coordinate Kth coordinate

4,8 AR A,[K1B
A/B AtB A/LK1B
A\B AXB ANCK]1B

B eB ¢L k1B
AbB AeB A$LK1B

Note that the symbols for performing the operations along the
first coordinate are not allowed to be used with an axis
operator. For example, e[X]B would produce a SYNTAX ERROR.

The value wused for an axis operator must be a one-element
array, and for functions other than join, it must be an integer
in 1ppB {(except that if B is a scalar, it may be ~1+11). For
the join function (e.g., 4,[X]B) the value of X may be an integer
in 1(ppd)[(ppB)f1 or a half integer obtained by adding or
subtracting .5 from one of those integers.

INDEX GENERATOR: R+1B

The index generator function produces a vector of length B
containing the first B integers. The result depends on the
current origin. ,

Requirements for B. B must be a one-element array containing a
nonnegative integer.

Examples.
13 (In l-origin.)
1 2 3
0ro«o
15

001 2 3 4 (In 0-origin.)

10
(Blank line indicates 10 is empty.)

INDEX-OF: FR<VB

The index-of function returns for each element of B the
least index 7 in the vector v for which V[I] equals the element
of B. If no value in ¥V is egual, the result element is 1+pF in
l-origin, or pV in O-origin. The comparisons use [JCT so that
elements of Vv and B may be considered equal even if they differ
slightly.

Requirements for ¥ and B. V must be a vector--a scalar is not

allowed. B may be of any shape and the result will have that
shape.

Exanples.

\

L 5 612 5
u 2
[«M<+2 3p 'DEFGHI'
DEF
GHT
"HIDE DOG'\M .
3 4 9 (A matrix result for a matrix right argument.)
g1 2
7 8 91'AB"
[TRENTRN) (Characters never equal numbers.)

'4BA "1 'ABAB'
1.2 1.2

010+«0
"ABA'1'ABAB'
0101 (The 0-origin result is 1 less.)

MEMBERSHIP: ER+AebB

The membership function returns 1 for each element of 4 that
occurs 1in B. For numeric arguments the comparisons use the
current value of [CT, so values may differ slightly and still be
considered equal.

Requirenments for 4 and B. A and B may have any shape. The
result has the same shape as 4.
Examples.
12 3¢3 164 9 i
101
'ABCD'e'BACKS!
1110
[ed«2 3p'CATDOG!
CAT :
DoG
Ae'GOAT?
011
0 11 ({The result has the shape of the left argument.)
'GOAT ' A
14 11

'ABC'el 2 3 4

DEAL: R+S51782

The deal function chooses at random S1 values from 152
without repetitions.

Requirements for S1 and 52. Both 51 and S2 must be one-element

arrays containing nonnegative integers such that S1s52. The
result is a vector of length S1.

Exarmples.

3275
314

338
4 5 3

. 575
125 3 4

gro+o
575 o
32012 (0-origin.)

GRADE UP AND GRADE DOWN: E<hpB and R+VB

P ig the index in B
The 7th element of the vector result R 1is
where the Ith smallest (for grade up) or wwm Tth largest (for
grade down) element of B occurs. The comparisons ﬂm not use [¢T.
If a value occurs more than once in B, the indices of those
values occur together in R in increasing order.
Reguirements for B. B must be a nuneric vector. The result R is
q T

I numeric vector of the same length as B.

Examples.
43.3 1.1 2.2 4,4 1.1 5.5
253146

$3.3 1.1 2.2 4.4 1.1 5.5
6 4 1 32 5

V3.3 1.1 2.2 4.4 1,1 5.5
v[AV1 (To sort in increasing order.)

1.1 1.1 2.2 3.3 4.4 5.5

viyv] (To sort in decreasing order.)
5.5 4.4 3.3 2.2 1.1

P«3 4 5 1 2 . :
('ABCDE'CP1)L4P]1 (4P is the inverse of a permutation

ABCDE vector P.)
X+'ABC!
Y<'DEF"'
Z+«1GHI! :
(x,¥,2)[44 021120021
qummmqmw {Select next from ¥ for a 0, Y for a 1,

7 for a 2.)

7o+
A43.3 1.1 2.2
1 20 (0-origin.)

JOIN: FR+A,[X1B

The join function connects 4 and B along a coordinate
already existing in 4 or B or aleng a new coordinate of length 1
inserted into each. The first elements along the coordinate come
from 4 and the rest come from B. When X is an integer, the
operation is called catenate. When X is not an integer, the
operation is called laminate and the new coordinate of length 1
is inserted into each argument between the existing LXK coordinate
and X coordinate.

Requirements for 4 and B. Except for the special cases below,
4 and B must have the same rank, and dimensions other than the
Eth must be the same; that is, (X=i1ppd)/pd and (XK=21ppB)/pB must
be the same. The types of 4 -and 5 must be the same unless one or
both are empty arrays. (Warning: some APL systems do not allow
empty arrays +to have a different type. It is recommended that
differing types be avoided for compatibility.) The shape of the
result is the same as the shape of the two arguments except that
the XKth coordinate of the result is (pA)[K]+(pBILK]. If both
arguments are empty and of differing types, the result is
numeric.

Exception cases. If 4 or B is a scalar (but not both), it is
reshaped to have the shape of the other argument except that the
Kth dimension is 1 for catenate. If both arguments are scalars,
they are treated as one-element vectors for catenate. For
catenate, one argument may have a rank 1 less than the rank of
the other argument. In this case a new coordinate of length 1 is
inserted to become the Xth.

bxamples

1 2 3,4 56 (Joining two vectors.)
1234 568 i

O«M<«2 3p'*!

O«N+3 3p'o’
ooo
000
000

M,[11N
* k %k
dkk
coo
000
©oo
O«L+2 4p'0"
oooo
ooco
M, L
**xx(0100
* % [1000
M, »
o (The scalar is treated as a one-column
* ok + Ak :
matrix.)
M, 134" (b vector is treated as a one-column
* %3) matrix.)
*xklY .
M,[11'345" (A vector is treated as a one-row matrix.)
* %k %
* kk
345 | |
1 2 3.[.5]4 5 6 (Laminate along a new first coordinate.
il =
i 2 3
4 5 6 . |
12 3,[1.5]4 5 6 (Laminate alcng a new last coordinate.
1 4
25
3 6
12 3,[1.514
14
2 4
34

COMPRESS: R+«V/[X1B

1 -
The compress function shortens B mHOHw@ the xth c rdin Y
O:.PPWWHHWE those elements for which there are OOH-HmmmuOﬁhmu.b.@ 0's in

Ve

ﬁOHm:mmpHmHonzﬁmOm
m. mbmm.wﬂcmwvmmdmo v mm
T Gpﬂmamwﬁw.moﬂom 0's. The length of V must be the ﬁmwﬂmﬂdm
p E%wwu mermmﬂmmcww has the same dimensions as B except

(pB .

x¥th dimension is +/V.

i a./efm%vé@gas

Exception cases. IfV or3 is a

one-element vector. Then if y is a one-zlement vector, it is
extended to the length of 3 along the gth coordinate. If B 1is a
one-element vector, it is extended to the length of v,

Examples.

scalar it is treated as a

1010 1/1 2 3 4 5
135

101 0 1/'ABCDE!
ACE

1/'ABCDE"
ABCDE

0/ "ABCDE"
(Blank line indicates an empty result,)

O«M+3 4pr112 i
1 2 3 4
6 7 8
10° 44, o

Ww

101 1/M
3 4
7 8
4 12

w0 ;e

10 1/[1]M
2 3 4
10 41 12

(Same as 1 0 1/M.)

w0

10 1/4

EXPAND: R«V\[K]B

The result is formed by expanding & along the kxth coordinate
by filling with zeros (if B3 is numeric) or blanks (if B is of

character type) in those positions in R for which there are
corresponding 0's in 7.

Requirements for ¥ and B. Ignering the special cases, ¥V must be
a vector containing only 1's and 0's such that (+/V)=(pB)[K].

The result & has the same dimensions as B except that the ¥th
dimension is pV.

Exception cases. If Vor Bis a
one-element vector.

scalar, it is treated as a

Examples.

101 0 1\1 2 3
10203

O«M<+2 3p16

Y
fae

10 1\M

-
[e]
S
o
w o

1 0 1\[1]y (Same as 1 0 15M.)

12 3
000
4L 5 6
1/2
1 5 (A vector result.)
A (An empty array can be expanded.)
3
0N10
0

TAKE: R+V+B

The take function selects |y[x] first mpm;mbmm (for VLkK]1>0)
or last elements (for y[x]<o) along the Nﬁv coordinate OM.m. Hm
|vLx] exceeds (pB)[K], 2€ros (if B is numeric) or blanks (if B is
of character type) are used to provide the extra elements.
Requirements for vy and B. Ignoring the mmmnwmw cases below, V
Soet Be a vector having an integer for each dimension of B. That
is, (pV):=ppE. The result g has dimensions |V,

mmmonH cases. 1f y is a scalar, it is treated as a one-element
vector. If g is a scalar, it is treated as a one-element array

of rank pv.

Exarples.

3%1 2 3 4 5

T3+1 2 3 4 5

3+'ABCDE!

ABC
5+1 2 3
1 2300
[O«i+3 Y4pr12
1 2 . 3 4
5 6 7 8
o o T 5 P)
2 "5+M (First 2 rows, last 5 columns.)
0i2 3 4
056 78
3t10 (Take can be applied to an empty array.)
000
2 345 (5 is treated as a 1 by 1 matrix.)
500 =
00 0

DROP: R<V+B

The drop function forms its result by omitting |V[k] first
elements (if V[XI>0) or last elements (if V[kJ]<0) along the Kth
coordinate of B.

Requirements for V and B. Ignoring the special cases below, ¥
must be a vector of integers, and pV must be the same as pphH.
The result has dimensions 0l (pB)-|V.

Special cases. If ¥V is a scalar, it is treated as a one-element
vector. If B is a scalar, it is treated as a one-element array
of rank pV.

Exanples.

3+1 2 3 4 5

4 5
T24'"ABCDEF!
ABCD
1041 2 3
(Blank line indicates an empty result.)
[+M+3 UYpr12
1 2 3 4
5 6 7 8
9 10 41 12

i =n ouEEs o and Task B wol s are dropped.) ; Requirements for 4 and B. Ignering the exception below, 4 must
s have one element for each vector in B along the kth coordinate.

5 B .
32 meﬂ.Hm~ pA must be {(X#1ppB)/pB. Thus the dimensions of 4 must
be like those of B except that the Xth dimension of & is absent
S— from A. The result has the same shape as B.
11 (The scalar was treated as a matrix.) . i} .)
5 Special cases. If 4 1is a scalar, it is extended to hecome an
(10)+3 i array having dimensions suitable for.s. Rotation of a scalar is
3 ! allowed, but the left argument must be a scalar, and the result
is the same as B,
REVERSE: R<o¢[K1B i Exanples.
The reverse function reverses the order of elements alonyg m 2 ¢ 123 4 5 (Rotation by 2 positions to the left.)
the ¥th coordinate of B. The result has exactly the same shape i 34512
as B. i =
2 ¢ 123 4 5(Rotation by 2 positions to the right.)
Examples. 4 51 23
b 3 4 56 i 2 ¢'ABCDE" g
6 5 4 3 ! CDEAB .
$1ABCDER OeB<3 4p112
o , 1 2 3 4
FEDCBA i
ED : 5 6 7 8
(+M+3 u4pri2 9 10 11 12
1 2 3 4 =
5 6 7 8 0712 ¢ B
9 10 11 12 1 2 3 4 (Rows are shifted.)
8 5 6 7
it 11 12 9 10
o3 o2 1 _ B
g8 7 & 5 0 11 2 eB (Same as 0 "1 1 2 ¢[1]B.)
12 11 10 9 110 7 12
E 5 2 11 . 4
oM {(Same as ¢[11M.) g 6 3 8
g 10 11 12
5 6 7 8 1 ¢ B
1 2 3 4 2 3 41
. 6 7 8 5 .
; 10 11 12 9 (All rows are shifted by 1.)
’
ROTATE: R+A¢[KIB 3
T o[K] MOWADIC TRANSPOSE: R+§B
The rotate function shifts elements of B along the Kth |))
coordinate a number of positions specified by 4. For positive i The monadic transpose mﬂbOﬁwos reverses the coordinates in
elements of 4, the elements move so that their indices decrease, ; B. Thus the last coordinate in R corresponds to the first in B,
and for negative elements of A their indices increase. Elements i the second to the last corresponds to the second in B, and so
shifted beyond the end are replaced at the other end. The : forth. For a vector or scalar, the result is the same as the
absolute value of the elements in A4 gives the number of positions 3 argument. For a matrix, the result is the wusual matrix
the corresponding vector along the Kth coordinate of B is transpose. For an array of rank 3, R[I;J;%¥] 4is the same as

shifted. BLK;J3;I]1. The shape of the result is ¢pB&.

Examples.
[¢M+3 4p112
1 2 3 b
5 6 7 8
9 10 11 12
M
1 5 9
2 6 10
3 7 11
L 8 12
O<C+3 4p'FOURFIVEFORT!'
FOUR
FIVE
FORT
8c
FFF
010
UVR
RET
O«R3+2 3 Up124
1 2 3 b
5 6 7 8
g 10 11 12

13 14 15 18
17 18 18 20
21 22 23 12U

pBR3

®R3

4 16
g8 20

24

DYADIC TRANSPOSE: FR+VQ&B

The dyadic transpese function interchanges coordinates cof B
according to the integer values in the vector V.

Reguirements for ¥ and 5. HmﬂOHwﬂmﬁ:mmvmowmwnmmmcmwoa-<
must be a vector having one element for each dimension of B--that
is, V¥V and B must satisfy (pV)=ppB. The elements must be integers
such that (1[/V)e¥ and Veil/V (all integers up to the largest
element in ¥ but no other wvalues). The rank of R is [/V in
l-origin or 1+4[/V in 0O-origin. The Ith dimension of R 1is
L/(V=I)/pB. The Ith coordinate of B becomes the V[IJth
coordinate of R. If two or more coordinates of B map into the
same coordinate of R, the length along that coordinate is the
least of the related dimensions in B.

Special case. If ¥ is a scalar, it is treated as a one-element
vector.

Examples.

M3 :c_bmmmmwan%hh.

ABCD
EFGH
IJKL

2189M
AET
BFJ
CGK (R[I;JJ=B[J;I].)
DEL

1 18M (R[I]=B[I;I]1. The diagonal of the matrix.
AFK llote that the length is the shorter
of the two dimensions of the matrix.)

[d«A3<2 3 hpr24
1 2 3 4
5 6 7 8
g9 10 11 12

13 14 15 168
17 18 19 20
21 22 23 24

21 3 & 43
1 2 & 4
13 14k 15 16

s 5 7 8 (R[I;J;K1=BL[J3T:K1.)
17 18 19 20

9 10 11 12
21 22 23 24
11 1843 .)
1 18 (R[71=B[I;I;I]. The main diagonal.)
1 2 1RA3
1 5 9 . .
14 18 22 (R[LI;J1=B[I:J;I]1. A diagonal slice.)
2 1 2843 (RLI;J1=BLJ:I:J1.}
1 1h4
5 18
9 22

The expressions to the right which relate mwmﬁmw%m of B, V, and
R are formed as follows: The indices applied to R are
([/V)p'IJKL...', and the indices applied to B are 'IJKL...'[V].

BASE VALUE: R+AlB

The base value function evaluates its right mﬂmcamSﬁ as a
representation of a number in a general number mMm#WS describhed
by its left argument. For example, 2 2 211 0 1 gives 5; the
vector 1 0 1 is evaluated as a number waﬂmmmswm& in base 2. The
left argument, 2 2 2, contains the mepomm of the 5¢§Umﬂ.mmemB.
(Radices are ratios between the weightings of the positions.}
For +the simple case of a vector left mwmnﬂmsn A, #vm Wﬁr
weighting (in 0-origin) is x/(-K)+4. That is, nrm_kns weilghting
is the product of the last X mwmﬂmnﬁm. of 4. If W is a vector of
these weightings, the result for ALlB 1s W+.xD. Thus for the case
2 o 911 0 1 the result is +/4 2 1x1 0 1.

Requirements for 4 and B. Except for the mmmnwm$ cases below, 4
304 § must satisfy (1tpd)=1tp3 (the last dimension of 4 must be
the same as the first dimension of B). For arrays b.maa B, the
vectors along the last coordinate of 4 are used ﬂo.mwsm vectors
of weightings, and each vector along dsm.mpnmﬁ ooowmwﬁmwm.OH B is
evaluated according to each vector of weightings. The weightings
are W<ox\(pd)+¢4,1. The result is then E+.wm. The result has as
dimensions (1+pd),14pB (same as the dimensions of A+.xB).

Special cases. If 4 or B is a mnmpmﬂ~ it is treated as a
one-element vector. If the last dimension ﬁm A ﬂOmm .ﬁoﬁ match
the first dimension of B but one of the two dimensions is 1, that
dimension is extended to match the owwmﬂf

e

Examples.

24 60 60L1 2 3
3723 (One hour, two minutes, and
3 seconds is 3723 seconds.)

0 60 60L1 2 3 (The first element in the
3723 left argument has no effect.)

[O«d+2 3p2 2 2 10 10 10

2 2 2
10 10 10

[¢B«3 4p1 1 3 201 4 0 1 0 5 3

R =
(=
U E W
WO N

ALB (Each vector along the first coordinate of B
5 6 25 11 is evaluated according to each vector
101 110 345 203 along the last coordinate of 4.)

.513 4 5 (Evaluates the polynomial (3x,5%2)+
7.75 (4%x.5)+5. The left argument is extended
to become a 3-element vector.)}

REPRESENT: R+ATB

The represent function represents its right argument in the
number system described by its left argument. For example, 2 2
275 gives 1 0 1. The left argument contains the radices of the
number system. For a vector left argument and a scalar right
argument, the result is given by the following function:

VR<A SREP B;N
[1] N+p4d
[2] R«NpoO
[3] L1:+>(N=0)/0
[u] RIWI<ALN]I|B
[5] B<B-E[N] '
[6] ~(B=0)/0
[7] B+BzA[N]
[8] N+R-1
[9]1 »L1 V

This function 1is a generalization of the wusual method of
converting between number systens by dividing and finding
remainders.

A and B. A and B may have any shape. Each

gquirements mOHI | _ . .
Mwmawnn of 5 1is represented according to the radices 1in each

i i If 4 is a scalar, it

along the first coordinate of 4. (. :
anﬁﬁmmmﬁmmmmm a one-element vector for this operation.) The
dimensions of the result are (pd),pB (i.e., the same as for outer

product) .

Examples.
10 10 10T273
27 3
oy g0 6073723 (3723 seconds is 1 hour,
1.2 3 2 minutes, and 3 seconds.)
2 2 2131 (High-oxder information is lost.)
3 TR .
0 2 27131 (High=order WSWOHBmﬁHOﬁ is
7 L4) intercepted by using a zero.)}
10 10 10734 281
0 2
3 8
4 1
O«d«3 2p0 10 2 10 2 10
0 10
2 10
2 10
AT281 323
70 BO
2 3
o 1
g8 2
11
1 3

EXECUTE: R<+tB

i ts in the vector
he execute function performs APL statemen :
= A result is returned only if the mxmwmmmwms
i i d as the
sult. When the execute function 1s vmmeHBm S
i e any result is automatically printed

or scalar B,

last operation on a line,

unless specification or a pranch was the last operation within
the argument. Branching in the argument has no effect, and any
statement label is ignored. If execute 1s applied to a character

argument representing a 1list, the list is printed and the first
list element is returned as the result of the execute function.
Note that the present system does not allow expressions exceeding
150 characters to be executed. (Some statements of as few as 87
characters give a LIMIT ERROR.)

Examples.
e'1 24 48' (Converting characters to numbers.)
1 24 48
X<1 2 3
+/ 2 X+Ekx2!
20
Pea'A+1 3"
P
1 2 3
Pe212;3;4"7 E
234
B

MONADIC FORMAT: R+v3

The monadic format function returns a character array that
when printed looks exactly like B (except possibly when [OFW is
exceeded, in which case numbers in vB could be split between
lines). An argument of character type is returned unchanged.
For a numeric argument, each column of B becomes several columns
in the result (depending on [OPF and the numbers in the column),
but the other dimensions of the result are the same as for the
argument. Thus the rank of B is the same as the rank of B, and
pR matches B except that ~14pR (the last dimension of R} is
generally greater than “1tpB (the last dimension of B). Note
that the exact output format differs between APL systems and may
even differ between versions of the same system. Programs should
be written to be independent of such differences.

Special case. A scalar numeric argument 1is treated as a
one-element vector and thus produces a vector result.

Examples.

¥1 2 3

p¥l 2 3

¥3 U4prl2
2 3 4
5 7 8
10 11 12

W0 oo

p¥3 Hprl2
3 10

FTAB'
AB

DYADIC FORMAT: Z+V¥9B

The dyadic format function represents columns of B according
to pairs of integers in the vector V. The first number of a pair
in v gives the width, and the second number gives the precision
to be used in representing the number. The width is the number
of character positions to be used for the column, and if 0 is
used, the system chooses a width so that at least one blank will
separate that column from the preceding column. . The result R has
the same dimensions as B except that the last dimension of R is
usually greater than the last dimension of B. Character
arguments are not allowed. The precision has the fellowing
significance:

precisionz¢ The numbers are represented in decimal format.
The precision is the number of digits beyond
the decimal point. If the precision is zero,
no decimal point appears.

precision<¢ The numbers are represented exponential format.
The number of digits shown is the absolute
value of the precision, and if the precision is
1, no decimal point appears. Five columns are
required for the exponent, unless the system
chooses the width, in which case the number of
columns required for the exponent depends on
the magnitude of the numbers.

Note that a domain error will result if a number cannot be
represented in the space provided. However, there is no
requirement that spaces separate numbers in the same row.

Exception cases. If B is a scalar, it is treated as a
one-element vector. (Hence the result is a vector, never a
scalar.) If v is a scalar or one-element vector, it is extended
to become V+0,V. (Thus the width of the columns will be chosen

by the system.) Then if oV is 2 but “1+pB (the last dimension of
B) is not 1, V is replicated to become V+(2x"14pB)pV so that the
pair of numbers in V will be applied to all columns.

Examples.

