
I";:J c:\ CONT~OL DATA
\::I r::J COI\POR<\TION

CDC@ HARDWARE
FLOATING POINT UNIT
1781-1

GENERAL DESCRIPTION
FUNCTIONAL DESCRIPTION
OPERATING INSTRUCTIONS
INSTRUCTION DESCRIPTIONS
PROGRAMMING INFORMATION

HARDWARE REFERENCE MANUAL

88951100

REVISION
A Manual released.

(3/77)

"

,! ... <~ "" "

;
",

1

,

-,-

Publication No.

88951100

REVISION LETTERS I, 0, Q AND X ARE NOT USED

© 1977
by Control Data Corporation

Printed in the United States of America

11

REVISION RECORD
DESCRIPTION

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4455 Eastgate Mall
La Jolla, California 92037
or use Comment Sheet in the back of
this manual.

MANUAL TO EQUIPMENT LEVEL CORRELATION SHEET

This manual reflects the equipment configurations listed below.

EXPLANATION: Locate the equipment type and series number, as shown on the equipment FCO log, in
the list below. Immediately to the right of the series number is an FCO number. If that number and all
of the numbers underneath it match all of the numbers on the equipment FCO log, then this manual
accurately reflects the equipment.

EQUIPMENT TYPE SERIES WITH FCOs COMMENTS

BT221-A 01

88951100 A iii/iv

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to Information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

Cover -
Title Page -
ii A
iii/iv A
vi vi A
vii/viii A
ix A
1-1 thru 1-4 A
2-1 thru 2-4 A
3-1 thru 3-4 A
4-1 thru 4-12 A
5-1 thru 5-5 A
A-I thru A-3 A
8-1 thru 8-3 A
Comment

Sheet A
8ack Cover -

88951100 A v/vi:

PREFACE

This manual refers to the CDC® 1781-1 Hardware Floating
Point Unit used with the CYBER 18-17 (System 17)
Computer system. The manual assumes the user is familiar
with CYBER 18-17 hardware and software operation.

The following Control Data Corporation publications may be
referenced for additional information:

88951100 A

Publication

1784 Computer Reference Manual

1784 Computer Input/Output Specifications

CYBER 18-17 Installation Manual

Publication No.

89633400

89673100

88996000

This product is intended for use only as described in this document. Control Data cannot be
responsible for the proper functioning of undescribed features or parameters.

vii/viii

1. GENERAL DESCRIPTION

System Description
Physical Characteristics
Functional Characteristics
System Functional Characteristics

2. FUNCTIONAL DESCRIPTION

Functional Descriptions
HFPU Operation
Function/Status Register
Command Code Register
Index Register
Program Count Register
Floating Point Accumulator
Stop Save Address Register

Types of HFPU Operation
Cold Start Sequence
Stop/Restart Sequence

Protect Feature

A Floating Point Conversion Table

1-1 System Configuration
1-2 Slot Assignment

.1-3 Backplane Connector Board Locations
1-4 HFPU Block Diagram
1-5 System Signal Flow
3-1 AlQ Board: HFPU Equipment Select and

Protect Jumper Location

3-1 Equipment Number Select and Protect Select
3-2 Hexadecimal Code for Equipment

Selection Code
3-3 DSA Scanner Position Select
3-4 Backplane Scanner Connection
4-1 Function Codes

88951100 A

CONTENTS

1-1 Look-Ahead Buffer 2-3

1-1 Arithmetic Rounding Rules 2-3

1-1 3. OPERATING INSTRUCTIONS 3-1 1-1
1-2 A/Q Jumper Installation 3-1

DSA Jumper Installation 3-1
2-1

2-1 4. INSTRUCTION DESCRIPTIONS 4-1
2-1 Function/Equipment Select 4-1
2-1 Function/Status Register 4-1
2-1 Operation Command Code 4-1
2-1 Hardware Execution Times 4-1
2-1
2-1 5. PROGRAMMING INFORMATION 5-1
2-1 Calling Sequence Generation 5-1 2-1
2-1 Fixed/Float Number Conversions 5-2

2-2 Floating Point Accumulator Formatting 5-2

2-3 Operand Addressing 5-3
HFPU Command Code/FORTRAN Correlation 5-3

APPENDIXES
A-I B Decimal-to-Floating Point Format Conversion B-1

FIGURES
1-1 3-2 DSA Board: HFPU Scanner Jumper Location 3-3
1-2 3-3 DSA Scanner Configuration 3-4
1-2 4-1 Q Register Format 4-1
1-3 4-2 Function/Status Register Format 4-2
1-4

3-1

TABLES
3-2 4-2 Function/Status Register Bit Assignments 4-3

4-3 Command Codes 4-7
3-2 4-4 Operation Command Code Definition 4-8
3-3 4-5 Hardware Execution Times ·4-12
3-3 5-1 Addressing Methods Examples 5-4
4-2 5-2 Function Operating Time Correlation 5-5

ix

GENERAL DESCRIPTION 1

SYSTEM DESCRIPTION
The CDC® 1781-1 Hardware Floating Point Unit (HFPU) is
a hardware option that provides CYBER 18-17/System 17
systems with floating point arithmetic capability and greatly
reduces the software overhead required to do the same
function.

It processes floating point numbers in single precIsion or
double precision mode; operates in absolute, relative, and/or
index address mode; and functions in either word, block, or
hog DSA priority mode under program control.

This manual provides a description and programming
information necessary to operate the hardware floating
point unit.

PHYSICAL CHARACTERISTICS

Figure 1-1 shows a typical configuration of the system. The
HFPU consists of seven 50-pack CYBER 18-17/System 17
type printed wiring assemblies that are inserted into
assigned card positions (figure 1-2) in the 1183-1 Expansion
Enclosure (part of the CYBER 18-11/System 11 hardware).
The printed wiring assemblies consist of a combination of
TTL logic, read only memory, and micro processors that
interface directly to the CYBER 18-17/System 11 internal
AlQ and DSA bus. The printed wiring assembly utilize three
connector assemblies that fit over the assigned backplane
area to provide routing of interboard signals (figure 1-3).
No external interface cable assemblies are required.

The HFPU obtains all of its operating voltages and cooling
from the expansion enclosure it resides in.

A 1185-1 AlQ Channel Expansion and a 1785-2 DSA Channel·
Expansion are required in addition to the expansion
enclosure whenever a hardware floating point unit is to be a
part of the system.

FUNCTIONAL CHARACTERISTICS

The seven printed wiring assemblies that make up the HFPU
are: .

• AlQ Interface (AlQ)

• Direct storage access (DSA) interface

• Timing and exponent

• Floating point hardware micro processor

• Address ALU

• Single precision ALU

• Double preCision ALU

The AlQ and DSA printed wmng assemblies interface
directly with the CPU internal AlQ and DSA bus via the
1185-1/2 Channel Expansions. These two interfaces are
responsible for establishing and maintaining control between
the central processing unit (CPU) and the HFPU during
arithmetic operation (figure 1-4). The DSA activity can be
programmed for three different modes of priority: word,
block, and hog mode. The primary function of the address
ALU is to establish and maintain proper DSA address
generation and sequencing during the HFPU operation.
These addresses are associated with the HFPU program
counter, command code retrieval, operand (data) retrieval
and storage, indexing, and the stop/save address register.
The addressing is done in four different modes: absolute,
relative, indexed, and indexed unmultiplied. The addressing
allows the user to access all memory locations within a 6SK
word memory.

The single precision ALU and double precision ALU decode
16 standard and nine special floating point command codes,
perform floating . point operations. and compare the results

r-- -- :-----, r---,
A/Q BUS AlQ BUS I 1781-1

17 11':
1185-1/2 I 1185-1/2 HARDWARE 11783-1

CHANNEL CHANNEL I I FLOATING I EXPA~'"SION CPU EXPANSION EXPANSION POINT ENCLOSURE
I DSA BUS I DSA BUS I

I UNIT I L ____
r-----.J L ___ ..J

Figure 1-1. System Configuration

88951100 A 1-1

j i I j
!

;:, <=::
..:l ;:,c!l@ Eo<
«: ..:l<=::", z
z «:«:~ ~
0 z:::u
U:i 2~g 2

:::> ti GOp.. ~

'" '" ..:l ::: ~p..O Q
00(::: I ::: p..

7~~
z

'" I 00(

'" ~
'="l ..:l ~8~ ~ ::: z· z ;!l

§ 00(< ~ ~ ;:, G;3::: 5E
f!:l

p.. p.. 8 :2:,...<
00(00(0 0 1i3r..1S g:::

Figure 1-2. Slot Assignment

11 15 lG 17 18 19 20 21 22 23 24 25

I <:: ~ b

I ~ If ~

I ~~ ~

PI
GR OUP

P2
UP PER

OUP GR

P2
LO WER

OUP GR

Figure 1-3. Backplane Connector Board Locations

of the mantissa (coefficient) portion of the floating point
accumulator. Both the single precision ALU and the double
precision ALU contain portions of the floating point. Two
accumulator levels of accuracy are available to the user:
single precision with a 32-bit operand and double precision
with a 48-bit operand. The timing and exponent printed
wiring assembly performs floating point operation on the
exponent portion of the floating point data word. Sign and
magnitude checks are also performed on the timing and
exponent printed wiring assembly.

The primary purpose of the floating point hardware micro
processor is to provide control and timing signals to the
HFPU operation and to detect fault conditions such as
overflow, underflow, and divide faults.

SYSTEM FUNCTIONAL CHARACTERISTICS

The HFPU interfaces directly with the
CYBER 18-17/System 17 AlQ and DSA bus system and
responds to A/Q commands only when it is presented with an
equipment address (QI0 through Q07) during a write/read
function that is identical to that selected at the equipment
(for. system signal flow, see figure 1-5).

