
()

o
o
C)

()

o
C)
/"..--.......,'.

o
o
o
C)

o
o

. SORT IMERGE
VERSION 1.0
REFERENCE MANUAL

CONTROL DATA ®

96769260 1\
CONT"OL DATA
CORfO~TION

MASS STORAGE OPERATING SYSTEM

REVISION RECORD
REVISION DESCRIPTION

01 Preliminary version of manual released

(8/76)

A Manual released

(9/76)

Publication No.

96769260

REV"ISION LETTERS I, 0, Q AND X ARE NOT USED

© 1976
by Control Data Corporation

Printed in the United States of America

ii

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4455 Eastgate Mall
La Jolla, CA 92037

or use Comment Sheet in the back of
this manual. .

C~

'-'"

('
~--, ."

~
(,
,--.'

~

(,.

(~
......

C
• (--.

\... ..

(r_., ..
\....

c-'
c
('
\ ',

\,---,,/

o

()

o

o
o

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and ad­
ditions to information in this manual are indicated by
bars in the margins or by a dot near the page number

Page Revision SFCt

Cover -
Title Page -
ii A
iii A
v A
vii A
1-1 A
1-2 A
1-3 A
2-1 A
3-1 A
3-2 A
3-3 A
3-4 A
3-5 A
3-6 A
3-7 A
3-8 A
3-9 A
3-10 A
3-11 A
3-12 A
3-13 A
3-14 A
3-15 A
3-16 A
3-17 A
3-18 A
4-1 A
4-2 A
4-3 A
4-4 A
4-5 A
4-6 A
4-7 A
4-8 A
4-9 A
4-10 A
A-I A
A-2 A
A-3 A
A-4 A
B-1 A
B-2 A
B-3 A
B-4 A
C-l A
C-2 A
C-3 A
C-4 A
0-1 A
0-2 A
0-3 A
0-4 A

tSo~are Feature Change

96769260 A

if the entire page is affected. A bar by the page num­
ber indicates pagination rather than content has
changed.

Page Revision SFCt

E-l A
F-1 A
0-1 A
0-2 A
H-1 A
1-1 A
1-2 A
1-3 A
1-4 A
1-5 A

. 1-6 A
1-7 A
J-l A
J-2 A
K-1 A
K-2 A
L-l A
L-2 A
L-3 A
Comment

Sheet -
Envelope -
Back Cover -

iii

"" '.

I "

\ ~

",..-"

'I

',.

~
I
~.-

r-""""'
"'--_.

(',
\,

r' "-.,
• (

,
'---'

(" .
"'--....

r
"-

('
'-- .

i-'
I
\
'''---

." 0 ',

()

f"-",

(!
"-........,/

l)
'--'

('
"--/)

/~'"''

I,

'---"'

r"--"",
\. '/

l'''''-'\

U

0
<)

0
• ,.-"\
\J

',-"'\
.\....-)

r'
'---'

(-"\
• !

',-/

PREFACE'

WAW.

The Sort/Merge system is available under the Mass Storage
Operating System (MSOS), Versions 4.3 and 5.0. Sort/Merge
processing is specified through the use of control state­
ments.

Publication

MSOS 4 Reference Manual

MSOS 5 Reference Manual

MSOS File Manager Reference Manual

Software Peripheral Drivers Reference Manual

,iMES; tSi*8E

The reader is assumed to be familiar with the MSOS system
on which Sort/Merge is to be run (including the job
processing capabilities of that system) and the file manager
systems (to the extent that managed files are used).

Documents of interest to Sort/Merge users are:

Publication Number

60361500

96769400

39520600

96769390

This product is intended for use only as described in this document. Control Data
cannot be responsible for the proper functioning of undescribed features or undefined
parameters.

96769260 A v

;---,
I

....... , ~

{
\ , .

....... ~. ,.,0

(-----­
I,

' '-.."

c.

o
()

()

I
,/

''-.--''

()

o

'S. • '4 *C!'!fI* &1*'54%6 weileR ,E

1 GEN ERAL DESCRIPTION

Sort/Merge Functions
Program Summary

2 SORT/MERGE REQUIREMENTS

Hardware Requirements
Software Requirements
Restrictions
I/O Formats

3 USING SORT/MERGE

Source Language

A
B
C
D
E
F

Prompting Level Statement
Run Statement

Sort Format
Merge-Only Format
Copy Format

Keys Statement
L/S/F Format
C Format

Glossary
Subroutine Hierarchy
Sort/Merge Core Usage
Program Description
Sample Tournament Tree Structure
Tournament Initialization

1-1 Typical Sort Request with Merging

1-1 Sort/Merge Major Programs
3-1 Principal Control Statements for Sort/Merge

(Source Language)
3-2 Sample Sort Run without Merging with Level 2

Prompting (*K,14,L6)
3-3 Sample Sort Run with Merging with Level 0

Prompting (*K,14,L4)

96769260 A

CONTENTS

'F'··.

1-1

1-1
1-3

2-1

2-1
2-1
2-1
2-1

3-1

3-1
3-1
3-3
3-3
3-4
3-4
3-4
3-4
3-5

+ ~ '¥*it *ffip. . li'.+"!' aMeit t,l '5 em' it" Vi

IN FILE Statement
D Format
T Format
P Format

OUTFILE Statement
D Format
T Format
P Format

Sample Runs

4 INPUT, MESSAGES, AND OUTPUT

Input
Messages

Monitor (Phase 2)
Editing Input Records (Phase 3)
Initial Sorting (Phase 4)
Intermediate Merging (Phase 5)
Final Merging (Phase 6)

Output

APPENDIXES
A-I
B-1
C-l
D-l
E-l
F-l

G
H
I
J
K
L

FIGURES

1-2

TABLES
1-3 3-4

3-2 3-5

3-7 4-1

3-9

Optimizing the Work Block Size
Sort/Merge Merging Strategy
Table Formats and Usage
File Manager Use by Sort/Merge
Installation of Sort/Merge
Diagnostic Messages

Sample Merge-Only Run with Level 0 Prompting
(*K,14,L4)

Sample Copy Run with Levell Prompting
(*K, 14, L6)

Messages Used in Sort/Merge

3-5
3-5
3-5
3-6
3-6
3-6
3-6
3-6
3-6

4-1

4-1
4-1
4-3
4-5
4-6
4-9
4-10
4-10

G-l
H-l
1-1
J-l
K-l
L-l

3-16

3-17
4-1

vii

('
'I ... ,

c:

\ '.

'~'.

"',.""

...... ---.....

I~·
\ ,'

l
~'

c

o

c'

,,,...-.... ,,
(I

'''-..J

I

I
'-..../

o

o
o

o
,..,--..., u

o
o

-
GENERAL DESC·RIPTION· 1

c ,1 .. *'.2& WHitS .. ' •• , ?@. M*5 •• S5M:S5o; .. ewo,tMii lMii Hff'! PiF

SORT/MERGE FUNCTIONS

The Sort/Merge utility package rearranges records from one
or more files into an operator-specified order. Sort/Merge
uses one key or a series of keys selected by the operator as
the criteria for sorting or merging presorted files. If several
keys are used, the order in which they are entered in the
control instruction determines the hierarchy of sorting. The
most important key is specified first and is the basis for the
primary sorting. The key specified second determines
sorting within the primary sorting and the key specified
third determines sorting within the second sorting, etc.

Three variations of sort/merge processing are available:

• Sort - Sorts records from one or more input files. The
total number of records that can be sorted is a function
of the size of core space available to Sort/Merge.
Output is a single sorted file.

o Merge-only - Combines two or more presorted files into
a single output file

• Copy":only - Copies one or more files to an output
device

The copying operation neither sorts nor merges the input
files. The merging operation requires files of records
presorted to the same keys.

The sorting operation may be performed without merging if
the available core is sufficient to hold all the records at one
time. Otherwise, records are sorted in groups, and then
group pointers are merged in successive passes. Finally, at
output time, the sorted and merged pointers are used to
retrieve the records. The output of Sort/Merge is the
sequence of sorted records in the form of a single output
file. When Sort/Merge determines that the merging opera­
tion is needed for a sort run, the operator sees little
indication of the program choice; he sees only a brief
message informing him that intermediate merging is being
performed. The operator has no direct control over the
intermediate merging. He has only indirect control in that
he may increase or decrease' the number of records to be
sorted on a single run, or may make a greater or lesser
amount of core space available to Sort/Merge as a part of
the total computing system.

A typical sort request with merging is shown in figure 1-1-

The following features are included in the Sort/Merge
package:

• Control language with diagnostics and recovery

• Indefinite number of input files

• Indefinite number of key fields

96769260 A

• Four types of key fields:
Logical Binary - Unsigned binary integers assumed
to be non-negative and sorted by magnitude. The
range is 0 to FFFF 16.
Signed Binary - Same as unsigned binary except
both positive and negative integers are possible and
the ran~e is 8000 16 to 7FFFI6, (0000 16 = FFFF 1~
for sortmg purposes. '

Floating Point - A 32-bit key. CYBER-18/1700
format is used.

Character - One or more eight-bit characters as
specified by the operator

• Each key field may be separately ascending or descend­
ing.

• Run-time error detection - I/O status checking is
automatic. The user may select sequence checking for
a sort or merge-only run. If he does so, record and
sequence counts are listed and checked.

• Input (control or user files) may be entered from cards,
a teletypewriter, paper tape, magnetic tape, pseudo
tape, or disk (file manager, not for contro!).

• Output (listing or user files) may be made on cards,
teletypewriter, printer, paper tape, magnetic tape,
pseudo tape, or disk (file manager, not for listing).

o Sort/Merge provides variable levels of program, inter­
action with the operator; i.e., prompting. The operator
selects the desired level at the start of the run. The
levels are:

Noninteractive - No prompting (level 0)

Interactive - Names statement type (level 1)

Interactive - Lists statement format (level 2)

o Input files may be controlled by a skip count (to discard
a group of leading records) and by a do count (to process
or given number of records in the file).

• Run-time prompting for the user input file. At this
time the user may supply and ready the file, or he may
delete the file.

• User file parameters are as follows:

File manager file number

ASCII or binary

Logical unit

Record length (input only)

Block size

1-1

1-2

SMCMON DIRECTS
SMCFMG TO MERGE
ALL RECORDS INTO
THE SIGNAL OUTPUT
FILE

0334

SMC INITIALIZES
PROGRAMS, CALLS
THE MONITOR,
LOADS THE FIRST
SORT/MERGE
PROGRAM

SMCMON DIRECTS

PROMPTING LEVELS ARE NONE,
TYPE OF STATEMENTS ONLY,
OR FULL TEXT OF THE STATE­
MENT NEEDED TO SPECIFY
THE RUN

SMCEDT TO CHECK GOOD REQUEST
THE INPUT PARA-
METERS

MORE FILES

SMCMON DIRECTS
SMCSRT TO START
SORTING RECORDS,
DETERMINES IF
MERGING IS
NECESSARY

SMCMON DIRECTS
SMCSRT AND SMCIMG
TO PROCESS THE
FILES (RECORD BY
RECORD)

ALL RECORDS SORTED AND PARTIALLY
MERGED (IF COMPLETE SORT CANNOT
BE MADE IN A SINGLE PASS IN CORE,
PARTIAL SORTS ARE MADE, THE
INTERMEDIATE OUTPUTS ARE KEPT ON
MASS STORAGE, AND THEN THE INTER­
MEDIATE SORTS ARE RECALLED TO
CORE FOR A FINAL MERGING)

SORTED RECORDS ARE
OUTPUT IN SING LE FILE
ON SPECIFIED OUTPUT
DEVICE (MAYBE A MASS
STORAGE DEVICE).

Figure 1-1. Typical Sort Request with Merging

96769260 A

.~

.,r

.'-.....

(..--..
1\......,

(
/"~'.

' , .

o
C:

o
o
o
C)
o
o
C)

,~ u

o

o
o

Skip' count (input only)

Do count (input only)

• Sort/Merge runs in background mode under MSOS.

PROGRAM SUMMARY

Sort/Merge is executed in six phases:

• Phase 1 - Calling Sort/Merge module (SM C)

o Phase 2 - Executing the programs (SMCMON)

• Phase 3 - Defining and checking the run definition
(SMCEDT)

• Phase 4 - Sorting (SMCSRT)

o Phase 5 - Intermediate merging (SMCIMG)

o Phase 6 - Final merging (SMCFMG)

The job processor is activated as usual (i.e., *JOB). Then,
before calling Sort/Merge, the operator selects the input and
list devices using a *K,Ix,Ly statement. This causes the run
definition to be accepted from logical unit x and the general
output of all messages to be made to logical unit y. For
example, if the comment ,device is the convers~t~o~al
display terminal (CDT) and IS used both for run defmItIon
and for comments to the operator, and if the CDT is
assigned to I/O channell, *K,Ix,Ly may be used.
Sort/Merge is then activated with an *SMC statement.