7 3%.3456 2.8 928
0.346 2.800928.000

4y,3456 2.8 928
0.3456 2.B000 §28.0000

1 0%2 3pl1 0
101
010
1.0

10 T373 1p2.34567 4.23E18 "5.3E 6
2.35E0
4,23E10
T5,30E76
T1¥1ES 1.2E6 1.8E2
1E5 1E6 2E2

MATRIX INVERSE: R<HB

The matrix inverse function returns the inverse of a matrix
B. The inverse is such that

(BB)+.xB+>T

where I is an identity matrix (i.e., a matrix with 1l's along the
diagonal and 0's elsewhere) having 1t+pB rows and columns. Note
that this uniquely defines R only as long as B has the same
number of rows and columns. However, if B has more rows than
columns, the result R can be uniquely defined by
B<+(E(§B)+.xB)+.xkB. The result is related to the result for the
dyadic matrix divide function according to BB«-+IfB, where I is an
identity matrix having TitpB rows and columns.)

Requirements for B. Ignoring the exceptions below, B must be a
Tatrix such that (1+pB)2"14pB (B must have at least as many Irows
as columns) and B must have an inverse. Ilote that some matrices
do not have inverses and produce a DOMAIN ERROR if an inverse is
requested. In particular, a square matrix with two identical
rows or with one row that can be produced by nmultiplying other
rows by factors and adding them has no inverse, Actually, there
is no precise distinction between matrices that have inverses and
those that do not, and OCT is used in the test. Increasing the
value of 00T may prevent a DOMAIN ERROR, but the result so
produced is less reliable and may be completely meaningless. The
dimensions of the result are ¢pB {i.e., p&B).

Special cases. If B is a scalar, the result is the scalar :5A.
If B is a vector, the result is B++/Bx2. Except for the result
rank, the scalar case is the same as if the scalar were treated
as a one-by~-one matrix, and the vector case is the same as would
be produced by treating the vector as a one-column matrix.

Examples. See the examples at the end of the following
discussion of matrix divide.

MATRIX DIVIDE: R+AWMB

The matrix divide function solves systems of simultaneous
equations or finds least-sguares regression coefficients. When
the matrix B has the same number of rows and columns, & is the
solution to linear equations represented by the constant vector
4 and the coefficient matrix B. When B has more rows or columns,
the result R contains the regression coefficients for a dependent
variable 4 and independent variables in the columns of B. lote
that the result is the same as (FEB)+.x4.

Requirements for 4 and 3. Ignoring the special cases below, &
must be a matrix such that (1+pB)>"14pB, and B must have an
inverse (see the preceeding discussion of the matrix inverss
function). Also, 4 must be a matrix such that (1+tpd)=1+p8 (they
must have the same number of rows). When 4 has more than one
column, the result B has a solution column for each column of 4.
The result has the dimensions (1+4pB),14p4 {(one row for each
column of B and one column for each column of 4). The result &
satisfies B+.xR+»>4 1if B is a square matrix. When B is not a
square matrix, the result minimizes each element of

+#(A-Bt.xR)*2

That is, B+.xR gives predicted values for +the regression
cofficients R, and 4-B+.x%K gives the residuals; so the sum of the
squared residuals is minimized.

Special cases. The arguments may also be scalars or matrices. A
scalar is treated as a one-by-one matrix, and a vector is treated
as a one-column matrix. After this extension, 14p4 must match
t+pB. The dimensions of the result are (1+pB),1+p4 where 4 and
B here are the original arguments before extension.

Example 1. To solve the system of equations:

5= x + 2y
4=5x + 3y
Use:
O+M+2 2p1 2 5 3
1 2
5 3

N 5 4 @M

1 3 (A vector result.)
B (2 1p5 4)EM

=

3 (A matrix result.)

The answer is x="1, y=3,

Example 2. quma Vis.8 .9 1.0 2.2 3,1, V2«1 2 3 1 2, and Y+u,5
6.6 9.2 8.3 7.1 find the values of 41 and A2 that most nearly
mmwummwwuﬁhuxﬁpu+mmxwmHsnﬁmHmmmﬁ m@ﬁmwmwmmnmm.

O«@«vi,[1.5]¥2

L

[IPP+3
«2+YHQ
1.37 2.56

The predicted values for Y are:

Q+.%xZ
3.66 6.35 9.04 5.58 9,37

and the residuals are:

Y-@+.xZ
0.845 0.252 0,159 2,72 T2.27

Example 3. cmwsm vl and V2 from Example 2 and Y2<6.5 8, 6. 14,3
10,3 9.1; find 41, 42, and A3 that most nearly satisfy
¥Y2=A1+(A2xV1)+A3xV2, This problem is 1like the previous one
except that we imagine 41 to be the coefficient of a vector of
1's. The solution is given by:

O«B+1,9
1.0.8 1
1 0.9 2 i
1 4 3
1 22 1
1 Sl 2
Y288

5.76 0.593 1,35

i
I
]
1

Chapter 6. Composite Functions

As described in Chapter 2, an operator is a special function
that takes functions as arguments and produces a function as a
result, Except for the result of the axis operator, these
resulting functions are the composite functions. A few examples
will help to illustrate this. The expression +/12 3 ("the plus
reduction of 1 2 3"} is the same as 1+2+3. Similarly, -/1 2 3 is
1-2-3 or 2 (remember that it is performed from right to left).
The function symbol +to the left of the siash indicates the
particular dyadic scalar function to be used. The forms for
composite functions are d/B (reduction), d\a (scan), 4..dB (outer
product), and 44d.DF (inner product), where @ and D represent
symbols for any dyadic scalar functions.

REDUCTION: R+«d/[k1B

Reduction applies a dyadic scalar function repeatedly
between elements in vectors along the ¥th coordinate of B. For a
vector B, the ngcoﬁwow\wm of the form

B[11dB[21d .J/. &BLN]

For higher crder arrays the same sort of cperation is performed
for each vector along the ¥th coordinate. When the axis operator
is omitted the operation is performed along the last coordinate.
The alternate symbol £ can be used to indicate the operatiocn
should be performed along the first coordinate.

Requirements for 3. Elements of B must be in the domain of the
scalar function used. Thus, character arquments are allowed only
for the functions = and =, Except for the special cases below,
the result has a rank that is one less than the rank of B and the
dimensions of the result are (KE=z1ppB)/pB (the same as the
dimensions of B except that the Xth dimension of B is missing),

Special cases. A scalar is treated as if it were a one-element
vector, and the result is then a scalar. If the length of 5
along the kth coordinate is 1, the result is the same as the
argument except that one dimension is removed. No cperation is
actually performed in this case, so no check is made to see
whether the values are in the domain of the function, except that
arguments of character type are still illegal for functions other
than = and =. When B is empty but the result is not empty, the
result contains the identity element £for the function if one
exists., The following table shows the identity elements used.
Note that in some cases the identity elements are identities in a
rather loose sense. Some are right identities only, some are
left identities only, some are both, and some are identities only
for logical arguments. Functions for which there is no identity
in the table produce DOMAIN errors when applied along a
coordinate of length 0.

Function Identity Function Ident.ty
+ 0 * 1
= 0 A 1
X 1 v 0
i 1 ' 1
[T1.28E322 > 0
L > 1
= 1.26E322 < o
z 0 < 1
Examples.

/3 1 9 1Ls

15 (Largest element.)
L3 ¢ 9 15

1 (smallest element.)

x/1 2 3 4 5
120 (Product.)

+/1 2 34 5
15 (Sum.)

-/1 2 3 4 5 (Alternating sum; same as
3 1+(=2)+3+(-L4)+5,)

/1 2 3 4 5 (Alternating product; same
1.875 as (1x3x5)+2xu,)

+P+3 L4p112

r/p {(Largest element in each row.)

L 8 12
[#FP (Largest element in each column.)

9 10 11 12
+/3 (A scalar 1s treated as a vector.)

3
AlS

5 (No domain check ror one element.)
+/10

0 (An identity if the length is zero.)
+/3 0p0

000 (An identity for each of the 3 rows.)
A/ AeB (Gives 1 if all elements of the vector 4

occur in B.)

v/AeB (Gives 1 if any elements of the vector

A occur in B,)

SCAN: R<+d\[X]1B

Scan performs a series of reductions. For example, +\1 2 3
4 5 returns 1 3 6 10 15; that is, the Ith element is +/7+B. For
arrays other than vectors, the result has the same shape as the
argument, and the elements along the kKth coordinate are produced
by performing a reduction over the first 7 elements, Arguments
of character type are not allowed. If the axis operator is
absent, the last nomwmwdmﬁm is assumed. The alternate symbol Y
can be used to indiedte the operation is the be performed along
the first coordinate.

vi0 01 0 0 1 0
0011111

A\1 10101
x\1 2 34 5 6
1 2 6 24 120 720

OJ«P<3 4p112

1 2 3 4
5 6 7 8
e 6 e e L

+\P
1 3 6 10
5 11 18 26
9 19 30 42

+yP (Same as +\[11P.)
1 2 3 4
6 8 10 12
15 18 21 24

OUTER PRODUCT: R+Ao.dB

outer product applies a scalar dyvadic function using all
elements of A as left arguments and all elements of B as right
arguments. The rank of the result is (ppd)+ppE and the
dimensions of the result are (p4),pB. Each result element has as
its first ppd indices the indices of the element used from 4 and
has as its last ppB8 indices the indices of the element used from
5. !

Examples.
1 2 3o0.%x4 5 6 7
4 5 6 7
8 10 12 14 (Each element of the left argument is

12 15 18 21 multiplied by each element of the right.)

1 2 32.=3 1 3

(==}
o =
= oo

+/1 2 3¢.-3 1 3
1 0 2 (The number of l's, 2's and 3's
in the right argument.)

INNER PRODUCT: R+Ad.DB

Inner product applies the scalar function D between each
vector along the last coordinate of 4 and each vector along the
first coordinate of B, then performs a reduction using d to that
result. The usual matrix product is A+.xA.

Requirements for 4 and 5. Ignoring the special cases below, the
Tast dimension of A must match the first dimension of B. The
dimensions of the result are ("14pd),14pB (all dimensions of 4
except the last and all dimensions of B except the first).

Special cases. If A or B is a scalar it 1is treated as a
one-element vector. Then if the last dimension of 4 does not
match the first dimension of B but one of the two dimensions is
1, that dimension 1is extended to match the other (thus allowing
the array having the 1 as a dimension to be used repeatedly).

Examples. The following table shows examples for arguments of
various ranks.

pod ool poR Result
2 2 2 RFLI;J3=d/ALI;1DBL;J]
2 1 1 R[I]=d/A[I;1DB
1 2 1 R[I1=d/ADBL ;1]

The following examples illustrate useful inner products:

(«4<2 3p1 O
101
010
O«B+3 3p19
123
4 5 8
7 8 9
A+.xB (Matrix Product.)
8 10 12
4 5 &
VABCD'+.="XZCD" (Counts matches in corresponding
2 positions,)
[«TABLE+«3 up'FOURFIVESIK !
FOUR
FIVE
SIX
TABLEA.='FIVE'
010 (Gives 1 for a row that matches

TFIVE'.)

Chapter 7. System Functions and Variables

This chapter discusses system functions and variables other
than [0 and [(which were discussed in Chapter 2), other than the
ones related to shared variables (which have not been implemented
in the present version of APLUM), and other than [OFp and [JSY.
System functions and variables allow communication with the APL
system, and, to some extent, with the KRONOS operating system
under the control of which the APL system runs. In most respects
system functions and variables behave as other APL functions and
variables except that: their names are distinguished by beginning
with the symbol [or [, they control the APL environment in ways
that other functions and variables cannot, and the values of
system variables can change between settings. For example, [Q4T,
which is a vector of accounting information, may be set by the
user to any desired value, but the next time he requests its
value, it will correctly reflect current accounting
information--that is, the system resets the value of [4I before
it is read. Similarly, [0AI can be erased by the user, but the
system gives it a value whenever its value is requested.

The system variables that affect operation of the APL system
have restricted shapes and domains. For example, [r0, the origin
for indexing, must have a value of, 1 or 0. Any attempt tc set
0I0 to an improper value will <result in a RANX ERROR or a DOMAIN
ERROR. However, the user can erase [JI0 or declare [JJ0 to be
local to a function and then fail to assign it a wvalue. When a
system variable is undefined and its value 1is required for an
operation, an IMPLICIT ERROE results. For example:

VZ«I0T4 B;01I0 (0I0 is a local variable.)
[1] Z«1B ¥

I0T4 3
01: IMPLICIT ERROR
IO0TALL1] Z+\B
/

Summary of Chapter 7.

Output Control

[JPP<integer (1 to 185) . :
Printing mﬂmnwmwonizgmxwaﬁﬁ number of significant digits

used for numeric output.

OFW+integer (30 to ~1+2%17)
Maximum printing width used for output.

(PL<pagesize,linecount (0 to ~1+2%17)
Print lines. Print lines to be used before a halt to allow
The terminal operator to intervene, and count of lines used.
If OpLf1] is o0, output will be uninterrupted.

Indicators affecting Primitive Functions

J¢T<number (0 to .01) . :
Compaxrison tolerance used for relational functions,

membership, index-of, and domain tests.

BIo+0 or 1 .
Index origin. Determines base for counting.

OFL«integer (1 to ~1+2%47)
Random link used by random number functions.

Function Definition

OE#V+0 or 1
Environment control. affects [lcr, OFXx, DEX, Owc, ONL,

Osrop, OTRACE, UOLOCK, OLTIME, ONAMES, and [JCOFY. 1f OENV
is 0, the global environment is used, and 1f OENV is 1,
+he current environment is used.

matrix«[OCR '"name'
Canonical representation of a function in the form of a

matrix.

Z<0FX matrix .
Fixes +the function represented by the character matrix

argunent. The result returned is a vector containing the
name of the function, or, if the operation failed, a numeric
scalar line number for the erroneous statement.

vactor<JEX 'names'
Expunges (erases) objects named by the right argument. The
Tesult contains 1's for names that are now available, 0's

for others.

vector+[NC 'names'
Returns the name class for each name=-0 for available, 1
for locked variable (label or group), 2 for unlocked
variable, 3 for function, or 4 for distinguished name.

matrix+ONL V

matrix+'letters® [NL V
eww namelist functions return matrices of names in use.
Which names are returned depends on class numbers in
qln«nnwmm variables (labels or groups) if 1e¢V, unlocked
<mmwwvwmm if 2eV, functions if 3¢V, and defined
distinguished names if yeV. The left argument of the dyadic
form should contain letters to further restrict names to
those beginning with those letters. .

vector<«[LOCK 'names'
Locks functions and variables named by the right argument.

ezm result is a vector containing l's for success, 0's for
failure.

Stop, Trace, and Timing Control

Vv OSTOP 'name'

Sets stop controls for lines specified by ¥V and clears
controls for other lines.

Z<[STOP 'nane’'

Returns a vector of line numbers for which stop controls are
selected.

Vv O7RACE *'name’
Sets trace contreols for lines specified by ¥V and clears
controls for other lines.

Z<[JTRACE '"name'

Returns a vector of line numbers for which trace controls
are set.

V OLTIME "name'
Selects accurmulation of line timing information for lines

specified by V and clears time accumulation for other lines.
Also clears time totals to 0.

Z+~0LTIME 'name’
wﬂﬂzw:m a matrix with line numbers in column 1 and times (in
milliseconds) in column 2.

Program Library Functions

OWSID<"name')
UWSID contains the workspace identification of the active
MOmewQOm. This name Ts used when no name is given for
SAVE

2«0SAVE ' wsname [:passwdll/options]'
saves a copy of the active workspace under the name
specified. [0SAVE'' (no name givern) uses the name in [IWSID.
4 OSAVE 'wsname [:passwdll/options]’
same as above except that 4 controls the state indicator of
the active and stored workspaces. If 4 is 0 or 1 the state
indicator is <cleared or backed up to the last suspension,
respectively.

OLX+'expression'
The latent expression is executed immediately after the
workspace containing it is loaded.

O05.0AD ‘[*account] wsname [:passwdl’
Activates a copy of a stored workspace and then executes the
latent expression if one is defined.

matrix+<V [ONAMES ‘l[*account) wsname [:passwdl'
Lists names used in a stored workspace. The result is a
matrix of names of objects in the name classes specified by
elements of V-—~locked variables (labels or groups) if 1eV,
unlocked variables 1if 2eV, functions if 3ev, and
distinguished names if Lel.

matrix<«ONAMES '[+*account] wsname [:passwdl'
Returns a matrix of all names of classes 1, 2, and 3 in the
workspace.

matrix<'names' [JCOPY '[*account] wspame [:passwd]l'
Copies specified objects into the active workspace from a
stored workspace.

matrix«[(COPY '[%account] wsname [:passwdl’
Ccopies all objects of classes 1, 2, and 3 from the
workspace.

ODROP '[*xaccount] wsname [:passwd]'
Removes the stored workspace or file named by the 1right
argument from the indicated library.

Z<0LIB '[xaccount] [namel'
Returns a matrix containing names, types, and sizes of files
in a library. If an account number is given, information is
given only for the files that are public or semiprivate or
for which the user has access permission. If a name is
given, detailed information about that one file is returned.

Error Processing

[JTRAP integer
Specifies that errors are to be intercepted by a forced
branch to the specified 1line of the currently executing
function.

Z+0OBRE
[ERR is a 3-row matrix of the last error nessage, the line
having the error, and a pointer to the position of the error
in the line.

matrix<[S5IV vector
The result is a character matrix containing the rows of the
state indicator with variables display specified by the
right argument. 0srv_ 1p0L¢ gives the entire display (in
either origin).

v<[0Lc
OL¢ is a vector ofvall line numbers appearing on the state
indicator. .

Miscellaneous System Communication

V+0ATI
JAT is a vector of accounting information. AT [1 2 3 4]
gives: an encoding of the user's account number, accumulated
central processor time, accunulated connect time, and
accurulated keying time.

V+0AV
Atomic vector of all 256 APL characters.

v«0rs
Tine stamp: current year, month, day, hour, minute, second,
= b
and millisecond.

V<0re
Terminal type.

OwA<V
Working area: 0OWA[1] is the part of the maximum field length
available for use, 0OWAL2] is the current field length,
OWAL3] and OWAC4]1 are the minirmum and maximum fiz=ld lengths
the user wishes APL to use.

OT¥ 'command’
mnnswbmp node: commands are SYSTEM, OFF and ABORT, to return
To KROWOS command processor, sign off, or abort batch job.

S+[PL seconds
Causes execution to delay for the specified number of
saconds.

However, three system variables are so important that when they
are undefined the system uses default values. Thus, when [PV is
undefined the system uses 30 as the printing width. When (FF is
undefined, normal output uses a value of 1. When QO¢CT is
undefined, the system uses zero as the comparison tolerance for
domain tests, although numerical comparisons still give implicit
errors. For example,

Ogx'ocr!

3=3
01: ITMPLICIT ERROR (Because (CT is undefined for comparison.)
3=3
/
13
1 2 3
13+1E712
03: DOMAIN ERROR (Because [T is zero for domain tests.)
13+1E 12
/

Certain system variables are not stored in the workspace.
These session variables remain in effect 1f another workspace is
loaded and always have their normal values when an APL session
begins. The session variables are Owa, 0OPL, OrT, 073, and [0AT.

NAME LISTS

Some system functions require arguments consisting of lists
of names. TIn all cases such name lists can be either a vector of
names separated by spaces, or a matrix of names with one name in
each row. In either form extra spaces are allowed before or
after names. When a system function returns a list of names as a
result, +the list is always in the form of a matrix because the
matrix form is usually more convenient for manipulation by the
program.

WORKSPACES
An APL workspace comprises variables, user-defined

functions, the state indicator, and system variables that are
currently defined. A clear workspace comprises the following:

an empty state indicator

OPP«10 (printing precision of 10 digits)

OPW«120 (up to 120 characters are printed per line)
OcT<5E"11 (comparison tolerance is 5& 11)

0r0+«1 (index origin is 1)

OrRL+16807 (random link is 16807)

OeNv<1 (local envirconment)

OERA+3 0p'!

In addition, the clear workspace also presently includes the AFL
functions [OFD (which ~performs function definition mode), &7
(which performs system commands), and the mixeéd functions &, &,
T, and L. Although some of these may eventually become
incorporated into the APL system itself (and thus be removed from
the clear workspace), they presently occupy considerable space in
active and stored workspaces. See Chapter 11 to learn how to

eliminate or restore these functions.

As functions and variables are defined, they become part of
the active workspace. A copy of an active workspace can be
saved. To use it at a later time, a copy of the saved workspace
can be activated (that is, made active).

A stored workspace is a special kind of KRONOS "file."
Under an account number (or user number) can be stored as many
files as are allowed by restrictions imposed on the account
number. The ccllection of files is known as a library.

APIL workspaces and data files are ordinarily KRONOS private
files, which means that-other users cannot use them. A user may
optionally save a workspace as a semiprivate file or public file
by use of commands of the form [SAVE 'name/S' or OSAVE'name/PU"'.
This allows other users to access the workspace but does not
allow them to alter it. Other users can be given permission to
access a private file by use of the KRONOS PERMIT control card
(see Chapter 12). This gives selected user numbers permission to
access the particular file. Further details about these file
categories can be found in Chapter 9 and Chapter 12.

Passwords can be given to workspaces for additional
security. When a workspace is given a password, other users must
provide the password in order to access the workspace. However,
the owner of the workspace need not provide the password in order
to use it.

The first time a workspace is saved it can be given a
password or a category (i.e., private, semiprivate, OT public).
Thereafter, the £file password and category remain unchanged for
subsequent save commands that replace the stored workspace.
(Thus, the password and category options should not be provided
for subseguent save commands.) To change the password or
category you must load the workspace, drop the stored one, and
then resave it with the new options. Alternatively, you can use
the CHANGE control card (see Chapter 12).

Workspaces can optionally be saved in direct access form
(ordinarily they are saved in indirect access form). This option
is chosen by using a command of the form OSAVE'name/DA' the first
time the stored file is established. Direct access WOrkspaces
are faster to load, save, or copy, but reguire more disk space.

The Jirect access option is appropriate for wunusually large
workspaces that are loaded or saved very often. A workspace can
be changed to direct access form by loading it, dropping it,
then resaving it using the p4 option.

Workspace names must begin with a letter, which may be
followed by additional letters and digits, However, the name
must not exceed seven characters. Passwords may consist of 1 to
7 letters or digits.