,!he HFPU address is selected by inserting the appropriate
Jumpers (QI0 through Q07) on the A/Q interface board
(position 21). Refer to section 3 for information on setting
up the equipment code. Specific A/Q write commands are
sent to the HFPU to prepare it for operation and to cause it
to execute. The following functions can be accomplished via
A/Q write commands:

Function 0

Function 1

Function 2

Function 6

Function 7

Function 8

Load/clear function/status register

Load/clear command code register

Load/clear index register

Load/clear floating point accumu­
lator bits 00 through 15

Load/clear floating point
accumulator bits 16 through 31

Load/clear floating point accumu­
lator bits 32 through 47

Function 3, 4 - Load single/double preCision cold­
start address

Function 5, 9 - Load restart/stop address

Write functj.ons 3, 4, 5, and 9, when executed, cause activity
to occur on the DSA bus. The HFPU uses the address loaded
by these functions as a pointer in memory from which a
command code is obtained. The subsequent command code
may require additional DSA accesses.

Specific AlQ read commands can be sent to the HFPU so the
user can access and monitor various registers within the
HFPU. The following registers can be statused via AlQ read
commands: .

Function 0

Function 1

Function 2t

..:. Samples the function/status
register

Samples the command code
register

Samples the index register

Function 3, 4, 5 t - Samples the program count
register

Function 6 t Samples floating point accumu­
lator bits 00 through 15

Function 7 t Samples floating point accumu­
lator bits 16 through 31

Function 8 t Samples floating point accumu­
lator bits 32 through 47

Function 9 Samples the stop save address
register (function/status register
status at time of stop function)

t Can be sampled only when the HFPU is not in an active state (bit 15); i.e., in a condition where these registers are not in a
changing state.

1-2 88951100 A

flO
00
<0
(J"I
<:>
<:>
;1>0

r
I

I

AIJUIlF.SS _\1.1

116'\ :\IIIJIU:SIi
rO('OMl'l--U:H

t
1

"IAI~

AU

t

1

I I 1 I "AT.' G.," I !.n'TIPLEXER r "'UIl'LEXE" ,

~_.L,t .--_..L.,t ,-Lt_--.

[.~~ I
PROGll'\M

I
nM'",,,'''' I IXUl'X conn ,\j)J}RfSS

Rn;ISTflt REGlSn:1l REI..;!STf'n
nn":-<n:11 (,0l'~F.1I C01'!I.'TUt

t t t

1

I 'tAGN,ICOL 1
r

SIIIFT

COMPARE ('OI'~'TF:R

f t
I-:xro:.a~NT-'TI1tnN(;

nn's I TIlHOI'GIl "OF fXI>():,\t:XT

I

I
I
I
I
I
I
I
I
I

t'UV\T\:>iG-POINT

'HnIJ~\AnIJ ~nt'n(J PIlI.I'FSS(JU

(J\'EIU'U)\\

I "'1lt:R~'UIW
1~\'llIf: .'.-\I"I."r
IWn:CI"UIS

I nmnN<.-
POINT

UAIUM'.-\RU
('ONTROLLl::R

I
I
I
I
I
I

ST.HI'S I 1'1 NI 110~ I
R<<a'n."
nn'S 12-11 I

I I

1.6,\

I:-ITI::IU'.\'-.:

I
HAI\lIWAIlI:: .'I,OAn~U-"OI!'OT IlATA 81'S 1111'S (I(l-I,'

J I
flAIlDWARE FLOATING-POI:iT l'I~QN(i ANU ('OXI'IIOL 81'S

I 1

J.'ttlATIX'
1l(II~T

~1~~~,MtLATOR l-t
HEGlsn:n

,,,,.·'·UUXC" r-H
t

I t----iOI l'ItAN'I'lS.-;\
\1.1

~n 1.1'11'1.\
11I\lm

.'w'\':"w

I L--_____ ----'

SI"l(a,F-"lIt:n~'ilo:\ .HI
lilTS {I "\:-10 ~ "1'1[11(11 'Gil :Il

OF M,\:-rnSS,\

RI::(;ISTER,

lIITShJ 6.
8 ••

Figure 1-4. HFPU Block Diagram

I
I
I
I
I
I
I
I
1

I ['OMlL\NIJ I
('ont:
11.t:(;Jsn:n

f

.. ,
l'tfEnt',\("t'

i

8YI:fTEM
TIMINU

>0,

I

t:l111l'MF. T
m:com'

FUNCnON

B'l'ATUIi
REGISTER
BITS D, ., 7

10, 11, 15

MlJ Hj,:~asrER. ,
DIT80-12 I It ru:G18n:u

SHIFT

t 1

FWATING­

MI'LTIPLEXl:R ~ ~~~I'U.TOR
SHIFT
R£GlST£R

.lAXlMn4 I '1
ROLNDI~;

CONTROL

f
T

I u\;.,-n!lO 1
,\U r

l)(ll-aU:-PRtTISIO:-; ,"LI

JUTS:l,-, TIlROl"tai 51 (If' !.L\':TISS_\

I
I
I
I
I
I
I
I
1

I
1

OAT_"

':
"ATE

I
I
I
I
I
I
I

r------
I
I
I

EXPANSION
ENCLOSURE
INTERNAL

--l
I

I
I
I
I
I

1781-1
IIARDWARE
FLOATING
POINT
UNIT

A/QBUSA

A LINES

Q LINES J
DATA

\
ADDRESS

~EXPANSJON
ENCLOSURE
INTERNAL
DSA BUS

1785-1
A/Q CHANNEL
EXPANSION

1785-2
DSA
CHANNEL
EXPANSION

1783-1 EXPANSION ENCLOSURE L ______ _
0532

l
I
L
I
I
I

I
I
I
I

-1

1--­
A-REGISTER
COMMAND
AND STATUS

Q-RECISTER
FUNCTION

DSA DATA

I
J
"'

I
I

-I
DSA ADDRESSES .1

L

1785-1
A/QCHANNEL
EXPANSION

1785-2
DSA
CHANNEL
EXPANSION

Figure 1-5. System Signal Flow

-------j

COMPUTER
INTERNAL

A/QBUS "

A LINES j
Q LINES

t DATA

ADDRESS

, COMPUTER

INTElt.'i"AL
DSABUS

1784-1/2 ENCLOSURE

1784-1/2
COMPUTER

I
I
I
I
I
I
I
I

_J

1-4 8891100 A

FUNCTIONAL DESCRIPTION 2

FUNCTIONAL DESCRIPTIONS

HFPU OPERATION

Under normal operation the HFPU is activated by
appropriate A/Q write functions and obtains all command
code instructions and data operands from System 17 memory
via DSA access. It executes these command code instruc­
tions and returns the results of the operations to memory as
directed. There are six registers within the HFPU that must
be accessed to establish the initial condition for starting a
HFPU operation via AlQ write functions. Since the HFPU is
a status driven device and does not have interrupt
generating capabilities, it must use these same registers to
access the HFPU via specific AlQ read functions to
determine the operating state of the HFPU.

FUNCTION/STATUS REGISTER

This is the main control register for the HFPU and accepts
AlQ input and certain output commands at any time. If
active, the HFPU accepts an AlQ channel write to
function/status register only if A bit 00 (PCLR) is set. Any
other A bits are ignored. Contents of this register during an
AlQ read reveals the operating conditions of the HFPU.

COMMAND CODE REGISTER

This register is normally loaded via the DSA channel and
contains the command code instruction word. It can be
accessed by an A/Q channel read at any time but can only be
loaded by an A/Q write command function 1 when the unit is
not active.

INDEX REGISTER

This register contains a 16-bit digital number that is used
during operand address formation for noating point calcula­
tions. It is normally loaded via the DSA channel by an INDX
command. It can be read at any time by an AlQ read
command when in a stable condition, but can only be loaded
by a function 2 AlQ write command when the unit is not
active.

PROGRAM COUNT REGISTER

This register contains a I6-bit digital number used as the
base address during operand address formation. It is
normally loaded via the A/Q channel by a cold start
command, function 3 or 4, and incremented during noating
poiht operations. It is also loaded via the DSA channel on a
restart command.

88951100 A

The HFPU externally rejects any attempt to read or write
the program count register while the HFPU is active and
function 3 or 4 is used. The HFPU permits the program
count register to be read any time it is in a stable state with
a function 5 read command.

flOATING POINT ACCUMULATOR

This register is the main arithmetic register in the HFPU. It
is 32 bits wide for single precision and 48 bits wide for
double precision. (See section 5 for the noating point
accumulator format.) The noating point accumulator can be
accessed via A/Q function 6, 7, or 8 channel writes or reads
or via the DSA by any of several command codes. The
HFPU externally rejects any write or read function to the
noating point accumulator via the AlQ channel if the HFPU
is active.

STOP SAVE ADDRESS REGISTER

This, register contains a 16-bit digital number used as an
absolute address for the starting memory location of where
to save the content of the HFPU registers when a stop
function is issued. It is addressable only by the AlQ channel.
The HFPU accepts a stop save address register command at
any time if that command is protected. The HFPU returns
an external reject to the CPU if the stop save address
register to be read with a function 9 read command at any
time.

TYPES OF HFPU OPERA liON

There are three methods used to initialize the HFPU.

• Cold start

• Cold start

Single precision mode

Double precision mode

• Protected restart - Single or double precision mode

Each type of cold start uses a unique function address. A
restart function is used when re-entering a calling sequence
after the HFPU has been interrupted by a stop function to
service a higher priority routine.