After SMC is loaded and activated, the MSOS GTFILE
routine is used to load the Sort/Merge monitor, SMCMON
(phase 2). When SMCMON is loaded, SMC activates it.
SMCMON controls all further operations. SMCMON imme­
diately loads the editor, SMCEDT (phase 3), which receives
the operator's definition of the run, checks it for acc~racy,
and informs the operator of selected run parameters If the
operator so requests.

After the run is defined, SMCEDT is ejected as SMCMON
loads the sorter, SMCSRT (phase 4). If merging is required
(for example, not all files could be sorted within core, a~d
intermediate disk storage of files is necessary), SMCSRT IS
ejected by the Sort/Merge monitor and the intermediate
merge program, SMCIMG, is loaded and executed (phase 5).
Finally, in all cases, the Sort/Merge monitor loads and
executes the final output processing program, SMCFMG
(phase 6). Then control returns to the S?rt/Me!,ge n:t0nitor,
which sends a message to the operator mformmg hIm that
the sort/merge/copy request has been completed. The
opera tion is sum marized in table 1-1.

More details of program operation are described in appen­
dixes C and D.

96769260 A

TABLE 1-1. SORT/MERGE MAJOR PROGRAMS

Program Definition

SMC Initializes the Sort/Merge module

SMCMON Sort/Merge monitor:

• Contains Sort/Merge tables

• Contains display messages

• Contains user input decoder

• Monitors I/O and all program execution

• Checks key fields

SMCEDT Interprets user's input parameters:

• Selects type of prompting for inter-
action with the user (see section 4)

0 Checks user's input parameters

SMCSRT Prepares files for copying or sorting

0 Queues files for burst-rate copying

• Prepares sequences of files for recur-
sive merging

0 Counts records that are processed

SMCIMG Merges input files for certain conditions:

0 Premerges sequences

0 Continues to build sequence directory

0 Optimizes merging sequence

0 Processes errors

SMCFMG Merges input and processed (work) files:

0 Performs final merger of files

NOTE

Sort/Merge may be run in any of three
interactive modes: level 0 (no operator
interaction), level 1 (limited interaction),
or level 2 (complete interaction by use of
detailed information and error messages).
Level 2 mode requires the most time and
operator assistance, but has th~ adv~ntage
that extensive error recovery IS avaIlable.
On the other hand, if the file manipulation
techniques have been fully debugged, and
the input files are standardized and error­
free, level 0 mode provides quick and
efficient operation.

1-3

"'--...

/' '

c

c

o

()

o
o
()

o
o

o
o

()

o

SORT/MERGE REQUIREMENTS 2

iFf·ze a.' ; ,i,\ d IA! "" : (

HARDWARE REQUIREMENTS

Sort/Merge operating under MSOS requires the MSOS hard­
ware minimum requirements. This consists of one CPU
(logic, memory, and I/O control), one teletypewriter or
conversational display terminal (input/listing/comment
device), and one disk drive. In addition, one I/O device is
required for each simultaneous user file not on disk; e.g.,
magnetic or paper tape, teletypewriter, printer, or conver­
sational display terminal.

Disk area must be available for file manager processing and
for user and/or sort-only work files, whether those files are
pseudo tapes or sequential file manager files.

SOFTWARE REQUIREMENTS

The Sort/Merge utility package requires MSOS with the file
manager and with drivers for the input/list/comment device
(teletypewriter or conversational display terminal) and for
disk. In addition, a driver is needed for each extra I/O
device such as a printer, magnetic tape, or paper tape.

RESTRICTIONS

Source language editing flags many user errors. Errors that
are not discovered at source language conversion time are
generally diagnosed at run time.

Magnetic tape input is limited to a single volume (reel) for
each input file or output file. Output to a file manager file
is restricted to sequential mode.

Sort/Merge runs should not be terminated by use of the
MSOS JOBKIL procedures (*Z or DU) unless the run is
successfUlly completed. These procedures may not release
temporary files set up for Sort/Merge. Proper run termina­
tion for an unsuccessful run is accomplished by making the
input (or output) device not ready. Then when the
error/action message is sent to the comment unit, the

96769260 A

;41 ¥,J ! llItri' ,,,'b'.i ',"", 1it" ; t, ,," , i

operator should enter QT (options are GO, QT, or BY), which
will cause Sort/Merge to abort the operation in this context.

I/O FORMATS

For Sort/Merge, a block is the information transferred by
one of the following MSOS requests: FWRITE, FREAD,
STOSEQ, RTVSEQ. STOSEQ and RTVSEQ are used on file
manager disk files. Nondisk files are accessed via FWRITE
and FREAD.

Since these requests are standard MSOS requests, the MSOS
reference· manual should be consulted for a complete
description of each request. Note particularly that FWRITE
and FREAD operations are not the same for each hardware
device.

For FREAD operations, Sort/Merge attempts to detect
oversize blocks by trying to read one more word than the
user-specified maximum block size for the file concerned.
If similar oversize blocks are detected, Sort/Merge issues an
error message.

For file manager files, Sort/Merge does not need an extra
word of buffer specifically for oversize block detection,
since the file manager contains logic to detect this type of
error. Sort/Merge notifies the operator by outputting the
REQIND contents when they are abnormal. Results of the
check are passed to Sort/Merge as a bit within the REQIND
status buffer.

However, for the STOSEQ and RTVSEQ requests, the buffer
is one word larger than the user-specified block size to allow
for the length word portion of a file record.

Considering only the data words of blocks (file records have
the length word as well) for files containing logical records,
Sort/Merge verifies that each such data area is a nonzero
multiple of the user-specified logical record size.

Appendix J describes the Sort/Merge-file manager relation­
ship in greater detail.

2-1

'-.... '

'--

r
\...._-

c
c
r
\

. "--

r' _,.

C
('

",--"

("
'--"

('
"--,'

r
\""', .. - '

('
'-.......,

r"
1,

\...... ..

C

C

.,

,.

I'~"',

...
(~

()

C"

USING SORT/MERGE 3

;" f •• 1"..1 II., iii ti** _flljRll;', ! ; f f! .11

This section describes the operator-entered program control
commands necessary to perform a sort, ,merge-only, or copy
run. It is assumed that the job processor is in control.

Before calling Sort/Merge, the operator must define the
standard input and list devices for the run. This is done with
the following command:

*K,Ix,Ly

Where: x is the logical unit from which Sort/Merge reads
its first control statement before doing any
sorting, merging, or copying.

Y is the logical unit upon which all listing is done.

Once the desired run has been defined and started, further
control statements are requested, as needed, via logical unit
x, but are always accepted from the comment device.

Calling of Sort/Merge must also be preceded by defining and
opening any pseudo tapes to be used in the run. Pseudo
tapes can serve· as files for control, listing, user input, or
user output.

The first program of the Sort/Merge module, SMC, is then
loaded and executed with an *SMC command. SMC
automatically calls and execut~s the second Sort/Merge
program, SMCMON. That program starts the interactive
phase (messages are sent to the operator announcing the
major program phases even if no prompting is selected).
From this point forward, operating Sort/Merge is largely a
matter of responding to the prompting messages or - in
prompting level 0 - entering the run parameters without
prompting.

The prompting messages are listed in their normal order of
occurrence in figure 4-1, and all messages are described in
detail in section 4. .

The operator replies to the messages become the source
language for the run parameters.

SOURCE LANGUAGE

The parameters of the source language must be submitted in
a certain order. Other than this, the source language is
free-form in the sense that blanks are ignored, numbers may
vary from one to eight digits, and an individual control
statement may span an arbitrary number of physical records;
e.g., cards, lines on a teletypewriter, tape blocks, etc. Note
that two statements may not share the same physical
record; i.e., a new statement· must starf a new physical
record.

Each line (physical record) of source language is listed
exactly as received so the operator may have some control

96769260 A

i.. "I j fj,/ f"

over the listing of his. parameters, and so that he knows
exactly what parameters were received by Sort/Merge.

There are five types of source statements, and they must be
entered in the order shown:

1. Prompting level statement

2. Run statement

3. Keys statement

4. Input file statement

5. Output file statement

These five control statements are summarized in table 3-1.

Sort runs and merge runs involve all five statement types;
the KEYS statement is omitted for copy runs.

Within each statement, each parameter must be followed by
a comma unless it is the last parameter and the value is not
numeric.

Only the parameter order shown in table 3-1 is permitted.
Within each parameter order, each parameter is required
and may not be omitted.

A Z may be typed in place of any comma or parameter that
allows the operator to recover from his own errors. On
entry, this causes the statement involved to be restarted
from the beginning, including prompting.

PROMPTING LEVEL STATEMENT

The first source language statement is simply a number,
called the prompting level, which tells Sort/Merge how
elaborately to prompt the operator as he submits the rest of
the source language.

There are three levels of prompting (0, 1, or 2) sp~,cified as
one of those numbers followed by a comma.

Sort/Merge reads the prompting level statement following
the message

EDIT BEGINS

See the Sample Runs section.

With minimum prompting (prompting level 0), Sort/Merge
silently accepts the source language until the first mistake
is noticed, whereupon a single diagnostic is issued and the
run terminates •

3-1

TABLE 3-1. PRINCIPAL CONTROL STATEMENTS FOR SORT/MERGE (SOURCE LANGUAGE)

Prompting level

<>,

Run selection

RUN =

Statementt

D, wkbksz, S/N, keycnt, filcnt, cr

M, SIN, keycnt, filcnt, cr

C, filcnt, cr

Keys specification

KEYS =
.•. L/S/F, A/D, keycol, •••

••. C, A/D, keycol, keycols, ••.

Input file parameters

INFILE =

D, filnum, reclth, blksiz, skipcnt, docnt, cr

T, lun, reclth, blksiz, skipcnt, docnt, cr

P, A/B, lun, reclth, blksiz, skipcnt, docnt, cr

tStatements are shown to their prompting level 2 format.

3-2

Comments

Level is 0, 1, or 2:

o = No prompting and no error recovery

1 = Statement named, limited error recovery

2 = Statement and parameters indicated. Full error
recovery

Operator selects one of three run types.

Run type is D, M, or C

D = Sort

M = Merge only

C = Copy only

Parameters are:

wkbksz = Size of working area required

SIN = Select or ignore file sequence checks

keycnt = Number of search keys

filcnt = Number of files for run

cr = Carriage return

Operator specifies keycnt number of keys.

One KEYS statement is made for each key used. State­
ments are ordered by importance of key. L/S/F or Care
key types:

L = Logical binary

S = Signed binary

F = Floating point

C = Character

Parameters are:

A/D = Ascending or descending order

keycol = Starting column of keyword

keycols = Number of characters in character keyword

Operator selects one of three input file types.

0, P, or T specifies type of input files:

D = Disk type

P = Binary or ASCII (paper tape type)

T = Binary (magnetic tape type)

Parameters are:

filnum = Disk file identification

lun = Input logical unit

A/B = ASCII or binary

reclth = Standard record length

blksiz = Number of record words Sort/Merge reads/
files

96769260 A

"
(,---

/,---, ,

.... ~, -- ,-

' "

,r-­
I

c

..........

('
.' , ..

~"''''' .

,~

\ - .

('
' ,

, '",-~ .. ~

I~

o

(~

:,~

1"-.' ,.

(.
I

\

I I
''--.,/

()
'-"'"'

o
C",

" ...-".

o

TABLE 3-1. PRINCIPAL CONTROL STATEMEN rs FOR SOR'f!MERGE (SOURCE LANGUAGE) (Continued)

Statement

Input file par!l.!.l!.~te~~ (continued)

Output file parameters

OUTFILE:

0, filnum, lun, blksiz. cr

T. lun, blksiz, cr

P, A/B, lun, blksiz, cr

With some prompting (prompting level 1), Sort/Merge issues
a brief message naming the desired statement type before
reading the user reply. With this level of prompting, a
mistake does not terminate the run. Rather, the operator is
given the diagnostic:

EXPECTED <parameter name>

FOUND <first character of erroneous reply>

The operator may simply retype the incorrect parameter and
its successors.

Maximum prompting (prompting level 2), is the same as
some prompting, except is announces the format of each
statement rather than the name of the desired statement.

Prompting levels 1 and 2 are the interactive mode of
Sort/Merge, while prompting level 0 is noninteractive.