NOTATION

Throughout this chapter, brackets are used to surround
optional portions of expressions. The brackets themselves should
not be used. For example,

OL0AD '[*account] wsname [:passwd]'

means that the account number and password are optional. Any of
the following commands are of the correct form:

OLOAD 'ALGEBRA'

OLOAD '%A123456 ALGEBRA:SESAME' '
OrLOAD 'ALGEBRA:SESAME'

OLOAD '%A123456 ALGEBRA'

SYSTEM VARIABLES FOR OUTPUT CONTROL

Printing precision. [PP<integer (1 to 15)

The value of (PP determines the maximum number of significant
digits to be used for numeric output. The result is rounded to
OpP digits; hence if [PP is 3, 0.34567 would be printed as
0.346. See Appendix B for further details of numeric output
format.

Printing width. 0[OPW+integer (30 to T1+2%17)

The value of UPW determines the line width used for output. When
a line of output requires more character positions than (PW, the
remaining characters are indented and continued on successive
lines. Output of numbers will not cause individual numbers to be
split between two lines, but output of character data
representing numbers may cause numbers to be split between lines.

Print lines. [OPL+pagesize, linecount

OPL is primarily intended to facilitate the use of CRT terminals
having a screen smaller than the +total amount of output
generated. Appropriate setting of [JPL causes output to pause
when the screen has been filled to allow the screen to bhe
examined or cleared (if regquired) before more output is sent.

7-8

The first element of [JPL should be set to the number of lines
that will be used for actual output. The second element of [PL
is a count of the number of lines actually used for input and
output. When each output line or input line has been completed,
OpPL[2] is incremented by 1. If Opr[1]=0PL[2], the system prints
? on the next line and suspends further output until RETURN is
pressed, (Any other input 1is treated as if RETURN has been
pressed.) The program requesting input can be halted by use of an
interrupt (see Appendix C). When RETURN is pressed, [QPL[2] is
reset to 0, and further output is sent. The value of [JPL[2] can
be reset to compensate for screen repositioning caused by graph
mede output. The elements of [JPIL are restricted to positive
integer values. If an attempt is made to set [PL[1] to 1, it
actually is set to 0. If the last line on the screen is used for
input, the ? is suppressed and normal input can be entered on
that line. (The input request gives a pause to allow the screen
to be read.)

0pL has a different meaning when APL output is sent to a
file rather than to -a terminal. Specifically, if APL 1is not
being used from a terminal or is being used from a terminal but
the output file name is not OUTPUT, and if the shifted output
option is in effect (see Appendix D), a page eject carriage
control character is sent at the beginning of the next output
line whenever the page size has been exhausted,

VARIABLES AFFECTING PRIMITIVE FUNCTIONS

Comparison tolerance. [OCT<number (0 to .01)

The comparison tolerance is used when comparing numeric values
and when testing whether values are sufficiently close to
integers:

1. Two numbers 4 and B are considered equal only if
(14-B)s|OCT%B

m. WSEBbmHmHmQObmHQmﬂmmwowmwasmwbﬁmmmh
domain if .

(1 (NINT B)-B)<0CT+|0CT*NINT B
where NINT B is the nearest integer to B, defined by:

TZ<NINT B
(11 Z+(xB)xL.5+|BV

The value actually used for the operation is N¥INT B.
If (Jcr is undefined, zero is used as [C7.

Random link. [RL+«integer (1 to 1+2%47)

OEL determines the next random number to be produced by roll or
deal. Each time a random number is requested, the value of [rs
changes. A series of random numbers can be recreated by setting
[RL to the same initial value and repeating the same requests.
Because the value of [JRL is saved with the workspace, it may be
desirable tc reset it after the workspace is loaded to a value
based on the current time of day so that the random numbers
produced will not be the same as for the last session; for
example, [ORL<++/07TS.

.Index origin. [OI0+0 or 1

The index origin determines the origin for counting coordinates
or elements along coordinates. In O-origin the elements of a
vector would be numbered 0, 1, 2, etc. 2All indexing should use
values that are 1 less in O-origin than in l-origin. In
addition, the following functions produce results that are 1
less in O-origin than in l-origin: 4B, B, 4B, ¥B, A7B, and 7B,
In addition, the left argument for dyadic transpose should be 1
less for O-origin, and all axis operators require values that are
1 less. That is, x should be 1 less in expressions like A4/[K]1R
and ¢[x]B. 2

FUNCTION DEFINITION

Environment. [OENV<0 or 1

OEFV controls whether the functions ({dc¢r, 0OFX, 0EX, ONC, ONL,
QrrIME, ONAMES, OCOPY, (08TOP, 0L0OCK, and [TRACE refer to the
global environment or +to the current environment. When [zvv is
0, the global environment is used, and when [JFENV 1is 1, the
current environment is wused. The normal value of [JENV is 1, so
the system functions listed above may refer to local variables
and functions. @ However, when function definition mode is
entered or when a system command is performed, only the global
functions and variables are used. When the state indicator is
empty, the current environment and the global environment are the
same and [ENV has no effect.

Canonical representation. matrix«[dCF "name’

Canonical representation returns a character matrix
meﬂmmwdﬁmwwom of a function. The right argument contains a
character vector or scalar containing the name of the function to
be returned. The result will have one row for each line of the
function, including the function header. Lines will be indented
one space unless they have labels or begin with a comment. If
the argument does not name a function in the environment
specified by 0ENV, a NAME NOT FOUND error is given. If the
function named by the argument is locked, the result will have

0 0 as its shape.

Fix. Z+[FX matrizx
[0FX establishes the function represented by the character matrix
argument. £ the attempt to establish the function is

7-10

\

successful, 2z will be a vector containing the name of <h
function. Replacemeht of previously existing functions
allowed and may result in SI DAMAGE if the functicn is halt
The 5I DAMAGE error 1is processed as a normal error, except ti
if the state indicator entry for the currently executing funct
was damaged, error trapping is not allowed to take place. In
this case the error is considered to be located at the last line
entered in immediate execution mode. OFX cannot be used to
replace objects other than functions. An attempt to establish a
function may also fail as a result of an incorrectly formed
function header or duplicate use of statement labels or local
variables. If the attempt fails, Z will contain a scalar row
index of the line that was improper. Functions created by OFx
can be declared local to other functions.

Expunge. Z<[EX 'names'

JFX expunges (erases) functions and variables named by the
argument ., The result Z is a logic vector containing 1's in
positions corresponding to names in the argument that are now
free, and 0's in positions corresponding to names that remain
unavailable for new uses. Erasure of a function that is on the
state indicator does not take effect until +the function is no
longer on the state indicator. Thus a function can erase itself
and not actually be erased until it exits. The unfinished
execution can complete, but the name is immediately available for
new uses.

Name class. vector<[NC 'names’

O¥C returns information about use of the names in the right
argument. The result Z contains 0, 1, 2, 3, or 4 according to
whether the name is available (not in use), a locked variable
(label or group), unlocked variable, a function, or other (i.e.;
a defined distinguished name}, respectively. Incorrectly formed
names in the argument cause a DOMAIN ERROR.

Name list. matrix<[NL V or Z<«'letters' [ONL ¥

The name list functions return lists of names in use. The right
argument is a numeric vector such that A/Vel 2 3 4. V¥ indicates
the. classes of names for which information is desired--1 for
locked variables (labels or groups), 2 for unlocked variables, 3
for functions, and 4 for distinguished names. The result 2 is a
matrix of the names. The left argument of the dyadic form may
contain any number of letters, and names appear in the result
only if they begin with those letters.

Lock. vector<[LOCK 'names'

The variables and functions specified by the right argument are
locked. A "locked function cannot be displayed, and a locked
variable cannot be reset using specification. (However, a locked
variable can be reset by erasing it and then using
specification.) Locking a variable is a very useful way to find
where the variable is reset. When the variable has been locked,
the next assignment to it will cause an error halt, Label

oups are automatically locked to prevent them
oper values. The result returned by [QLOCK

Mo

ring im
i's 1in positions corresponding to names that are now
ocked and contains 0's for other names.

b 0 by 8l

STOP, TRACE, AND TIMING CONTROL

The functions [sT0P, OTRACE, and (OLTIME are closely related.
In each case the right argument is a character vector or scalar
that names a function, and the left argument for the dvadic form
must contain nonnegative line numbers for which the control is to
be set. Setting controls for any lines clears all controls of
the same type for the other lines of the function. Elements of
the left argument not in the range of line numbers are ignored.
In all cases, an empty vector of line numbers can be used to
clear the controls. An empty character vector is allowed as a
left argument for notational convenience (e.g., '' [OSTOP 'PLOT').
The monadic forms of the functions return information about
controls that are currently set.

Stop control. V [OSTOP 'name’ and Z«[(STOP'name’

When the stop control is set for a particular line, execution of
the function suspends before execution of the line begins, and
the system prints SToP SET, the name of +the function, and the
line number. To continue execution where it stopped, issue a
branch to the 1line number just printed. Stop control at line 0
of a function causes suspension just prior to exit from the
function. The monadic form returns a vector of line numbers for
which stop controls are currently set.

Trace control. V [OTRACE 'name' and Z<{TRACE 'name’

Setting trace control for a line causes the function name and
line number to be printed each time after the 1line has been
executed, and if the result of the line was used for a branch or
assignment, the result is printed even though it ordinarily would
not be. Setting trace conteol for line 0 causes tracing of the
exit from the function and causes printing of the explicit result
of the function (if it has one). The monadic form returns a
vector of line numbers for which trace controls are set.

Line timing control. V¥ [OLTIME *name’' and Z<«[LTIME ‘name'

Setting the Iine timing control for a line causes the Central
Processor time for that line to be accumulated. The time for a
line is accumulated until line timing controls for the function
are reset, at which time zll accumulated times are set to zero.
An attempt to set line timing control for line 0 of a function
causes a DOMAIN ERROR. The result returned by the monadic form
is a 2-column matrix--the first column contains the line numbers
for which the 1line timing control is set, and the second column
contains the total times for the lines. Because the time clock
has a resolution of one millisecond, each parcel of time used by
the line is measured with limited accuracy, and lines consuming

/

very little time or lines consuming time in small parcels can b
expected to show relatively large inaccuracy in accumulate
times. Note that the times accumulated for a recursive functio
can count the time more than once.

PROGRAM LIBRARIES

Workspace identification. [WSID<'name'’

The variable [WSID contains the name of the active workspace
The name of: the active workspace is used as the name for storin
the workspace if no name is specified when [SAVE or)S4VE i
used. The name must begin with a letter, which may be followe
by additional letters or numbers. WNo spaces are allowed withi
the name, but spaces may precede or follow the name. The nam
must not exceed seven characters.

Save. I<[JSAVE ' wsname [:passwd][/options]'

0SAVE saves a copy of the active workspace under the specifie
name and attaches tp the saved workspace the password if one i
used., If a password is used, it must be separated from the nam
by @ colon. The name itself may be omitted, and in this case th
value of OWSID is used as the name. When [SAVE is executed fro
a function, the state indicator of the saved workspace will sho
suspension where [JSAVE was executed. The options may include $
P, or PU (for semiprivate, private, or public category) or ma
include D4 or T4 for direct access or indirect access. The lis
of options may include any desired number of options, separate
by spaces, as long as the options do not include contradictor
choices. The options and password may be specified only when th
saved workspace is first established. If no options ar
specified, the workspace is saved as a KRONOS indirect acces
private file if the saved workspace is being created; otherwis
it is saved in the same form as before.

The result returned is a vector of the workspace name an
the current date and time, However, when [JSAVE is used 1
immediate execution mode, the name, date, and time are printe
rather than being returned as a result.

Dyadic save. 4 [SAVE ' wsname [:passwdl[/options]!

The dyadic save function is like the monadic form except that i
permits control over the state indicator in both the active an
the saved workspace. The argument 4 may be a numeric scalar o
vector., If 4 is 0, a clear state indicator results, and if 4 1
1, the state indicator is backed up to the point of the mos
recent suspension (or cleared if there have been no previou
suspensions). Note that a function calling the dyadic [0S4¥
function always ceases to execute because of the change in th
state indicator, unless an error prevented completion of th
operation., Dyadic save prints the workspace name and the curren
date and time.

Latent expression. [OLX+«'expression'

The latent expression in a workspace 1s executed immediately when
the workspace containing it is loaded. When a workspace has no
latent expression, the keyboard unlocks for the user to specify
the first operation to be performed. A successful load operation
ordinarily causes the time and date when the workspace was saved
to be printed, but when the workspace contains a latent
expression this message is absent.

Load OLOAD '[*account] wsname [:passwdl'

The function [LOAD activates a copy of a stored workspace. The
right argument must contain the name of the workspace to be
loaded, the password for the workspace (if it requires one), and
the account number under which the workspace is stored (if
different from the user's own). A successful load results in
execution of the latent expression if the workspace being loaded
has one. If the workspace has no latent expression, the time and
date when the workspace was saved are printed.

Name list for stored workspaces. matrix«V ONAMES '[xaccount]
wsname [:passwd]!

The [JNAMES function returns a matrix list of the names used in a
stored workspace. The list returned is controlled by (ENV in the
active workspace. The right argument is the same as the right
argument for [OLOAD. The vector V may contain the integers 1, 2,
3, or 4 to specify what classes of names should be
returned--locked variables (labels or groups) if 1eV, unlocked
variables if 2¢V, functions if 3eV, and distinguished names if
LeV.

Monadic name list. matrix<+[INAMES'[*account] wsname [:passwdl'
Returns a matrix of names of all objects in the workspace or a
vector error message. Same as dyadic form with 1 2 3 as a left

argument.

Copy. matrix«'names' [copyY '[*account] wsname [:passwd]l’

The function [COPY copies functions and variables from a stored
workspace to the active workspace. The account number, workspace
name, and password are the same as described for [JLoAD. The list
of names in the left argument specifies objects to be copied.
However, if copying the object would cause replacement of objects
already in the active workspace, the copying process is
inhibited. If OENV is zero, copying will be from the global
environment of the stored workspace +to the global environment of
the active workspace, and if [JENV is 1, the current environments
will be used, The result from [JCOPY is a matrix of names of
objects not copied because they were not found, because WS FULL
occurred, or because they already were in use in the active
workspace.

Monadic copy. error<{COPY '[*xaccount] wsname [passwdl'

Like dyadic copy except that all objects of classes 1, 2, and 3
(see [ONC) are copied.

7-14

Drop. error«[JDROP '[xaccount] wsname [:passwdl'

The function [ODROP removes a stored workspace (or other KRONOS
file) from the wuser's library. A password must be specified if
an account number is specified and differs from the one used to
sign on to the system and if the file has a password.

Library list. 1ist<[JLIB '[*account] [namel '

The function [OLIB returns the names of files stored under the
specified account number (or the user's own account number if no
account number 1is specified). The list 1is a matrix such that

each row has the following fields:

File name: 7 characters
File type: 2 characters
File size (in words): 6 characters

One space separates adjacent fields. When a file name is given,
detailed information about that particular file is returned. The
format when a name is provided is illustrated below:

B 3
OLIB'*APL1 FILESYS'
FILESYS WS 2059

IA S RD

75/05/12 11:46:58 (When created.)
75/05/30 13:03:30 (Last change.)
75/07/31 12:30:59 (Last access.)

The first row gives the name, type of file (¥$S for workspace, F
for APL file, blank for all others), and the size in words. The
second row indicates the file is indirect access (the other
possibility world be DA for direct access), the file category
(S for semiprivate, P for private, and PU for public), and the
mode of access permitted for other wusers, (Ap for read, WR for
write, A for read-modify, MD for modify, 4P for append, R4 for
read-append) .

ERROR PROCESSING

Some system functions respond to certain error conditions by
returning a result to indicate the error. However, APL handles
most errors by suspending execution at the point of the error,
printing a message, and unlocking the keyboard for a new command
to be entered, Note that a keyboard interrupt (see Appendix C)
is treated as an error, as 1is typing # (0, BACKSPACE, U,
BACKSPACE, T). However, halts due to stop controls are not
errors. Special exceptions arise when the errcr is in an
ar¥gument to the execute function, in a gquad input entry, in a
locked function, or when OTRAP has been used to intercept errors.

Errors in an argument to the execute function normally cause
two error messages to be printed. The first shows the execute
argument, and the second shows the errcr at the line where
execute was called (more precisely, the most recent pendent line
other than lines of locked functions or arguments to execute).

Errors in lines entered for gquad input cause the request for
input to be repeated. If the error was encountered in a function
called by the input line, the request for input is not repeated
and normal error processing ensues.

For security reasons, lines of a locked function are not
shown 1in error messages. Any error in a line of a locked
function is treated as if it were situated in the line where the
locked function was called (more precisely, the most recent
pendent line other than lines of locked functions or arguments to
execute) .

The function [JTRAP can be used to designate a line of the
currently executing function to intercept errors. Once this has
been done, error trapping is in effect and an error in any line
of the function causes a forced branch to the trap line. The
error trap is in effect for functions called by that function or
for functions that are in turn called by those it calls, etc.

The scope of error trapping is analogous to the scope of
local variables. A function with a trap line remains in control
of errors unless a function called by it sets its own trap line.
The newer trap line takes precedence over the old one until the
called function completes execution or clears its trap. The trap
also takes precedence over the normal processing of errors in
gquad input lines.

When a workspace is loaded, an interrupt may be acted upon
as an error before the latent expression has been executed and
the error trap has been enabled. To prevent this situation, a
function with a trap can be halted using a stop control before
the workspace 1is saved. The latent expression can then
deliberately cause an error in order to invoke the trap line.

Error matrix. OERR

The character matrix [JERR contains the last error message. Row 1
has the type of error. Row 2 has the name of the function
(truncated to 8 characters for long names) the line number
(surrounded by brackets), and the line itself. Row 3 of [FERR has
a slash to indicate where the error was found in row 2, The
number of columns in [JFRR varies according to the longest of the
three rows.

The first row always shows the type of error actually
encountered, but the location of the error as shown in rows 2 and
3 can be different from the actual location of the error under
the following conditions:

1. If error trapping is in effect, the error is treated
as an error in the pendent line of the trapping
function.

2. If error trapping is not in effect and the error
occurred in a line of a locked function or in an
argument to execute, the location of the error is
considered to be the most recent pendent line that is
not an argument to execute or a line of a locked
function. However, an error in a locked function that
uses trapping causes [JFRR to contain a 1line of the

locked function. It is advisable for the locked
function to localize OFRF in order to protect its
security.

Trap set. [TRAP integer

The [J7RAP function sets, resets, or c¢lears the trap line for the
currently executing function. Use of [rrAPp from immediate
execution mede has no effect. The argument must bhe an integer.
If the integer is within the range of line numbers, that line
becomes the trap line.” If the number is 0 or exceeds the number
of lines, trapping causes exit from the function. The trap can
be cleared by [TRAP10. Once trapping is in effect, an error in
that function, in [J input, or any function invoked by it causes a
forced branch to be taken to the trap line, and the trap state is
cleared. Note that [TRAP must be used to set the trap again
before additicnal errors can be intercepted by that function.
Hence a second error during processing of the trap routine
results in either normal error processing or error processing by
a function that invoked this one. If trapping is in effect,
execution of functions can still halt as a result of a stop
control. However, the trap then remains in effect for errors in
immediate execution mode.

When a forced branch to the trap line occurs, at least one
function will execute before an interrupt is detected. For
complete security, the trap line can immediately reset the trap.

Location counter: [OLC

The variable [LC contains a vector'of all line numbers appearing
on the state indicator. The numbers appear in the same order as
in the)SIV display--that is, the numbers of the most recently
invoked lines appear first. The first element is +the number of
the function line currently executing.

State indicator and variables. matrix<[(SIV vector

The function.{ISIV returns rows of the state indicator, including
local wvariables. The argument must be a vector or scalar
containing integers. The value returned is a character matrix
containing a portion of the)SIV display selected by the right
argument. (SIV 1p0LC prints the entire SIV display (in either

owwmwsvu If a .<mwzm in the argument exceeds the range of
appropriate row indexes for the SIV display, a blank line
F=17

appears in the corresponding row of the result. Note that only
entries for function lines appear on the state indicator--not
execute arguments, guad input lines, or immediate execution

lines.

MISCELLANEOUS SYSTEM COMMUNICATION

Accounting information. 0AT
The variable [AZ is a numeric vector of the following accounting

information=:

04Il1] - A numeric encoding of the user's account number. For
a character vector ¥ containing the 7-character account
number, the value of [4If1] is generated in one origin
by uoch.LmQ@HWDMH%NHEEDMQWMHQﬂﬁxwmoHmm:mmqmo.#Q

O4I[2] - Central processor time used.

0AI[3] = Total connect time.

047[4]1 - Total time the keyboard has been unlockaed. Includes
part of the time required for the system's response,

Times are in milliseconds and are cumulative since signing on to
APL.

Atomic vector. AV

The vactor T[4V contains all 256 characters manipulable by APL.
The ordering is such that the first 128 characters are in ASCII
order. Note that the ordering of characters in AV 1is system
dependent, and programs that depend on the ordering of characters
in 04V cannot be easily transferred to other APL systems. See
the table in Appendix C to find positions of particular
characters.

Time stamp. 075

The value of OTS is a 7-element numeric vector expressing the
current point in time. The elements are in the following order:
the year (e.g., 1975), month (1 for January), day of the month,
hour (0 to 23), minute, second, and millisecond. The last
element is always 0 because the operating system does not report
the time of day to millisecond precision.

Terminal Type. 077
The value of 077 identifies the type of terminal in use. The

value is a numeric scalar as follows:

- Correspondence

- Type-pairing
Bit=-pairing

- ASCII-APL

- Teletype Model 33

wmds W
1

Full ASCII

Batch ASCII

Batch 501 Printer

Teletype 38, arrangement 3

Defive R e
i

MOHWWD Hmﬁmm. Owa

mm. value of [OWA is a 4=-element vector of: th

maximum mwmpm length available, the current mwmwm mwwwmmw MWM
minimum field length the user wishes used, and the maximum mwmdn
length the wuser wishes used. The field 1length is the mnnsww
memory space occupied by the APLUM system and the workspace. The
user can set constraints on the field length to be used in order
to optimize performance (see Chapter 11). Attempts to reset the
first two elements of (w4 have no effect. The maximun field
Hmsmww cannot be set to less than that which is currently
Hﬁ@ﬁwwma. Setting [OWA[4] to more than the user's validation
«HBHw &Ammm Chapter 12) or more than the field length limit
Mwwwmmm wamwamMﬂ%awmﬂ operator may actually increase the chance

Terminal mode. [OTM'command'
The terminal mode function allows the following operations:

OTM'SYSTEM' Returns control to the KRONOS command
processor.