COLD START SEQUENCE

Acold start sequence is initiated as follows. Function 0 is
used to load the function/status register with a program
master clear (PCLR) or to establish the operating condition
of the HFPU before issuing a cold start function. Other bits
that may be selected (npt included with the program master
clear bit) in the function status register are those that

2-1

select the DSA scanner access mode (bits 1 and 2), DSA
protect (bit 4), double precision (bit 7), and relative address­
ing (bit 9). The format used for the function status register
is depicted in figure 4-2 and is defined in table 4-2. If no
special set-up is required, the program count register is
loaded from the CPU A register by an AlQ write function 3
or 4. If the A/Q write is function 3, the unit starts in Single
precision mode. If the A/Q write is function 4, the unit
starts in double precision mode and sets bit 7 in the function
status register. Either of the cold start functions clears the
index register and function status register bits 3, 6. 8, 9, 10,
and 11. The address (contents of the A register when
outputting function 3 or 4) is transferred to the program
count register as the address of the first command <!Ode
instruction word. When the HFPU accepts the starting
address word, it goes into an active state (bit 15 of the
function status register is set) and loads the command code
register via the DSA channel. The unit remains in an active
state until it either executes a FEND instruction, receives a
stop function, or receives an A/Q write function 0 with A­
bit 00 equal to 1 (PCLR).

STOP /RESTART SEQUENCE

A protected stop function may be issued at any time while
the HFPU is in an active state. Th~ HFPU rejects an
unprotected stop function regardless of the setting of the
HFPU AlQ protect bit jumper plug. A stop function is
accomplished by the following sequence of events:

1. An A/Q write function 9 where the CPU A-register is
transferred to the stop save address register as the stop
and save address.

. 2. As soon as the HPPU completes its present arithmetic
operation, it uses the contents of the stop save address
register as the absolute address in CPU memory of
where to start storing the contents of the following
registers:

Stop save address ; The contents of the
register functien/status register (see

figure 4-2 for descrip-
tion/bit assignments)

Stop save address = The contents of the
register + 1 command code register t

Stop save address = The contents of the index
register + 2 register

Stop save address =
register + 3

Stop save address =
register + 4

Stop save address =
register + 5

Stop save address =
register + 6

The contents of the program
count register

The contents of the floating
point accumulator, bits 00
through 15

The contents of the floating
point accumulator, bits 16
through 31

The contents of the floating
point accumulator, bits 32
through 47 (only when oper­
ating in double precision
mode)

3. When the HFPU has completed storing the last register,
it goes inactive and clears bit 15 of the function/status
register. A stop function issued while the HFPU is
inactive causes the HFPU to go active (bit 15 of
function/status register set) for the time required to
store the six/seven registers into CPU memory. The
HFPU returns to the inactive state (bit 15 of
function/status register clear) upon completion of the
retrieval operation.

After a stop function is issued, the HFPU may be restarted
by a protected restart function. The HFPU rejects an
unprotected restart function regardless of the setting of the
HFPU AlQ protect bit jumper plug. A restart function is an
A/Q write function 5, where the contents of the CPU
A register is transferred to the stop save address register
and the following events take place:

1: The HFPU goes to an active state and bit 15 of the
function/status register is set.

2. The HFPU uses the stop save address register contents
as an absolute starting address in memory of where to
start the retrieval of the register contents saved on the
receipt of the stop function in the following manner:

The contents of the SSAR is used to restore the
function/status register.

The contents of the SSAR+l is used to restore the
command code register.

The contents of the SSAR+2 is used to restore the index
register.

t The command code register format reflects the current status of the command code word; that is, bits 15 through 12 contain
the next command code to be executed. For example:

1. Comment code
register is read
from CPU:

I Code 1 Code 2 Code 3 Code 4

2. Command code has been performed or is being performed at the time of the stop function.

3. Command code
register is stored
on the stop function:

2-2

Code 1 Code 2 Code 3 Code 4

88951100 A

The contents of the SSAR+3 is used to restore the
program count register

The contents of the SSAR+4 is used to restore the
floating point accumulator (bits 00 through 15).

The contents of the SSAR+5 is used to restore the
floating point accumulator (bits 16 through 31).

The contents of the SSAR+6 is used to restore the
floating point accumulator (bits 32 through 47).

3. When the HFPU registers are restored, the unit
continues to execute command codes where it left off if
the active bit in the restored function/status register
(bit 15) is set. If this bit is not set, the HFPU goes to a
not active or idle state.

PROTECT FEATURE

The HFPU incorporates an A/Q protect feature and a DSA
protect feature. The A/Q protect feature consists of a
jumper plug on the A/Q interface board. The presence of a
jumper plug is defined as protected mode. The absence of a
jumper plug is defined as unprotected mode.

When the HFPU is set to protect mode, it sets
function/status register bit 4, accepts only protected A/Q
write functions, and causes an eXternal reject to the CPU
for any unprotected A/Q write function it receives. When
the HFPU is set to unprotected mode, it accepts all
legitimate A/Q input/output functions. Unprotected stop
functions and unprotected restart functions are defined as
illegal.

The DSA protect mode feature is activated by setting bit 4
in the HFPU function/status register. This bit is set by four
methods:

• A protected A/Q write function 0 (A to function/status
register) with A-register bit 4 set

• A protected A/Q write function 3 or 4 (cold start single
precision or double precision)

• A protected A/Q write function 9 (stop)

• The A/Q protect jumper

NOTE

The above three A/Q write functions must
be protected to set function/status regis­
ter bit 4 regardless of the A/Q protect·
jumper position.

When the DSA protect mode is active, it allows the HFPU to
write data words or store register contents into protected
memory locations without incurring program protect ~rrors.

88951100 A

Function/status register bit 4 stored in memory during the
stop function reflects the DSA protect state of the HFPU
before execution of the stop function. When the DSA
protect mode is active (function/status register bit 4 set),
all unprotected A/Q write functions are rejected.

LOOK-AHEAD BUFFER

The HFPU incorporates a look-ahead buffering feature. This
feature allows the HFPU to execute succeeding command
codes as soon as it begins a floating point calculation. Any
command code that does not interfere with the floating
point accumulator can be executed to completion. For
example, a branch index command executes to completion
while a branch accumulator command waits until the
floating point accumulator complates the current
calculation before making the decision to branch or not to
branch.

Commands that load operands into the floating point
accumulator load those operands into a holding register and
then wait for the floating point accumulator to complete the
current calculation before continuing. FLOF and FLST
commands perform any necessary address modification and
then wait for the floating point accumulator to complete the
current calculation. FLOF or FLST do not activate DSA
priority in block mode 'until they are able to store the
operands. The FEND command does not terminate floating
point accumulator activity but waits for the floating point
accumulator to complete the current calculation before
setting function/status register bit 6 and clearing
function/status register 15.

ARITHMETIC ROUNDING RULES

The HFPU employs the following rules for rounding off the
results of an arithmetic operation. These rules are
implemented after normalization of the result of the
arithmetic process.

NOTE

These rules are used as a guide so that
hardware arithmetic results agree with
software arithmetic results.

Ina FADD or FSUB operation, at least four binary bits of
residue of the adjusted or shifted coefficient are retained.
The round-off rules are as follows:

• If the adjusted coefficient is negative and the amount
of the adjusted residue is greater than -7, round off the
results by adding -l.

• If the adjusted coefficient is positive and the amount of
the adjusted coefficient residue is greater than +7,
roundoff the results by adding +1.

• In all other cases, do not round off.

2-3

In a POlY operation, the remainder at the end of the PDIV
process should be tested tor rounding off with the following
rule:

POlY =I~I= lei + I al
If R .!I~I, round up by one binary digit.

If a < I ~I, do not round the results.

2-4

In a FMPY operation, the partial product left at the end of
the arithmetic process should be tested for the rounding off
with the following rule:

In I partial product I > 7, round up by one binary digit.

In any other ease, do not round the results.

88951100 A

OPERATING INSTRUCTIONS 3

A/Q JUMPER INSTALLATION

The HFPU does not have any external operator controls,
switches, or indicators. The only operator requirements that
are necessary involve the proper setting of the equipment
number on A/Q board position 21 when installed. Refer to
figure 3-1 to locate the equipment select switches Q10
through Q07 and the HFPU protect jumper. Once it has
been determined which equipment number is to be selected,
use tables 3-1 and 3-2 to insert the appropriate jumpers.

DSA JUMPER INSTALLATION

The DSA card, position 22, must have the scanner select
jumpers installed properly. When determining which scanner

position to select (ONLY, MIDDLE, FIRST, LAST, or OUT) it
is necessary to take into consideration the other equipments
that are on the system DSA daisy chain. See figure 3-2 for
the locations of the scanner select jumpers and table 3-3 to
ensure that the correct jumper is installed.

The backplane scanner connections must also be installed
correctly to ensure proper DSA operation (see table 3-4).
The backplane scanner connection includes the HFPU in the
total system scanner (see figure 3-3). Ensure that the HFPU
cards and the backplane connector assemblies are installed
correctly. The only way the HFPU can be operated is by
software. Either the software operating system, HFPU
diagnostic, or machine language programs must be used to
exercise the HFPU.

B12S B13S
PROTECT SELECT NOT USED

NOTES: 1. PROTECT JUMPER IN = DEVICE IS PROTECTED.
2. JUMPER IN SELECTS Q-BIT AS FOLLOWS:

88951100 A

El3S JUMPER IN = Q07
El4Sl JUMPER IN = QlO
El4S2 JUMPER IN = Q09
El4S3 JUMPER IN = Q08

Figure 3-1. A/Q Board: HFPU Equipment Select and Protect Jumper Location

3-1

TABLE 3-1. EQUIPMENT NUMBER SELECT AND PROTECT SELECT

Jumper Position Jumper In Selects Q Bit

E13S Q7

E14-S3 Q8

E14-S2 Q9

E14-S1 QI0

BI2-S Protectt

t Jumper in selects protect.