Parameters for a frequently used run could be debugged
interactively and then repeatedly used noninteractively.

RUN STATEMENT

The RUN statement summarizes the nature of the run using
two to five parameters. There are three formats for the
R UN statement, corresponding to the three types of runs:
D = sort, M : merge-only, and C : copy.

RUN:

D, wkbksz. S/N, keycnt, filcnt, cr

M, S/N, keycnt, filcnt, cr

C, filcnt, cr

96769260 A

Operator
chooses one
of these three
options

Comments

skipcnt : Number of leading records to skip/file

docnt : Number of records to process/file

cr : Carriage return

D, P, or T specifies type of output file:

0= Disk type

P = Binary or ASCII (pa\?er tape type)

T = Binary (magnetic tape type)

Parameters are:

filnum = Operator-specified output file
identifica tion

lun : Output device

AlB = ASCII or binary

blksiz : Size of output file

cr : Carriage return

Sort Format

The sort format of the RUN statement is as follows:

D, wkbksz, S/N, keycnt, filcnt, cr

D is disk sort; i.e., the work files are held on disk.

wkbksz is the block size of those work files that are
sequences, destined to be merged into the user output file.
wkbksz should be a multiple of the logical record size;
otherwise a diagnostic is issued when the logical record size
is submitted in an INFILE statement. wkbksz strongly
affects sort performance. For an· analysis of selecting
wkbksz, see appendix G.

As released, Sort/Merge requires a wkbksz of 92 words or
less, but this is an assembly option. Depending on other
Sort/Merge parameters, the maximum wkbksz for a 32K
machine is on the order of 3000 words. However, such a
maximum is not imposed until all Sort/Merge parameters
have been submitted, so that 92, •• " 32767 is the allowable
range at the time wkbksz is submitted. For wkbksz, 500
words are usually a reasonable order of magnitude. For S/N.
5 selects sequence-checking of all merge output, whether
intermediate or final, and N specifies no sequence checking.
S should normally be specified to guard against sequence
errors due to undetected hardware (especially I/O) problems.
When sequence checking is enabled and a sequence error is
detected, a run-time message is listed. This message
includes a hexadecimal dump of the new (out-of-sequence)
record and of the last record output. The user is then given
the option of including or deleting the new record.

N is used on those occasions when there are hardware
problems, but perfection is not worth the expenditure of
listing errors or requiring user intervention.

keycnt is the number of user key fields to be defined for the
run. Sort/Merge does not finish processing the KEYS

3-3

statement (which is ~ntered next) until the user has input
keycnt key fields.

Depending on other Sort/Merge parameters, the maximum
keycnt for a 32K machine is on the order of 5000. However,
such a maximum is not imposed until all Sort/Merge

. parameters have been submitted, so that 1, .• " 32767 is the
allowable range at the time keycnt is submitted.

Most Sort/Merge runs use a keycnt of 10 or less.

filcnt is the number of user input files to be defined for the
run. Sort/Merge expects that filcnt IN FILE statements
follow the KEYS statement and precede the OUTFILE
statement.

At run time, Sort/Merge requests and reads these files
serially in the order of definition.

Depending on other Sort/Merge parameters, the maximum
filcnt for a 32K machine is on the order of 1000 for a sort­
only or copy run, and 200 for a merge-only run. However,
such a maximum is not imposed until all Sort/Merge
parameters have been submitted, so that 1, .•. , 32767 is the
allowable range at the time filcnt is submitted.

cr is a carriage return.

Merge-Only Format

The merge-only format of the run statement is as follows:

M, SIN, keycnt, filcnt, cr

M specifies a merge-only run.

SIN, keycnt, and filcnt are the same as for a sort run,
except that at run-time all filcnt files are merged in
parallel.

M,S,l,l cr is a legal command and an alternate method of
copying a file. It could be used to sequence check a file
while copying it to another file, .real or dummy.

M,N ,1,1 cr could also be used for a copying operation instead
of C,l cr (see below), and would take slightly less core since
no sequence checking would occur.

Copy Format

C, filcnt, cr

C selects a copy run.

filcnt is used as in a sort run. (A copy run uses a subset of
the logic of the internal sort of a sort-only run.)

KEYS STATEMENT

The format of the KEYS statement is as follows.

3-4

KEYS =
definition of first (most major) key, Operator speci-
definition of second key, fies a total of

•• " definition of keycnt (most
minor) key, cr .

keycnt separate
keys.

The user defines all keycnt keys, in order of importance,
starting on the left with the most important key, and ending
on the right with the least important (the keycnth) key.

All the keys defined must be wholly containable within the
logical record length, or else that logical record length gets
a diagnostic when it is specified in an IN FILE statement.
Key fields are allowed to overlap. This is rarely justified,
however, and if not justified, it will waste CPU time and
core space.

For example, S,A,7,L,D,7, crt would make -0 precede +0,
whereas otherwise they might intermingle. However,
L,D,7 ,S,A, 7, cr makes no sense since S,A,7, is not used
unless L,D, 7, ties. But if L,D,7, ties, then S,A,7, also ties.

There are four types of keys and two formats for defining
them.

L/S/F Format

The L/S/F format of key definition is as follows:

L/S/F, A/D, keycol,

Three of the four key types use this format: logical binary,
signed binary, and floating point.

L signifies logical binary. This is 16 bits of unsigned binary
on a 16-bit boundary; i.e., FFFF 16 is the maximum value for
such a key, while 000016 is the minimum value.

S signifies signed binary. This is 16 bits of ones complement
signed binary on a 16-bit boundary; i.e., 7FFF16 is the
maximum value, 000016 = FFFF 16; 800016 is the minimum
value.

F signifies floating point. This 32-bit key must start on a
I6-bit boundary. The key format is CYBER 18/1700 floating
point.

In the A/D statement, A signifies ascending order and D
signifies descending order, relative to the key viewed as a
number. The proper order for an L,A, ••• key could be 1,2,3
••• ; or the proper order for an S,D, ••• key could be
7FFF 16' 7FFE16, ••• , 000016, ••• , 800016,

keycol is where the key starts, relative to the beginning of a
logical record, where 1 means the first column of the
record. For example, L,A,9 means logical binary, ascending
order, starting in the ninth column of a logical record.

For these three key types, the 16-bit boundary restriction
implies that keycol must be an odd number.

tS,A,7 = Signed binary, ascending order, column 7 start
L,D,7 = Logical binary, descending order, column 7 start

96769260 A

\
\.,.

I

\,

I
'.

\

r
I

\

(~

"-.,

c

(
'-.

(

(j

o

,...--\
()
''"'--''

('\)
',--

[~

c~·

o

c·
o

Depending on other Sort/Merge parameters, the maximum
keycol for a 32K machine is on the order of 11,000.
However,the first maximum is imposed when reclth is
known. The ultimate maximum is imposed when all
Sort/Merge parameters are known. At the time keycol is
submitted, the allowable range is 1, ••. , 32767.

Key length is not a parameter for these three key types,
since their lengths are fixed, not variable.

C Format

The C format of key definition is as follows:

C, A/D, key col, keycols,

C signifies the character key, i.e~, a field of eight-bit bytes
starting on an eight-bit boundary, viewed as a single logical
binary number whose length is some multiple of eight bits.

A/D and keycol are the same as for the L/S/F format,
except that keycol may be an even number, as well as an odd
number, since an eight-bit boundary applies.

keycols is the key length as a number of eight-bit bytes, i.e.,
a C key is variable in length.

keycols is subject to the same legal value range as keycol.

INFILE STATEMENT

Each of the filcnt user input files must be defined by a
separate IN FILE statement in the order in which the user
wants Sort/Merge to request those files at run time. At run
time, Sort/Merge asks the user to ready each of those files,
but gives the user the alternative of deleting any or all of
those files.

There are three different formats of the INFILE statement.
D indicates disk, T indicates magnetic tape, and P indicates
paper tape or printout. These are usable for other media as
well. The INFILE statement formats are as follows:

INFILE =

D, filnum, reclth, blksiz, skipcnt,
docnt, cr

T, lun, blksiz, skipcnt, docnt, cr

P, A/B, lun, reclth, blksiz, skipcnt
docnt, cr

o Format

Operator
chooses one of
these three
statements

The D format of the INFILE statement is as follows:

D, filnum, reclth, blksiz, skipcnt, docnt, cr

96769260 A

D signifies the disk file-manager file~ See appendix J for a
summary of the outputs of the file manager used by
Sort/Merge.

filnum identifies the file and must be one of these numbers:
1,2,3, .•. , 32767.

reclth is the length in words of a Sort/Merge logical record.

reclth must be an even divisor of all user-specified block
sizes for the run; i.e., wkbksz and all blksizs.

reclth must be the same for each INFILE statement and
must be large enough to entirely contain each user-specified
key field for the run. Depending on the other Sort/Merge
parameters, the maximum reclth for a 32K machine is on
the order of 2000 for a sort-only run, and 5000 for a merge­
only or copy run. When wkbksz has not been specified, the
legal reclth range is 1, .• " 32767 when first submitted.
Very soon, however, other parameters such as blksiz act as
cons train ts.

blksiz is the number of words of logical records that
Sort/Merge reads during a read request on the file. For a
file manager file, blksiz is the number of data words in a file
record. blksiz may differ for each IN FILE statement, but
each blksiz must be a nonzero multiple of reclth.

A t run time, Sort/Merge checks the length of each block (of
Sort/Merge logical records) read, to verify that the actual
blksiz is a nonzero multiple of the specified reclth, and to
verify that the actual blksiz does not exceed the specified
blksiz. Whenever violations of these constraints are
detected, corresponding diagnostics are issued.

Depending on other Sort/Merge parameters, the maximum
blksiz for a 32K machine is on the order 11,000. However, a
range of 1, ••• , 32767 is legal until other parameters impose
constraints.

skipcnt is the number of leading Sort/Merge logical records
to discard for the current file, before processing any logical
records. It must be one of these numbers: 1,2,3, .•• , 99 999
999.

docnt is the number of Sort/Merge logical records to process
for the current file, and must be one of these numbers:
1,2,3, ••. , 99 999 999, or E, which means "do every record
up to the end of the file".

T Format

The T format of the INFILE statement is as follows:

T, lun, blksiz, skipcnt, docnt, cr

T is a mnemonic for magnetic tape, but this format may be
used for all files for which a binary FREAD is appropriate,
including pseudo tapes.

lun is the logical unit number. Sort/Merge checks that there
is such a logical unit number, but does not check whether

3-5

the corresponding physical device is appropriate. An
improper device would become evident, because a run-time
diagnostic would be sent to the operator as a result of
Sort/Merge checking status for its MSOS requests.

blksiz is generally equivalent to maximum physical record
.size; other than that, the comments made for blksiz for the
D format apply.

reclth, skipcnt, and docnt are the same as for the D format.

P Format

The P format of the INFILE statement is as follows:

P, AlB, lun, blksiz, reclth, skipcnt, docnt, cr

P is the mnemonic for paper tape or printout, but this
statement is equivalent to the T format with the added
ability to specify.ASCII recording mode, as well as binary.

In AlB, A means ASCII and B means binary.

OUTFllE STATEMENT

This is the last statement and is used to define the output
file.

There are three formats for the OUTFILE statement,
corresponding to the three INFILE formats, and using a
subset of the same parameters:

OUTFILE = .

D, filnum, blksiz, cr

T, lun, blksiz, cr

P, AlB, lun, blksiz, cr.

Except for adding lun to the D format, each OUTFILE
format is derived from its corresponding INFILE format by
deleting reclth, skipcnt, and docnt.

lun was added to the D format used in defining the output
file, which is first released and is then redefined so as to
begin at record 1 if the file is already defined. A runtime
diagnostic results if the actual blksiz of such a predefined
file is less than the specified blksiz.

reclth is inferred from the INFILE statement(s), and must
evenly divide the specified blksiz.

skipcnt and docnt represent options not available for the
output file.

3-6

NOTE

If an MSOS file is specified in the
OUTFILE statement, the file is released
and redefined as an MSOS sequential file
to ensure that the output is stored start­
ing at record 1.

CAUTION

Only MSOS sequential files may be used
for Sort/Merge output. Sort output may
be specified as the same MSOS FILNUM
as was used for the input file. The file is
reset to record 1 before the output
operation begins. If the output is made
using a physical device, the device is not
rewound.

o Format

The D format of the OUTPUT statement is as follows:

D, filnum, lun, blksiz, cr

T Format

The T format of the OUTFILE statement is as follows:

T, lun, blksiz, cr

P Format

The P format of the OUTFILE statement is as follows:

P, AlB, lun, blksiz, cr

SAMPLE RUNS

In the four runs shown in tables 3-2 through 3-5, the data
being sorted is assembly language for part of Sort/Merge.
The source language output (the sorted records, each one a
program statement) has been deleted from the listing. This
would be normal if the output of the run were assigned by
the OUTFILE statement to some device other than the
listing device.