OrM'OFF! Signs the user off.

OTM'ABORT' Terminates job with KRONOS abort error flag sex.

Note that these commands do not cause the active workspace o z«
saved. to b

Delay. Z+UDL seconds

Causes execution to delay for the number of seconds reguesies
The delay does not involve consumption of Central Processor 9uﬁ
The result returned is the actual delay that occurred T—
slightly more than requested). The delay cannot be HMMmLHwMtha

[

F

s

Chapter 8. System Commands

System commands in APLUM provide the same capabilities as
some of the system functions and variables. The system commands
are provided for compatibility with other APL systems. There are
some advantages to using system functions and variables instead
of system commands--the system functions and variables can be
used in programs (system commands cannot) and system functions
and variables are more efficient. For more complete discussions
of the operations performed by system commands, see the related
system functions in Chapter 7.

GROUPS

The APLUM system, unlike some other APL systems, does not
have a distinct data type for ‘"groups." However, the APLUM
system commands allow a character matrix of names to be used for
the same purposes as groups in the other systems. For example,
if GRPX is a matrix of names, the command)ERASE .GRFX would
erase GRPY¥ and any objects referenced by the names in GRPX. The
period in the command is required to indicate that objects
referenced by GRPX are to be erased, not just GRPX itself. The
general system convention for distinguishing groups is that all
group names should begin with GRP. Matrices of names that do not
begin with GRP can be used as groups, but they will not be listed
by the command)GRPS. The names in the group definition can be
preceded by a period, which causes them to be interpreted as a
reference to another group.

JCLEAR (Eguivalent to (OLOAD'+APLO CLEARWS')
The command)CLEAR activates a clear active workspace

(described in Chapter 7) and erases all indirect access files and
unties all direct access files.

Summary of Chapter §.

YCLEAR

Actjivates a clezr workspace.
JERASE names

orases spaecified functions and variables.
JSAVE [wsname] [:passwd] [/options]

Saves a permanent copy of the active workspace.
JLOAD [*account] wsname [:passwd]

Activates a copy of the specified workspace.
JDROP [*account] wsname [:passwd)

Removes a permanent workspace from the library.
YCOPY [%account] wsname [:passwd] [names]

Protected copy of all global objects of classes

l, 2, and 3

or selected global objects from a stored workspace to the

active workspace.
JUCOPY [*account] wsname [:passwd] [names]

Unprotected copy of all global objects of classes 1, 2, and
3 or selected glcbal objects from a stored workspace to the

active workspace.
JLIB [*account] [name]
bpm@«@ﬁm names, types, and sizes of all files,
detailed information about a single file,
JSYSTEN
Returns control to KROHNOS command processor.

JOFF

Signs a user off.
18T

Displays the state indicator.
)SIV

Displays the state indicator along with names of
JENS [letter]

Displays names of functions.
JVARS [letter] ;

Displays names of variables.
YGRPS [letter]

Displays names of groups.
YGRP group-name

Displays names in a specified group.
YGROUP group=~name names

Forms a group having specified names.

or displays

variables.

YERASE names (Equivalent to [EX 'names')

Erases all global objects specified by the list of names.
If a name is preceded by a period, the name is treated as the
nane of a group. The erasure erases the group itself (actually a
matrix of characters) and the objects referenced by the group.

YSAVE [wgname] [:passwdl} [/options]
(Equivalent to [JSAVE '[wsname] [:passwd] [/options]')

The)JAVE command saves a copy of the active workspace under
the name specified or under the name in Ow¥SIP 1f no name is
given.

YLOAD [*account] wsname [:passwd]
(Equivalent to [L0AD '[*account] wsname [:passwd]l')

The JILOAD command activates a copy of a stored workspace. A
password 1is required if the workspace has a password and is
stored under another user number. After the workspace has been
loaded, the system executes [LX¥ if DrLX is defined.

JDROP [*account] wsname [:passwd]
(Equivalent to ODROP '[*account] wsname [:passwdl')

The)DROP command removes a stored workspace or other KROITOS
file from a library. If the workspace is in another user's
library, a matching password must be given 1f the stored
workspace has a password. The user must also be authorized to
alter the existing file.

YCOPY [*account] wsname [:passwd] [names]
YUCOPY [*account] wsname [:passwd]l [names]

The JCcoPY command performs a protected copy of global
functions and variables from a stored workspace to the active
workspace. The)COPY command will not replace objects 1in the
active workspace with objects from-the stored workspace having
the same names. The)UC0PY command performs an unprotected copy
and will replace objects having the same names. If no list of
names is given, all objects of c¢lasses 1, 2, and 3 are copied.
If a name in the list is preceded by a period, the name is
assumed to refer to a group and objects named in the group are
also copied. The [COPY function can be used instead of)COPY if
groups are not to be copied. The form 1is [‘'names'] [COPY
'[*xaccount] wsname [:passwdl'.

JLIB [*account] [name] (Equivalent to ULIB '[xaccountllnamel')

The)LIB command displays names, types, and sizes of all
files the user is authorized to access, or, if a file name is
specified, YLIB displays detailed information about that
particular file. The format is the same as for [LIB (see Chapter
7).

)SYSTEM (Equivalent to OTM'SYSTEM')

The command)SYSTEM causes the user to leave APL control and
allows the KRONOS command processor to execute subsequent
cormands . The active workspace is not saved.

JOFF (Eguivalent to UOTM'OFF')

The)OFF command signs a user off the system.

)SI
J5IV (Eguivalent to DSIV 1p0LC)

The command)S5I lists the state indicator, and the command
)8IV lists the state indicator and all local variables. See
Chapter 2 for the format of the display.

YFUS [l1etter] (Equivalent to ONL 3)
YVARS [letter] (Equivalent to ONI 2)
YGRPS [letter] (Roughly equivalant to 'G' OFL 1)

These commands list the names of defined glcbal functions,
variables, and groups, respectively. If a letter is included,
only names beginning with that letter or letters that follow that
letter in the alphabet are shown. The command)GRPS lists
variable names that begin with GRP.

JGROUP group-name names

The cormand)GROUP defines a group, extends a group, or
erases a group definition. Groups are actually represented as
character matrices. If the group-name itself is the first name
in the list of names, any previously defined group is extended by
the addition of the remaining names. If no names are given, the
group definition is erased but objects named by the group are not
erased. Names listed in the command can be preceded by a period
in order to include a period in the group definition (to indicate
the nane refers to another group).

YGRP grpname (Equivalent to grpname)

The command JYGRP displays the definition of the i
group. If the group is not defined or is not a character ma
an error message is given.

Chapter 9. File System

This chapter discusses files from the APL user's point of
view. The APLUM system supports two distinct types of files:
APLUM files, and KRONOS coded files. The use of files enables
programs to deal with large quantities of data that would not fit
into a workspace, and files also provide a convenient way for
programs to communicate with one another,

Further information about KRONOS files can be found in the
KRONOS 2.1 Reference Manual.

APLUM FILE CONCEPTS

An APLUM file is a collection of APL arrays with each array
identified by a nonnegative integer. The following example shows
creation of a file and writing and reading a few records (arrays)
of the file.

JLOAD ==APL1 FILESYS (File system functions are
loaded from APL1.)

'SAMPLEY FCREATE 9 (The FCREATE function is used
to create a file with the name SAMPLE
and with 9 as its number.)

'RECORD 3' FWRITE 9 3(The left argument is written
to file 9 as record 3.)

(3 3p19)FKRITE 9 1

(2 3p'0'") FWRITE 9 28

FREAD 9 1 (The records can be read in
12 3 any order.)
4 5 6
7 89

Summary of File Functions,

'[xaccount] filename [:passwd] [/options]' FCREATE fnum
Creates a file. Options are pd, ¢, WR, §, or PU.

array FWRITE fnuml,rnum]
Writes array on file number fnum as record rnum.

result<«FREAD fnuml,rnum]
Reads the record numbered rnum from the file numbered fnum.

FRPEL fnuml,rnuml
Deletes record rpum from file frum.

rnum«FFREE fnum
Returns the least record number not presently in use in file
fnum,

FPOS fnum,rnum
Sets position of file fnum to rnum.

resul t+FSTATUS fnums

Returns the status of all files specified by the right
argument. The result is a vector or matrix according to whether
the argument is a scalar or vector. Columns are: (1) largest
record number, (2) current position, (3) file size, (4) unused
space, (5) lost space, (6) space not used because record sizes
not divisible by 64, (7) 1 if coded file, (8) 1 if DA type, (9)
1 if absent record. encountered by last read attempt.

PSTATUS
Prints status information (with discriptive headings) for
all active files.

result«FNAMES
Returns a matrix of user numbers and names for all tied
files.

rasul t<FNUMS
File numbers in use for tied files.

FRETURN fnums
Unties specified direct access files and erases gpecified
indirect access files.

FUNTIE fnums
Unties files in right argument. This leaves a permanent

copy.

FERASE fnums
Erases all files specified by right argument. Erasure
affects active file and for DA type also affects permanent file.

'[+account] file-name [:passwd] [/optionsl]' FTIE fnum

Ties a file with specified options=--gp for read only (other
users can read at the same time), and gy for read-modify (another
user can modify at the same time).

result+«CFREAD fnum
Coded read. Result is character vector or numeric scalar--1
for end of record, 2 for end of file, 3 for end of information.

array CFWRITE fnum

The left argument is written to the coded file fnum. The
argument should be a character scalar, vector, or matrix, or
integers--1 to write end of record or 2 for end of file.

integers CFPOS frnum -

Positions file., Operations indicated by first integer are:
0 for rewind, 1 for skip record, 2 for skip file, 3 for skip to
end. Second integer for skip record or skip file may be included
as repetition count.

jobname«~CSUBMIT fnum
Submits the coded, indirect access file fnum as a batch job
and erases the active copy.

FREAD 9 28
ooo
noo

FREAD 9 3
RECORD 3

After the above steps, the user can store the file (using
FUNTIE %), an operation analogous +o saving a workspace. The
user could then sign off the system. The information in the file
would remain intact and could be accessed or modified at a later
time.

File limits. 1Individual file records are allowed to be as large
as desired. However, user numbers have associated restrictions
that may limit the total number of files, the total size of all
files, the size of individual files, and whether the user can
create direct access files. This information must he obtained
from the installation or by executing the LIMITS control card
(see Chapter 12).

Tied files. It is usually more convenient to use numbers within
a program to identify a file rather than using the file name.
All file operations require this file number. The number is tied
to the file when the file 1is created using FCREATE or when a
previously stored file is accessed using the F?IE function. Once
a file has been assigned a number, the file is said to be tied.
The file can be released by using the FUNFIF operation, the
FRETURN operation, by erasing the file using FERASE, by signing
off from APL, or by typing)CLEAR. However, files remain tied
when another workspace is loaded.

Accessing file functions. The functions described in this chapter
are ordinarily stored under the user number APL1 in the workspace
FILESYS. Before file operations c¢an be performed, the functions
must be obtained from APLl1 by loading the entire FILESYS
workspace or by copying selected functions from FILESYS. All
functions in FILESYS are independent, and you need copy only
those functions you intend to use. The following examples show
various ways that copies of the file functions can be obtained.

YLOAD %*APL1 FILESYS
OLOAD '"+APL1 FILESYS!
JCOPY *APL1 FILESYS .GRPPRIM (A group that excludes’
, documentation)
YCOPY *APLA FILESYS FTIR FREAD
The file functions use the system function 0FI to perform
m«w file omowmwwﬂnm. The function OFI could actually be used
ﬂHHmONHM~ but it is usually more convenient to use the functions
in the FILESYS workspace. Most of the functions in the FILESYS
workspace are locked so that error processing will be more
convenient. Users who wish to learn how to use [FI directly can
discover all details about OFI by studying the definitions of the
locked FILESYS functions below:
VA FCREATE B [1] A OFI 1,BV
VA FWRITE B [1] 4 0OFI 2,BV
VZ<FREAD B [1]1 2<[0FI 3,BV
VFERASE B [1] B OFI u4v
VFRDEL B [1] OFI 5,BV
VZ«FSTATUS B [1] Z+B (FI 6V
VEZ+FNAMES [11 Z<0OFI 7%
VZ«FNUMS [1] Z<[JFI 8V
VFUNTIE B [1] B QOFI 9v

v4 FTIE B [1] A4 OFI 10,BV

g-4

e

yFPOS B [1] OFI 11,8V

VA CFWRITE B [11 4 OFI 12,BY
VZ«CFREAD B [1] g+0OFI 13,BV
vA CFPOS B (1] OFI 14,B,AV
VE+CSUBMIT B[1] Z+0FI 15,BV
VZ+FFREE B [1] Z+0OFI 16,BV

In addition to the basic functions in the FILESYS workspace,
the workspace FILES? contains additional file functions that are
based on the functions in FILESYS and perform more complicated
operations.

Active and stored files. APLUM files are ordinarily KRONOS
indirect access files unless the user specifies otherwise at the
time of c¢reation. This means that when the file is tied, the
system makes a copy of the stored file, All reads and writes
actually interract with this active copy. To save the file as a
permanent stored file, an FUNTIF is required. Signing off from
APL, typing JCLEAR, or a telephone disconnect (assuming the
RECOVER command is not used) causes the active file to be erased.
One advantage of having a separate active copy is that no damage
can be done to a stored file if a series of file updates is not
completed. TFor example, suppose that a program writes a record
to indicate that a transfer of funds was made from one account to
another on a certain date, then the program revises two records
containing the balances of those accounts. If the program were
to halt in the middle of the sequence of operations (due to a
system problem or telephone disconnect), the transactions
recorded in the file would be inconsistent with the balances in
the file. This causes no problem when indirect access files are
used because the inconsistent information is in a temporary file
and the stored file is in the same state it was when it was tied.

mowmosmmwmwpomeOﬁmwwmﬁsmmwsgwﬁmowmnommmMHHmm,wnUm
Um&mmwﬂmvwmWO@mHmOHanwqaﬂHmwamdwﬂhmwwwmme<wwmo
about every ten minutes in order to minimize the ammount of ne
information that would be lost in the event of a system problem.

bl

w..»

b

mowsmmmMmHHomemmWWMWmmm€OHQm. mwwmmmmmzowmm
names must be composed of 1 to 7 of the letters 4 to Z and
0 to 9, must begin with a letter, and must not contai
embedded blanks. File names should be distinct from n
for other files or workspaces. Use of the same name wi
in an error message when an attempt is made toc untie
created file. (For a direct access file, the error occu
FCREATE attempts to create the new file.)

3
)
YRS
CEREE
[

i
ot

o+
L

Mo
¢

.t 17
£
i i

b bt bt

y ot o fu
e
I
E5]
@ i

g

§
R

&)
th

X

Range for file numbers. File numbers can be any nonnegative
Integers not greater than ~1+2%17,

Range for record numbers. File record numbers can be any
nonnegative Hnﬂmmmﬁm not greater than “2+2%17,

FILE SECURITY

A file is owned by the user who created it. The owner is
allowed to alter the file in any desired manner, but the owner
can control access by other users through the following controls:

1. The file category is ordinarily private. Private
files cannot be accessed by other users unless their
user numbers have been given explicit access permission
by use of the KRONOS PERMIT command (see Chapter 12),
Alternatively, the file can be assigned a category of
semiprivate Or public,. Either of these categories
allows other users to access the file if they know the
password. The [LIB command will reveal to another user
the names of files that are semiprivate, public, Or
that are private and have been explicitly made
accessible to the other user. To make a file public or
semiprivate, use the options PV or S when the file is
created, or use the KRONOS CHANGE command to change the
category. When the [OLIB function is used with a file
name, the result shows when the file was created, when
it was last changed, and when it was last accessed. In
addition, for semiprivate and private files the system
retains the number of accesses and the time of the last
access for each user of the file. This information can
be displayed by use of the KRONOS CATLIST command (see
Chapter 12).

2, The file can be given a password. Only users who
know the password can use the file; however, the owner
of the file is never required to provide the password.
The password can be assigned when the file is created,
or the password can be assigned or changed by wuse of
the KRONOS CHANGE command (see Chapter 12).

J% The file mode can be used to control the type of
operation another user can perform. For files created
by APL (including workspaces) other wusers are
ordinarily allowed to read the file (assuming the
password and category do not exclude them) but are not
allowed to alter or destroy the file. Other users can
be given permission to alter the file by specifying the
WR option (for write) when "the file is created. For
private files, this mode has no significance because
when other users are given explicit access permission
via the KRONOS PERMIT command, the permitted access

read-modify mode

Sequential file operations.

mode for each user becomes that expressed in the PERMIT
command. For gemi-private files, the general access
mode is applicable to most users of the file, but an
overriding access mode can be specified for individual
users by use of the PERMIT command. For example, most
users might be allowed to read the file, while a few
selected wusers might be allowed to alter it. The
general mode allowed for other wusers can be changed
after the file has been created by use of the KRONOS
CHANGE command, For APLUM files the mode should be
write or read-modify, while for coded files it should
be write or read.

4. Files can be accessed by other users through locked
functions which can provide extremely general control
over the permitted operations. For example, the locked
function can prohibit alteration of +the first five
records of the file, or, it can prohibit adding records
that are not vectors of 4 integers. The success of
locked functions ,as a security measure rests on
preventing the user from learning the file name, the
user number, or the password, and preventing him from
accessing the file directly. To assure this, the
locked function should not call other functions (except
those local to itself) lest someone substitute a

subversive function having the same name, In
particular, [»OFI should be used directly rather than
using FTIE, (A subversive FTIE could print its

arguments and thus reveal the file password). Also, [
input should not be used while the file is tied, and
the file should be untied prior to exit from the
functicn. To ensure that the file will be untied, use
DTRAP to specify a trap line that will release the file
prior to exit.

that the file category, password, and mode are independent
restrictions on access by other users. Each of these further
restricts the +type of access permitted to others. Unless
different options are specified when the file is created or the
controls are changed, the APLUM system selects private as the

category, assigns no password, and selects read

APLUM FILE OPERATIONS

require a record

(depending on whether the file is coded or APLUM
respectively) so that other users may only read the file.

The file operations that ordinarily
number can also be used without specifying the
record number, When this is done the record number used is the
current file position (available in the result of FSTATUS).
file position can be reset using FP0OS and is incremented by each

successful read, write, or deletion. When a file is tied or
created, the position is initially zero. For example:

' XRAY'FTIE 5 (The file position is zero.)

7«FREAD 5 (Record 0 is read; the position becomes 1.)
K FWRITE 5 (Record 1 is written)

Y FWRITE 5 (Record 2 is written)

w FWRITE 5 (Record 3 is written)

When a record number is provided for the operation, the file
position will be set one greater than that number if the
operation succeeds. .

File create: 'file-name [:passwd] [/options]' FCREATE fnum

The file create function can be used to create a file and specify
options about the type of file. When the file is created, it is
tied to the file number sfnum. In addition to the name of the
file, the left argument may include the password the file is to

have. Examples of file creation follow:

'PILE1' FCREATE 11 (A file named PFILE1 with 11
as its number.)

"FILE2: SESAME'FCREATE 2 (A file with SESAME as 1its
password.)

The list of optiocns can include any of the following separated by
spaces: DA, C, WR, S, or PU (to specify direct access, coded,
write mode, semiprivate, or public). The option RM is
appropriate for APLUM files, while RD is the corresponding option
for coded files. These are discussed in other sections of this
chapter.

File write: array FWRITE fnuml,rnum]
The FWRITE function writes its left argument on the file having
fnum as its number as the record having rnum as its record
number. This will replace any existing record in that file
previously having that record number.

File read: result<«FREAD fnuml,rnum]

The FREAD function reads from the file having fnum as its file
number that record having rnum as its record number. If that
record does not exist, an empty numeric vector is returned, and
the file status (see FSTATUS)} will indicate that the last read
attempt encountered a nonexistent record.

File record delete: FRDEL fnuml,rnuml

The FRDEL function deletes the record rnum from file fnum. If
the record was absent already, nothing is done (except that the
file position changes) and no error results.

Free record number: rpum+FFREE fnum
The FFREF function returns the first free (unused) record number
for file fnum. This is a wuseful way to select the record number
for a new record when the application does not require a
particular ordering of the records.

File positioning: FPOS fnum,rnum
The function FPOS sets the position of +the file identified by
fnum to record number rnum.

File status: result<«FSTATUS fnums

The file status function returns various information about the
condition of files identified by file numbers in the right
argument. If the argument is a vector, the result is a matrix
having a row for each file number in the right argument. If the
argument is a scalar, the result is a vector of information about

the single file. The columns of the result contain:
Column Contents
1 Largest record number currently in use

or 1'if the file is empty.

2 Current file position.

3 File size in words.

4 Unused space in woxds.

5 Lost space in words.

6 Space not used because of record sizes not
being divisible by 64. (This space is called

"tails" because it resides at the tail ends of
physical record units.)

7/ 0 if APLUM type file, 1 if coded type
file.
8 0 if indirect access file type,

1 if direct access file type.

9 ¢ if last read attempt succeeded, 1
if the record was absent.

Note that only columns 7 and 8 are meaningful for coded files.
All columns will be zero if the file is not tied.

The largest record number does not take account of records
that have been deleted., That 1is, the largest record number is
the largest number currently in use for records that actually
exist. The largest record number is convenient tc know when
adding a new record to the file. Adding 1 to the largest record
number gives a. safe record number to use to append a new record,

Print status: PSTATUS

The PSTATUS function prints the information returned by FSTATUS
FNUMS along with the file names. The information is given in a
descriptive format and is thus a convenient way to discover the
status of all tied files if you do not remember the meanings of
the columns in the result from FSTATUS. The following example
illustrates the format used.

PSTATUS
NAME NUMBER LAST R POS SIZE UNUSED LOST TAILS
COMTIME 14 8 0 768 g4 0 397
LIB 2 1 14 256 0 0 98 DA
*A123456 SYSGEN L5 CODED FILE
REFMANT 8 9y 0 80384 2496 7744 3233 DA

File names: result<«FNAMES

The FNAMES function returns a matrix of names (and user numbers)
of files currently tied. The number of columns in the matrix is
always 1l6. For example,

FNAMES
SAMPLE1
ALGEBRA

*A123u56 FILE1

File numbers: result<~FNUMS

The FNUMS function returns a vector of numbers in use for tied
files. The order is the same as the order of file names in the
result from FNAMES.

