
c
(---"":
"'- i

c
(j

C~

C

C~

C
.
o
t)
C")
o
C'

96769390

CJ E:\ CONlROL DATA
\::I r::;J CORj>ORl\TlON

SOFTWARE PERIPHERAL DRIVERS
REFERENCE MANUAL

CONTROL DATA ®

MASS STORAGE OPERATING SYSTEM

REAL TIME OPERATING SYSTEM

REVISION RECORD
REVISION DESCRIPTION

A Manual released.

(6/76)

B Manual revised to reflect added information on auto data transfer. Also added drivers for CB104 Card Reader.

(9/96) storage module disk (SMD), flexible disk 1827 Line Printer. low cost tape transport (LCTT). and cassette tape.

C Revised to incorporate PSROs 3253 4254 and include 1827-2 Line Printer Driver, i811-2 Conversational Displav

(10/77) Terminal Driver. 1843-2 CLA Driver. LCTT/FORMATTER Drivel'. MSOS Console Driver. and FDUTIL.

D Revised to incorporate new peripherals for release of Peripheral Drivers 1.3C. Pages revised are vii/viii, 3-6 3-8.
(1/78) 3-21.3-22, C-2, C-3. C-19 and Index-1 through Index-3. New pages are 3-8.1 and C-20.

Publication No.
96769390

REVISION LETTERS I, 0, Q AND X ARE NOT USED

e 1976,1977,1978
by Control Data Corporation

Printed in the United States of America

ii

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4455 Eastgate Mall
LaJolla, California 92037

or use Comment Sheet in the back of
this manual.

/

('
I

'-. ..

/'

C

/'

'-. /

""--.. '.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to Information In this manual, are Indicated by bars in the margins or by a dot
near the page number If the entire page Is affected. A bar by the page number Indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

Cover - C-5 thl'u
Title page - C-18 C
ii 0 C-19 0
iii/iv 0 C-20 0
v/vi B 0-1 thru 0-3 B
vii 0 B-1 B
viii 0 F-1 B
1-1 thru 1-3 A 0-1 B
1-4 B 0-2 B
1-5 A H-1 B
1-6 A H-2 B
2-1 thru 2-7 B H-3 C
3-1 C I-I thru 1-10 C
3-2 C Index-1 thru
3-2.1 C Index-3 0
3-2.2 C Comment
3-3 A sheet! 0
3-4 A Mailer -
3-5 C Back cover -
3-6 0
3-7 B
3-8 0
3-8.1 0
3-9 B
3-10 C
3-10.1 C
3-11 thru

3-14 B
3-15 C
3-16 C
3-16.1 C
3-17 B
3-18 B
3-19 C
3-20 C
3-21 0
3-22 0
3-22.1 C
3-23 B
3-24 C
3-25 C
3-26 B
3-27 B
3-28 C
3-29 thru

3-39 B
4-1 A
4-2 C
5-1 B
6-1 A
6-2 A
A-I thru

A-6 B
B-1 C
C-1 0
C-2 C
C-3 0
C-4 B

96769390 0 iii/iv

",0.

f

(
,~

J

'----'

I
'--'"

.-,
__ J

","'-",

........ ,

"'----//

PREFACE

'ii,!t" , . rj, _, t@j'WU!NtM.g5Uf!t! .. '1']'1iji*i#W",*,f.~· Hr· . \., LiP?· , fi,!tMQ,iQ

This manual provides a detailed description of the software
I I/O drivers for CYBER 18/1700 Series peripherals. These

I/O drivers are also utilized by the Mass Storage Operating
System (MSOS) and the Real-Time Operating System
(RTOS).

This manual is intended to be used by programmers of
CYBER 18/1700 software that require a real-time, multi- I
programming environment.

96769390 B

Additional information concerning MSOS and RTOS can be
found in the following manuals:

Publication Publication Number

Real-Time Operating System (RTOS) Version 3 CYBER 18-17
Reference Manual 96769560

Mass Storage Operating System Version 5 Reference Manual 96769400

1700 MSOS 5 Diagnostic Handbook 96769450

1700 MSOS 5 Installation Handbook 96769410

274 Interactive Graphics System Version 2 Reference Manual 60358800

This product is intended for use only as described in this document. Control Data
cannot be responsible for the proper functioning of undescribed features or
parameters.

v

I
I

I

r·· ..

l I

--/

,J"'~' "\

(""'-_., '.

I

/"-- ' "

,"'-'-'"

,...-'"

J

hi

1. INTRODUCTION

Queueing of I/O Requests
READ/FREAD/WRITE/FWRITE Requests
MOTION

i

2. SYSTEM INTERFACES FOR I/O DRIVERS

Find--N ext-Request
Device Shared
Device Not Shared

Complete Request
Set Error Flag
Diagnostic Timer Module
Alternate Device Handler
Mass-Storage Resident Drivers
Interrupt Response Routines
Engineering File Logging
SCMM Diagnostics
Buffered Data Channel Allocation
A/Q Channel Allocation
Auto-Data Transfer (ADT)

ADT Table for Single A/Q Device
ADT Table for Multiple A/Q Devices
ADT Table for Clock
ADT Table for Single or Multiple

M05 Devices

3. DATA FORMATS

Dummy Driver
Typewriter Keyboard Drivers

READ
FREAD
WRITE
FWRITE
MOTION

ITOS 1 Terminal Driver
Request Format
MOTION
READ/FREAD
WRITE
FWRITE
CONNECT
DISCONNECT
WRITE-READ
Cursor Positioning

Conversational Display Terminal (CDT) Driver
Paper Tape Reader Drivers

READ Binary
Parity Checking
READ ASCII
FREAD ASCII
FREAD Binary
EOF Processing and Motion Requests

Paper Tape Punch Drivers
WRITE Binary
WRITE ASCII
FWRITE ASCII
FWRITE Binary
MOTION Requests
Error Conditions

96769390 D

CONTENTS

1-1

1-1
1-1
1-4

2-1

2-1
2-1
2-1
2-1
2-1
2-1
2-2
2-3
2-3
2-4
2-4
2-4
2-4
2-5
2-5
2-6
2-6

2-6

3-1

3-1
3-1
3-1
3-1
3-1
3-1
3-1
3-1
3-2
3-2
3-2
3-2

3-2.1
3-2.1
3-2.1
3-2.1
3-2.1
3-2.1
3-2.1
3-2.1
3-2.1
3-2.1
3-2.2
3-2.2
3-2.2
3-2.2
3-2.2

3-3
3-3
3-3
3-3
3-3

is 'S 'M.
Card Reader/Punch Drivers

READ Binary
READ ASCII
FREAD Binary
FREAD ASCII
WRITE Binary
WRITE ASCII
FWRITE Binary
FWRITE ASCII '
EOF Processing and Motion Requests
Error Conditions

CB104 Card Reader Driver
Data Formats
READ/FREAD/MOTION
Status and Error Handling

TAB 501 Card Punch Driver
WRITE Binary/FWRITE Binary
WRITE ASCII/FWRITE ASCII
MOTION
Status and Error Handling

Mass Memory Drivers
Data Transfer Request Formats
Disk and Drum Driver Requests
READ/WRITE
FREAD/FWRITE
MOTION
Error Conditions and Recovery

1833-4/1866-12/1866-14 Cartridge
Disk Driver (CDD)

Data Transfer Request Format
Status and Error Handling

Storage Module Driver (SMD)
Disk Pack Initialization
READ/WRITE/FREAD/FWRITE
Error Recovery
Diagnostic Features
Store Core Image
Disk-to-Tape Driver

Flexible Disk Driver
READ/WRITE
FREAD/FWRITE
MOTION
Error Recovery
Special Features

Line Printer Drivers
WRITE/FWRITE
MOTION
Character Editing
Error Conditions

1827 Line Printer Driver
WRITE/FWRITE/MOTION
Character Editing
Status and Error Handling

1827-7 Line Printer Driver
WRITE/FWRITE/MOTION
Character Editing
Status and Error Handling

Magnetic Tape.Drivers
Data Formatting
Formatted Requests
Unformatted Requests
Motion Requests
Error Conditions

3-3
3-3
3-3
3-3 '
3-5
3-5
3-5
3-6
3-6
3-6
3-6
3-6
3-7
3-7

3-7 I 3-8
3-8
3-8
3-8
3-8
3-8

3-8.1
3-9
3-9
3-9

3-10
3-10

3-10
3-10.1
3-10.1
3-10.1

3-11
3-12
3-13
3-14
3-15
3-15
3-15
3-16
3-16

3-16.1
3-18
3-19
3-19
3-19
3-19
3-19
3-20
3-20
3-20
3-20
3-20
3-21
3-21
3-21
3-21
3-21
3-21
3-21
3--21
3-22
3-22

vii

Low-Cost Tape Transport
READ WRITE/FREAD/FWRITE
MOTION
Error Recovery

Low Cost Tape Transport (LCTT)/
FORMATTER Driver

Data Format
READ/WRITE/FREAD/FWRITE
MOTION
Error Recovery

Cassette Driver
Data and Record Formats
READ/WRITE/FREAD /FWRITE
MOTION
Error Recovery

Communications Drivers
Communications Multiplexer Driver
Asynchronous Communications Controller

and Serial I/O Drivers
Unsolicited Input - Timeshare Devices

1843-2 CLA
Real-Time Peripheral Drivers

Relay Multiplexer Analog Input
Subsystem Driver

Solid-State Multiplexer Analog Input
Subsystem Driver

Digital Input Driver
Digital Output Driver
Relay Output Driver
Events Counter Driver
Digital/ Analog Conversion Driver
Remote I/O Driver
Line Sync Timer Driver
Sample Rate Generator Driver

Pseudo Tape Driver
Pseudo Tape Driver Requests
Error Conditions

COSY Driver
COSY Interface Driver Requests
Operation
Error Conditions

A Glossary
B Standard Equipment/Interrupt Assignments
C Physical Device Table
D ASCII Conversion Table
E Magnetic Tape Recovery

3-1 Binary Format Record Cards
3-2 WRITE Binary Punching
3-3 Storage Module Driver Maximum

Hardware Configuration

1-1 MSOS Driver Action for Motion Request

3-1
Parameters PI' P2' P3

Data Formats
3-2 Flexible Disk Commands

I viii

3-22 Software Buffer Driver
3-23 Buffered Local Terminal Controller Driver
3-23 User Instructions
3-23 Format Write

Unformatted Write
3-24 Format Read
3-24 Unformatted Read

3-24.1 Control Character
3-24.1 Error Conditions
3-24.1 Limitations and Restrictions
3-24.2 Digigraphics Driver
3-24.2 External Characteristics
3-24.2 Internal Characteristics
3-24.2 Data Set Controller Driver

3-25 Driver Request Handling
3-26 Hardware Malfunctions
3-26

3-27 4. SYSTEM INITIALIZER DRIVER
3-27
3-28 Driver Operation
3-28 Input Drivers

Mass Memory Drivers
3-28 Driver Errors

Disk-to-Tape Utility Drivers
3-29 Comment Device
3-29 Mass Memory
3-29 Magnetic Tape
3-30
3-31
3-31 5. DSKTAP UTILITY DRIVERS
3-32
3-33
3-33 6. SYSTEM CHECKOUT PACKAGE
3-33 BOOTSTRAP DRIVERS
3-34
3-34 Checkout Bootstrap Programs
3-34 Assumptions and Restrictions
3-34 Completion and Errors
3-35 Bootstrap Operation
3-35 System Abort Dump

APPENDIXES
A-I F 1536/1525 Analog Input Analysis
B-1 G Communications Option
C-l H Driver Coding Structure
D-l I FDUTIL for Flexible Disk Drive
E-l Formatting

INDEX

FIGURES
3-4 3-4 Normal Sector Addressing and
3-5 Alternate Mode

3-5 Head Positioning
3-11 6-1 System Abort Dump Printout

TABLES
3-3 Use of Buffers for READ, FREAD,

1-5 and FWRITE Requests
3-15 4-1 Hardware Device Drivers
3-17

3-35
3-35
3-36
3-36
3-36
3-36
3-36
3-36
3-37
3-37
3-37
3-38
3-38
3-38
3-38
3-39

4-1

4-1
4-1
4-1
4-1
4-1
4-1
4-2
4-2

5-1

6-1

6-1
6-1
6-1
6-1
6-1

F-l
G-l
H-l

1-1

3-12
3-14

6-2

3-24
4-2

96769390 D

,/ ,

"

,"

/'

',.

,.r----

,/"--,

/," -.

('-'"

1\
'-- ..

/~

,/--.

/-......

" .. '

_ .. _-.,

/-...

,/'

"

,""'-..

,/

\..

,..--

,/"

i .
..........

...

I

I

,,~' .. ' "

(,
',-_./

,r··' ,

"

\...../

o
o

C)

INTRODUCTION 1

Each peripheral device in a computer system is associated
with a device driver, the only piece of software that is
allowed to give direct commands to the device. The driver
controls execution of the read, write, and motion requests
that are passed to the monitor by the user programs.

Each driver normally has three entries: initiator, continu­
ator, and timeout (error). Variable parameters relating to
the device and the driver's working storage are contained in
the physical device table in a format common to all drivers.
Functionally, the initiator initializes the working storage in
the physical device table and initiates input/output on an
idle device; the continuator drives the device to perform
the actual requested task. If the diagnostic timer detects a
device hang-up (lost interrupt), a timer entry is entered.

Whenever a program requires input or output (I/O) for data
it is processing, it makes a monitor request to effect the
desired transfer. The monitor queues the request for
processing by an I/O driver. A driver may handle more than
one device of the same type, but requires a separate
physical device table for each device.

When a request is queued, the request processor, R W ,
determines if the driver is available. If the driver is not
busy, its initiator is scheduled, and the request exit
processor returns to the caller.

The tape motion requests are handled in a similar way
through the T14 motion request processor.

Upon entry to the initiator, a call is made to the find-next­
request routine, which decodes the requestor's parameter
list and places the information in the physical device table.
The driver initiates the I/O operation and selects some
interrupt condition (end-of-operation, data, etc.). A diag­
nostic clock value also is set in the physical device table,
and an exit is made to the dispatcher.

When the I/O device completes the operation, an interrupt is
generated. When the interrupt mask allows the interrupt,
the program that is currently executing is stopped, its
registers and overflow states are stored in the interrupt
stack, and control is given to the interrupt response routine,
which enters the driver's continuator entry point. The driver
acknowledges the interrupt and performs the I/O command
or, if the request is complete, the complete'request routine
is called, followed by a jump to the initiator.

If there is a hardware malfunction and the device fails to
give an interrupt at the end of an operation, the time-out
entry is scheduled by the diagnostic timer routine when the
clock value in the physical device table has expired (if a
timer is present in the system). The driver uses the MAKQ
routine to set the error flags and then calls the device error
logging routine. If the logical unit number is not that of a
diagnostic logical unit, the alternate device handler may be
called by a jump or scheduler request. If the request was
performed on a diagnostic logical unit, the complete request
routine is called, instead of the alternate device handler,
followed by a jump to the initiator part of the driver. The
diagnostic clock is set negative when a device is inactive.

96769390 A

QUEUEIN~ OF I/O REQUESTS

Input/output requests are queued by logical unit number.
Requests for the same logical unit are queued on a thread in
the third word of the parameter list. This word contains the
first word address of the parameter list of the next request
(zero for unqueued requests). The beginning of each queue is
identified by an entry in the table of logical units (LOG2)
which contains the address of the first word of the first
request parameter list. The end of the queue is identified by
FFFF16 in the third word of the parameter list for the last
request in the queue.

READ /FREAD /WRITE/FWRITE REQUESTS
READ/WRITE instructions transfer data between the speci­
fied input/output device and core. The word count specified
in the request determines the end of the transfer.

FREAD/FWRITE requests read/write records in a specific
format for each device.

The macro format for READ/WRITE/FREAD/FWRITE re­
quests (l,2,4,6) is shown below:

READ

} FREAD IU,c,s,n,m,rp,cp,a,x,d
WRITE

FWRITE

Where:

lu is the logical unit.

c is the completion address.

s is the starting address.

n is the number of words to transfer.

m is the mode.

rp is the request priority.

cp is the completion priority.

a is the absolute/indirect indicator for the logical
unit.

x is the relative/indirect indicator (affects param-
eters c, s, and n).

d is the part 1 request indicator (absolute param-
eter addresses).

A detailed description of each of the above parameters
follows after the calling sequence generated by the macro.

1-1

The request codes are 1 (READ), 2 (WRITE), 4 (FREAD), and
6 (FWRITE). The calling sequence generated by the macro is
as follows:

o
1

2

3

4

5

15 14 13 12 11 10 9 8 7

RTJ-($F4)

Old I rc I x I
c

thread

v Iml a I
n

s

4 3 o

rp I cp

Iu

The field descriptions for the calling sequence generated by
READ/WRITE macros are:

rc The request code

thread The thread location used to point to the next
entry or the threaded list

v The error code passed to the completion
address in bits 15 through 13 of the Q register
and set in the request by the system at
completion

Detailed parameter descriptions for the requests are:

lu is the logical unit; an index to the LOGIA table
of physical device table addresses that may be
modified by parameter a.

c is

1-2

the completion address of the core location to
which control is transferred when an I/O
operation is completed. If omitted, no co~-

. pletion routine is scheduled and control IS

returned to the interrupted program. The
notation (c) represents an index to the system
library directory, indicating the program to be
executed upon completion of the requested I/O
operation. Use of the (c) option by unpro­
tected programs results in job termination.

Completion routines are operated by threading
the I/O requests on the scheduler thread. A
three-bit code in the v field of the fourth word
of the request indicates completion status:

15 14 13 Description

o 0 0 No error condition detected by
driver; number of words is re­
quested read or written; device
not ready

o 0 1 No error; requested number of
words read or written; device
ready

o 1 0 No error condition detected by
driver; fewer words read than
requested; device not ready

s

n

m

is

is

15 14 13 Description

o 1 1 No error; fewer words read than
requested; device ready

1 0 0 Error condition; requested words
read; device not ready

1 0 1 Error condition and/or end-of­
tape detected by driver; number
of words requested is read or
written; device ready

1 1 0 Error condition and/or end-of­
file detected; fewer words read
than requested; device not ready

1 1 1 Error condition and/or end-of-
file or end-of-tape detected;
fewer words read than requested;
device ready

When control is returned to the completion
address, these bits are set in similar positions
in the Q register. If less than n words were
transferred on a read, the location following
the last word filled is placed in the last word
of the user's buffer.

An end-of-file can be verified by checking bit
11 of word 12 in the physical device table.

the starting address; the address of the first
block location to be transferred (see param­
eter x).

the number of words to be transferred.

(n) Number of words to be transferred is
determined by parameter x.

o The minimum information is transferred
(one word or one character), depending on
the device.

NOTE

For FREAD and FWRITE, n cannot be
zero. Some devices signal zero words as
an illegal request.

is the mode; it determines the operating condi­
tion (binary/ASCII) of a driver.

Macro

A Data is converted from ASCII to external
form for output; from external form to
ASCII for input.

B Data is transferred as it appears in core
or on an I/O device.

96769390 A

/-".

o
o
"'--"

('-)

L.

,/_.-

:' I
.~

",..-,.

'"--",,./

. r-'\
,I I

"-.-)

,
(

I.J

o
()

()

C)

o Binary

1 ASCII

rp is the request priority (15 through 0, with 0 as
the lowest) with respect to other requests for
this device. This request establishes the order
in the I/O device queue. It is automatically
zero for unprotected requests.

cp is the completion priority (15 through 0), the
level at which the sequence of the code
specified by parameter c is executed. It is
automatically 1 for unprotected requests.

a is the absolute/indirect indicator for the logical
unit.

Macro

blank The first parameter (iu) specifies the
logical unit.

R lu is a signed increment (-IFFI6 Iu
IFFI6) which is added to the address
of the first word of the parameter
list to obtain the core location con­
taining the logical unit number.

Iu is the address of the core location
number (iu<3FF).

- 16

o lu is a logical unit number.

I Iu is a signed increment (±IF)6); not
allowed if d = 1.

2 lu is a core address containing the
logical unit number.

x is the relative/indirect indicator; this parameter

96769390 A

affects parameters c, s, and n as shown here.
Because of the wrap-around feature, computed
addresses may be before or after the param­
eter list.

(c) is indirect

o or blank and
c is direct

o or blank and
s is direct

x is meaningless and (c) rep­
resents an index to the sys­
tem directory.

c is the completion address.

s is the starting address. If
the request is on mass mem­
ory, the mass memory ad­
dress follows the request.

o or blank and
(s) is indirect

~ 0 or not
blank and c is
direct

~ 0 or not
blank and s is
direct

~ 0 or not
blank and (s)
is indirect

n is direct

x is 0 or blank
and (n) is
indirect

x is ~ 0 or
~ blank and (n)
is indirect

(s) is a core location that
contains the starting' ad­
dress. If the request is on
mass memory, the mass
memory address follows the
core location that contains
the starting address. t

c is a positive increment
that is added to the address
of the first word of the
parameter list to form the
completion address.

s is a positive increment
added to the address of the
first word of the parameter
list to form the starting
address. If the request is on
mass memory, the mass
memory address follows the
request.

(s) is a positive increment
added to the address of the
parameter list to form the
address of a location con­
taining another positive in­
crement. If the request is
on mass memory, the loca­
tion containing the second
increment is immediately
followed by two words which
contain the mass memory
address.

x is meaningless and n is the
length of the block to be
transferred .

(n) is the core location con­
taining the block size.

(n) is a positive increment
added to the address of the
first word of the parameter
list to obtain the location
containing the block size.

d is the part 1 request indicator; this parameter
indicates that the request requires the use of
I6-bit address arithmetic.

o or blank Preceding description of param­
eter applies

tIf bit 15 is set for (n) or (s), incrementing continues
indirect until bit 15 is not set.

1-3

1 x is ignored.

n is the number of words

c and s are 16-bit absolute ad-
dresses.

lu is processed the same
as d = O.

a cannot be set to R.

Mass Memory Address Format:

15 14 o

Most Significant Bits of Mass
Storage Address (MSB)

I Least Significant Bits of Mass
o Storage Address ~LSB) (LSB)
~~------------------------------------~

The mass storage address specifies that a mass memory
word address (READ/WRITE) or a mass memory sector (96-
word size) address (FREAD/FWRITE) return is to the
location following the mass storage address.

The user is reminded that the assembler that executes under
RTOS does not support macros. The user must therefore
code the required monitor calls directly. For example,
assume that a message at location MESS of length MESSL is
to be printed on the comment device. A sample coding
could be the following:

RTJ- (AMON!) Call monitor
NUM $4COO Request code, absolute
ADC COMPLT Completion address
NUM 0 Thread
NUM $18FC ASCII, logical unit in

ADC MESSL
location FC16 Length

ADC MESS Start of message
JMP- ($EA) Call dispatcher

COMPLT NOP 0 I/O completion address

MOTION

This request (14) is used to control motion and end-of-file
processing. The macro format is:

MOTION lu,c,PI 'Pz ,P3 ,dy,rp,cp,a,x,d,m

Where:

1-4

lu is the logical unit.

c is the completion address.

PI' are the motion control parameters; each of these
Pz' results in a specific action that is defined in
P3' table 1-1. Up to three motion commands may

be defined in a MOTION request; they are

executed in the sequence PI ,pi ,P3. The first
command with a value of zero terminates the
request.

dy is the density parameter.

0 No change

1 800 bpi

2 556 bpi External rejects result when
an illegal density selection

3 200 bpi is attempted.t

4 1600 bpi

rp is the request priority.

cp is the completion priority.

a is the absolute/indirect indicator for the logical
unit.

x is only related to the completion address.

d is set to 0 All parameters are processed as de-
scribed.

1 A part 1 request is indicated (c is a
16-bit absolute address and must
not equal R for the a parameter).

m is the mode.

A ASCII

B Binary

The MOTION control request code is 14. The calling
sequence generated by the macro is:

o
1

2

3

4

15 14 13 12 11 10 9 8 7

RTJ-($F4)

o Id I rc Ix I
c

thread

v Iml a I
pl I p2 I

4 3 o

rp I cp

Iu

p3 I dy

"j" In addition to the attempt to set a density that is not legal
for a unit (e.g., 200/556 bpi on a 609), the drivers do not
allow a density change if the unit is not at load point.

96769390 B

,/

('---....,

.' ,.,

,/~•

(\
.... _" ...

(
\

(/'~ ..

" "

,r"-

"

"" ;,..--

'--

/

(
''-.....

,r-'"
(
\")

~-,

'\.......

('\

~,/

r-'\
~)
',---/

(~)

r\
',,--,/

r"\
"-/

TABLE 1-1. MSOS DRIVER ACTION FOR MOTION REQUEST PARAMETERS Pl. P2. P3

Code Descrlption MT CR CP LP TTY PTR PTP MSD PTD

0 First zero termiM~s processing the request X X X X X X X X X

1 Backspace one record X X

Do nothing X X X X ~ X X

2 Write one end-of-file mark X X

Punch one end-of-file mar~ X X

Page eject; reset Une count X X

Punch leader X

Do nothing X X X

3 Rewind to loadpoint X

Set pointer to start-of-tape X

Do nothing X X X X X X X

4 Rewind and unload; terminates request X

Terminates processing the request X X X

Sequence count goes to zeroi terminates
request X X

Reset line count; terminates request X

Set pointer to start-of-tapei terminate this
request X

Do nothing 'X

5 Skip one file forward X X X

Slew cards to end-of-file X

Do nothing X X X X X

6 Skip one file bach-ward X X

Do nothing X X X X X X X

7 Advance one record X X

Do nothing X X X X X X X

Key: l\IT Magnetic tape PTR Paper tape reader
CR Card reader PTP Paper tape punch
CP Card punch MSD l\1'ass storage driver
LP Line printer PTD Pseudo tape driver
TTY Teletypewriter CD COSY driver

tAssumes use of the magnetic tape physical devicei for detailed information refer to COSY Driver in section 3.

96769390 A

CDt

X

X

X

X

X

X

X

X

1-5

Where:

rc is the request code.

thread is the thread location used. to point to the
next entry on the threaded list.

v is the error code setting.

One MOTION control can be repeated for magnetic tape. In
this case the macro request is as follows:

MOTION IU,c,r,p,n,O,rp,cp,a,x,d,m

Where:

r is the repeat function indicator that must equal
Rin the a parameter.

p is the motion code.

n is the number of times to be executed, not to
exceed 4,095.

° is a null parameter.

All of the parameters are the same as in the preceding
MOTION request except for r, p, n, and 0, that replace
Pl'P2,P3' and dye

The coding sequence generated is the same as above except
for the last word, which is generated as follows:

15 14 12 11 o

p n

Where 1 indicates that the request can be repeated.

The following macros can also be used for MOTION requests;
each macro can perform only one MOTION request.

Where:

*

lu

1-6

BSR* IU,a,n,c,p

EOP* IU,a,n,c,p

REW* IU,a,n,c,p

UNL* IU,a,n,c,p

ADP* IU,a,n,c,p

BSP* IU,a,n,c,p

ADR* IU,a,n,c,p

specifies a relative completion address. If left
blank, there is absolute completion. (The
macro computes the relative address con­
stant.)

is the logical unit number of the device.

a is the absolute/indirect/relative indicator for the
logical unit.

blank

R

lu is the actual logical unit number.

lu is a signed increment (-IPFlS:::lu:::
1PPlS) added to the address of the
first word address of the parameter
list to obtain the address of a loca­
tion containing the actual logical unit
number.

lu is a core address (O to 3PPlS) that
contains the logical unit number.

n is the number of iterations. If blank, 1 is
assumed (not to exceed 4,095).

c is the completion address. If the macro call
terminator is an *, completion is relative (only
the label name is required). If the macro call
terminator is a blank, the completion is abso­
lute. If c is left blank, there is no completion.

p is the priority level; it defines both the request
and completion priority. If left blank, the
priority is zero.

All parameters are optional and may be left blank with the
exception of lu.

Examples:

The following parameters are common to the examples:

NEXT is the completion address.

6 is the logical unit of the magnetic tape.

10

MT

is the logical unit of the card punch.

is the program location containing a 6.

is the low core location containing the
standard binary output device.

1. A backspace macro with the following: A relatil'e
location containing the logical unit number, backspace 3
records, a relative completion address, and a request
and completion priority of 3.

BSR* MT,R,3,NEXT,3

2. Same as the above, except that the completion address

/"

'""

/' ~

I

is absolute. ,r~'

3.

4.

BSR MT,R,3,NEXT,3

An end-of-file macro with the following: The actual
logical unit number, write one end-of-file, zero comple­
tion, and a priority of 0.

EOP 10

Same as above, except that the logical unit number is in
a low core location.

96769390 A

""

,----

{' 0
_·

()

o
()

o

SYSTEM INTERFACES FOR I/O DRIVERS 2

Several system functions are common to most I/O drivers.
The programs that perform the functions are resident in
macro l11emory. The programs are always called with the
address of the physical device table in the computer I
register. The remainder of this section describes the
functions that are performed.

FIN D-NEXT -REQUEST

The find-next-request (FNR) subroutine is used by all driver
initiator modules to find the next request for a device and to
fill the physical device table with information from the
request. FNR is entered by an indirect return jump through
B516 with the core address of the physical device table entry
in the I register.

DEVICE SHARED

The FNR subroutine scans the logical unit table, starting
with logical unit one, to locate other logical units related to
the same device. When a logical unit with a waiting request
is encountered, FNR initiates the input/output device in the
same manner as unshared devices. The lowest numbered
logical unit with a request waiting for that device has the
highest priority; i.e., the device priority completely super­
sedes the scheduling priority. Scheduling priority becomes
operational only within the thread of requests when the
logical unit is activated; i.e., if two logical units sharing the
same physical device both have requests queued (in priority
order), all requests from the lower numbered logical unit are
executed before the first request from the higher numbered
logical unit starts processing. If no requests are waiting on
a device, FNR exits to the caller at the address of the call
plus one.

DEVICE NOT SHARED

FNR examines the queue to obtain the next request. If none
exists, FNR exits to the caller at the address of the call plus
one. If another request is found, FNR updates the queue,
fills the physical device table, and returns to the caller at
the address of the call plus two. Upon return, the I register
is unchanged and the A, Q, and overflow registers are
destroyed.

COMPLETE REQUEST

The complete request (COMPRQ) subroutine is entered by an
indirect return jump through B6 from input/output drivers
to complete requests. This causes interrupts to be inhibited
and the completion address to be scheduled with the error
field from the physical device table, replacing the error
indicator (v field) of the I/O request parameter list for
logical units that do not share devices. Q is set negative if

96769390 B

an error. occurs. The request parameter list (containing a
request code designating it as an I/O call) is interpreted as a
secondary scheduler call by setting bit 15 of the first word
to 1. The scheduler resets it to 0, and the device is released
from its request assignment. When the driver has completed
the request, control is given to the dispatcher. The
dispatcher then passes control to the highest priority
interrupted program or scheduled program. The latter might
be the completion address if one was specified and is the
highest priority program awaiting execution.

The complete request is entered by a return jump to
COMPRQ that terminates the request by executing the
following:

1. Resets the diagnostic clock counter (EDCLK) to
FFFF16

2. Transfers the error field in the physical device table
(ESTATl) to the v field of the request

3. Clears the operation in the progress bit (EREQST)

4. Clears the thread and returns to the driver if there is no
completion address (C = 0)

5. Schedules the completion address if there is one,
passing any error condition in Q and in the v field of the
request, and returns to the driver

SET ERROR FLAG

The MAKQ subroutine is used by the drivers to set up the v
field of the logical unit word of the request and to place the
address of the last valid data into the last word of the
caller's buffer.

DIAGNOSTIC TIMER MODULE

Initially, the diagnostic timer is operated after system start­
up. Thereafter, it is periodically reactivated by a TIMER
request. The frequency of operation is dependent on a
parameter internal to the diagnostic timer program (norm­
ally 1 second).

An input/output hang-up error occurs when a driver fails to
get a completion interrupt on an operation that it initiated.
The diagnostic timer module detects hang-ups. The follow­
ing features must be available for proper operation of the
diagnostic timer module or these errors cannot be detected.

o A hardware device that gives periodic interrupts to
measure time

o The timer request module

o The diagnostic timer module

2-1

The driver establishes a time differential (in increments of
seconds) for each input/output operation; upon differential
expiration a hang-up is assumed. This differential is entered
in the physical device table slot for the device. The
diagnostic timer then decrements the time differential each
time the module is set into execution. When the differential
becomes negative after decrementing, a hang-up is assumed.
If the time differential is negative before decrementing,
either the operation is complete or no operation has
occurred.

When a hang-up occurs, the diagnostic timer accesses the
physical device table entry for that device to obtain the
driver core location to be ,executed in case of a hang-up.
This location is executed by a SCHDLE request at the same
priority level as the driver. Q contains the core address of
the physical device table entry for the device. The driver
takes any necessary action to clear the device involved in
the hang-up. If recovery is not possible, it transfers control
to the alternate device handler. The parameters passed are
the logical unit number and error code.

The devices to be supervised by the diagnostic timer are
specified by a table of physical device table addresses. This
table (DGNTAB) is included in the SYSDAT program~

ALTERNATE DEVICE HANDLER

When a driver detects an irrecoverable failure of an
associated driver, the following actions take place:

1. The driver sets the error field in bits 15 through 13 at
word 9 (ESTATl) of the physical device table for the
device.

2. The controller hardware is cleared and an error word is
set in the Q register.

15 6 5 o

Logical Unit Error Code

3. The driver transfers control to the alternate device
handler by a jump or a scheduler request with the error
word in the Q register.

The following are typical errors:

Input/output hang-up (diagnostic timer)

Alarm

Parity error

Checksum error

Internal reject

,External reject

The alternate device handler determines if the device has an
operational alternate; if so, the request for the device that

2-2

failed is assigned to it at the priority level of the driver
operating the device that failed. The logical unit that failed
is marked down, and the alternate is set active (bit 13 of
LOG1 is set). The request is then rethreaded to the
requested logical unit. If no alternate exists, the program
reschedules itself at a low priority level to request operator
intervention. In either case, all message output is executed
from a low priority level section of the program.

The alternate device handler continues to assign alternates
to devices that failed without waiting for completion of
input/output messages. Therefore, the buffer table
(ALTERR) must be provided to store the error words on
entry. This table is included in SYSDAT. The size of the
table is included in the first location of the table and is
equal to the number of devices that can malfunction at one
time. If this table size is not adequate for the system, the
ADEV program hangs (18FF) when the table is filled.
Identical device failures are not accumulated in the error
table.

If the alternate is also inoperative and it does not specify an
alternate, the procedure is the same as if no alternate were
available for the original unit and it repeated until an
operative alternate is found or until the handler determines
that one is not available.

When an operative alternate is found, pointers are set so
that requests from the failed device are automatically
transferred to the alternate. The comment device has the
following format:

L,lu FAILED ec

ALT. aa

Where:

lu is the logical unit number of the failed device.

ec is the error code.

aa is the logical unit number of the alternate.

. If no alternate is found, the handler issues the following
diagnostic:

L,lu FAILED ec

ACTION

Where:

lu is the logical unit number of the failed device.

ec is the error code.

The operator must respond to the error with one of the
following and then press RETURN.

RP Directs the request to repeat

CU Reports the error to the requesting program; the
device is allowed to continue processing requests.

CD Causes any future programs calling the device to
be informed of the failure upon completion; the
error is reported to the calling program and the

96769390 B

r --

(\... ,

C
,;--
I

\-
or

(
/-----

\ ,.-

r---
\
\.., ,

(~

\.. -"'

rOo.
I~

r-

{
.~

"
()
\......../

1"'- ~

\
',-_/

o

,.....-- ..

l~

o
o
o

,..---',

(J

device is marked down. No subsequent attempt is
made to operate this device. The message

LU xx DOWN

is printed on the comment device.

DU Activates CU and terminates the current job being
processed; the input unit attempts to slew to the
next job to be executed.

DD Activates CD and terminates the current job being
processed; the input unit attempts to slew to the
next job to be executed.

If job processing is not in progress when the DU and DD
options are selected, no action is taken, the word ACTION is
retyped, and another option may be selected.

Mass storage device drivers do not use the alternate device
handler. Mass storage device errors are logged in the
engineering file.

The comment device must never be marked down because it
is required to bring devices back up once they are
operational. The dummy device driver, acting as an
alternate for the comment device, restores the downed
comment device.

If a downed device is requested by a program and if this
device contains no alternate, the following message is typed
on the comment device:

L,lu DOWN

Where: lu is the logical unit number.

This message occurs only the first time it is requested after
being downed.

The completion address is always scheduled with an error.
The requesting program should not repeatedly request
downed units.

MASS-STORAGE RESIDENT DRIVERS

Most standard 1700 drivers are released with the capability
to operate from core or mass memory residency with the
exception of the following drivers:

• Teletypewriter/conversational display terminal key­
board devices

• 364-4 Communications Multiplexer

o Mass memory devices (except the flexible disk)

o 1747 Data Set Controller

o 1744 Digigraphics Controller

o 1500 Series

o Software buffer

• Dummy

96769390 B

All mass-storage resident drivers execute in a shared fixed
buffer area located in SYSDAT. The allocation of this
buffer is controlled by a core-resident executive routine,
MMEXEC. It is possible to load either one or two drivers in
the buffer, depending on its size.

The core buffer should be at least as large as the largest
driver that is used in the system. The maximum size
required that allows two drivers in core simultaneously is
the combined size of the two largest drivers in the system.
Whenever the DCOSY driver is used in a system, the
maximum size criterion (the two largest drivers) should be
used since DCaSY makes I/O requests upon another driver
that has to be in core at the same time to complete the
request for the COSY driver.

When a driver is mass-memory resident, the driver's physical
device tables must declare their initiator, continuator, and
time-out entry addresses to be the corresponding entries in
MMEXEC (i.e., MASDRV, MASCON, and MASERR).

When an I/O request is made upon a mass-memory resident
driver, control is routed to the entry point MASDRV.
MASDRV determines if the driver is already in core and
passes control to it. If the driver is not in core, it is
determined if there is sufficient core available in the buffer
for the new driver. If so, the driver is read in from mass
memory and placed in execution. When there is not
sufficient core for the driver, it is queued for later
execution when space is released by drivers that currently
occupy the buffer.

When a driver completes its input/output for all of the
devices it controls, it releases its space in the core buffer by
jumping to MASEXT. At this time MMEXEC resets' all
initiator, continuator, and time-out addresses for this
driver'S physical device tables to point to the corresponding
entries in MMEXEC. If any other drivers are waiting in the
queue, the first one encountered is read from mass memory
and placed in execution.

When MMEXEC enters a driver, the Q register contains the
physical device table address and the A register contains the
first word address of the driver.

The mass memory location and size of each mass-memory
driver must be contained in words 13 and 14 of the physical
device table. These parameters are supplied by *S initial­
izer control statements during system installation. If a
driver is core resident, its mass memory size must be set to
zero and its length to 7FFF16• This is not required for mass
memory device drivers such as disk or drum.

INTERRUPT RESPONSE ROUTINES

Individual interrupt processing routines are used for inter­
rupt lines that are assigned to only one device. These
routines consist of setting Q to the address of the physical
device table for that device and then transferring control to
the driver continuator.

Example:

R17331 LDQ
JMP*

=XP73310
(P73310+2)

2-3

The address of the interrupt response routine (R17331) is
contained in word 3 of the interrupt trap for the interrupt
line.

If several devices are assigned to one interrupt line, the
interrupt processor must identify the device (usually by
reading the status on each device) that interrupted. For
some special'devioes the interrupt processing routine is an
integral part of the driver. The address in word 3 of the
trap is ,then set to the address of the processor for this
specific interrupt.

ENGINEERING FILE LOGGING

All hardware failures detected by the I/O drivers are logged
in the engineering file by the program log. The logical unit
and error code are defined in the computer Q register (see
Alternate Device Handler above). The call is:

RTJ+ LOG

SCMM DIAGNOSTICS

The input/output for SCMM diagnostics is performed by the
drivers. When errors are detected by a driver, a check is
made to determine if the current logical unit assigned to the
device is a diagnostic logical unit. If so, the error is logged
and the request is completed with an error indicated. No
call is made to the alternate device handler.

BUFFERED DATA CHANNEL ALLOCATION

The 1700 Computer System uses the 1706 Buffered Data
Channel to buffer data transfers involving A/Q devices.
This is useful for decreasing software overhead on input/out­
put operations. Up to three 1706 units may be present in a
system with up to eight devices on each unit. Since a 1706
may only transfer data to one device at a time, the buffered
data channel allocator program (AL1706) is used to queue
the use of the 1706 by drivers whose devices share one unit.
The following drivers are designed to accommodate a shared
1706:

• 1726/1706/405 Card Reader

• 1731/1706/601 Magnetic Tape

• 1732-1/1706/608/609 Magnetic Tape

The following drivers control devices which each require a
dedicated 1706 Buffered Data Channel and cannot use the
1706 allocator:

• 1747/1706 Data Set Controller

• 1744/1706/274 Digigraphics Console

2-4

The 1706 allocator must be requested prior to a 1706
operation. The request is:

RTJ+ RQ1706

The I register contains the address of the driver physical
device table. When the 1706 is available, a return is made
to the driver with the physical device table address in the Q
register. If -the 1706 is not currently allocated, an
immediate return is made to the driver. If the buffered data
channel is currently in use, the driver return address, I
register (physical device table address), and priority level
are saved in the wait stack in SYSDAT. All parameteriza­
tion for allocation is done through SYSDAT.