TABLE 3-2. HEXADECIMAL CODE FOR EQUIPMENT ,SELECTION CODE

E14S1 E14S2 E14S3 E13S
Links QI0 Q09 Q08 Q07

Hexadecimal Code 0 0 0 0 0
(QI0 through Q7)

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

A 1 0 1 0

B 1 0 1 1

C 1 1 0 0

D 1 1 0 1

E 1 1 1 0

Normal equipment code F 1 1 1 1

NOTES:

1. A 1 in the binary code indicates the presence of a jumper plug for the setting of the
equipment code; o its absence.

2. The equipment code is normally F 16.

3-2 88951100 A

NOTE: JUMPER IN SELECTS SCANNER POSITION AS FOLLOWS:
CllSl JUMPER IN = LAST
CllS2 JUMPER IN = MIDDLE
CllS3 JUMPER IN = OUT
C12S1 JUMPER IN = ONE ONLY
C12S2 JUMPER IN = FIRST

Figure 3-2. DSA Board: I-lFPU Scanner Jumper Location

TABLE 3-3. DSASCANNER POSITION SELECT TABLE 3-4. BACKPLANE SCANNER CONNECTION

Jumper Position Scanner Position DSA Channel
--

Cll-Sl LAST
Scanner I-lFPU Expansion

Scan forward PlA19 PlB19
Cll-S2 MIDDLE

Scan Return PlB15 PlAI9
Cll-S3 OUT

C12-Sl ONLY

C12-S2 FIRST

NOTE: The presence of a jumper selects the
position.

88951100 A 3-3

co
00
c:o
CJ1
<:>
<:>
;I;>

LAST

LAST

PI

BI9
1781-1
HARD-
WARE
FLOATING
POINT
UNIT

DSA
PWA

PI

Btf;

.122

CYBER 18-17 STANDARD PRODUCT
DSA DEVICES

-- ---
MID

I--- . :-

SCANNER LINES CARRIED

MID

THROUGH CYBER IH-17 DSA CABLES ~ --
MID

PI PI
~

.'1.19 BI9 .'1.19
BUFFERED 1785-4
DATA DSA
CHANNEL CHANNEL
NO. 2 ADAPTER
QSE ~ 3SWT

BI6

I
I
I

I PI PI PI p...---- I BI5 BI6 ~BI5
\ I

PI

'Bi9'

PI

~

PI

AI9

I
\ L _____ ~I
\ L ________ J

EXPANSIqN ENCLOSURE

I
I
I
I

1785-2
D3A
CHANNEL
EXPtNDER

I
I
I
I
I
I
I
I
I

NOTES, 1. HEAVY SOLID LINES- JUMPER WIRE ALREADY HARDWIRED ON THE CPU BACKPLANE.

r:OCM ~.w'm,
MID MID

PI PI PI P2 P2 PI

BI9 B19 A19 A26 B25 A4
COMMUNI- 1732-3
CATIONS MAG-
MULTI- NETIC
PLEXER TAPE
CONTROL- CON-
LER TROLLER
QSE

6YWT
PWA

~I ___ P~ p.': __ 3; P2 PI

A19 B28 A27 BI

BI5 B16
J3, J4. or J5 JI2

SCAN RETl'RX

CENTRAL PROCESSOR UNIT

2. DOTTED LINES - OPTIONAL JUMPER WIRE IN PLACE OF THE JUMPER WIRE SHOWN V.1T11 THE SOLID LINES. ONE OR THE OTHER CONFIGURATION COULD BE USED.
3. DSA DEVICES OPERATING ON THE DSA CHANNEL ADAPTER OCCUPY ONLY MiDDLE OR LAST POSITIONS ON THE SCANNER.

0154

Figure 3-3. DSA Scanner Configuration

FIRST

1733-2
CART-
RIDGE
DISK
CON-
TROLLER

-JIG

10
PI

B6

PI

B2

INSTRUCTION DESCRIPTIONS 4

FUNCTION/EQUIPMENT SELECT

Function codes are transmitted via the AlQ channel. Bits
set in the lower portion (0 through 3) of the Q register
define the contents of the A register (figure 4-1). Bits 7
through 10 must match the equipment number setting on the
HFPU AlQ board. The remaining bits of Q are ignored
(should be 0). The function codes are listed in table 4-1. An
A/Q channel read or write signal indicates an input or
output, respectively, to the A instruction. The codes and
resulting operations are described in this section.

15 11 10 7 6 4 3 0

0 0 0 0 01 E

10 0 0 D I
wJ J

[FUNCTION EQUIPMENT
NUMBER CODE CODE
(E) (D)

Figure 4-1. Q Register Format

FUNCTION/STATUS REGISTER

The function/status register (FSR) provides a means of
presetting the desired operating conditions within the HFPU;
monitoring the activity of the HFPU while it is executing a
calling sequence consisting of one or more command codes,
and changing operating conditions of the HFPU while
executing a calling sequence. Addressing and operating
mode conflicts must not be created when changing the
operating conditions of the HFPU while it is executing a
calling sequence. The function/status register format is
shown in figure 4-2. Table 4-2 defines each bit position in
the function/status register.

NOTE

The console/program master clear clears
all HFPU timing, resets the HFPU to an
idle state, and clears all registers with the
exception of the program count register
and the floating point acc~mulator. The
console master clear enters the HFPU via
a pin on the A/Q channel bus.

OPERATION COMMAND CODE

The HFPU recognizes 16 unique command codes in its
command code register. Command code 0 is recognized as a
special 2-byte command code; that is, the next byte is a /'
special command to be executed. This increases the number
of available command codes to 31, of which 25 are used in
the HFPU (see table 4-3). These command codes are
described in detail in table 4-4. After the HFPU is
activated, it responds to an established calling sequence. A
calling sequence may consist of one or more of these
command codes. The last command code in a calling
sequence should normally be a FEND.

HARDWARE EXECUTION TIMES

Table 4-5 lists the HFPU command code execution times. t
These execution times assume the HFPU is in an active
state and include the instruction decode time, required
operand address preparation time, time required to execute
the instruction to completion, and time to advance the byte
counter to start the next instruction decode. The memory
cycle access time is included in these execution times. The
memory cycle time period is defined as:

• The access time to retrieve the pointer word (900
nanoseconds total; 600 nanoseconds memory cycle plus
300 nanoseconds to generate effective operand address)

• The access time to retrieve or store the operand

• A 257-nanosecond average time for retrieval of a
command code HFPU internal request time plus time
for DSA access for 600 nanoseconds memory divided by
four command codes per word.

NOTE

Total hardware execution time includes
basic hardware execution time plus DSA
access for 600 nanoseconds memory plus
command code bias time of 257
nanoseconds.

Memory access time assumes no DSA
scanner delays or memory refresh cycles.

Times are nominal and assume HFPU is in
hog mode.

t All times are based upon use of a 1784-2 (600 nanoseconds) CPU. If a 1784-1 (900 nanoseconds) CPU is used, is is necessary
to add 300 nanoseconds to the noted execution times for each memory cycle included.

88951100 A 4-1

Function Decode
Value Set in Q

(Bits 03 through 00)

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

TABLE 4-1. FUNCTION CODES

Output from A

Load function/status register

Load command code register t

Load index registert

Load single precision cold
startt

Load double precision cold
startt

Load restart address into
stop/start address register t

Load floating point accumulator
(00 through 15) t

Load floating point accumulator
(16 through 31) t

Load floating point accumulator
(32 through 47) t

Stop save address register

Input to A

Function/status register contents

Command code register contents

Index register contentst

Program counter register (if not active) t

Program counter register (if not active) t

Program counter register t

Floating point accumulator contents
00 through 15 t

Floating point accumulator contents
16 through 31 t

Floating point accumulator contents
32 through 47 t

Stop save address register status

A REGISTER

PROGRAM
MASTER CLEAR

SCANNER ACCESS MODE
DSA PROTECT FAULT

DSA PROTECT MODEt
NOT USED

FLOATING-POINT EXECUTION ENDED
DOUBLE-PRECISION MODE

INDEX MULTIPLY DISABLE
RELATIVE ADDRESSING
MODE

OPERAND BYTE COUNT
EXPONENT UNDERFLOW

DIVIDE FAULT
EXPONENT OVERFLOW

ACTIVE

t Bit is always set if A/Q protect jumper is inStalled.

Figure 4-2. Function/Status Register Format

4-2 88951100 A

TABLE 4-2. FUNCTION/STATUS REGISTER BIT ASSIGNMENT

Bit Bit
Position Mnemonic Bit Definition

15 Active Is set by the AlQ Channel write function 0 to the function/status register
with A bit 15 set (the HFPU must be inactive) or by the HFPU when it is
in an active state. When this bit is set, it causes the HFPU to reject all
A/Q channel write functions except the A register to the function/status
register and protected stop (A Register to stop save address register).
The bit is cleared or reset by:

Inactive HFPU status

Program master clear

. Console master clear

Inactive status does not necessarily indicate that the HFPU has completed
the command code operation, as stop function 9 clears function/status
register bit 15 after storing all appropriate registers. Function/status
register bit 15 stored at the stop save address register during the stop
function reflects the condition of the HFPU before the stop function •

..
14 OVFL Exponent overflow.

The bit is set by:

• HFPU arithmetic operation in which the result was too large to be
represented by the eight binary bits. When the bit is set as a result of
an arithmetic operation, the HFPU force-sets the floating point accumu-
lator to the largest floating-point number expressible with the correct
floating point sign.

• Function/status register function 0 (HFPU inactive) from CPU and
A bit 14 equals 1.· This action sets only this bit and does not affect the
contents of the floating point accumulator.

Bit is reset by:

• Function/status register function 0 (HFPU inactive) from CPU and
A bit 14 equal to O.

• Program master clear

• Console master clear

13 DVFL Divide fault

Bit is set by:

• HFPU when an attempt is made to divide by a zero or by an un-normalized
operand. When set as a result of an arithmetic operation, the HFPU
force-sets the floating point accumulator to the largest floating point
number expressible with the correct floating point sign.