File untie: FUNTIE fnums

The FUNTIE function unties all files for which their file numbers
appear in the vector or scalar right argument. This produces a
permanent stored copy of each file. The new permanent copy will
replace any previously existing file having the same name, unless
the active file was newly created. To untie a newly created file
when the same name is already in use for another stored file,
first use ([IDROP to remove the old £file. If any of the files
specified in the argument is not tied, nothing is decne and an
error message results. To untie all tied files, use FUNTIE
FNUMS .

File return: FRETURN fnums

The FRETURN function behaves as FUNTIE for direct access files
and behaves as FERASE for indirect access files. This frees the
number of a currently tied file for other uses with a minimal
impact on stored files. The wuse of this function is recommended
for cleaning up any files that may have been accidentally left
tied. File numbers in the argument that are not in use for tied
files are ignored.

File erase: FERASE fnuns

The rFEFASE function erases the active copy of the file but leaves
any stored copy of the file. (See the section on direct access
files for exceptions.) To remove a stored copy, use [DROP.

File tie: 'file-name [:passwd] [/options]' FTIE fnum

The F7IE function gives the number fnum to the previously stored
file having the indicated name. If no previously stored file
having that name is found, an error message 1is given and no file
tie results. If a user number is given, the stored £file is
sought under that wuser number rather than the one used when
signing on to the system. The password need be given only if a
another user number was provided and a password was given to the
file when it was created using FCREATE. Examples using FIJIE
follow:

'FILES' FTIE 7
'x*40Q1234 FILEE'FTIE 8

(A user ties one of his own files.)
(A user ties a file belonging
to another user.)

'YxA123456 FILE7 :SESAME' FITIE 9

Note that the options p4 and ¢ (for direct access or coded files)
must not be provided to the FTIE function. These options are
chosen when the file is created and can be altered only by making
a copy of the file. If the file number or file name is in use
for another tied file, an error message results. The list of
options can include either of the options RD or &M. These
options are discussed in later sections.

SPECIAL CONSIDERATIONS FOR CODED FILES

Coded files are the standard +type of file on the KRONOS
system for information interchange between programs, card
readers, printers, and so forth. APLUM can access any coded
files provided they contain lines no longer than 1280 characters.
Coded files are essentially intended for sequential access;
replacement of records, except at the ena, is not practical.
Instead, such changes would ordinarily be made by copying the
file and making the changes as the new file is produced.

Coded files consist of lines (essentially vectors of
characters) which can be separated into groups by end of record
marks. These groups can in +turn be separated by end of file
marks. At the end of the file is an end of information mark.
The characters in a line of a coded file are restricted to 63
characters. The 256 APLUM characters are translated into these
63 characters as shown in Appendix C. Briefly, the letters 4 to
7 become A to 2, all symbols with approximate equivalents for an
ASCII printer are translated into those eguivalents, and all
others become €. When translating from the KRONOS character set

, al
sented as Z (the symbol wused for illegal

The functions FIIE, FUNTIE, and FRETURN h i
: y ave essentiall
same ammuwb@m.mow coded files as for APLUM files. m0£M<MWm
mwmowmw. mﬂ:n#w05m must be used for reading, writin a m
repositioning coded files. . B

Creating a coded file. A coded file can be
g a : ded Created wusin
FCREATE by including ¢ as an additional parameter. For mxmB@Hm.m

'PRINT :XXX/C'FCREATE 9

Coded read: result«CFREAD fnum

MWm Hmmcpﬁ. returned by CFREAD is a character vector containing
e next dem from the file, or if an end of record, end of file

Mmezg of information was encountered, the result is the mompmm

Mﬁm@mﬂ 1, 2, or 3, respectively. The file position changes

arter each read so that the next read will give the next line of

the file. The FREAD functi
Toth e B on cannot be used in place of (FREAD

Coded write: array (FWRITE fnum
Mwm MMmﬁmmHmmamnw to CFWRITE is written at the current position
s e W+m. . The left argument must be a character vector
ar (which is treated as a one-element vector), or matrix r
a scalar or vector containing the integers 1 ~m or 3 ’ OM
owmnmnwmw scalar or vector produces one line in wmm WHHm Samn
a matrix produces one line for each row of the matrix ~@Hmwwwmm
blanks in a line are removed. The integers 1 or 2 wwomcam an MMM
om.Hmnong mark or end of file mark, respectively. A vector of
integers can be used to produce a series of these marks Th
mwvm position is. altered after each write so that mcmmm u M
writes SHHH. add information after that produced by the HMmMNﬁ
one, wswww+sm written to the file is automatically moHHMSmm b
an m:% 0% information mark. This has the effect of wwcvomﬂwﬂw
MMM Mpwm.wm the write was not performed at the end of the mwwma
memH%MWﬁpon FWRITE cannot be used for a coded file in place of

Coded file positioning: integers CFPOS fnum

The function CFECS repositions the file according to integers in
the scalar or vector left argument, The first element Qwa the
left argument indicates the action to be taken, and the o ticnal
second element may contain a repetition count. i

Operation Value

Rewind 0
Skip record 1
2
3

Skip file
Skip to end

.1 symbols are represented by equivalents,

The rewind operation positions the £file at its beginning. The
rewind and skip-to-end do not allow use of a repetition count.
For the skip record or skip file operations, the repetition count
may be negative to skip towards the beginning of the file. If no
repetition count is given, a count of 1 is assumed. The skip
record operation counts end of file marks as records. The
skipping never goes past the end of information mark or the
beginning of the file, even if the repetition count has not been

satisfied.

Batch job submission: Z<CSUBMIT fnum,type

The coded file fnum is submitted as a batch job. The type may be
0 if batch output produced by the job should be discarded, or 1
if it should be printed or punched at the central batch site.
The file must be a properly constructed job file (see KRONOS 2.1
Reference Manual). In particular, the first two lines must be a
job card and account card. The file must not be direct access
type. If the operation is successful, the active file vanishes
as if FERASE had been used. The result returned is the job name
assigned to the Job. This name can be used with KRONOS ENQUIRE
command (see Chapter 12) to determine whether the job has
completed. Note that the number of concurrently executing
deferred batch jobs allowed for a given user number is controlled
by the system. The number can be determined by use of the LIMITS

control card (see Chapter 12).

SPECIAL CONSIDERATIONS FOR DIRECT ACCESS FILES

A direct access file differs from an indirect access file in
that all operations interact with the permanent file itself, not
with an active copy. This has both advantages and disadvantages.
One advantage is that a copy of the entire file need not be made
by the system when the file is tied. One disadvantage is that a
program can stop executing due to a system problem in the middle
of a series of file writes, and the stored file can end up with
contradictory information. Another disadvantage of direct
access files 1is that write operations take a little longer
(because the APLUM system does less buffering of information due
to the risk of a system problem freezing the file in a temporary

state).

To create a direct access file, dinclude the parameter p4 in
the left argument to FCREATE. A direct access file may also be a
coded file if desired--these two options can be chosen
independently. The following are examples of direct access file

creation:

'FILEX/DA' FCREATE u
'FILEY: XYZ/DA & WR' FCREATE 5
VWILEZ/C DA' FCREATE 6

All operations with direct access files take the same form

as for indirect access files, but because of the differences

between the two file types the file tie, untie, and file erase
operations behave differently: 2 file tie to a direct access
file does not make a copy of the file. 2An untie does not create
the permanent copy, it merely releases the file number for use
with other files and releases the file itself for access by other
users. An erase removes both the active and stored copy of the
file because they dre the same thing., In addition,)CLEAR or a
telephone disconnect cause an automatic FyNTIE of a direct access
file (thus leaving a stored file) whereas an indirect access file
would be erased.

If an telephone disconnect occurs, the file remains tied for
10 minutes. The operations that were 1in progress can be
continued by use of the XRONOS RECOVER ccmmand (Chapter 12).
However, an attempt to sign on without using the RECOVER command
will leave the file tied until the 10 minute period is over,
possibly causing an error message indicating the file is busy.

SYNCHRONIZED FILE OPERATIONS

At present, it is not very practical for two users to update
a single file at the same time. With an indirect access file the
two users are actually updating separate copies of the same file,
and whichever user unties the file last will create a stored file
with his updates, but will replace any stored file just produced
by the other user. The KRONOS operating system does not allow
two users to be tied to the same direct access file in write mode
at the same time, so no conflicts can occcur, but an error occurs
if a second user attempts to tie the file. However, users can
tie a direct access file in read mode (which allows other users
to read the file at the same time) or read-modify mode (which
means the user desires only to read the file but has no objection
to another user writing to the file at the same time). To tie a
file in read mode or in read-modify mode, include RD or RM (but
not both) in the left argument to the FPIE function, For
example,

'\FILEL1/RD'FTIE ¢ (Read mode.)

'‘FILE2: SECURE/RM' FTIE 10 (Read-modify mode.)
These modes have meaning only for direct access files and must
not be used unless the file is direct access. Read mode can be

used for APLUM or coded files while read-modify mode is allowed
only for APLUM files.

FILE EFFICIENCY
Although many users need not concern themselves with the

information presented here on file efficiency, users of very
large files will find this information important. Use of a few

fairly simple techniques can result in improved speed and reduced
storage requirements.

First of all, each APLUM file has an initial size of 64
words used for a table of available space. In addition, one word
is required for each record number up to the last record number
in use. This space is alloecated in multiples of 64 words. These
two factors combine to make it inefficient to store many files
with only a few records in each rather than one f£file with many
records. Also, it is inefficient to leave large gaps between
record numbers as the unused numbers require an average of one
word each.

Indirect access files grow in multiples of 64 words, but
direct access files grow in multiples of a logical track (usually
gseveral thousand words, depending on the storage device used).
There is consequently a considerable space advantage to using
indirect access files for files smaller than several thousand
words.

File records require 2 words more than they regquire in the
workspace, and the space for records is allocated in multiples of
64 words. However, large records of character or logical type
regquire only about half as much space in the file. Because
records require multiples of 64 words, there is some saving in
space if. many little arrays can be packed together and written as
a single record.

When records are erased or replaced by records of a
different size, the APL system keeps track of any unused gaps in
the file where records can be placed in the future. The total
amount of this space in words is in column 4 of the result
returned by the FSTATUS function. It may happen that the number
of gaps exceeds the size of the table, in which case the smallest
gap is removed from the table. This results in a certain amount
of space becoming unusable, and the total amount of this lost
space 1is in column 5 of the result returned by the status
function. Lost space can also result in a direct access file if
a telephone disconnect or system problem prevents the file from
being untied (OTM'SYSTEM', OTM'ABOET', and 0O7T¥'OFF' untie files
properly), and if the RECOVER command is not or can not be used.
All lost and unused space can be recovered by copying all records
to a new file, last record first, and using the new file as a
replacement for the old cne. Because each record occupies a
multiple of 64 words, some space 1s generally left unused. This
space is returned in column 6 of the result from FSTATUS.

Details of the space required for coded files can be found
in the KRONOS 2.1 Reference Manual. Coded files have a speed
advantage over APLUM files when the information is accessed
sequentially, the records are small, and the limitations of the
63 character set are not restrictive.

INTEGRITY OF DIRECT ACCESS APLUM FILES

File integrity refers to the ability of a file to retain
internal consistency. Some file access methods render a file
practically useless if a program operating on the file does not
complete properly (due +to a flaw in the program or a system
problem). Every effort has been made in the design of the APLUM
file system to minimize the chance of such damage.

All alterations to an APLUM file are performed immediately
and thus occur in exactly the order requested. When multiple
files are being wupdated, one file will not be several
transactions ahead of another. A checksum is computed for each
file record so that if the storage device corrupts the
information and is unable to detect the error, the error will
still be detected by the APLUM system. A system halt, program
halt, or telephone disconnect will leave the file in a
satisfactory state except that in the rare event of a system halt
requiring a level zero deadstart within a minute of extending a
direct access file, there is some chance of damage to newly
created or replaced records.

File damage will cause an error message to be printed at the
time it 1is detected. The damage will usually affect only one
record of the file. If the £file cannct be reconstructed,
installation personnel can assist with restoring the file to its
state the last time files were dumped to magnetic tape.

Note that a telephone disconnect or system problem that
results in failure to untie the file may cause the information on
file space utilization (unused space, lost space, and tails) to
be incorrect. This does not hinder utilization of the file and
can be corrected by copying the file.

FILE EXAMPLES

The following sample functions taken from the workspace
FILES2 under user number APL1 illustrate simple file operations.
The first function, FCOPY, can be used +to copy an APLUM file.
Such a copy might be made to convert the file from indirect
access to direct access form or to compact the file by minimizing
unused space. The left argument should be the character argument
required to tie the old file, and the right argument should be
the character argument required +to create the new file, Note
that the first line illustrates a simple way to select a file
number that is not already in use.

VFCOPYLOIY
VA FCOPY BiP;K;I;J
[1] A FTIE I<1+[/0,FNUMS
[21 B FCREATE J<I+1
[3] K+~(FSTATUS I)[1] n GET LARGEST RECORD NUMBER
[u] L1:»{K<0)/L3
[5] P«FREAD I,K m READ RECORD K FROM FILE T
[6] +(FSTATUS 1)[91/L2 a IF ABSENT RECORD
L7 P FWRITE J,K n WRITE RECORD K 70 FILE J
(8] L2 :K«K-1

L9 +L1
[10] wL3:FUNTIE I,J e UNTIE BOTH FILES
L] ‘COPY COMPLETE'

v

The next function is useful for listing a coded £file., The
right argument may be the name of a stored file or the number of
an active file. If a name 1is given, the file is tied, listed,
then untied. If a number is provided, the file is listed
beginning at its current position and is left tied.

veLISTLOIV
VCLIST B3K;L
1] +(0=0\0pk«B)/L1 n IF FILE ALREADY TIED
[21 B FTIE K<1+[/0,FNUMS
[3] L1:L<CFREAD K
[u] +{0=0ppL)/L2 n SCALAR INDICATES SPECIAL MARK
[5] i
[61] =01

[71] L2:+L3+2xL-1
[8] L3:'-END OF RECORD-'

[9] +L1
[101] '~-END OF FILE-!
[11] L1
[12] '-END OF INFORMATION-'!
[13] FUNTIE(O0=0\pB)/K
v

The next two functions are useful when a file is too large
to list at a terminal but it is necessary to learn the general
structure of the file. The function FMAP prints the structure of
an APLUM file, and the function C(MAP prints the structure of a
coded file. Both functions allow a character argument or a
numeric argument in the same manner as CLIST. If the file is
already tied (for numeric arguments) the mapping begins at the
current file position. FMAP prints record numbers and the types
(¢ or N for character or numeric) and shapes of records that
exist, or ABSENT for absent records. CMAP prints the number of
lines in records and prints EOR, EOF, or EOI when an end of
record, end of file, or end of information is encountered.

[10]
[111]
[12]
[13]
L14]

L1]
[21]
[3]
[u4]
[51]
[61]
£73]
[8]
[9]
[10]
[11]

vEMAPLOIY
VFMAP B;K3P

+(0=0\0pX+B)/L1 a IF B IS NUMERIC

B FTIE K+1+[/0,FNUMS
Li:+("1=14FSTATUS K)/L2 a IF FILE NOT EMPTY
'NO RECORDS!'

0
L2:'"NUMBER, TYPE, DIMENSIONS'®
L3:+(</2+4FSTATUS K)/L5 A IF FINISHED
P+FREAD K

+(FSTATUS K)[91/L4% a IF READ FAILED
T14+(FSTATUS K)[213;0 1 ON'CN'[1+0=0\0pPlspP
+53
Lu: 1+ (FSTATUS K)[21;" ABSENT'

+L3
L5:FUNTIE(0=0\0pB)/K
v

veMAPL OV

VOMAP B;K:;P:C
+(0=0\0pK+B)/L1 n IF B IS NUMERIC
B FTIE K+41+[/0,FNUMS
L1:0+0
L2:+(0=ppP+«CFREAD L)/L3
C«C+1

+L2
L3:+(C=0)/LY

Csy" LINE',(C=1)/'S"
L4:"EO','RFI'[F]
+(P<3)/L1
FUNTIE(0=0\0pB)/X
&

Chapter 10. APL Public

Libraries

The standard APLUM release includes the following workspaces
stored under the user number APLI1:

APLNENWS

WSFNS

FILESYS

FILES?2

PLOTFNS

CATALOG

News about the changes in the APLUM system as well
as a list of reported bugs and requests for system

changes.

Workspace utility Zfunctions. Includes functions
SHORT, LONG, and SHORTSAVE for saving a workspace

without 0OFD, 0sY, &, HE,

File system functions.

L, and T.

Contains functions from FILESYS for primitive file

operations as well as

additional functions for

more elaborate file operations.

Function to produce an X-¥Y plot of multiple sets
of data on a standard terminal.

A guide to workspaces in

srPi, STP2, STP3, STP4, STP5, 5TP6 ?
A collection of mathematical and statistical

To learn how to use any
the form [LOAD'*AFL1 CATALOG'

programs developed by
University of Alberta.
in G&STP1. Capabilities

the APL public libraries.

K. W. Smillie of the
Primary documentation is
include: descriptive

statistics, regression and correlation analysis,

analysis of variance,
critical path.

L0 =L

linear programming, and

of these workspaces, type a cormand of
and then type DESCRIBE.

APL PROGRAM LIBRARY STANDARDS SOURCE. Should give the author's name, an inquiry

nare, and an inguiry address. The date when the
It is suggested that installations reserve the user numbers workspace was contributed should be included.
APL1 to APL999 for APL public libraries. Although these user .
numbers need not be defined in the system, they should not be CHANGES. Changes should be documented by a function or
used for other purposes. It is suggested that programs placed in variable having a name of the form CHANGES092675 (SO
these public libraries be of fairly general interest sc that that the name includes the date of the changes}).
users will £find it rewarding tc browse through the various
workspaces. Workspaces of interest only to a specialized group GRPDOC. The group (locked matrix of names) GRPDOC
or course should be stored elsewhere. should include names of all documentation variables and
functions so that the user can readily erase them to
Programs placed in the public 1libraries should be well make more space available in the workspace or reduce
documented. The available documentation may be entirely in the disk storage charges.
workspace or partly in the workspace and partly in a manual. In
any case, the documentation should be readily available. The Even when most of the documentation is in a separate manual, the
advantage of having the documentation in the workspace is that it following variables or functions are reguired: ABSI'RACT, SOURCE,
will be immediately accessible. The disadvantages are that the GRPDOC, and DESCRIBE.

documentation is slow to print and therefore tedious to read, and

the format of the documentation is constrained by the APL

character set. Generally, the amount of documentaticon determines -
whether it 1is practical to put the documentation in the

workspace.

Documentation in the workspace should consist of functions
or vwvariables that describe the workspace. The documentation
should be able to be printed with a standard APL terminal and
should print within a standard 65 column 'page width. The
following documentation variables or £functions are suggested.
Typing +the name of the function or variable should cause the
information to be printed.

ABSTRACT. Should contain a brief description of the
contents of the workspace.

DESCRIBE. This should give the user further details

than that provided in the ABSTRACT. This should print

the names of all functions intended for the user to use

as modules along with a short description and names of

related HOW functions (see below). If groups are

defined. in the workspace, describe them and their .
purposes,

HOW functions. If a function has the name WVANE,
detailed documentation of that function should have the
name NAMEHOW. There is no point in giving a
line-by-line description of the function. The APL
program 1is already an excellent description of the
separate steps. The #0W function should tell what the
function does and how to use it as a module. In some
cases it should outline major steps in the processing
and describe the method used. References might be
appropriate. Special limitations of the function
should be discussed.

1.0~2 10-3

Chapter 11. Optimization of APL Programs

This chapter discusses some of the technigues that can be
used to make APL programs perform better and run with lower
demands on computer resources. It may seem out of place to
discuss efficiency in an APL manual--after all, APL should free
the user from being concerned with the nature of the particular
computer being used--but the techniques discussed here may yield
efficiency improvements as large as a factor of a hundred. To
neglect discussing efficiency could leave many users with the
mistaken impression that APIL cannot perform well enough to be
used for their problems.

often, the gquestion of efficiency calls to mind the
fanatical programmer who constructs a progran he considers
efficient but who in doing so produces a totally incomprehensible
collection of operations.. It should be remembered that for many
programs the programming time is so great that the only kind of
efficiency worth considering is the sort that makes the program
easy to understand, free of errors, and easy to change.
Fortunately, a simple program is usually an efficient program.
However, when improving the performance of the program does not
coincide with simplifying it, the optimization should not be
applied unless it is very important for the program to perform
well.

As a very blatent m%mawpm of misguided optimization,
consider the following statement:

K<1,0pP«0,[/L« 18«pR

This statement was probably contrived by someone who believed
that the most efficient program was the one that required the
smallest number of lines. The fact is, execution proceeds from
one line to the next very rapidly compared to the time required
to perform the extra steps needed to fit the operations in one
line. The following statements are a more straightforward way to
achieve the same results:

11-1

K+1
L<1Q<pR
P+0,4

estimate the relative time required for an expression
MmeMﬂMnMNSmm#Wﬁ number of operations Hmmﬁwnmm. ﬁeﬁpm method is
fairly valid when the number of mww5®3Wm in arrays 18 wmmm than
about 20.) For this method of estimation, mmmnwmpomdko: is uo#
counted at all (it takes relatively little ﬂwamv. me one wpsm
version totals 6 operations while the three line version requires
only 3 operations. The efficiency expert who wrote the one line
version devoted extra time to mmﬂwsm three operations, .swvmw
double the time required for execution. eww.oam line version 18
harder to understand, is more HHWmHM to mozﬁmvn SYrors, and when
changes are made, the rest of the line hinders revision. The one
liner is thus a poor example of efficiency in all respects.

At this point it must be stated that much @m the informaticn
in this chapter is relevant onwm to this mmwwwﬂﬁwmw APL system.
Also, it may occur that moamﬂ:+sm that 1is ﬁmnnpnswmmwm slow now
will become particularly fast in later verslions of the system.
Other versions of APL on other computers ﬂwww often show quite
different characteristics. In fact, according to wmﬂF Berry, the
popular belief that one line programs are morse efficient is based
on a system for which this is true. A version of APL on the ﬂwz
1130 actually requires oOﬂmw&mHmU«m time do.osmzmm from one line
to the next because only one line at a.time is kept 1in main
MeNorY. Although very few present users of APL ever wused that
particular system, 1its influence persists.