When the driver has completed usage of the buffered data
channel, the channel is released with the call:

RTJ+ RL1706

The I register contains the physical device table address.
Following a release, the next user (first-in, first-out) is
given control. With the physical device table address in the
Q register, a return is made to the releasing driver. The
allocator is set up to ignore requests for a 1706 (return to
the caller with no action); if the requesting driver has
already received a 1706, requests to release a 1706 are
ignored if one has not already been allocated.

A/Q CHANNEL ALLOCATION

The 1700 computer input/output is an unbuffered operation
performed via the A/Q channel. For devices where the data
is contained on transportable media such as cards, paper
tape, and magnetic tape and where the controller does not
buffer the data, data can be lost if inadequate response time
is provided to service a data interrupt. To avoid lost data,
the drivers of these devices must run at a higher priority
than the system hardware timer, if present.

The following types of devices are subject to this data
handling restriction:

o Paper tape reader

o Paper tape punch

• Card reader

• Card punch

o Unbuffered magnetic tape

o Keyboard/conversational display terminal

The A/Q channel allocator (ALAQ) program is provided to
allocate the A/Q channel if more than one of these devices
is present in a system. The A/Q allocator is functionally
equivalent to the 1706 Buffered Data Channel allocator,
except that the ALAQ request entry is RQAQ instead of
RLAQ.

96769390 B

(,

\ ~

~,

o

C~)
.. '_ \

~)

C)

C)
C)
o

o
o

o
o
C)

AUTO-DATA TRANSFER (ADT)

Auto-data transfer (ADT) provides pseudo direct memory
transfers of data blocks to or from a device. At the macro
level, the transfer appears as a direct memory/storage
access (DMA/DSA) transfer; however, at the micro level,
the 1700 emulator processes each data interrupt and inputs
or outputs the next word of data in a singular fashion. ADT
takes less time than input/output via the INP, OUT, or SIO
instructions, but more time than a true DMA/DSA transfer.

To use ADT for a particular device:

• The device and its controller must be capable of
operating in the ADT mode and must adhere to the ADT
specifications.

• The macro programmer must execute a DMI instruction
(which specifies the location of the ADT table) •
Information in the ADT table specifies the beginning
and end of the data block in main memory, the direction
(input or output) of data flow, the equipment code
(address) for selecting the device, and whether the data
transfer is a word (16 bits) or a character (eight bits).

• The ADT operation must be initiated by an OUT (or SIO)
instruction as specified by the particular device.

While the ADT operation is in progress, the emulator is
executing macro instructions. However, after each macro
instruction is executed, interrupts are checked. If the
particular ADT micro interrupt has become the highest
active interrupt, the next data word is input or output.
After the interruption, the next macro instruction is
executed unless there is another interrupt active.

When the ADT operation is completed (or if there is an
error), a macro interrupt is generated. The macro pro­
grammer may then disable the ADT micro interrupt or
initiate another ADT operation to or from the device. Note
that for M05 devices, an SPS instruction must be done to
clear the macro interrupt.

Four types of ADT tables are specified by DMI instructions.
They are described in the following sections.

ADT TABLE FOR SINGLE A/Q DEVICE

The ADT table for a single A/Q device is as follows:

15 14 13 12 11 10 7 6

1

2

3

4

oTolYclo~

96769390 B

E I
CWA

LWA

Not Used

sin
o

The ADT table for a single consists of four words:

Where: w/c is type of operation

o Word operation. For a word opera­
tion, data is transferred one word at
a time. Normally a total of (CWA­
FES+l) words are transferred.

1 Character operation. For a character
operation, data is transferred eight
bits at a time. The first character is
stored in the most significant half
(bits 8 through 15) of the current
word address; the second character in
the least significant half (bits 0
through 7). Subsequent pairs of char­
acters are input in the same fashion.
Normally a total of 2*(CWA-FWA+l)
characters are transferred.

r/w is read/write

o Read

1 Write

E is equipment number of the device. (It
cannot conflict with any M05 I/O port
numbers.)

SID is station/director bits of the device.
Director bits should specify a data (not a
status/function) transfer.

CWA is current word address counter during the
ADT operation (which always points to the
last data word read from or stored into
main memory). During a data transfer,
the emulator increments the current word
address counter before the data is trans­
ferred. Therefore, it is necessary for the
macro programmer to initially set word 2
of the ADT table to the first word address
minus 1 of the data block in order for the
transfer to occur correctly. Word 2 is
used in conjunction with word 3 (by the
macro programmer) to ascertain if all

2-5

data (words or an even number of char­
acters) was transferred after the ADT
operation is completed. (If the current
word address equals the last word address
when the software driver is recalled with
a macro interrupt, all data was trans­
ferred.) In character mode, word 2 in the
ADT table is not actually updated until
the second character has been trans­
ferred.

LWA is last word address of the data block to be
transferred.

ADT TABLE FOR MULTIPLE A/Q DEVICES

The ADT table for mUltiple A/Q devices is as follows:

2

3

4

5

6

7

8

1*4+1

1*4+2

1*4+3

1*4+4

15 14 13 12 11 10 9 8 7 6 5 4 S 2 i 0

0 1 0 0 0 E Not used 1 0

T15 T14 T13 Tl~ TU TIOI T91 T81 T7 T61 T 51 T41 T31T2 Tl TO

TSI T30 T29 T2f T27 T26~2~IT24IT23 T 22~ 211T 20lT 191T 18 T17 T16

Not used

0 1 IX 0 15" E SID

CWA

LWA

Not used

0111XJ 0 1X1 E I SID

CWA

LWA

Not used

The ADT table for this type consists of 1*4+4 words, where I
is the number of multiple A/Q devices (up to 32) on one
micro interrupt.

Where: E is

Th is

2-6

equipment number of the device. (It
cannot conflict with any M05 I/O port
numbers.)

termination bits for the 32 devices. Initi­
ally, they must be all zero. When a macro
interrupt occurs (after RTERM is gen­
erated), one or more of these bits is set to
indicate that one or more ADT operations
have terminated. Thus T 7 = 1 indicates
that station (or channel) number 7 has
terminated its ADT operation. After
receipt, the bit should be cleared via an

Words 5,
6, 7, and

instruction that locks memory (e.g., a
CLF instruction).

8 are same as words 1 through 4 of a single A/Q
device except bit 14 of the first word
must be 1. (Words 1*4+1, 1*4+2, 1*4+3, and
1*4+4 are defined in the same way.)

ADT TABLE FOR CLOCK

The ADT table for the clock is as follows:

1

2

3

4

15 14 13 12 11 10

11 0 I 0 I 01 01

7 6 o

E I SID

cc

cl

Not used

The ADT table for this type consists of four words:

Where: E is equipment number of the clock (always
equal to 1)

SID is station/director bits of the clock (always
equal to 7016, (Thus, word 1 shoUld equal
80F016·)

CC is clock counters initially set to zero.

CL is

Whenever the clock has been enabled, the
clock counter is incremented every 3-1/3
milliseconds.

clock limit, which is interpreted as a
multiple of 3-1/3 milliseconds. When the
clock counter equals the clock limit and
the macro clock interrupt is enabled, the
macro clock interrupt occurs. (If the
clock limit is five, the clock interrupt
interval is 16-2/3 milliseconds or 60 times
a second.) To continue the process, the
clock counter should be reset to zero, or
the limit counter incremented by its
original value (five). In this later method,
the clock counter can function as an
elapsed time counter.

ADT TABLE FOR SINGLE OR MULTIPLE
MOS DEVICES

The ADT table for single or mUltiple MOS devices consists
of (1-1)*4+4 words, where I is the number of M05 devices, up
to 8, on one micro interrupt. The ADT table follows.

96769390 B

\.. ./

I
\ .

I

\, ... '

\..

(---
"" --,.,

(.-----
'i
\..~

(""'--

~.-

C
(_.,
\~ .-

\'

,r'"

-....-

,r'---
I

"-. . -

(---
\ '

r"
-....

~

I

"-------"

.,,-- -, , '
\)

~

c .. ,
,r"""--

".~ -....

,.. ,

I'~-

'.-.J

I ~", •• -..

,)

.--------

,,-..
I \
\)
'-...../

" o

o

1

2

3

4

15 14 13 12 11 10 9

1I 0 /%loIYwf1T

1 10 I%l 01%11 I

7 6 5 4 210

port I 0 I ° I Not used I 0 I 0
CWA
LWA

Not used

port I 0 I 0 I Not used I ° I °
CWA
LWA

(I-l)*4+1

(I-l)*4+2

(I-l)*4+3

(1-1)*4+4 Not used

Where: w/c is single A/Q device

r/w is read/write

o Read

1 Write

96769390 B

port is port number of the device. where bit 10 is
always 1. Port numbers are analogous to
the A/Q I/O equipment numbers and can­
not conflict with them.

CW A is current word address. Initially set to the
first word address minus 1 of the data
block to be transferred. This is the
current word address while the ADT oper­
ation is in progress and pOints to the last
data word read/stored. Each time a word
(or two characters. if character operation)
is transferred. the current word address is
incremented. The current word address
can be used to ascertain if all the data
was transferred after the ADT operation
is completed (i.e.. if the current word
address equals the last word address. all
data has been transferred).

LWA is last word address of the data block to be
transferred

Words (1-1)*4+1. (1-1)*4+2. (I-1}*4+3. and (I-1}*4+4 (where 2
< I < 8) are defined the same as words 1. 2. 3. and 4.
respecti vely.

2-7

~--

,,,.-,,-,

/

\ ,-,,-

,/

,--,)

('\

'-....J

"'-'.

'-.)

,,,.- '

,""

",- '"
\

"--"""',

'-.-.

,..-',
\

=)
.--)
'-.

J

J

DATA FORMATS 3

Formatted requests cause data to be transferred in a format
that is specific for each device type. The length of the
transfer can be determined by the word count or the format.
Unformatted requests transfer the data defined by the word
count. This section describes the data formatting performed
by the drivers for each device type. MOTION requests are
handled by most drivers. The meaning and function of each
MOTION command may differ for each device.

DUMMY DRIVER

The dummy driver performs no physical input/output. When
the dummy driver is defined as an alternate, it completes
failed I/O requests that have an error indication without
operator intervention. The dummy driver also restores the
failed device to an up condition. This technique is always
used to prevent system hang-ups on the standard comment
device. Programs should always check for I/O errors at
their completion address and take appropriate action when
errors occur (bit 15 of the Q register equals 1).

The dummy driver logical unit can also be used in place of
any other system logical unit. In this case, the I/O request
is completed with no error. This facility is useful for
slewing through records.

TYPEWRITER KEYBOARD DRIVERS

Four types of requests, READ, WRITE, FREAD, and
FWRITE, are honored from the keyboard. Each request
specifies the core starting address location being read into
or written from the number of words and the completion
address. All data is in ASCII format.

READ

The number of words specified by the READ request is
filled, starting at the specified core location. Two char­
acters fill one wordj the first character is put into the
upper half of the word. Bit 7 of each character is an even
parity bitj it is set to zero after it is checked and before it
is packed. If the parity bit is incorrect, a hardware error is
indicated.

If zero words are specified, only one character is read into
the upper half of the specified core location. The lower
character is filled with a hexadecimal FF.

15 14 8 7 6 0

I 0 I First Character
1

0
1

Second Character I
" I ...

~
I

Upper Half Lower Half

96769390 C

FREAD

Words in core are filled, starting at the specified core
location and continuing until the number of words specified
is filled or a carriage return is encountered. Two characters
are packed in each word. Bit 7 of each character is
interpreted as an even parity bit before being cleared to
zero. Line feed characters are ignored~ If a cancel
character is encountered, characters are passed and no
information is stored until a carriage return is detected.

The request is then repeated from the beginning. If a
carriage return is not encountered before the specified
number of characters is read, characters are passed until a
carriage return· is detected. A' carriage return before the
specified number of words is read constitutes a short read.

WRITE

The specified number of words is printed starting at the
specified c<;>re location. Each word causes two characters to
be printed with the upper half being printed' first. If zero
number of words is specified, only one character is printed
from the upper half of the specified core location. If an
ASCII end-of-text character (0316) is encountered, the
request is terminated at that point, regardless of the number
of words specified.

FWRITE

This operation is the same as WRITE except that before any
words are printed, a carriage return and line feed function
are executed by the teletypewriter driver.

MOTION

A write end-of-file MOTION request to the keyboard is
honored by executing a top-of-form function. All other
MOTION request parameters cause no action with normal
completion of the request.

IT05 1 TERMINAL DRIVER

The ITOS 1 Terminal Driver provides communications
between the ITOS executive and up to 16 752 CRT termin­
als. Each terminal is connected to the ITOS CYBER
computer by way of an 1843-2 Communications Line
Adapter (CLA). This driver also provides communication
between the ITOS computer and the 1811-2 Console CRT •

The ITOS 1 Terminal Driver appears to the MSOS 5 system
as a single logical unit. The request structure allows the
caller to specify the particular CRT with which he wants to
communicate. A subrequest structure allows requests in
addition to the normal READ, FREAD, WRITE, and FWRITE
requests.

3-1

REQUEST FORMAT

The request format is similar to normal MSOS 5 I/O
requests, except for two parameters that have different
meanings. The parameters are:

• Mode (bit 12 of word 3)

The MSOS 5 request ASeD/binary mode bit is
interpreted by this driver as specifying the meaning of
the n parameter. If the mode bit m equals 0 (binary), n
specifies the number of characters. If the mode bit m
equals 1 (ASeD), n specifies the number of words.

• s (word 5)

The s parameter in the MSOS 5 request is the address of
the extended request parameter block, not the address
of the data buffer.

The extended request parameter block consists of five words
as shown:

15 8 7 o

o Reserved I Port

1 Completion Status

2 Cursor (x) I { Cursor (y)
Termination code

3 nc - Number of characters

4 s - Address of data buffer

Detailed parameter descriptions are:

Reserved:

Port:

Status:

3-2

Reserved for future use.

Logical port number. Set by the
caller on READ, FREAD, WRITE, or
FWRITE requests.

Status as at the completion of the
request

Bit

15

14

13

12

11

10

9

8

7

Meaning

Subsystem down

Spare

Spare

Lost data

Framing error

Request timeout

megal I~quest

Parity error

Spare

6

5

Spare

Spare

NOTE

If any status bit is set, bit 15 of Q is also
set at the completion of the request.

Cursor (x):

Cursor (y):

Termination code:

nc:

s:

4-0 Subrequest code as follows:

o

1

2

3

Normal mode

Logical connect

Logical disconnect

WRITE-READ

4-31 Reserved

Horizontal cursor position prior to
input (WRITE-READ request)

Vertical cursor position prior to input
(WRITE-READ request)

On READ, FREAD, and WRITE-READ,
the driver returns the termination
code. (See ITOS reference manual.)

Number of characters requested to be
read for WRlTE-READ requests set
by driver to actual number of char­
acters input on completion of READ,
FREAD, and WRITE-READ requests.

Address of the data buffer for the
. request.

Seven types of requests are recognized. They are described
below.

MOTION

AU MOTION requests are rejected.

READ/FREAD

The number of characters specified by n are input into the
data buffer until a termination character is encountered.
Any characters input in excess of the buffer length are
ignored. Any characters stored in the buffer are echoed to
the screen unless echo is disabled (see WRITE-READ).
Entered characters may be erased by means of the
- (backspace) key. Termination characters are not stored
in the buffer.

WRITE

The number of characters specified by n are output to the
screen.

96769390 e

\.

/

/

~ ...

\.

c'

{

~,

i I ,--'

o

o
()

()

FWRITE

The number of characters specified by n are output to the
screen. A CARRIAGE RETURN, LINE FEED sequence is
output before any character. A LINE FEED character is
added following each CARRIAGE RETURN in the buffer.

CONNECT

The CONNECT request is issued as a READ request and
causes the driver to return all succeeding input to the buffer
specified. Completion is scheduled at the address specified
and at the priority specified. CONNECT sets unsolicited
input mode. No completion is scheduled for a CONNECT
request.

DISCONNECT

DISCONNECT request is issued as a READ request; it causes
the port to be disconnected from the request buffer.
Completion is specified as in the CONNECT request.
DISCONNECT sets the port to non-unsolicited input mode.
No completion is scheduled for a DISCONNECT request.

WRITE-READ

The WRITE-READ request is issued as a WRITE or FWRITE
request; it delays write completion until a succeeding
unsolicited input is received. No read completion is
scheduled. WRITE-READ is rejected if the port ,is not
connected. An 8016 character in the output buffer disables
the echoing of input characters until the completion of the
unsolicited input.

CURSOR POSITIONING

The driver provides cursor positioning by use of the direct
cursor addressing of the 752 CRT. Two methods are
provided:

• A cursor positioning !)equence (IB16, 3116, x, y) may be
embedded in any write buffer.

• For a WRITE-READ request, word 2 of the extended
request parameter block requests the cursor position
that is to be used prior to receiving input data. A-I
(FFFE16) in word 2 disables this feature.

CONVERSATIONAL DISPLAY TERMINAL
(COT) DRIVER
This driver is used only for diagnostic purposes. It
communicates with the CDT through the 1843-2 CLA. The
CDT driver works as a pseudo driver since it makes a non­
standard MSOS request to the 1843-2 CLA driver to transfer
the data on the CLA channel attached to the CDT.

The driver handles data as described above under the ITOS 1
Terminal Driver.

96769390 C

If an error occurs it is reported by the alternate device
handler and logged in the engineering file. Fault code values
are as follows:

Code

o
2

3

Meaning

Timeout

Alarm/status

Parity

PAPER TAPE READER DRIVERS
The paper tape reader honors two types of requests, READ
and FREAD. Each of these requests may be in ASCn or
binary mode, thus providing four different combinations. In
addition to mode, each request specifies the starting core'
location being read into, the number of words to read, the
completion address, the request priority, and the completion
priority.

READ BINARY

The calling sequence specifies the number of words in core
th,at are filled, starting at the specified core location. Two
frames of tape fill one word, with the first frame packed
into the upper half of a word. If zero number of words is
specified, only one frame is read into the upper half of the
specified word; the lower half is filled with a hexadecimal
PF.

15

First Frame of
Binary IBta

PARITY CHECKING

8 7

Second Frame of
Binary Olta

o

Two logical units can be employed for READ and FREAD
ASCn requests. One logical unit performs exactly as READ
and FREAD ASCII requests. The logical unit identified by
the name SKPAR (a word in the physical device table for the
paper tape reader) performs READ and FREAD ASCII
requests without parity checking. Bit 7 of each frame is set
to zero without checking parity.

READ ASCII

The specified number of words is filled, starting at the
specified core location. Two tape frames fill one word. Bit
7 of each frame is interpreted as an even parity bit (set to
zero). If zero number of words is specified, only one frame
is read into the upper half of the specified word. The lower
half word is filled with a hexadecimal FF.

3-2.1

15 14 8 7 6 0

H First Character lui Second Character I
\, 1\ 1

"""" 'V'"

Upper Half Lower Half

FREAD ASCII

Wor~ in core are filled, starting at the specified core
!ocB;tlon and continuing until the specified number of words
15 filled or an ASCll carriage return character is encount­
ered. If the number of words requested is read first tape
frames are passed with no information being stored i~ core
until a carriage return is encountered.

Two tape frames are packed in each word with bit 7 of each
frame interpreted as an even parity bit before being set to
zero •. Line feed, cancel, and null characters are ignored. If
a carrIage return is read before the word count is depleted
no further data is transferred. If the number of character~
read is odd, then the lower half of the last word is filled
with a hexadecimal FF.

FREAD BINARY

If the first frame read during FREAD binary is an ASCll
asterisk, the request is changed to ASCn mode. If not the
first word is interpreted as the complement of the nu:Ober
of words in this formatted record. This number or the
number of words requested in the calling sequence (which­
ever is smalle;) determines the number of words being filled.
After the entIre record is read, the next word is a checksum
which balances the sum of the header word and the
information in the record to zero. If the sum is incorrect a
hardware error is indicated. If the word count is dePlet~d
before the end of the record, the tape is passed until the end
of the record is found and the checksum is checked. If the
end of the record is found before the word count is depleted
no further data is transferred. If the word count of th~

3-2.2

binary format record is more than 22,016, then 256 is
subtracted to obtain the actual word count. This is
necessary because the system cannot recognize word counts
between 21,760 and 22,015; these numbers appear as an
asterisk. Therefore, the system adds 256 to the word count
of all paper tape format records of length 21,760 and larger
on output.

EOF PROCESSING' AND MOTION REQUESTS

The ~aper tape reader drivers provide the capability for
handlIng end-of-files. An end-of-file is specified with
ODIC as the first frame of a record. If an end-of-file is
de~ected dur.ing an ASCII or formatted binary request, the
drIver sets bit 11 of word 12 of the physical device table and
completes the request with an error code. The alternate
device handler is not called, and control is given to the
caller's completion routine with the error code set in bits 15
through 13 of the Q register. End-of-files are treated as
data in unformatted binary requests.

PAPER TAPE PUNCH DRIVERS
Two types of requests, WRITE and FWRITE, are honored by
the ~aper tape punch driver. Both of these requests may
speCify ASCll or binary mode, providing four different
combinations. In addition to mode, each request specifies
the core location to be punched from, the number of words
to punch, and the completion address.

WRITE BINARY

The number of words punched is the same as the number of
words specified, starting at the specified core location.
Each word is punched in two frames of tape with the upper
eight bits being punched first. If the number of words
specified is zero, only one frame is punched and it is the
upper half of the specified word. If the number of words
specified cannot be punched, a hardware error is indicated.

96769390 C

I

\
"-

/~ -,

"-

)

/"

\.... ...

r
I

,.,,,-,0_,

l I ,-/

".. .. _"
I
" I

WRITE ASCII

The number of words requested is punched. starting at the
specified core location. Each word is punched in two tape
frames; bit 7 of each frame is changed to provide even
parity. If the number of words specified is zero. only one
frame is punched from the upper half of the specified core
location.

FWRITE ASCII

This operation is the same as WRITE ASCII except that after
all words have been punched. a carriage return and a line
feed character are punched; when a carriage return is
encountered. a line feed character is inserted following the
carriage return.

FWRITE BINARY

The first word punched is the complement of the number of
words being punched. The specified number of words is then
punched at two frames per word, starting at the specified
core location. A final word, which is a checksum, is then
punched and, when added to the sum of the header word and
the information in the block, balances to zero. If the
proposed format record length is more than 21,760, then 256
is added to the word count prior to punching the record.
This is necessary to avoid record lengths between 21,700
and 22,015 that appear as asterisks.

MOTION REQUEST

A write end-of-file MOTION request is honored by punching
a file mark followed by leader. All other parameters cause
no action with normal completion of the request.

"--.j ERROR CONDITIONS

o

Drivers recognize the following irrecoverable errors:

o Internal reject on input or output instructions

• External reject on input or output instructions

• Failure to interrupt

o Alarm

o Parity error on input

o Checksum

o Lost data

o Validation error while punching

The driver sets the error fields in the physical device table
and the error parameter in the request. Upon entry to the
completion program, the Q register is negative, indicating
an irrecoverable error to the user. The alternate device
handler is called by the driver for error recovery.

96769390 A

CARD READER/PUNCH DRIVERS

READ BINARY

The calling sequence specifies the number of words in core
to be filled. starting at a requested beginning address. Card
columns are packed. leaving no unused bits. After reading in
binary mode, the buffer appears as:

o

1

2

3

4

15 12 11 8 7 4 3 o
Column 1 IColumn 2 •••

. Column 2 I Column 3 •••

Column 3 I Column 4

Column 5 IColumn 6 •••

Column 6 I etc.

If zero words are requested, only the first column of the
card is read. The unused bits are set to ones; the remainder
of the card is unavailable. If a READ ends in the middle of
a card, motion continues but the unread portion of the card
is unavailable.

READ ASCII

Words in core are filled, starting at a given address, until
the number of requested words is filled. READ ASCII
proceeds in the same manner as READ binary except that
each column is converted from Hollerith to a 7-bit ASCII
equivalent before being stored. These ASCII characters are
stored two per word, leaving bits 7 and 15 as zero. If the
number of words being read is zero, one column is read and
the character is placed in the upper half of the word with
ones placed in the lower half. See FREAD ASCII above for
conversion code information.

FREAD BINARY

Although a formatted read operation may be specified with
the request as binary or ASCII, the format of the card
actually determines the mode. If column one of the card
contains a 7/9 punch, it is read as a formatted binary record;
otherwise, it is read as a formatted ASCII regardless of the
mode specified in the request.

Figure 3-1 is the format for the binary record cards.

All cards within a record must have their sequence numbers
in order. If a record requires multiple card storage and a
sequence error is detected on any card within the record,
the error is fatal and the alternate device handler is
entered.

If the number is out of sequence, sequence numbers between
records can be handled in two possible ways:

o The operator can resequence the cards, rereading the
out-of-sequence card. Respond with RP to the se­
quence error.

3-3

3-4

/

FIRST CARD

COLUMN 1 2 3

12

11
E ,., ..

0

1

2
A B

3
C

4

5

6
B

7

at C

9 \.. "".

SUBSEQUENT CAROO

COLUMN 1 2 3 79 ao
...

12

11

o
1

2

3

4

5

6

7

a
9

..

'" E

A

C C D

C

D

\.. .J

WHERE: A IS THE SEQUENCE NUMBER (COLUMN 1, ROWS 12 THROUGH 5).

B IS THE COMPLEMENTED RECORD LENGTH (COLUMN 2, ROWS 2 THROUGH 9;
COLUMN 3, ROWS 12 THROUGH 5 ON THE FIRST CARD).

C IS THE DATA (FIRST CARD STARTS IN COLUMN 3, ROW 6; OTHER CARDS START
IN COLUMN 2, ROW 2).

D IS A 16-BIT CHECKSUM (IT FOLLOWS THE LAST DATA WORD OF A RECORD).

E IS RESERVED (COLUMN 2, ROWS 12 THROUGH 1). IT IS BLANK UNLESS A
CHECKSUM OVERRIDE IS INDICATED IN COLUMN 1; OVERRIDING THE CHECK­
SUM IS NOT RECOMMENDED.

tIF ROW a IN COLUMN 1 IS PUNCHED, THE DRIVER IGNORES THE CHECKSUM.

Figure 3-1. Binary Format Record Cards

96769390 A

\

'-.

r--'
\
"-

,r'"

1\

,/'."

I\....

(""

. ,.

,r~'

"

1'/.

,/""

"

!,"-'-
I
\

;"--'

'-.

~"
(
\ ...

('~

L,.....~··I .'

I

~

(...•

,--/

o
Cj

o
C)

• The operator can read the cards out of sequence,
rereading the out-of-sequence card twice. Respond
with RP to the sequence error.

When an ASCll card is read, the driver sets the sequence
number to zero. Thus, if an ASCll card is embedded in a
formatted binary deck, a sequence error is reported when
the next formatted binary card is read. If the operator uses
the RP response to cause the unit to reread the binary card
that caused the sequence error, the ASCll record is retained
as part of the block of data and the driver recovers.
Otherwise, this type of sequence error is fa tal.

If the number of words requested is less than the length of
the record, cards are passed with no data transferred until
the entire format record·is passed.

If the number of words requested is greater than the length
of the record, data transfer ceases at the end of the record
and no further cards are read for that request.

On a formatted binary card, row 8 of column 1 is the
checksum override bit. When the driver detects this
condition, a card's checksum is ignored. The following
example illustrates how this function could be used.

Assume that while the user is loading a binary deck the card
reader jams, damaging a card. The user can successfully
duplicate the card, using the LIBEDT *T processor;
however, the card's sequence number is incorrect. This is
corrected by punching the sequence number on a keypunch
machine, which causes the checksum to be incorrect. The
user then punches the checksum override bit, allowing the
card to be read properly.

COLUMN 1 2 3 4

WORDl
BITS WORD 2

0-3 BITS
0-7

WORD 1 WORD 3

BITS BITS
4'!" 15 0-11

WORD 2
WORD 3

BITS
8 -15 BITS

12 -15

\..

FREAD ASCII

Columns are read to ASCll mode until either one entire card
is read or the number of words requested is filled, whichever
occurs first.

If the number of words requested is depleted prior to reading
one card, the remainder of the card is unavailable and the
read operation is in READ ASCll mode.

If a binary card is read when an FREAD ASCll is specified,
either the card is read in binary (the first card of a record)
or a 7/9 punch error occurs (not the first card). The
Hollerith code conversion to ASCll can be done using
ASCll63 (026 type) or ASCII68 (029 type). The conversion
table is appended to the driver for this conversion:

• CR026 - ASCII63 conversion

• CR029 - ASCII68 conversion.

In addition, the 1726 Card Reader Controller provides for
hardware conversion of Hollerith to ASCll for ASCII63. This
hardware conversion is used if bit 15 of word 16 in the
physical device table is set to one.

WRITE BINARY

The number of words specified is punched in the format
illustrated in figure 3-2. When processing relocatable binary
decks, the NAM card is offset for each deck punched.

WRITE ASCII

Each word in core is converted into two Hollerith columns.
Characters not within the range 20 16 through 5F 16 are

..
~

~

Figure 3-2. WRITE Binary Punching

96769390 C
3-5

converted to blanks. The character in the upper half of the
word is punched first, followed by the character in the
lower half. This continues until the number of words
specified is punched. See FWRITE ASCII above for code
conversion options.

FWRITE BINARY

Cards are punched in the format previously specified in this
section.

The sequence base is reset to zero on detection of a
formatted binary NAM block, and the card is offset. If the
upper eight bits of the first data word are 2A 16 (asterisk),
the driver changes the request to FWRITE ASCII.

FWRITE ASCII

The ASCII FWRITE capabilities are the same as WRITE in
ASCII mode, except that a maximum of one card is punched.

The code conversion from ASCII to Hollerith can be done
from ASCII63 (026 type) or ASCII68 (029 type). A table
program is appended to the driver for this conversion:

• CP026 - ASCII63 conversion

• CP029 - ASCII68 conversion

EOf Processing and Motion

Requests

The i card reader and controller drivers provide the capability
of handling end-of-files. If.an end-of-file record is detected
by the driver on input, the driver offsets the record, sets bit
11 in word 12 of the physical device table, and completes
the request with an error code. The alternate device
handler is not called, and control is given to the caller's
completion routine with the error code set in bits 15 through
13 of the Q register.

An end-of-file is a card with column 1 punched with the
configuration set into bits 11 through 0 of word 16 of the
physical device table. Normally it is a 6/7/8/9 punch;
therefore, PHYSTB word 16 contains OOOF 16.

The MOTION request to skip file forward (parameter code 5)
is honored by the driver. All other MOTION requests cause
no action.

ERROR CONDITIONS

Errors detected by the driver are caused by equipment
malfunctions or improper card decks.

The following conditions are detected:

• Internal or external reject to any INP or OUT command

• Alarm interrupt

3-6

• illegal Hollerith punch detected during an ASCII READ

• Data interrupt after column 80 on READ

• End-of-operation interrupt before column 80 on READ

• Incorrect checksum at the conclusion of READ

• Preread error

• Incorrect record sequence number

• Bit 15 of the complemented length is not 1

• 7/9 punch error

When one of these malfunctions occurs, the alternate device
handler is entered by the driver. The alternate device
handler functions in handling error codes, and the possible
options available to the user for recovery are described in
Alternate Device Handler in section 2. Refer to the 1700
MSOS Diagnostic Handbook for I/O error codes and descrip­
tions.

C8104 CARD READER DRIVER

This driver processes READ, FREAD, and MOTION requests
for the CB104 Card Readers. The CBI04 Card Reader
Driver is written in kernel format, and is initially mass
storage resident. The nondiagnostic logical unit portion of
this driver handles two or more Icard readers. The input or
motion requests are handled successively, rather than
concurrently. I
The driver is interrupt driven unless the operator selects the
status driven option. The status driven feature is selected
by changing two words in the physical device table for that
card reader (see appendix C). INTBIT (word 33) contains
deselecting bits as shown:

PHYSTB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INTBIT

Deselects data interrupt
Deselects end-of-operation
interrupt

Deselects alarm interrupt

If any INTBIT is set, WAITAD (word 34) must contain the
absolute address of the status routine that checks comple­
tion of the I/O event. The kernel driver executes the
routine and receives control after execution at the driver's
continuator entrance. Transfers are made only on the A/Q
channel.

The mechanical nature of card readers limits error recovery.
The few operator-aided error recoveries are discussed
below.

96769390'D

'- .

'I
\

\ , .'

. "

' ,_ ...

,
"'--/

1''''-·'''''\

()

o

o
C)
()

DATA FORMATS

The input data formats for the card reader are as shown
above for the card reader/punch drivers.

READ/ FREAD/MOTION

The READ/FREAD are as described above for the card
reader/p'unch drivers. READ and FREAD may be performed
in either binary or ASCII modes.

If the cards are out of order and the reader stops for that
status error. the operator pr~sses the RESET button. making
the card reader not ready. The operator then removes the
remaining cards from the hopper, causing a hopper empty
status condition. The out-of-order card is reinserted in the
correct sequence and the remainder of the deck is read when
the operator represses the RESET button (making the card
reader ready). The card reader then reads the remainder of
the deck. now properly sequenced.

STATUS AND ERROR HANDLING

As discussed above, the operator has the option of driving
the card reader from status information as well as from
various interrupts.

Actual status (director status 1 and director status 2) is
saved on the initiator, continuator, and timeout entries.
Separate locations in the physical device table save the
latest status. This feature is available for the diagnostic
logical unit, as well as for the nondiagnostic logical unit. In
addition, a combined director status 1 and director status 2
is provided. The results are placed in to word EST A T2 (word
12) in the physical device table. Combined status is shown
below.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Stacker jam
Failed to feed

Stacker full
Hopper empty

End-of-file
ADT mode

Not ready
Reserved for future use

Ready
Busy

Interrupt
Data

End-of-operation
Alarm

Lost data
Protected

A diagnostic logical unit is supported by the driver. When
using the diagnostic logical unit, a maximum of one card can
be read even if the user's request specifies a word count
greater than one card. A zero word request updates the two
director status words in the physical device table but does
not feed a card. For a nonzero request, raw data (12 bits
right-justified per word representing a card column) is
stored in the user's buffer. A request saves a maximum of
80 words of raw data. Errors detected by the kernel driver
are not handled by the alternate device handler.

96769390 B

Timeout errors, bad status, internal rejects, and external
rejects are reported in the physical device table. Detailed
analysis of bad status is not performed. The fault code
defining the error that has been detected is located in the
physical device table, word 16. The possible fault codes are
shown below:

Code

o

1

2

4

5

6

8

9

10

12

14

22

23

24

25

34t

35t

53t

54t

61 t

62t

63 t

64t

Meaning

Timeout

{

Lost data
Bad initiator status (diagnostic logical
unit

{ Alarm
Bad continuator status (diagnostic logical
unit)

Checksum error

Internal reject

External reject

Hollerith punch bad

Sequence error

Length error (formatted binary)

7/9 punch error

Not ready

Stacker full

Hopper empty

Feed failure

Card jam

Data status at end-of-operation

Premature end-of-operation status

No end-of-operation

No data status before end-of-operation

No interrupt status

Status shows ADT mode

Busy after end-of-operation

No busy before end-of-operation

tIndicates fault codes not currently in other MSOS card
reader drivers.

3-7

TAB 501 CARD PUNCH DRIVER

This driver processes WRITE, FWRITE, and MOTION
requests for the TAB 501 card punch. The driver is mass
storage resident. More than one card punch can be handled
by the driver, and requests are processed concurrently at the
same priority level.

The driver communicates with the card punch through the
1843-2 Communication Line Adapter (CLA). The card
punch driver works as a pseudo driver since it reformats
data intended for the punch and then makes a nonstandard
MSOS 5 request to the 1843-2 CLA driver indicating the CLA
channel attached to the punch.

WRITE BINARY / FWRITE BINARY

The characteristics of binary. punching are the same as those
in the preceding description except that the TAB punch has
no offset capability.

WRITE ASCII/FWRITE ASCII

The driver complies with the preceding standard description
except in the method of Hollerith conversion. The
conversion is done by the hardware and is available in ASdrr
68 (029 type) only.

MOTION

An end-of-file request causes the end-of-file code contained
in the punch physical device table to be punched and the
sequence number to be set to zero.

The rewind/unload request will zero the sequence number
and terminate the request.

STATUS AND ERROR HANDLING

Card punch status is not available. The status returned in
the physical device table is the formatted status from the
1843-2 CLA driver. Bit assignment is:

Not
used used

-1 3 0

Suhrequest
code internal
to driver

Parity error
Illega] request

Timeout
Farming error

Lost data

External or internal reject

t Excludes storage module drive for CYBER 18 and micro
processor flexible disk driver.

• 3-8

If an error occurs, it is handled by the alternate devi~e
handler and logged in the engineering file. Fault code values
are as follows:

Code

o

2

3

Meaning

Timeout

Alarm/Status

Parity

MASS MEMORY DRIVERSt

Data is transferred to and from disk/drum mass-storage
drivers. These device drivers perform formatted (sector
addressing) and unformatted (word address simulation)
requests and detect motion requests that result in no
operation. All mass-memory drivers also detect an overlay
of the requester's parameter list by a read operation. In
that event, sufficient information is moved from the user's
parameter list to the physical device table to allow the
completion routine to be operated.

The hardware compare feature is optional for disk drivers.
It is enabled by resetting bit 15 of the unit select code in the
unit's physical device table to a zero; it is disabled in the
standard delivered system.

When addressing mass-memory devices, the first logical
address is sector 1. Since the first five sectors (0 through 4)
are reserved for the autoload program, logical sector 1 is
physically located at sector 5. Mass memory drivers
automatically bias all addresses by four sectors; all mass­
memory requests, which originate in. unprotected core, are
biased to the beginning of scratch by the protect processor.

For devices having more than one drive, overlap seek is
utilized for maximum data transfer efficiency. The soft­
ware drivers for these devices initiate all required seek
operations before starting a data transfer for a device that
is on cylinder, thus overlapping the seek on several devices
with data transfer on another device.

Cartridge disks utilize a single fixed disk and a single
removable disk in a cartridge case. The disks are referred
to as disk 0 and disk 1 and each has two recording surfaces.
They are individually addressed by the hardware controller
and differentiated by a single bit designator within the file
address word. Autoload is always from disk 0, which is
ordinarily the removable disk (disk 1 is the fixed disk). A
toggle switch on the breakpoint panel of the 1739-1
Cartridge Disk Drive Controller allows disk addressing to be
reversed; disk 0 becomes the fixed disk and disk 1 the
removable disk. Note that autoload is still from disk O. On
the 1733-2/856-x Cartridge Disk, positioning is controlled by
jumpers on the 1733-2 Cartridge Disk Controller in slot 15
that determine the drive type (-2 or -4) and the position of
the data cables from the computer to the drive desired to be
unit o.

Software users reference the entire cartridge disk drive as
a single logical unit with disk 0 containing the lowest sector
address and disk 1 containing the highest. The disk
referenced is dependent on the toggle switch position for
disk addressing.

96769390 D

\ ...

r~

I

\. -

~ ..

\.

\, .-

\

("
'\...-

\
'- -

f' ",

..........

,,-"
I

'--./

I
---.-./

J

J

......... ",

NOTE

The 856-2/856-4 Cartridge Disk Drives
have a switch labeled WRITE PROTECT.
When this switch is set, no data can be
written on the storage device. There is no
hardware status to indicate the setting of
the switch and no alarm status given when
a write is performed with the switch set.
Therefore, it is the operator's responsi­
bility to place the switch in the desired
position.

DATA TRANSFER REQUEST FORMATS

Execution of the data transfer request transfers n words
from mass storage (READ/FREAD) or to mass storage
(WRITE/FWRITE), starting at any core first word address
indicated by s and the mass storage address indicated by
MSA. If n is zero, one word is transferred. No data
formatting is involved since corresponding core and mass
storage locations contain identical 16-bit images.

The first request format is consistent with normal requests
(the x parameter is not set) by providing a seven-word
format.

If the x parameter is set, it indicates an indirect reference
to the first word address increment contained in the s
parameter. This positive increment is added to the address
of the parameter list to form the address of a location
containing another positive increment. The second incre­
ment is added to the address of the parameter list to obtain
the starting address. This second increment is immediately
followed by two words which contain the mass storage
address (MSA) and which must comply with the first request
format.

If parameter x is zero, both s and s" are absolute addresses;
otherwise, they are 15-bit positive increments that are

96769390 D

added to the address of the first request parameter (word
zero) to form absolute addresses. Control is returned to the
location following word 6 after the request is made.