96769260 A

.r'

\ .. ,.

r~·

I.
."-. ...

'.."" ,-

\",- '

c

r

c

u

,---,

("
\'" -,) TABLE 3-2. SAMPLE SORT RUN WITHOUT MERGING WITH LEVEL 2 PROMPTING (*K,I4~L6)

()

f"-')
\-..-

o

*JOB

J
*K,I4,L6

J
*SMC

SMC BEGINS
EDIT BEGINS
2,

Sample Sort Run

RUN=
D,<WKBKSZ>,<S/N>,<KEYCNT>,<FILCNT>,<CR>
M,<S/N>,<KEYCNT>,<FILCNT>,<CR>
C,<FILCNT>,<CR>

AWAITING REPLY

D,120,S,l,l,

KEYS=
••• L/S/F~A/D,<KEYCOL>, •••
• • • C,A/D,<KEYCOL>,<KEYCOLS>, •••

AWAITING REPLY

C,D,76,5,

INFILE 0001=
D,<FILNUM>,<RECLTH>,<BLKSIZ>,<SKIPCNT>,

<DOCNT>,<CR>
T,<LUN>,<RECLTH>,<BLKSIZ>,<SKIPCNT>,

<DOCNT>,<CR>
P,A/B,<LUN>,<RECLTH>,<BLKSIZ>,<SKIPCNT>,
<DOCNT>,~CR>

AWAITING REPLY

P ,A,17 ,40,40,0,200,

OUTFILE=
D,<FILNUM>,<LUN>,<BLKSIZ>,<CR>
T,<LUN>,<BLKSIZ>,<CR>
P,A/B,<LUN>,<BLKSIZ>,<CR>

AWAITING REPLY

TYPE-IN ERROR
TYPE-IN ERROR
TYPE-IN ERROR

P,A,6,40,

G = 0271

IWAY = 0074
FWAY = 0074 o INTERNAL SORT BEGINS

96769260 A

o

Comments

Job processor requested and placed in control

Standard input from del/ice Oil logical Ilnit 4; listing on
device on logical unit 6

Calls Sort/Merge

Level 2 (full prompting) requested

Possible run parameters and request for response

Selected run parameters: disk type, 120 word block,
sequence checked desired; one key, one file

Possible keys parameters and request for response

Selected keys pararneters: character mode, descending
order, starts in column 76, five key columns

Possible input file para;neters and request for response

Selected input file parameters: P type, ASCII code from
logical unit 17, 40 word records and blocks, no SKIPCNT,
DOCNT = 200

Possible output file parameters and request for response

Operator was slow in replying; program repeated request
for reply until operator ans-,vered.

Selected output file parameters: P type, ASCII code, to
logical unit 6, 40 word blocks

Tournament is run with less than 200 (all) records in one pass

Seventy-three 120-word buffers wkbksz are used for sorting,
plus one buffer for output

3-7

TABLE 3-2. SAMPLE SORT RUN WITHOUT MERGING WITH LEVEL 2 PROMPTING (*K,I4,L6) (Continued)

READY FILE = 0001
TYPE GO/QT/BY

GO

Sample Sort Run Comments

Operator must ready or delete file 1

File selected for use

LUN = 0017
FILNUM = 0000

Following message concerns this input file, which is not a
file manager file.

PASSED = 00000200 All 200 records are input to the tournament.

NOTE

Before executing with *SMC, the operator selected the standard devices (*K,Ix,Ly)
and output device (OUTFILE) so that the listing and output devices were the
same unit. The following is the sorted output of the run.

1.

2.

3.

RUN = D,120,S,1,1, where D is a disk run, wkbksz = 120 = n*40. (40 is
the record size.) One key and one record are used.

KEYS = C,D,76,5 where the character key starting in colu!TIn 76 and
extending to column 80 is the iJrogrammer's statement identification.
Descending order is selected.

INFILE = P ,A,17 ,40,40,0,200 where an ASCII input file is read from logical
unitl17 (disk) with reclth = blksiz = 40, and no records are skipped. 200
records are inspected.

4. OUTFILE = P ,A,6,40 with output 40 word records (same as input) in ASCII
format on logical unit 6 (also the listing device). Following the truncated
listed output sorting (a part of Sort/Merge), the final program comments
are made.

(Q)EXIT = FWA OF LOSER RECORD
(A)EXIT = FWA OF WINNER RECORD
IF NO TIE, THEN

00200
00199
00198
00197
00197

(KEYTBL)EXIT = (KEYTBL) ENTRY
(I)EXIT = (I)ENTR-Y

AMONI
PRLVL

EQU
EQU
ENT
NAM
OPT

AMONI($F4)
PRLV(O)
SMC
SMC

00005
00004
00003
00002
00001

LUN = 0006
FILNUM = 0000

Following message concerns the output file on logical unit 6.

PASSED = 00000200

SEQUENCES = 0001

RECORDS IN = 00000200
RECORDS OUT = 00000200

SMC ENDS

3-8

All 200 records appear in the output file.

Number of sequences = 1 (single sorted file)

Number of files output = number of files input; i.e., no files
are deleted

96769260 A

r---
(
'-- '

,r--,

(

~

(
' , -

r'
I

"- -,'

(-------
\.....

r
\., ".

It

,---...
I
'- ..

/-"

(
""

r
""-

,,------

'_.""

f'"
\

r--\

U

L)

C)

(J
o
C" ;:

(")
'-.-./

TABLE 3-3. SAMPLE SORT RUN WITH MERGING WITH LEVEL 0 PROMPTING (*K,I4,L4)

*JOB

J
*K,I4,L6

J
*SMC

SMC BEGINS
EDIT BEGINS
1,

RUN=
D,3000,S,1,1,

KEYS=
C,A,76,5,

INFILE 0001=

Sample Sort Run

P ,A,17 ,40,8000,0,300,

OUTFILE=
P,A,6,40,

G = 0013

IWAY = 0002

FWAY = 0003

INTERNAL SORT BEGINS

READY FILE = 0001
TYPE GO/QT/BY

GO

LUN = 0008
FILNUM = 0179
PASSED = 00000013

LUN = 0008
FILNUM = 0939
PASSED = 00000013

LUN = 0008
FILNUM = 4241
PASSED = 00000013

LUN = OOOS­
FILNUM = 5475
PASSED = 00000013

LUN = OOOS
FILNUM = 00029753
PASSED = 00000013

LUN = 0008
FILNUM = 00017371
PASSED = 00000013

96769260 A

Comments

Job processor requested and placed in control.

Standard input from device on logical unit 4; listing on
device on logical unit 6

Calls Sort/Merge

Level 1 (some prompting) requested

Run parameters: disk type, 3000 word work blocks,
sequence number checking desired, one key, one file

Key parameters: character mode, ascending, key starts
in column 76, five key columns

Input file parameters: P type, ASCII code, from logical
unit 17, 40 word records, 8000 word blocks, no SKIPCNT,
300 DOCNT

Output file parameters: P type, ASCII code, to logical
unit 7, 40 word blocks

Tournaments are run with 13 records per tournament.
40 x 13 = 520 words per RSA

Two 3000 word buffers (WKBKSZ) are used during SMCIMG

Three 3000 word buffers are used during final merging
(SMCFMG)

Operator must ready or delete file 1

File selected for use

Following messages concern this file which has a file
manager identification of 0179. Intermediate storage- is
on logical unit 8. 13 records are input for tournament 1

Sort/Merge strategy has minimized sorting. During the

first sort, 3
1
0
3
0 = (23+] = 24 input tournaments must be per­

formed. First internal sort uses record bins (RSA).

3-9

TABLE 3-3. SAMPLE SORT RUN WITH MERGING WITH LEVEL 0 PROMPTING (*K,I4,L4) (Continued)

LUN = 0008
FILNUM = 00029217
PASSED = 00000013

LUN = 0008
FILNUM = 00019731
PASSED = 00000013

LUN = 0008
FILNUM = 00025673
PASSED = 00000013

LUN = 0008
FILNUM = 7945
PASSED = 00000013

LUN = 0008
FILNUM = 00023617
PASSED = 00000013

LUN = 0008
FILNUM = 00022467
PASSED = 00000013

LUN = 0008
FILNUM = 00023897
PASSED = 00000013

LUN = 0008
FILNUM = 00017723
PASSED = 00000013

LUN = 0008
FILNU.\1 = 00026689
PASSED = 00000013

LUN 0008
FILNUM = 00025971
PASSED = 000000i3

LUN 0008
FILNU M = 00028521
PASSED = 00000013

LUN = 0008
FILNUM = 00026219
PASSED = 00000013

LUN = 0008
FILNUM = 7377
PASSED = 00000013

LUN = 0008
FILNUM = 9763
PASSED = 00000013

LUN = 0008
FILNUM = 00010873
PASSED = 00000013

LUN = 0008
FILNUM = 00012955
PASSED = 00000013

3-10

Sample Sort Run Comments

Sort/Merge strategy has minimized sorting. During the

first sort, 3
1
0
3
0 = [23+] = 24 input tournaments must be per­

formed. First internal sort uses record bins (ilSA).

96769260 A

....... "

1/ "--"'"

,r---
I,

c
c
,'/---""""

\ ",

I~'
I

~ , .. "

, I

\. .. J

TABLE 3-3. SAMPLE SORT RUN WITH MERGING WITH LEVEr .. 0 PROMPTING (*K,I4,L4) (Cohtinued)

Sample Sort Run Comments

LUN=0017 Sort/l\1erge strategy has minimized sorting. During the
FILNUM = 0000 t first sort, 31°3

0 = (23+ J = 2~ input tournaments must be per-PASSED = 00000300 t
formed. First internal sort uses record bins (RSA).

LUN = 0008
FILNUM = 00025185
PASSED = 00000013

LUN = 0008
FILNUM = 00018899 t t
PASSED = 00000001 t t

SEQUENCES = 0024 First and last sequences are not counted

RECORDS IN = 00000300 Same number of records are output to S:\lCIMG as were
RECORDS OUT = 00000300 read in by SMCSRT

INTERMEDIATE MERGE BEGINS Number of strings to be merged are unit strings rating

(r--..,)
\----...

1STWA Y = 0002
U = 0072

LUN = 0008 First intermediate merge uses arrays of two word lines.
FILNUM = 0939 Word 0 points to re(!ord fixed Nord address; word 1 points
PASSED = 00000013 to file table.

LUN = 0008 Intermediate merging rereads the 1STW A Y sorted strings

FILNUM = 0179 and merges them progressively into longer strings: two

PASSED = 00000013 13-pointer strings into one 26-pointer string (12 repeti-
tions).

LUN = 0008 New values are stored in the previous FILNUM space.
FILNUM = 0939
PASSED = 00000026

LUN = 0008
FILNUM = 5475
PASSED = 00000013

LUN = 0008
FIL~~ U \1 ;;: 4241
PASSED = 00000013

")

'-..-'

LUN = 0008
FILNUM = 0179
PASSED = 00000026

LUN = 0008
FILNUM = 00017371
PASSED = 00000013

LUN = 0008
FILNUM = 00029753
PASSED = 00000013

LUN = 0008

()
FILNUM = 0939
PASSED = 00000026

tThis is a preliminary sorting of all the records.
300 '-

t t13 = 26 + 1/13. La.st record must be read separately.

c 96769260 A 3-11

TABLE 3-3. SAMPLE SORT RUN WITH MERGING WITH LEVEL 0 PROMPTING (*K,I4,L4) (Continued)

LUN = 0008
FILNUM = 00019731
PASSED. = 00000013

LUN = 0008
FILNUM = 00029217
PASSED = 00000013

LUN = 0008
FILNUM = 4241
PASSED = 00000026

LUN = 0008
FILNUM = 7947
PASSED = 00000013

LUN = 0008
FILNUM = 00025673
PASSED = 00000013

LUN = 0008
FILNUM = 5475
PASSED = 00000026

LUN = 0008
FILNUM = 00022467
PASSED = 00000013

LUN = 0008
FILNUM = 00013489
PASSED = 00000013

LUN = 0008
FILNU:\1 = 00029753
PASSED = 00000026

LUN = 0008
FILNUM = 000177:Z3
PASSED = 00000013

LUN = 0008
FILNUM = 00023897
PASSED = 00000013

LUN = 0008
FILNU:vI = 00017 71
PASSED = 00000013

LUN = 0008
FILNUM = 00026371
PASSED = 00000013

LUN = 0008
FILNUM = 00026689
PASSED = 00000013

LUN = 0008
FILNUM = 00029217
PASSED = 00000026

LUN = 0008
FILNUM = 00026219
PASSED = 00000013

3-12

Sample Sort Run Comments

Intermediate merging rereads the 1STW A Y sorted strings
and merges them progressively into longer strings: two
l3-pointer strin~s into one 26-pointer string (12 repeti­
tions).