STORAGE REQUIREMENTS

although the APLUM system mwwﬂzm m.£OHWmmmom of up to about
90,000 woxds (provided the user 1S validated to use .ﬁwmﬁ much
main memory and the installation has ﬁﬂmﬂ much), .equivalent to
675,000 8-bit bytes, there are ﬁﬂQOﬁwomH reasons to keep a
workspace smallexr. The KRONOS owmﬂmﬁwsm system uses noamcﬂmﬂ
resources much more effectively when it HGbm:ﬁHomwmam Hwﬂzwwwno
minimal amounts of central mMemory. Also, the "response ﬁ+3m for
an interactive program to respond to a command wo@nwnpza a
trivial amount of processing increases moawsvmw {wﬁr ~central
memory requirements. In addition, minimizing mﬂOanm
requirements improves the chances that the same program will be
able to run under another version of APL or on a computer with

less central memory.

The vector [W4 contains information about the mernory
currently in use for the APLUM interpreter and the active

workspace. The field length 1is the -amount of memory Space

i that memory space and
currently in useé. The APLUM system manages Y
at any Mw<md time some of the space may not be 1in use for

Q=2

functions, variables, and other information kept by

system. The APLUM system evaluates storage reguiremen

time to time and resets its actual field length acce o
current needs. The user can set (WA to specify the maxi 4
minimum field lengths to be used. Increasing the ma: &

tn

minimum field length generally reduces the central processc
used by APLUM to reorganize its storage, but as dis
previously, reduces the operating system efficiency. As
general rule of thumb, leave the minimum field length at its
normal vaiue, and set the maximum field length large enough to
avoid WS FULL plus a little extra to prevent frequent storage
reorganization. Incidentally, referencing the wvalue of W4 in a
statement causes the APLUM system to reorganize its storage, SO
programs should not alter or read the value of [W4d too often or
performance will be degraded.

Obvious technigues for minimizing storage requirements
include using algorithms that minimize temporary storage, using
local variables and local functions to assure automatic erasure
of unneeded objects, and-.using [EX to erase other functions that
are no longer needed. [JFX can alsc be used to erase variables,
but respecification (e.g., 4<'") is faster. Files can be used to
store functions and variables until they are required. [L0AD can
be used to load another workspace of functions and variables.
Any variables that must be communicated from one workspace to the
next can be placed in files--files remain tied when another
workspace is loaded. Of course, any of these techniques can be
overdone. Do not let the time spent performing these operations
outweigh the time they save.

The space in words required for an APL array 4 is
2+ (ppd)+l {x/pA)+D

where b is the number of elements packed per word--1 for floating
point values, 4 for characters, and 32 for logical. Clearly,
there is an advantage to using . the internal logical
representation if the values are ones and zeros. The system does
not always use the logical representation when it could. For
example, the scalar constants 1 and 0 are floating point, and
140 is floating point. However, the following functions always
produce a logical result: AAB, AVE, AnB, AMB, A=B; A=B, A<B,
A<B, A=B, and AeB. Alsc, the functions that restructure oI
rearrange thelr arguments always preserve the same type of
representation, so Np0 is floating point, while Npl 0 is logical
(because vector constants consisting of ones and zeros are packed
as logicals}. To assure that a result is logical, apply 1= to
it.

Expressions like 4«B+C+1100 do not cause three copies of
1100 to be produced. Actually, only one copy is kept. However,
subsequently altering an element of A4, B, or ¢, (e.9., A[32+9)
will cause a separate copy to be made. Similarly, arguments to
functions are not actually copied unless an attempt is made to

1128

alter them using indexed specification. Unlike most other APL
systems , using function arguments rather than global variables
incurs no storage penalty.

Storage requirements for programs are too complicated to
discuss in detail. As 2 rule of thumb, unless you make a special
effort +to put a lot on each 1line, figure that an average
statement takes about 10 words of storage. The first time a
statement is executed it is converted to an internal form for
more efficient execution. In the internal form the function
almost always requires somewhat more space. The storage overhead
per line of a function averages about 3.5 words for lines without
labels and 4.5 words for lines with labels.

In version 2.12 of APLUM, function definition mode and
system commands are performed by functions written in APL. When
a user types)Jexpression O Vexpression the system translates
these 1into 0SY¥')expression' and@ [JFD'Vexpression', respectively.
The functions [OsY and [FD are stored in the so-called "clear"
workspace. - In zddition, some of the mixed functions are written
in APL and take space in the "clear" workspace. It may be
desirable to erase these if they are not required. For example,
anyone who has mastered the eguivalent system functions can
eliminate (0sY from his workspaces. Similarly, after a workspace
has been developed, OFD can often be eliminated without hindering
use of the programs in the workspace. To minimize disk storage
charges OFp and [3Y can be erased before saving the workspace.
In the workspace WSFNS in library APL1 there is a function named
SHORT that can be used to erase all of these functions, and there
is a function named LONG that will copy in all of the functions.
Future system improvements will eliminate all of these functions
from the clear workspace.

The APL system keeps a "gymbol table" in the workspace
containing all names of functions, variables, and labels. Once a
name has been used (even if the use resulted in a VALUE ERROR)
the name remains in the symbol table. The space used by names
that are no longer neaded can be recovered by copying all objects
into a truly clear workspace. The recommended procedure is:

OLOAD '*APLO EMPTY' (A clear workspace.)
OENV+O0 (Copy global objects.)
(1 2 3 & [ONAMES "\oLDWS ')OCOPY 'OLDHS'
[ISAVE 'NEWWS'

This procedure will also recover space in workspace areas other
than the symbol table in some circumstances.

Space can be conserved in the symbol table by using names
consisting of a single symbol whenever possible. Space can also
be conserved by using the same name in several functions for
local variables or labels. A common convention is to use the
letters A to 2 for local variable names and use L1, L2, and so
forth for labels. ,

11-4

CENTRAL PROCESSOR TIME

For many programs the main optimization problem is to

minimize central processor time. First of all, one of the
primary determinants of central processor time is the
appropriatness of the algorithm used. The algorithm should be

appropriate to the data to be processed and appropriate to APL.
Computer literature is filled with algorithms that are
nsfficient” for other languages but which perform miserably in
APL. often. a straightforward translation of a program from
another language gives a program that performs poorly because it
fails to take advantage of the more powerful APL functions.

For most operations in APL the time required for the
cperation can be separated into a per—element time required to
process each element of the arguments and result plus a setup
time required for interpreter overhead, to check the arguments
for compatibility' of dimensions, to compute the result
dimensions, and allocate space for the result. The time per
element varies considerably with the complexity of the operation.
The sine function, for example, requires far more time per
element than addition. The time also depends some on the way the
values are stored; operations defined only for logic values
perform better if their arguments are internally represented as
logical type, and arithmetic operations are faster for the
floating point internal type. The setup time varies far less
from function to function than the time per element.

For many functions the setup time is on the order of 25
times as great as the time per element. This means that the
setup time is negligible when thousands of elements are to be
processed, but the setup time constitutes about 95 percent of the
time when only one element is being processed. For mest
programs, the setup time limits speed more than the time per
element. Thus the first step to optimization is to minimize the
number of cperations to bhe performed. For example, if pX is used
many times in a function, it would be worthwhile to assign the
value of pX to a variable (assigment requires negligible time) .
Often a branch statement can be added to skip steps that are not
required except in special cases.

Wwhen the arrays used have a large number of elements, the
operations should be chosen to minimize the number of elements
processed. For example, if ¥ is a vector of 5000 characters, &
few elements can be selected from ¥ using NtM+V (which might
process about 5000 elements) or using V[J+1%] (which would
process only a few elements). The second approach is much more
efficient. Similarly, rather than extending a vector by
catenating one element at a time, it might be preferable to
extend it with a large number of elements and then respecify the
elements one at a time using indexed specification.

118

1t is commonly believed that APL branching for locping is
slow. Actually, looping is fairly fast by itself but is usually
a sign that the program is performing operations one element at a
time—=-the amount of time required is mainly due to the number of
operations being performed. Actually, looping is sometimes a
very efficient way to perform an operation, especially if the
number of iterations required for normal cases is small and the
alternative requires more operations than are used in the loop.

The evaluation of constants other than 1, 2, 1, o, .5, and
t ' takes about half as much time as the setup time for
functions. Some time can be saved by using variables to store
the values of commonly used constants other than the common
constants just mentioned. . ;

On some APL systems central processor time can pe saved by
catenating output together and then printing it in a batch rather
than as it is generated. However, on the APLUM system it is more
efficient to print the output as it is produced.

The following chart gives approximate timings for various
operations. Be forewarned that these timings are approximate and
will wvary with the version of APLUM in use, the particular
computer used, and the internal workspace configuration. Times
are expressed in terms of T, the time per element for addition.

Time range Operations
0 to 7T Time per element for AASZ, Ave, and ~B for logical
internal representation
T to 5xT Setup time per statement to be evaluated
Time per element for most scalar and mixed
functions
5xT to 25xT Time per element for complicated functions such as

AoB, Ae®B, A¢B, and ALB]

Time required for an unnecessary set of
parentheses in a statement

Time required to evaluate a constant other than 0,
1, 2, .5, 1, and ' '.

Extra time per local variable for a function call

+8

A+B

o5xT to 125xT Call to a user defined fanction with a few local

variables
getup time for primitive functions

%)

Chapter 12. KRONOS Features for APLUM Users

This chapter discusses a few KRONOS commands of interest to
users of APLUM. The discussions cover only the more important
details. Further information can be found in the KROMOS 2.1
Reference Manual or in the KRONOS Time-sharing USer's Manual.
Most of the commands 'discussed can be used as timesharing
commands or batch job control cards. lHowever, they cannot be
used while in APL. Use the commands before issuance.of the APLUM
command, or use [FM'SYSTEM' to leave APL- to use these commands .
Note that none of these commands allow embedded spaces.

HELLO
The HELLO command allows you to sign on again with a
different account number.

BYE

The command BYE is the correct way to sign off the system
when not in APL. This is equivalent to the APL command O7#'GFF!
or)OFF.

RECOVER,number

The RECOVER command can be used to return to the state just
before a disconnect or system malfunction ‘cccurred. The use of
this command prevents loss of the active workspace or active
files. The command .is allowed only when the system prints
RECOVER/SYSTEM at the end of the sign-on procedure. If you have
already proceeded beyond that point and wish to initiate
recovery, type HELLO to begin - .the sign-on procedure anew. The
number you provide in the RECOVER command -should be the terminal
number that was printed after the previous sign on. (That is,
the terminal number in "effect for the session that terminated

12-1

abnormally.) After you type the RECOVER command, the system may
print RECOVERY IMPOSSIBLE, which indicates that the system
malfunction was too serious to allow recovery, that too much time
has elapsed (recovery information is retained for ten minutes),
you signed on with a different user number, oI that you gave an
incorrect terminal number. When the RECOVER command is
successful, the recovery information is destroyed and the system
prints various information about the status at the time of
disruption. Press the RETURN key to continue (or type STOP to
exit £from APL). The recovery is sometimes imperfect. Some
output may be lost, and the next input reguest may cause a
question mark to be printed, and any special APL symbols used in
the Ainput may be translated incorrectly. Do not perform the
recovery on a different type of terminal from that in use when
the disruption occurred or the APL system will translate input
and output incorrectly for that terminal.

LIMITS

The LIMITS command causes validation limits for the account
number currently in use to be printed. Any numbers in the output
that are followed by a B are expressed in octal (base 8). The
APL functions base-value and represent can be used to convert
between octal and decimal. For example, 70000B can be converted
to decimal using 817 0 0 0 O, and 32768 can be converted to octal
using (6p8)T32768. The following are +the limits that are
important to APLUM users:

TL = CPU time limit in 10's (octal) per session. Append a
zero to the right of the number to find the CPU time
1imit in octal seconds. In addition, there may be a
smaller time limit per session. This other time limit
per session can be overridden by using the SETTL
command or by using the T,number command after a *TIME
LIMIT* error OCCUrS. If you have consumed your entire
cPU time limit for the session, you can use the KRONOS
HELLO command to get a new CPU time allotment, or hang
up, sign on again, and use the KRONOS RECOVER command.

CM = Maximum central memory field length. Append two zZeros
to the right of the number to find the central memory
limit in octal words. Note that a more stringent
restriction can be imposed on all timesharing users by
the computer operator. This second restriction may
vary according to the time of day.

DB = The number of jobs allowed for the given user. The
csyBMIT function (see Chapter 9) is not allowed to
submit additional jobs if the total number of jobs for
that account number already equals or exceeds this
parameter. The count of jobs includes the program
attempting to use the ¢suBMIT function.

12-2

FC = Maximum number of stored indirect access files allowed.

CcS = Total storage in PRU's allowed for all stored indirect
access files. {One PRU is 64 words or 640 six-bit
bytes.)

FS = Maximum size in PRU's allowed for individual stored
indirect access files. (One PRU is 64 words oOT 640
six-bit bytes.)

AW = Access word. If the last digit is 4 or greater, the
user is allowed to create direct access files.

The following limits are not in effect for version Dl OF: Ehie
KRONOS operating system but may be in effect in later versions:

NF = Number of local files allowed. Thig includes active
APLUM files and coded files. Allow one extra file when
gsaving or leading a workspace.

MS = Maximum number of mass storage tracks allowed for
files, dincluding active copies of indirect access
files. One track may be anywhere from 1024 words to
54,784 words depending on the storage device used.
Contact installation personnel for details.

In some cases SYSTEM may be printed as one of the above limits,
which indicates that there is no limitation on the individual
account number, but there may be a general limitation on all
timesharing users. Contact installation personnel to determine
this limitation.

SETTL,number

Sets the CPU time limit to number. This can be used before
entering APLUM to prevent a *PIME LIMIT* error from occurring.
The number should be the desired time limit in octal. In order
to be meaningful, the time limit should be at least 10 (octal)
and the last digit should be a zero. The time limit must not be
set to more than the remaining allowance for the session. (You
can use the HELLO command to start a new session and get a fresh
allotment of CPU time.)

T,number

This command is meaningful only immediately after the system
has printed *TIME L,IMIT*, The number has the same significance
as for the SETTL command. 1f you type anything other than
T,number, @ forced exit from APL will occur and the active
workspace will be lost. If you have used up the entire CPU time

12=3

allotment for the session, hang up the phone and then sign on
again and use the RECOVER command.

DISPOSE

The DISPOSE command is used to send a coded wwwm.ﬁo a vmwnﬁ
printer. Note that the first character on each line 1n the mem
should be a printer carriage nonﬁnow gsymbol. A plank is usually
used, but a 1 can be used to mem to the next page, or a 0 can be
used to skip a line before printing. Numerous owrm« options
exist (see KRONOS 2,1 Reference Manual) . The mowwozysm steps
would be used to print a file at the central batch site:

BATCH
GET, filename
mHmwOmmAhnmmsmamuww\wnumnnonnwv

[i indirect access coded file and
where filename 18 the name of an 1n :

account 1s your account number. If .wwm noum@ file does not
include carriage control characters 1ol the first nowcaz.. the
following procedure should be used instead:

BATCH

GET,filename .

RETURI , TEMP
ﬂOﬂmemhmHHmbmﬁm-ﬂmzm
DISPOSE S.Mﬁ,amvﬂww\wn"mnno unt)

CHANGE

The CHANGE cormmand can be used to change the name of a file
(which includes workspaces) its password, nmdmmonm. or access
modes permitted to other users. The following examples show
simple forms of the command.

CHANGE,newname=cldname
Changes the name from oldname tO newname.

CHANGE, filename/CT=category L .
o:mnamm the category. The category m@mOHWme may be P for
private, S for semiprivate, OY pU for public.

CHANGE £ilename/M=mode .

Oﬁmdmmm the mode. The mode specified may be w_mow read, W
for write, MODIFY for modify, or RM for read-modify. (Other
modes exist but are not of interest for APLUM users.)

Omwzmm.thmzmam\MZHMmmmtowm

gets the file password. The password may consist of 1 to 7
letters or digits.

19~k

ENQUIRE,J=jobname

This command can be used to determine the status cof a job
submitted using the csupMIT function (discussed in Chapter 9}.
If the response indicates the job is not in the system, this
usually indicates that it has completed or is presently being
printed.

PERMIT

The PERMIT command can be used to give another user access
to a private file or to specify the permitted access mode for a
particular user of a semiprivate file. The form of the command
is:

mmeHesmhpm:mam~mnn0cnnuaoam\mnnbn:wuaonm~ s

The mode for each account number determines the type of access
allowed. Meaningful mades for APLUM users are R for read, W for
write, RM for read-modify, or MODIFY for modify.

CATLIST

The CATLIST command can be wused to examine access
information about an individual file. The following examples
show how to find information not provided by the APL OLIB
function:

CATLIST/LO=F,FN=filename
gimilar to (LIB'filename' but also gives the password and
count of the number of accesses.

CATLIST/LO=FP,FN=filename

Gives access information for each user who accessed the
specified private or semiprivate file. The information
printed includes the number of accesses Dby each user, the
access mode allowed for each user, and the date and time of
the last access by each user.

12-5

Appendix A. Error Messages

The following list describes the APL error messages and
their meanings. I+ should be noted that most of these cause
execution to halt (unless [TRAP 1is used to intercept the error
processing), but function definition mode prints its error
messages and then may continue processing.

00: INTERRUPT

This indicates that an interrupt has been received £from a
terminal or that the overstrike # has been entered as the first
nonblank symbol for guote-gquad input.

01: IMPLICIT ERROR
An implicit argument to a primitive function is not defined.
The system variable [T is required for the functions 4=B, A>E,

A<B, A=B, A<B, A=B, Ae¢B, 41B, and 13B. The variable 0OIC 1is
required for indexing, the axis operator, A&B, 41B, B, ¥B, 7B,
and A7B. The variable OWSID must be defined for OSAVE''. ORL is
required for AF7E and 7B, and 0PP is reguired for monadic
format. OENY is required for [OcrR, 0OEx, OFX, O¥C, OFL, 0sTorP,

O7RACE, OLOCK, OLTIME, ONAMES and [COPY.

02: SYNTAX ERROR .

Incorrectly formed statement. Check to be sure the
statement has matched guotes, parentheses, and brackets. A
common error is to forget to place an operation symbol between
two variables when catenation 1is intended (e.g., (¥ F)p@ instead
of (M.N)pQ). Other causes include failure to provide a right
arqument to a function, and use of a branch arrow other than at
the left end of a statement. Check the state indicator to be
sure a local variable or label is not obscuring a function having
the same name.

03: DOMAIN ERROR

The argument is not in the domain of the function or is an
improper value for a system variable being specified. The
following are examples of ways that domain errors can arise:

AL

13.5 (an integer is required), OIO<1h (the index origin must be 1
or 0), ''+3 (character arguments are not allowed for many
operations, ével if +the argument 13 empty) s Dwm+zm A@HHmeua
precision must be between 1 and 15). When 0¢T is not defined,
zero is used as 0CT in domain checks. Thus, 11+1E7 1y ﬁospm not
be allowed because exact integers are required when [CT 15 Zero.

: LENGTH ERROR _) . .
o ﬁmwmwwm of the arguments to 2 function are incompatible, or

the operation is not defined for arguments of that length.

: OR .
S Mbwwmwmwwm used in an expression has not been assigned a
value, a dyadic function has been used without a left argument,
the result variable of a function that returns a result was not
assigned a value, or a function was 1mo@ for which wﬁmﬁm is no
current definition. Check the state indicator to see if a local
variable has obscured a global variable or function.

oo %mwwﬁwmmmmom the arguments are incompatible or the operation
is not defined for an argument of that rank. For example: 1 1 1
(not defined for vectors unless they have one wwmam:wu. ,bhpme
(if 4 is a vector it has the wrong rank for the index applied), B
3 4 500 (not defined for ranks greater than 2).

07: INDEX ERROR .

Index out of range. For example, if 4 1s a nnﬂmmimwmsmsﬂ
vector: A[#] in 1-origin, A03] in zero origin, or A[0] in 1
origin. To f£ind the current origin, display 0OIO.

. m .mm 5

A %MMHHOMMHMﬂHos exceeds limitations of the computer oY the
APLUM system. Limit errors can result from: attempts to generate
a result greater in magnitude than about 1E322, attempts to
execute - a line longer than 120 characters ﬁmb a function,
arguments to the execute function, or entered as input), attempts
to produce an array having a rank greater than 75, or an mwwmﬂvn
to produce a result requiring more storage than the entire
central memory of the computer.

09: LOCKED OBJECT _

? Attempt to specify & value for a locked variable A«mwmw or
group) . Tocked variables can be redefined only by erasing them
and then specifying them.

. o
Lo mﬂmﬂmwwnmeﬁ space remains in the 40HWmﬁmom for the
operation.. Erase unneeded functions and variables to make more
space available, or reset Owa to allow a larger workspace.
However, do not set owa to a mnmmwmﬁ.mpmwa length than you are
validated for or you might actually 1lncrease m:m chance of WS
FyULL (see LIMITS in Chapter 12). If w:mnm. is insufficient room
for executing system conmands , try using system functions

A-2

instead. If that fails, try using specificaticn to reduce the
space required for larger variables (e.g., A<«''}. Some space can
usually be reclaimed by executing a niladic branch (e.g., +). If
more than one suspension is on the state indicator, use a niladic
branch for each suspension.

12: DEFN ERROR

Incorrect request in function definition mode. May result
from providing header information other than the function name
when reopening the function, use of a function name already in
use for another global function or variable, or an illegal
display oxr line editing request. Another cause is an attempt to
close definition of a function having an incorrectly formed
header or duplication of names used in the header or as labels.

13: PHRASE NOT FOUND

The phrase specified was not found in the line where it was
sought. Be sure to specify the correct line number. Display the
line to determine the correct phrase.
i4: SI DAMAGE g

Information on the state indicator has been lost due to
changing a pendent function, by altering a function that is
suspended more than once, Or by changing the number or relative
order of local variables in the header or label variables for a
suspended function. This message 1s a warning--no corrective
action is required. The pendent or suspended functions on the
state indicator that are affected by SI DAMAGE are indicated by
enclosing brackets. The affected functions cannot be continued,
but they remain on the state indicator as long as other
suspensions are above them. When the state indicator collapses
to the affected suspension, the system automatically removes that
suspension.

15: NAME NOT FOUND
Ho function or variable having that name exists.

s S NAME IN USE
A function or variable already has that name.

18: MIXED FUNCTION

2 mixed function has been used where a dyadic scalar
function is required as an argument to an operator. For example:
A+.1B, Ae.,1B, 0/B.