The first request format is as follows.

o
1

2

, 3

4

5

15 14 13 12 11 10 9 8 7

RTJ-($F4)

oldT rc Ixl rp

c
thread

v 101 a I
n

11 sIt

Executable Code

o I s

MSA MSB 30 - 15

oT MSA LSB 14- 0

4 3 o

I cp

lu

~

The second request format adds two additional words that
contain mass storage address in line with the conventional
data transfer format and that are identified by a direct
reference to s (bit 15 equals 0).

The conventions defined previously for s in relation to x and
d also apply. here. Control is returned to the location
following word eight after the request is made. The second
request format is as follows.

3-8.1 •

o
1

2

3

4

5

6

7

15 14 13 12 11 10 9 8 7

RTJ-($F4)

o Id I rc Ix I rp

c

thread

v 10 I a I Iu

n

o I s

MSA MSB 30 - 15

o I MSA.I.SB 14 - 0

DISK AND DRUM DRIVER REQUESTS

4 3 o

I cp

The disk/drum driver processes requests from the user
programs for data transfer to and from mass storage
(READ/WRITE/FREAD/FWRITE), provides a program over­
lay capability, and handles the transfer of mass storage
resident system directory programs into core (SCHDLE);
mode has no meaning.

The number of words specified in the calling sequence is
transferred to or from core, beginning at the specified
starting address and sector number. Sectors are read or
written sequentially until the requested number of words has
been transferred. If zero words are requested, the driver
transfers one word to or from core.

READ/WRITE

READ and WRITE requests provide the ability to simulate
the word address by allowing the mass storage address to be
any word address within the size range of the disk/drum.
The driver converts the word address to sector and word in
the sector by dividing by 96.

READ - The READ request fills core with the specified
number of words starting at a specified address. If zero
words are requested, one word is transferred. Transfer is
initiated from the disk word address specified by the most
significant bits (MSB) and least significant bits (LSB) of the
~equest (least significant bit is a 15-bit value). A carry into
bit 15 of the least significant bits should be treated as an
overflow condition and the most significant bits should be
incremented by one.

The following is an example of a READ request in which C is
the completion address.

READ

ADC
JMP­
BSS

8,C,BUFFER,15,B,4,4,,1

$1,$6D59
($EA)
BUFFER(15)

As a result of this request, 15 words, starting at disk-word
address 1,6D5916, are read from logical unit 8 (disk) into
core, beginning with the first-word address buffer. Disk-

96769390 B

word address 1,6D5916 is the same as sector 632, word 88
(divide 00016D5916 by 96 for sector and word).

This example is illustrated by the following:

Disk

WRITE - The WRITE request transfers the requested number
of words from core to disk. The disk starting address (most
significant bits, least significant bits) is interpreted by the
driver as a word address. When writing on the disk in this
mode, the remainder of partially updated sectors is pre­
served.

A partial sector WRITE request causes:

• The entire sector to be read into a buffer in the driver

• The user's data to be moved into the appropriate portion
of that buffer

• The entire buffer to be written onto the disk

The following is an example of a word-oriented WRITE
across several sectors:

Sector x + 1 Sector x + 2 Sector x + 3

~~renw knManged .j' I Updated I ·I.un~""~d .\
MSB, LSB Word r- ---1 n Words
Address (MSA)

a WRITE of n words at MSA = MSB, LSB

An indirect WRITE request is similar to the indirect READ
request. Fifteen words are written on the disk at sector
632, word 88; other words in the sector remain unchanged.

FREAD/FWRITE

FREAD and FWRITE requests utilize the sector orientation
of the disk. The formats of FREAD and FWRITE are the
same as READ and WRITE. The mass storage address
represents a sector number; n represents the number of
words to be transferred. If n is not a multiple of 96 for an
FWRITE request, the unused words of the last sector are set
to zero.

FREAD - FREAD fills the core, starting at a requested
address, with the specified number of words. If zero words
are requested, one word is transferred.

3-9

\.,

'

'-- ..

~--..

r'"
"--/

',-- /

,~

o
o
o

FWRITE - This request transfers the specified number of
words from core to disk. The starting disk address is
interpreted by the driver as a sector address; the most
significant bits must be zero. If a zero number of words is
requested, one word is transferred. The remainder of a
partially updated sector is not preserved.

USing the same symbolic conventions as the previous
example, a normal FWRITl::: request appears as:

FWRITE 8,COMP ,BUFFER,113,B,4,4,1

ADC 0,103

BSS BUFFER(113)

In this case, 113 words are written from the core first-word
address buffer onto the disk, starting at sector 103.

The cartridge disk drive has more than 7FFF16 sectors and
requires both words of the request to specify the mass
memory sector address. The sector address is defined in the
same manner as a word address (the 16 most significant bits
in word 1 and the 15 least significant bits in word 2 with bit
15 of word 2 set to zero).

15 14 o

WORDI I
<°1

16 MSBs

15 LSBs

MOTION

MOTION requests to the disk result in no action, and return
from the disk is through a normal completion procedure.

ERROR CONDITIONS AND RECOVERY

The following errors are detected by the drivers:

• Internal and external rejects

• Parity error

• Seek error

• Address error

• Lost data error

• Protect fault

• Checkword error

3-10

o Defective sector error

o Compare error

o Time-out error

Error recovery is not attempted with parity, protect fault,
and time-out errors.

Several methods of error detection are employed during disk
transfers. After data reads and writes, a hardware compare
function can be issued to compare the data read or can be
written with the data contained on the file. When an error
is detected, a reposition and retry can be attempted up to
ten times.

When an irrecoverable error occurs, the driver sets the error
field of the disk physical equipment table and the error
parameter in the request. The Q register is negative upon
entry to the completion program and indicates an
irrecoverable error to the user. No information about the
nature of the error is passed to the user.

The alternate device handler is not used for error recovery
since no meaningful alternate device exists.

1833-4/1866-12/1866-14 CARTRIDGE DISK DRIVER (COD)

Data is transferred to and from disk mass-storage drivers.
These device drivers perform formatted (sector addressing)
and unformatted (word address simulation) requests and
detect motion requests that result in no operation. All
mass-memory drivers also detect' an overlay of the
requestor's parameter list by a READ operation. In that
event, sufficient information is moved from the user's
parameter list to the physical device table to allow the
completion routine to be operated.

The hardware compare feature is optional for disk drivers.
It is enabled by resetting bit 15 of the unit select code in the
unit's physical device table to a zero; it is disabled in the
standard delivered system.

For devices having more than one drive, overlapping seek
operations are utilized for maximum data transfer
efficiency. The software drivers for these devices initiate
all required seek operations before starting a data transfer
for a device that is on cylinder, thus overlapping the seek on
several devices with data transfer on another device.

Cartridge disks utilize a single fixed disk and a single
removable disk in a cartridge case. The disks are referred
to as disk 0 and disk 1; each 'has two recording surfaces.
They are individually addressed by the hardware controller
and differentiated by a single bit designator within the file
address word.

Software users reference the entire cartridge disk drive as a
single logical unit with disk 0 containing the lowest sector
address and disk 1 containing the highest. The position of
the toggle switch determines which disk is to be addressed.

96769390 C

DATA TRANSFER REQUEST FORMAT

The READ/FREAD, WRITE/FWRITE, and MOTION
commands have been described above under Mass Memory
Drivers.

STATUS AND ERROR HANDLING

Status bit definition for the cartridge disk drive controller is
as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bus busy
Controller
protected

Device seek error
On bus

Not used { __ --I

End of operation

Ready
Busy

Interrupt
Alarm

On-cyUnder
Disk write protected

Not used
SIngle density

The following errors are detected by the driver:

• Internal and external rejects

• Parity error

• Seek error

• Address error

• Lost data error

• Protect fault

• Checkword error

• Defective sector error

• Compare error

• Time-out error

• End of medium

96769390 C

• Bus is relinquished

• Disk is write protected

• Errors in current word address, bank status, true
cylinder and true sector

STORAGE MODULE DRIVER (SMD)

This driver handles CYBER 18 data transfers to and from
disk. The driver is written in kernel fashion so that portions
may be deleted. This MSOS 5 driver provides seven major
functions:

• MSOS driver (kernel structure)

• Pseudo disk handler (to provide full addressing for CPUs
that are restricted to a single 16-bit mass storage
address)

• System initializer driver

• Disk-to-tape driver

• SYSCOP bootstrap routine to transfer core image to
disk

• Write disk addresses routine

• Initialize disk (track sync logic and clear disk)

The driver controls the CU/33 Disk Control Unit. That unit
in turn controls up to eight 858 Disk Drives. The driver may
be installed in a single or dual-CPU configuration. Each
CPU that accesses the disk must' contain disk adapter
hardware, which is used primarily to check track and sector
address. If the requested address differs from the address
read, the data transfer is inhibited. The maximum hardware
configuration for this driver is shown in figure 3-3.

The use of the single controller by the two CPUs is serial,
not paralleL Disk control is regulated by the drive status
usage table. At autoload time, the SPACE program of the
driver in one CPU takes control of the table, clears it, and
autoloads. The other CPU must not attempt to access disk
during this period. Thereafter, both CPUs' drivers use the

3-10.1

\ ,--

c
,--,

(,
U

• I
'---_./

. ".-- . ,

.,,_ ... ,

o
CJ
(J

(~)

()

CYBER 18-xx t , CYBER 18-xx t
r----. r- ;RI~;- --,
L DRIVER ...J --1- .--- - ---- - -- ---

L-_-C-.J
I DISK I J CONTROL UNIT I .. I DISK I - I CU/33 I

r

ADAPl'ER ADA Pl'E R

CPU
A CPU

DR IVE 0 I 2 3 4 5 6 7

! ! ! ! !.. ! ! !
858 858 858 858 858 858 858 858

DISK DISK DISK DISK DISK DISK DISK DISK

DRIVE DRIVE DRIVE DRIVE DRIVE DRIVE DRIVE DRIVE

t UP TO 256K WORDS OF MAIN MEMORY

0346

Figure 3-3. Storage Module Driver Maximum Hardware Configuration

table to gain and release control of the control unit.
Safeguards are provided to prevent one CPU from locking
out the other CPU. Ttese are as follows:

• Normal: When one CPU has terminated its use of the
controller, an alternate disk adapter interrupt is gener­
ated for the second CPU. The second CPU may then
process its drive requests.

• Forced: When the non-using CPU has a mass storage
request, it starts a five-second diagnostic timer. If this
preset time elapses before a normal release of disk by
the using CPU occurs, the requesting CPU generates a
demand control command that disconnects the control
unit from the using CPU. This function prevents the
disk from being captured by a CPU that has failed. On
the other hand, since this forced interrupt condition
destroys any data transfer or seek in progress, the
operation is catastrophic with respect to the using CPU
if it is not already in a failed condition.

When a CPU controls the disk, all seek operations must be
handled first. The control unit allows overlapping seek
operations on each disk drive except the one on which a
read/write operation is currently taking place. The seek
operations cannot be commanded by the user, i.e., a

,'MOTION command results in a no-operation. The driver
itself develops a seek command (if necessary) as the first
step of a READ, WRITE, FREAD, or FWRITE operation.
Further, the seek complete interrupt is transparent to the
user, since this is handled entirely within the driver. If the
seek command positioned the driver heads properly, the
read/write transfer is initiated when it is the first such
transfer in queue.

In addition to the five-second diagnostic timeout, three
other timeout periods are provided by the driver: one
second to complete a seek operation, one second to

96769390 B

complete a read/write operation, and three seconds to
complete the alternate disk adapter interrupt. The latter,
therefore, requires the requesting CPU to take control of
the control unit' within three seconds of the time when the
using CPU has indicated it is ready to release the disk.

DISK PACK INITIALIZATION

The disk packs for the disk drivers consist of five platters;
an inner and outer protective platter and three inner
platters (six surfaces) for magnetic information. One full
surface is preformatted for head positioning (die kits). This
feature allows the head to be offset perpendicular to the
track. As a result, slight misalignments from pack to pack
and drive to drive may be automatically compensated by the
driver to preserve the stored conformation. This is
discussed in the Error Recovery section.

Packs may be low density (410 tracks per surface) or high
density (821 tracks per surface). The five data tracks
directly over or under one another comprise a disk cylinder.
Each track is divided into 64 sectors of 96 words each (192
8-bit bytes per sector). The tracks per cylinder are
numbered consecutively (0 through 4) and the tracks per
surface are also numbered consecutively (0 through last
equals 409 or 820). Track identification is a hardware
function.

Sector identification is determined at system ordering/
configuration time. The sequence of sector identifications
is held in a sector addressing table (part of the address tag
routine). Normally the order is 0 through 63 consecutively.
However, should the application encounter an I/O timing
problem such that the CPU has difficulty in providing or
accepting data at the storage module drive transfer rate
(1.65 microseconds or 2.48 microseconds per byte), sectors

3-11

could be interlaced so that a full sector would be skipped
between each pair of sectors holding sequential data. This
would effectively decrease the maximum data transfer rate
to/from the CPU by 50 per cent, since two disk revolutions
would be required to transfer a full track of data. Normal
sector addressing and the alternate mode discussed are
shown in figure 3-4.

Two driver routines are needed to fully prepare a disk pack:
the pack initializer routine and the address tag routine.

Pack Initializer

This is a stand-alone program to initialize the tracks and to
zero the data portion of the track.

Initialization need be done only once to set track identifica­
tions for the pack. Two methods of calling the initializer
are provided:

• *SMDMPI generates calling instructions on the
comment device so that initialization can be executed
from a bootstrap.

• *JOB calls the job processor. Then *SMDINT executes
the initializer (i.e., this routine is a file on the program
library).

In the first case, instructions are presented to the operator
to set register values. In the second case, A and Q registers
must be set as shown below:

AI~ _________ D_r_iv_e __ n_u_m_b_e_r_h_o_l_d_in_g_p_a_C_k ____________ _

QIL _______________ ~ __ E_S_C_o_d_e ________________ ~
Where: W = S = 0 always

E = 3 normally. The driver accepts Q = 0 or Q =
070016 for equipment code 3. If E does not
equal 3, then the WES code must be entered
to designate the disk equipment identifi­
cation.

At completion, with the selective stop switch on, the Q
register equals 0 if the initialization was proper. Otherwise,
Q does not equal 0 and the pack must be reinitialized. If
this cannot be done by repeating the above procedure, disk
diagnostics should be run to isolate the hardware errors.

The address tag routine must follow pack initialization.

Address Tag Routine

This is a stand-alone program to write sector addresses in
the sequence specified by the sector' addressing table. The
routine must be called after pack initialization, but it may
also be called if diagnostics indicate addressing problems.
After the sector addresses are written on the tracks, the

3-12

USUAL ALTERNATE
(INTERLACED

NORMA L ____ __../

SECTOR IDNTIFICATIONS)

Figure 3-4. Normal Sector Addressing and
Alternate Mode

data portion of the track is filled with 4142 (AB in ASCII
character mode). The user may use this value to check data
writing if the errors exceed the ll-bit driver error compen­
sation limit, which is discussed below.

The address tag routine may be called by any of three
methods:

• *SMDMPT generates calling instructions on the
comment device so that the address tag routine may be
executed from a bootstrap.

• *SILP calls the system initializer (see the MSOS
Version 5 Reference Manual); then *G executes the
address tag routine. '

• *JOB calls the job processor. Then a *SMDTGS
executes the address tag routine (i.e., this routine is a
file in the program library).

In all cases, the A and Q registers must be set as they were
for the pack initializer (described in the Pack Initializer
section above).

At completion, with the selective stop switch on, the Q
register equals 0 if all sector addresses were written
properly. Otherwise, the attempt to rewrite the tags must
be repeated. If Q does not equal 0 for each of several
retries, diagnostics should be run to isolate the hardware
error.

READ/WRITE/ FREAD/ FWRITE

The standard request formats for the read and write
requests (formatted or unformatted) are used and are
described in section 1 with the following changes (direct
format shown).

96769390 B

,/"

, ~

C:.

(
"-..j

(- '"
'----"

i
"~

,.'-'.'~"'"

0

r-",

U

,r''' '"

CI

o
o

(~)

15 14

0

2

3

4

5

6

7 01

o

Most significant bits

Least significant bits

Current control point

1 :':::" ""' ... ,
)
. Mass storage
address

Added in pre-MSOS 5
Timeshare systems to
address up to 256K of
main memory

The first added words (words 6 and 7) are necessary to
specify the disk address. However, i~ the s~stem used is
restricted to single word sector addressmg to dISk, only word
6 is used. To address the entire disk, a pseudo disk handler
is provided. This handler partitions the disk drive into four
equal parts: 0 through 7FFF16' 800016 through FFFF16'
1000016 through 17FFF16' and 1800016 through 1FFFF16.
The segments are addressed as pseudo disks 0, 1, 2, or 3
respectively plus disk address 0 through FFFF16. The user
program specifies the pseudo disk in the WES code; the
pseudo disk handler employs its own physical device table to
convert the pseudo address to a true 31-bit disk address for
the control unit.

Current control point (CCP) indicates the segment of core
from which the request originated. The data transfer must
remain within this segment. MSOS Version 5 has a mass
memory manager, hence word 8 (CCP) is not required.

There are no buffer size constraints for either input or
output disk transfers under MSOS 5, nor are the buffer s!ze
constraints on output (write to disk) under any operatmg
system which interfaces with the disk. I~ a write tr~n~fer
extends acrosss a cylinder boundary, the dIsk handler dIVIdes
the request into two sections, but this operation is. trans­
parent to the using program. There. may be b~ffer SIze (~r
placement) restrictions on MSOS 4 If the mam memory IS
greater than 65K in size. The buffer in that ~ase must
remain within the 65K sector of main memory deSIgnated by
the control point in the read request.

The driver automatically biases the sector addresses by five
to compensate for the first five physical sectors (0 through
4) that are reserved for autoload and the sixth sector that is
also used by the system. The first sector address is
designated as 01. Mass memory requests originating in
unprotected core are saved in the protected scratch area by
the protect processor unless swapping is inhibited by the
unprotected program.

ERROR RECOVERY

The driver provides automatic recovery for four of the five
types of errors that can be encountered on mass storage
requests. In the recoverable cases, an error code is logged
in the engineering file if the operation failed after the
maximum number of error recovery attempts. The error

96769390 B

code is also saved in the status word for return to the user
program (status values are described below). The maximum
number of error recovery attempts for each type of failure
is a prestored parameter in the phy~ical device table
(PHYSTB). Except for the error correction code (ECC)
generated by write errors (described below), no indication of
corrected errors is saved. No error will be logged if the unit
is inactive or if it is the diagnostic logical unit.

Control Unit Connection Error

The connection is attempted five times. If the control unit
is currently being used by the second computer. t~e
diagnostic clock (5 seconds delay) is started and no error IS
logged. If the control unit should be available but cannot be
connected after five retries, the transfer is aborted and an
error code of 70 is returned to the user.

Drive Connection/Seek Error

Five retries are allowed to connect the disk drive. The error
code is 70 if the connection fails. After the drive is
connected the driver checks ready status. If the unit
cannot be'made ready, the error code is 14. Then seek
status is checked when the seek interrupt is received. After
the maximum number of retries (a physical device table
parameter) has failed, the error code is 17.

Error Correction Code Error

If a write operation fails, it is retried and a special code is
generated in line with the data within the sector. The code
can detect an error up to 22 bits in length per sector and can
automatically correct an error up to 11 bits in length. The
error correction code recovery attempt is selected by a flag
set in the physical device table. If the error exceeds 11 bi~s
in length and is therefore uncorrectable, the error code IS
71.

Note that this system does not declare bad tracks or bad
sectors. Instead, the attempt is made to correct a bad spot
on the track by use of the error correction code. On reading
the data, the correction code is applied to the bad data spot,
and the output from the driver is the reconstituted (correct)
data. This reconstitution is transparent to the user program.

Data Transfer Error (Read)

Because of the high density of data packing, positioning of
the head over the track is critical, both in line with the data
in the track (strobing variations) and perpendicular to the
track (head offset variations). This type of positioning error
is most frequently caused by recording data on one disk
drive and reading it back from another. See figure 3-5.

To counter this type of error, the driver automatically
retries reading the data using numerous combinations of

3-13

OFFSETTING

44---- DffiECTION OF TRAVEL
TOWARD EDGE HEAD
8 POSITIONS {

OF DISK' (HIGH -I----I------+---f.,-..,...-.,.--,-,r-r-,­
DENSITy) OR 1
POSITION (LOW -+_+-----+---f~:-'-------'i.-..--

TRACK

DENSITy)

PHYSICAL
EQUIVALENT OF
ADVANCING STROBE

L-~--~~----'-----~~-

}
8 POSITIONS TOWARD SPINDLE OF DISK (HIGH
DENSITY) OR 1 POSITION (LOW DENSITy)

---'
0345

Figure 3-5.

offset positipns and strobing variations (see figure 3-5), the
total number being controlled by parameters in the physical
device table.

If no offset/strobing combination succeeds in reading the
data, the error code is set to 41.

Force Release Error

This error results in the using CPU from the 5-second
diagnostic clock timeout in the requesting CPU. It should
never occur unless the using CPU is mass memory I/O bound.
The error is unrecoverable since the using CPU's interrup­
tion is hard; i.e., no time is provided to complete or save the
interrupted operations (the programming overhead to do this
would be prohibitively wasteful of space and time). Hence,
the interrupted CPU has only a bare indication of the reason
for the I/O failure, and the driver variables/flags are left in
an uncleared condition for the next set of data transfers. As
explained earlier, the purpose of the demand function is to
recapture control of the control unit from a failed CPU.

Error Codes

The error codes for all errors are:

Code

o

2

5

6

14

3-14

Meaning

I/O hang up (I-second data transfer time­
out)

Alarm error (hardware)

Internal reject

External reject

Unit not ready (disk drive)

PHYSICALEQUIVALENT OF RETARDING STROBE

Head Positioning

Code

17

41

44

70

71

72

73

82

83

Meaning

Seek error

Unsuccessful request (data transfer error)

Guarded address (write protect switch set)

Connect error (control unit or disk drive)

Uncorrectable by error correction code
(read or write)

Extraneous (ghost) interrupt

Forced release error

Control unit error

Mass storage address error (disk adapter
addresses nonexistant main memory)

DIAGNOSTIC FEATURES

Some diagnostic features included in the driver are optional.
These diagnostic features must be defined during the system
ordering/configuration phase. The optional diagnostic buffer
in which the parameters are defined becomes a part of the
normal physical device table for the disk. The physical
device table for the disk is included in appendix C.

The additional requirements specified in the test unit's
physical device table during initialization are:

• The diagnostic unit (word 17, DIAGLU) must be desig­
nated as the read/write request logical unit number.

• The diagnostic request type code (6, 9, and 10 for
format write pack initialize, read address tags, and
write address tags respectively) must be inserted into
bits 3 through 0 of word 52 (DIAGSP) of the requested
unit's physical device table.

96769390 B

..... ,.~- ..

'- .,'

(--'
I,

\"",.

r--
\

\ , .. ,

'-.

"'"

[/

o
o

o
C)

• The standard driver specifies that one retry should be
made for each combination of strobe/offset. However,
there is the option of selecting combinations for
diagnostic operation and retrying selected combinations
more than once. The allowed data transfer error retrial
value must be set to zero. The strobe and offset value
(labeled STROBE, words 64 in the unit's physical device
table) is set to a desired value (upper eight bits) before
calling the driver.

The value(s) changed by the diagnostic unit must be restored
when the diagnostic function is completed. When the caller
regains control, the last status of the disk adapter, control
unit, etc., is stored in the 40-word diagnostic status buffer
(see appendix C).

For read/write address tags operation, it is advisable to set
up the MSOS read/write request as formatted. This
eliminates the odd word format (five words per address tag
data), which can create errors if the unformatted MSOS type
read/write request is used. Furthermore, the address tag
operation is a track type function, so·it is advisable to force
any starting mass memory address to be the beginning
address of a track.

Following a diagnostic operation, the caller regains control
regardless of the error detected during the I/O operation.
The error encountered is not logged in the engineering file;
instead, the caller regains control as if a successful
operation occurred. However, the error code is stored in
word 16, labeled FLTCOD, in the unit's physical device
table. The proper error retrial count, if applied, is stored in
its type counter (such as word 40 for seek error count, etc.).
It is caller's responsibility to examine these counters in
conjunction with the status words to determine the proper
result.

STORE CORE IMAGE

This CPU-resident program copies the current main memory
to disk. Any error forces the routine into a selective stop
loop with Q equal to FFFE16. The image must be written in
the lower 32K sectors of disk, and the CPU memory size is
assumed to be 65K words or less. The transfer is always
made to drive unit 1.

DISK-TO-TAPE DRIVER

This program provides the capability of transferring data in
either direction between disk and magnetic tape. The
storage module drive interfaces with the disk-to-tape utility
routines (DTLP), which use a single word sector address,
limiting disk access to the lower 32K sectors. The program
utilizes error correction code recovery techniques as· well as
strobe/offset head positioning to minimize data transfer
errors.

FLEXIBLE DISK DRIVER

This driver handles data transfers to and from the flexible
disk. Two flexible disk units (diskettes) may be controlled
from the same flexible disk control unit. Each diskette is
identified as a separate logical unit. The identity of a

96769390 C

diskette (0 or 1) is determined by a switch in the controller.
Since each diskette has its own physical device table that
contains parameters determining the addressing structure of
the diskette as well as current and recent data transfers, the
switch position cannot be changed without interchanging the
diskettes.

In a dual-diskette system, one diskette can be transferring
data while the other unit is performing a seek operation.

The driver is written in kernel fashion. The entire driver
may be initially mass storage resident if the program library
is on another disk device (e.g., storage module drive).

The driver performs seven major functions:

• Kernel driver

• Data formatting and transfers

• Error recovery and logging

• Diagnostic logical unit support

0 CPU main memory bank addressing

0 Overlay processing

0 Verify write operation

The flexible disk unit (diskette) consists of a single surface
with 77 tracks. To perform a data transfer, the head is
positioned over the appropriate track and a loading device
presses the disk against the head so the transfer can take
place.

Two separate data formats may be used as shown in
table 3-1.

The diskette initialization must be performed by the flexible
disk drive utility processor (FDUTIL). The procedure
writes track and sector address tags and the cyclic redun­
dancy check (CRC) bits for the sectors. Only 74 of the 77
tracks may be used for data storage at anyone time. During
initialization, tracks are checked for data transfer equality.
If a track is found to be bad, it is marked bad and the next
track is assigned as the alternate track. This assignment is
transparent to the user program, so the mass storage
addresses delivered to the user program are unaffected by
use of the alternate track. A maximum of two alternate
tracks can be assigned. At reinitialization, alternate tracks
are released (FDUTIL attempts to reinitialize using only
tracks 1 through 75.).

"FDUTIL is described in appendix I.

TABLE 3-1. DATA FORMATS

Number of
Word/ Sectors/ Drives Total

Format Sector Track Tracks/Drive (Maximum) Words

CDC 96 19 77} 74 only 2 281K
are
available

IBM 64 26 77 to user 2 256K
programs

3-15

Sector numbering for word addressing purposes begins at
logical sector 0, which is normally physical sector 1 on
physical track 1 (physical sector numbering begins at 1, not
0). This is also transparent to the user program, except that
the program must not attempt to do a format write
operation (sector addressed transfer) to the autoload
sectors.

When a diskette containing data is loaded into the system,
the bad track sectors read/write and write compare options
are obtained from the newly loaded diskette. Because the
two diskettes are totally separate logical units, it is possible
to have one diskette formatted for IBM compatibility and
one formatted to CDC standards. Likewise, a CDC
formatted diskette could be followed by an IBM formatted
diskette in the same physical slot, etc.

The transfer of data may be made using direct memory
access. However, if the optional diagnostic package is a
part of the 'driver, A/Q data transfers are also used. Auto
data transfer is not available. The diskette may be used as a
w<.;rd addressable device (READ or WRITE requests) or as a
sector addressable device (FREAD or FWRITE requests).
Locating a word or sector physical (for diagnostic purposes)
is described below.

To increase the speed of A/Q read operations, for more than
one continuous sector transfer, diskettes may be interlaced
at the time they are initialized. This procedure noticeably
speeds up A/Q reading of binary data (about 500 percent) but
slows down reading of deadstart read slightly. Interlacing is
done only at the time a diskette is intialized. It is
transparent for all FDUTIL functions. (For example, an
interlaced diskette can be copied to a non-interlaced
diskette with no change of data.)

Sectors are interlaced as follows:

Sequential IBM CDC
Address Interlaced Interlaced

1 1 1
2 14 11
3 2 2
4 15 12

18 22 19
17 10 10

25 13
26 26

The diagnostic package also accepts a MOTION command.

Preset error recovery processes are available for data
transfers and preliminary seek operations. Error procedures
are usually triggered by a cyclic redundancy check (CRC)
comparison error. The eRC code is generated for both
sector addresses and for data. If an unrecoverable error is
encountered, a composite of the errors is generated as a
transfer status, and this information is returned to the using
program.

3-16

READ/WRITE

Unformatted I/O requests are treated as word addressed
requests. The request format is substantially the same as
described above for storage module drive requests. How­
ever, the control point logic used for addressing CPU main
memory is not available. Instead (and only if the bank
addressing option is present), the driver uses the 18-bit
address of the buffer area to interface with the MSOS or
RTOS that controls the CPU. The user need not supply any
special bank addressing information in the request.

Word addressable transfers start at the next word on disk
and continue uninterrupted across sector and track
boundaries.

CAUTION

WRITE with the ASCII bit set writes a
deleted record. A deleted record may be
read or written; such a record appears the
same as a normal record except that bit
13 of the v field in word 3 equals 1.

To calculate a disk sector/track physical address from a 31-
bit disk word address, divide the word number by 96 (CDC)
or 64 (IBM). Next divide the resultant sector number
(discarding the word remainder) by 19 (CDC) or 26 (IBM) to
obtain the offset track identification (discarding the sector
remainder). Any bad track in this track address must be
compensated for. Bad tracks are designated in word 27 of
the physical device table (appendix C). Add the calculated
track address x (x = 1 plus the number of bad tracks below
this track) where 1 < x < 3. Using this track address, the
driver commands a seek operation. When the seek has been
completed, the driver handles the seek complete interrupt.
All of this is transparent to the user so long as no seek error
occurs. If an unrecoverable seek error occurs, the user
program is notified of an error, but not of the type of error.
(However, if the diskette is a diagnostic logical unit, the
type of error is specified to the user.)

FREAD/ FWRITE

These read and write commands are oriented to the
sector/track formatting scheme and are the same as
described above for storage module drive requests except
for the control point word. The least significant bit of the
mass storage address indicates that the address is to be
interpreted as a logical sector address (not a track/sector
address). The n parameter determines the number of words
to transfer. If n is not a divisor of a sector (96 for CDC or
64 of IBM), the remainder of the sector is transferred
anyway on an FWRITE request. However, the remainder of
the sector is filled with zeroes. On a FREAD request, only
the specified number of words is transferred; this in effect
masks out the remainder of the last sector.

96769390 C

'\.

,/

~ -

"

(

'-. /

". "

r""",

'-""

",-- '\
,

'--.-/.

CAUTION

An FWRITE with the ASCn bit set results
in the flexible disk driver writing address
tags (diskette initialization) to a specific
track. The least significant bit of the
mass storage address contains the logical
sector address that references the first
sector of a track. The most significant
bit contains the number of sectors/track
in bits 0 through 7 and the words/sector
bits 8 through 15. The I/O request must
be preceded immediately by a motion
request (with a code of 1). The motion
request permits the initialization to
occur. If the I/O request is not preceded

96769390 C

by the motion request, a deleted record is
written.

Notice that other user's I/O request
cannot be issued to the same logical unit
while a program is using the privileged
motion request to change the state of the
I/O request.

MOTION

If the diagnostic logical unit opt!on is in~luded,. the driver
recognizes the MOTION request dlScussed m sectIon 1.

3-16.1

However, the fourth hexadecimal bit always equals O. The
three motion codes (pi, p2, and p3) are processed in that
order. Values for the p codes are as follows:

Code

o

1

2

Meaning

Terminate request

Prime I/O request for initialization, logi­
cally referencing track 0 or seeking a
specified track

Request no data compare during write

Code

3

4

5

6

7

Meaning

Request" data compare during write

Change diskette mode to READ/WRITE

Change diskette mode to read only
(option)

Not used"

. Not used

The I/O options are summarized in table 3-2.

TABLE 3-2. FLEXIBLE DISK COMMANDS

Definition 1/01 Format2 Mode3

READ 0 0 0

READ 0 0 0

FREAD 0 1 0

FREAD TRACK 1 0 1 0

FREAD TRACK 0 0 1 0

WRITE 1 0 0

WRITE 1 0 0

DEL. REC. WRITE 1 X 1

FWRITE 1 1 0

FWRITE TRACK 18 1 1 0

FWRITE TRACK 08 1 1 0

DEL. REC. FWRITE9 1 X 1

INITIALIZA TIO N

SEEK ONLY

STATUS ONLy1O

NOTES:

1. I/O:

2. Format:

3. Mode:

4. Count:

S. Prime:

6. Logical unit:

7. X:

8. Track 1:
Track 0:

9. DEL REC:

10. Status:

96769390 B

1

0

0

0= Read operation
1 = Write operation

1

X

X

o = Unformatted sector read/write
1 = Formatted word addressable read/write

0= Binary
1 = ASCII

I/O word count

0= Not proceeded with a motion code of 1
1 = Proceeded with a motion code of 1

o = Not a diagnostic logical unit
1 = Diagnostic logical unit

Not applicable

1

X

X

Logical sector addressing starts with track 1
Logical sector addressing starts with track 0

Deleted record

Located in physical device table after request

Count4

0

0

0

0

0

0

0

X

0

0

0

X

0

0

0

PrimeS Logical Unit6

0 0

X7 X

0 0

X X

1 1

0 0

0 X

0 X

0 0

0 X

1 1

0 X

1 X

1 1

0 1

/'

'- .

(' "­

I
\,

'"

\

(--­
\...

,,.06"

',- .

, I

'--

I .I

"----/

,~-'

"'--~',

----)

.'-" i I
'~

ERROR RECOVERY

The user program has no control over the error recovery
sequence.

For read errors the error recovery sequence is as follows:

1. The driver tries to read at the given address 10 times.

2. The driver seeks a track two tracks away. then reseeks
the specified track and attempts to write. This is done
five times.

3. The driver seeks logical sector 0. then reseeks the
specified track and attempts to write. This is done five
times. .

4. The driver develops the error status word and places it
in the physical device table. (See appendix C.)

For write errors the error recovery sequence is as follows:

1. The driver tries to write to the specified address two
times. .

2. The driver seeks logical sector 0, then reseeks specified
track and attempts to write. This is done twice.

3. The driver develops the error status word and places it
in the physical device table.

The failure, but not the failure type, is reported to the
normal user. If the diskette is being used as a diagnostic
unit, the nature of the error is saved in the diagnostic
expansion of the physical device table. The error codes
appear as a bit assignment. The last equipment status
appears in ESTAT2 (word 12) of the physical device table
and has the following meaning:

Code

o

1

2

3

4

5

6

7

8

9

10

11

12

3-18

Unit ready

Unit busy

Head loaded

Meaning

Seeking

Reading/writing

Interrupt

Interrupt selected

Direct memory access parity error

Direct memory access protect fault

Direct memory access memory address
fault

Lost data

Seek error

Data cyclic redundancy check error

13

14

15

Meaning

Deleted record

Protect switch on

Controller busy

This is not actual hardware status but a composite status
formed by a driver module based on the information supplied
by the hardware status.

The hardware status consists of the controller and unit
status.

Not all errors are reported in the engineering log for this
logical unit. The physical device table contains a threshold
value for error retries. When the number of recovery
attempts of a given type reaches that value, the error count
is cleared and an entry is made in the engineering log.

The error messages (numbers appearing on the comment
device) are listed below:

Code Meaning

0 Time out

1 Lost data

1 Bad initiator pseudo status

2 Bad continuator pseudo status

3 Bad timeout pseudo status

3 Parity error

4 Status fault(s) after I/O

5 Internal reject fault code

6 External reject fault code

13 Read only diskette

14 Unit not ready

16 Track/sector fault

18 Invalid sector address

19 Protect error

20 Data compare error

48 Controller address error

61 No interrupt

65 No interrupt selected

66 Memory address error

68 Unexpected interrupt

69 Initialization not enabled

96769390 B

76 Fault indicator for logging recovered
errors

77 Expected reject did not occur

78 Short/long transfer error

79 Unit busy

80 Unit seeking

81 Unit doing I/O

SPECIAL FEATURES

Overlay requests cause the driver to check the location of
the requester's parameter list (e.g., READ request). If it is
overwritten by the projected overlay, sufficient information
is saved from the request in the physical device table to
allow the request to be completed.

NOTE
Not enough information is saved to repeat
the request using the alternate device
handler.

Unprotected requests are saved at the beginning of scratch
mass memory in logical sector 1.

The optional compare data logic compares data just written
to the diskette with the data in the user's write buffer. The
user must supply his own buffer for this function.

LINE PRINTER DRIVERS

WRITE/FWRITE

WRITE and FWRITE requests are honored by the line printer
drivers. Binary/ Ascn mode has no significance and is
ignored.

The drivers print up to 136 characters per line. The
requestor output buffer may be any length, provided it
contains embedded control characters. If more than 136
characters are supplied for one line, the additional
;characters are ignored.

These drivers can use either FORTRAN or non-FORTRAN
mode. The printer's physical device table contains the
logical unit number of the FORTRAN line printer. If the
logical unit number specified in the request is the same, the
FORTRAN mode of operation is used. All other logical unit
numbers are handled in the non-FORTRAN mode.

The FORTRAN mode interprets the first character of the
record as carriage control information ('nly for FWRITE.
Carriage control characters are the following.

96769390 C

Character

o

1

+

all others

Action Before Printing

Space two lines

Page eject

No space

Space one line

The non-FORTRAN mode upspaces one line before printing,
and the first character of the record is printed for FWRITE.

In both the FORTRAN and non-FORTRAN modes, the
unformatted WRITE does not cause a preceding upspace. It
prints the buffer only when a control character that causes a
print or paper motion is encountered.

The 1742-120 Line Printer and Controller requires that a
train image table be appended to the driver (T5954).

MOTION

A MOTION request to write end-of-file is honored as a page
eject function. A REWIND/UNLOAD resets the line count.
All other MOTION requests cause no action with normal
completion of the request.

CHARACTER EDITING

All characters are edited as follows before they are sent to
the print buffer.

Character

2016 - 5F16

6016 - 7E16

0316 EOT

0416 EOT

0916 HTAB

OA16 - Line feed

OB16 - VTAB

OC16 Form feed

OD16 - Carriage return

IBl6 - Escape

Action

Send to buffer.

Change to 4016 - 5E16•

Print buffer, upspace one line,
and terminate request.

Same as 0316

Simulated TAB, send blanks to
buffer.

Ignore.

Print, select format tape level
two, and continue.

Select format tape level one, top
of form.

Print buffer and upspace one
line.

Used for direct function control
of the line printer.

3-19

I

/'

/"
I

/"---

")
~

I

---./

.. ' .~

--)

J

Character

IB - Escape
(cob~inued)

Action

The next character is interpreted
as follows:

3~16 -
3EJ.6

3F16

4016

4116 7F16

Ignore.

Printer buffer, no
upspace, next line
starts at the beginning.

Printer buffer, single
space, next line starts
at the beginning.

Print buffer, double
space, next line starts
at the beginning.

Print buffer, select
format tape level (01
through 12), and
continue printing from
the next printing
position.

Select eight lines per
inch.

Clear controller and
continue.

Ignore.

Tab stops for tab simulation are assumed to exist every n
characters of the print line. Each time a tab character is
encountered, sufficient space characters are sent to the
print buffer to advance the character counter to the next
tab-stop position. In the released version n is 20.

ERROR CONDITIONS

The following errors are detected by the driver:

Internal or external reject

Hang-up

Alarm

When the driver detects an irrecoverable failure, it sets the
error field in bits 15 through 13 of word 9 of the physical
device table for the device, sets the error word in the Q
register, and transfers control to the alternate device
handler. Refer to the MSOS Diagnostic Handbook for I/O
error codes and descriptions.

1827 LINE PRINTER DRIVER

This driver processes WRITE, FWRITE, and MOTION
requests for the 1827 Line Printer. The driver is written in

3-20

kernel format and is initially mass storage resident. There
are no options in the driver; all modules must be included.
More than one line printer can be handled by the driver. For
each logical unit associated with the physical device, there
must be a separate physical table (see appendix C). The
logical units commonly assigned to the line printer are
normal logical units, diagnostic logical units, and FORTRAN
logical units. The driver provides FORTRAN format
conversion to support the last named logical unit.

The driver communicates with the line printer exclusively on
the A/Q channel.

WRITE/ FWRITE/ MOTION

The characteristics of these requests are discussed above.

CHARACTER EDITING

The character editing capability is discussed above.