New values are stored in the previous FILNUM space.

96769260 A

\ "

/,-....

(
'-...,.

\,

,"-"
\

('
\ -

r---.

~- .. -

c
,,--....

........ '

r·

o
o
o
o
(J
o

o
o
o
()

o
()

TABLE 3-3. SAMPLE SORT RUN WITH MERGING WITt! LEVEL 0 PROMPTING (*K,I4,L4) (Continued)

Sample Sort Run

LUN = 0008
FILNUM = 00028521
PASSED = 00000013

LUN = 0008
FILNUM = 00019731
PASSED = 00000026

LUN = 0008
FILNUM = 9763
PASSED = 00000013

LUN = 0008
FILNUM = 7377
PASSED = 00000013

LUN = 0008
FILNUM = 00025673
PASSED = 00000026

LUN = 0008
FILNUM = 00012955
PASSED = 00000013

LUN = 0008
FILNUM = 00010873
PASSED = 00000013

LUN = 0008
FILNUM = 7947
PASSED = 00000026

LUN = 0008
FILNUM = 00018899
PASSED = 00000001

LUN = 0008
FILNUIVI = 00025185
PASSED = 00000013

LUN = 0008
FILNUM = 00013489
PASSED = 00000014 ~

LUN = 0008
FILNUM = 0179
PASSED = 00000026

LUN = 0008
FILNUM = 7817
PASSED = 00000026

LUN = 0008
FILNU:\1 = 00022467
PASSED = 00000052

LUN = 0008
FILNUM = 4241
PASSED = 00000052

LUN = 0008
FILNUM = 00025181
PASSED = 00000026

) t

tShorter strings are treated as if they were standard length.

96769260 A

Comments

Intermediate merging rereads the 1STWA Y sorted strings
and merges them progressively into longer strings: two
13-pointer strings into one 26-pointer string (12 repeti­
tions).

Second intermediate stage merges two 26-pointer strings
into one 52-pointer string (six repetitions).

3-13

TABLE 3-3. SAMPLE SORT RUN WITH MERGING WITH LEVEL 0 PROMPTING (*K,I4,L4) (Continued)

LUN = 0008
FILNUM = 0179
PASSED = 00000052

LUN = 0008
FILNUM = 00029753
PASSED = 00000026

LUN = 0008
FILNUM = 5475
PASSED = 00000026

LUN ~ 0008
FILNU M = 0939
PASSED = 00000052

LUN = 0008
FILNUM = 00029217
PASSED = 00000026

LUN = 0008
FILNUM = 00017371
PASSED = 00000026

LUN = 0008
FILNUM = 4241
PASSED = 00000052

LUN = 0008
FILNUM = 00025673
PASSED = 00000026

LUN = 0008
FILNU.\1 = 00019731
PASSED = 00000026

LUN = 0008
FILNUM = 5475 .
PASSED = 00000052

LUN = 0008
FILNUM = 00013489
PASSED = 00000014

LUN = 0008'
FILNUM = 7947
PASSED = 00000026

LUN = 0008
FILNUM = 00029753
PASSED = 00000040

LUN = 0008
FILNUM = 0179
PASSED = 00000052

LUN = 0008
FILNUM = 00022467
PASSED = 00000052

LUN = 0008
FILN UM = 00017371
PASSED = 00000104

3-14

Sample Sort Run Comments

Second intermediate stage merges two 26-pointer strings
into one 52-pointer string (six repetitions).

Third (and final) intermediate stage merges two 52-pointer
strings into one l04-pointer string.

After this stage, SMCFMG can merge all the remaining
strings in a single pass.

96769260 A

(
' ..

\ , ,.'

\,

(
\....

C~,

, '

c

('
\' ",.

()

r--,
{

\

I
I
\.--.j

(J

(J

TABLE 3-3. SAMPLE SORT RUN WITH ~El{GING WITH LEVEL 0 PROMPTING (*K,I4,L4) (Continued)

LUN = 0008
FILNUM = 4241
PASSED = 00000052

LUN = 0008
FILNUM = 0939
PASSED = 00000052

LUN = 0008
FILNUM = 0179
PASSED = 00000104

LUN = 0008
FILNUM = 00029753
PASSED = 00'000040

LUN = 0008
FILNUM = 5475
PASSED = 00000052

LUN = 0008
FILN U \1 = 0939
PASSED = 00000092

Sample Sort Run Comments

Third (and final) intermediate stage merges two 52-pointer
strings into one 104-pointer string.

After this stage, SMCFMG can merge all the remaining
strings in a single pass.

DELETES = 0000

RECORDS IN = 00000900
RECORDS OUT = 00000900

No records were deleted.

Three intermediate stages; each processed 300 records;
none was lost.

FINAL-MERGE BEGINS

LUN = 0008
FILNUM = 00017371
PASSED = 00000104

96769260 A

Final merging performed by SMCFMG. 104 pointer strings
are merged to the final 300 pointer string, which is used for
the final output.

NOTE

Prior to executing with *SMC, the operator selects his standard devices (*K,Ix,Ly)
and later his output device (OUTFILE) so that the listing and output are made
on the same device. Both input and output therefore occur in one listing.
The following is the sorted output record. The input records are part of the
Sort/Merge program itself. Record length is 80 words (enough to take up program
statements requiring several cards). The parameters are:

1. RUN = D,120,S,1,1 where 120 = wkbksz = n*40 and 40 is the record size.

2.

3.

4.

KEYS = C,D,76,5 which specified a character key, five characters long,
starting in column 76, and running in descending order. This key specifies
the programmer's sequencing of statement (columns 76 through 80).

IN FILE = 0001 = P,A,17.40,8000,0,300 (ASCII input from logical unit
17, record length of 40, no records are to be skipped in this record, and
there are 300 records to be input from this file).

OUTFILE = P,A,6,40 (ASCII output on logical unit 6, with 40 word records;
i.e., the same length records as used in the input records).

Only a truncated portion of the output is shown below. This is followed by
the end of the program.

3-15

TABLE 3-3. SAMPLE SORT RUN WITH MERGING WITH LEVEL 0 PROMPTING (*K,I4,L4) (Continued)

Sample Sort Run

SAM
*AREC +.

CMPSA1 SKIP IF AREC -. 00301
00302

AAQ A AREC +, (A) = AREC - QREC. 00303

*2-WORD-MINUEND - 2-WORD-SUBTRAHEND =
2-WORD-DIFFERENCE. 00597

* ••• ,$270F270F, ••• ,$00010000,$0000270F, ••• ,
$00000000,$FFFE270F, • • • 00598

*= ••• 99999999, ••• ,10000,9999, ••• ,0,-1, •••
RESPECTIVELY. 00599

*THE CALLING SEQUENCE IS (Q) ENTRY =
-1 + FWA OF 2-WORD-MINUEND. 00600

LUN = 0006
FILNUM = 0000

PASSED = 00000300

DELETES = 0000

RECORDS IN = 00000300
RECORDS OUT = 00000300

SMC ENDS

Comments

Following message concerns the output file. It is not a file
manager file.

300 records processed

No records lost

Final merge output same number of records it received as
input; i.e., no records were lost at any stage of the program.

TABLE 3-4. SAMPLE MERGE-ONLY RUN WITH L~VEL ° PRO:vIPTING (*K,I4,L4)

*JOB

J
*K,I4,L4

J
*SMC
SMC BEGINS
EDIT BEGINS

0,
0,

M,S,1,2,
M,S,1,2,

C,A,76,5,
C,A,76,5,

P,A,6,40,40,50,100,
P,A,6,40,40,50,100,

P,A,7,40,160,0,100,
P,A,7,40,160,0,100,

3-16

Sample Sort Run Comments

Job processor requested and placed in control

Select standard input and output listing devices

Call Sort/Merge

° level (no prompting) requested

Run parameters: merge only, sequence checking requested,
one key, two files

Keys parameters: character type key, ascending order,
start in column 76, five key columns used

Input file 1 parameters: P type, ASCII code, file on logical
unit 6 device, 40 word records, 40 word BLKSIZE, skip
first 50 records, do 100 records

Input file 2 parameters: P type, ASCII code, logical unit 7,
40 word records, 160 word blocks, SKIPCNT = 0, DOCNT =
160

96769260 A

(.-~

\ ...

r

r'
I
\

c

\ _ ...

f'
\,

........ , . ./

r
'--...

r----
(

'-...... .. '

(-.
\.~

. ...--....

o

o
o
o
o

o
(J

[
.,,--...,

()
~I

CJ
C)
o
()

o
()

o
o
o

TABLE 3-4. SAMPLE MERGE-ONLY RUN WITH LEVEL 0 PROMPTING (*K,I4,L4) (Continued)

P,A,9,40,
P,A,9,40,

Sample Sort Run

MERGE-ONLY BEGINS

READY FILE = 0001
TYPE GO/QT/BY

GO
GO

READY FILE = 0002
TYPE GO/QT/BY

GO
GO

LUN = 0007
FILNUM = 0000

PASSED = 00000100

LUN = 0006
FILNUM = 0000

PASSED = 00000150

DONE = 00000100

LUN = 0009
FILNUM = 0000

PASSED = 00000200
DELETES = 0000

RECORDS IN = 00000200
RECORDS OUT = 00000200

SMC ENDS

J
*Z

Comments

Output file parameters: P type, ASCII code, to logical
unit 9, 40 word blocks

Operator must choose to ready or delete file 1.

File selected for use

Operator must ready or delete file 2.

File selected for use

Following messages concern input file from logical unit 7;
not a file management file.

100 records were deblocked and processed.

Following messages concern input file from logical unit 6.

150 records were deblocked and used or skipped.

100 of the records were deblocked and used.

Following messages concern output file on logical unit 9.

200 records were used, none were deleted.

Input and output record count

Return to job processor and release control.

TABLE 3-5. SAMPLE COpy RUN WITH LEVEL 1 PROMP'rING (*K,I4,L6)

*JOB

J
*K,I4,L6

J
*SMC

SMC BEGINS
EDIT BEGINS
I,

96769260 A

Sample Sort Run Comments

Job processor requested and placed in control

Standard input from device on logical unit 4; listing on
device on logical unit 6.

Calls Sort/Merge

Levell (some prompting) requested.

3-17

TABLE 3-5. SAMPLE COpy RUN WITH LEVEL 1 PROMPTING (*K,I4,L6) (Continued)'

RUN=
e,l,

INFILE 0001=
P ,A,18,40,40,0,600,

OUTFILE=
P,A,19,4000,

COpy BEGINS

READY FILE = 0001
TYPE GO/QT/BY

GO

LUN = 0018
FILNUM = 0000

PASSED = 00000600

LUN = 0019
FILNUM = 0000

Sample Sort Run

PASSED = 00000600

RECORDS IN = 00000600
RECORDS OUT = 00000600

SMC ENDS

3-18

Comments

Run parameters: copy run, one file.

Input file parameters: P type, ASCII code, logical unit 18,
RECLTH = 40 words, BLKSIZ = 40 words, no SKIPCNT,
DOCNT = 600

Output file parameters: P type, ASCII code, output on
logical unit 19, 4000 word blocks

Operator must choose to use or delete file.

File selected for use.

Following messages concern this file which is not a file
manager file.

600 records were deblocl(ed and processed.

Following messages concern this file.

600 records deblocked and processed.

Input and output record count

96769260 A

\.

c,~

c

c

c

c

c

LI

o

o
o
o
o
o
o
(J
~, I I

I

L
o

o

o
o

o
o

INPUT, MESSAGES, AND OUTPUT 4

hi 51

This section describes the operator-entered parameters; the
interactive messages prompting the operator to enter
parameters, file data, or corrections; and the Sort/Merge
output. Depending upon the chosen level of prompting,
parameter request messages are nonexistent (no prompting),
brief (only an indication that this type of parameter must be
entered now), or complete (the format of the parameter is
displayed to the operator who then fills in the values).