19: UNDEFINED FUNCTION
No such primitive function exists. For example: aB, #B (no
monadic = function).

20: operating system error message

This message is a message from the KRONOS operating system
and usually concerns some sort of operation with a file or with a
workspace. See the list of common errors under OPERATING SYSTEM
ERROR MESSAGES below.

4 FILE DAMAGE

Usually indicates that one record of the .mwwm has been
damaged. If an attempt to tie the file causes this message, the

&

entire file may have been damaged. Most installations
periodically copy all files to tape, and files can be restored to
their condition when the last copy was made. Contact

installation personnel for assistance. File damage may be
reported erroneously when reading a direct access file in ma.sﬂam
if repeated interference is encountered from another user writing
the same record.

22: WRONG TYPE FILE

An attempt was made to wuse (FRE4AD, CFP0OS, CSUBMIT, OF
CFWRITE on an APLUM file, or an attempt was made to use FREAD or
FWRITE on a coded file. Note that the KRONOS COPY commands do
not preserve the type with a copy made from an APLUM file. This
error also occurs if an attempt is made to alter a direct access
file that was tied in read or read-modify mode.

23: FILE TIE ERROR .

An attempt was made to use a file number or file name that
was already in use, or an attempt was .Bmmm to perform an
operation (e.g., FREAD, FWRITE) that requires the file to be
tied.

OPERATING SYSTEM ERROR MESSAGES

20: filename BUSY . .) .)
The specified direct access file is tied in an incompatible

mode. This may be caused by a system prcblem or telephone
disconnect, in which case the file will be released in 10 minutes
or can be accessed by using the KRONOS RECOVER command to resume
the session that terminated abnormally. Occasionally a file will
be left busy due to an operating system error and will remain
busy until a level zero deadstart (usually done at the start of
the day). An APLUM direct access file can usually be retrieved
from this condition by wusing RN mode to make a new copy of the
file.

20: filename ALREADY PERMANENT

A file having the indicated name already exists. This error
may result if a workspace is being saved and a mmmmSOHm‘
category, mode, file type (i.e., IA or DA), or a name different
from [OWSID was specified. This error can also occur when
FCREATE attempts to create a direct access file having the same
name as a file already in existence or when FUNTIE attempts to
store a copy of an indirect access file that was created during
the session. If the old file is no longer needed, use ODROP to
eliminate it; otherwise, cop¥ the new file to change its name.

20: filename NOT FOUND

The file does not exist under the specified user number,
the user is not allowed to access the file, or the user did not
provide a correct password for a file requiring a password.

20: ILLEGAL USER ACCESS
The user is either not allowed to create direct access files
or is not allowed to create indirect access files,

20: FILE TOO LONG
The file 1is too large for the 1limits associated with the
account number,

20: PF UTILITY ACTIVE

The computer operations staff 1is using a permanent f£file
utility program that prevents wusers from performing operations
involving permanent files. Try the operation again.

20; CATALOG OVERFLOW - SIZE
The operation would cause the user's limit on total size of
all indirect access files to be exceeded.

20: CATALOG OVERFLOW - FILES

The operation would exceed +the limit on the number of files
allowed for the account number.

20: PARITY ERROR
20: ADDRESS ERROR
20; DEVICE STATUS ERR.
20: 6581 FUNCTION REJ.
20: DEVICE RESERVED
20: DEVICE NOT READY
Any of these messages indicates a malfunction in the
computer or a storage device. Try the operation again, and if
the problem persists, notify installation personnel,

20: TRACK LIMIT

There is no space available on the device where the file
resides. Be sure you have not accidentally created a gigantic
file. If you use very large files, you may need to make special
arrangements with the installation personnel.

ABNORMAL EXITS FROM APLUM

PARAMETER ERROR
This error indicates the APLUM command was incorrect in form
or that a parameter was specified incorrectly.

TIME LIMIT
A CPU *TIME LIMIT* occurred and the T,number command was not
used to continue processing (see Chapter 12).

PP ABORT
i M peripheral processing unit requested that the program be

terminated.

OPERATOR DROP .
The computer operator intervened and terminated the program.

FILE LIMIT
More active files were used than are allowed by the user's

validation limits (see LIMITS in Chapter 12}.

SYSTEM ABORT } .
The operating system terminated the program. This

presumably indicates a defect in the operating system.

APL SYSTEM ERROR (or EXCHANGE PACKAGE)

This indicates a defect in the APLUM system Oor a computer
or operating system malfunction. Please vreport this error to
installation personnel along with work that led to the problem
and any further ocutput from the wmﬁcz gystem. Unlike most error
messages, this is not an indication of an error by the APL

programmer.

OTHER MESSAGES

DEL))
This indicates that the input line was cancelled.

OVL) . . .
This indicates that the preceding input line was too long

for the operating system.

Appendix B. Output Format

Character output is sent to a terminal unaltered except for
character translation required for the particular type of
terminal and omission of trailing blanks in rows of a matrix.
This omission of trailing blanks in character output speeds the
printing of the result from (QOCR, the printing of tables of
names, and so forth.

Humeric output is ordinarily shown in decimal form unless
decimal form would not be sufficiently compact. When decimal
form is wused, up to [OPP significant digits are shown, but
trailing zeros beyond the decimal point are omitted, as is the
decimal point itself if no digits follow. Numbers with a
magnitude less than 1 are shown with a zero before the decimal
point (e.g., 0.025, 0.125). All numbers in a column have their
decimal points aligned.

Exponential form is used if decimal form would require more
than 3 zeros after the decimal point before the first significant
digit, if aligning decimal points in the column would require
more than 1.5x(PP characters positions, or if more than [OFP
digits would appear to the left of the decimal point. If any
number in a column requires exponential format, the entire column
is shown in exponential format with the decimal points and
exponents aligned. All numbers in the column are shown with the
same number of digits in the mantissa. The number of mantissa
digits is less than 0PP according to how many trailing zeros
would otherwise appear in all numbers in the column. If no
numbers in the column have digits beyond the decimal point, the
decimal point is omitted.

lNumbers in adjacent columns are separated by at least one
space. However, no more spaces than necessary are used.

Appendix C. Character Sets and Terminals

Many different types of terminals can be used with the APLUM
system. In addition, card readers, printers, and files can be
used for input and output. The characters available on these
various devices are shown in the table at the end of this
section. Many cf these devices cannot print the full set of APL
characters. APL characters are translated so as to print the
same whenever possible. In some cases characters having a
similar appearance are substituted (e.g., " for ~ and @ for @) .
In the table where two characters appear in the same column,
either character may be used for input, but all output uses the
second character. Note that the APLUM system assumes the same
terminal type for input and output. Where there is a blank entry
in the table, the "bad character symbol," D4v[2201, is used.
Note that the [4¥v indices are for O-origin. The first 128
elements of [AV, when used in output, cause APLUM tc issue the
corresponding ASCII code. However, further translation may occur
within the operating system for some types of terminals,

TERMINAL CONTROLS

Table C.1 shows the characters used to cancel an input line,
correct an input line, stop a program not requesting input
(called an "interrupt" elsewhere in the text), and to stop a
program requesting input. The two entries for halting a program
requesting input are for quote-quad and gquad input, respectively.

TERMINAL TYPES

From the point of view of the user, the three APL terminal
types are almost identical except for the control functions shown
in Table C.l. The only other difference is that the two ASCII
+erminals have the extra symbols {}0 &+ which are represented on
Selectric terminals as the overstrikes B3 x ++. The Selectric
terminals are distinguished £rom the others in that they are

based on the IBM Selectric print mechanism. These terminals are
further divided into correspondence and EBCDIC terminals. The
APLUM system allows either correspondence or EBCDIC terminals to
be used. (The APLUM system does not need to distinguish between
EBCDIC and correspondence types because the operating system
compensates for the differences). The Teletype Model 38 is an
example of an ASCII-APL terminal, and the CDI 1030 is an example
of a bit-pairing terminal. All of these terminals are shown in
the character code tables in the column showing APL symbols.

Full-ASCII terminals are characterized by having upper and
lower case letters. Because these terminals do not have all the
APL symbols, many APL symbols must be represented by a dollar
sign followed by two additional symbols.

ASCIT terminals include the Teletype Model 33 and Model 35.
These terminals also reguire the use of the dollar sign sequences
to represent most APL symbols.

The BATCH column is for ASCII line printers having 63
printing characters. The B501 column is for the CDC 501 printer
which differs in a few character positions from ASCII. The 501
printer prints the KRONOS display code symbols.

The file system translates coded file characters using an
ASCII coding in the file, regardless of the terminal type
specified on the APLUM control card. If the 501 type printer is
used instead of an ASCII printer, the APL symbols ~7_!x'?e\~ will
come out as S#+vAtyzz™ instead of #''_l&"?@\N.

TABLE C.1l. TERMINAL CONTROLS

CANCEL CORRECT STOP STOP *3IGN-ON
INPUT INPUT PROGRAM INPUT OmbWbOHMWm
ASCII with ESC LINE-FEED BREAK g or -) RETURN
APL print BACKSPACE
Full ASCII ESC LINE-FELD BREAK $G. or $GO RETURN
BACKSPACE . RETURN
ASCII ESC LINE-FEED BREAK $G. or $GO RETURN
CTRL~H RETURN
Selectric APL ATTN ATTN ATTHN 7 or -+
RETURN BACKSPACE ATTHN RETURN

*gign-on characters apply only at the University of Massachusetts
installation. These characters should be the £irst characters
typed after dialing the computer. One exception to the above is
that bit-pairing ASCII-APL terminals require ¢RETURN as the
sign-on characters.

0-2

APL ASCII APL
DAV Symbol Symbol TTY33 BATCH B501 Coded
Index (Overstrike) (Name) Symbol Printer Printer Files
0 ¥ (Nu) (NUL) SNU $NU SNU
IE] g {8H) (SOH) $SH $8H SSH
2 5 (ST) (STX) $ST S8T $8T
3 g (ET) (ETX) SET SET $ET
4 g (E0) {EQT) SEOQ SLO $EO
5 B (EN) (ENQ) $EN SEN $EN
6 K (AK) (ACK) SAK SAK SAK
7 B (BL) (BEL) $BL $BL $BL
8 7 (BJ) (BS) SBJ SBJ SBJ
9 7 (HT) (HT) $HT SHT SHT
10 E (LF) (LEF) SLF SLF S$LF
11 ¥ (VT) (VT) SVT SVT SVT
12 B (FD) (FD) $FD SFD SFD
13 B (CR) (CR) SCR SCR SCR
14 8 (50) (80) $80 $S0O $50
15 g (8I) (SI) $8I $SI $SI
16 B (DE) (DLE) $DE SDE $SDE
17 D (D1) (DC1) $Dl SDL1 $D1
18 n (p2) (bC2) $D2 $D2 $D2
19 B (D3) (DC3) $D3 $D3 $D3
20 B (Du4) (DC4) sD4 $D4 $D4
21 E (NK) (NAK) SNK $NK SNK
22 F (5Y) (SYN) 58Y $8Y $SY
23 B (EB) (ETB) SEB SEB SEB
24 g (c4) (CAN) [{e7:% SCA $CA
25 B (EM) (EM) SEM SEM SEM
26 B (5B) (SUB) $SB $SB $S5B
27 B (ES) (ESC) SES $SES $ES
28 B (FS) (FS) $FS SFS SFS
29 & (GS) (GS) $GS $GS $GS
30 B (RS) (RS) $RS $RS $RS
31 g (us) (Us) $US sUS . $Us
32 blank blank blank blank blank blank
33 T (') . $EX ! SEX ! SEX d
34
35
36 § (51) $ $DO $DO $DO s
37
38
39 ' d sor ! $QT ' $QT "
40 (((((I
41)))) } Pl
42 * * * * * w »
43 + + + + + RS
44 . i + ; , b s
45 - - - - -]~
-3

Qav
Index

APL
Symbol
(Overstrike)

ASCII
Symbol

TTY33
(Name) Symbol Printer

BATCH

B501
Printer

APL
Coded
Files

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7L
72
73
74
75
76
77
78
79
80
8l
82
83
84
85
86
87
88
89
90

WM~ FE WP O™

A e

NV

MRTSCHMLOTOPWOZEDRSHTO™R oo W

Il A= oo OOJOUTIEWNRFON?"

EHROHDQEEO QWP RURY

NKMICOCHDDO YO 2

WO UTRWNEON"

MK CCHBYOPWOZERERUHTORMED QW

w2 W
OOHE-wa
cHoOolROQr

I A = o

v

WO ~J0 Ui W B O

< Uy
w O
1 =)

SLT

MEXSS<CHRIOWOZREDRURIOQOEEO QLW zgggég
cHO

I oA e e

v

WO~ UTR WO

R R B]
OOEEnA
caoaar

NMKKI<oHnwOo"WOEEERURDAREBOOW b

I A = e

v

Il AS oo OO WNHON:.

v

NMKKE<CHOIOWOZIRPRGHIQEAEDQ®

©

APL ASCII APL
J4av Symbol Symbol TTY33 BATCH B501 Coded
Tndex (Overstrike) (Name) Symbol Printer Printer Files
91 E L S0B [S0B [$0B [L
92 A \ $BS $BS $BS N
23 B] $CB 1] $CB] SCB] d
94
95 - o2 $UL suL _ | suL _ | _
96
97 A (A_) a SAA SARA SAA b
98 ‘8 (B.) b $BB $BB $SBB B
99 c (C_) e} :1ale sSCC sCC C
100 D (D) d $DD $DD $DD D
101 E (E_) e SEE SEE SEE E
102 Fier) £ SFF SFF SFF F
103 ¢ (G_) g $GG $GG $GG G
104 H (H_) h SHH $HH SHH H
105 I (1) i $II $II $II I
106 J (J_) T $3J 533 $JJ J
107 K (X_) k SKK $KK SKK R
108 L (L) 1 SLL SLL $LL L
109 M o(M_) m SMM SMM $MM M
110 N O(W_) n SNN $HN SNN N
111 0 (0_.) o $00 $00 $00 0
112 P (P_) P $pp $PP SPP P
113 Q (Q_) q 500 $QQ $00 Q
114 B (R_) r SRR SRR SRR R
115 g €8.) s $8S $5S $88 S
116 T (7_) t $TT $TT $TT T
117 U (U_) u Suu $UU SUU U
118 ¥ (v.) v SV sVV svv v
119 ¥o(W_) W SWIW SWW SWW)
120 X (X)) X $XX S$XX $¥X b
121 Y (¥ ¥ SYY $YY sYY ¥
122 Z 12 2 $722 $ZZ $Z2 Z
123 { ([=) $LB SLB SLB
124 | i $MD $MD $MD
125 } (Je) $RB $RB SRB
126 ~ > STL STL -~ STL 7 =
127 B (DZ) (DEL) $DZ $Dz $Dz
128 (K0)
129 (K1)
130 (K2)
131 (K3)
132 (K4)
133 (K5)
134 (K6)
135 (K7)

APL ASCII APL
oy sympol Symbol TTY33 BATCH B501 Coded

Index (Overstrike) (Name) Symbol Printer Printer Files APL ASCIT APL
gav Symbol Symbol TTY33 BATCH B501 Coded
Tndex (Overstrike) (Name) Symbol Printer Printer Files
136 (K8) : ;
137 (x9) 181 = (N21) SNG # SNG # $NG = #.
138 (K10) : 182 A (N22) $DT ' $DT $DT
139 (K11) 183 - (<]) (w23) $RK $RK $RK
140 (x12) 184 = () (N24) SLK SLK $LK
141 (K13) 185 o] (N25) SCI $CI SCIL
142 (x14) 186 ® (o) (N26) SLG @ SLG @ SLG @
143 (K15) 187 e (o0-) (N27) $RU SRU SRU
144 (K16) 188 ¢ (o]) (N28) $RT SRT SRT
145 (K17) 189 & (o\) (N29) STP STP S$TP
146 (K18) 190 & (Av) (N30) SDM SDM SDM
147 (K19) 191 o (a_) (N31) $DU $DU $DU
148 (K20) 192 1 (N32) $I0 $I0 SI0
149 (K21) 193 p (¥33) SRO $RO $RO
150 (K22) 194 it (M34) $BV SBV SBV
151 (K23) 195 T (W35) SRP SRP $RP
159 (K24) 196 T (LT) (N36) $IB SIB $1IB
153 (K25) 197 c (N37) SIN SIN S$IN
154 (K26) 198 o (N38) $ID $ID $1ID
155 ’ (K27) 199 n (N39) S$IX SIX SIX
156 (K28) 200 u (N40) S$UN SUN SUN
157 (K29) 201 ° (N41) SNL SNL SNL
158 (K30) ; 202 g (N42) 30D $QD 50D
159 (K31) 203 man) (N43) $QP S0P SQP
160 A (NO) $AN $AN SAN A 204 X (A=) (M44) $BT $BT $BT
161 v (N1) $OR SOR SOR v 205 (/=) (N45) $5M $SM $SM
le2 & (A~) (N2) $ND $ND $ND 206 (N46)
163 » (v~) (N3) $NR $NR SNR 207 g (0+) (N47) $XD $XD $XD
164 < (§4) SLE SLE SLE < 208 w (N48) $OM $OM $OM
165 # (N5) SNE $NE S$NE = 209 [(N49) SAL SAL $SAL
166 2 (N6) $GE "SGE SGE = 210 (N50)
167 4 (al) (N7) SUG suG $UG 211 (N51)
168 T (v (198) $DG $DG SDG 212 (N52)
169 + (N9) $TA STA STA 4 213 E (v53) | sEP SEP $EP
170 + (N10) $DR $DR SDR 214 2 (1e) (N54) SEV SEV SEV
171 < (N11) $IS <« SIS $IS 215 ¥ (Te) (N55) SFM - SFM SFM
172 - (N12) $GO $GO $GO - 216 5 (-,) (N56) SCN SCN SCN
173 a (ne) (N13) $LP SLP SLP 217 (N57)
174 F (7~) (N14) SLD SLD SLD 218 (N58)
175 7 (N15) $DL $DL $DL 219 (N59)
176 L (N16) SMN $MN 220 g (74) (N6O) $BC $BC $BC
177 r (N17) $MX $MX 221 (N61)
178 % (N18) SML & SML & $SML & 222 (N62)
179 3 (N19) $DV % $pV $DV 223 (N63)
180 " (N20) $po ! $pg ! $DO o 224 g (ouT) (G0) $G. $G. $G.
225 o (ou) (G1) sou $oU sou
-8

AFL ASCII APL

HF Symbol Symbol TTY¥33 BATCH B501 Coded
smdex {Overstrike) (Name) Symbol Printer Printer Files
226 (G2)
227 (G3)
228 (G4)
229 (G5)
230 (G6)
231 (G7)
232 (G8)
233 (G9)
234 (G10)
235 (G11)
236 (G12)
237 (G13) . Appendix D. APLUM Control Card
238 (G14)
239 (G15)
240 (G16)
241 (G17) The optional paramgters on the APLUM timesharing command (oI
242 (G18) batch control card) allow specification of the type of terminal
243 (G19) (or batch options) to be used, the workspace to be used (thus
| 244 (G20) i avoiding a subsequent LOAD command), and the constraints on the
! 245 (G21) i field length to be used. The general form for the control card
m 246 (G22) is:
| 247 (G23) APLUM,option=value,option=value ... option=value
248 (G24)
249 (G25) Indicating terminal type. When no terminal type is specified,
250 (G26) APLUM assumes that an ASCII-APL terminal is being used if the job
251 (G27) was entered from timesharing. If the job is a batch or remote
252 (G28) batch job, APL assumes that 63 ASCII characters must be used for
253 (G29) output (e.g., 1 becomes $1I0, p becomes $RO). Other terminal
254 (G30) types can be specified as follows:
255 (E0)
TT=COR Correspondence (or EBCDIC) Selectric terminal
(0rT=1) .

TT=TYPE Type-pairing terminals (077=2).
TT=BIT Bit pairing terminal (Orr=3).

TT=ASCAPL For ASCII-APL terminals (including Mocdel 38
Teletype) equipped to print the APL character set.
This type is normally assumed for timesharing
users (OTT=4).

pp=rTY33 For Teletype Model 33 terminal or similar devices
(OrT=5) .

TT=ASCII For full ASCII terminals not equipped to print the
APL character set (O7T=8).

TT=BATCH For devices that support +the 63 BASCII character
set {(O07T=7). Usually used for batch or remote
batch ASCII printers,

TT=B501 For batch 501 printer (Jr7T-=8).

TT=TTY¥383 Teletype Model 38, keyboard arrangement 3 ([J7T7=9).

At the University of Massachusetts (and at a few other
installatieons), the TT= option should not be specified for any

terminals that print the APL character set because the operating

system compensates for any differences from ASCII-APL,

Indicating batch output options. The following options are
intended primarily for batch users of APL. If the APLUM control
card does not specify ocutput options, it is assumed that
timesharing users do not wish these options and that batch users
do want them.

LO=EPS Any or all of the options E, P, or 8§ may be
specified. Any options not specified are not
used.

E Echo input. The APL 1lines read as input are also
sent as output.

P Prohibit prompt. The normal APL input prompts (6
spaces or []: plus transparent mode control bytes, a
lack of which may cause the input translation for
terminals to be incorrect) are not sent to the
output file,

s Shift output. Causes a blank to be added to the
front of each output 1line to prevent the first
character from being used for printer carriage
contrel.

LO=0 To select none of the E, P, or S options.

Input and output file specification. The input and output files

normally wused for APL are named INPUT and OUTPUT. For
timesharing jobs this causes input to come from the terminal and
output to be sent to the terminal. For batch jobs input

ordinarily is from the card deck or CSUBMIT file, and output is
to a line printer. Other KRONOS files can be used instead. APL
translation of input and output is according to the TT option (or
the default which depends on whether the job is batch type or
timesharing type).

I=file-name Causes input to be read from the named file.

I=file-name Causes output to go to the named file.

L=0 No APL output i1s produced. (A1l output is
discarded.)

Initial workspace specification. If no workspace is mwmowmwmgw a
clear workspace is used. Some effort can be saved by specifying
the initial workspace name on the APLUM control card.

WS=wsname APL operations begin with a copy of the named
workspace as the active workspace.

UN=user-number Used to specify the user number of the
initial workspace. Required only if the user
number of the workspace differs from that
used when signing on.

PW=passwd If the workspace belongs to another user and
has a password, the password must be provided
in order to use it.