STATUS AND ERROR HANDLING

The printer controller status bits are as follows:

Not used

ADT mode
Out of paper

Buffer overload

Protect

Ready
Busy

Interrupt
Ready for data

End of operation.
Alarm: Out of paper or

malfunction
Error

If an unrecoverable error occurs, it is reported by the
alternate device handler (if any). The error fault value is
returned in the A-register as well as being stored in word 9
of the physical device table. Values are as follows:

Code Meaning

0 Timeout

2 Alarm

3 Parity

5 Internal reject

6 External reject

96769390 C

1827-7 LINE PRINTER DRIVER

This driver processes WRITE, FWRITE, and MOTION
requests for the 1827-7 Line Printer. The driver is mass
storage resident. There are no options in the driver; all
modules must be included. More than one line printer can be
handled by the driver.

The driver communicates with the line printer through the
1843-2 CLA. The line printer driver works as a pseudo
driver since it reformats data intended for the printer, then
makes a non-standard MSOS 5 request to the 1843-2 CLA
driver indicating the CLA channel attached to the printer.

WRITE/FWRITEI MOTION

The characteristics of these requests are discussed above,
except that the FORTRAN logical unit number is contained
in word 24 of the printer's physical device table rather than
in word 19.

CHARACTER EDITING

Characters are edited as discussed above except that the
~scape character (lB16) when followed by 3316 - 7F 16 is
Ignored.

STATUS AND ERROR HANDLING

Printer controller status is not available. The status
returned in the physical device table is the formatted status
from the 1843-2 CLA driver. Bit assignment is:

Not
used used

-t 3 0

Subrequest
code internal
to driver

Parit~· error
Illegal request

Timeout
Farming e1'1'or

Lost data

External or internal reject

If an error occurs, it is reported by the alternate device
handler, and logged in the engineering file. Fault code
values are as follows:

Code

o
2

3

96769390 D

Meaning

Timeout

Alarm/status

Parity

MAGNETIC TAPE DRIVERS

Magnetic tape drivers process the standard READ/WRITE/
FREAD/FWRITE/MOTION requests. A data transfer can be
accomplished with one of the three types of transfer modes:
buffered, unbuffered, and auto-data transfer (ADT). During
an unbuffered transfer, interrupts are inhibited to prevent
lost data. Interrupts are enabled during the other types of
transfer.

DATA FORMATTING

Magnetic tape drivers can transfer data to seven- or nine­
track tape drives. Data on nine-track devices requires no
special handling. All data is written in odd parity and no
code conversion is required. One computer word comprises
two data frames on tape.

Data transfers on seven-track drives require special
processing. There are only six data bits in each frame;
therefore, internal ASCn data is converted to external BCD,
a six-bit code, when data is to be written to tape. The
reverse process is used on read transfer - BCD to Ascn
conversion.

Binary transfers on seven-track drives also require
additional reformatting. The hardware misembly/
disassembly utilizes only the six least significant bus OI each
half word. Therefore, prior to an output transfer, data is
reformatted to conform to this requirement. On input, a
reverse procedure is performed. The reformatting of the
data is performed in a buffer area different from the user
buffer. This repacking buffer must. also be bigger than the
user's buffer. Therefore, a maximum buffer size limitation
must be imposed on the user buffer length. The release
software provides a buffer that allows the user to specify a
maximum record size of 192 words.

FORMATTED REQUESTS

The FREAD and FWRITE requests are handled as single
record requests; one request for one physical record. The
maximum record size limitation for seven-track drives is
enforced. Any length in excess of this maximum is
truncated. No length restriction applies to nine-track
drives. When the record is shorter than the requested length
in reading operations, the short read indicator is set and the
address of the last location containing data is placed in the
last word of the user's buffer.

UNFORMATTED REQUESTS

READ and WRITE requests are handled as logical record
requests. A logical record length is that number of words
defined in the user's parameter list. However, if that size
exceeds the maximum size allowable on seven-track drives,
the driver breaks up the logical record into several physical

3-21

,,..-- "

,/"" ,

(

\, _--

\

'-----'"

C)

~,.,

I

(... . \
, !
',--/

-", l

(,..-..,\
~)

tape records. Therefore, when writing on nine-track drives,
one logical record equals one physical record. On seven­
track drives, one logical record can equal several physical
records.

For READ requests on either seven- or nine-track, one
logical record may be one or more physical records. The
driver continues reading records until the user's buffer is
filled or until a file mark is encountered.

MOTION REQUESTS

Tape drivers perform all of the normal m~tion commands.
Special handling is performed on a rewind request. When a
tape is rewinding, the sUbsystem is capable of performing
data transfers on other drives. Therefore, the interrupt is
not selected on the rewind operation. Instead, a status
checking routine is scheduled at priority 3. When a load
point condition is detected, the driver's initiator entry is
scheduled.

ERROR CONDITIONS

The following error conditions are recognized by the driver:

• No write ring on a write or end-of-file mark

• Tape transport not ready

• Tape transport number not dialed

• Parity error

• Failure to interrupt (required TIMER package)

• Buffer channel not operative

• Lost data switch mode

• Missing processing module

These are considered irrecoverable and are reported to the
alternate device handler. The user may continue, repeat the
request, or down the driver.

LOW-COST TAPE TRANSPORTt

The low-cost tape transport driver processes READ, WRITE,
FREAD, FWRITE and MOTION commands for the LCTT.
Several tape units may be controlled at the same time;
however, only one request is executed at a time. A single
copy of the LCTT driver can control several LCTT units
even though the units may have differing characteristics.

Since the LCTT driver is written in kernel format, unneeded
options may be deleted from the system to conserve space.
If an opti<m is deleted, the deleted program must be
replaced by a dummy program that returns control to the
caller.

If only nine-track units are present, modules TK7 and
TK7DAT can be omitted. Seven-track capability requires
module TK7. ASCn conversion and binary reformatting for
seven-track tapes requires module TK7 DA T also.

/r-- I • t This is to bedistmg· uished from the Low Cost Tape Transport (LCTT)/FORMATTER, 1860-5/6, which is described later.
~/

/,,--,,,

\ ')
'--'" 3-22 96769390 D

If recovery capability is desired, the module RECVRY must
be included. If raw hardware status rather than composed
status is desired, the module FORMIT may omitted.

There is no logical diagnostic unit for the LCTT; instead the
alternate device handler has the ability to report failed
device errors.

The LCTT driver operates in the buffered data mode; data
transfers using ADT and A/Q are not supported. Tape
recording density is 800 fpi. Neither reverse read nor
nonstop read capability are present.

All transfers are timed by a diagnostic clock. Failure of the
transfer to complete in the allotted time triggers the
timeout error (and recovery) logic.

DATA AND RECORD FORMAT

Data Format

Track Data Transfers - The basic transfer (9-track) does not
need reformatting. All data transfers on a 9-track LCTT
are treated as binary and are recorded in odd parity at 800
frames per inch (fpil. Two 8-bit tape characters (frames)
compose a single CPU word. ASCII is transferred without
conversion. The data in core corresponds to the data on
tape and is packed as shown:

15 8 7 o

Frame 1 Frame 2

Frame 3 Frame 4

Frame 5 Frame 6

Seven-Track Data Transfers - This option requires the TK7
module. If there IS no module TK7DAT in the system, data
is transferred to and from core without conversion. Since
the hardware operates in assembly/disassembly mode only,
the data appearance in core (both ASCII and binary) is as
shown:

15 14 13 8 7 6 5 o

0 0 Frame 1 0 0 Frame 2

0 0 Frame 3 0 0 Frame 4

0 0 Frame 5 0 0 Frame 6

Bits 6, 7, 14, and 15 must be zero whether reading into core
or writing from core. If any of these bits are set during a
write-ta-tape operation, a hardware program error occurs.
This error appears in the V field asa short record error. For
raw data transfers, the logical record length is defined by
the 15-bit parameter n of the request.

If the module TK7DAT is included, 7-tra(;~ converted data
transfers are available. Binary data is packed or unpacked

96769390 C

in core; ASCII data is converted to or from external binary
coded decimal (BCD).

Seven-track binary mode assumes core data to have the
following format:

15 13 12 11 10 9 8 7 6 5 4 3 2 o

Frame 1 , Frame 2 , Frame 3

Frame 3' Frame 4 I Frame 5 I Frame 6

Frame 6 , Frame 7 , Frame 8

Seven-track ASCII mode causes the ASCII data in core to be
converted to or from external BCD. The ASCII characters
in core correspond to the BCD tape from as shown:

15 8 7 o

Frame 1 Frame 2

Frame 3 Frame 4

Frame 5 Frame 6

Record Constraints

READ/WRITE records - Record lengths for 9- and 7-track
LCTTs are defined by the requestor; the number of words
specified in a READ/WRITE request defines a logical record.

For 9-track write requests, a logical record is written as a
physical record. For read requests, the user defines the
logical record as any length that is unrelated to the length
of the physical record. The driver reads through record gaps
until the logical record is complete or until it encounters a
file mark.

For 7-track requests, the maximum length of a pnysical
record is set to the physical record size parameter
(PHSREC) to limit core use. (PHSREC is 192 words for this
discussion.) If a logical record is longer than PHSREC, it is
segmented and written as a series of physical records. An
analogous procedure is used for reading a logical record.
For raw data transfers, the record size is limited only by the
15-bit parameter n of the request. Any unused portion of
the last physical record is lost on subsequent read
operations.

FREAD/FWRITE records - The formatted 7-track requests
are physical record oriented, with all records defined to be
the same PHSREC length (usually 192 words). Any record
longer than that is truncated.

The formatted 9-track requests are not similarly restricted.
Instead, the user defines the logical record length. For
FREAD operation, the driver reads through record gaps until
the logical record is complete, or until a file mark is read.

3-22.1

\.

' , ,

/-'

\

"-.J

\ _ . ./

/,,,--

L,
/'.'''' "-

\,-/

",r ."\
{ \
'....J'

o

READ/WRITE/ FREADI FWRITE

The calling sequence and parameter lists for these requests
are described in section 1. At execution time, the external
indications are also the same as those described in that
section. However, SYSDAT . must contain a buffer for 7-
track data conversion (if TK7DAT is included). The size of
this buffer (which is defined at assembly time) is (PHSREC x
4/3) + 2. Note that the buffer must be large enough to
accommodate the maximum record size as defined by
PHSREQ.

The use of buffers for the four acceptable transfer requests
is shown in table 3-3.

MOTION

The calling sequence and parameter list for the MOTION
command are as shown in section 1, except that the dy
parameter in word 4 always is zero. The pI, p2, and p3
codes are executed from left to right. The codes are:

Code Meaning

0 First zero terminates request

1 Backspace record

2 Write file mark

3 Rewind to load point

4 Rewind and unload

5 Advance one file

6 Backspace and erase file

7 Advance record

If a motion is to be repeated, word 4 of the MOTION request
is:

15 14 12 11 o

Word 411 P code n

.where n is the number of repeats. n must be 4095 or less.

ERROR RECOVERY

If the error recovery option (RECVRY) is included, the
driver' attempts to correct errors using the standard CDC
tape recovery techniques. These include write and read
operations.

Write operations are as follows:

1. Back over the area just used, erasing and rewriting.

2. Write system noise blocks to pass over a bad area in C) tape.

96769390 B

C)

3. Verify the rewritten information.

4. Indicate an unrecoverable error because tape has run
out, to a good block (record) on tape has not been found,
allowable number of consecutive erasures has been
exceeded, and erase error has occurred, or the block
just written has not been identified.

Read operations are as follows:

1. Attempt to reread the data several times using normal,
high, and low signal clipping levels.

2. Reset parity mode.

3. Indicate an unrecoverable error because there are
parity errors or the number of allowable retries has
been exhausted.

If the composite status option (FORMIT) is included, word 12
of the physical device table for an LCTT (see appendix C)
indicates the status bits shown below:

Write enable

File mark

1 =

Ready

Irrecoverable error
Not used

Noise record bypassed Alarm
End of tape

Parity error
Lost data

Not used

This is not the actual hardware status but is a composed
status formed by the driver module called FORMIT based on
the information supplied by the hardware status and word 24
(unit/mode) in the physical device table.

There is no diagnostic logical unit capability in the LCTT
driver. Instead, the alternate device handler sends error
messages concerning the failure to the comment device.
Values for the alternate device fault code are as follows:

Code Meaning

0 Logical unit timed out

1 . Lost data

2 Alarm

3 Parity

13 No write ring on write request

14 Not ready

15 Noise record was bypassed

31 Short record write requested

41 Incomplete error (unrecoverable)

3-23

TABLE 3-3. USE OF BUFFERS FOR READ, FREAD, WRITE, FWRITE REQUESTS

9-Track and 7-Track without
7-Track with S18326 (LCTT/FORMATTER) TK7DAT (LCTT) or without

Request Mode 7-Track with TK7DAT (LCTT) S18326 (LCTT/FORMATTER)

Binary LCTT- PHYSTB buffer - packed 4 to 3 into LCTT - requestor's buffer
READ requestor's buffer

or
FREAD ASCII LCTT - PHYSTB buffer; convert external LCTT - requestor's buffer

BCD to ASCD in place - requestor's buffer

Binary Requestor's buffer - unpacked 3 to 4 into Requestor's buffer - LCTT
WRITE PHYSTB buffer - LCTT

or
FWRITE ASCII Requestor's buffer - PHYSTB buffer; convert Requestor's buffer - LCTT

ASCD to external BCD in place - LCTT

LOW COST TAPE TRANSPORTI
FORMATTER DRIVER

The LCTT/FORMATTER Driver processes READ, WRITE,
FREAD, FWRITE, and MOTION commands for the
LCTT/FORMATTER. . Several tape units may be controlled
at the same time; however, only one request is executed at a
time. A single copy of the LCTT/FORMATTER driver can
control several LCTT. units even though the units may have
differing characteristics.

Since the LCTT/FORMATTER ,Driver is written in kernel
format, unneeded options may be deleted from the system to
conserve space. If an option is deleted, the deleted program
must be replaced by a dummy program which returns control
to the caller.

If only nine-track units are present, the S18326 module can
be omitted. Seven-track capability requires the S18326
module.

If recovery capability is desired, the module R18326 must
satisfy the appropriate conditional assembly.

The LCTT/FORMATTER driver uses the DSA channel for
data transfer and the A/Q channel for its other functions. It
supports nonstop read and nonstop write. Densities allowed
are 800 or 1600 frames per inch (fpO for nine-track units,
and 556 or 800 fpi for seven-track units. All transfers are
timed by a diagnostic clock. Failure of the transfer, to
complete in the allotted time triggers the timeout
error /recovery logic.

DATA FORMAT

Nine-Track Data Transfers - The basic transfer (nine-track)
does not need reformatting. All data transfers on a
nine-track LCTT/FORMATTER unit are treated as binary
and are recorded in odd parity at 800/1600 fpi. Two 8-bit
tape characters (frames) compose a single CPU word. ASCD
is transferred without conversion. The data in core
corre~onds to the data on tape and is packed as shown:

15 8 7 o

Frame 1 Frame 2

Frame 3 Frame 4

Frame 5 Frame 6

3-24

Seven-Track Data Transfers - This option requires the
S18326 module. If the module is not in the system, data is
transferred to and from core without conversion. Since the
hardware operates in assembly/disassembly mode only, the
data appearance in core (both ASCll and binary) is:

15 14 13 876 5 o
0 0 Frame 1 0 0 Frame 2

0 0 Frame 3 0 0 Frame 4

0 0 Frame 5 0 0 Frame 6

Bits 6, 7, 14, and 15 must be zero whether reading into core
or writing from core. If any of these bits are set aurmg a
write to tape operation, a hardware program error occurs.
This error appears in the v field as a short record error. For
raw data transfers, the logical record length is defined by
the IS-bit parameter n of the request.

If the module S18326 is included, seven-track converted
data transfers are available. Binary data is packed or
unpacked in core; ASCll data is converted to or from
external BCD.

Seven-track binary mode assumes core data to have the
following format:

15 13 12 11 10 9 8 7 6 5 4 3 2

Frame 1 I Frame 2 I Frame 3

Frame 31 Frame 4 I Frame 5 I Frame 6

Frame 6 1 Frame 7 I Frame 8

Seven-track ASCD mode causes the ASCD data in core to be
converted to or from external BCD. The ASCll characters
in core corre~ond to the BCD tape frame as shown:

15 8 7 0

Frame 1 . Frame 2

Frame 3 Frame 4

Frame 5 Frame 6

96769390 C

\. /

r" ~,

\,

/'
,

\,

/;'

;,'-'

\,

r--
\,

,r-'

\,

("

,1""- -.

'-.

;,~'-"

,/ "-

'I
\

(~
'

I'
,

'",
:(I

r "
"--

/--'
I

"'- -_./

('"
1,-

('-.

1'1
'-. ..

,r-'

.

\

''-./

C)
o
o
o

Record Constraints

READ/WRITE Records: Record lengths for nine- and
seven-track LCTT/FORMA'M'ER units are defined by the
requestor: the ntimber of words specified in a READ/WRITE
request defines a logical record.

For nine-track write requests, a logical record is written as
a physical record. For READ requests, the user defines the
logical record as any length that is unrelated to the length
of the physical record. The driver reads through record gaps
until the logical record is complete or until it encounters a
file mark.

For seven-track requests, the maximum length of a physical
record is set to PHSREC to limit core use. (PHSREC, the
physical record size parameter, is 192 words for this
iliscussion.)

If a logical record is longer than PHSREC, it is segmented
and written as a series of physical records. An analogous
procedure is used for reading a logical record. For raw data
transfers, the record size is limited only by the IS-bit
parameter n of the request. Any unused portion of the last
physical record is lost on subsequent read operations.

FREAD/FWRITE Records: The formatted seven-track
requests are physical record oriented, with all records
defined to be the same PHSREC length (usually 192 words).
Any record longer than that is truncated.

The formatted nine-track requests are not similarly
restricted. Instead, the user defines the logical record
length. For FREAD operation, the driver reads through
record gaps until the logical record is complete, or until a
file mark is read.

READ /WRITE/ FREAD / FWRITE

The calling sequence and parameter lists for these requests
are described in section 1. At execution time, the external
indications are also the same as those described in that
section. However, SYSDAT must contain a buffer for
seven-track data conversion if S18326 is included. Size of
this buffer, which is defined at assembly time, is (PHSREC x
4/3) + 2. Note that the buffer must be large enough to
accommodate the maximum record size as defined by
PHSREC.

The use of buffers for the four acceptable transfer requests
is shown above in table 3-3.

MOTION

The calling sequence and parameter list for the MOTION
command are as shown in section I, except the dy parameter
in word 4 is always zero. The pI, p2, and p3 codes are
executed from left to right. The codes are:

Value

o
1

96769390 C

Operation

First 0 terminates request

Backspace record

2 Wri te file mark

3 Rewind to load point

4 Rewind and unload

5 Advance one file

6 Backspace and erase file

7 Advance record

If a motion is to be repeated, word 4 of the MOTION request
is:

15 14 12 11 o

Word 411 1 p code I n = num her of repeats

The number n must be 4095 or less.

ERROR RECOVERY

If the error recovery option R18326 is included, the driver
attempts to correct errors using the standard CDC tape
recovery techniques. These include:

Write Operations:

1. Back over the area just used, erasing and rewriting,

2. Indicate an unrecoverable error due to running out of
tape, or being unable to find a good block (record) on
tape, or exceeding the allowable number of consecutive
erasures, or an erase error occurring.

Read operations:

1. Attempt to reread the data several times using normal,
high, and low signal clipping level levels.

2. Reset parity mode.

3. Indicate an unrecoverable error due to parity errors or
to exhausting the number of allowable retries.

The status bit assignment is:

Bus busy
Controller

protect
Not used

On-bus
File mark

Not used
End of tape

End of operation

Not used
Not used

Not used
Not used

3-24.1

Meanings of the fault codes are:

Fault Code

o

1

2

3

5

6

13

14

31

32

36

50

51

60

84

86

87

CASSETTE DRIVER

Failure

Lu times out

Lost data

Alarm

Parity

Internal reject

External reject

No write ring on write request

Not ready

Short record wri te requested

Tape defect

Transmission parity error

No ID burst

Illegal density, or an attempt to
change density when tape not at
load point

Illegal motion code

Bus relinquished

Switch mode error

No character read in 25 feet
(7.6 meters)

The cassette driver processes READ, WRITE, FREAD,
FWRITE, and MOTION requests for the cassette units. The
driver passes commands and receives status from the
cassette controller which may in turn control either one or
two cassette units. Control of two units is serial; the
nonactive unit is idle.

The cassette driver is written in kernel format so that
unneeded options may be deleted from the system. If an
optional module is deleted, it must be replaced with a
dummy program whose sole function is to return control to
the caller. The cassette driver may be CPU resident or it
may reside on mass storage.

The optional features are:

• Error recovery

• Forming composite status for the physical table

3-24.2

Data transfers are accomplished in the ADT mode. All I
transfers are timed by a diagnostic clock. Failure of the
operation to complete in the' allotted time triggers the
timeout error (and recovery) logic.

DATA AND RECORD FORMATS

All writing on the cassette itself uses bit serial mode in
Manchester code format. This code is generated by the
controller and is the same bit length as the input or output
code (e.g., 8-bit ASCn). A cyclic redundancy check (CRC)
code is also generated for each record and constitutes the
end of that record. Data is recorded at a single density:
100 8-bit characters per inch. Two serial tracks are
available for data transfers.

The physical and logical records for WRITE and FWRITE
requests are of equal size. For ADT mode, this is a
minimum of two CPU words (four bytes). The maximum is
limited by the size of the user program's write buffer. If the
cassette is a diagnostic logical unit, a single transfer (one I
CPU word of two bytes) is permitted.

The user specifies the logical length for READ and FREAD
buffers. Three cases are encountered:

• The logical record is greater than the physical record:
The driver reads through interrecord gaps on READ
commands until it reads the requested number of words
or until a file mark is encountered. For an FREAD
command, a short read error is reported in the v field.

• The logical record equals the physical record: The CPU
read buffer is filled.

o The logical record is less than the physical record: The
CPU buffer is filled; then the tape continues to read to
end of physical record without transferring data. If the
composite status option is present, the overflow error
bit is set in the status word. This is not considered to
be a system error. '

READ/WRITE/ FREAD/ FWRITE

The calling sequence and parameter lists for these requests
are described in section 1.

MOTION

The calling sequence and parameter list for this request are
described in section 1 except that the m field in word 0 is a
always zero. The motion codes are processed from left to
right. Code values are as follows:

Code

o

1

Meaning

The first zero terminates request.

Backspace one record

96769390 C

\- ,/

I

'-

\,

(-'
'-,

r' '

'- /

,...- -,

'-

/"-----

~

,,...--'

'...,.

~

/"
-,

~,,-

/"" ,

'

r-
'

r"
.....

r---

r-',
(
''-.-'/

c

o
c

2

3

4

5

6

7

Meaning

Write file mark

Rewind to load point (unless diagnostic
logical unit) Erase (diagnostic lOgical unit)

Rewind

Search tape mark forward

Search tape mark reverse

Advance one record

If a MOTION request is to be repeated, word 4 of the
parameter list is:

15 14 12 11 o

Word 4\1 \ p code n

where n is the number of repeats. n must be 4095 or less.

ERROR RECOVERY

If the error recovery option (RECCAS)is included, the
driver attempts to correct errors using the standard CDC
tape recovery techniques. These include write and read
operations:

Write operations are as follows:

1. Back over the area just used, erasing and rewriting

2.

3.

4.

Write system noise blocks to pass over a bad area in
tape

Verify the rewritten information

Indicate an unrecoverable error because tape has run
out, a good block (record) on tape has not been found,
the allowable number of consecutive erasures has been
exceeded, and erase error has occurred, or the block
just written cannot be identified.

C; Read operations are as follows:

o
o
o

o
c)

1. Attempt to reread the data several times.

2. Indicate an unrecoverable error because there are
parity errors or the number of allowable retries is
exhausted.

If the composite status option (FS2CAS) is included, word 12
of the physical device table for a cassette (appendix C)
indicates the status bits shown below.

96769390 C

Overflow (data bypassed)
Irrecoverable error

FUe mark
BeglJlDlng of tape

End of tape
CRC/format error

EDd of operation
Alarm

Lost data
Protected

If the composite option is not included, word 12 of the
physical device table reflects actual hardware status. The
bit assignment is as follows:

AlJI'mode
Data available
Unit 0/1 (Set = 1)

Side AlB (Set = B)

Ready
Busy

Write enabled

Tape MaIk
Be~oftape

End of tape

Data (avaUable/request)
End of operation

Alarm
Lost data (overflow (read)/

underflow (write))
Controller protected (wring write) CRC/format error

If the cassette is not designated as a diagnostic unit. error I
messages are sent to the comment device. The error code
values are listed below:

Code Meaning

0 Timeout error

1 Lost data

2 Alarm due to runaway

3 Parity error

5 Internal reject

13 Write not enabled

14 Not ready

21 End of tape (unrecoverable error; tape
automatically rewinds on next back
motion command)

31 Short record

41 Incomplete request

46 External reject (on output)

47 External reject (on input)

53 End-of-operation not set after interrupt

3-25

---------- ----

COMMUNICATIONS DRIVERS

COMMUNICATIONS MULTIPLEXER DRIVER

The 364-4 Communications Multiplexer driver (D3644) is
designed to operate up to 32 low-speed, nonsynchronous
communications adapter channels at rates of up to 30
characters per second. These channels may be connected to
low-speed ASCII terminals, such as teletypewriters or
conversational display terminals. There may be up to 32
361-1 private line communications adapters, up to 16 361-4
dial-up communications adapters, or any combination of
either of these connected to the multiplexer. Refer to
appendix F for a description of the proper setting of the
hardware options.

Structure

The 364-4 Communications Multiplexer generates an
interrupt from a free-running clock that causes entry to the
driver on each cycle. The driver examines the status of
each adapter and inputs or outputs data as required. All
communications adapter physical device tables are linked
together via a thread word, so that all adapters are checked
at every clock cycle. The clock interrupt must be adjusted
to allow the highest speed terminal that is connected to the
multiplexer (normally 30 characters per second) to be
serviced.

Communications Driver Requests

MOTION

All MOTION requests are honored and result in no action.
These requests are completed without error.

READ/FREAD

READ and FREAD requests are treated similarly to
MOTION requests since the driver is always in a read
condition via the clock interrupt. These requests differ in
that READ and FREAD start the input timeout on the
diagnostic timer. Data is read into the 40-word buffer
associated with each communications adapter until a
carriage return is detected. When this occurs, the entry
point of a core-resident input processor, specified by word
21 of the physical device table, is scheduled if it is nonzero.

The entry point is scheduled at a priority level specified by
word 20 of the physical device table with the Q register
containing the logical unit from which the data was read.
To aid in the processing of the data, the location imme­
diately following the input buffer contains the word count of
the input. In the standard release system, word 21 is 0 and
the priority level is 4. The input processor program must
contain a table of input buffer addresses, arranged in logical
unit order, to allow data to be obtained from the buffer. In

3-26

the standard release system, the first 16 communications
adapter logical units are CABFOO through CABF15. If more
than 80 characters are entered before a carriage return, the
extra characters are slewed. If a rub-out character is
sensed anywhere in the data, the input is slewed until a
carriage return is executed, and the communications adapter
indices are reset so that a new input can be accepted.

In addition to the carriage return, it is possible to specify
two special input termination characters that are contained
in word 17 of the physical device table. If either or both are
zero, the character is ignored.

Input characters are always translated to uppercase if
lowercase characters are entered.

It is possible to specify an echoplex mode where the driver
automatically outputs all input characters as they are
received. Lowercase characters are always echoed as
uppercase. This option is selected by setting bit 15 of word
20 of the physical device table to a 1.

It is possible to specify an input time-out period so that a
time-out error condition is indicated if two successive inputs
are not received within the defined period. A period of zero
disables this feature. The time-out period is contained in
bits 4 to 14 of word 20 of the physical device table. The
following is the arrangement of word 20 of the physical
device table.

15 14

b

1 = Echoplex

4 3

Input time-out
(seconds)

NOTE

In the standard release system, a = 1,
b = 60, and c = 4.

WRITE/FWRITE

o

Priority
level of
input
handler

Both types of output requests are honored. Mode has no
meaning and is assumed to be ASCII. Each request specifies
the core location from which it is being written, the number
of words, and the completion address. Output is always with
even parity generated by the driver, and the communications
adapter must be strapped to accommodate this. If the
communications adapter is a 361-4 Full or Half Duplex
Nonsynchronous Adapter and a disconnect character (1416)
is encountered anywhere in the message, the terminal is
disconnected from the multiplexer, and the request is
completed without error.

96769390 B

/'"-" "

\

'-'

,----",

\.

/'

\

,---- ,

'-

("~

\ -

r'"
\-

/,.~

I
\ -

,--------

'-.... ..-

~
I,

,r-"
I
\.. ..

t.
/'_

,

,r--"
II,

"

(")
\....

~

~

(--....

\
'~

c

C"','
,/

CI
,,"'"

(

",-.

,,,.. ~ '.
; I,

'-..)

(-'1
'''--.,/'

o
c'

WRITE

The number of words specified is transmitted, beginning at
the starting address. Each word causes two characters to be
transmitted; the upper half is sent first. If zero words are
specified, only one character is sent from the upper half of
the core location specified as the starting address.

FWRITE

This request is processed in the same manner as the WRITE
request, except that two control characters are sent before
the requested message is. output. These characters are
located in word 16 of the physical device table and, in the
standard release system, are specified as line feed and
carriage return.

Error Conditions

The driver recognizes internal or external reject, lost data,
and line break errors and notifies the operator. These errors
are fatal and are considered irrecoverable. Refer to the
MSOS diagnostic handbook for I/O error codes and
descriptions.

All error conditions result in the standard error return to the
requester. In addition to the error conditions defined above,
two nonfatal errors are detected by the driver. If a
disconnect (as opposed to a line break) is detected during an
input or output operation on a 361-4 Communications
Adapter, the request is completed with the error, and bit 15
of the status word in the physical device table is set to a 1.
This error is not reported on the system comment device
since it may occur frequently and is nonfatal.

A time-out error may occur on input, as previously
described. In this event, the input processor entry point is
scheduled with the Q register containing the logical unit and
bit 15 set to a 1.

If a time-out occurs during output, a lost interrupt is
indicated. The standard error return is made to the
requester and processing may continue.

ASYNCHRONOUS COMMUNICATIONS
CONTRO LLER AND SERIAL I/O
DRIVERS

These drivers provide a flexible communications interface
between the 1700 Series computer and serial data, RS232-C
compatible devices. Each 1743-2 Asynchronous Communi­
cations Controller provides eight' channels, and each 1595
Serial I/O board provides one channel. The release software
allows up to 16 devices in a system configuration. The user
may add additional devices by specifying the required
physical device tables. The tables are threaded together
through word 75 of the table. These drivers are capable of
processing unsolicited input from a timeshare device. This
mode of operation is defined by setting bit 15 of word 29 in
the physical device table.

96769390 'B

READ/FREAD Requests

The drivers process these requests in a manner identical to
that of the I/O-TTY driver. The drivers can operate in an
echoplex mode. Input data is retransmitted to the sending
device. This mode is defined by setting bit 15 of word 17 of
the physical device table. If an error is detected on input, a
rubout is transmitted to the device and the bad data is not
placed in the user buffer. On a timeshare device, the
requests are completed immediately after the diagnostic
clock value is updated, unless the logical unit is that of the
diagnostic unit. In this case the request is processed
normally.

WRITE/FWRITE Requests

The drivers process these requests in the same manner as
the I/O-TTY driver.

UNSOLICITED INPUT-TIMESHARE DEVICES

For timeshare devices, the physical device table contains a
buffer of 40 words. These devices are always in an input
mode except when a WRITE, FWRITE, or MOTION request is
in progress. When data is received, it is placed in the
physical device table buffer. The end of input is signified by
a carriage return or one of the two end-of-text characters
defined in word 18 of the physical device table. For
timeshare, these characters are defined to be an exclama­
tion point (!) and the escape character. The 1595 Serial I/O
board also can detect an end-of-text character that is
jumperable on the card. At the termination of input, the
user address specified in word 31 of the physical device
table is scheduled at the priority level defined in bits 3 to 0
of word 29 of the physical device table. The Q register
contains the logical unit number. In the event of a time-out
error, Q is negative.

MOTION Requests

Words 22 to 28 of the physical device table define the
motion requests for each device. MOTION requests result­
ing in no action are completed without error. The following
are some examples of MOTION requests:

713 Conversational Display Terminal

Backspace record

Write end of file

Rewind

Backspace cursor one character

Reset cursor to home position

No action

713 Conversational Display Terminal

Rewind/unload Reset cursor to beginning of line

Advance file Move cursor down one line

Backspace file Move cursor up one line

Advance record Advance cursor one record

3-27

1711 Teletypewriter

Backspace file

Write end of file

Rewind

Rewind/unload

Advance file

Backspace file

Advance record

E rro r Cond ition s

No action

Top of form

No action

Terminate request

No action

No action

No action

The drivers detect the following errors:

00 Timeout (fatal)

01 Lost data

03 Parity error

05 Internal reject (fatal)

06 External reject (fatal)

33 Line break

All errors are logged in the engineering file. Fatal errors
result in the standard error return to the requester with the
Q register bit 15 set. The other errors result in a rubout
being transmitted to the device; on onput requests, the
operator may re-enter the desired character. Diagnostic
logical unit capability is provided. .

1843.2 COMMUNICATION LINE ADAPTER

The CLA as it is used in ITOS 1 terminal communication· is
described above.

REAL-TIME PERIPHERAL DRIVERS

This section defines the operation of the following device
drivers:

• D1536 1536-2/1525-3/1502-80 Relay Multiplexer
Analog Input Subsystem driver

• D1501A - 1501-10/1525-3/1501-11 Solid-State
Multiplexer Analog Input Subsystem driver

• D1544A - 1544 Digital Input driver

• D1553A - 1553 Digital Output driver

3-28

• D1555A 1555 Relay Output driver

• D1547 A - 1547 Events Counter driver

• D1566A 1566 Digital/Analog Conversion driver

• L15721 1572-1 Sample Timing Unit Line
Synchronous Timer driver

• S15721 - 1572-1 Sample Timing Unit Sample Rate
Generator driver

• D1590 1590 Remote I/O Local Adapter driver

RELAY MULTIPLEXER ANALOG
INPUT SUBSYSTEM DRIVER

This driver responds to READ or FREAD requests, returning
data from the analog input subsystem to the request buffer.
A READ request causes the analog input to be returned as
the actual analog digital converter (ADC) reading in left­
justified ones-complement form. An FREAD request causes
the analog input to be converted to millivolts and returned
as an integer value equal to analog input millivolts by gain
(mv x gain). Thus, the full-scale integer value is always
5000 (decimal) representing:

5000 mv x 1
500 mv x 10
50 mv x 100
5 mv x 1000

The following is the format of the request buffer (LIST):

LIST

IJST +
length - 1

Where:

.

15 13 12 11 10 9

Not Used Gain MUX point address

S Value (counts or my)

gain is 0, multiply by 1
1, multiply by 10
2, multiply by 100
3, multiply by 1000

s is the sign

o

~

It'

...

Last
}.fUX
point
address

Analog
values
are
stored
starting
here.

If the request was completed without error, the value
returned to the buffer is as follows.

96769390 C

\ _. '

/,'- .

(~'

I
\...- .

"

I.

CI

(
",-./

,"-
I
\~

r--.
~)

c'

o
o

o
o

12-BIt AOC:I L-...I....... S I __ valu_c -L!.....L..JS Is I....;...,L.JS I B I

14-Bit ADC: L..I S-J-I ______ v_a_Iu_e _____ -tI_s-tl.....Js I

:500010 mv x Gain MilUvolt Value: I S I
L--~ ______________________ ~

If the request resulted in an error, the data value returned
is:

Error Code

800016

800116

800216

Description

Timeout

Multiplexer reject

ADC reject

MOTION requests are ignored by the driver. Refer to
appendix E for further analysis.

SOLID-STATE MULTIPLEXER ANALOG
INPUT SUBSYSTEM DRIVER

This driver is a re-entrant subroutine that is directly called
by the user to return the value of one analog input channel.

The FORTRAN function is:

CALL AIRD (INDEX, IV AL, IERR)

The assembly call is:

LDQINDEX
RTJ AISB
A = value
Q = error

Where:

INDEX is the logical index for all analog inputs (1 to
n). The index is contiguous whether the
analog input stations are contiguous or
installed on the 1750-1/2 Computer Inter­
face Unit/Computer Interface Expander or
on the 1590 Remote I/O Local Adapter.
Driver control tables located in SYSDAT
enable the driver to translate this logical
index to an actual hardware address and to
determine if the device is connected on the
1590 Remote I/O Local Adapter.

IV AL is the analog digital converter reading
returned as a left-justified ones complement
number.

IERR is the error return.

96769390 B

o
800016
800116

No error

INDEX is not legal

Reject

When connected to the 1590, the operation of this hardware
subsystem is handled by this driver with no effect on the
user interface.

DIGITAL INPUT DRIVER

This driver is a re-entrant subroutine that is called directly
by the user to return the value of one digital input word.
The FORTRAN function is:

CALL DIRD (INDEX, IVAL, IERR)

The assembly call is:

LDQ INDEX
RTJ DISB
A = value
Q = error

Where:

INDEX is the logical index to all digital inputs (1 to n).
The index is contiguous whether the digital
input stations are contiguous or installed on
the 1750-1/2 or on the 1590. Driver control
tables located in SYSDA T enable the driver
to translate this logical index to an actual
hardware address and to determine if the
device is connected on the 1590.

IV AL is the value of the digital input word.

IERR is the error return.

o
800016
800116

No error

INDEX is not legal

Reject

~hen c:onnected to the. 159~, the operation of 1544 digital
mputs IS handled by thIS drIver with no effect on the user
interface.

DIGITAL OUTPUT DRIVER

This driver is a re-entrant subroutine that is called directly
by the user to output one word or one bit of digital output.

The FORTRAN function is:

CALL DORD (INDEX, IVAL, IERR)

The assembly call is:

LDQINDEX
LDA value
RTJ DOSB
Q = error

3-29

Where:

INDEX is the logical index to all digital outputs
(1 to n). The index is contiguous
whether the digital output stations
are contiguous or installed on the
1750-1/2 Computer Interface
Unit/Computer Interface Expander or
on the 1590 Remote I/O Local Adap­
ter. Driver control tables located in
SYSDAT enable the driver to trans­
late this logical index to an actual
hardware address and to determine if
the device is connected on the 1590.

Bit addressing is specified by setting bit 15 of the
index to 1. INDEX then becomes a
logical index to digital output bits
numbered from the first digital out­
put station to the last and from bit 0
through bit 15 of each output word.

IVAL is the desired state to be output to the
digital output word. If bit addressing
is used, bit 0 of the value is used by
the driver to indicate the desired
state of the selected output bit.

IERR is the error return.

o
800016
800116
800216

No error

INDEX is not legal

Reject

Bit addressing with no
data buffer specified in
the control table
(SYSDAT)

When connected to the 1590, the operation of 1553 digital
outputs is handled by this driver with no effect on the user
interface.

RELAY OUTPUT DRIVER

This driver is a re-entrant subroutine that is called directly
by the user to output one word (16 relays) or one bit (one
relay) of relay output. The FORTRAN format is:

CALL RORD (INDEX, IV AL, IERR)

The assembly call is:

3-30

LDQINDEX
LDA value
RTJ ROSB
Q = error

Where:

INDEX is the logical index to all relay outputs (1 to n).
The index is contiguous whether the relay'
output stations are contiguous or installed
on the 1750-1/2 or on the 1590. Driver
control tables located in SYSDAT enable the
driver to translate this logical index to an
actual hardware address and to determine if
the device is connected on the 1590.

Although the user treats 1555 relay outputs
as if they contained 16 relays per station,
the hardware stations actually contain eight
relays each. The driver compensates for
this by making two outputs per call. The
eight lower order bits of the value are
output to the second station. If the second
station is not installed (as indicated in the
control table in SYSDA T), the second output
is not executed.

IV AL is the output value desired. For bit addressing,
only bit 0 is used. For bit-addressed
momentary relays, IVAL is ignored by the
driver.

IERR is the error return.

o
800016
800116
800216

Bit Addressing

No error

INDEX is not legal

Reject

No data buffer for non­
momentary bit-addressed
relays

If bit addressing is required, bit 15 of INDEX is set to 1 and
the lower 15 bits become a logical bit index to all relay
outputs numbered from the first station to the last and from
bit 0 through 15 of each word. When bit addressing is
specified, the driver picks up the last output value (16 bits)
from the data buffer in SYSDAT, changes the specified bit
as specified by bit 0 of the value, and outputs the 16-bit
word in two separate outputs as in word addressing.