• Function/status register function 0 (HFPU inactive) from CPU and
A bit 13 equal to 1. This action sets only this bit and does not affect the
contents of the floating point accumulator.

The bit is reset by:

• Function/status register (HFPU inactive) function 0 from CPU and
A bit 13 equal to O.

• Program master clear

• Console master clear

88951100 A 4-3

TABLE 4-2. FUNCTION/STATUS REGISTER BIT ASSIGNMENT (Contd)

Bit Bit
Position Mnemonic Bit Definition

12 UNFL Exponent underflow

The bit is set by:

• HFPU arithmetic operation in which the result was too small to be
represented by the eight binary bits. When set as a result of an arith-
metic operation, the HFPU force-sets the floating point accumulator
to D.

• Function/status register function D (HFPU inactive) from CPU and
A bit 12 equal to 1. This action sets only the bit and does not affect the
contents of the floating point accumulator.

The bit is reset by:

• Function/status register (HFPU inactive) function D from CPU and
A bit 12 equal to o.

• Program master clear

• Console master clear

11,10 OPBC Operand byte count

Indicates which of the four command codes in the command code register is
under execution or about to be executed. It has the following bit format:

Bit Bit
11 10

0 0 Operand byte 1.

0 1 Operand byte 2.

1 0 Operand byte 3.
1 1 Operand byte 4.

These bits can be set to any initial state by a function/status register (HFPU
inactive) function D from the CPU and A bits 11 and 10.

Bits are reset by:

• Function/status register (HFPU inactive) function 0 from CPU and
A bits 11 and 10 set to 0

• Cold start command

• Program master clear

• . Console master clear

AlQ Write Function 1 (A Register to command code register does not affect
the state of function/status register bits 11 and 10.

g RELM Relative addressing mode

This bit, when set, selects relative addressing mode. Bit is set or reset by:

• The HFPU execution of a CHMD instruction. (See table 4-2 for a
detailed explanation.)

• Function/status register (HFPU inactive) function 0 from the CPU and
the state of A bit 09.

The bit is cleared by:

Cold start command

Program master clear

Console master clear

4-4 88951100 A

TABLE 4-2. FUNCTION/STATUS REGISTER BIT ASSIGNMENT (Contd)

Bit Bit
Position Mnemonic Bit Definition

8 INXM Index multiply disable

This bit, when set, is used to inhibit the logic that multiplies the index
register contents by two or three during effective address formation.

• Function/status register (HFPU inactive) function 0 from the CPU and
A bit 08 set to 1.

The bit is reset by:

• Function/status register (HFPU inactive) function 0 from CPU and
A bit 8 set to O.

• Cold start command

• Program master clear

• Console master clear

A/Q write function 2 (A register to index register does not affect the state of
function/status register bit 08.

7 DBPM Double precision mode

Bit is set by a function/status register function 0 (HFPU inactive) and
A bit 7 set or by a cold start function 4 in double precision. When set, all
floating point calculations are performed in double precision mode (48 bits).
When reset, all floating point calculations are performed in single precision
mode (32 bits). The bit is reset by:

• Program master clear

• Console master clear

• Cold start function 3 in single precision

6 FEND Floating point execution ended

The bit is set by:

• HFPU execution of a FEND instruction

• Function/status register (HFPU inactive) function 0 from the CPU and
A bit 06 set to 1

The bit is reset by:

• Function/status register (HFPU inactive) function 0 from the CPU and
A bit 06 set to 0

• Cold start command

• Program master clear

• Console master clear

5 UNUSED Bit is always reset.

4 PROT Protect· mode

When set, it places the HFPU in a protected device mode. This mode allows
the HFPU to write into protected memory locations via the DSA channel.
The bit is set by a protected A register to function/status register function 0
from the CPU and A bit 04 set to 1, by a protected A/Q cold start function 3

88951100 A 4-5

Bit
Position

4-6

4
(Contd)

3

2,1

,TABLE 4-2. FUNCTION/STATUS REGISTER BIT ASSIGNMENT (Contd)

Bit
Mnemonic

PRO.T

PTFT

SCAN

Bit Definition

or 4, by a protected A/Q stop function 9, or by the presence of the A/Q
protect jumper. The bit is reset by:

• An unprotected A register to function/status register function

• An unprotected A/Q cold start function

• Program master clear
•. Console master clear

Function/status register bit 4 stored at the stop save address register during
the stop function reflects the DSA protect mode of the HFPU before the stop
function.

Protect fault.

When set, it indicates that the HFPU was not in protect mode and made a
write data access to a protected memory location. The bit is also set or reset
by a function/status register (HFPU inactive) function 0 from the CPU and
the state of A bit 03. Bit is also reset by:

• Cold start function

• Program master clear
• Console master clear

Scanner access mode

The state of these bits selects or indicates one of three modes of HFPU DSA
channel accesses. These modes are:

Bit 2 .!ill..!

o o

o 1

Block

The HFPU stops the scanner for up to five successive
memory cycles during a command code word fetch. The
HFPU does not release the scanner before determining if
the first command code byte of that word requires memory.
If the first command requires memory, the HFPU holds the
scanner and access memory to fetch the address pointer
word and one, two, or three operands. If the first command
byte does not require memory or is a: branch accumulator
command and the floating point accumulator is active,
the HFPU releases the scanner. In either case, the
second, third, and fourth command bytes that require
memory must wait for the scanner to return to the HFPU.
These bytes can hold the scanner for up to four memory
cycles. Block mode activates (first access) or maintains
(second through fifth access) the DSA PRIORITY signal
for all memory accesses subject to restrictions found
elsewhere in this manual.

Hog

Once the HFPU is started, the scanner is held until the
HFPU executes a FEND instruction. The DSA priority
signal is active from start to finish.

8895100 A

TABLE 4-2. FUNCTION/STATUS REGISTER BIT ASSIGNMENT (Contd)

Bit Bit
Position Mnemonic Bit Definition

2, 1 SCAN Bit 2 mll
(contd)

1 0 Word

The scanner is released after every DSA data word access.
The DSA priority signal is not active.

These bits are set by:

• Function/status register (HFPU inactive) function 0 from the CPU with
A bit 02 set to 1 and/or A bit 01 set to 1

These bits are reset by:

• Function/status register (HFPU inactive) function 0 from the CPU with
A bit 2 set to 0 and/or A bit 1 set to o.

• Function/status register (HFPU inactive) function 0 from the CPU with -. A bit 2 set to 1 and/or A bit 1 set to 1.

• Program master clear

• Console master clear

0 PCLR Program master clear

When HFPU receives A bit 00 set and function/status register function 0, it
clears all timing, resets the unit to an idle state, and clears all registers
with the exception of the program count register and the floating point
accumulator. The HFPU ignores any other A bits that are set. Bit is not
used on an AlQ read function.

TABLE 4-3. COMMAND CODES

Command Code
Type of Code Mnemonic 4-Bit Code Description

Standard FLOF 1 Float-to-fixed
FIXF 2 Fixed-to-float
STRI 3 Store index
FEND 4 End of calling sequence
CHMD 5 Change address mode
NIDX 6 Clear index
FCOM 7 Floating complement
FSUB 8 Floating subtract
FMPY 9- Floating multiply
FOIV A Floating. divide
FLDD B Floating load
ADDI C Add to index
FLST D Floating store
FADD E Floating add
INDX F Index

88951100 A 4-7

TABLE 4-3. COMMAND CODES (Contd)

Command Code
Type of Code Mnemonic 4-Bit Code Description

Special SPEC 0 Special command code - must precede each of
toe following command codes before they are
performed

CACS 1 Continue another calling sequence

BRAM 2 Branch if accumulator is negative

BRAZ 3 Branch if accumulator is zero

BRAN 4 Branch if accumulator is nonzero

BRAD 5 Branch if accumulator is positive

BRIM 6 Branch if index is negative

BRIZ 7 Branch if index is zero

BRIN 8 Branch if index is nonzero

BRIP 9 Branch if index is positive

A

B

C Act as FENDS when preceded by command
) code of 0 (SPEC) D

E

F .-

TABLE 4-4. OPERATION COMMAND CODE DEFINITION

Command Code Mnemonic Description

FLOF

FIXF

STRI

4-8

Float-to-fixed

The contents of the floating point accumulator are converted to fixed point and
the results stored at the effective operand address. Floating point accumulator
bits 16 through 31 contain the fixed point number. If positive overflow occurs,
floating point accumulator bits 16 through 31 contain 7FFF. If negative overflow
occurs, floating point accumulator bits 16 through 31 contain 8000. The raw,
unmultiplied, index value is used to form the effective address for FLOF.

Fixed to float

The contents of the effective operand address are converted to floating point and
the result placed in the floating point accumulator. The raw, unmultiplied, index
value is used to form the effective addI'ess for FIXF.

Store index

Stores the contents of the index register at the effective operand address. Does not
alter the contents of the index register. Indexed address information is inhibited
during the execution of this instruction.

88951100 A

TABLE 4-4. OPERATION COMMAND CODE DEFINITION (Contd)

Command Code Mnemonic

FEND

CHMD

NlDX

FCOM

FSUB

FMPY

FDIV

FLDD

ADD!

FLST

FADD

88951100 A

Description

End of calling sequence

This operation terminates the calling sequence and causes the HFPU to return to an
idle state. Execution of this code sets bit 6 and clears bit 15 in the function/statUs
register.

Change mode

All operand addresses following this operation code in the calling sequence are made
relative if the preceding addresses were absolute and absolute if preceding addresses
were relative. Does not affect the index register value. Sets bit 9 of the
function/status register when relative mode address is in effect. No operand address
is needed for this code.

No index

Clears the index register, which disables the indexing of operand addresses. No
operand address is needed (01' this code.