Field length specification. If no field length is specified, the
APLUM system chooses a minimum field length that depends on the
current version of APLUM, and a maximum £ield length of 24576
words (60000 octal). The field length 1is used for the APL
system and the active workspace. The actual field length ﬂmma
varies dynamically. If storage reguirements exceed the maximum
field length, a WS FULL message results. Note that specifying a
field length greater than the user is validated to use or greater
than the limit set by the computer operator may actually increase
the chance of a WS FULL error. To check user validation, use the
LIMITS control card or the LIMITS command ({see Chapter 12).

MX=number Sets the maximum field length. The number is
assumed to be in decimal form unless followed
immediately by B, in which case it is interpreted
as octal. The value 1s actually rounded up to a
multiple of 64.

MN=number Sets the minimum field length. The number is
assumed to be in cimal form unless followed
immediately by B, in hich case it is interpreted
as octal. The value is actually rounded up to a
multiple of 64.

ie
de

Appendix E. Numerical Limits and Precision

The CYBER computers can represent nonzero numbers having
magnitudes in the approximate xrange 1.27E322 to 1.27E°322. An
operation that would ordinarily produce a number smaller in
magnitude than H.mqmwmm_WOﬂﬂmWH% produces zero. Most operations
produce a LIMIT ERROR when the result would exceed 1.27E322 in
magnitude; however, simple operations such as addition and
multiplication can produce += Or -« which are printed as
5.09£999 and -9.99£999. Using these infinite values for any
other operations will result in a LIMIT ERROR.

Humbers within this magnitude range are represented with au
accuracy of about 14 decimal digits (more precisely, to within 1
part in 2%48). The simple operations such as addition,
subtraction, multiplication, and division can be expected to be
accurate to within 1 part in 248 except when cancellation
magnifies the errors. However, operations involving numbers that
are integers Or powers of 2 give exact results unless the
rmagnitudes differ greatly. For example, exact results are given
by: .5+4, .25-.125, 8-3.

INDEX

Abort 7-19
Absent records 9-8,10
Absolute value function 3-3
ABSTRACT documentation 10-2,3
Access information 12-5
Access modes for files 9-6,7;
12-4,5
Accounting information (04I)
7-6; 7-18
Account number
for files 9-10
for signing on 0-2
from JAI 7-18
limits for 12-2,3
Acoustic coupler 0-1
Active workspace 7-7; D=3
Addition function 3-2
Additive inverse function 3-2
ADDRESS ERROR A-5
par 7-6; 7-18
Alternating product 6-2
Alternating sum 6-2
AND function 3-3
APL1 public library 10-1; 11-4
APLNEWS workspace 0-2; 10-1
APL SYSTEM ERROR A-6
APLUM control card D-1,3
APLUM files 9-1
Arc sine, arc cosine, etc. 3=3;
3=5
Argumnents to functions 0-5;
1-7; 2-4; 11-4
ASCII-APL terminal type 0-1;
c-2; D-1
ASCII characters 7-18
ASCITI terminal type 0-3;
-2,8; D-1
Assignment 0-=3; 2-6,7; 4-2;
4-6 See also Indexed
specification
Atomic vector (0A¥) 7-18;
c-1,8
ATTN key C=-2
gav 7-18; c-1,8

Axis operator 2-5; 5-5; 7-10;
A-1

B501 terminal type €-2,8; D-2
BACKSPACE key 0-3; C-2
Base value function 5-18,19;
7=7

Batch job submission, See CSUBMIT
Batch output options D-1,3
Batch printing of files 12-4
BATCH terminal type C-2,8; D-2
Batch use of APLUM D=1,3
Bit-pairing terminals (-2
Blanks 2-1
Branching 1-8

and efficiency 11-6

and execute 5-20

and restarting execution 1-9
BREAK key C-2
BYE 12-1

Canceling output C-1,2

Canonical representation ([CR)
7-10

Carriage control 7-8,9; D-2

Carriage return

key 0-2
suppression 2-10

CATALOG OVERFLOW - FILES A-5

CATALOG OVERFLOW - SIZE A-5

CATALOG workspace 10-1

Category of files 9-6,7; 12-4

Catenate function 5-9

CATLIST command 12-5

Ceiling function 3-2; 3-4

Central Processor time 7-12,13;
7-18; 11-5,6; 12-2,4

CFPOS 9-12,13; A-4

CFREAD 9-12; BA~-4 ~

CFWRITE 9-12; A-4

CHANGE command 12-4

CHANGES documentation 10-3

Character constants 2-1,3

Character sets C-1,8

INDEX-1

Charatter type 5-5

Circular functions 3-3; 3=5

JCLEAR 7-6,7; g8=1; 9-14

CLEAR WS 0-=2

Clear workspace 7-6,7

CLIST (to list coded filed) 9-17

Closing function definition
1-3,4

CMAP 9-17,18

Coded file read (CFREAD) 9-12

Coded files 9-1; 9-11; 9-15;
12-4

Coded file write (CFWRITE) 9-12

Column coordinate 4-1

Combinations=of function 3-3;
3~5

€omments 2-1,2

Comparison Tolerance ({€T) 3-5;
7-6; 7-8; A-=1,2

Composite functions 6-=1,5

Compress 5-=10,11

Connect time 7-18

Constants 2-2,3; 1ll1-6

Context editing 1-5,6 g

Control card for APLUM D-1,3

Conversion between number systems

5-18

Ocorpy 7-14; A-1

JCOPY 8-3

Correcting typing errors 0-3;
c-1,2

Correspondence terminal type C-2;
D=1

Cosine function 3-3; 3-5

cPU time 7-12,13; 7-18; 11-5,6;
12=2

oce 7-10; A-1

CRT terminals 7-9

cSUBMIT 9-13; 12-2; 12-5; A-4;
D-2 .

Ocr 3-5; 7-6; 7-8; A-1,2

Deal function 5-7,8; 7-10; A-1
Decimal format for output 5-22;

B-1

Decode function. See Base value
function

DEFN ERROR 1-3; 1-5; 1-10;
A-3

DEL A-6

Delay (OprL) 7-19

Deleting function lines 1-4
DESCRIBE function 10-2
DEVICE NOT READY A-5

DEVICE RESERVED A-5

DEVICE STATUS ERROR A-5

Diamond symbol (line separator)
1-6

digits 2=2

Digits. sSee [PP

JDIGITS. See [PP

Digits for output A-1; B-1; 7-7

Dimensions of an array 4-1

Direct access file 9-13,16; 12~-3

Direct access workspaces 7-7

Disk storage space 11-4

Displaying functions 1-4

DISPOSE command 12-4

Divide function 3-2

Opz 7-19

Documentation standards 10-2,3

DOMAIN ERROR 6-2; 7=1; A-1,2

Domino functions. See Matrix in-
verse or Matrix divide

gorepP 7-15

YDROP 8-3

Drop (primitive function) 5-13,14

Dyadic format 5-22,23

Dyadic functions 2-4

Dyadic save 7-13

Dyadic transpcse 5-17,18; A-1l

EBCDIC terminals C-1,2; D-1

Echo input option D-2

Efficiency

for APL programs 11-1,6
for files 9-14,15

Encode. See Represent function

End of information, file, or record
9-11,13

ENQUIRE command 12-5

OENvy 7-6; 7-10; A-1

Environment control 7-6; 7-10;
a-1

Equals function 3-3; 3-5; A-1

YERASE 8-3

Erasing direct access files 9-14

Erasing functions and variables
7-11; 8-3 .

OsRR 7-6; 7-16,17

Error messages A-1l,6

Error processing 7-15,18

Error trapping 7-15,17

ESC to cancel input 0-3; C-2

Orx 7-11; A-1

Execution of functions 1-7,10

Exception rules 5-1; 5-4,5

EXCHANGE PACKAGE Rh-6

Execute function 2-%; 5-20;
7=16

Expand function 5-11,12

Exponential format for output
5=22; B=1

INDEX-2

Exponential function 3-2; 3-4

Exponential notaticn for con=-
stants 2-3

expression 2-7

Expunge 7-11; A-1

Factorial function 3-3

Foopy 9-16,17

FCREATE 9-8; 9-12,13

OrFp 2-2; T7=7; 11-4

FERASE 9-11; 9-14,15

FFREE 9-9

OFr 9-4,5; 9-7

Field length 7-19; 11-3; 12=2;

D-3

File access information 12-5
File ¢reate 9-8; 9-12,13

File create 9-8; 9-12,13

File damage 9-16; A-4

File erase 9-11; 9-14,15

FILE LIMIT A-6

File limits 9-3; 12-2,3

File names 7-15; 9-5; 9-10
File numbers 9-6; 9-10

File passwords 9-5

File positioning 9-9; 9-12,13
File read 9-8

File record delete 9-8

File return 9-10

FILES? workspace 9-16,18; 10-1
File sizes 7-15; 9=9; 9-14,15
File status 9-9,10

FILESYS workspace 9-1; 9-4;

10-1
File system 9-1,18
File tie 9-11; 9-13,14

FILE TIE ERROR R-4
FILE TOO LONG A-5
File type 7-15
File untie 9-10;
File write 9-8
Fix (OFx) 7-10,11
Floor function 3-2; 3-4
FMAP 9-17,18

FNAMES 9-10

YFNS 8-4

FNUMS 9=10

Format for output B-1
Format functions 5-21,23

6-14

FRDEL 9-8

FREAD 9-8; A-4

Free record number 9-9
FRETURN 9-10

FSTATUS. 9-10

FPIE 9-11; 9-13,14

Full ASCII terminals

Function classifications

Function definition mode 1-1;
1-10; 2-2; 7-7; 1l-4

Function execution 1-7,10

Function header 1-1; 1-3,4;
1-8,9

Function names 1-1

6681 FUNCTION REJECT A-5

Functions, user-defined 1-1,10

c-2,8
2-3,4

listing names of 7-11; 8-4
FUNTIE 9-10; 5-14
Fuzz. See [ICT
FWRITE 9-8; 9-12; A-4

OFrx 7-10,11

Gamma function 3-3

Global variables 1-7

Grade up and grade down
A-1

Greater than function 3-3;
A-1

Greater than or equal function
3-3; 3-5; A-1

YGROUP 8-4

Groups 8-1

listing names of B8-4

5=-8;

3=5;

JGRP 8-5
GRPDOC 10-3
YGRPS 8-4

Halted function 1-8,9

Halting execution 1-9,10; C-2

Headers for functions 1-1
changing 1-4

HELLO 12-1

Heterogeneous output 2-8,

Histogram function 0-5,6

HOW functions 10-2

Hyperbolic functions 3-3; 3-5

9

Identity elements 6-2
ILLEGAL USER ACCESS A-5
Immediate execution mode 0-2°
IMPLICIT ERROR 7-1; 7-6; A-1
Indexed selection 2-6; 2;
Indexed specification
4-6; 11-3,4
Indexed variables 2-6

4= 4-
2-6; 4-2;

see also Indexed specification,

Indexed selection.
INDEX ERROR A=-2
Index generator function 5-6
Index-of function 5-6; A-1
Index origin 4=1; 7-6; 7-10;
A-1

INDEX~-3

5

i
i
i

Indirect access files 7-7;
9=-5; 9-15

Infinite values E-1

Inner product 2-5; 6-4,5

TInput file specification D-2,3
Input using guote-guad and gquad
1-10; 2-9,10; 7-16; C-1,2
Inserting function lines 1-3
Integer domain 7-9
Integrity of files
INTERRUPT A-1
Interrupt C-2
Inverse of a matrix 5-23
oro 4-1; 7-6; 7-10; A-1

9-16

Join function 5-5; 5-9,10

Keying time 7-18

KRONOS commands 12-1,5

KRCNOS error messages k~-4,6

Labels on statements -1-4;
L-=7,9; 2=9: 5-20;

Laminate function 5-9

largest reccrd number

Latent expression 7-14

gLe 7-17

Least squares 5-24

left argument 2-7

LENGTH ERROR 3-1; A=-2

Less than function 3-3;
A-1

Less than or equal function
3-5; A-1

JLIB B8-4

nrrg 7-15

Libraries of workspaces 7-7;
7-12,13; 7-15; 10-1,3

Library list (OLIB) 7-15

IIMIT ERROR 5-21; A-2; E-1

command 12-2

line 2=%

Linear equations 5-23,25

Line correction 0-3

Line editing 1-4

LINE FEED 0-3; c-2

Line timing control 7-12,13

Listing coded files 9-17

Listing user-defined functions
1-4

1ists 2-7,9

Lists of names for system
functions 7-6

7-11

9=10

3=5;

3=:37

7-14

8-3
files 12-2
functions 1-7; 11-3

Local variables
behavior of 1-7

declaration of 1-1,3
names of active 1-8,9; 7-17,1
11=3
Location counter (0z¢) 7=17
Ozock 7-11,12; A-1
Locked functions 1-10; 7-11,12;
7=16; 9-7
LOCKED OBJECT A-2
Locked variables 1-7; 7-11,12

Logarithm 3-2

Logical internal representation
11-3; 11-5

LONG 11-4

Lost space in files

OLTIME 7-12,13; A-1

nrx 7-14

9-10; 9-15

Magnitude function 3-3
Magnitude range for numbers E=~1
Matrix 4-1
Matrix divide
Matrix inverse 5-23,24; 7-7
Matrix product 6-4,5

Matrix transpose. See monadic

5-~24,25; 7-7

transpose

Maximum field length 7-19; 11-3
D=3

Maximum function 3=2

Membership function 5-7; A-1

Memory space., See Storage requir
ments, Field length.

Minimum field length 7-19;
D-3

Minus. See Subtraction, Additive
inverse, Negative symbol

MIXED FUNCTION A-3

11-3

Mixed functions 5-1,25

Mode for files 9-6,7; 12-4,5
Modify mode 12-4

Modulus. See Residue

Monadic format function 5-21,22
Monadic functions 2-4

Monadic transpose 5-15,16

Multiplication 3-2

Name class
A-1

VAME IN USE BA-3

Name list (O¥Z) 7-11; A-1

Name list for stored workspaces

(owvcy 2-4,5; 7-11;

(ONAMES) T7-14
Name lists for system functions
7=-6

NAME NOT FOUND A-3

INDEX-4

Names

and spaces 2-1

for files 9-5

for workspaces 7-8

lists of, for system functicns

7-6

of tied files 9-10
OwAMES 7-14; A-1
NAND function 3-3
Natural logarithm 3-2
ove 2-4,5; 7-11; A-1
Negative symbol 2-3
Niladic branch 1-9; 2-7
Niladic functions 2-4
ovp 7=-11; A-1
NOR function 3-3
Not equal function

aA-1

NOT function 3-3

3-3; 3-5;

Not greater than function 3-3;
3=5; A-1

Not less than function 3-3;
3-5; A-1

Numbers of tied files 9-10

Number system conversion 5-18

numeric-constant 2-3

Numeric conversion using format
functions 5-21,23

Numeric output format B-1

Numeric type 5-5

odometer order 4-3,4

JOFF 8-4

One origin 4-1

Open definition 1-3

Operating system error messages

A-4,6

OPERATOR DROP A~6

Operators 2-5; 6-1

optimizaticn of APL programs
11-1,6

Ordering of array elements 4-3,4

order of evaluation 2-1; 2-6,7;
4-6,7

OR function 3-3

origin 4-1; 7-6; 7-10; A-1l

YORIGIN. See [0IO

outer product 2-5; 6-4

output

control options 7-8,9

conversion using format funct-
ions 5-21,23
efficiency 11-6
file specification
format of B-1
implicit 2-8; B-1

D=-2,3

lists 2-9

using quad and quote quad 2-9,10
Overriding line numbers 1-3
Overstrike 0-4
OVL A-6
rage eject 7-9
PARAMETER ERROR A-5
PARITY ERROR A-5
Passwords 7=7; 9-5,7; 12-4
Pendent functions 1-8,9
Per-element time 11-5
Permanent files 9-5
PERMIT command 12-5 ¢
PF UTILITY ACTIVE A-5 i
PHRASE NOT FOUND 1-5; A-3 :
gpr 7-63 7-8,9 ;
Plane coordinate 4-1
PLOTFNS 10-1
Plus function 3-2
Positioning files 9-9; 9-12,13
Position of a file 9-7,8
Power functdon 3-2; 3-4
pep 7-6; 7-8; A-1,2

PP ABORT A-6

Precision of calculations E-1
Preconversion 2-2

Primitive functions 2-4
Printer "carriage control 7-9
Printing precisien (0OPP) 7-6;

7-8; A-1,2
Printing width (0OpPW) 2-10; 7-6;
7=-8
Print lines (OPL) 7-6; 7-8,9
Privacy of files 9-6,7
Private files 7-7; 9-6
Program libraries 7-13; 10-1,3

Prohibit prompt option D-2
Prompt suppression D-2
Protected copy 8-3
PSTATUS 9-10

Public files 7-7; 9-6

Public libraries 10-1

0P 2-10; 7-6; 7-8

Quad input and output 1-10; 2-9,10;
7-16; C-1,2

Quote guad input and output 1-10;
2-9,16¢; c-1,2

Radices 5-18

Random link (0ORL) 7-6; 7=10

FANK ERROR 3-1; 7-1; &A-2

Rank of an array 4-1; 4-4

Ravel function 4=2; 4-4,5

Read mode 9-6; 9-14; 12-4

INDEX-5

zzad-modify mede 9-6;
12-4

Reciprocal 3-2

record delete (FRDEL) 9-8

Record number largest 9-9

Record numbers 9-6

records 9-1

RECOVER command 9-15; 12-1,2
geduction 2-5; 6-1,2
Regression coefficients 5-24,25

Relational functions 3-3; 3-5;
A~-1

Remainder. See Residue

Removing function lines 1-4

Renumbering function lines 1-4

Repositioning files 9-9; 9-12

rRepresent function 5-19,20;
7-1

Reshape function 4-2,3

Residuals 5-24,25

Residue function 3-3,4 E

Response time 11-2
Restarting execution 1-9

result variable 1-1; 1-7;
2=5

Returning files 9-10

RETURN key 0-2

Reverse function 5-14

Revising keyboard entries 0-.
Rewind 9-12,13

gz 7-6; 7-9; A-1

Roll function 3-3; 7-10; A-1
Rotate function 5-14,15

row coordinate 4-1

NSAVE 7-13; A-1
JSAVE 8=3

Scalar arrays 4-1
Scalar extension
Scalar functions
Scan functions 2-5; -
Security of files 9-6,7

Seed. see [JRL

Selectric terminals 0-2;
c-1,2; D-1

semantics for APL statements
2-1,10

Semiprivate files 7-7; 9-6

Sequential file operations
9-17

Session variables 7-6

SETTL command 12-2,3
Setup time 11-5
Shape of an array 4-3,4

Shared files 9-14

Shifted output option D-2

SHORT 11-4

Shortcuts in function editing 1-6
ysr 1-8,9; 8-4

9I DAMAGE 1-9,10; 7-11; A-3
signing off 0-7; 7-19
Signing on 0-1,2; C-2

Sign-on characters C=2
Signum function 3-2
Sine function 3-3; 3-5

pnsrv 7-17,18

ySIV 1-8,9; 8-4

Size. function 4-2; 4-4

Sizes of files 7-17; 9=9; 9-14,15

skip record, file, or to end
9=-12,13

Sorting 5-8

SOURCE documentation

Space requirements.

10-3 i
See Storage

requirements

spaces 2-1

specification 0-3; 2-6,7; 4=2;
4-6

Square root. See Power function

standards for programs 10-1,3

State indicator 1-8,2; 7-17,18;
8-4

State indicator damage 1-9,10;
7-11; A-3

Statement labels 2-8

and execute function 5-20; 7-11

and line renumbering 1-4

in SIV display 1-8,9

localization of 1-7
Statistical package 10-1
Status of files (FSTATUS)
OsroP 7-12; A-1
Stop controls 1-10; 7-12
Stopping function execution

g

Storage limits 12-3
Storage requirements

in files 9-15

in workspaces
Stored files 9-5
Stored workspaces 7-7
Submitting batch jobs. See CSUBMIT
Subtraction function 3-2
Suspended functions 1-8,9;

2=-7,8

sy 2-2; 7-=7:
Symbol table size
SYNTAX ERROR A-1
Syntax for APL statements
YSYSTEM 8-4. See also LOTM

9-10

1-5,10;

11-2,4

11-4
11-4

2-1,10

INDEX-6

SYSTEM ABORT A-6
System commands (gsy) 1-1;

2=2; 17-7; 8-1,5; 11-4
system functions 2-3; 7-1,19
system variables 2-5; 7-1,19

pable lookup 6-5

Take function 5-12,13

Tangent function 3-3: 3-5

Teletype terminals C-2;

marminal mode (OTM) 7-19

Terminal type 7-6; D-1

Tied files 9-4

PTME LIMIT error 12-2,4

TIME LIMIT message A-5

Times function 3-2

Time stamp (0T75) 7-6; 7-18

Timing controls 1=10

Timings, table of 11-6

orM 7-19

O7RACE 7-12; aA-1

Trace controls 1-10; 7-12;
A-1

TRACK LIMIT P-5

Transpose functions
7-7; A-1 .

OrRAP 7-16,17; 9-7

Trap line 7-16,17

ars 7-6; 7-18

grr 7-18

TTY33 Terminal type D-1

TTY383 Terminal type D-2

Type of an array 5«5

Type of files 7-15

p-1,2

5-15,18;

yucoPY — 8-3

UNDEFINED FUNCFION = A-3

University of Mass., sign-on
procedure for 0-1,2; C-2

Unprote¢ted copy 8-3

Unquote function. See Execute
functicn

Untie for files 9-10; 9-14

Unused space 9-10; 9-15

uUser-defined functions 1-1;
2-4

User number. See Account number

Vacant list elements

Validation limits 12-2

VALUE ERROR 2=4,6; BA-2

value 2-6

variable names 2-5

vVariables 0-3

names of defined 7-11; 8-4

JVARS 8-4

vector 0-3; 4-1

visual fidelity 0-3

Owa 7-6; 7-19; 11-3; A-2
Weightings 5-18
YWIDTH., See arw
Working area 7=6;
Workspace 0-6
name (OwWsrp) 7-13
names, forms for 7-8
size. See Field length
Write mode 9-6,7; 9-14; 12-4
WRONG TYPE FILE A-4
WSFNS workspace 10-1; 11-4
wg FULL 1l=4&; 7-19; 11=3; a-2
owsIp 7=13; A-1

7-19; 11-3

INDEX-7

)
{

)

i

%
B
¥

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86