Momentary Relays

The momentary 1555 Relay Output Stations may be treated
the same as latching relay outputs: they may be word or bit
addressed. From the control table in SYSDAT, the driver
determines if the 1555 stations are momentary relays. The

96769390 B

.. ,

..... -.-....,

\ "

1"" "

lJ

[/
o

o
o
o

o
C~

driver outputs IV AL if word addressing is specified or sets
the bit specified by IVAL if bit addressing is specified. A
data buffer in SYSDAT is not required.

Restrictions (Momentary Relays)

The 1555 momentary relay outputs provide an adjustment
for the, length of time the relays remain closed when
addressed. When doing outputs to momentary relays, the
user must not output to the same address again until the
expiration of the closure time delay or uncertain results
occur on the relay outputs.

When connected to the 1590 Remote I/O Local Adapter, the
operation of the 1555 relay outputs is handled by this driver
with no effect on the user interface.

EVENTS COUNTER DRIVER

This driver is a re-entrant subroutine that is called directly
by the user to return the value of one counter operating in
EPUT (events per unit time) mode.

The actual reading of the counters is done by a section of
the driver running periodically on the timer. Each time it is
scheduled, it reads all counters specified in the control table
and places the results in a data buffer in SYSDAT. When the
driver is called by a user, the value from the data buffer is
returned. The periodic scan of all counters is started by the
first user call to the driver.

The 1547 Events Counters are connected to gate from the
1572 Sample Timing Unit Sample Rate Generator (SRG).
The driver initializes the sample rate generator multiplier
with 1000, hence the gate time for the counters will be the
selected frequency of the sample rate generator divided by
1000. The 1547 Events Counters are configured to clear
when read.

The counters are treated as if they were 16-bit counters.

The FORTRAN format is:

CALL CTRD (INDEX, IVAL, IERR)

The assembly call is:

LDQINDEX
RTJ CTSB
A = value
Q = error

Where:

INDEX is the logical index to all counters (1 to n).

96769390 B

The index is contiguous whether the counter
stations are contiguous or installed on the
1750-1/2 Computer Interface Unit/Compu­
ter Interface Expander or on the 1590
Remote I/O Local Adapter. Driver control
tables located in SYSDAT enable the driver
to translate this logical index to an actual
hardware address and to determine if the
device is connected on the 1590.

IVAL

IERR

is the reading from the counter that represents
the number of counts received within the
gate time established between two pulses
from the sample timing unit. The value is
treated as one 16-bit counter but actually
may be two 8-bit counters. The user must
handle the separation in this case.

is the error returned.

o
800016
800116
800216

No error

INDEX is not legal

Reject

Returned on first call; per­
iodic reading is not in pro­
cess and data is bad.

When connected to the 1590, the operation of the 1547
counters is handled by this driver with no effect on the user
interface.

DIGITAL/ANALOG
CONVERSION DRIVER

This driver is a re-entrant subroutine that is called directly
by a user to output a value through the 1566 Digital! Analog
Conversion Unit. The driver supports current output only.
The FORTRAN format is:

CALL AORD (INDEX,IVAL,IERR)

The assembly call is:

LDQINDEX
LDA value
RTJ AOSB
Q = error

Where:

INDEX is the logical index to all analog outputs (1 to
n). The index is contiguous whether the
analog input stations are contiguous or
installed on the 1750-1/2 or on the 1590.
Driver control tables located in SYSDAT
enable the driver to translate this logical
index to an actual hardware address and to
determine if the device is connected on the
1590.

IV AL is the value converted to an analog output by
the 1566 Digital! Analog Conversion Unit.
The transfer function is:

016 = 0 percent of full scale

FFF 16 = 100 percent of full scale

The full-scale ranges available are:

1 to 5 milliamperes

4 to 20 milliamperes

10 to 50 milliamperes

3-31

!ERR is the error returned.

o
800016
800116

No error

INDEX is not legal

Reject

When connected on the 1590, the operation of the 1566
outputs is handled by this driver with no effect on the user
interface. '

REMOTE 1/0 DRIVER

This driver responds to WRITE requests to operate any of
the following devices:

1544 Digital Input Units

1553 Digital Output Units

1555 Relay Output Units

1547 Events Counter Units (EPUT mode)

1501/1525 Solid-State Multiplexer, Analog Input Subsys­
tem

1536/1525 Relay Multiplexer, Analog Input Subsystem

1566 Digital/Analog Conversion units

The request buffer specified by sand n in the request has
the same format as shown for Relay Multiplexer Analog
Input Subsystem Driver above with the following device
differences:

1544

1553

1555

1547

The addresses specified in the buffer are the
actual station addresses of the devices on the
remote.

The addresses specified in the buffer are the
actual station addresses of the devices on the
remote. The corresponding values to be output
are loaded into the second half of the buffer.

The addresses specified in the buffer are the
actual station addresses. The corresponding
values to be output are loaded into the second
half of the buffer. These are eight-bit values.

Same as for the 1544 Digital Input Units.

1501/ The addresses specified are the channel ad-
1525 dresses of the analog input. The driver

calculates the multiplexer. station address by
adding the integer result of dividing the
channel number by 16 to the base station
address in the physical device table. The
values are returned into the second half of the
buffer as the analog digital converter reading
in left-justified ones-complement form.

3-32

1566 The addresses specified are the actual station
addresses of the analog outputs. The corre­
sponding values to be output must be combined
with the channel addresses and placed in the
second half of the buffer. The format of this
value/channel address word is as follows.

15 14 13 12 11 o

DAC value = 6616 to 1FF16 (current mode)

Selects channell

'----- Selects channel 2

....... ----Selects channel 3

'-------Selects channel 4

Although all of the above devices can be operated by MSOS
WRITE requests; the normal mode of operation and the one
used by all of the subroutine drivers (D1544A, D1553A,
D1555A, 01547 A, D1501A, and D1566A) is to interface
through a periodic scanning program (ATOSAN) that oper­
ates all devices connected to the 1590 Remote I/O Local
Adapter on an independent basis using data buffers in
SYSDAT. ATOSAN runs every 10 seconds and generates the
WRITE requests described above for all devices on the 1590.

When the subroutine drivers encounter a device that is
remote in the control tables, they make a direct call to a
subroutine (BUFEXC) that interfaces with the data buffers
maintained by ATOSAN.

The 1536/1525 Analog Input Subsystem, which is connected
to the 1590 Remote I/O Local Adapter subsystem, is not
operated by ATOSAN. The user must make an MSOS WRITE
request to an appropriate logical unit using a request buffer
formatted as shown for the locally connected 1536/1525
Relay Multiplexer Analog Input subsystem. The analog input
values are returned to the user as the actual analog digital
converter reading in left-justified ones-complement form.
If the request results in an error, the data value returned
will be as follows:

Error Code Description

Timeout

External reject on multiplexer
or analog digital converter

Internal reject on multiplexer or
analog digital converter.

In addition to these data errors, the v field of the request is
set negative (bit 15 equals 1) if an irrecoverable error occurs
in the 1590 subsystem.

96769390 B

/"--

'.. . .~"

........

.r '

('
I

'-. ...

\ ~

C~

(- "-
.......... /

r~-'"

()
'-.-

[/
o
c

o
o
o
o
c)

LINE SYNC TIMER DRIVER

The line sync timer driver allows the user to enable or
disable the line sync timer if it is not designated as the
system timer. It will generate interrupts and/or sync pulses
at one, two, four, eight, or 16 times the line frequency (50
or 60 Hz) and is selectable only at the hardware level.

Line Sync Timer Driver
Requests

Since this drive is actually a subroutine, a request is made
by making a direct call. The FORTRAN function is:

ISTAT = ILST(IVALUE)

rhe assembly call is:

RTJ ILST
ADC IVALUE

Where:

IVALUE has

or

bit 0 set at 1

o

bit 1 set at 1
o

Line Sync Time r Drive r
Error Conditions

RTJILST
ADC (IV ALUE·)

Enable LST inter­
rupt
Disable LST inter­
rupt
Enable LST sync
Disable LST sync

The only errors the drive can detect are internal or external
rejects. An error code is returned in the A register:

A = 0
+1
-1

No error
External reject
Internal reject

SAMPLE RATE GENERATOR DRIVER

The sample rate generator driver allows the user to have
programmable periodic interrupts and/or sync pulses. The
rate is determined by the product of a 16-bit data register
and a precision time base of 1, 10, 100, or 1000 kHz.

Sample Rate Generator
Driver Requests

Since this driver is actually a subroutine, a request is made
by making a direct call. The FORTRAN function is:

ISTAT = ISRG(ICOMND,IVALUD)

96769!J90 B

The assembly call is:

RTJ ISRG
ADCICOMND
ADCIVALUE

Where:

ICOMND is 1
2
3

4

RTJ ISRG
or ADC (ICOMND-*)

ADC (IVALUE-*)

Input the status to IVALUE.
Input the value of counter to IVALUE
Output the value from IVALUE to the
register.
Output a function from IVALUE
where IVALUE has all bits set at zero
except:

Bit 0 = 1

o

Bit 1 = 1

o

Enable sample rate gen­
erator interrupt
Disable sample rate
generator interrupt
Enable sample rate gen~
erator sync
Disable sample rate
generator sync

Sample Rate Generator Driver
Erro r Cond ition s

The only errors the driver can detect are internal or
external rejects. An error code is returned in the A
register:

A = 0
+1
-1

No reject
External reject
Internal reject

PSEUDO TAPE DRIVER

The pseudo tape driver drives pseudo devices that have the
external characteristics of a magnetic tape. The pseudo
devices are sequential files that are created and accessed by
the driver for calls to the file manager. Using job control
statements several set-up operations must be performed
prior to using pseudo tapes from the unprotected file. The
file must be defined, opened, etc., using:

*DEFINE
*OPEN
*CLOSE
*RELEAS
*PURGE
*MODIFY

These statements cause the necessary initialization of the
pseudo tape's physical device table. After this set-up
process, the devices may be accessed as normal magnetic
tape by using the monitor requests:

READ
WRITE
FREAD
FWRITE
MOTION

3-33

as well as the job control statements:

*REW
*UNL
*EOF

NOTE

When writing on a pseudo tape that is at
load point, the driver releases the current
file space and redefines the file, causing
the information in the old file to be lost.
If the tape is positioned at some record
between the load point and end-of-tape
and a writing operation is performed, the
existing record is lost.

There is also a provision for pseudo tapes to be used in the
protected foreground. The physical device tables for these
devices are initialized at system configuration time, rather
than through use of the job control statements. The file
number must be predefined, the status initially defined as
ready at load point, and WRITE enabled. The file number
must have the system status reflect that the device is not
available for writing from the unprotected file. (Refer to
the 1700 MSOS 4 Installation Manual for specific details.)

File numbers 7FFD16 through 7FFF16 are reserved for the
MSOS verification tests, and file numbers 7FFS16 through
7FFC16 are reserved for the foreground pseudo tapes. The
background pseudo tape file numbers are in the preceding
block.

NOTE

If it is allowable to read the foreground
pseudo tapes from the background, it is
the user's responsibility to ensure that the
condition described in the preceding cau­
tion does not occur.

PSEUDO TAPE DRIVER REQUESTS

READ/FREAD and WRITE/FWRITE have a maximum record
length that is specified at the time the file is equated to the
logical unit defined. Any attempt to write a longer record
results in an error. Any attempt to read a longer record
results in a short read condition; format and mode have no
meaning. All information is transferred in binary mode.
The number of words specified determines the record length.
If the number of words exceeds the maximum of 192, the
record is truncated to 192 words.

The MOTION request format is described under Motion in
section 1. Density has no meaning. All other motion codes
are processed when the driver is advancing or backspacing
records and a file mark is encountered. The current
MOTION command is terminated with the end-of-file status
(bit 11, word 12) set in the physical device table.

3-34

ERROR CONDITIONS

The following error conditions are recognized by the pseudo
tape driver:

• Attempt to write on a file that is not enabled for a
write

• File not defined or not assigned to this logical unit

• Disk hardware failure

• Request specifies a record length that is longer than the
maximum record length specified in the file definition

• Not enough file space available for this request

COSY DRIVER

The COSY driver is actually a COSY compress/decompress
module. Input through this driver is from the standard
COSY input unit; output is to the standard COSY output
unit.

COSY INTERFACE
DRIVER REQUESTS

READ

There is no difference between READ and FREAD. The
first record read is a CSY/ record; the associated deck
identification determines the manner in which the reset of
the deck is processed. If the deck identification is blank
(generated by the write logic), no sequence numbers are
added to the requester's record length. If the deck
identification is not blank (generated by COSY), sequence
numbers are added, along with one deck identification if
specified. 192 words are then read from the standard COSY
input unit, and the first record is unpacked in the requester's
buffer. Subsequent read requests are filled by unpacking the
next record in the buffer until the buffer is exhausted and
another 192-word block is read in. Read requests are
processed until an END/ record is read that is translated
into the user's buffer. Information transferred must be in
ASCII mode.

WRITE

There is no distinction between formatted and unformatted
writes. Information in the user's output buffer is packed
together until a 192-word block has been filled. The block is
written out on the standard COSY output unit, and another
block is started. The end-of-file motion control request
indicates the end of the writing process. The buffer is
written out, although it may be less than 192 words. An
END/ record is then written and the end-of-file MOTION
request is passed on to the COSY output unit. The first
write request to the driver causes a CSY / record to be
written on the output unit. An END/ card is output
following the last block, and the end-of-file MOTION
request is passed on to the COSY output unit.

96769390 B

\ ..

\ .. ,.

/",,--.

I~

()

C)

o
c:'

C)

o
o
o
o

Motion

The only motion control request recognized by this routine is
the write end-of-file that indicates the end of data
compression and causes output of the COSY buffer, even if
it is only partially filled. All other motion control requests
are simply passed on to the standard COSY input or output
unit. MOTION requests to skip records (forward/backward)
skip physical COSY records (192 words) rather than logical
records.,

Status

The hardware status is picked up from the device table of
the standard COSY unit being used.

OPERATION

The user can perform both read and write functions with one
physical device table. However, because the driver data
buffer must be kept intact for an entire deck, read and write
must be alternated at the deck level and not at the record
level (read one deck, write one deck, read one deck, etc.). If
two physical device tables are used, alternate concurrent
read and write is allowed. Two concurrent reads or writes
address the same physical unit and therefore are not allowed
because only one COSY input device and one COSY punch
device can be defined for each job. The *CSY control
statement must precede the *K control statement when the
COSY standard logical units and system standard logical
units are being defined.

ERROR CONDITIONS

The COSY driver sets bit 15 of the v field when error
conditions occur. The alternate device handler outputs the
error message and specifies the COSY driver logical unit
number and an error code. The reply for the error message
is a CU or DU. The user program must check bit 15 of the v
field to determine if an error occurred.

SOFTWARE BUFFER DRIVER

The software buffer driver is capable of improved core
memory utilization in situations where programs require
data output to . system devices that are classified as having
slow data rates (e.g., I/O-TTY, paper tape punch, etc). The
following definition of terms is presented to clarify the
description of the software buffer driver.

Term

Buffer logical unit

Buffer area

96769390 B

Description

A logical unit upon which a user
program requests data output

An area on mass storage reserved to
store data temporarily for the soft­
ware buffer driver until the data can
be output on the buffer output logical
unit

Term

Buffer output
logical unit

Buffer physical
device table

Character
buffer

Data

Description

The actual output logical unit upon
which the software buffer driver
makes the request to output data

The table that defines the limits of
the mass memory buffer area and the
buffer output logical unit and con­
tains the character buffer and cur­
rent pointers into the buffer area

An area in the buffer physical device
table where the data is placed while
it is being output on the buffer output
logical unit

A block of information whose starting
address, number of words, and mode
(binary or ASCII) are defined in the
user's request on the buffer logical
unit

The request section of the software buffer driver is initiated
when a user makes a formatted WRITE request on a buffer
logical unit. The driver completes the request immediately
if it is for motion. MOTION requests cannot be buffered.
The driver requests that the requester's data be written in
the buffer area. The data on mass memory is preceded by a
one-word header that contains the length and the mode in
bit 15. When the data has been buffered on mass memory,
the request is complete and the user's buffer is now
available for further I/O operations. The output section of
the driver is initiated if it is not already active.

The output section requests that data be read from the
buffer area to the character buffer. It then requests that
the character buffer be output on the buffer output logical
unit in the mode defined by the original user. The pointers
are adjusted, and the cycle continues until all data in the
buffer area has been output on the buffer output logical
unit.

The driver checks for such error conditions as buffer area
over-subscription, I/O errors on mass memory, and buffer
output devices that are logged in the engineering file.

NOTE

Data cannot be input by the software
buffer driver.

Consult the MSOS Customization Manual for further infor­
mation on buffer set-up and organization.

BUFFERED LOCAL TERMINAL
CONTROLLER DRIVER

Below is a description of the operation of the buffered
1745-2 Local Terminal Controller driver. One to 12 120-
display stations can be operated through a 1706 Buffered
Data Channel.

3-35

USER INSTRUCTIONS

To communicate with the computer, the operator presses
the SEND key on the conversational display terminal
keyboard. The computer indicates that operator input is
required with the alert indicator. After the operator has
input his commands and pressed the SEND key, the KEY­
BOARD LOCK indicator illuminates and remains lit until the
computer causes an actual data transfer. The computer
reads the requested number of words from the last STX or
from tile upper-left corner of the screen if no STX is
displayed. The computer stops receiving data when the
requested number of words has been received or until an
ETX is transmitted, whichever is shorter. The only
exception is when an ETX immediately follows an STX; ETX
is not transmitted, and data is transferred from the STX to
the next ETX on the screen or the requested number of
words has been transferred, whichever is shorter.

Note that it is not necessary for the ALERT indicator to be
on before pressing the SEND key. The computer will
recognize all send interrupts and respond by transferring
data.

FORMAT WRITE

The driver is FORTRAN-compatible on format write opera­
tions; i.e., the first character of the output buffer or
format statement can be one of the following control
functions:

First
Character

1

o
Blank

+

Control
Function

Top of form (clear-reset)

Double-line skip

Single-line skip

No line advance

These characters are not printed; however, any other
character can be printed and a single-line advance is
executed before the message is written.

UNFORMATTED WRITE

Any write request can perform control operations by
including control characters preceded by a hardware escape
code (ASCII 1B16). See Control Characters below. Some
conversational display terminal functions, however, must be
output as actual function commands or software-simulated
functions. To perform these operations, the driver provides
pseudo-escape codes as part of the regular write feature.
The action indicated below is performed:

Pseudo-code Function

lBOCl6 Clear-reset

1B0716 Alert

1B1A16 Suppress send

3-36

The suppress send function causes any unattended send
operations at that station to be ignored. Any new requ~s~ to
that station's logical unit clears the send suppress condItion.
Any or all of these pseudo codes may be used in a single
message. but there must be no more than three and they
must precede any functional escape codes or data. Pseudo­
escape codes are replaced with synchronous (nonfunctional)
characters while the message is output and replaced in the
user's message buffer before completing the request.

FORMAT READ

A format read executes a line skip, puts an STX character at
the beginning of the new line, and performs an alert function
to indicate that the computer is waiting for input. The
request times-out if the operator does not press the SEND
key within two minutes.

UNFORMATTED READ

A regular READ request causes an immediate transfer from
the screen. The program RD1745 is expected to do a regular
read from the screen in response to an unattended send.
This feature can be used as the basis for a conversational
package with minimum system load (e.g., the DAC console
handler for conversational display terminals). This tech­
nique is for more efficient than a format read/format write
sequence.

CONTROL CHARACTERS

The following control functions must be preceded by an
escape code:

ASCII Code Function

11 Skip

12 Line skip

13* Selective clear

14· Line clear

OB Reset cursor

The following control functions do not require a preceding
escape code:

ASCII Code Function

lnt Tab protect
lEt Tab access
OA New line

16 Synchronous

19 t End tab
1Ft Start blink
5Ft Start tab

09 Horizontal tab

OC Carriage return

tEdit keyboard only

96769390 B

\ ...

\ '

\•.

i----
\ '

(
''---- "

C)

C)

o

o

o
o
C)

Note that the carriage return displays an arrow in the
current marker position and does not put the entry marker
at the beginning of the next line.

Start blink causes all following characters up to the next
blank or new line character to flash on the screen.

ERROR CONDITIONS

In the case of a ghost interrupt from the 1706 Buffered Data
Channel, the driver prints the message:

GI1706

on the standard comment medium.

In the case of a ghost interrupt from the 1745 Local
Terminal Controller, the driver prints the message:

GICRT

on the standard comment medium.

The driver does not call the alternate device handler; it
produces its own error messages and recovery. If any error
occurs while core is allocated, it is released. All errors
result in the completion of any pending request. The error
message format is:

CRTyx

where y is the station number of the conversational display
terminal on which the error occurred and x is as follows:

o Diagnostic timeout

1 Reject in initiator

2 Reject doing function output

3 Reject attempting buffered I/O

4 Reject issuing write terminate function

5 Reject in 1745 interrupt response (station inter­
rupt)

6 Reject in 1745 interrupt response (end-of-operation
interrupt)

7 Reject in send portion of continuator

8 Reject in end-of-operation portion of continuator

9 Allocatable core not sufficient for this format read
size

A Zero length request

B Software cannot identify this end-of-operation. It
is followed by a ghost interrupt message.

Rejects are separated by the execution area of the driver.
This makes it easier to identify problems and the time of
their occurrence. Error 1 is usually the most common reject
message; it indicates that the unit is unavoidable. This
error is typed out if the unit is turned off.

96769390 B

Error 9 should occur only if there is a basic MSOS
customization problem. The error is generated on an error
return from a SPACE request. This occurs only when the
core allocator discovers that there is not enough core
(allocatable plus unprotected) to satisfy this SPACE request.
This is extremely unlikely, since the driver never asks for
more than 522 words, far below the minimum required by
the job processor.

Error A results from the receipt of a zero length request.
The request is completed immediately without any error
flag.

Error B results when an end-of-operation interrupt is
received at the driver continuator and the software flags
(word 13 of the physical device table) indicate that the
interrupting unit was not expecting an interrupt. The
printout is followed by the ghost interrupt message.

LIMITATIONS AND RESTRICTIONS

There are several places in the driver where it talks directly
to the 1706. Therefore, this driver assumes that the 1745 is
on the first 1706 in the system. This driver does not allow
the conversational display terminal to be used as a comment
device.

This program makes space requests for format reads.

The driver requests allocatable core at request and comple­
tion priorities equal to the running priority of the driver;
the operating system will swap to satisfy this request.
Therefore, it is unadvisable to use this driver to execute
format READ requests from unprotected core, especially if
the system is not set up with an area 4 (i.e., protected
allocatable core area longer than the minimum required for
the job processor). One way to safeguard this operation is to
set aside an area n, where n is the priority of the driver.
The disadvantage is that this area is restricted to programs
with a request priority greater than or equal to n. If this
technique is used, area n should be the size of the largest
screen plus 2 (522 words), since the driver never makes a
larger space request.

This driver is for buffered operation only.

DIGIGRAPHICS DRIVER

This driver handles the I/O transfers between the 1700
Series and the 1744 Digigraphics Controller. It can drive up
to six 1744/274 Interactive Graphics Consoles (refer to the
274 Interactive Graphics Manual Version 2. A 1706 Buffered
Data Channel is used to handle buffered inputs and outputs.
The alternate device handler is not used by this driver.

NOTE

The 1700 Series user cannot make direct
calls to the 1744/274 driver since all
communications are performed by the
interactive graphics system.

3-37

EXTERNAL CHARACTERISTICS

Each controller is identified by a unique logical unit number
and each has an entry in the PHYSTB giving the equipment
code and the console number associated with it. Figure 3-7
is the assembly language calling sequence.

15 14 13 12 11 10 9 8 7 4 3 o

RTJ-($F4)

o I rc I xl rp I cp

c

thread

v Ihl a I 1

n

s
b

Where:

rc is the request code for the desired function.

3-38

READ

WRITE

FWRITE

ID READ

A normal read from the 1744
controller is attempted. If un­
successful, the request is com­
pleted with error.

A normal write from the 1744
controller is attempted. If un­
successful, the request is com­
pleted with error.

A write is made to the 1744
controller at the next available
1744 location. If unsuccessful,
the request is completed with
error.

1744 memory is scanned and a
read is made of the first ID block
encountered. If unsuccessful.
the request is completed with
error.

COMPUTER The 1744/274 hardware is put
DISPLA Y into computer display mode.

which allows the 1700 to drive
the 274 console. If unsuccessful.
the request is completed with
error.

NOTE

Since the Digigraphic I/O requests are
eight words long. they should always be
issued through an indirect request. An
attempt to execute this request by a return
jump to MONI. followed by the request.
results in a MONI return to the last word of
the request.

rp is the request priority.

cp is the completion priority.

c is the completion address.

v is the error code.

h is the restart display. if equal to 1.

a is O.

is the logical unit number.

n is the number of words to transfer.

s is the 1700 starting address.

b is the 1744 starting address. If b >200016 , start at
the end of the previous call. _

INTERNAL CHARACTERISTICS

If more than three internal or external rejects occur,
location A3 or A4 is set for the translator and the request is
completed with error. The v field error codes are used to
indicate the problem to the requester:

v = 2 Buffer overflow

v=3

v=4

v=6

Internal reject

External reject

Short transfer

The following are the error messages:

BDC NOT READY

BDC BUSY

DGC NOT READY

DGC EXT REJ

DGC INT REJ

Buffered data channel not ready

Buffered data channel busy

Digigraphic console not ready

Digigraphic external reject

Digigraphic internal reject

DATA SET CONTROLLER DRIVER

NOTE

The 1700 Series user cannot make direct
calls to the 1747 Data Set Controller driver
since all communications are performed by
the high-speed IMPORT system.

DRIVER REQUEST HANDLING

If there is a request subroutine at the initiator entry,
DSCHK, the data set controller check routine is called to
see if the hardware is operational. If it is. the type of
request being made is checked. The appropriate action is
shown below for each type of request.

96769390 B

,/"---

\.

\

~---

('

'\. .'

c'

c'
c'

"'--../

G

o

'\ 0'·

o

FREAD

The interrupt on the interrupt word is selected. Completion
without error is made if this interrupt is received. If it is
not received within 7 seconds, the request times out and is
completed with error and short transfer.

FWRITE

The interrupt word is sent, and the request is completed
without error.

READ

A normal READ from the transmission line is attempted. If
successful, the request is completed without error; if
unsuccessful {due to cyclic code errors}, the request is
completed with error. If it is completed after 2 seconds, the
request is completed with error and short transfer.

WRITE

A normal WRITE over the transmission line is attempted. If
successful, the !'equest is completed without error; if
unsuccessful (due to a sync word acknowledge signal not
being set or an alarm interrupt), the request is completed
with error. If not completed after 2 seconds, the request
times out and is completed with error and short transfer.

HARDWARE MALFUNCTIONS

The following hardware malfunctions cause a diagnostic to
be printed out and the time-out counter to be set to 10
seconds. This immediately notifies the user so that he may

96769390 B

remedy the malfunction or consult a customer engineer.
The time-out interval is changed to 10 seconds to avoid
overloading the teletypewriter with repeated diagnostic
messages.

Hardware Failure

Reject

Buffered data channel not ready

Buffered data channel busy

Data set controller not ready

Data set controller busy

Data set controller in test mode

No carrier signal on the data set

Message

DSC REJECT

BDC NOT READY

BDC BUSY

DSC NOT READY

DSC BUSY

TEST MODE

NO CARRIER

All these conditions result in completion of the request with
error and short transfer after 10 seconds. The alternate
device handler is not used by this driver. The driver
attempts the rejected, busy, or not ready conditions 100
times before assuming a hardware failure.

Other errors that can occur are:

o Sync word not acknowledged - A counter in the driver
allows it to wait for (he sync word acknowledge bit
SNCNAK to be set. The user can adjust SNCNAK to
suit his conditions; normally, the longer the distance
between the terminal and the central, the larger
(negative) this value should be.

• Cyclic code errors - Another adjustable parameter,
CYCNT, is provided to allow the driver to await the
arrival of the cyclic code word after a transmission. If
this delay is too short, cyclic code errors are not
detected.

3-39

......... , .'

C~I

[)

(

0'",

I

"--.../

(---\
,-)

0
r-'\
0'

0

0
C)

SYSTEM INITIALIZER DRIVER 4

US' . '\ ! ,(. i: i 'lii1' * Cir ,: t 'i' Ii t].I*a. 1M» "PG;M!\, tit 6 «" i ;. wN'4m·, j ;.\ . In k'lIeS' iMt SF'

The system initializer requires device drivers for many of
the peripherals. One driver of any device type may be
present jn a given system initializer. The drivers in the
system initializer do not use interrupts but operate the
devices on the basis of the device status condition. In this
mode of operation, device operation and timing may differ
from the interrupt-driven driver. The logical units used by
the initializer are predefined in the range 1 through 8. The
minimum initializer requirement is an input driver, comment
driver, and mass-memory driver. Dummy routines are
provided to satisfy external linkages for missing routines.
Table 4-1 defines the logical units, driver names, devices
supported, and dummy names.

DRIVER OPERATION

INPUT DRIVERS

The input drivers are controlled by the input driver
interface, IDRIV. IDRIV calls the device driver by means of
a return jump instruction that passes the following to the
driver:

• A register - The buffer first word address for read

• Q register - The number of words to be read

The driver returns to IDRIV with the error indicator (0 for
error and 1 for no error) in the A register. If an error
occurred, the following error information will be passed:

• Q register - The error code

., I register - The last hardware status

MASS-MEMORY DRIVERS

The mass-memory drivers are controlled by the mass­
memory driver interface, MDRIV. MDRIV calls the device
driver by means of a return jump instruction that passes the
following to the driver:

• A register- If set positive, buffer first word address
If set negative, write address tags (disk
only)

• Q register- If set positive, number of words to be read
If set negative, complement of the
number of words to write

• I register- The starting sector address

96769390 A

The driver exits with the error indicator (0 for error and -0
for no error) in the A register. If an error occurred, the
following error information is passed:

• Q register - The error code

• I register - The last hardware status

DRIVER ERRORS

The IDRIV module of the initializer reports device failures
on the initializer comment device as:

Where:

L,xx FAILED yy (zzzz)
ACTION

xx is the failed logical unit.

yy is the error code (the same as for MSOS drivers).

zzzz is the last hardware status.

The response to the error takes one of two forms:

• RP - Repeat the operation.

• CU - Abort the operation and return to the com­
ment unit for a subsequent control statement.

DISK-TO- TAPE UTILITY
DRIVERS

The disk-to-tape utility program requires drivers for three
types of devices: magnetic tape, mass memory, and the
comment device. These drivers are status-driven and do not
use interrupts. In general, calls to these drivers specify two
parameters:

A register = Buffer address

Q register = Length of buffer.

COMMENT DEVICE

The length of the data buffer is 120 characters. The driver
tests each character as a carriage return; if the test is true,

4-1

TABLE 4-1. HARDWARE DEVICE DRIVERS

Logical Driver Hardware
Unit Name Devices

1 QPTAPE 1721/1722

2 QCARD 1726/405
1726/1706/405
1728/430
1729-2
1829-30
1729-3

3 QMT9TK 1732-1/609
1732-1/1706/609
1732-2/615-93

3 QMT7TK 1731/601
1731/1706/601
1732-1/608
1732-1/1706/608
1732-2/615-73

3 QMLS9 1860-5/6

4 QDK85X 1733-1/853/854
1738/853/854

4 Q17391 1739-1
4 Q17332 1732-2/856-2/856-4
4 Q1751 1751
4 Q1752 1752
4 Q18334 1833-4

6tt Q1711 1711
1712
1713
713-10
1810-1

7 Q40421 1740/501
1742-1

7 Q42312 1742-30
1742-120
1827-30

7 Q18277 1827-5/7

8 DUMM'Yttt

tUsed to allow linkage of unused driver entry points
t t Logical unit 5 is reserved for future use.

t t tUsed when no device action is desired

the data transfer is complete. On input, lowercase
alphabetic characters are converted to uppercase.

MASS MEMORY

The length of the data transfers is normally 16 sectors of ,96
words each. All data is transferred in a buffered mode.

4-2

Equipment Dummy Other
Code/WES Namet Requirements

1/00A1 QPTDMY

11/0581 QCDDMY ASCIT63 conversion
11/1581 requires CR026. ASCIT68
11/05A1 conversion requires CR029.
11/0581
11/0581
11/0581

7/0381 QMTDMY Unit 0 used
7/1381
7/0381
7/0381 QMTDMY Unit 0 used
7/1381
7/0381
7/1381
7/0381
7/0601 QMTDMY Unit 0 used

3/0181 Unit 0 used

3/0181
3/0181 Unit 0 used
2/0101
2/0101
14/0700 Unit 0 used

1/0091

4/0201 QPRDMY

4/0201 QPRDMY 1742-120 requires train
image T5954

4/0201
1843-2 CLA

MAGNETIC TAPE

In addition ot the normal parameters defined above, if the A
register is equal to zero, a file mark is written and the tape
is rewound to the load poin t. When tape is being read, a
check for a file mark is made on each read. A file mark
signifies the end data for a given dump.

96769390 C

' , , . ,~

\ -

,r-'
I
\ "

l .. ,

C)

[)
C)

(---,
l)

CI

0
...

0
f

(\
---..J

G

0

0

DSKTAP UTILITY DRIVERS 5

, $

These drivers transfer data between disk and tape. Transfer
may be made in either direction'. The transfer starts
to/from the tape at the current file mark, and on input runs
to the end of tape. Transfer from disk starts at the
beginning and runs to the designated sector. Transfer to
disk starts at the beginning and runs to the end of the tape
records. After transfer, the option to verify the data on the
two storage media is provided.

There are three types of input/output subroutines used in the
DSKTAP utility: magnetic tape, mass memory, -and
comment devices.

The comment device driver is called:

RTJ CDRIVE

The A register contains the data buffer address. The Q
register contains the length of the data buffer for an output
or zero for an input request.

I/O on mass memory is performed by a call to MDRIVE:

RTJ MDRIVE

96769390 B

The A register contains the data buffer address, and the Q
register equals the positive word count for a read and the
negative word count for a write.

To read data from magnetic tape, a call to MGREAD is
made:

RTJ MGREAD

The A register is equal to the buffer address, and the Q
register is equal to zero. To write data, call MGDRIV:

RTJ MGDRIV

The A register is equal to the buffer address, and the Q
register is equal to the number of data words. If the A
register is equal to zero upon entry to MGDRIV, an end of
file is written on the tape and the unit is rewound.

Errors can be detected by the calling program by testing the
A register to see if it is equal to zero on return from the I/O
routines.

5-1

'-.

\" .

I,

\.. ... '

(---
I

\.

,~

'It

('

"
'"---,,,'

,1"--" ,

"--/

"--', ,. "

"-..,.. .. /

(J
"''----')

,r-·- ~ \
U

o

o
o

SYSTEM CHECKOUT PACKAGE BOOTSTRAP DRIVERS 6

'4 ,·M Mil f,!W.t"st'·6fl·t' 's ip :!Rgffl,f.%' ~'! i!!il§}1J 4· 'ie Ii' vI" .. "'.a'I"!' Me ~ Ii ;,g!M4·!¥~'k· jill.,iSC .. is'' ;+".,81 54IL'$'-I. 4 . fni \.*1*.

System checkout is an on-line program that diagnoses
failures in a 1700 Mass Storage Operating System (MSOS).

The faiied system image is written on mass storage by a
bootstrap program. This bootstrap operation is followed by
a system restart (autoload) and call-up of the system
checkout program (SYSCOP) via MIPRO. This program
executes at a low priority level, obtaining its information
from the image on mass storage in an attempt to isolate the
system problems.

System checkout is written as a series of overlays to
minimize core requirements.

CHECKOUT BOOTSTRAP PROGRAMS

The checkout bootstrap programs write the core image on
mass storage. They are self-contained, status-driven
drivers.

ASSUMPTIONS AND RESTRICTIONS

The user is responsible for ensuring that the bootstrap
program is intact and in core. The bootstrap must be core­
resident since it is referenced absolutely by the user.

The bootstrap program transfers the number of words
specified by the user via SYSDAT to mass storage.

The starting sector number is specified by an EQU in
SYSDAT.

When using a cartridge disk, the failed image must reside
completely on either disk 0 or disk 1.

The released system has standard values specified for
memory size and the mass memory location of the failed
image. Refer to the MSOS customization manual for
procedures to alter these parameters. The system's A, Q,
and I registers are saved by the bootstrap program for
reference by SYSCOP.

COMPLETION AND ERRORS

After transferring the failed image to mass storage, the
bootstrap stops (loops on a selective stop) with the Q
register set to 0 if no errors occurred during the transfer or
negative if errors occurred.

BOOTSTRAP 0 P E RA TlO N

When the system fails, the following steps are used to
bootstrap the failed system onto mass memory.

96769390 A

1. Stop the computer. Do not press MASTER CLEAR.

2. Clear the M, P, Y, and X registers.

3. Set the P register to the address 14216•

4. Set the SELECTIVE STOP switch. Select the Q
register.

5. Place the computer in run. The computer will stop
when the failed image has been transferred.

6. Autoload the system.

7. After system start-up, request SYSCOP via MIPRO.

SYSTEM ABORT DUMP

When a system condition causes abnormal termination of
system operation, the core-resident system abort dump
program can be executed to dump the contents of selected
core locations. There is a unique dump routine for each type
of printer. These routines do not use interrupts; they are
status-driven. The procedure to operate the program is:

1. Press MASTER CLEAR.

2. Enter the starting address of the location to be dumped
in the A register.

3. Enter the ending address of the locations to be dumped
in the Q register.

4. Set the P register to the address 14016,

5. Execute the program by setting the RUN/STEP switch
to RUN.

The following result after the program is executed:

1. The paper is set to the top of the form.

2. There is an absolute/relative heading of 16 columns at
the top of each page.

3. Absolute and relative addresses and 16 words are
printed per printer line.

4. Lines having 16 words the same as the last line printed
are ignored by printing a line of asterisks.

5. Sixty lines are printed per page.

6. The program hangs when the requested number of words
are printed.

The system abort dump program can be executed as many
times as necessary to dump the selected contents of core by
repeating the operating procedure.

The printout is shown in figure 6-1.

6-1

r "

'

1"'---"

AESL REL sot 61 72 83 94 AS B6 C7 D8 EO FA OB lC 2D 3E 4F

lF75 lA70 lCF7 0000 0000 0000 0000 0180 OBOO 08FB 48FB EtOS OFA6 OD03 OAOF 5400 1797 C8F3
lF85 lA80 E8F3 OF61 4SEF 0121 184F C800 FC67 09FC 0100 D800 FC63 5802 182D OBOO 5800 FD79 /--

lF95 lA90 OFC7 0132 08E2 0337 lCF8 C800 FC58 09FB 0111 lCDC D800 FC53 OAOO 68D3 58EE 5800
tFA5 lAAO FDOR 18FD D8CE AC3D 011F 58E7 5800 ED04 18FD A02D 0119 D8C5 58EO 5800 FCFD 1800
lFB5 lA~O FFFC A02D 0111 1804 C8Be.. 09FE 688A 8B9 0113 E888 OFA1 lA12 09FE 68B3 5800 FD49
lFC5 lACO C02D 0309 ODFE 0202 18FE OBOO 5800 ECE4· t.8FA t8ED OBOO 1800 FCAE 1800 FF1C 1800
tFD5 lADO FD43 1800 FEt5 0800 FCt9 09FD 0101 8Bl e80C Fcn D800 FCB 09FD 0138 0111 1820

/

lFE5 lAEO OCCO 4500 FCOB 4800 FCOA lC90 58A6 EllO OFAA C02C 0172 COOO 022C 2000 OOOC 6813
lFF5 lAFO E106 54BF ODFE OF6F 380E 680D 5800 PDll C80B OlDC 5892 C807 0102 09FE 18F6 6800

,

NOTE: TO CONSERVE CORE MEMORY. THE TRAIN IMAGE IS NOT LOADED WHEN THE 1742-120 LINE PRINTER
AND CONTROLLER IS USED (ASSUMING THERE IS AN EXISTING TRAIN IMAGE).

tTHB 5 IS ABSOLUTE; THE 0 IS RBLATIVB.

Figure 6-1. System Abort Dump Printout

,----,

"'"

I
\"",---",

/
\ -

\ ...

6-2 96769390 A

',-- . ./

r--',
(,

I'/-'~\

I 'I

\,--./

()

C)

GLOSSARY

dc,At\·'·,,(M,w·,·5kM'.+Miij cr, ','1 Ui''',_lss.ritc ''i.ui!·i..f_

A register

Absolute address

Address

Advance file

ADT

Alarm

Alternate device
handler

96769390 B

A CPU register used for addition. It
is also used for one-word input/output
transfers.

1. An address that is permanently
assigned by the machine designer
to a storage location

2. A pattern of characters that
identifies a unique storage loca­
tion without further modification

3. Synonomous with machine
address, specific address

1. An identification, as represented
by a name, label, or number, for
a register, location in storage, or
any other data source or destina­
tion; e.g., the location of a sta­
tion in a communication network

2. In general, any part of an
instruction that specifies the
location of an operand for the
instruction

Command to magnetic tape to
advance tape until the next file mark
is found

Auto data, transfer - an I/O mode
that allows A/Q transfers to be made
in blocks as if a buffered transfer
were undertaken. ADT mode drivers
notify the requesting program only
when the end-of-block transfer mark
interrupt occurs. Micro interrupts
for each A/Q transfer are treated
internally by the driver.