Floating complement

Complements the contents of the floating point accumulator. No operand address
is needed for this code.

Floating subtract

The contents found at the effective operand address are subtracted from the
contents of the floating point accumulator and the results are then placed in
the floating point accumulator.

Floating multiply

The contents found at the effective operand address are multiplied by the contents
of the floating point accumulator and the results are placed in the floating point
accumulator.

Floating divide

The contents of the floating point accumulator are divided by the contents found at
the effective operand address and the results are placed in the floating point
accumulator.

Floating load

The contents found at the effective operand address are loaded into the floating
point accumulator. This is a normalized floating-point number.

Add to index

Adds the contents of the effective operand address to the contents of the index
register and places the result in the index register. Indexed address formation is
inhibited during the execution of the instruction.

Floating store

The contents of the floating point accumulator are stored at the effective operand
address. The contents of the floating point accumulator are not altered by this
operation.

Floating add

The contents found at the effective operand addresses are added to the contents
of the floating point accumulator and the results are placed in the floating point
accumulator.

4-9

TABLE 4-4. OPERATION COMMAND CODE DEFINITION (Contd)

Command Code Mnemonic Description

INDX

SPEC

CACS

BRAM

BRAZ

BRAN

Index

The contents found at the effective operand address are loaded into the index
register. The operand addresses of all subsequent FLOF, FLDD, FLST, FADD,
FSUB, FMPY, FDIV, and FIXF operations are affected in the following manner:

• If function/status register bit 8 is clear, the contents of the index register
is multiplied by 2 when the unit is in single precision mode and the effective
operand address is being formed. The contents of the index register are
not changed.

• If function/status register bit 8 is clear, the contents of the index register
is mulitplied by 3 when the unit is in double precision mode and the effective
operand address is being formed. The contents of the index register are
not changed.

• If function/status register bit 8 is set, the raw index register contents is
added to the base address to form the effective address.

• For the functions FLOF and FIXF, the raw index value is added to the base
address.

Special command code

This code causes the HFPU to recognize the next byte as a code within the
following branch (jump) command code subset. If the next byte is 0, a FEND is
executed.

Continue another calling sequence t

Starts a new floating point instruction sequence by loading the contents of the
effective operand address into the command code register. The new code execution
starts at command code byte 1. Indexed address formation is inhibited during the
execution of this instruction.

Branch accumulator negativet

If the condition is satisfied (the contents of floating point accumulator is negative),
execution continues by loading the contents of the effective operand address into
the command code register. The new code execution starts at command code
byte 1. Indexed address formation is inhibited during the execution of this instruc­
tion. If condition is not satisfied, the program count register is incremented by +1
before the next command code is executed.

Branch accumulator zero t

If the condition is satisfied (the contents of floating point accumulator is 0),
execution continues by loading the contents of the effective operand address into
the command code register. The new code execution starts at command code byte 1.
Indexed address formation is inhibited during the execution of this instruction. If

condition is not satisfied, the program count register is incremented by +1 before
the next command is executed.

Branch accumulator non-zerot

If the condition is satisfied (the contents of floating point accumulator is non-zero),
execution continues by loading the contents of the effective operand address into
the command count register. The new code execution starts at command code
byte 1. Indexed address formation is inhibited during the execution of this instruc­
tion. If the condition is not satisfied, the program count register is incremented
by +1 before the next command is executed.

t These command codes are executed only if the preceding byte is a SPEC code.

4-10 88951100 A

TABLE 4-4. OPERATION COMMAND CODE DEFINITION (Contd)

Command Code Mnemonic Description

BRAPt Branch accumulator positivet

If the condition is satisfied (the contents of floating point accumulator is positive
including positive 0) execution continues by loading the contents of the effective
operand address into the command code register. The new code execution will
start at command code byte 1. Indexed address formation is inhibited during the
execution of this instruction. If the condition is not executed, the program count
register is incremented by +1 before the next command is executed.

BRIMt Branch index register negative t

If the condition is satisfied (the contents of the index register is negative),
execution continues by loading the contents of the effective operand address into
the command code register. The new code execution starts at command code
byte 1. Indexed address formation is inhibited during the execution of this instruc-
tion. If the condition is not executed, the program count register is incremented
by +1 before the next command is executed.

BRIZt Branch index register zero t

If the condition is satisfied (the contents of the index register is 0), execution
continues by loading the contents of the effective operand address into the command
code register. The new code execution starts at command code byte 1. Indexed
address formation is inhibited during the execution of this instruction. If the
condition is not executed, the program count register is incremented by +1 before
the next command is executed.

BRINt Branch index register non-zero t
If the condition is satisfied (the contents of the index register is non-zero),
execution continues by loading the contents of the effective operand address into
the command code register •. Th.e new code execution stp.rts at command code
byte 1. Indexed address formation is inhibited during the execution of this
instruction. If the condition is not executed, the program code register is incre-
mented by +1 before the next command is executed.

BRIPt Branch index register positive t
If the condition is satisfied, (the contents of the index register is positive),
execution continues by loading the contents of the effective operand address into
the command code register. The new code execution starts at command code
byte 1. Indexed address formation is inhibited during the execution of this
instruction. If the condition is not executed, the program count register is incre-
mented by +1 before the next command is executed.

t These command codes are executed only if the preceding byte is a SPEC code.

88951100 A 4-11

TABLE 4-5. HARDWARE EXECUTION TIMES

Maximum Total Single Precision Maximum Total Double Precision Memory Access
Hardware Execution Hardware Execution Required

Time in Time in Single Precision/
Command Code Microseconds Microseconds Double Precision

FEND 0.450 0.450 0/0

CHMD 0.450 0.450 0/0

NIDX 0.450 0.450 0/0

FCOM 0.955 0.955 0/0

FSUB 8.565 10.925 2/3

FMPY 11.425 15.545 2/3

FDIV 11.865 15.985 2/3

FLDD 3.835 4.435 2/3
.,

FLST 2.535 3.135 2/3

FADD 8.567 10.925 2/3

INDX 1.925 1.925 1/1

STRI 1.925 1.925 1/1

ADDI 1.925 1.925 1/1

SPEC 0.450 0.450 0/0

FIXF 6.585 6.585 1/1

FLOF 4.870 4.870 2/3

CACS 1.090 1.090 1/1

BRAM 1.480 1.480 1/1

BRAZ 1.480 1.480 1/1

BRAN 1.480 1.480 1/1

BRAP 1.480 1.480 1/1

BRIM 1.480 1.480 1/1

BRIZ 1.480 1.480 1/1

BRIN 1.480 1.480 1/1

BRIP 1.480 1.480 1/1

4-12 88951100 A

PROGRAMMING INFORMATION 5

Programming the HFPU requires a minimum of instructions.
Each register may be loaded and statused by means of the
following program. Only the lower four bits of the
Q register need to be changed. Using this program all
registers can be preloaded with data and addresses to allow
restart function 5 to be executed.

$0000 EOOO Load Q register

$0001 W,EQ,FCN Equipment number and desired

$0002 COOO

$0003 (Data)

$0004 0800

$0005 03FE

$0006 0800

$0007 02FE

$0008 0000

functiont

Load A register

Desired data

No operation

Output

No operation

Input (monitor the A register,
contents should equal that sent
out - location 0003

Selective stop

A typical program to cause the HFPU to go into execution
would consist of the following:

$0000 EOOO

$0001

$0002 COOO

$0003 0001

$0004 OBOO

$0005 03FE

$0006 COOO

$0007 0084

$0008 OBOO

$0009 03FE

------' ..

Equipment number plus func­
tion 0 (if the equipment number
is F then use 0780)

Function/status word - program
clear

Function/status word; double
precision, word mode

$OOOA

$0008

$OOOC

$OOOD

$OOOE

$OOOF

$00010

EOOO

COOO

OBOO

03FE

0,000

Equipment number and func­
tion 4 double precision cold
start = (0784)

Starting address of calling
sequence

Selective stop or include
status/check loop for FEND
status

CALLING SEQUENCE GENERATION

A basic calling sequence consists of an instruction word
consisting of four commands, followed by the operand
address (address pointers). The left-most 4-bit byte is the
first operation; the operand addresses, if they are required,
follow in the same order as the operation bytes, one word
per byte. As many bytes may exist as desired, but the
terminating byte mQst be a 4, the operation FEND.

CPU WORD
LOCATIONS

'!; 15

P
P+l

P+2
P+3
P+4

P+S
P+6

12 11

1 I

5 I

CPU Bits --------.
8 7 4 3 o

2 I at I 4

Address 1
Address 2

Address 4

6 I 4 (FEND) I
Address 5

Address 6

t Does DOt require a memory access, thus DO addrestl 3 exists.

t When functions 3, 4, and 5 are executed, they should be accompanied by a legitimate calling sequence since they cause the
HFPU to use the contents of the A register as a pointer in memory from which to obtain its calling sequence. If the command
codes are not controlled, other areas in memory could be destroyed.

88951100 A 5-1

The addresses are the location in memory where operands
for the respective command codes are stored. Not all
operations require memory access; for example, command
code 3 does not have a corresponding A3. The following
command codes do not require pointers or subsequent
operands: CHMD, FEND, NIDX, and SPEC. The following
is an example of a calling sequence for a single precision
operation. The double preCision calling sequence is the same
except that the pointers' values must be increased by one.
That is, the data occupies three memory locations instead of
two when doing double precision. Assume the starting
address to be $0100.