INPUT

Two types of input are required: the control statements
(RUN, KEYS, INFILE, OUTFILE, and prompting level) and
the input files. The control statements (and the range of
values allowed for each control parameter) are described in
section 3. '

The input files must be composed of uniform records
collected into one or more files or records formatted for the
file manager if entered from a file manager controlled
medium or output from the file manager. The IN FILE
command specifies both the data source and the record
parameters. The INFILE statement's skip count and do
count parameters allow the operator to use anyone block of

• *' Ad

records within a file so. long as records in the block are
logically sequential (i.e., leading records may be skipped
and/or trailing records may be ignored).

No file can be started without the operator's express
command. However, at the time the first file is to be
started, the operator may specify that this and all succeed­
ing files are to be processed without his further approval.
This option, once chosen, is irrevocable for the rest of the
run.

If the file is on a medium (e.g., magnetic tape) that requires
the data medium to be mounted and readied, the operator
must do this before he indicates to Sort/Merge that the file
is ready to be processed.

MESSAGES

This section lists each of the program messages, in the order
in which it would normally appear. Naturally, if the run is
error free and the parameters are supplied correctly upon
initial entry, none of the diagnostic messages are displayed.
Table 4-1 summarizes the messages in the usual order of
appearance.

TABLE 4-1. MESSAGES USED IN SORT/MERGE

Message Meaning Phase

SMC BEGINS Program is beginning. SMCMON

TYPE-IN ERROR Error in trying to interpret operator's command SMCMON, SMCEDT,
SMCSRT, SMCIMG,
and SMCFMG

ABNORMAL ERROR = <n> Miscellaneous errors S:vrCMON, SMCEDT,
SMCSRT, SMCIMG,
and SMCFMG

TOO LITTLE CORE Requested inputs cannot be processed in available core. SMCMON, SMCEDT

SMC ENDS Program has been completed. SMCMON

EDIT BEGINS Edit is ready for operator inputs using prompting SMCEDT
messages.

RUN = <parameters> Operator should supply the run parameters. SMCEDT

KEYS = <parameters> Operators should supply the file keys. SMCEDT

INFILE <n> = <parameters> Operator should supply the input file parameters. SMCEDT

OUTFILE <n> = <parameters> Operator should supply the output file parameters. SMCEDT

EXPECTED <parameter> Editor did not find the type of parameter that should SMCEDT
FOUND<character> have been entered. Operator may be able to correct

error.

96769260 A 4-1

Message

G = <n>

IWAY = <n>

FWAY=<n>

COpy BEGINS

INTERNAL SORT BEGINS

READY FILE = <n>

FREAD STATUS =
<parameters>

BLKSIZ/RECLTHf:
<parameters>

OVERSIZE BLOCK
<parameters>

FWRITE STATUS =
<parameters>

RTVSEQ REQIND =
<parameters>

STOSEQ REQIND =
<parameters>

LUN = <k>
FILNUM = <f>

PASSED = <n>

SEQUENCES = <n>

RECORDS IN = <m>
RECORDS OUT = <n>

DONE = <n>

DEFFIL REQIND =
<parameters>

4-2

TABLE 4-1. MESSAGES USED IN SORT/MERGE (Continued)

Meaning

Sort-only run. Input has been checked and accepted;
n-l indicates largest number of records that can be
sorted in core (if more than n records, Sort/Merge
and mass storage are required).

Sort-only run. Maximum number of wkbksz input
string buffers that can be used during intermediate
merging.

Sort-only run. Maximum number of wkbksz string
input buffers that can be used during final merging.

SMCSRT is loaded and is starting a copy run.

SMCSRT is loaded and is starting a sort-only run.

User should ready the file, or direct Sort/Merge to
delete or bypass the file.

Operator may direct the program to reread the
file, to delete it, or to continue without operator
interaction for format read errors.

Operator may direct the program to reread the
file, to delete it, or to continue without operator
interaction for the record size type of error.

Operator may direct the program to reread the file,
to delete it, or to continue without operator inter-
action for this block size type error.

Operator may direct program to rewrite the file, to
abort the run, or to continue without operator inter-
action for format write errors.

Operator may direct the program to again retrieve
the file, to delete it, or to continue without operator
interaction for this type of retrieval error.

Operator may direct the program to again store the
file, to abort the run, or to continue without operator
interaction for this type of store error.

Following messages concern file f from logical unit k

Specified file composed of n records was either down
or skipped.

All completed logical records have been grouped in n
sequences following a completed internal sort proce-
dure.

RECORDS IN specifies the number of records sent
from unblocl<ing to processing; RECORDS OUT speci-
fies the number of records for the converse. Unless a
record is deleted or lost (hardware error), m = n.

Number of records deblocked and processed

Bad user-defined output file status; run aborted

Phase

SMCEDT

SMCEDT

SMCEDT

SMCSRT

SMCSRT

SMCSRT

SMCSRT, SMCFMG

SMCSRT, SMCIMG,
SMCFMG

SMCSRT, SMCFMG

SMCSRT, SMCFiVIG

SMCSRT, SMCIMG,
SMCFMG

SMCSRT, SMCIMG.
SMCFMG

SMCSRT, SMCIMG,
SMCFMG

SMCSRT, SMCIMG,
SMCFMG

SMCSRT

SMCSRT, SMCIMG,
SMCFMG

SMCSRT, SMCFMG

SMCSRT, SMCIlVIG
SMCFMG

96769260 A

('
\

r-'
I
' , ..

C~

o
o

o
o
C)

::J

o

o
o

Message

SEGMENT LIST ERROR

SEQ DIR ERROR

TOO LITTLE DISK

INTERMEDIATE MERGE
BEGINS

lSTWAY = <n>

U = <n>

SEQUENCE ERROR

RELFIL REQIND =
<parameters>

DELETES = <n>

FINAL-MERGE BEGINS

MERGE-ONLY BEGINS

<n> = 12

INTERPHASE RECORD
COUNTS DISAGREE

MONITOR (PHASE 2)

SMC BEGINS

Phase SMCMON

Type Informative

TABLE 4-1. MESSAGES USED IN SORT/MERGE (Continued)

Meaning Phase

Sort-only run. Work file accountability lost; run SMCSRT, SMCIMG
aborted. SMCFMG

Sort-only run. Sequence directory read/write error; SMCSRT, SMCIMG
run aborted SMCFMG

Sort-only run. Inadequate disk space; run aborted SMCSRT, SMCIMG

Sort-only run. SMCIMG is ready to start its merging SMCIMG
process.

Sort-only run. S\1CIMG has optimized merge strategy; SMCIMG
n is the number of strings used for first merge.

Sort-only run. SMCIMG has optimized merge strategy; SMCIMG
n is the unit strings rating.

Latest record should have preceded previous record in SMCIMG, SMCFMG
key merging. Operator may direct program to delete
the record or to continue with or without operator
interaction for this type of error.

The release file operation failed. Operator may direct SMCIMG, SMCFMG
program to retry the release, or to continue with or
without operation interaction for this type of error.

The phase is ended and n records have been deleted. SMCIMG, SMCFMG

Sort-only run. S'1CFMG is ready to start the final SMCFMG
merging process.

Merge-only run. SMCFMG is ready to start the final SMCFMG
merging process.

Erroneous SMCFMG fixed table size; run aborted SMCFMG

Number of output records does not equal the nU:TIber of SMCFMG
input sort records.

Type Fatal or action

Meaning An attempt to FREAD a user reply incurred an
error status; e.g., the reply was not typed soon
enough.

Meaning The first phase (SMC) is in core and initialized.

Action If SMCEDT is running with prompting level 0,
then the error is fatal. Otherwise, the user
resupplies the reply.

Phase SMC has loaded phase SMCMON, which
is now initializing itself for use by SMCEDT,
SMCSRT, SMCIMG, and SMCFMG. Phase
SMCEDT is loaded and executed immediately
following SMCMON.

TYPE-IN ERROR

Phase SMCMON, SMCEDT, SMCSRT, SMCIMG,
SMCFMG

96769260 A

ABNORMAL ERROR = <n>

Phase SMCMON, SMCEDT, SMCSRT, SMCIMG,
SMCFMG

Type Fatal or informative

Meaning Every error should be abnormal, but this
message is used to announce several errors

4-3

4-4

that are abnormal; i.e., the error reflects
undetected hardware errors, incorrect installa­
tion of Sort/Merge, or a logic error in
Sort/Merge.

The following is a list of values of n and the
significance of each value:

n=1

Phase SMCMON, SMCIMG, SMCFMG

Type Informative

Meaning Unexpected RELFIL status re­
turn

n=2

Phase SMCSRT, SMCIMG, SMCFMG

Type Informative

Meaning Unexpected RTVSEQ status re­
turn

n=3

Phase SMCSRT, SMCIMG, SMCFMG

Type Informative

Meaning Unexpected STOSEQ status re­
turn

n=4

Phase SMCMON, SMCSRT, SMCIMG,
SMCFMG

Type Fatal

l\:1eaning Illegal work-file logical unit is in
use

n=5

Phase SMCSRT, SMCIMG, SMCFMG

Type Fatal

Meaning Unexpected call to or status
from DEFFIL

n=6

Phase SMCSRT, SMCIMG, SMCFMG

Type Fatal

Meaning BINDEC was called with an argu­
ment greater than 9999

n=7

Phase SMCEDT

Type Fatal

Meaning Fixed tables contain incorrect
SMCEDT size

n=8

Phase SMCSRT

Type Fatal

Meaning Fixed tables contain incorrect
SMCSRT size

n=9

Phase SMCIMG

Type Fatal

Meaning SMCIMG call was unjustified
because fway strings or less than
fway strings are to be merged
yet

n = 10'

Phase SMCIMG

Type Fatal

Meaning Fixed tables contain incorrect
SMCIMG size

n = 11

Phase SMCFMG

Type Fatal

Meaning SMCFMG call was unjustified
because greater than fway
strings are to be merged yet

TOO LITTLE CORE

Phase SMCMON, SMCEDT

Type Fatal or informative

Meaning There is not enough core to continue the run,
so the run must terminate. If this message
appears after the message EDIT BEGINS, the
user may be able to complete the run with
changed parameters; e.g., lower buffer sizes or
fewer files. If this message appears before the
message EDIT BEGINS, there is too little core
available to run any option of Sort/Merge.

SMC ENDS

Phase SMCMON

Type Informative

Meaning The current Sort/Merge run has terminated
normally.

96769260 A

c
('
\ '

(~
I,

c

c

o

o
o
o
o
o
o
C)
f~1

o

C)

o
(J

o
o
o

EDITING INPUT RECORDS (PHASE 3)

EDIT BEGINS

Phase SMCEDT

Type Action

Meaning SMCEDT is initialized and is attempting to
read the prompting level statement.

Action Supply the prompting level statement: no
prompting = 0, limited prompting = 1, full
prompting = 2.

The following four messages: RUN, KEYS, INFILE, and
OUTFILE define the run parameters. The parameter values
and their calculation are described in detail in section 3.

RUN = <- prompting level 1 version
D, <WKBKSZ>, <SIN>, <KEYCNT>, <FILCNT>,

<CR>
M, <SIN>, <KEYCNT>, <FILCNT, <CR>
C, <FILCNT>, <CR>
AWAITING REPLY

Phase SMCEDT

Type Action

prompting
level 2
version

Meaning SMCEDT is attempting to FREAD the RUN
statement.

Action Supply the RUN statement. Operator replies
using one of the three one-line options: D for
sort (sort or sort and merge), M for merge­
only, C for copy.

KEYS = <- prompting level 1 version
•• • <L/S/F>, <AID>, <KEYCOL>, •••
• • • <C>, <AID>, <KEYCOL>, <KEYCOLS>, .••
AWAITING REPLY

Phase SMCEDT

Type Action

prompting
level 2
version

Meaning SMCEDT is attempting to FREAD the keys
statement.

Action Supply the KEYS statement: L is used for
logical binary, S is used for signed binary, and
F is used for floating point key. C is used for
a character key.

INFILE <n> = <- prompting level 1 version
D, <FILNUM>, <RECLTH>, <BLKSIZ>,

<SKIPCNT>, <DOCNT>, <CR>
T, <LUN>, <RECLTH>, <BLKSIZ>, <SKIPCNT>,

<DOCNT>, <CR>
P, <AlB>, <LUN>, <RECLTH>, <BLKSIZ>,

<SKIPCNT>, <DOCNT>, <CR>
AWAITING' REPL Y

Phase SMCEDT

Type Action

prompting
level 2
version

Meaning SMCEDT is attempting to 'FREAD the IN FILE
statement for the nth input file.

Action Supply the IN FILE statement: D is used for
disk input, T is used for magnetic tape binary
(read or pseudo), P is used for paper tape
(ASCII type i,nput).