1. Error signal in the status word,
usually indicating a serious hard­
ware malfunction

2. An audible signal; e.g., sent to an
interactive terminal

A driver for an alternate hardware
device. An alternate device is used
for the I/O transfer when an unre­
coverable error occurs on the
scheduled I/O device. The alternate
device handler usually also processes
the error indications for the device
that failed.

A/Q channel

Auto-data transfer

Back read

Backspace

Batch

Batch processing

BCD

Binary mode

Block

Bootstrap

A

pi; *'Wa2-iU •• '

A Control Data CYBER 18/1700 com­
puter data channel that can handle
input/output only through the A
register is called the A/Q channel.

See ADT

A magnetic tape command that
causes magnetic tape to be read in
the reverse direction

A magnetic tape command that
causes magnetic tape to be wound in
the reverse direction for the number
of records specified

In MSOS, an object program running
in a stacked job manner that shares
the CPU with the priority program
when a priority program is present
and executes only when the priority
program is not in control of the
processor. Batch interrupts have
lowest priority in the interrupt pro­
cessing priority scheme.

Pertaining to the technique of exe­
cuting a set of computer programs so
that each is completed before the
next program of the set is started.
Batch jobs are not considered to be
time-critical since they do not need a
particular response time (batch jobs
have the lower priority).

Binary coded decimal

A method of reading data one binary
bit at a time. Binary readouts are
given in BCD or hexadecimal format
for CYBER 18/1700 data.

Consecutive machine words or char­
acters considered or transferred as a
unit, particularly applicable to I/O

A technique or device designed to
bring itself into a desired state by
means of its own action; e.g., a
machine routine whose first few
instructions are sufficient to bring
the rest of itself into the computer
from an input device

A-1

____ B_O_T_--'----_____ B~e~ginning of (magnetic) tape. A
physIcal mark on the tape

Buffer

Buffered data

Buffered data
channel

Cassette tape

Character mode

Checksum

Completion priority

1. A routine or storage used to
compensate for a difference in
rate of flow of data or time of
occurrence of events, when
transmitting data from one
device to another

2. An isolating circuit used to
prevent a driven circuit from
influencing the driving circuit

Data that is transferred via the I/O
chann'el using the buffered data
channel

The high speed I/O transfer channel
for CYBER 18/1700 systems.
Buffered data controllers transfer
blocks of data. Micro interrupts are
handled by hardware or firmware
without driven intervention.

A two-track magnetic tape with a
single track of sequential data in
each direction

A data buffering mode in which the
basic byte is usually a 7-bit ASCII
character plus a parity bit

A summary of digits or bits used
primarily for checking purposes and
summed according to an arbitrary set
of rules

A field in the standard I/O request
parameter list. It designates the
priority to returning control to the
requestor after the task is completed.

Continuator entrance An entrance to a program used to
return control after a request has
been completed

Control point

Controller

Core

A-2

A boundary for main memory. Con­
trol point is a necessary parameter
for 16-bit addressing in main memory
when the main memory is larger than
65K words. MSOS 5 requests do not
need control point parameters since
the location of the request is a saved
value.

A hardware device that controls
access and data transfer to I/O units
that are connected to it

1. The main memory of a core type
computer

2. The main memory of core saved
in mass memory

Core image

COSY

CPU

CRC

CYBER 18/1700

Cyclic redundancy
check

Cylinder

Data packing

Diagnostic logical
unit

Diagnostic timer

A word-for-word ima~ELoLcJ)~e~ayad",--___ /'_---""_
in mass memory

A compress/decompress module used
to maintain programs

Central processing unit

Cyclic redundancy check - a hard­
ware or firmware generated check
code. It is stored on mass storage
following the data and is returned
with data read from mass storage. It
is used for error checking to define
data quality.

A series of CDC mini-computers sys­
tems including the CYBER 18-10,
18-20, 18-30 Timeshare and
SYSTEM 17. The standard operating
systems for the CYBER 18/1700 com­
putersare RTOS 3 and MSOS 5.

See CRC

A set of tracks on a multisurfaced
disk pack. Each track in a cylinder is
on a different disk pack surface and
lies above/below all other tracks on
the same cylinder. The read/write
heads are simultaneously positioned
over all tracks in a single cylinder.

A method of storing data within a
data word to minimize non-used bits;
e.g., packing 6-bit bytes into a 16-bit
word would cause eight bytes to be
packed into three words. (If the data
was not packed, this would require
one word per byte or per two bytes.)
Bytes would be split between words 0
and 1 and between words 1 and 2.

A logical device devoted to detecting
hardware errors. Many physical
devices will have two logical unit
identifications: a main logical unit
identification for data transfer pur­
poses, and a diagnostic logical unit
identification for checking data
transfer quali ty and storage. Each
logical unit has its own physical
device table.

A clock value set at the start of I/O
transfers. If the requested operation
has not completed before the preset
time elapses, an error is declared and
the driver initiates recovery/abort
routines to terminate the request.

96769390 B

'

\'"

,
\
'-.. . ./

(j
,,~" -.', "

(.
'-./

(--.'

""

,."""",
I

',,---,,'

r····.
i

, I

.'-....../

"".-.
U

o
()

(J

Disk

Diskett~

Driver

DSKTAP

DTLP

Dummy driver

ECC

Engineering file

EOF

EOP

EOT

Error entrance

Error recovery

ETX

External reject

96769390 B

A mass storage device consisting of a
controller and one or more disk packs
each with one or more rotating sur­
faces for storing data. One movable
pair of heads (read/write) is provided
for each surface. These heads read
or write data to a single track at a
time.

A single surface flexible disk pack

A program whose main function is to
perform a physical I/O transfer of
data between one storage medium
and another (e.g., between central
memory and mass storage, between
central memory and magnetic tao e)

A disk-to-magnetic tape module

A disk-to-magnetic tape module

A routine substituting for a driver
. that has substantive tasks to perform.
The sole function of a dummy driver
is to return control to the calling
module.

Error correction code. A data quality
checking code

A software controlled error logging
file that stores information on hard­
ware failures. An unrecoverable I/O
error is usually logged in the engin­
eering file.

End-of-file

End-of-operation

End of (magnetic) tape. A physical
mark locating the end of usable tape

A entrance to a program used to
return control after an external
request has failed

Software that attempts to use data
checks and special techniques to
complete malfunctioning I/O trans­
fers. If the recovery techniques
succeed, no indication of an error is
usually given to the requester. If the
recovery techniques fail (unrecover­
able error), the user program is often
notified, the transfer is usually
attempted on the alternate device (if
any), and the error may be logged in
the engineering file.

End-of-text

Reject sent by an I/O controller when
it cannot perform a specified opera­
tion within the allotted period

FDD

File mark

Find next request

FNR

Formatted data

fpi

FREAD

Function command

FWRITE

Ghost interrupt

Hang-up

Head

Hollerith

Indirect

Internal reject

Initial entrance

Initialize disk

I/O

Job processor

Kernel drivers

Flexible disk driver

Mark imposed on tape (as a separate
record) to signify end-of-file

RTOS or MSOS routine that checks
request queues and logical tables to
find the next request to be executed.
This routine assures that I/O channels
remain busy so long as there are
u~tarted I/O requests.

Find next request

Data that is written in sector mode
(e.g., uniform records)

Frames per inch

The formatted read request

Command to an I/O controller that
prepares the peripheral device for an
I/O transfer

The formatted write request

An unsolicited interrupt from a peri­
pheral device or an unused line

When a request is unable to be
completed because a peripheral
device is not able to issue the neces­
sary interrupt, the condition is called
an I/O hang-up

The magnetic read or write head for
a magnetic disk, drum, or tape

A code

An addressing mode

The reject generated by the CPU
when the I/O controller fails to
answer a request within the allotted
time

The initial entry point used when the
program is first called

The process of writing track and
sector addresses on a disk pack

Input/output

The batch processing subsystem that
initiates, monitors, and terminates all
jobs executed in unprotected core

Drivers that are written in a special
modularized fashion so that some
modules may be excluded from the
driver at system initialization,
thereby saving CPU space during
execution

A-3

LCTT

LOG1 }
LOG1A
LOG2

Logical unit tables

lu

Macro instruction

Macro interrupt

Main memory

MAKQ

Mass memory

Micro interrupt

M05

MONI

Monitor

MOTION

MSA

MSOS

Offset

A-4

Low cost tape transport

Logical unit tables

Three tables that are used to locate
alternate devices and other logical
unit information

Logical unit

An instruction in a source language
that is equivalent to a specified
sequence of machine instructions;
usually a mnemonic instruction that a
programmer can write in a source
program to call for library or special
routines

An interrupt signaling an error or
completion of an I/O operation (e.g.,
a word transfer on the A/Q channel
or a data block transfer on buffered
channel or ADT)

The principal memory of the CPU; it
may be core or solid state (depending
on the CPU) and includes all address­
able memory within the CPU (exclud­
ing micro memory)

The request queuing program

The external magnetic memory,
usually disk. It may also be drum. In
cases where neither disk nor drum are
included, it can be a magnetic tape
device.

An interrupt that signals an error or
completion of a single I/O operation;
e.g., a single word transfer of an ADT
block transfer. Micro interrupts are
often handled by the driver without
notification to the requesting module.

NCR operating mode (set/sample
instructions)

An entry point for the monitor

The supervisory routine in an operat­
ing system that coordinates and con­
trols the operation of user and system
programs

The motion request

Mass storage address

Mass Storage Operating System

For the storage module drive, the
ability to position the head slightly
off the track in a direction perpendi­
cular to the track. This may allow
data recovery if the read head is not
aligned perfectly with the treck.

Overflow

pI, p2, p3

Page eject

Parameter

Parameter list

Parity check

Physical device
tables

PHYSTB

Protect mode

Pseudo disk

For buffered transfers - the condition
that occurs where an I/O device
attempts to transfer more words of
data than are provided for in the
buffer

The motion request fields. These
appear in the motion word of the
request and are processed in the
order given; i.e., pI before p2; p2
before p3. No more than three
requests can be made in the same
request.

A line printer control com mand caus­
ing the printer to skip the remainder
of the current page and to move to
the top of the next page

1. A variable that is given a con­
stant value for a specific purpose
of process

2. A quantity in a routine that
specifies a machine configura­
tion, subroutines to be called, or
other operating conditions

A part of a READ, WRITE, FREAD,
FWRITE, or MOTION request. The
parameter list holds all the unique
parameters necessary to prepare the
driver for executing this specific
request.

A mode of checking data by adding a
binary bit so that the sum of all
binary bits (e.g., in a byte) is always
even or always odd. If parity is not
satisfied, the user program is usually
notified that data quality is degraded.

The table (PHYSTB) that holds most
information needed by the driver to
control an I/O transfer for the speci­
fied logical unit. One physical device
may have several logical unit desig­
nations. Each logical unit must have
its own physical device table. Some
I/O transfer parameters are saved in
the physical device table at request
time; last device status is saved at
the end of the transfer.

Physical device table

Areas of main memory or mass
storage may be protected from write
operations (or even read access) so
that important programs and data
cannot be inadvertently destroyed

A method of partitioning disk for
addressing purposes so that a bit
limited addressing field (e.g., 16 bits)
may be used to address (in word
mode) all of disk. The disk driver
translates pseudo addresses to true
disk addresses.

\/

/' ..

. /--"

r---­
I
\ ... ,"

\ -'

,..---".
96769390 B \.. ,

·""... "

,-' ,

" .•

" ~

__...._1

""-'"

I
,---,I

Pseudo tape

Q·register

Queue

READ

Real time

Relative'

Request

Request priority

Rewind

RTOS

Scheduler·

SCMM

Sector

Seek

'96769390 B

A method of treating data so that no
matter where it is stored (e.g., in
core), it appears to have the same
format to the user as if it had been
stored on magn~tic tape

One of the CPU arithmetic registers.
It is also used for I/O transfers in
conjunction with the A register.

A list of requests waiting to be
processed; requests are ordered by
priority level

The normal input request (non­
form'atted)

Pertaining to a prOgram for which
time requirements are particularly
stringent

A mode of addressing

The method used by a program to
start an I/O transfer. Standard
requests are READ, WRITE, FREAD,
FWRITE, and MOTION.

The priority assigned to a request.
This determines the order in which a
group of waiting requests are pro­
cessed. Completion priority may
differ from the request priority.

To return a tape or disk file to its
beginning

The Real Time Operating System

. The portion of the monitor that
schedules programs to be executed
(may be an initial, continuator, or
error entry to the program). Other
entry points are normally reached by
a jump or return jump to a program
entry point without using the schedul­
ing function of the monitor.

Small Computer Maintenance Monitor

A number of contiguous words in
main or mass memory. Disks and
drums have a preset sector size.
When used in sector mode, sectors
are consecutively numbered through-'
out the mass storage device. initiali­
zation writes the sector addresses on
the disk or drum.

The operation that positions the disk
read/write heads over the track
where the I/O transfer is to be made.
All heads over all surfaces move as a
unit; hence a seek operation positions
heads over all tracks in a single
cylinder.

Segment

Slew

SMD

Status

Strobing

System data

SYSDAT

Tape

Thread

Timeout

Ti me-sharing

A portion of the main memory lying
in the same 65K set of core address;
e.g., a 262K main memory would have
four segments: 0 through 65K, 65K.
through' 131K, 131K through 196K,
and 196K through 262K.

To pass data until the desired end of
input pattern is sensed

Storage module drive

A state or condition of hardware or a
task; e.g., busy or not busy. I/O
devices normally send status of the
operation just finished to the CPU.

Timing of data; e.g., from a disk. By
advancing or delaying the strobing of
a data bit, the disk controller may be
able to achieve a better data transi­
tion state. Variable strobing is one of
the storage module drive modes of
error correction.

A region in low core reserved for
data used by several programs.
Physical device tables are located in
the system data region.

System data region

A data storage medium. Magnetic
tape (2-, 7-, or 9-track) and punched
paper tape are used by various
CYBER 18/1700 systems.

A list of entries that each contain a
pointer to the next entry; e.g., logical
unit thread. I/O requests (i.e.,
parameter lists) that are a part of the
requesting program are usually
threaded in place, and are therefore
scattered throughout core. An entry
may be threaded to the beginning
(highest priority), end (lowest prior­
ity), or someplace within the thread.
In the last named case, the thread is
broken and the new entry is threaded
to both ends of the break in the
thread.

The expiration of a preset period of
time. I/O transfers are normally
allowed a predefined period. If one
operation is not completed during this
period, a timeout is declared and the
driver enters error processing.

The capability of a computing system
to accommodate more than one user
during the same interval of time
without apparent restriction caused
by the existence of other users; a
given device is used in rapid succes­
sion by a number of other devices, or

A-5

Timer r~quests

Track

Unload

"A-6

various units of a system are used by
different users or programs. The
sharing is controlled automatically
and mayor may not include a priority
scheme by using multiprocessing.
The time-sharing may reduce total
processing time from that required to
do batch processing.

The stack of requests awaiting time­
out checks. The timing program
periodically checks requests. If the
request is still in the stack at the end
of the period. a timeout is declared
for tttat operation. Completed opera­
tions are removed from the timer
stack before timeout.

A data storage region on disk. drum.
or tape. Tape tracks are linear and
do not require addresses; disk and
drum tracks are circular and must be
addressed to establish a start of track
mark.

To remove a tape from ready status
by rewinding it beyond the load point;
the tape is then no longer under
control of the computer.

User program

v field

WES

WRITE

Write enable

Write protect

An object program loaded and
entered under MSOS control; includes
batch and priority programs and
library routines.

An error field in the parameter list
used by the driver to notify the user
program of I/O failures

The address code in the Q register
used to activate an I/O device. A
director field is also included in the
I/O device address.

The" normal output request (non­
formatted)

A command or physical device (e.g •• "
write enable button on disk control­
ler; write enable ring on magnetic
tape reel) allowing data to be written
onto the device. or to a region of the
device

A switch setting or program
command that disables write opera­
tions into the protected region of
mass storage or main memory

96769390 B

/
I

\...

,1'-- '.

",--

"..--"

I'
, ... "--',

',-._/

I
',--/

..... - ""',

()'
'--

i I

',-,/

(~ .•. '\

\,-)

o
C)

SlANDARD EQUIPMENT/INTERRUPT ASSIGNMENTS
FOR CYBER 18-10, 18-20, AND 18-30 TIMESHARE

B

Mil ;, 3 *1&6 "·"4- ''''K" '1'Mp", w'.JRM'

TABLE B-1. STANDARD EQUIPMENT/INTERRUPT ASSIGNMENTS
FOR CYBER 18-10, 18-20, AND 18-30

Equipment Macro
Peripheral Code Interrupt

Teletypewriter/conversational display terminal 1 1

Paper tape reader 2 2

Paper tape punch 2 2

Card punch 2 2

None 3 3

Line printer 4 4

None 5 5

None 6 6

Cassette 7 7

Clock 1 8

Magnetic tape transport (NRZI only) 9 9

Eight-channel communications line adapter 10 10

Dual-channel communications line adapter 10 10

Card reader 11 11

Magnetic tape transport (NRZI and phase encoded) 12 12

10M 13 13

Storage module disk (SMD) 14 14

Cartridge disk drive (COD) 14 14

Flexible disk drive (FDD) 15 15

96769390 C

Micro
Interrupt

1

2

2

2

3

4

5

6

7

8

9,0

10

10

11

N/A

N/A

N/A

N/A

-N/A

B-1

~",

\'" .. '

.r"

~'

()
'--,

" -',

I~)

)1

I
',--")

o
()

o
()

PHYSICAL DEVICE TABLE C

4 *Ii
iLf *

The physical device tables are included in SYSDAT (the
system tables and parameters that are located at the
beginning of core).

PHYSICAL DEVICE TABLE

Each physical device has a device table (PHYSTB) that
contains the interfacing information specified by the user to
the device. It contains the entry addresses to the driver
responsible for operating the device, the station address that
tells the driver which device to use, and the information
that allows the driver to fulfill the current request. For all
drivers the table contains at least 16 words for a device.
Words 0 through 15 have a standard function for all devices.
Additional words are added for" use by the output message
buffer package and special use by drivers. For kernel
drivers, words 16 through 23 are also predefined. A detailed
description of these comm"on kernel driver words is given in
figure C-l.

Following the two standard PHYSTB tables (figures C-l and
C-2), PHYSTBs for selected specific devices are shown in

I figures C-3 through C-13. Following the PHYSTBs, the
logical unit tables (LOGIA, LOGl, and LOG2) are defined
and discussed.

The following information gives a detailed description of
each of the words for all drivers (figure C-2).

Word 0

Word 1

Word 2

Word 3

96769390 D

ELVL

520x16; a scheduler request to operate the
driver initiator address at level x, the driver
priority level

EDIN

The driver initiator address

EDCN

The driver continuator address; control is
transferred to EDCN on interrupt at the
priority level assigned to the interrupt trap
region. This priority level must be the same as
the priority level specified by word o.

EDPGM

The driver error routine address; control is
transferred to EDPGM when the diagnostic
clock is counted down to negative by the
diagnostic timer at the driver priority level.

Word 4

'JWb

EDCLK

The diagnostic clock; this location is set by
the driver and counted down by the diagnostic
timer for a hardware completion interrupt. It
is set idle (-1) by a complete request.

Word 5 ELU

Word 6

Word 7

Word 8

The logical unit currently assigned to the
device; it is zero if the device is not in use. It
is set by the reql!est processor and may be
reassigned by find-next-request and cleared by
find-next-request or complete request.

EPTR

Call parameter list location for current
request; it is set by find-next-request.

EWES

Hardware/address

Bits Code

o through 6 Station

7 through 10 Equipment (refer to appen-
dix A)

11 through 15 Converter

The equipment status is obtained by loading
this word into Q followed by input. Status is
saved in word 12, ESTAT2.

EREQST

Request status

Bits Code

15 1

0

14 1

Device

If operation is in
progress
If operation is
complete

If driver detects
I/O hardware
failure

C-1

WORD DESCRIPTION

o 1
~

16 KERNEL FAULT IF ERROR OCCURS

17 DIAGNOSTIC LOGICAL UNIT

18 COUNT OF GHOST INTERRUPTS

19 MICRO-INTERRUPT NUMBER

20 TIMEOUT PERIOD TO WAIT FOR AN INTERRUPT

21 STATUS AFTER INITIAL ENTRY

22 STA TUS AFTER INTERRUPT

23 STATUSAFTERINTEnRUPTTTIMEOUT

24 CONTROL POINT LOCATION

I

SYMBOLIC fA-
FLTCOD

DIAGLU

GHOSTI

MICROI

TIMOUT

SENTRY

SINTER

STIMEO

CPVLOC

J

STANDARD
FOR KERNEL
DRIVERS

t

" OPTIONAL FOR
DRlVERAND/
OR KERNEL

!

Figure C-l. Common Words in PHYSTB for All Kernel Drivers

Bits Code ~ Bits Code Device

13 } 10 through 4 5 1738/853
12 The equipment class (continued)
11 6 1751

0 Class undefined 7 1739-1

1 Magnetic tape 8 1738/854

2 Mass storage 9 1731/601

3 Card 10 Software buffer

4 Paper tape 11 COSY driver

5 Printer 12 1728/430

6 Teletypewri ter 13 Core allocator

7 Reserved for 14 1733-1/854
future use 15 1733-2/856-2

10 through 4 Equipment type constant (T) 16 1733-2/856-4
17 1742-30

0 1711
18 1742-120

1 1721/1722
19 1740/501

2 17-23/1724
20 1732-2/615-73

3 1752
21 1732-2/615-93

4 713-10/711-100
713-120 22 1732-1/1706/608

t Standard for DMA kernel drivers, except for SMD.

C-2 96769390C

1"'---'
!

,"" ...

(~ .

...........

",--­
(

1'-.. ...

"-----

,,,,,.,

' ... - ~

Bits Code Device Bits Code Device

("- " 10 through 4 23 1726/405 10 through 4 b:J 1860-72 7-Track
'-~_/ (continued) .

24 1732-1/608 (continued) Tape

25 1732-1/609 66 1860-92/95 9-Track
('-- Tape

26 1713 Keyboard
67 1832-5 Cassette "-...j

27 1713 Punch Tape

(.-.""', 28 1713 Reader
68 1833-5 Flexible

\....j 29 1729-2 Disk

30 1732-1(1706/609
69 1833-1/1867-10 , ... --....... 31 Software Dummy Disk I' "

\)
32 364-4/361-1 '- 70 1833-1/1867-20
33 364-4/361-4 Disk

(.. -...."
34 1742-1

\......J 71 Extended Core
35 1777 Reader (Paper Driver

Tape Station)
".~ ,\

72 Pseudo Disk ' 1 36 Pseudo Tape
',,-_ J

37 1777 Punch (Paper 73 1843-2 8-Channel
Tape Station) CLA

::~) 38 1729-3
74 1866-14 Cartridge

39 1733-1/853 Disk

40 1731/1706/601
75 1866-12 Cartridge

\,~./ 41 1726/1706/405 Disk

42 1747
76 1827-7 Matrix

/' 43 1744/274 Printer

44 1536 (Local)
77 TAB 501 Card I 45 1501 (Remote) Punch

46 1536 (Remote) 78-89 Reserved
'-../

47 1544 (Remote) 90 Reserved - OCR

/'--' ""\ 48 1553 (Remote) 91 915 OCR Page

,~) 49 1555 (Remote) Reader

50 1566 (Remote) 92 929 Document
Reader

51 1547 (Remote)
93 936 Document

\ '
'-.../ 52 1595 Serial I/O Reader

Card 94 Reserved - OCR
.",-",\ 53 1732-3/616/72 95 955 Page/Document i \
"-...1 54 1732-3/616-92/95 Reader

55 1743-2 96 Reserved

C~, 56 1745/210 97 979 Reader/Sorter

57 1725-1 Card Punch 98 Reserved - OCR

.. ,~......, 58 1720-1 Reader 99 Reserved - OCR
I

'-) 59 1720-1 Punch 100 - 127 For user assignment \

60 Magnetic Tape 3 Not used (reserved)
,,---..., Simulator

2 1 If device may be (,

.'-._) 61 1732-2 Long Record written by unpro-
Driver tected programs

0
62 1810-1/1811-1 1 1 If device may be

CDT/Printer read from unpro-

63 1829-30/60 Card tected programs

Reader 0 1 If device is not
(--~ 64 1827-30 Line available to unpro-

\J Printer tected programs

r---\

0
96769390 D C-3

,r-,

~)

Word 9

C-4

ESTATI

Status word number 1

Bits Code

15 1

14 1

13 1

Device

If error
condition
and/or
end-of-file
is
detected

If fewer
words are
read than
requested

If device
remains
ready after
detecting
an error or
end-of-file
or both

Driver

12
11
10

9
8
7
6

Reserved for special use
by individual drivers

5 o

4 o

3 1

·2 1

1 1

o 1

If this is
a control
character

If this is
the first Driver
character

If ASCII;
o if binary
mode

If lower
character;
o if upper
character

If format
READ or
WRITE;
o if un- FNR
formatted

If WRITE;
o if READ

Word 10

Word 11

Word 12

Word 13

Word 14

Word 15

Word 16

Word 17

Word 18

Word 19

Word 20

ECCOR

The location where the driver next stores or
obtains data; it is set initially by FNR and
updated by the driver (refer to Find-Next­
Request in section 2).

ELSTWD

Last location + 1 where the driver is to store
or obtain data to satisfy the request

ESTAT2

Status word 2; the last value of the equipment
status (refer to word 7)

MASLGN

The- length of the driver for this device when
the driver is mass-storage resident. This word
is zero if the driver is core-resident.

MASSEC

Contains the name associated with the sector
number on mass storage; if the driver is core­
resident, this name is patched with 7FFF 16.

RETURN

Used for a return address by NFNR. MAKQ,
and NCMPRQ

FLTCOD

Kernel fault code if an error occurs

DIAGLU

Diagnostic logical unit. If ELU equals
DIAGLU, then the request is completed with
error. The error is not logged in the engineer­
ing file and ALTDEV is not called.

GHOSTI

A count of the number of ghost (unexpected)
interrupts that have occurred

MICROI

The device's micro-interrupt number, if any

TIMOUT

The amount of time in seconds to wait for an
expected interrupt

96769390 B

'--_/

''--.-'"

' /

'---- /

".-- ... , ,

/---'

r"\
I

',,--j

WORD 15 14 11 10 9 8 7 4 3 o SYMBOLIC
NAME

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

T

11 0 1 0 0 1 I 0 I 0 0 0 o I
DRIVER INITIATOR ADDRESS

DRIVER CONTINUATOR ADDRESS

DRIVER I/O HANG-UP DIAGNOSTIC ADDRESS

DIAGNOSTIC CLOCK

LOGICAL UNIT CURRENTLY ASSIGNED TO THIS DEVICE

CURRENT REQUEST PARAMETER LIST LOCATION

CONVERTER I EQUIP CODE I STATION CODE

REQUEST STATUS BITS

STATUS BITSl

CURRENT LOCATION FOR DRIVER

LAST LOCATION +1 FOR' DRIVER

LAST EQUIPMENT STATUS READ4

DRIVER L'ENGTH2

MASS STORAGE ADDRESS OF DRIVER3

USED FOR RE-ENTRANCY BY FNR, MAKQ, COMPRQ

1

ELVL

EDIN

EDCN

EDPGM

EDCLK

ELU

EPTR

EWES

EREQST

ESTATI

ECCOR

ELSTWD

, ESTAT2

MASLGN

MASSEC

RETURN

STANDARD
FOR ALL
DEVICES

OPTIONAL
BY DRIVER

NOTES: 1. REFER TO WORD 8 DESCRIPTION. 1

Word 21

Word 22

Word 23

FOR RTOS WORD 9 IS REQUEST TYPE
MM - MASS MEMORY FLAG
A/B - ASCn OR BIANRY
F/F"- FORMATTED OR UNFORMATTED

2. FOR RTOS,WORD 13 IS THE ERROR CODE AND ERROR COUNT (ENGINEERING FILE ENTRY)

3. FOR RTOS, WORD 14 IS THE STATUS ON LAST ERROR

4. REFER TO THE 1700 DIAGNOSTIC HANDBOOK

Figure C-2. Common Words in PHYSTB for All Drivers

SENTRY

The status after the initial entry into the
kernel

SINTER

The status after the device has interrupted
(entry into the kernel's continuator entry)

STIMEO

The status after the device's interrupt has
timed out

Word 24 CPVLOC

Control point location. Used for DMA devices
only (except SMD).

Word 25... These words may be added to the device table
if required for special purposes. For example,
they can be used to count the lines per page of
output, link several tables together all using
the same driver/kernel, or save multiple status
words (the auxiliary status words should start
at word 24).

96769390 C C-5

WORD

o

23

24

25

26

27

28

29

30

31

32

33

34

35

36

C-6

DESCRIPl'ION

FLAG WORD

CLA LOGICAL PORT NUMBER FOR THIS DEVICE

START ADDRESS FOR CONVERTED BUFFER

LAST-LOCATION + 1 OF CONVERTED BUFFER

READ FIRST WORD ADDRESS OF CALLER'S BUFFER

NEW REQUEST CODE, PRIORITIES

NEW COMPLETION ADDRESS

NEW THREAD

NEWV-FlELD, LOGICAL UNIT

NEW NUMBER OF CHARACTERS

NEW START ADDRESS OF HEADER

PDT THREAD

PSEUDO COMPLETION FOR NEW REQUEST

Figure C-3. ITOS 1 Terminal/181l-2 CDT /1843-2
CLA Pseudo Driver PHYSTB

~

/' -,

SYMBOLIC
NAME

1 r----..

STANDARD
FOR ALL
KERNEL /,'--.

DRIVERS ,

~ / ... -
FLAGWD

PORT ".-

BEGBUF
r-'~

ENDBUF

RDBUF
/' '

NEWREQ

NEWCOM ,/" -,

'-,
NEWl'HD

NEWVLU

NEWNCH

NEWSHD

ELINK ('---

/----

--- ,

/'"
I

" ,

,,--------
I,

/'~~-

"

96769390 C

''--- -

"" ~""

SYMBOLIC
WORD DESCRIPTION NAME

o WORDS 0 THROUGH 23 HAVE THE STANDARD
KERNEL DRIVER MEANINGS. NOTE HOWEVER
THAT WORDS 21 THROUGH 23 ARE CALLED
BY THE SPECIAL NAMES OF:

$1= SENTRY - WORD 21. INITIATOR DffiECTOR ~~
STATUS 1

SINTER - WORD 22. CONTINUATOR
DIRECTOR STATUS 1

STIMEO - TIMEOUT DffiECTOR STATUS 1 23

T
STANDARD
FOR ALL
KERNEL
DRIVERS

~
24 INITIATOR DffiECTOR STATUS 2 RAWSI2

25 CONTINUATOR DffiECTOR STATUS 2 RAWSC2

26 TIME OUT DffiECTCR STATUS 2 RAWSE2

27 CARD COLUMN COUNTER COLNUM

28 3.3 MS COUNTER AT FEED TIME TFEED

"'''''''"
29 3.3 MS COUNTER AT COLUMN 1 TCOLOI

3.3 MS COUNTER AT EOP (DIAGNOSTIC
LOGICAL UNIT) 30 TCOLEP

16-BIT PACKE~ RAW DATA (NON-
DIAGNOSTIC LOGICAL UNrr)

30 WORD

CURRENT ADDRESS FOR RAW DATA (SAME
AS WORD 10. ECCOR. IF DIAGNOSTIC LU)

31 FWA

' _/ LAST WORD ADDRESS PLUS ONE OF RAW
32 DATA BUFFER (SAME AS WORD 1, ELSTWD, LWA

IF DIAGNOSTIC LU)
DESELECTS INTERRUPT CONDITION WORDS
IN COMBINATION WITH ALL POSSmLE
INTERRUPT STATES:

4 - DESELECTS INTERRUPT ON DATA
33 INTBIT

8 - DESELECTS INTERRUPT ON EOP
$10 - DESELECTS INTERRUPT ON ALARM

ADDRESS OF ALTERNATE WAIT ROUTINE IF
VALUE NONZERO

34 WAITAD

NONZERO VALUE INDICATES TIMEOUT
OCCURRED

35 TIMFLG

CONVERTED WORD LENGTH FOR BINARY
READS

36 LENGTH

EXPECTED SEQUENCE NUMBER FOR
FORMATTED BINARY CARDS

37 SEQ

(J
EXPECTED SEQUENCE NUMBER (SEQ SAVED
VALUE)

ACCUMULATIVE CHECKSUM VALUE

38

39

OLDSEQ

CHKSUM

o
Figure C-4. CBI04 Card Reader PHYSTB (Sheet 1 of 2)

()
96769390 C C-7

C-8

SYMBOLIC

WORD DESCRIPTION NAME

CYCLE 40
LOOP COUNTER USED TO COUNT NUMBER OF
PASSES REQUffiED TO CONVERT RAW DATA

41 MOTION OPTIONS' TEMPORARY LOCATION MOTREQ

FLAG .TO DETERMINE AT WHAT POINT RAW,
DATA IS BEING CONVERTED FOR FORMATTED

BINARY.
41 -0 = PROCESSING COLUMN 1 OR 2 OF NEWCRD

FffiST CARD
o = PROCESSING COLUMN 1 FOR

SUBSEQUENT CARDS READ
o ~ ALL OTHER CASES --,

42 END OF FILE INDICATOR EOF

43
I~ 80 WORD RAW DATA BUFFER -~ BUFR

122

NOTE: INITIAL VALUE OF WORDS 24-41 AND 43-122 IS O. ,INITIAL VALUE OF

WORD 42 IS F 16.

WOOD

0-24

24

25

26

27

28

29

30

31

32

33

34

:

Figure C-4. CB104 Card Reader PHYSTB (Sheet 2 of 2)

DESCRIPTION

CONTROL POINT LOCATION

LAST DATA TRANSFER FUNCTION

BUFFER SIZE FOR SPLIT TRANSFERS

CYLINDER ADDRESS

MASK FOR SEEK COMPLETE

ADDRESS FOR 96 WORD

TEMPORARY FmST WORD - FOR WORD ADDRESSING

TEMPORAR Y LAST WORD - FOR WORD ADDRESSING

NUMBER OF WORDS - FOR WORD ADDRESSING

REQUEST CODE

REQUEST PRIORITY

:

SYMBOLIC
NAME

STANDARD
FOR ALL
KERNEL
DRIVERS

I

CPVLOC

FUNCT

BUFSIZ

CYLADR

SEKBIT

ABUFF

TEMFWD

TEMLWD

WORDNO

TEMREQ

. PRILVL

Figure C-5. Cartridge Disk Driver (CDD) PHYSTB (Sheet 1 of 2)

"..- ".

\'''~

".. ~

~-.,

- "

.... ,. ~

,,,,--",

,,--~ ...

I '

,"-- ",

'-- .'

r'-...·

(
"--._-'

('
'-... --

96769390 C

: I
'--./

C:

.",,-~ .

, . ."._ ,

G'

()

()
1'.-......

U 96769390 C

WORD

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

DESCRIPrION
-

START SECTOR FOR COMPARE OR RETRY

FmST WORD ADDRESS FOR COMPARE OR RETRY

ERROR COUNTER - FOR RECOVERY

DATA TRANSFER FUNCTION CODE

NUMBER OF SECTOR CURRENrLY IN BUFFER ...

LAST VALUE OF TRUE SECTOR ADDRESS

LAST VALUE OF TRUE CYLINDER ADDRESS

LAST VALUE OF CWA

LAST VALUE OF CURRENT BANK STATUS

RETURN INDEX AFTER DATA TRANSFER

SOFTWARE SECTCR NUMBER

UNIT-SELECT PARAMETER

TEMPORARY SECTOR BUFFER - FOR WenD ADDRESSING

COMPARE OR CHECKWORD- CHECKMCJrIONS PARAMETER

RESERVED FOR OVERLAY ROUTINE

RESERVED FOR OVERLAY ROUTINE

RESERVED FOR OVER LA Y ROUTINE

RESERVED FOR OVERLAY ROUTINE

RESERVED FOR MarIONS

NUMBER OF. SECTOR ON DISK (BETWEEN 0-28)

SELECTED BANK

ALARM - STATUS

RTZS INDICATOR AFTER DEVICE SEEK ERROR

LAST Q REGISTER

LAST A REGISTER

HARDWARE DYNAMIC STATUS

FmST SECTOR ADDRESS ON DISK 1

LINK TO THE NEXT PHYSTB

96 WORD BUFFER

SYMBOLIC
NAME

SVFLAD

SAVFWD

ERCONT

FDATAF

BUFSEC

STAT 12

STAT 14

STAT2

STAT 3

EXTRA

FILEAD

FCONN

TEMSEC

COMCI£

ECALL1

ECALL2

ECALL3

ECALL4

TMOPAR

SECTAD

BANK

ALRMST

RTZS

LASTQ

LASTA

DYNMIC

DISK1

CJrHER

BUFF

Figure C-5. Cartridge Disk Driver (CDD) PHYSTB (Sheet 2 of 2)

C-9

".--.

WORD DESCRIPTION ",

o 1 ". ,

STANDARD
FOR ALL

~~
~ KERNEL

DRIVERS

23 ! "'/ '.

24 CYLINDER ADDRESS FOR TRANSFER

25 TRACK AND SECTOR FORMATTED

26 UPPER FIELD OF ADDRESS (BrrS 17-16 OF DMA)

27 TEMPORARY CYLINDER FOR WORD ADDRESSING

28 USED BY WORD ADDRESSING (TRACK/SECTOR)

29 USED BY WORD ADDRESSING (FWA)

30 USED BY WORD ADDRESSING (LWA)

31 USED BY WORD ADDRESSING (WORD IN SECTOR)

32 LAST VALUE OF CONTROL UNIT STATUS

33 LAST VALUE OF DRIVE 1 STATUS

34 LAST VALUE OF DRIVE 2 STATUS

35 DATA TRANSFER FUNCTION CODE

36 LAST DATA TRANSFER FUNCTION CODE

37 RETURN ADDRESS INDEX FOR DATA TRANSFER

38 DA NUMBER

39 LOGICAL DRIVE NUMBER OF DISK

40 COUNTER FOR SEEK ERROR

41 RETURN SEEK TO ZERO FLAG

42 ERROR COUNTER

43 REQUEST PRIORITY

44 REQUEST CODE

45 RESERVED FOR OVERLAY

46 RESERVED FOR OVERLAY

Figure C-6. Storage Module Driver PHYSTB (Sheet 1 of 2)
(

C-IO 96769390 C

~ - '\,

," .~ '-, ~,

,.,,-........ ,

, "
"--

)

,--j

(---.

96769390 C

WORD

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

DESCRIPl'ION

RESERVED FOR OVERLAY

RESERVED FOR OVER LA Y

NOT USED

INDEX THROUGH OFFSET JUMP TABLE

LAST VALUE OF OFFSET VALUE

SPECIAL WORD FOR SPECIFYING SYSTEM CONFIGURATION
AND FOR DIAGNOSTIC PROGRAM

BIT 15 = o IDA
= 12 DA

BIT 14 = 01 DRIVE
= 1 MULTIPLE DRIVES

BIT 13 = o NON-TIMESHARE SYSTEM

= 1 TIMESHARE SYSTEM
3-0 = SET BY DIAGNOSTIC PROGRAM

= o NORMAL TRANSFER

= 6 FWRITE

= OTHER ADDRESS TAGS

ECC ERROR RECOVERY FLAG (1 = DO RECOVERY)

MAXIMUM ERROR RETRIES FOR SEEK OpERATION

MAXIMUM ERROR RETRIES FOR DATA TRANSFER

MAXIMUM ERROR RETRIES FOR CONrROL UNIT
CONNECTION

MAXIMUM TIME COUNTS LOOP NO. FOR CONTROL UNIT

DIAGNOSTIC TIMER VALUE FOR DATA TRANSFER

DIAGNOSTIC TIMER VALUE FOR CU WAIT

DIAGNOSTIC TIMER VALUE FOR ALT CHANNEL WArr

DIAGNOSTIC TIMER VALUE FOR SEEK OPERATION

FORCE RELEASE COUNT

TIMESHARE CONrROL POINT (CP) VALUE

THESE BITS ARE SET BY DIAGNOSTIC PROGRAM
BIT 15 - EARLY STROKE

14 - LATE STROKE
2 - SEEK ONLY REQUEST
1 - DO RETRIES ON ALARM ERROR
0 - DO RECOVERY ON ALARM ERROR

ADDRESS OF 96 WORDS .BUFFER

LINK FOR MULTIPLE PHYSICAL DEVICE TABLE

RETURN FROM CONNECT CU SUBROUTINE

Figure C-6. Storage Module Driver PHYSTB (Sheet 2 of 2)

C-ll

/'

SYMBOLIC
WORD DESCRIPTION NAME

o

1
" .~

1 r
/"-'-,,

STANDARD " ,

FOR ALL
KERNEL
DRIVERS

23 1
~.,

24 CONTROLLER INITIATOR STATUS RAWST2
,,-

25 CONTROLLER CONTINUATOR STATUS RAWSC2

26 CONTROLLER TIMEOUT STATUS RAWSE2 ,;-- "

DEFINE BAD TRACKS OF DISKETTE:
27 BITS 15-8 - FffiST BAD TRACK NUMBER BADTKS

BITS 7-0 - SECOND BAD TRACK NUMBER

NUMBER OF SECTORS PER TRACK 28

r--'

SECTRK T
CDC OR mM

NUMBER OF WORDS PER SECTOR 29 WRDSEC
FORMAT

!
/' .,

\.... .-

CURRENT TRACK/SECTOR MSAIN
BITS 15-8 - TRACK NUMBER 0-76
BITS 7-0 - SECTOR NUMBER 1- SECTRK

30 TRKSEC TRACK/
SECTOR

/'---.. i

STARTING LOGICAL SECTOR FOR REQUEST 31 SECTOR

,
MSA

LAST LOGICAL SECTOR FOR REQUEST. CALCU-
LA TES MSA LAST.