$0100 BF7A

$0001 1000

$0002 1002

$0003 1004

. $0004 7D44

$0005 1006

$1000 xxxx

$0001 xxxx

$0002 yyyy

$0003 yyyy

$0004 zzzz

$0005 zzzz

$0006

$0007

FLDD, FADD, FCOM, FDIV

Pointer for data to be loaded
into accumulator

Pointer for data to be added to
accumulator value

Pointer for data to be divided
into accumulator value

FCOM,FLST,FEND,FEND

Pointer for location in which to
store the results; i.e., the
content of the accumulator

Floating load data

Floating add data

Floating divide data

Floating store results

FIXED/FLOAT NUMBER CONVERSIONS

The integer (fixed) number format is:

15

Magnitude

Where: S is the sign of the integer number.

o is a positive number, and

o

1 is a negative number with the magnitude in ones
complement form.

The float-to-fixed operation is performed by executing
command code I, which converts the floating point number
in the floating point accumulator register to an integer and

5-2

transfers the integer to the effective operand address.
Floating point accumulator 31 through 16 also contains the
result. If positive overflow occurs, floating point accumu­
lator 31 through 16 will contain 7FFF and if negative
overflow occurs, floating point accumulator 31 through 16
contains 8000. The fixed-to-float operation is performed by
executing command code 2. which loads an integer number
into the HFPU from the specified operand address, begins a
conversion process, and upon completion, places the
converted number into the floating point accumulator. This
number may be retrieved in two ways:

• Reading status of the HFPU floating point accumulator
register by successive A/Q read commands to functions
6,7, and 8.

• Executing a FLST instruction to a specified memory
location.

FLOATING P·OINT ACCUMULATOR
FORMATTING

This section is useful in forming data into floating point
accumulator format and gives examples of the different
addressing methods used by the HFPU.

Floating point numbers used in the arithmetic operations
have the following format:

r------CPll Bit. ,

15 14 13

r--NormaJi7.:l.tlon Point
716543210

High Segment I I I
(Final Command S En
Codo Addre ••) L.J..J... _____ ---L _____ ---'

EXP Manti •• a High

Low Segment
('Final Command
Code Address + 1)

Extended Low
segment (Final
Command Code
Address + 2)

Where: S

01 89 15

1.-Floating Point Accumulator Bits---'

,.., _____ CPU Bit. ------,

15

Mantissa Low

u n
L-- Floating Point Accumulator Bits-.J

,-------CPu Bits -------.,

15 o

Mantissa Extended Low Guard

32 47 48 51
-~Floating Point Accumulator Bits ______ ...J

is the sign bit of the entire floating
point number. When the sign bit is 0,
the floating point number is positive.
When the sign bit is 1, the floating
point number is negative.

is the exponent sign bit, biased by an
exclusive OR with 8016 during pack­
ing and unpacking.

88951100 A

EXP is the seven binary bits that represent
the magnitude of the exponent
(-127 s exponent :$ 127).

Mantissa is the normalized magnitude of the
floating point number which is a
fractional coefficient. A normalized
positive coefficient has the form
(O.lxxx ••• x LOW) where S is o. A
normalized negative coefficient has
~he form (O.Oxxxx ••• x LOW) where S
IS 1.

A single precision number has the expressable number range:

_2127 (1_2-23) x 2127 (1_2-23)

A double precision number has the expressable number
range:

_2127 (1_2-39) x 2127 (1_2-39)

When the floating point number is negative, the entire
floating point accumulator including the exponent is in ones
complement form. A floating point zero is represented as
all bits set to o. The floating point number is always
normalized for any floating point arithmetic operation
including FLST and FLDD. .

The extended low segment of the operand is used for double
precision mode.

OPERAND ADDRESSING

All operand addresses used within the HFPU conform to one
of the following methods:

• Absolute (IS bits)

• Relative (IS bits with bit 15 equal to sign)

• indexed (IS bits) - Value in index register is multiplied
by 2 for single precision operations and by 3 for double
preCision operations if function/status register bit 8 is
not set.

• Relative indexed (index handling as for indexed mode)

88951109 A

Table 5-1 depicts the address methods.

If function/status register bit 9 is set, relative addressing
mode is in effect. If function/status bit 9 is clear, absolute
addressing is in effect. Absolute addi-essing means that the
pointer word is in an absolute address; conversely, relative
addressing means that the pointer word is a IS-bit signee;!
displacement from the current program count register.

If function/status register bit 8 is clear, the contents of the
index register are multiplied by 2 or 3 and added to the
argument address (pointer word) to obtain the final address.
If function/status register bit 8 is set, the contents of the
index register is added to the argument address to obtain the
final address.

HFPU COMMAND CODE/FORTRAN
CORRELATION

The following examples show the relationship of HFPU
command codes to their use in setting up FORTRAN
arithmetic statements. See table 5-2.

The calling sequence for FORTRAN expression A = 8+CXD
is as follows:

89ED (FLDD, FMPY, FADD, FLST)
o Address of 0

<C> Address of C
 Address of 8
<A> Address of A
4000 (FEND, ••••)

The calling sequence for FORTRAN
A(I) = 8 (J) + C (K) * D(L) is as follows:

F8F9
<L>
<0>
<K>
<C>
FEFD
<J>
<8>
<A>
4000

(INDX, FLDD, INDX, FMPY)
Address of L
Address of array D
Address of K
Address of array C
(INDX, FADD, INDX, FLST)
Address of J
Address of array 8
Address of array A
(FEND ••••)

expression

5-3

TABLE 5-1. ADDRESSING METHODS EXAMPLES

Types of
Addressing Location Contents Description

Absolute 010016 B44416 Command Code (FLDD, FEND •••)

010116 020016 Pointer address (ABS)

020016 xxxx16 Operand

020116 xxxx16 Operand

- 020216 xxxx16 Operand (double precision only)

Relative . 010016 B44416 Command code (FLDD, FEND •••)

010116 020016 Pointer address (relative)

030116 xxxx16 Operand

030216 xxxx16 Operand
..

030316 xxxx16 Operand (double preCision only)

Indexedt 010016 B44416 Command code (FLDD, FEND •••)

010116 020016 Pointer address x 2 (index register)

040016 xxxx16 Operand

040116 xxxx16 Operand

Indexedt t 010016 B44416 Command code (FLOD, FEND •• .)
010116 020016 Pointer address x 3 (index register)

050016 xxxx16 Operand

050116 xxxx16 Operand

050216 xxxx16 Operand

Relative
. Indexedt 010016 B44416 Command code (FLDD, FEND •••)

010116 020016 Pointer address relative x 2 (index register)

050116 xxxx16 Operand

050216 xxxx16 Operand

Relative
Indexedt t 010016 B44416 Command code (FLDD, FEND •••)

010116 020016 Pointer address relative x 3 (index register)

060116 xxxx16 Operand

060216 xxxx16 Operand

060316 xxxx16 Operand

tWhere index register equals 100 and single-precision mode

'1tWhere index register equals 100 and double-precision mode

5-4 88951100 A

TABLE 5-2. FUNCTION OPERATING TIME CORRELATION

Function Time in Microseconds Latencies Comments

Fetch Command Code 1.25 1 Total time - no overlap

FLDD 4.63 0 Total time - no overlap

FMPY 10.89 1 Total less the overlapping of FLDD

FADD 6.05 ot Total less the overlapping of F ADD

FLST 2.25 1 Irreducible component

Fetch C. C. 1.25 1 No overlap

FEND .20 0 No overlap

26.52 1 Latencies

t Latency overlaps the preceding function

88951100 A 5-5

FLOATING POINT CONVERSION TABLE " A"

TABLE A-l. FLOATING POINT CONVERSION TABLE (DECIMAL AND HEXADECIMAL NUMBERS TO
FLOATING POINT) "

Normalization Point

Operand Exponent
Coefficient Packed Hexadecimal Sign Sign Exponent Form With Bias

Decimal 15 14 13112111110 19 18 7 61 5 14 3 12 11 10
of 8016 Hexadecimal

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 o 0 0 0 0
400 0 o 0 0 0

1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 4 0 CO o 0 0 0 1

2 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 4 1 4 0 000 0 2

3 0 O· 0 0 0 0 0 1 0 1 1 0 0 0 0 0 4 1 6 0 000 0 3

4 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 4 1 CO o 0 0 0 4

5 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 4 1 DO o 0 0 0 5

6 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 4 1 EO 000 0 6

7 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 4 1 F 0 o 0 0 0 7

8 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 4 240 o 0 0 0 8

9 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 4 2 4 8 000 0 9

10 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 4 2 5 0 o 0 0 0 A

11 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 4 2 5 8 o 0 0 0 B

12 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 4 2 6 0 o 0 0 0 C

13 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 4 2 6 8 o 0 0 0 D

14 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 427 0 o 0 0 0 E

15 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 427 8 000 0 F

16 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 4 2 CO o 0 0 0 10

17 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 4 2 C 4 o 0 0 0 11

18 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 4 2 C 8 000 0 12

19 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 42CC .0 0 0 0 13

20 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 4 2 DO o 0 0 0 14

21 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 4 2 D 4 o 0 0 0 15

22 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 4 2 D 8 o 0 0 0 16

23 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 42DC o 0 0 0 17

24 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 4 2 EO o 0 0 0 18

25 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 4 2 E 4 o 0 0 0 19

26 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 4 2 E 8 000 0 lA

27 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 4 2 E C 000 0 IB

28 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 4 2 F 0 o 0 0 0 lC

29 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 4 2 F 4 o 0 0 0 10

88951100 A A-l

~)

TABLE A-I. FLOATING POINT CONVERSION TABLE (DECIMAL AND HEXADECIMAL NUMBERS TO
FLOATING POINT) (Contd)

Packed Hexadecimal Form Packed Hexadecimal Form
Decimal With Bias of 8016 Hexadecimal Decimal With Bias of 8016 Hexadecimal