OUTFILE = <- prompting level 1 version
D, <FILNUM>, <LUN>, <BLKSIZ>, <CR>
T,<LUN>,<BLK~Z>,<CR>

prompting
. level 2
version P, <AlB>, <LUN>, <BLKSIZ>, <CR>

AWAITING REPLY

Phase SMCEDT

Type Action .

Meaning SMCEDT is attempting to FREAD the OUT­
FILE statement.

Action Supply the OUTFILE statement: D is used for
disk, T is used for magnetic tape (read or
pseudo binary input) and P is used for ASCII
(paper tape) input.

EXPECTED <parameter name>
FOUND <first character of erroneous reply>

Phase SMCEDT

Type Fatal or action

Meaning This is a class of messages used to pinpoint
source language errors.

SMCEDT names the expected parameter, and
displays the first character of the character
string having the location of the expected
parameter but violating the rules for that
parameter •

This is a fatal error when the prompting level
is zero. Otherwise, SMCEDT is attempting to
FREAD a new value of the expected param­
eter, followed by the rest of the statement
concerned.

Following is a list of expectations (parameter
names) as used in the above class of messages.
The statement types concerned are listed next
to each parameter name.

The user should determine which statement
type is concerned, and should compare his
version of that statement with the require­
ments of that statement, especially concen­
trating on the expected parameter.

Expecta tion

AlB

AID

D/M/C

Statements

All

INFILE,OUTFILE

KEYS

RUN

96769260 A 4-5

EXl2ectation Statements

D/T/P INFILE, OUTFILE

L/S/F/C KEYS

SIN RUN

blksiz INFILE,OUTFILE

docnt IN FILE

filcnt RUN

filnum INFILE, OUTFILE

keycnt RUN

keycol KEYS

keycols KEYS

lun IN FILE, OUTFILE

Prompting level

reclth INFILE

skipcnt INFILE

wkbksz RUN

Action Supply the unaccepted part of the statement
concerned, including the expected parameter.

G = <n>

Phase SMCEDT

Type Informative

Meaning For a sort-only run, SMCEDT has format read
(FREAD) and digested all source statements,
has done memory calculations, and has indi­
cated that the tournament can hold n logical
records. Therefore, n or more logical records
require use of disk work space and merging,
while fewer than n logical records may be
sorted entirely in memory.

IWAY = <n>

Phase SMCEDT

Type Informative

Meaning For a sort-only run, SMCEDT has format read
(FREAD) and digested all source statements,
has done memory calculations, and has indi­
cated that SMCIMG can afford n+l buffers of
size WKBKSZ. Therefore, SMCIMG has a
maximum way-of-merge of n, using n buffers
for input and one for output.

FWAY = <n>

Phase SMCEDT

Type Informative

4-6

Meaning For a sort-only run, SMCEDT has format read
(FREAD) and digested all source statements,
has done memory calculations, and has indi­
cated that SMCFMG can afford n input buffers
of WKBKSZ size. Therefore, SMCIMG has a
maximum way-of-merge of n.

IN ITIAl SORTING (PHASE 4)

COpy BEGINS

Phase SMCSRT

Type Informative

Meaning SMCSRT is now initializing itself to perform a
copy run.

INTERNAL SORT BEGINS

Phase SMCSRT

Type Informative

Meaning SMCSRT is loaded and is now initializing itself
to perform the internal sort of a sort run.

READY FILE = <n>
TYPE GO/QT/BY

Phase SMCSRT

Type Action

Meaning The user is asked to ready the input file
specified by the nth IN FILE statement. The
user has the options of supplying or deleting
that file.

Action Type GO (go ahead and process the file).

Type QT (quit considering; i.e., delete, this
file).

Type BY (bypass the operator for this situation
from now on, and assume GO).

FREAD STATUS = <hhhh>
LUN = <k>
FILNUM = <f>
<hexadecimal dump of buffer>
TYPE GO/QT/BY

Phase SMCSRT. SMCFMG

Type Action

Meaning For the designated user input file, the last
FREAD returned bad hardware status = hhhh.

The buffer used for that FREAD is dumped in
hexadecimal.

The user has the option of continuing with or
deleting the file.

lf the current file is continued. the current
block is deleted and the FREAD is repeated.

96769260 A

..........

('
\
'- '

('
\' "

C~

r"
I,

...... , .. '

r
'--

r
\----,

"

' "

C)

~.

'.) '-

i

l../
o

"'''---J''
\.

c
o

Action Type GO (go on using this file, but delete the
current block and repeat the FREAD).

Type QT (quit using; i.e., delete, this file).

Type BY (bypass the operator for this situation
from now on, and assume GO).

BLKSIZ/RECLTH i= 1,2,3 •••
LUN = <k>
FILNUM = <f>
<hexadecimal dump of buffer>
TYPE GO/QT/BY

Phase SMCSRT, SMCIMG, SMCFMG

Type Action

Meaning For the designated file, the size of the last
format read (FREAD) block is not a nonzero
multiple of the specified <RECLTH>.

The buffer used for that FREAD is dumped in
hexadecimal.

The user has the options of continuing with or
deleting the file. If the current file is
continued, the current block is deleted and the
FREAD is repeated.

Action Type GO (go on using t~is file, but delete the
current block and repeat the (FREAD).

Type QT (quit using; i.e., delete, this file).

Type BY (bypass the operator for this situation
froin now on, and assume GO).

OVERSIZE BLOCK
LUN = <k>
FILNUM = <f>
<hexadecimal dump of buffer>
TYPE GO/QT/BY

Phase SMCSRT, SMCFMG

Type Action

Meaning For the designated file, the size of the last
format read (FREAD) block exceeds the blksiz
specified for that file.

The buffer used for that read is dumped in
hexadecimal.

The user has the options of continuing with or
deleting the file.

If the current file is continued, the current
block is deleted and the FREAD is repeated.

Action Type GO (go on using this file, but delete the
current block and repeat the FREAD).

Type QT (quit using; i.e., delete, this file).

Type BY (bypass the operator for this situation
from now on, and assume GO).

FWRITE STATUS = <hhhh>
LUN = <k>
FILNUM = <f>
<hexadecimal dump of buffer>
TYPE GO/QT/BY

96769260 A

Phase SMCSRT, SMCFMG

Type Action

Meaning For the designated user input file, the last
FWRITE returned bad status = hhhh.

The buffer Used for that FWRITE is dumped in
hexadecimal.

The user has the options of retrying the
FWRITE or terminating the run.

Action Type GO (go on with the run; retry the
STOSEQ).

Type QT (quit the run).

Type BY (bypass the operator for this situation
from now on, and assume GO).

RTVSEQ RE.QIND = <hhhh>
LUN = <k>
FILNUM = <f>
<hexadecimal dump of buffer>
TYPE GO/QT/BY

Phase SMCSRT, SMCIMG, SMCFMG

Type Action

Meaning For the designated file, the last RTVSEQ
incurred bad status = hhhh.

The buffer used for that RTVSEQ is dumped in
hexadecimal.

The user has the option of continuing with or
deleting the file. If the current file is
continued, the current block is deleted and the
RTVSEQ is repeated.

Action Type GO (go on using this file, but delete the
current block and repeat the RTVSEQ).

Type QT (quit using; i.e., delete, this file).

Type BY (bypass the operator for this situation
from now on, and assume GO).

STOSEQ REQIND = <hhhh>
LUN = <k>
FILNUM = <f>
<hexadecimal dump of buffer>
TYPE GO/QT/BY

Phase SMCSRT, SMCIMG, SMCFMG

Type Action

Meaning For the designated file, the last STOSEQ
incurred bad status = hhhh.

The buffer used for that STOSEQ is dumped in
hexadecimal.

The user has the option of retrying the
STOSEQ or terminating the run.

Action Type GO (go on with the run; retry the
STOSEQ).

Type QT (quit the run).

Type BY (bypass the operator for this situation
from now on, and assume GO)I

4-7

LUN = <k>
FILNUM = <f>

Phase SMCSRT, SMCIMG, SMCFMG

Type Informative

Meaning The file on logical unit k with filnum f is the
subject of the succeeding message(s).

If f does not equal 0, the file is a file manager
file; otherwise it is not.

PASSED = <n>

Phase SMCSRT, SMCIMG, SMCFMG

Type Informative

Meaning This message can appear for both output files
and input files.

For the file designated, n is the number of
logical records blocked or deblocked. This
includes not only the number of logical records
docnt that were deblocked and then processed
(done), but also the number of logical records
skipcnt that were deblocked and then dis­
carded (skipped).

If an input block is discarded due to an I/O
error, its logical records are never deblocked
and thus do not relate to this message.

When there are no I/O errors, and the input
file is long enough, then n = skipcnt + docnt.

If the input file is short enough, then n can be
less than skipcnt and less than docnt.

SEQUENCES = <n>

Phase SMCSRT

Type Informative

Meaning For a sort run, SMCSRT has performed the
internal sort and the logical records done are
grouped into n sequences.

The average string length may be computed
from n and the logical record count for the
phase. This average is 2*G for a random file,
and lower or higher, respectively, as the
inherent order of user input decreases or
increases.

For a given file, the multiplier of G (e.g., 2
above) tends to be a constant 'associated with
the degree of inherent order and independent
of G, logical record count, or sequence count.

This constant is referred to as ORDER in the
timing equations in appendix G. For example,
ORDER equals 1, 2, infinity for reverse,
random, and perfect input order, respectively.

RECORDS IN = <m>
RECORDS OUT = <n>

Phase SMCSRT, SMCIMG, SMCFMG

Type Informative

4-8

Meaning For the phase concerned; m is the number of
logical records sent to the processing logic
from the deblocking logic, while n is the
number of logical records sent to the blocking
logic by the processing logic.

DONE = <n>

Aside from hardware failure, m is equal to n
except when the user elects to delete logical
records due to sequence errors (a special count
is published for such deletions). "

Phase SMCSRT, SMCFMG

Type Informative

Meaning This message appears only for input files with
a skipcnt not equal to O.

For the designated file, n is the number of
logical records docnt that were done
(deblocked and then processed), rather than
the number skipcnt skipped (deblocked but
then discarded), and rather than lost due to
discarding blocks that experienced I/O errors.

DEFFIL REQIND = <hhhh>
LUN = <k>
FILNUM = <f>

Phase SMCSRT, SMCIMG, SMCFMG

Type Fatal

Meaning For the designated user-specified output file,
DEFFIL returned bad status = hhhh.

The run terminates for lack of a final output
file.

The DEFFIL was tried because the file was not
defined before the Sort/Merge run.

SEGMENT-LIST ERROR

Phase SMCSRT, SMCIMG, ~MCFMG

Type Fatal

Meaning A sort run terminates due to an error on the
segment list, which is used to keep track of
workfile extensions.

SEQ. DIR. ERROR

Phase SMCSRT, SMCIMG, SMCFMG

Type Fatal

Meaning A sort run terminates because an error oc­
curred while reading or writing the sequence
directory.

If no mass storage error message appeared just
before this message, then this was an unde­
tected disk hardware error (part of
Sort/Merge's error detection is context­
dependent).

96769260 A

(
'-...",

r
\ ,

~

\,

(
\

c
I
(

r
.....~ ...

c
c
,

.... _._ ...

~,
(

I

"'-/

o

C)

,~

L.·:

TOO LITTLE DISK

Phase SMCSRT, SMCIMG

Type Fatal

Meaning A sort run must terminate because a needed
work file cannot be defined -due to inadequate
available disk space.

Perhaps the run could be retried and succeed
after some file manager files were released.

Otherwise, if the amount of data to be sorted
is still excessive, the run has to be segmented
into several smaller sort and merge-only runs.

INTERMEDIATE MERGING (PHASE 5)

INTERMEDIATE MERGE BEGINS

Phase SMCIMG

Type Informative

Meaning SMCIMG is loaded and is now initializing itself
to perform the inte.rmediate merging of a sort
run.

lSTWAY = <n>

Phase SMCIMG

Type Informative

Meaning SMCIMG is initializing itself to perform the
intermediate merging of a sort run.

U = <n>

SMCIMG has determined the optimum merge
strategy for IWAY, FWAY"and the number of
strings produced by the internal sort.

The first way-of-merge to be used by SMCIMG
equals n. Any subsequent way-of-merge equals
IWAY for SMCIMG, and equals FWAY for
SMCFMG.

Phase SMCIMG

Type Informative

Meaning SMCIMG is initializing itself to perform the
intermediate merging of a sort run. SMCIMG
has determined that n is the unit strings rating
of the optimum merge strategy for IWA Y,
FWAY, and the number of strings produced by
the internal sort.