32 LGLSEC
ASKED ,

WORD ADDRESSABLE SECTOR OFFSET, 1ST SECTOR 33 WRDFWA /
-,

\ ..
34 SECTOR OFFSET FOR END OF DATA IN REQUEST WRDLWA

/' .,

35 CURRENT 1ST WORD ADDRESS CWABUF
' ..

36 FWA WITHIN USER'S BUFFER FOR KERNEL CALL FWABUF
,/

37 LWA WITHIN USER'S BUFFER FOR KERNEL CALL LWABUF

38 NFDD CURRENT FWA CFWA /,---""""

39 NFDD CURRENT LWA CLWA
,;--....

PSEUDO COMPLETION PARAMETER LIST
WORD 0: REQUEST CODE '--"

40 1: COMPLETION ADDRESS PARLST .:'
2: THREAD WORD (SCRATCH LOCATION) f'-'

3: LU WORD - V FIELD (SCRATCH LOCATION) ', ..
'1

f-
I,

\..,'

/'- ..

Figure C-7. Flexible Disk Drive PHYSTB (Sheet 1. of 4) '-, .

(--
C-12 96769390 C

., ,,'

/"',

".--.

WORD
"'

42
.~,..

42
,.,... ..

42

43

43

44

45
',J

r

", ,
46

,-,_.j

47 " ...•.
I

''-..,.-J

48
1',;'-'

"'--.,/J 49

50

'0 51

,.,,-..... 52 i '1
"-./

53

,"'-'\"
0 54

r -" ·,
IJ

--,
I \ ,
'~

,"-""~

\,-)
96769390 C

"'--"
0

DESCRIPTION

MOTION OPTIONS
4 BIT BYTE CODE:
o - TERMINATES REQUEST
1 - PRIMES REQUEST
2 - REQUEST NO DATA COMPARE
3 - DATA COMPARE ON WRITE
4 - READ AND WRITE MODE DISKETTE
5 - READ ONLY DISKETTE
6 - NOT USED
7 - NOT USED

SAVED BAD STATUS BITS

TRANSFER ROUTINE RWA

TRANSFER ROUTINE LWA

THRESHOLD RECOVERY COUNT IN LFDD

READ RECOVERY OPTIONS
BITS 15-11- ATTEMPTS TO ZERO SEEK

10-6 - NUMBER OF OFF TRACK SEEKS
5-0 - NUMBER OF CONTINUOUS REREADS

WRITE RECOVERY OPTIONS
BITS 15-11- ATTEMPTS TO ZERO SEEK

10-6 - NUMBER OF OFF TRACK SEEKS
5-0 - NUMBER OF CONTINUOUS REWRITES

ERROR COUNT OF MEDIA ERRORS WITHIN REQUEST

NUMBER OF ERROR RECOVERIES FROM MEDIA
ERRS

LOGGING RECOVERY INTERVAL

PASS COUNTER FOR I/o PROGRESSION IN NFDD

STARTING SECTOR IN WORD ADDRESSABLE BUFFER

USEABLE SECTOR COUNT IN ABUFF BUFFER

MAXIMUM SECTOR COUNT FOR ABUFF BUFFER

ADDRESS OF WORD ADDRESSABLE BUFFER

BUFFER SIZE IN WORDS OF ABUFF

Figure C-7. Flexible Disk Drive PHYSTB (Sheet 2 of 4)

SYMBOLIC
NAME

MOTREQ

BADBIT

FWA

LWA

RCVCNT

RDCNT

WRCNT

ERRCNT

ERRCOV

LOGRCV

PASCNT

SCRSFC

SECNUM

SECCNT

ABUFF

BUFSIZ

C-13

SYMBOLIC
WORn DESCRIPTION NAME

55 ADDRESS OF WRITE COMPARE BUFFER BUFADR
,.,/----~

56 BUFFER LENGTH IN WORDS OF BUFADR· BUFLEN

57
PRIMED REQUEST FLAG- START OFOPTWRD

PRIME '- .
TABLE

"
DISKETTE OPTION TABLE

/ ... ~

OPTION NOT IN EFFECT IF WORD IS ZERO
WORD 0: PRIMED REQUEST

1: WRITE COMPARE /.'.

~: READ ONLY
3: NOT USED

FBTBUF (PRIME+ 1) 58-6~ BAD TRACK SECTOR OPTWRD r···

BUFFER
WORDS 1-3 OF OPTWRD TABLE OVERLAP BAD
SECTOR OR BUFFER
WORD.3: 1ST BAD TRACK

4: Nor USED
5: 2ND BAD TRACK

//._-...,

KERNEL FLAG BITS OPTION WORD
BYTE NAME m FUNCTION
AQDMAM 0 o - DMA XFER, l-A/Q ,,---

RGFILE 1 1 - READ/WRITE REG. FILE
(FOR DIAGNOSTIC LU)

o - ABOVE OPTION IGNORED
10FLAG 2 o - I/O NOT OCCURRING FOR

UNn'
\,

1 - I/O IN PROGRESS
SUSPND 3 o - Nor WAITING FOR I/O TO

~,

COMPLETE ON OTHER UNIT
1- WAITING FOR I/O TO COM-

PLETE ON OTHER UNIT /- .. ,

ILLFCN 4,5 00 - NO ILLEGAL FUNCTION '\

64 AQDMAF \ "

CODE
1 - ILLEGAL READ FCN CODE

ISSUED
10 - ILLEGAL WRITE FCN CODE

\ ,-
ISSUED

INPOUT 6 o - INPUT CONTROLLER FCN r--."

1 - OUTPUT CONTROLLER FCN ' "

RWREQ 7 SAVED READ/WRITE BIT
FOR WORD ADDRESSABLE /--

I/O \-.... ~.

INTFCN 8 0·- LAST I/O WAS NOT
INITIALIZATION -"*

-.~

1- LAST I/o WAS FOR
(

INITIALIZA nON
I "

(/ .. ~

'\....

Figure C-7. Flexible Disk Drive PHYSTB (Sheet 3 of 4)
/.~

(

~
" -

r-'
(

C-14 96769390 C '-... ...

r'"

'---"

,.' ,

...... _ ... j

WORn
~, .. '\

'---/ 65

r-\ 66

--)
67

....... ""\,
68

'--
)

69
.r "

,,-/ 70

"-*'''', 71

'-
)

72

=J
,..-'",

\

I
'--/

WORD

o

..... j

=) .. ~

23

".. \
'I 24 I

----../

25
,,--

--) 26

-" 27
I

-....-"
I

28

~''I

J 29

30
--'\

J 31

--\ 32

~)

)

)
96769390 C

-")
~../

DESCRIPTION

LAST FUNCTION CODE ISSUED

TIME COUNTER AT START OF SEEK (3.3 MS)

TIME COUNTER AT END OF SEEK (3.3 MS)

ILLEGAL FUNCTION CODE TO BE ISSUED

RWFDD RETURN ADDRESS

OFFSET RETURN ADDRESS

BUFFIO RETURN ADDRESS

FLEXIBLE DISK DRIVE PHYSICAL
DEVICE TABLE THREAD

SYMBOLIC
NAME

FUNC

SEEKTI

SEEKT2

DIAFCN

RWRTN

OFFRTN

BUFRTN

FDDPTH

Figure C-7. Flexible Disk Drive PHYSTB (Sheet 4 of 4)

SYMBOLIC
DESCRIPTION NAME

T
STANDARD
FOR ALL

~~ KERNEL
DRIVERS

I
FORTRAN LOGICAL UNIT NUMBER FINLU

PAPER MOTION COMMAND WORD MOTCMD

COUNT FOR SPACE FILL BLNKCT

CHARACTER OUTPUT COUNT CHARCT

NUMBER OF CHARACTERS PER LINE LINLEN

LINE COUNT LINCTO

MAXIMUM NUMBER OF LINES PER PAGE MAXLIN

MOTION REQUEST WORD SAVED HERE MTNREQ

ZERO IF ALL BLANKS IN LINE BLNKDT

Figure C-8. 1828 Line Printer PHYSTB

C-15

C-16

WORD DESCRIPTION

o 1
~

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

FORTRAN LOGICAL UNIT NUMBER

CLA LOGICAL PORT NUMBER FOR THIS DEVICE

START ADDRESS FOR CONVERTED BUFFER

LAST LOCATION + 1 OF CONVERTED BUFFER

NEXT CHARACTER FOR OUTPUT BUFFER

NEW REQUEST CODE, PRIORITIES

NEW COMPLETION ADDRESS

NEW THREAD

NEW V-FIELD, LOGICAL UNIT

NEW NUMBER OF CHARACTERS

NEW START ADDRESS OF HEADER

NUMBER OF BLANKS TO OUTPUT FOR TAB

N, SUCH THAT TAB STOPS EVERY N CHARACTERS

CURRENT PAGE LINE COUNTER

MAXIMUM LINES PER PAGE

LINES TO ADD TO LINE COUNI' FOR VERT TAB

PHYSTB THREAD

PSEUDO COMPLETION FOR NEW REQUEST

Figure C-9. 1827-7/1843-2 Matrix Printer PHYSTB
Pseudo Driver

SYMBOLIC
NAME

1 STANDARD
FOR ALL
KERNEL
DRIVERS

FTNLU

PORT

BEGBUF

ENDBUF

NEXCAR

NEWREQ

NEWCOM

NEWfHD

NEWVLU

NEWNCH

NEWSHD

TABCNl'

TABSET

LINCT

MAXLIN

VTABLF

ELINK

NCOMP

96769390 C

\ .. ,

/"

',- -

/,---..

I
\

\.

\ '

\ ,"

,'"
I

~'

I
'''--../

I/~-"'"

, .. -.. ,

u
,"'-.-'~ ,

o

C:

()

()

WORn

o

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

96769390 C

SYMBOLIC
DESCRIPTION NAME

T
STANDARD
FOR ALL

;
KERNEL
DRIVERS

1
UNIT AND MODE SELEC~ UNTMOD

TEMPORARY STORAGE ETEMPI

HALF WORD FLAG HAFURD

ADT TABLE CONTROL WORD ADTCW

ADT TABLE F'WA-l ADTFW

ADT TABLE LWA ADTLW

REQUEST TYPE FLAG MFLG

RECOVERY RETURN ADDRESS RRETAD

RECOVERY CHECKSUM RCKSUM

RECOVERY COUNT FLAG RCNTFG

RECOVERY FLAG BIT = 1 (NO RECOVERy) RFLAG

REQUEST CODE QSTCOD

WORD 4 OF R~UEST QSTWD4

MAXIMUM PHYSICAL RECORD SIZE PHSREC

PACK/UNPACK BUFFER ADDRESS ABUFF

PHYSICAL DEVICE TABLE THREAD ELINK

Figure C-'10 • LCTT PHYSTB

C-17

A physical device table is required for each LCTT unit
(drive). The PHYSTB is located in SYSDAT.

WORD ., DESCRIPI'ION
..

o ..

~

23

24 CONTROL POINT LOCATION

,25 RETURN. FOR RECOVERY

26 A REGISTER AT LAST OUTPUT

27 Q REGISTER AT LAST OUTPUT ..

28 UNIT AND MODE SELECT CODE

29 WORD 4 OF REQUEST

30 RECOVERY COUNT FLAG

31 RECOVERY FLAG BIT 15 = 1 DISABLE

32 MAXIM:UM PHYSICAL RECORD SIZE (7 TRACK)

33 PACK/UNPACK BUFFER ADDRESS (7 TRACK)

34 ALARM STATUS WORD

35 TRANSPORT STATUS'

36 PHYSTAB THREAD

SYMBOLIC
NAME

t
STANDARD

: FOR ALL
, KERNEL

DRIVERS
t

CPVLOC

RTRECV

OUTARG

OUTQRG

UNTMOD

QSTWD4

RCNTFG

RFLAG

PHmEC

ABUFF

ALRMST

TRNSPI'

ELINK

FigUre C-ll. LCTT/FORMATTER (1860-5/6) PHYSTB

SYMBOLIC
WORD DESCRIPTION NAME

o 1
STANDARD
FOR ALL

~ .~

KERNEL

23 DRIVERS
i

24 UNIT SELECT UNTSEL

25 TEMPORARY STORAGE ETEMP1

26 ADT TABLE (CONTROL WORD) ADTCW

27 ADT TABLE (FWA-1) ADTFW

28 ADT TABLE (LWA) ADTLW

29 REQUEST CODE FLAG MFLG
--

30 RECOVERY RETURN ADDRESS RRETAD

Figure C-12. Cassette Drive PHYSTB (Sheet 1 of 2)

C-18

~ ,

,

/~

/' "

,""--....

,,--'-,

...... -...

I
"-.

... --......

/"-- ,

\

I

96769390 C \" " ...

/."..--....",

,~. -- - - "
I

"-./

,."---,
I ,
',--,,/

(J

Q

96769390 D

WORD

31

32

33

34

35

36

WORD

o

23

24

25

26

27

28

29

30

31

32

33

34

35

DESCRIPTION

RECOVERY CHECKSUM

RECOVERY COUNT FLAG

RECOVERY FLAG BIT =1 (NO RECOVERy)

REQUEST CODE

WORD 4 OF REQUEST

PHYSICAL DEVICE TABLE THREAD

SYMBOLIC
NAME

RCKSUM

RCNTFG

RFLAG

QSTCOD

QSTWD4

ELINK

Figure C-12. Cassette Drive PHYSTB (Sheet 2 of 2)

DESCRIPTION

1
"r-

I

FLAG WORD

CLA LOGICAL PORT NUMBER FOR TIDS DEVICE

START ADDRESS FOR CONVERTED BUFFER

LAST LOCATION + 1 OF CONVERTED BUFFER

NEXT WORD FOR OUTPUT BUFFER

NEW REQUEST CODE, PRIORITIES

NEW COMPLETION ADDRESS

NEW THREAD

NEW V-FIELD, LOGICAL UNIT

NEW NUMBER OF CHARACTERS

NEW START ADDRESS OF HEADER (BUFFER)

BINARY PACKING CYCLE ADDRESS OFFSET

SYMBOLIC
NAME

1 STANDARD
FOR ALL
KERNEL
DRIVERS .or'

FLAGWD

PORT

BEGBUF

'ENDBUF

NEXWRD

NEWREQ

NEWCOM

NEWTHD

NEWVLU

NEWNCH

NEWSHD

CYCLE

Figure C-13. TAB 501 Card Punch PHYSTB, Pseudo Driver (Sheet 1 of 2)

C-19 •

36 SEQUENCE NUMBER SEQUEN

37 REQUEST MOTION CYCLE MOTION

38 CHECKSUM WORD CHKSUM

39 END-OF-FILE CODE EOFCOD

40 PHYSTB THREAD ELINK

41 PSEUDO COMPLETION FOR NEW ADDRESS NCOMP

Figure C-13. TAB 501 Card Punch PHYSTB, Pseudo Driver (Sheet 2 of 2)

LOGICAL UNI_T TABLES

Three logical unit tables (LOG1, LOG1A, and LOG2) specify
correspondences between logical and physical units, and
between logical units and the thr'eads of I/O tasks awaiting
execution on those logical units.

LOGl TABLE - ALTERNATE DEVICE TABLE

The logical unit table indicates whether a logical unit has an
alternate physical device that can be used for the source I/O
transfer. No more than one alternate unit can be used for a
given logical unit.

LOGl

L1

12

L3

Where:

• C-20

Bit 15

Bit 14

Bit 13

15 14 13 12 11 10 9 o
largest legal logical unit number

Alternate logical unit number

is reserved.

is 0 if the logical unit does not share the
device.

1 if the logical unit shares a device with
another logical unit.

is 0 if the logical unit is operative.
1 if the logical unit is out of service; the

alternate, if any, is in use.

Bits 12 - 10 are reserved for future use.

Bits 9 - 0 are the alternate logical unit number.

LOG1A TABLE - LOGICAL/PHYSICAL UNIT TABLE

This table contains pointers that relate each logical unit to
its physical device table. Since one entry is provided for
each logical unit, one physical device may have more than
one associated physical device table.

LOGIA

L1

12
L3

15 0

Largest legal logical unit number

Address of PHYS'l'B slot cor~sponding to this
logical unit ,

I
I
I
I
I

LOG2 TABLE - TASK THREADS

This table contains pointers to the top of the request thread
for each logical unit. The threads themselves are ordered by
request priority. At threading time, the requests may be in
unprotected core. At execution time, a request being
processed is moved to protected core unless swapping is
prohibited.

LOG2

Ll
L2
L3

largest legal logical unit number

Top of thread for this logical unit number
I

I
I

_ 967693900

\.

". j

,,' .. "~ ... ,

/'

\"".

/---.

/' ...

/' ...

i-'"

\ ... - .

\", '

('" ...

, "... . ~

. ,,,,,,-" ~

ASCII CONVERSION TABLE D I

The 1963 American Standard Code for Information Inter­
change (ASCII) is used by the 1700 MSOS. ASCII code uses
eight bits: bit 8, which. is always zero, is omitted in

I table D-1. Bits 1 through 4 contain the low-order four bits

of code for the character in that row. Bits 5 through 7
contain the high-order three bits of the code for the
character in that column. The code is given in ascending
sequence.

TABLE D-1. CODE CONVERSION TABLE

ASCII Bit Hexadecimal Meaning Symbol Configuration Number

NULL 000 0000 0 Null/idle

SOM 0000001 1 Start of message

EOA 0000010 - 2 End of address

EOM 000 0011 3 End of message

EOT 000 0100 4 End of transmission

WRU 000 0101 5 Who are you

RU 0000110 6 Are you

BELL 000 0111 7 Audible signal

FED 000 1000 8 Format effector

HT/SK 000 1001 9 Horizontal tab skip (punched card)

LF 000 1010 A Line feed

VTAB 000 1011 B Vertical tabulation

FF 000 1100 C Form feed

CR 000 1101 D Carriage return

SO 000 1110 E Shift out

SI 000 1111 F Shift in

DCO 001 0000 10 Device control/data link escape

DC1 001 0001 11 } DC2 001 0010 12 Device controls

DC3 001 0011 13

DC4
(STOP) 001 0100 14 Device control/stop

ERR 001 0101 15 Error

SYNC 001 0110 16 Synchronous idle

LEM 001 0111 17 Logical end of media

So 0011000 18

Sl 0011001 19

S2 0011010 1A

S3 0011011 1B
~ Information separators

S4 0011100 1C

S5 0011101 1D

S6 0011110 IE

S7 0011111 IF ..

96769390 B D-1

TABLE D-2. ASCn AND BCD CHARACTER SET

6-Bit 6-Bit
8-Bit 171x-l 171x-2 EXT. BCD 8-Bit 171x-l 171x-2 EXT. BCD
ASCII 'ITY TTY 026 029 Magnetic ASCII TrY TTY 026 029 Magnetic
Codes Array Array Punches Punches Tape Codes Array Array Punches Punches Tape

2016 Space Space No Punch No Punch 208 4016 @. @. 0-8-7 8-4 378
21t ! ! 11-8-2 12-8-7 52 41 A A 12-1 12-1 61

22, " " 8-7 8-7 17 42 B B 12-2 12-2 62

23t " " 12-8-7 8-3 77 43 C C 12-3 12-3 63

24 $ $ 11-8-3 11-8-3 53 44 D D 12-4 12-4 64

25t % % 0-8-5 0-8-4 35 45 E E 12-5 12-5 65

26t & & 8-2 12 00 (35)tt 46 F F 12-6 12-6 . 66'

27t I I 8-4 8-5 14 47 G G 12-7 12-7 67

28 t ((0-8-4 12-8-5 34 48 H H 12-8 12-8 70

29t)) 12-8-4 11-8-5 74 49 I I 12-9 12-9 71

2A • • 11-8-4 11-8-4 54 4A J J 11-1 11-1 41

28t + + 12 12-8-6 60 4B K K 11-2 11-2 42

2C , , 0-8-3 0-8-3 33 4C L L 11-3 11-3 43.·

2D - - 11 11 40 4D M M 11-4 11-4 44

2E 12-8-3 12-8-3 73 4E N N 11-5 11-5 45

2F / / 0-1 0-1 21 4F 0 0 11-6 11-6 46

30 0 0 0 0 12 50 P P 11-7 11-7 47

31 1 1 1 1 01 51 Q Q 11-8 11-8 50

32 2 2 2 2 02 52 R R 11-9 11-9 51

33 3 3 3 3 03 53 S S 0-2 0-2 22

34 4 4 4 4 04 54 l' T 0-3 0-3 23

35 5 5 5 5 05 55 U U 0-4 0-4 24

38 6 8 6 8 06 56 V V 0-5 0-5 25

37 7 7 7 7 07 57 W W 0-6 0-8 26

38 8 8 8. 8 10 58 X X 0-7 0-7 27

39 9 9 9 9 11 59 Y Y 0-8 0-8 30

3A : : 8-5 8-2 15 SA Z Z 0-9 0-9 31

38 ; ; 11-8-6 11-8-6 56 58t [.[12-8-5 12-8-2 75

3Ct < < 12-8-6 12-8-4 76 5Ct " ,
0-8-2 0-8-2 38

3Dt = = 8-3 8-6 13 5Dt)) 11-8-5 11-8-2 55

3Et > > 8-6 0-8-6 16 5E T 1\ 11-8-7 11-8-7 57

3Ft ? ? 12-8-2 0-8-7 72 5Ft - - 0-8-6 0-8-5 32

tRefer to note 2 below.
ttRefer to note 4 below.

'D-2

NOTES

1. The 171x-2 TTY array is the ASCII 68, 64-character subset. This array is the same as used on the 171x-3 devices which receive trom a 1774.
)

2. To operate in 026 punched card mode, ASCII 64 options are selected. To operate in 029 punched card mode, ASCII 68 options are selected.
These options are assembly-time options tor each driver ftftected.

3. The CDC Standard 1.10.003 is supported by an assembly option. For CDC ASCII mode ot operation, the card punches 12-8-2 and 12-0 are
stored internally as 78. The card punches 11-8-2 and 11-0 are stored internally as 7D. For line printer operations, the internal codes 78 and
7D are converted to 58 and 5D to allow printing the hardware compatible graphic characters ((lett bracket) and) (right bracket).

4. Since 173x magnetic tape controllers do not provide any code conversion, BCD code 00 is illegal and causes a noise record or 8CD code 35 is
substituted for the Ulegal 00 code to prevent tape errors.

On tape write operations the ASCII codes 2516 (%) and 2616 (&) are written as 8CD 35
8

•

On tape read operations the 8CD code 358 is always translated to an ASCII $25 (%).

96769390 B

'-

I~--

\ "

.----'
(
\.---~

\
'-- '

(0
\......./

('

,,,.- ~,

I

\'-.,/

"--"
(I

',-/

/"

I
I

~"'"

\'-., .. /

C)

o 96769390 B

Card Punch

1

3

5

7

9

8-3

8-5
8-7

0-1

0-3

0-5

0-7

0-9

0-8-3

0-8-5

0-8-7

11-1

11-3

11-5

11-7
11-9

11-8-3

11-8-5

11-8-7

12-1

12-3

12-5

12-7

12-9

12-8-3

12-8-5

12-8-7

TABLE 0-3. HOLLERITH-TO-ASCn CONVERSION

Left Character Card Punch Right Character

1 - Blank
3 2 2

5 4 4

7 6 6

9 8 8
I 8-2 " : 8-4 I

" 8-6 >

I 0- 0

T 0-2 S

V 0-4 U
X 0-6 W
Z 0-8 y ., 0-8-2 I
% 0-8-4 {
1\ 0-8-6 -
J 11- -
L 11-2 K

N 11-4 M

P 11-6 0
R 11-8 Q

$ - 11-8-2 I
] 11-8-4 •

1\ 11-8-6 ;

A 12- +

C 12-2 B

E 12-4 0

G 12-6 F
I 12-8 H

. 12-8-2 ?

r 12-8-4 }

* 12-8-6 <

0-3

/' ... -

'. ~

/' -

/'-,

.......

"

(---
\ -

I

\ j

,,..-~ ,

\

\..../

t'·-····\
_j

o

Cj

()

o

MAGNETIC TAPE RECOVERY E

HARDWARE REQUIREMENT

The recovery procedure provides a uniform recovery algo­
rithm for the 1731, 1732-1, and 1732-2 Magnetic Tape
Controllers. This procedure provides an equal recovery
capability when using the 1706 Buffered Oata Channel and
when using the unbuffered A and Q channels.

SOFTWARE REQUIREMENT

The magnetic tape drivers (01732U, 01732B, 01731U,
01731B, and 017322) provide a capability for maximum
recovery by utilizing standard noise records. A system noise
record is predefined in size and marks off a bad spot on the
tape; it is used as an aid for error recovery.

Ouring a read operation the length and parity of the record
are checked first. If there is no parity error and the record
length is that of a system noise record, the record is
assumed to be standard noise record and is discarded.
Another read is then issued to fulfill the user's request.

The standard noise record reduces the likelihood that
unerased noise will cause a read error. Standard noise
records absorb small amounts of noise and cause the driver
to discard them. Without standard noise record the unerased
noise would be merged with the following record, causing an
incorrect or irrecoverable read.

SWITCHED MODE

When a read error recovers by switching the mode of
operation, the v field bits are set (bits 15 through 13),
resulting in Q being set negative upon return to the
requester. The data read is not placed in the requester's
buffer. The tape is positioned after the last record read.

NOTE

It is the user's responsibility to backspace
the record and issue a new request in the
opposite mode to obtain data.

96769390 B

SUCCESSFUL RECOVERY

On a read function the data is passed to the user as if it
were an error-free read. The write function passes control
back to the user as if no error had occurred.

UNSUCCESSFUL RECOVERY

Control is never given back to the user without operator
intervention; it goes to the alternate device handler where
the appropriate message and code are typed. The message
format and code are as follows:

L,lu FAILED ec

Where:

lu is the logical unit number.

ec is the error code from the alternate device handler.

00

01

03

05

06

13

14

31

Failure to interrupt (requires timer
package)

Lost data

Parity error

Internal reject

External reject

No write ring

Oevice not ready

Processor error

37 1706 Buffered Data Channel address error

Operator's response:

RP

CU

DU

Repeats the request

Allows the processing to continue

Suspends any further processing

E-1

\.. "

"~.

'-.. ,'

('---
I

'''----

('
\.. ..

\,--)

()

o

C)

1536/1525 ANALOG INPUT ANALYSIS F

Eil"f" , MiGi 'M. Ie ",,1,**'

SCALING CONSIDERATIONS

The maximum theoretical range of the analog digital
converter used is:

12 bit: :1:80016 = :1:5.12 volts

14 bit: :1:200016 = :I:.5.~2 volts

However, the hardware cannot produce the most positive
value (i.e., 80016 or 200016); the most positive value that
can be represented is one count less than full scale (i.e.,
7FF16 for 12-bit analog digital converter or 1FFF 16 for 14-
bit analog digital converter. For this reason and to provide
the user with overrange detection capability, the full-scale
instrument range used is ± 5.00 dc. The following relation­
ship exists between analog input and digital output values:

Left-Justified Value

Range 12 Bit 14 Bit

Full scale analog digital 7F~016 7FFC16 converter range (-1 analog
digital converter count)

Full scale instrument 7DOO16 7DOO16 range

0 0 0

Full scale instrument 82FF16 82FF16 range

Full scale analog digital 800F16 800316 converter range

The full-scale instrument range in volts is a function of the
amplifier gain in the analog input subsystem, and may be as
follows.

96769390 B

'5NM8IepW'M

Gain = 1000 5 millivolts full scale

= 100 50 millivolts full scale

= 10 500 millivolts full scale

= 1 5000 millivolts full scale

E.'.

CONVERSION AND
CALCULATION OF MILLIVOLTS
The physical significance of counts is as a fraction, since the
maximum absolute value 215 of a left-justified analog digital
converter value corresponds to 100 'per cent or unity.
Therefore, any smaller: value is a fraction of the full-scale
value (maximum absolute value). This fraction F of full
scale is:

F = I (input counts) = I

IFS (full-scale counts) 215

Expressing F as a function of analog input voltage V,
amplifier gain G, and full-scale analog digital converter
gives:

_ VG
F- m

Solving the two equations yields:

I
VG = 5120"'15

2
or

VG x 216 = 10240 I

The value returned to the user is the contents of the Q
register after this computation, and hence, the 216 multi­
plier is absorbed, leaving the result in units of millivolts x
gain as:

VG = 10240 I

F-1

~---

r-----
(
\...

(
I
''I.,

c

.,., -",

',----",'

c!

r

~)

, \
''-..-/

'''-..-)

,,,,,,--".

()

(J

COMMUNICATIONS OPTIONS G

In order to allow the 364 Communications Multiplexer driver
(D3644) to operate properly, the following hardware options
must be selected. Refer to the 1700 A/Q Communications
Multiple~er (DJB14-A) Customer Engineering Manual, Publi­
cation No. 41612800, the 361-1 Communications Adapters
Reference Manual, Publication No. 41612200, and the 361-4
Communications Adapter Reference Manual, Publication No.
41612200. The following are descriptions of the communica­
tion adapters.

• 361-1 - An exclusive, full- or half-duplex, nonsynchro­
nous adapter with an EIA RS232-C interface that
requires one address location in a communications
multiplexer. Data byte sizes are adjustable from five
to eight bits and are transmitted over communications
facilities at speeds ranging from 50 to 3000 bits per
second.

o 361-2 - An exclusive, simplex, receive-only, non­
synchronous adapter with an EIA RS232-C interface
that requires one address location in a communications
multiplexer. Data byte sizes are adjustable from five
to eight bits and are received over communications
facilities at rates ranging from 50 to 3000 bits per
second.

• 361-3 - An exclusive, simplex, send-only, nonsynchro­
nous adapter with an EIA RS232-C interface that
requires one address location in a communications
multiplexer. Data byte sizes are adjustable from five
to eight bits and are transmitted over communications
facilities at rates ranging from 50 to 3000 bits per
second.

o 361-4 - A full- or half-duplex, nonsynchronous adapter
with an EIA RS232-C interface that requires two
addresses in a communications multiplexer. It uses
computer-controlled automatic answering, disconnect,
and modem carrier and provides status. Character
parity is selectable and data byte sizes are adjustable
from five to eight bits and are transmitted at speeds of
50 to 3000 bits per second.

o 361-5 - A full- or half-duplex, synchronous adapter with
an EIA RS232-C or current switching mode interface
(Bell System type 303) that requires two addresses in a
communications multiplexer. It uses computer­
controlled automatic answer, disconnect, and modem
carrier and it provides status. It provides selection of
an odd or even parity character and logical longitudinal
sum parity or operates in universal mode. Data
characters are eight-bit bytes transmitted at 600 to
230.4K bits per second, depending on the modem and
system configuration.

o 361-6 - A full- or half-duplex synchronous adapter with
an EIA RS232-C or current switching mode interface
(Bell System type 303) that requires two addresses in a
communications multiplexer. It uses computer­
controlled automatic answer, disconnect, and modem

96769390 B

j

carrier and it provides status. It provides selection of
an odd or even parity character and cyclic message
parity or operates universal mode. Data characters are
eight-bit bytes transmitted at 600 to 230.4K bits per
second.

o 361-7 - An automatic calling control adapter that
requires one address in a communications multiplexer.
It interfaces with an BOlA! or B01C! Bell System
Auxiliary Data Set and enables automatic dialing into
the DDD switched telephone network. One unit is
required for each dialer controlled.

364-4 COMMUNICATIONS
MULTIPLEXER

The clock interrupt must be adjusted to accommodate the
highest speed terminal being serviced, which is normally 30
characters per second (300 baud). The clock cycle shorting
block must be set from 8 to 40 milliseconds (P2 and P7), and
the clock must be adjusted to 33.3 milliseconds. If 364-5
Communications Multiplexer Expansion Modules are present,
their interrupts should not be used, since all units are
checked by the driver at each clock interrupt.

In the standard release system, the communications adapters
are always configured so that all dual channel adapters
(361-4) are assigned to the lowest channel numbers, followed
by all single channel adapters (361-1).

The following describes the required set-up for the 361-1
Communications Adapter boards.

Board
Identification

Send one (9EPM)

Send two (9EQM)

Receive two (9ESM)

Shorting
Block

Selections

Disable break

Full duplex

Disable restraint

Eight-bit signal generator

One-bit.stop pulse

Clock speed t

Eight-bit signal generator

Clock speed t

t The bit clock should be set to 3.33 milliseconds for 30-
character-per-second operation or 9.09 milliseconds for
ll-character-per-second operation. Each character is
represented by ten bits.

G-1

The following describes the required set-up of the 361-4
C~mmunications Adapter boards.

Board
Identification

Send control (9CUM)

Send one (9CXM)

Receive control (9CZM)
(OFVM)

0-2

Shorting
Block

Selections

Select ACA

Disable break

Disable restraint

Even parity

Full duplex

Clock speed t
Two-bi t stop pulse

Eight-bit signal generator

200 Series Data Set

Board
Identification

Receive one (9CWM)

Receive two (9CVM)

TERMINAL UNIT

Shorting
Block

Selections

Disable SO MIEO M

Disable EOM/break

Clock speed

No SOM character

No EOM character

Where selection is present, even parity and full-duplex mode
should be employed.

t The bit clock should be set to 3.33 milliseconds for 30-
character-per-second operation or 9.09 milliseconds for
ll-character-per-second operation. Each character is
represented by ten bits.

96769390 B

".-' .

" ,.

,,,,..-_

\ ... , .

i "----/

...... -' .. "

',_J

I I

'-J

()

1'-- ,.

(----J

DRIVER CODING STRUCTURE H

f*ktik'

A driver in the Mass Storage Operating Sys.tem (M~OS) is the
direct software interface to a hardware device. In some
special cases, a driver is used for a pseudo software device.
MSOS provides monitor components that "aid the driver in
performing functions normally common to all drivers. In
order to interface to these monitor modules, drivers must
conform to a set structure. The purpose of this appendix is
to define the structural characteristics of a typical driver
and to examine some of the common deviations from this
typical form. "

DRIVER PRE-INITIATOR FUNCTIONS

When a user makes one of the following monitor requests, a
driver is entered: READ, WRITE, FREAD, FWRITE, or
MOTION. The read/write request processor (RW) handles
read/write requests while T14 handles the tape motion
requests. This typical driver can be core- or mass-memory
resident as are most MSOS drivers. The driver is scheduled
with an indirect monitor request using words 0 and 1 of the
driver physical device table.

The address in word 1 of the physical device table causes
entry to the driver initiator (core-resident driver) or to the
initiator handler entry of MMEXEC (mass-resident driver).
MMEXEC moves the driver from mass memory to its driver
buffer (when space is available) and jumps to the first
location of the driver (not the initiator), passing the physical
device table address in the Q register and the driver memory
location in the A register. The pre-initiator driver function
is to compute the actual memory locations of its initiator,
continuator, and error sections and place them in the
physical device table.

The following is a typical sequence:

START STQ­
TRA
ADD
STA­
TRQ
ADD
STA-

ADQ
STQ-

I SAVEPDTADDRE~
Q HOLD DRIVER LOCATION
=XI1799-START
EDIN,I SAVE INITIATOR ADDRESS
A
=XC1799-START
EDCN,I SAVE CONTINUATOR

ADDRESS
=XE1799-START
EDPGM,I SAVE DIAGNOSTIC ERROR

ADDRESS
JMP* to initiator section

96769390 B

;" '._ .e· ,.:. " p. H'i,] .!f 'Q.,.' ihfWijf'

NOTE

The I register is the address of the
physical device table.

DRIVER INITIATOR FUNCTIONS

The driver initiator sets up the hardware for its desired
function including positioning the device to the start of data
area if needed and initiating the user request. The following
is a typical event sequence:

1. Store the address of the physical device table in the I
register.

11799 STQ- SA VE PDT ADDRESS

2. Enter the find-next-request module (NFNR) to set up
the request and fill in the physical device table (PDT)
information. This includes the type of transfer and
address of the I/O buffer (or data word) in core.

EFNR RTJ- (AFNR)
JMP* EXIT
(initiator functions)

A return is made to JMP* EXIT if no requests remain to
be serviced or to one location beyond if a request is"
active. At EXIT:

EXIT JMP+ MAS300 EXIT - NO MORE
REQUESTS

The FNR routine will set up physical device table
information as defined in appendix B for driver use.

3. The driver should then check if this is a MOTION
request by examining the physical device table:

LDQ- EPTR,I REQUEST ADDRESS

LDA- (ZERO),Q GET REQUEST CODE WORD

ARS 9 ISOLATE RC

AND- LPMSK+5

INA -14 MOTION = RC 14

SAN NOMOTN SKIP, NO MOTION

(Process motion request or, if motion requests are not
performed by the driver, go to complete request.)

H-1

4. The driver then initiates the hardware operation by
some function command.

5. The diagnostic clock is set to allow for a diagnosis of
lost interrupts. The time interval is in increments of
seconds and is typically very long compared to expected
response time.

ENA

STA­

JMP-

3

EDCLK,I

(ADISP)

3 SECOND TIMEOUT

PERIOD IN PDT

EXIT TO DISPATCHER

6. The driver is now inactive until an interrupt occurs.

DRIVER CONTINUATION FUNCTIONS

The driver continuator section responds to the device
interrupts and continues operations begun by the driver
initiator section. Two general types of continuator exist:

• The positioning phase is completed and data transfer
can be initiated.

• Data transfer is completed and should be checked.

The following is a typical event sequence:

1. The driver is entered from the SYSDAT interrupt
response routine for the device with the physical device
table address in ·the Q register. The driver first saves
the physical device table address:

C1799 STQ- SA VE PDT ADDRESS

2. It is possible to get extraneous interrupts (interrupts not
caused by driver requests) from a hardware device. The
driver first checks for these extraneous interrupts:

a. Examine the logical unit word of the physical
device table to see if it is zero; if so, no request is
in progress.

tDA­

SAN

ELU,I

NGHOST

(Clear controller of device)

LOOK AT LU WORD

SKIP IF NON-ZERO

JMP- (ADISP) IGNORE INTR

b. Examine the device status for interrupt.

H-2

LDQ- EWES,I

INP REJECT-*

(Look at the status bit.)

Clearing the controller at this point may not be
. advisable, depending on the device. Something
must be done to keep the current request progress­
ing and not allow further ghost interrupts.

If the interrupt status is not present, an eventual
exit should be made to the dispatcher (if the above
action has been taken).

3. Clear the diagnostic clock physical device table word so
the diagnostic timer module does not check for
timeouts.

ENA

STA-

-1 SET CLOCK MINUS

EDCLK,I

4. Continue the request processing ~til completion.

5. When the request is completed, the complete request
module is entered, .

RTJ- (ACOMPR)

JMP* EFNR

COMPLETE REQUEST

GO TO LOOK FOR MORE
REQUESTS

DRIVER DIAGNOSTIC
ERROR FUNCTIONS

The driver error entry is used when the diagnostic timer
counts the EDCLK word of the physical device table down to
zero. Entry is with the physical device table address in Q:

E1799 STQ- SAVE PDT ADDRESS

The error code (code = 0) for timeout should then be passed
to the driver error handling section.

DRIVER ERROR HANDLING

The driver should diagnose as many specific errors as
possible for the hardware device. The driver should save the
hardware status in the ESTAT2 physical device table word.
All additional hardware status words should be saved in
additional physical device table words for reference.

The normal driver error sequence is:

1. Set bits 13 through 15 of the physical device table
ESTAT1 word, as noted in appendix B.

2. Use the MAKQ routine to set up short data transfers
and the failed Q register.

RTJ+ MAKQ

3. Use the engineering file to log the error.

4.

RTJ+ LOG

Exit to ADEV to report the error (see Alternate Device
Handler in section 2).

JMP+ ALTDEV

The request is completed with error, and the initiator of
the driver is rescheduled.

96769390 B

/' -.... ,

'-.