30 4 2 F 8 0 0 0 0 IE 60 4 3 7 8 0 0 0 0 3C

31 4 2 F C 0 0 0 0 IF 61 4 3 7 A 0 0 0 0 3D

32 4 3 4 0 0 0 0 0 20 62 4 3 7 C 0 0 0 0 3E

33 4 3 4 2 0 0 0 0 21 63 4 3 7 E 0 0 0 0 3F

34 4 3 4 4 0 0 0 0 22 64 4 3 C 0 0 0 0 0 40

35 4 3 4 6 0 0 0 0 23 65 4 3 C 1 0 0 0 0 41

36 4 3 4 8 0 0 0 0 24 66 4 3 C 2 0 0 0 0 42

37 4 3 4 A 0 0 0 0 25 67 4 3 C 3 0 0 0 0 43

38 4 3 4 C 0 0 0 0 26 68 4 3 C 4 0 0 0 0 44

39 4 3 4 E 0 0 0 0 27 69 4 3 C 5 0 0 0 0 45

40 4 3 5 0 0 0 0 0 28 70 4 3 C 6 0 0 0 0 46

41 4 3 5 2 0 0 0 0 29 71 4 3 C 7 0 0 0 0 47

42 4 3 5 4 0 0 0 0 2A 72 4 3 C 8 0 0 0 0 48

43 4 3 5 6 0 0 0 0 2B 73 4 3 C 9 0 0 0 0 49

44 4 3 5 8 0 0 0 0 2C 74 4 3 C A 0 0 0 0 4A

45 4 3 5 A 0 0 0 0 2D 75 4 3 C B 0 0 0 0 4B

46 4 3 5 C 0 0 0 0 2E 76 4 3 C C 0 0 0 0 4C

47 4 3 5 E 0 0 0 0 2F 77 4 3 C D 0 0 0 0 4D

48 4 3 6 0 0 0 0 0 30 78 4 3 C E 0 0 0 0 4E

49 4 3 6 2 0 0 0 0 31 79 4 3 C F 0 0 0 0 4F

50 4 3 6 4 0 0 0 0 32 80 4 3 D 0 0 0 0 0 50

51 4 3 6 6 0 0 0 0 33 81 4 3 D 1 0 0 0 0 51

52 4 3 6 8 0 0 0 0 34 82 4 3 D 2 0 0 0 0 52

53 4 3 6 A 0 0 0 0 35 83 4 3 D 3 0 0 0 0 53

54 4 3 6 C 0 0 0 0 36 84 4 3 D 4 0 0 0 0 54

55 4 3 6 E 0 0 0 0 37 85 4 3 D 5 0 0 0 0 55

56 4 3 7 0 0 0 0 0 38 86 4 3 D 6 0 0 0 0 56

57 4 3 7 2 0 0 0 0 39 87 4 3 D 7 0 0 0 0 57

58 4 3 7 4 0 0 0 0 3A 88 4 3 D 8 0 0 0 0 58

59 4 3 7 6 0 0 0 0 38 89 4 3 D 9 0 0 0 0 59

A-2 88951100 A

TABLE A-l. FLOATING POINT CONVERSION TABLE (DECIMAL AND HEXADECIMAL NUMBERS TO
FLOATING POINT) (Contd)

Packed Hexadecimal Form Packed Hexadecimal Form
Decimal With Bias of 8016 Hexadecimal Decimal With Bias of 8016 Hexadecimal

90 4 3 D A 0 o . 0 0 5A 97 4 3 E 1 0 0 0 0 61

91 4 3 D B 0 0 0 0 5B 98 4 3 E 2 0 0 0 0 62

92 4 3 D C 0 0 0 0 5C 99 4 3 E 3 0 0 0 0 63

93 4 3 D D 0 0 0 0 5D 100 4 3 E 4 0 0 0 0 64

94 4 3 D E 0 0 0 0 5E 101 4 3 E 5 0 0 0 0 65

95 4 3 D F 0 0 0 0 5F 102 4 3 E 6 0 0 0 0 66

96 4 3 E 0 0 0 0 0 60 103 4 3 E 7 0 0 0 0 67

88951100 A A-3

DECIMAL-TO-FLOATING POINT FORMAT CONVERSION B

INTEGERS

POSITIVE INTEGER

Decimal to Binary Conversion

3910 = 0 1 0 0 1

~: x 20 = 110

x 21 = 210

1 x 22 = 410

0 x 23 = 010

o x 23 = 010

'----------1 x 25 = 3210

Binary Fixed Point to Binary Floating Point
Conversion

Point Conversion

1 1.2

I

Operand
Sign Bit 10
(POS) 1 0 0 1

I
Normalized Point Fixed Point

Shift the binary fixed point to the normalized point to obtain
the exponent. The numbers of shifts equals the exponent.

6 5 432 1

~
o 10011 1

Coefficient =
0.1001110

Exponent = 610 =
000001102

Bias Exponent (Exclusive OR with 8016)

True exponent
Bias

Bias exponent

88951100 A

= 0000
= 1000

= 1000

0100
0000

0110

• 0

Pack Integer Coefficient and Exponent into
Floating Point Word Format

See figure B~ 1 for packing the integer coefficient and
exponent into the floating point word format.

NEGATIVE INTEGER

Express the negative number as a positive number and
convert as you would for a positive integer. (Follow the
positive integer procedure.) Complement the entire 32 bits
and the conversion is complete; e.g ••
~391O = BCB1 FFFF16•

FRACTIONS

POSITIVE FRACTION

Decimal to Bi'!ary Conversion

0 0 1 1 0 3/1610 = 0

~:

Binary Fixed Point to Binary
Flaating Point Conversion

Operand

0

0

0

x 2-4 = 1/1610

x 2-3 = 1/810

x 2-2 = 010

.x 2-1 = 010

3/1610

Sign Bit ~
- 0
~
00110-----0

!
Normalized Point

Normalize the coefficient; i.e., shift left until a 1 appears
in bit position 22 of the coefficient.

o

-2 -1
~
o 0 1 1 0-----0

The number of shifts equal the exponent negative.

Coefficient :: 0.11000 -----0
Exponent = -210 = 1111 11012

B-1

WORD 1 WORD 2

15 14 13 12 11 10 9 8 7 6 5 4 3· 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 7 4 3 2 1 0 22 21 20 19 18 17 16 \15 14 13 12 11·10 9 8 7 6 5 4 3 2 1 0 I
EXPONENT
SIGN I NORMALIZED BINARY POINT

COEFFICIENT SIGN BIT '-"' \ / \.,, ___________ "" ... ___________ .-11 l EXPONENT AND
8016 (BIAS)

COEFFICIENT

WORD 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COEFFICIENT

WORD 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 0 I I 0 0 0 0 0 0 0 0 O' 0 0 0 0 0 0 0 I
3910 = 434E 000016

lro OBTAIN THE TRUE EXPONENT SIGN OF A PACKED FLOATING POINT l'-TUl\ffiER, DEBJAS
THE EXPOXE:NT (I.E., EXCLUSIVE OR \nTH 8016) AND, IF THE COEFFICIE}''T IS NEGATIVE,
C01\fPLEl\IENT THE ENTIRE EXPONENT. THE TRUE EXPONENT AND SIGN \v1LL RESULT.

Figure B-1. Packing Integer Coefficient and Exponent into Floating Point Word Format

Bias Exponent (Exclusive OR
with 8°161

Pack Fra.ction Coefficient and Exponent into
Floating Point Word Format

True exponent ::

Bias ::

Biased exponent ::

B-2

1111

1000

0111

See figure B-2 for packing the fraction coefficient and
exponent into the floating point word format.

88951100 A

IS 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3

2 1 0 22 21 20 19 18 17 16 115 14 13 12 11 10 9 8 7 6 5 4 3

EXPONENT SIGN t NORMALIZED BINARY POINT
COEFFICIENT SIGN BIT

15 1413 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3

0 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 0 0

- , ,
L.. EXPONENT AND -COEFFICIENT

8016 (BIAS)

COEFFICIENT

3/16 = 3EE0000016

tro OBTAIN THE TRUE EXPONENT SIGN OF A PACKED FLOATING POINT NUMBER, DEB lAS
THE EXPONENT (I.E., EXCLUSIVE OR WITH 8016) AND, IF THE COEFFICIENT IS NEGATIVE,
COMPLEMENT THE ENTIRE EXJ?pNENT. THE TRUE EXPONENT AND SIGN WILL RESULT. . .

Figure 8-2. Packing Fraction Coefficient and Exponent into Floating Point Word Format

88951100 A

2 1 0

2 1
01

2 1 0

0 0
01 ,

B-3

1

I
I
I
I
I

~I

~I
C!l'

~:
<I

~I
01

I
I
I
1
I
I
I
I
I
I
I
I
I
I
1
1
I
I
I
I
I
I
I
I
I

COMMENT SHEET

MANUALTITLE __________ ~C~D~C~® __ ~H~a~r~d~w~a~r~e~F~lo~a~t~in~g~P~o~in~t~U~n~i~t~R~e~f~e~r~e~n~c~e~M~a~n~u~al~ ________ __

PUBLICATION NO. _____ 8_8_9_5_11_0_0 _______ REVISION ______ ...:.;A:...-_______ _

FROM NAME: __ ~----------------~

BUSINESS
ADDRE~: __________ . ____________________ ~ ___________________________ ___

COMMENTS: This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed'
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number.

STAPLE STAPLE I
I
I
I
I
I
I
I

I
I
I

FOLD --------- __________________________ J

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MA.LED !N U.S.A.

POSTAGE WIL~ BE PAID BY

CONTROL DATA' CORPORATION
PUBLICATIONS AND GRAPHICS DIVISION
4455 EAST GATE MALL
LA JOLLA, CALIFORNIA 92037

F:RST CLASS
PER'~IT NO. 3,3

LA JOLLA CA.

I
I
I
I

------------------------------------~
FOLD

STAPLE

I
I
I
I
I
I
I
I
I
I
I ,
I
I
I

STAPLE I

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	replyA
	replyB