~.,

(
"'--_.

/"'."'.

'~"~"

I

'''---./

,~ .. "" . \

r-"
f '
I I
~I

i \
\~

."'"" ,

II
~'

c;

o

DRIVER DIAGNOSTIC UNIT HANDLING

If a driver is to make use of a diagnostic logical unit,
appropriate coding is needed in SYSDA T as well as in the
driver. SYSDAT must include appropriate entries in all the
log tables for the diagnostic logical unit and the physical
device table must use a word to store the diagnostic lu for:
the~~er. '

For example, the LOG1A table needs an entry like this:

X17990 ADC P17990 DIAGNOSTIC
1799 UNIT 0

(P17990 is the start of the physical device table for 1799
unit 0.)

LOG1 and LOG2 also need proper entriesfor the diagnostic
lu. In the physical device table, an equals statement is used
to calculate the diagnostic lu. For example:

EQU U17990 (X17990-LOG1A)

Then, in the physical device table some additional word, for
instance 19 (any word beyond 15 can be used) is used to store
the diagno~tic logical unit. For example:

ADC U17990 19 DIAGNOSTIC LOGICAL
UNIT

Now the driver can make use of the diagnostic lu in
SYSDAT. In the driver's equal statements region there
should be an EQ U to locate the PHYSTB diagnostic logical
unit. For example:

EQU DIAGLU(19)

96769390 C

Then at the end of its error processing would be the
following typical sequence:

NOT DLU

LDA DIAGLU,I
SUB LU,I

SAN
RTJ­
JMP*
RTJ+
RTJ+
JMP+

NOT DLU
COMPRQ
INI+!
MAKQ
LOG
ALTDEV

~ENERAL COMMENTS

Get diagnostic lu.
Compare against cur­
rent lu.

Complete request.
To find next request
set up error info
transfers to log error
to alternate device.

The following general information items should be
considered:

• Drivers must not hang on INP or OUT instructions, but
exit with error on rejects.

• Drivers are made effectively re-entrant by MSOS so
that each individual driver need not be re-entrant.

• Drivers that handle multiple devices on a single
controller must take care of the overlap operations and
interrupt handling with additional logic.

• Drivers should use words 0 through 15 of the physical
device table only as specified in appendix C. Additional
words can be added for special needs.-

H-3

I
\

....... -

'--.~.

(

\ " '--'""

o

,,--,
I

~/

.-- "

,'- ""',

o

o

(--'J
'"---,,,

FDUTIL FORMAnlNG FLEXIBLE -DISK I

beWdH iiiM'#+id'Wi· "WI'; i·a;.leR." ••

This appendix describes the flexible disk drive (FDD) utility
program FDUTIL. Throughout the discussion the FDD is
referred to as a diskette. Its capabilities include:

• Initializing a diskette

• Inputting data from an external media and writing it
onto a diskette

• Copying data from one diskette to another

• Verifying data on one diskette with another

The program executes as a job on a CYBER 18 computer
using RTOS or MSOS or MSOS/ITOS. It requires an FDD
controller (1833-5) and at least one FDD transport (1865-x).

This appendix describes the FDUTIL requests, error
processing, operator intervention procedure, bad track
information, FDD output formats, and diskette addressing.

FDD UTIUTY REQUESTS

When FDUTIL is executed, a request record is input from
the standard input device. It is then output on the standard
comment device and processed. Assuming there were no
errors, another request record is input and the procedure is
repeated until a terminate request record is input. FDUTIL
terminates and returns control to the operating system. An
option that causes a pause between request records allows
opera tor intervention.

The set of FDD utility requests is:

• *1 Initialize a diskette

• *A - Absolutize relocatable binary programs and
write to a diskette

• *B Input absolute binary programs and write to a
diskette

• *H - Input ASCn records and write to a diskette

• *C - Copy diskette to diskette

• *V - Verify diskette with diskette

• *F - Define the initialize format

• *S - Set for operator intervention

• *R Reset for no operator intervention

• *z - Terminate the FDUTIL program

96769390 C

-3', id, 'I, ;'fAA i' a ",; ..• • i ,,,6+,.&W'
Each input request record contains an asterisk in the first
character position and an alphabetic character (I, A, B, C,
H, V, F, S, R, or Z) in the second position. The optional
parameters that follow are separated by commas. The
parameters are located in fixed positions as specified by
each request. All numeric parameters are in hexadecimal
code except lu, which is 'in decimal code. A numeric
hexadecimal parameter (except for lu which is in decimal)
must be right justified in its field; that is, the field is filled
with leading zeros or blanks. For example:

••• ,01A, •••

or

An alphabetic field must be left justified with trailing
spaces. For example, the symbol PGM in a six-digit field
must be specified as:

• •• ,PGM""", •••

*1, INITIALIZE DISKETTE REQUEST

This request specifies that a diskette be initialized as
defined in the FDD controller (see, the FDD description in
section 3). A diskette must be initialized before it can be
written and read.

One track at a time is initialized; the track is then read and
checked for errors. After all tracks have been initialized
and checked, the bad track information is written. The
define initialize format request (*F) should be specified
before initializing if the format is to be changed. The
format of the initialize request is:

*I,lu,num,i

Where:

lu is the logical unit of the diskette to be
initialized, represented as three decimal digits
(positions 4-6).

num is the number of times the initialize function is
to be repeated, represented as three
hexadecimal digits (positions 8-10). If blank
or zero, the number of times is one. This field
is provided for diagnostic or performance
testing.

i = if interlacing of diskette sectors is desired. If
blank or any other character, diskette is
initialized sequentially.

I-I

* A, ABSOLUTIZE REQUEST.

This carries relocatable binary programs that are input from
the standard binary input device, to be absolutized and
output to a diskette. Output may be in binary or in
deadstart format. Provision is made for starting any
program at a particular logical sector address. The format
of the absolutize request is:

*A,lu

Where:

lu is the logical unit of the diskette used for output,
represented as three decimal digits (positions 4-6).

Program Name Specification Record(s)

Program name specification (*) records may follow the *A
request. An * record specifies, the next starting logical
sector address for a particular program name and/or the
format of the output. If there are no * records, the next
starting logical sector address is assumed to be the next
sector; all data is output in binary format. Only program
names which define new sector addresses and/or output
format need be specifi"ed. The format of the program name
specification record is:

*,pgmnam,ssa,o,p

Where:

1-2

pgmnam is the name of the program, represented as
six alphanumeric characters (positions
3-8), left justified with blank fill. This
name must agree with the program name
in the NAM record of the corresponding
relocatable binary program (see MSOS 5
reference manua!).

ssa

o

p

is the next starting logical sector address,
where the program is to be written. It is
represented as three hexadecimal digits
(positions 10-12). If blank or zero, the
starting logical sector address is the next
sector.

is the output format identifier, represented
as one character (position 14). If the
character is an alphabetic D, the output is
in deadstart format to load/execute micro
memory; if blank or not a D, the output is
in binary format. This field and the p
field (described below) remain in force for
subsequent binary programs until the next
* record matches a program name.

is the starting micro page number,
represented as one hexadecimal digit
(position 16). This field has meaning only
if deadstart format has been selected (see
above). It will cause the deadstart output
to start loading and to begin execution at
the first micro instruction of the specified
micro page. If blank, micro page zero is
assumed.

*T, Program Name Specification Termination

A termination record must follow any program name
specification records. This record must be present even if
there are no * records. The format of the termination
record is:

*T

Where:

*T is in positions 1 and 2. Note that neither the * or
*T records are listed.

One or more relocatable binary programs must follow the
program name specification termination (*T) record. The
program names of the relocatable binary programs must be
in the same corresponding order as the names which were
specified on the program name records in the * A request.

The following information for each binary program input is
output to the ,standard comment device:

Position

2

Description

*, if deadstart output specified; ", if
binary output specified.

3-8 Program name of relocatable binary

11-14

15

16-18

21-66

Program length in 32-bit· hexadecimal
format

*, if a next starting sector address
specified

Logical starting sector address of program

Comment information or the NAM record
of the program

*T, Relocatable Binary Program Termination.

Following the relocatable binary programs must be a
terminating record. The format of the terminating record
is:

*T

Where:

*T is in positions 1 and 2.

When this record is read, the following message is output to
the standard comment device:

Position

1-2

16-18

Description

*T

Logical next sector address (next sector
following the end of the program just
placed on diskette)

96769390 C

' ,'"

'

I
\....

i
',--/

c

","~' . ,

(' j
'----

~.-.

(\
. I
~ ..

o
o
(J

()

C)

• B, BINARY REQUEST

This request permits previously absolutized binary programs
to be input from the standard binary input device and output
to a FDD diskette. Provision is made for starting at a
particular logical sector address. The format of the binary
request is:

*B,lu.ssa

Where:

lu is the logical unit of the diskette used for output,
represented as three decimal digits
(positions 4-6).

ssa is the starting logical sector address, where the
block of binary programs is to be written. It is
represented as three hexadecimal digits
(positions 8-10). If blank or zero, the starting
logical sector address is the next sector.

One or more absolutized binary program(s) follow the binary
request (*B) record. (For details, see *p statement of
LIBEDT described in the MSOS 5 reference manual.)

The following information for each binary program input is
output on the standard comment device:

Position

2-4

8-10

Description'

Sequential count of binary programs (for
instance, 001 is output for program 1).

Logical starting sector address of
program.

The absolutized binary programs must be followed by a
termination record. The format of the termination record
is:

*T

Where:

*T is in positions land 2.

When the record is read, the following message is output on
the standard comment device:

Position

1-2

8-10

96769390 e

Description

*T

Logical next sector address (next sector
following the end of the program just
placed on diskette)

• H, ASCII REQUEST

This permits ASell records input from the standard binary
input device and output to a diskette. The ASell characters
are to be packed two per lS-bit word. Provision is made for
starting at a particular logical sector address, for ignoring
spaces (blanks), and for including parity. The format of the
ASell request is:

*H.lu,ssa,q,p

Where:

lu is the logical unit of the diskette used for output,
represented as three decimal digits
(positions 4-6).

ssa is the starting logical sector address, where the
block of Asell records is to be written. It is
represented as three hexadecimal . digits
(positions 8-10). If blank or zero, the starting
logical sector address are the next sector.

q is the ignore !q>aces (blanks) option, represented
as one character (position 12). If the
character is an alphabetic I, spaces are
ignored; if blank or not an I, spaces are treated
as other characters and are output to the
diskette.

p is the even parity option, represented as one
character (position 14). If the character is an
alphabetic E, each ASell character is output
with even parity (using the most significant
eighth bit); if blank or not an E, no parity is .
included.

NOTE

If ASell records are to be used for the
deadstart operation, the even parity
option must be selected.

One or more ASell record(s) follow the ASell request (*H)
record. The following information is output to the standard
comment device when the first ASell record is input.

Position Description

8-10 Logical starting sector address

The ASell records must be followed by a termination record.
The format of the termination record is:

*T

Where:

*T is in positions 1 and 2.

1-3

When the record is read, the following message is output to
the standard comment device:

Position Description

1-2

8-10

*T

Logical next sector address (next sector
following the end of the program just
placed on diskette)

COpy REQUEST

This request specifies that one or more sectors on a diskette
is to be copied to a like number of sectors on another (or the
same) diskette. After each sector is written, that sector is
read and compared with the input sector to validate that the
data is correct. The format of the request is:

*C,lu1,lu2,ssl ,es1 ,ss2 ,num

Where:

1-4

luI is the logical' unit of the diskette holding the
input (copied) data, represented as three
decimal digits (positions 4-6).

lu2 is the logical unit of the diskette holding the
output data, represented as three decimal
digits (positions 8-10).- It may be the same
logical unit as specified by luI. If blank or
zero, logical unit luI is used.

ssl 'is the starting sector address of the data to be
read from logical unit luI. It is represented as
three hexadecimal digits (positions 12-14).

es1 is the ending sector of the data to be read from
logical unit lu!. It is represented as three
hexadecimal digits (positions 16-18). If blank
or zero, starting sector address ssl is used.

ss2 is the starting sector address where the data is
to be written on logical unit lu2. It is
represented as three hexadecimal digits
(positions 20-22). If blank or zero, starting
sector address ssl is used. Note that the
ending sector address where the data is to be
written on logical unit lu2 is implied: (ss2 +
esl - ssl).

num is the number of times the copy operation is to
be repeated. It is represented as three
hexadecimal digits (positions 24-26). If blank
or zero, the number of times is one. This field
is provided for diagnostic or performance
testing.

NOTE

Write enable causes both diskettes to be
write enabled. Be sure that the unit
reverse switch is in the position desired so
that the copy proceeds in the direction
desired and not in the opposite direction.

·V, VERIFY REQUEST

'1 ilis request causes one or more sectors on a diskette to be
compared (verified) with a like number of sectors on another
(or the same) diskette. The format is:

*V,lul,lu2,ssl,esl,ss2,num

Where:

luI is the logical unit of the first· diskette,
represented as three decimal digits
(positions 4-6).

lu2 is the logical unit of the second diskette,
represented as three decimal digits
(positions 8-10). It may be the same logical
unit as specified by luI. If blank or zero,
logical unit luI is used.

ssl is the starting sector address of logical unit luI
to be verified, represented as three
hexadecimal digits (positions 12-14).

esl is the ending sector address of logical unit luI to
be verified, represented as three hexadecimal
digits (positions 16-18). If blank or zero,
starting sector address ssl is used.

ss2 is the starting sector address of logical unit lu2
to be verified, represented as three
hexadecimal digits (positions 20-22). If blank
or zero, starting sector address ssl is used.
Note that the ending sector address of logical
unit lu2 is implied: (ss2 + es1 - ssl).

num is the number of times the verify operation is to
be repeated. It is represented as three
hexadecimal digits (positions 24-26).

If blank or zero, the number of times is one.
This field is provided for diagnostic or performance
testing.

• F, DEFINE INITIALIZE FORMAT REQUEST

This request speCifies the diskette format to be used. It
remains in effect until changed by a subsequent *F request.
Current supported formats are:

CDC format - 96 (601~ 16-bit words per sector and
19 (131SJ sectors per track.

IBM format - 64 (4016) 16-bit words per sector and
26 (lA16) sectors per track.

96769390 C

....... ,.

\ ,," ~

'-. -

/"'.

,
\ '
'-/

,,,"
\ I

'---"""'

,,""-'

\ J
''--"

,"

~/'

(J
o
r-',

\. /
''---"""'

o

()

This request does not cause any FDD 1/0; it merely specifies
the format to the FDUTIL program. The default condition
causes CDC format to be used. The format of the request
is:

*F,wps,spt

Where:

wps is the number of words per sector, represented as
three hexadecimal digits (positions 4-6). If
blank or zero, the default is 6016 (CDC
format).

spt is the number of sectors per track, represented
as three hexadecimal digits (positions 8-10).
If blank or zero, the default is 1316 (CDC
format).

·S, SET OPERATOR INTERVENTION REQUEST

This request specifies that before each subsequent request,
the FDUTIL pauses (waits) untU the operator indicates that
the next request is to be processed. The format of the
request is:

*S

Note that the operator intervention option is in effect
before the first request.

• R, RESET OPERATOR INTERVENTION REQUEST

This request specifies that any previous *S request be
ignored; that is, that there be no operator intervention
:>etween requests. The, format of the request is:

*R

·T, TERMINATE FDUTIL REQUEST

This request specifies that "the FDUTIL be terminated.
Control is returned to the operating system. The format of
the request is: ...

*z

fDUTIL ERROR PROCESSING

When FDUTIL detects an error t the following message is
output to the standard comment device:

FDD UTILITY PROGRAMt ERROR XXXX, RESTART
OPERATION

Where:

xxxx is an" error code. The error codes and their
meanings are listed in table 1-1.

After the error message is output, the FDUTIL is
automatically restarted. This causes operator intervention,
so that the error can be corrected and processing can
continue.

96769390 C

Table 1-1 describes the FDUTIL error codes. The characters
in column 2 describe the error codes. The characters have
the following meaning:

An incorrect user record.

* The resources of the FDUTIL program andlor computer
are not sufficient to execute.

+ A possible irrecoverable hardware problem.

OPBtATOR INTERVENTION PROCEDURE

If no *R requests have been input t or an *S request or an
error followed the last *R request, the FDUTIL program
pauses before each request until the operator indicates that
the next request is to be processed. The purpose of the
pause may be to:

• Remove a diskette and insert another one

• Ready a FFD drive (that is, diskette inserted and drive
door closed)

• Change the FDD switches (as in FDUTIL execution)

• Readjust the input records after an error

Whenever a pause occurs, FDUTIL outputs messages to the
standard comment device:

READY FDD(S), THEN PRESS CARRIAGE RETURN

After the operator performs the necessary function, he
presses the carriage return key.

FDD" BAD TRACK INFORMATION

Bad tracks are detected during initialization. As explained
in the FDD reference manual, initialization is a DMA track
write of approximately 5.4K words containing sync, track,
sector, address CRC, data, data CRC, and spacing (along
with closing) information. After the write, the track is read
and the data is compared; status checks are also performed
to verify that the track was initialized properly. Retries are
done if errors occur.

If an error is still present after the required number of
retries are done, the track is declared bad (defective) and
the following message is printed on the standard comment
device:

PHYSICAL TRACK xxxx HAS BEEN DESIGNATED A
BAD TRACK

Where:

xxxx is physical track number (0-76).

Note that the hardware allows two bad tracks and that track
zero must be good.

1-5

Code Type

0110 -

0120 -

0130 -

0140 -

0210 -

0220 *

0230 -
0240 -

0250 -

0260 -

0270 -

0280 -

0290 -

0299 *

0510 *

0520 +

1-6

TABLE 1-1. FDUTIL ERROR CODES

Meaning

illegal control record. Position 1 of the request record does not contain an
asterisk, or position 2 does not contain a legal character (A, B, C, F, H, R, S,
V, or Z).

illegal start or end address. The ending sector address is less than the starting
sector address on an *C or *V record.

megal sector address. The computer last sector address to be written (*C) or
compared (*V) is greater than the maximum allowable sector address.

megal *F request. The specific number of words/sector and/or sector/track
is incorrect.

illegal record after an * A record. Position 1 does not contain an asterisk, or
position 2 does not contain a comma (program name specification) or T
(terminate).

Too many program names specified. More than 20 program names have been
speCified. To increase the number of program specification names, FDUTIL
would need to be reconfigured.

illegal record after program name specifications. Record is not a relocatable
binary record or an *T record.

No binary program entered. An *T record (terminate) was encountered with-
out any relocatable binary program being loaded.

Program specification error. One or more of the program specification names
are not relocatable binary programs.

illegal N AM· record. N AM record encountered was not the first record of a
relocatable binary program.

illegal relocatable binary record. An undefined or illegal (BZS or EXT)
relocatable binary record has been encountered.

illegal first record of relocatable binary program. The .first record of a
relocatable binary program was not a NAM record; instead it was an
ENT, XFR, or RBD record.

No end byte encountered. No end byte encountered on last relocation byte
of a RBD record.

Program size is too large. The size of the program being loaded (plus the
FDUTIL program) is too large to fit in the program memory area. To load
such a program, the operating system must be rebuilt to sufficiently increase
the program memory area.

Not enough memory to initialize. The area needed to properly initialize a
diskette (plus the FDUTIL program) is too large to fit in the program memory
area. To initialize, the operating system must be rebuilt to sufficently
increase the program memory area.

Fatal FDD error while initializing. A fatal error has occurred on the FDD.
Make sure the FDD unit is ready (diskette inserted and door closed) and the
switches are set properly (write enabled, initialize enabled, and unit reverse).
If all these actions have been done, retry with another diskette and/or request
maintenance support.

96769390 C

. '

\

' ,.,.

"\
\

o

,.,-........

("
,-/

o
C)

TABLE 1.1. PDUTIL ERROR CODES (Contd)

Code Type Meaning

0530 + Track zero is bad. Track zero was detected to be bad while initializing. Dis-
card diskette and retry with another diskette and/or request maintenance
support.

0540 + More than two bad tracks. More than two bad tracks have been detected while
initializing. Discard diskette and retry with another diskette.

0550 + Initialized data not read correctly. The written track of initialized data was
not read correctly, but the hardware did not detect an error." Retry and/or
request maintenance support.

0610 - megal sector address. An attempt to write (via an *A, *B, or *H request)
beyond the maximum allowable sector address. Move the program to a lower
sector address or place on another diskette.

0620 + Patal PDD input/output error. A fatal POD input/output error has occurred.
Make sure that the POD unit is ready (diskette inserted and door closed) and
the switches are set properly (viz., write enabled, initialize enabled, and unit
reverse). If the above has been done, retry with another diskette and/or re-
quest maintenance support.

0630 + Written data not read correctly. The written data, whrn read, did not compare
exactly. Retry and/or request maintenance ~pport.

0710 - illegal POD logical unit. The specified logical unit is not a POD.

0810 - illegal parameter. One of the parameters of the last read request record is
illegal. Por example, the sector address may be larger than the maximum
allowable sector address.

0910 - illegal hexadecimal digit. One of the hexadecimal parameters of the last read
request record is not a hexadecimal digit.

1010 - illegal diskette format. The format (IBM or CDC) of a diskette to be read or
written does not agree with the last *p request record (if no *p record, IBM
format is assumed). This error should only occur if a diskette is inserted to
be read or written without first being initialized by PDUTIL program.

1110 - Error in attempt to read input from standard-input device.

FDD OUTPUT DATA FORMAT BINARY DATA

Data can be stored onto the POD diskette in four ways:
initialization, binary, ASCn, or deadstart.

Binary information is output for any request that causes a
diskette binary write (*A, *B, or *C), unless *A specifies
deadstart format. Binary information is stored as is,
without any extra information.

INITIALIZATION DATA

Each diskette must be properly initialized before it can be
used. When it is initialized, data words for all tracks except
zero are set to E5E5.16 (two EBCDIC alphabetic Vs) per IBM
standard. Por an *r request, all data words in track zero
except the first sector are set to the same E5E516 value; for
the first sector all data words are set to zero ex~ept the bad
track words.

96769390 C

Used words in the last sector are filled with zeros.

ASCII DATA

ASCn information is output as a result of the *H request.
Actually, there is no difference between binary and ASCn
except by the user's interpretation of the data.
Spaces are ignored in the text (due to I option). Unused
words in the last sector are filled with spaces.

1-7

DEADSTART DATA

Deadstart information is output by either the *A request
with the deadstart option selected or the *H request with
the even parity option selected. Deadstart information is
Ascn information for serial loading via the CYBER 18
computer. This method can be used to load and execute
programs in deadstart format from a diskette.

For the *H request, the ASCn characters are stored two
characters (each with even parity) without any extra
information.

For the * A (deadstart option selected) request, the program
data words are converted to ASCn and stored with a
terminal ASCn colon (for each program word) two
characters (each with even parity) per FDD word. This *A
format assumes that the program(s) are to be loaded into
micro memory. Control information is added to allow the
program(s) to be loading into the starting page and each
successive half page. Further control information is added
at the beginning and end to properly set up the machine's
modes and to start program execution. If the program is
being loaded on the initial deadstart sector (track 1, sector
1), control information is appended to clear all registers and
files.

FDUTlL EXECUTION

The procedures for executing FDUTIL on RTOS and MSOS
differ.

RTOS EXECUTION WITH FDUTIL RESIDENT

The program is executed as follows:

1. The operator manually interrupts RTOS (type:
CONTROL G at keyboard)

2. RTOS prints: MI

3. The operator types: *F @
4. FDUTIL begins execution

To load the RTOS/FDUTIL system, the operator:

1. Places RTOS/FDUTIL system in the proper deadstart
device (for instance, diskette into an FDD) and readies
the device.

2. Presses MASTER CLEAR or presses/types ESC to
master clear the device.

3. Presses DEADSTART at the computer control panel.

RTOS/FDUTIL system loads and prints the system startup
message:

READY FDD(S), THEN PRESS CARRIAGE RETURN

1-8

The operator then inserts his diskette(s), closes the FDD
door(s), and sets the proper switches:

1. He sets write enabled if writes and/or initialization are
to be done.

2. He sets initialize enabled if initialization is to be done.

3. He sets unit reverse .if the unit reverse feature is
desired.

The input request records are then placed in the standard
input device and that device is readied. Then the operator
presses carriage return on the standard comment device.

The FDUTIL reads input requests until terminated.

RTOS EXECUTION WITH FDUTIL NON-RESIDENT

The program is executed as follows:

1. Manually interrupt RTOS (type: CONTROL G at the
keyboard)

2. RTOS prints: MI

3. Place an absolutized binary copy of FDUTIL in the
standard binary input device and ready that device.

4. Type: *L e
5. RTOS loads the FDUTIL program and prints: J

6. Type: *X e
7. FDUTIL begins execution.

The operator then performs the procedure to load the RTOS
system, which is identical to the one given above.

MSOS EXECUTION

The program is executed as follows:

1. The operator places the following records before the
relocatable binaries of the FDUTIL program:

*JOB
*L

2. The operator places the following records after the
relocatable binaries of the FDUTIL program:

*T
*X

3. The operator places the augmented FDUTIL records in
the standard input device and readies the device.

96769390 C

\ • ~t'

/--.

/'

f

'-...

"'-",
()'
,-.

(J
"'-'-'" / \

'\..J"

,/ \,

~)

Cj
(J

4. The operator manually interrupts (types: CONTROL G
a t the keyboard)

5. MSOS prints: MI

6. Type: *BATCH e
7. MSOS reads the control records and relocatable

binaries, absolutizes them, and executes FDUTIL.

Note that the FDUTIL can also be placed in the program
library and executed as a program library program using the
job processor (*J) and *FDUTIL (see MSOS reference manual
for details of executing program library program).

To load MSOS:

1. The operator master clears the system (either by
pressing MASTER CLEAR at the CYBER control panel
or typing ESC?).

2. The operator presses AUTOLOAD at the control panel.

3. The operator types: ESC K31000BOO:

4. The opera tor types: I@

5. MSOS loads and prints the system startup messages.

6. The operator types: ESC J2B@ to protect the
system.

7. System responds with the date/time request

B. The operator types the date/time as requested

9. MSOS system is now operationaL

96769390 C

FDUTIL DEADSTART CONTROl. INFORMATION

FDD DEADSTART BOOTSTRAP

The following FDD bootstrap reads a binary program from
unit 0 into macro memory and executes it. The binary
program can be output to the diskette using * A or *B
requests. The bootstrap can be output to the diskette using
the *H request.

For an IBM formatted diskette the command is:

*H,lu,OIA,I,E

For a CDC formatted diskette, the command is:

*H,lu,OI3,I,E

Where lu is the logical unit of the diskette.

The FFD bootstrap requires two sectors of space.

FDD MICRO DEADSTART CONTROL INFORMATION

If the FDD is positioned at the deadstart position
(track 1, sector 1 = logical sector address lAl6 for IBM
format, 131 for CDC format) and an • A request" 15 executed
with the 8eadstart option selected, deadstart control
information is appended to clear all registers and files.
Control information is added even if not at the deadstart
position. The information is divided into three parts:
header, half page, and trailer deadstart control; operation
information is shown in figure 1-1.

1-9

Header Deadstart Control

J

J48G J10G K-4488DOOOG LOOOOG KOG

J03G JUG LOOOOG KOG J05G J12G

LOOOOG KOG J02G LOOG J06G LOOO

OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG

J01G LOOG JOOG LOOO

OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
OGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG

J1EG KOOOOG

J

J48G J10G K28089000G K0040G LOOG

Half Page Deadstart Control

J01G LxxG JOCG L

XXXXXXXX:

.-

Trailer Deadstart Control

J1AG KOOOOG J15G K80003xOOG

Allow enough spaces to let possible last auto~JispIay to finish.
(This and successive data, up to the single J control, is -only
appended at the deadstart position.)

-Set console suppress, set micro mode, clear A and Q.

Clear X and P.

Clear F, I, and K.

Clear register file 1.

Clear N.

Clear register file 2.

Clear GR13.

Allow enough spaces to let possible last auto-display to finish.
(This and successive data is used by all deadstart formatted
programs.)

Set console suppress, set micro mode, enable micro memory
write, enable halt mode in SM1, and clear K.

Set N to next haIf-page (xx).

Note: Next half-page of micro program follows (each
instruction being eight ASCn hexadecimal digits, with even
parity, followed by a colon). There are 256 such instructions.

Clear SM2 and deadstart signal and set MIR to jump to the
first upper instruction of first page (x).

Figure 1-1. Header, Half Page, and Trailer Deadstart Control Operation

1-10 96769390 C

,- "
~-~

'- <1

/

"-
f.

/"

/'

/" '

\..

("
I

'\...

I'

!
'-/

,,-~,\

/~,-- .. \

1\)'
"-..

J

.d·5 dM, E* G J i i' If-,.'-"
Abort dump 6-1
Address tag routine 3-12
ALAQ request 2-4
Alternate device handler 2-2; 3-9
Analog input analysis F-1
A/Q channel allocation 2-4
ASCn conversion table D-l
Asynchronous communications controller and serial I/O

. drivers 3-27
error conditions 3-28
FREAD 3-26
FWRITE 3-27
MOTION . 3-27
READ 3-27
Timeshare devices 3-27
WRITE 3-27

Auto-data transfer (ADT) 2-5
clock table 2-6
multiple A/Q device table 2-6
single A/Q device table 2-5
single or multiple M05 device table 2-6

Binary record format cards 2-4
Bit addressing 3-30
Bootstrap drivers 6-1
Buffered data channel allocation 2-4
Buffered local terminal controller driver 3-35

control characters 3-36
error conditions 3-36
format READ 3-36
format WRITE 3-36
limitations 3-37
unformatted READ 3-36
unformatted WRITE 3-36
user instructions 3-36

Buffers 3-24

Card punch driver 3-8
FWRITE ASCll 3-S
FWRITE binary 3-8
MOTION 3-S
Status and error handling 3-S
WRITE ASCll 3-8
WRITE binary 3-8

Card reader/punch drivers 3-3
FREAD ASCn 3-5
FREAD binary 3-3
FWRITE ASCll 3-6
FWRITE binary 3-6
READ ASCll 3-3
READ binary 3-3
WRITE ASCll 3-5
WRITE binary 3-5

Cartridge disk 3-S
Cartridge disk driver 3-10

data transfer request format 3-10.1
physical device table C-8
status and error handling 3-10.1

96769390 D

INDEX

ff· 5M8V

Cassette driver 3-24.2
data and record formats 3-24.2
error recovery 3-25
FREAD 3-24.2
FWRITE 3-24.2
MOTION 3-24.2
physical device table C-18
READ 3-24.2
WRITE 3-24.2

CBI04 card reader driver 3-6
data formats 3-7
FREAD 3-7
MOTION 3-7
physical device table C-7
READ 3-7
status and error handling 3-7

Character editing 3-19,20
Clock table 2-6
Communication option G-l
Communication line adapter 3-8,28
Communications drivers 3-26
Communications multiplexer driver 3-26

error conditions 3-27
FREAD 3-26
FWRITE 3-27
MOTION. 3-26
READ 3-26
structure 3-26
WRITE 3-27

Complete request 2-1
Completion routine 1-2
COMPRQ request 2-1
Control characters 3-36
Control unit connection error 3-13
Conversational display terminal 3-27
Conversational display terminal driver 3-2.1
COSY driver 3-34

error conditions 3-35
MOTION 3-35
operation 3-35
READ 3-34
requests 3-34
status 3-35
WRITE 3-34

Data formats 3-1,7,15,21,22. 1,24
dummy driver 3-1
paper tape reader driver 3-2.1
typewriter keyboard driver 3-1

Data set controller driver 3-3S
driver request handling 3-3S
FREAD 3-39
FWRITE 3-39
hardware malfunctions 3-39
READ 3-39
WRITE 3-39

Data transfer error (read) 3-13
Data transfer request formats 3-S.1
DCOSY routine 2-3

•

•

Index-l

Device drivers 1-1
Device not shared 2-1
Device shared 2-1
Diagnostic features (SMD) 3-14
Diagnostic timer module 2-1
Digigraphics driver 3-37
Digital/analog conversion driver 3-31
Digital input driver 3-29
Digital output driver 3-29
Disk/drum mass storage driver 3-8
Disk pack initialization 3-11
Disk-ta-tape driver 3-15; 4-1
Drive connection/seek error 3-13
Driver coding structure H-1
Driver diagnostic unit handling H-3
Driver request handling 3-38
DSKTAP utility drivers 5-1
Dummy driver 3-1

I Echoplex mode 3-26
Engineering file logging 2-4
EO F processing 3-6
Equipment/interrupt assignments B-1
Error codes 3-14

• Error conditions 3-3,6,8,10,13,18,20,21,23,25,28,34,35,36
Error correction code error 3-13
Events counter driver 3-31

FDUTIL 3-15; 1-1
bad track information 1-5
deadstart 1-9
error processing 1-5
execution 1-8
operator intervention procedure 1-5
Output data format 1-7

Find-next-request 2-1
Flexible disk driver 3-15

commands 3-17
data formats 3-15
error recovery 3-18
FREAD 3-16
FWRITE 3-26
MOTION 3-16.1
physical device table C-12
READ 3-16
special features 3-19
utility 1-1
WRITE 3-16

FNR request 2-1
Force release error 3-14
Formatted requests 3-21
Format write 3-36

I FREAD 1-1; 3-1,7,8.1,9,12,16,23,24,24.2,26,36,39
FREAD ASCII 3-2.2, 3-5
FREAD binary 3-3

I
FWRITE 1-1; 3-1,8.1,9,12,16,19,20,21,23,24,24.2,

26,27,36,39
FWRITE ASCII 3-6,8
FWRITE binary 3-6,8

Hardware device drivers 4-2
Hardware malfunctions 3-39
Hollerith-ta-ASCII conversion D-3

Input drivers 4-1
Interrupt response routines 2-3

Index-2

. ITOS 1 terminal driver 3-1
CONNECT 3-2.1
DISCONNECT 3-2.1
FREAD 3-2
FWRITE 3-2.1
MOTION 3-2
request format 3-2
READ 3-2
WRITE 3-2
WRITE READ 3-2.1

Line printer drivers 3-19,20,21
character editing 3-19,20,21
error conditions 3-20
FWRITE 3-19,20,21
MOTION 3-19,20,21
physical device table C-16
status and error handling 3-20,21
WRITE 3-19,20,21

Line sync timer driver 3-33
error conditions 3-33
requests 3-33

Logical unit tables C-20
Low-cost tape transport drivers 3-22,24

buffers 3-24
data format 3-22,24
error recovery 3-23,24
formatter 3-24
FREAD 3-23,24
FWRITE 3-23,24
MOTION 3-23,24
physical. device table C-17,18
READ 3-23,24
record constraints 3-22,24
WRITE 3-23,24

Macro formats 1-1
FREAD 1-1
FWRITE 1-1
MOTION 1-4
READ 1-1
WRITE 1-1

Magnetic tape drivers 3-21
data formatting 3-21
error conditions 3-22
formatted requests 3-21
MOTION 3-22
unformatted requests 3-21

MAKQ subroutine 2-1
MASCON routine 2-3
MASDRV routine 2-3

•

MASERR routine 2-3 •
Mass memory address format 1-4
Mass memory drivers 3-8; 4-1

data transfer request formats 3-8.1 I
disk and drum driver request 3-9
error conditions and recovery 3-10
FREAD 3-9
FWRITE 3-9
MOTION 3-10
READ 3-9
WRITE 3-9

Mass storage address 1-4
Mass storage resident drivers 2-3
MMEXEC routine 2-3
Momentary relays 3-30
MOTION request 1-4; 3-1,2,2.2,7,8,10,16,16.1,19,20-27,35 I

96769390 D

\

.'
(~

'\ ,

I
\._/

,,, ".

"'

L··

, I
"'--'

,~-,

''-...-/

"'-" , \

,~

,,' "'I

'---)

".-....
~;

,,,.. ,,

,~

."..-. ,

'-----"

:)
" .. -.....

\

0

r- '~

'--'"

.r'

\

J

.r--"J
~

Momentary relays 3-30
Multiple A/Q device table 2-6

Pack initializer 3-12
Paper tape punch drivers 3-2.2

FWRITE ASCII 3-3
FWRITE binary 3-3
MOTION request 3-3
WRITE ASCII 3-3
WRITE binary 3-2.2

Paper tape reader drivers 3-2.1
EOF processing 3-2.2
FREAD ASCII 3-2.2
FREAD binary 3-2.2
MOTION requests 3-2.2
parity checking 3-2.1
READ ASCII 3-2.1
READ binary 3-2.1

Physical device tables C-1
• card punch driver C-19

cartridge disk driver C-8
cassette driver C-18

I

CB104 Card Reader Driver C-6
communication line adapter C-6
conversational display terminal C-6
1827 Line Printer Driver C-16
1828 Line Printer Driver C-15
flexible disk driver C-12
ITOS terminal C-6
low-cost tape transport C-17,18
storage module driver C-10

Pseudo tape driver 3-33
error conditions 3-34
requests 3-34

Queueing of I/O requests 1-1

READ request 1-1; 3-1,7,8.1,9,12,16,23,24,24.2,26,27,34,
36,39

READ ASCII request 3-2.1,3
READ binary request 3-2.1,3
Real-time peripheral drivers 3-28
Record constraints 3-22.1
Relay multiplexer analog input subsystem driver 3-28
Relay output driver 3-30

bit addressing 3-30
momentary relays 3-30
restrictions 3-30

Remote I/O driver 3-32
Request codes 1-2
Request parameter descriptions 1-2

Sample rate generator driver 3-33
error conditions 3-33
requests 3-33

SCMM diagnostic 2-4
Serial I/O drivers 3-27
Set error flag 2-1
Single A/Q device table 2-5
Single or multiple M05 device table 2-6
Software buffer driver 3-35
Solid-state multiplexer analog input

subsystem driver 3-29

96769390 D

Standard equipment/interrupt assignments B-1
Status and error handling 3-7,8,20,21
Storage module driver (SMD) 3-10.1

address tag routine 3-12
diagnostic features 3-14
disk pack initialization 3-11
disk-to-tape driver 3-15
error recovery 3-13

control unit connection error 3-13
data transfer error (read) 3-13
drive connection/seek error 3-13
error codes 3-14
error correction code error 3-13
force release error 3-14

FREAD 3-12
FWRITE 3-12
pack initializer 3-12
physical device table C-10
READ 3-12
store core image 3-15
WRITE 3-12

Store core image 3-15
System checkout package 6-1
System initializer driver 4-1

disk-to-tape utility 4-1
errors 4-1
operation 4-1

System interfaces for I/O drivers 2-1
alternate device handler 2-2
A/Q channel allocation 2-4
auto-data transfer 2-5
buffered data channel allocation 2-4
complete request 2-1
device not shared 2-1
device shared 2-1
diagnostic timer module 2-1
engineering file logging 2-4
find-next-request 2-1
interrupt response routines 2-3
mass-storage resident drivers 2-3
SCMM diagnostic 2-4
set error flag 2-1

TAB 501 card punch driver, see Card punch driver
Tape motion request 1-1
Teletypewriter 3-28
Timeshare devices 3-27
Typewrite keyboard drivers 3-1,3

FREAD 3-1
FWRITE 3-1
MOTION 3-1
READ 3-1
WRITE 3-1

Unformatted READ 3-36
Unformatted requests 3-21
Unformatted WRITE 3-36
Unsolicited input 3-27
User instructions 3-36

I

I

WRITE ASCII 3-3,5,8 I
WRITE binary 3-2.2,5,8
WRITE request 1-1; 3-1,8.1,9,12,16,19,20,21,23,24,24.2,27,

34,39

Index-3

l

\''''.

\
"---../

l'

o

'/-",

I

~

I
\
\ .. J

(J
•
()

()

COMMENT SHEET

MANUAL TITLE CONTROL DATA® Software Peripheral Drivers Reference Manual

PUBLICA TION NO.

FROM NAME:

BUSINESS
ADDRESS:

96769390 REVISION D

COMMENTS: This form is not intended to be used as an order blank. Your evaluation of this manual will be
welcomed by Control Data Corporation. Any errors, suggested additions or deletions, or
general comments may be made below. Please include page number to which your comment
applies.

STAPLE STAPLE t

FOLD - - - - _.- - - -- ___ - ___________ - - - -' - - - - - - - ...l

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAiLED !N U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
PUBLICATIONS AND GRAPHICS DIVISION
4455 EASTGATE MALL
LA JOLLA, CALIFORNIA 92037

FIRST CLASS
PERMIT NO. 333

LA JOLLA. CA.

____________ -1
-------_ - ---- - - -- -- - ---

FOLD

STAPLE
STAPLE

l

f'

1...--...........

".

r--"

,

r ,

' ~ ...

,----.
'I

\.., ,,'

/--,~

....... _ .

.\;.

/'

'

• 'P
,r-"

I,

'---

(,,---...,

...... ,,-

c

,,""'-

',,-.

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. 55440

SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES !HROUGHqUT THE WORLD

~~
CONT~OL DATA CORPORf\TION

LITHO IN U.S.A.

\1

l \1
1.