SEQUENCE ERROR
<hexadecimal dump of new logical record to be output>
PRECEDES
<hexadecimal dump of last logical record output>
TYPE GO/QT/BY

Phase SMCIMG, SMCFMG

Type Action

Meaning Sequence checking of merge output was
selected by the user and has just detected a
sequence error; the new logical record to be
output precedes, with respect to key values,
the last logical record output.

The user has the options of retaining or
deleting the·new logical record. However, the
last logical record output may actually be the
defective logical record, or both logical
records might be defective.

Both logical records are dumped in hexa­
decimal format for user inspection.

Deleting the new logical record deletes one
sequence error for each future input of the
current output. However, the wrong logical
record may have been deleted.

A merge-only run could be used to update the
final output with replacements for deletions,

. whether those deletions were of good or bad
logical records.

The logical record deletion count is output for
each merge phase (SMCIMG and SMCFMG).

Action Type GO (go on using; i.e., retain, the new
logical record).

Type QT (quit using, i.e., delete, the new
logical record).

Type BY (bypass the operator for this situation
from now on, and assume GO).

RELFIL REQIND = <hhhh>
LUN = <k>
FILNUM = <f>
TYPE GO/QT/BY

Phase SMCIMG, SMCFMG

Type Action

Meaning For the designated file, the RELFIL incurred
bad status = hhhh.

The user has the options of retrying or skipping
that RELFIL.

Action Type GO (go on without this particular
RELFIL).

Type QT (retry this particular RELFIL).

Type BY (bypass the operator for this situation
from now on, and assume GO).

DELETES = <n>

Phase SMCIMG, SMCFMG

Type Informative

Meaning The current phase is ending, and n is the
number of logical records the user elected to
delete because of sequence errors.

96769260 A 4-9

FINAL MERGING (PHASE 6)

FINAL-MERGE BEGINS

Phase SMCFMG

Type Informative

Meaning SMCFMG is now initializing itself to perform
the final merging of a sort run.

MERGE-ONLY BEGINS

Phase SMCFMG

Type Informative

Meaning SMCFMG is loaded and is now initializing
itself to perform a merge-only run.

<n> = 12

Phase SMCFMG

Type Fatal

Meaning Fixed tables contain incorrect SMCFMG size.

INTERPHASE RECORD COUNTS DISAGREE

Phase SMCFMG

Type Informative

Meaning The number of logical records output by the
final merge disagrees with the number input to
the internal sort.

4-10

Perhaps messages have already appeared indi­
cating that blocks were discarded due to I/O
errors, or that logical records were discarded
due to sequence errors.

OUTPUT

By means of messages such as that cited
above, the user should be able to explain
record count messages for each phase, and the
interphase disagreement in particular.

Otherwise, it should be assumed that unde­
tected hardware errors are causing the prob­
lem.

The output is always a single file, even for a copy run.
Restrictions on file mode for files to be used by the file
manager were mentioned in section 2. More specific
restrictions for those files are given in appendix J.

The OUTFILE statement specifies the medium (and, where
applicable, the logical unit). Whether the operator lists the
output together with the RUN statements depends on
whether or not he specifies the comment and output devices
to be the same unit.

If the operator chooses an output to mass storage or to
magnetic tape, he can always retrieve the file for viewing
later since he specified the output file identification filnum
and can use that to dump the file on a readable medium.

The content of each record on the output file should be
identical to that of the comparable records on the input file
with two exceptions:

• If the operator skipped or deleted records, these will
not appear in the output file.

• If the system notified the operator of an input/output
error, but the operator chose to include the record(s)
anyway, there may be copying errors in the records.
These errors can be removed manually by the operator
at some later time, although this is a time-consuming
task. If computing· errors are suspected, it is more
efficient to rerun the entire Sort/Merge procedure.

96769260 A

'

.... ,.

\',-,/

(~
..........

()

()

o
o
o
()

()

.~
,)
\~

o
o
()

o
o
o

GLOSSARY

<>

ee.f.,,_

Brackets enclose user-specified param­
eters; e.g., <item>

Number rounded down to nearest inte­
ger; e.g., 5.3 = 5

Number rounded up to the next integer;
e.g., 5.3 = 6

lSTWA Y SMCIMG's method of merging the first
group of strings

A 1. CPU register A
2. Ascending order (key sorting)
3. ASCII mode

A/B ASCII/binary parameter of a file state­
ment

A/D Ascending/descending parameter in
KEYS statement

« ... (address) ••• » Contents of contents of ••• contents of
the address

(address)

(address) entry

(address) exit

(address) m

(address) m-n

(address+O, +1)

ASCII

*

**

*JOB

*K,Ia,Pb,Lc

Bin

96769260 A

Contents of the address. The address
may be omitted when the context
clearly indicates which address is refer­
enced (usually when sixteen feet of
contents are specified).

(address) is in entry point to the logic
being discussed.

(address) when exiting from the logic
being discussed

Bit m of (address)

Bits m through n of (address)

(address), (address+1)

American Standard Code for Informa­
tion Interchange; i.e., a standard corre­
spondence between graphic symbols and
bit patterns

Prefix of batch control statements in
MSOS

Exponential

Control statement that initiates a job

Control statement that selects logical
units to be used for standard input (I),
standard binary output (P), and standard
listing (L)

A storage area used for the tournament
comparisons. Initially holds records,
later holds record pointers

blksiz

BY

CDT

CFO

Copy run

CPC

cr

CTO

D

Deblock

Dispatcher

docnt

$

E

EOF

F

filcnt

File

File record

File table

A

_.'ei'ffllewn.".E •. ~; 'Ai

Parameter for IN FILE and OUTFILE
commands

Operator reply to certain ready file or
error messages; causes a GO condition
for this and similar future errors (by­
pass operator interaction)

Conversational display terminal (CRT
and keyboard)

Comments from operator logical unit of
MSOS

Logical records from one or more user
input files are copied onto a single
output file.

Computer program component

Carriage return

Comments to operator logical unit of
MSOS

1- RUN statement: disk sorting
selection

2. KEYS statement: use descending
order

3. INFILE or OUTFILE statement:
use disk medium

Use the input record; rewrite it in new
files.

The MSOS routine that selects and
activates the next program to run

IN FILE command parameter - number
of records to process during the run

Hexadecimal; e.g., $lA = 26

Value of DOCNT: Do every record until
end-of-file.

End-of-file

KEYS command parameter: key is in
floating point format

RUN command parameter: number of
files to be processed

Data storage, composed of one or more
records

A record in a file managed by
Sort/Merge or the file manager.
Records are stored in file record blocks.

A table accounting for files

A-1

File table labels

filnum

FIS

FIS block

FRB

FREAD

FSLIST

FWA

fway

FWRITE

G

GO

GTFILE

INFILE

INIT

iway

Job processor

Key

Key table

keycnt

A-2

Labels in the file table

The unique identifier for a file manager
file. Used in the INFILE and OUTFILE
commands

File information segment - a file mana­
ger table that contains file indexing,
identification, type addressing, and key­
ing information for each file defined by
a filnum

The set of FIS clocks that contain all
the non-key indexing information for
the file management system

File record block - an area of mass
storage controlled by the file manager
that contains records managed by the
file management system. The set of all
FRBs contains all the records controlled
by the file management system.

Formatted read statement of MSOS

The fixed tables of Sort/Merge

First word address

Maximum number of strings being com­
bined by the current merging operation

Formatted write statement of MSOS

Number of real bins used by tournament
(group size)

A legal operator reply to an action
message: the program will process the
record

An MSOS request to read into core a
file on the program library

A CPU register used for indexing

Input command containing input file
parameters

Several separate routines that respec­
tively initiate SMCMON, SMCSRT,
SMCIMG, and SMCFMG

Maximum number of strings being
merged

The background monitor for MSOS

Label or index in the record by which
records can be sorted

File manager table containing key in­
formation

RUN command parameter: number of
keys to be used for sorting by this run

keycol
keycols

KEYS

L

LIBEDT

L/S/F

lun

LWA

M

Merge-only

Merge order

Messages

MONI

MSOS

OUTFILE

P

Passed

P+n exit

Phase

Prefix

KEYS command parameters: keycol
specifies the column in which the first
character of the key is found; keycols
specifies the number of columns used
for the key if it is a character type key

Input command that jdefines the key or
keys to be used during sorting/merging
runs

KEYS command parameter: logical
binary type key

Library editor program

KEYS command parameter in prompting
statement. Specifies by type: L. =
logical binary, S = signed binary, F =
floating point

Logical unit

Last word address

RUN command parameter: merge-only
run

Sort/Merge run where sorting is done
prior to start of run and sorted files are
merged

Number of buffers used during current
merging phase (intermediate or final)

Statements sent to operator: may be
requests for action or records by pro­
gram performance

Monitor call

Mass Storage Operating System

Input command containing output file
parameters

1. Program index register of CPU
2. INFILE or OUTFILE command

parameter: use device with paper
type tape input; i.e., ASCII or
binary

3. Prompting level parameter: 0 =
none, 1 = some, 2 = full

Record has been processed

Exit to the nth word following the
calling statement

Execution portion of Sort/Merge. There
are six phases, executed in the given
order: SMC, SMCMON, SMCEDT,
SMCSRT, SMCIMG, and SMCFMG.

Many Sort/Merge messages contain two
parts - an initial alphabetic message
describing the contents and a second
part (suffix) that is a decimal or hexa­
decimal representation of data

96769260 A

(
~ .. ".

'-. ..

('
\"'-.

,r ",
I

\ .. '-...... /

o
o

C)

,..---,
I

i
I
!
1 "-)

o

o
c·
(:J

Prompting

Pseudo tape

Q

QT

reclth

RECPTR

RELOC4

REQBUF

REQIND

RSA

RTJ

RUN

Runtime

S

Scatter code

Segment

Segment file

Segment list

Sequence

Operator interaction level for
Sort/Merge: 0 = no prompting, 1 = some
prompting, 2 = maximum prompting

Storage area formatted as if it were a
magnetic tape storage medium

A CPU register

Legal operator reply to an action mes­
sage: delete (quit using) this file

IN FILE command parameter: record
length

Two word disk address of file record

Relocate table containing the absolutiz­
ing value added to relative statements
in a relocatable program to absolutize
the program.

Work area in core used by the file
manager when processing requests

One word status buffer used by file
manager

Record storage area: • an array of bins
used by tournament. Initially holds
records: later holds pointers to records.

Return jump command

Input command containing parameters
that define type of run desired

Time when sorting, merging, or copying
is being performed

1. Number of strings resulting from
an intermediate sorting operation

'2. KEYS command parameter: signed
binary mode

A hashing code used to generate index­
ing for files designed by operator
selected filnum.

A disk file of entries; segments of one
filnum file may reside (in segments) on
two or more disks

A file that exists in segments on two or
more disks

A list that links file segments

A group of logic records ordered by
some key or keys value(s)

Sequence directory A disk work file: except for the final
output file, it lists logical unit number,
filnum, and some flags for each output
string generated by a sort run

96769260 A

skipcnt

SMC

SMCEDT

SMCFMG

SMCIMG

SMCMON

SMCSRT

SIN

Sort

Source language

String

Suffix

Tournament

TSA

TTY

U

Unit strings

Variable tables

IN FILE command parameter: the num­
ber of records to skip in the current file
before processing a record of interest

The loader/initializer phase of
Sort/Merge

The editing and run definition phase of
Sort/Merge: it checks the operator
input parameters.

The final merging and output phase of
Sort/Merge

The intermediate merging phase of
Sort/Merge. It is used when not all
records can be sorted in core at one
time.

The monitor phase of Sort/Merge

The sorting phase of Sort/Merge

RUN command parameter: selects or
rejects sequencing check

Sorting run: merging may be requested
also if not all records can be kept in
core at one time to perform a single
tournament sorting operation

1. Language from which program
assembly language is generated

2. Sort/Merge: the five commands (P,
RUN, KEYS, INFILE, OUTFILE)
that define the run parameters

Sequence of records

Second part of certain Sort/Merge mes­
sages: see Prefix

A comparison routine that selects a
winner from a group of contestants;
e.g., sorts two records by key words,
one letter at a time. See appendices D,
E, F, and I.

Tag storage area: a table of G numbers
ranked according to the tournament
results. Tags identify records and point
to entries in sequence array.

Teletypewri ter

The unit strings rating of SMCIMG: the
number of times all data from an
original string from SMCSRT is pro­
cessed by SMCIMG

The original strings produced by
SMCSRT

Sort/Merge tables holding IN FILE (file
table), and KEYS (key table) informa­
tion for the run

A-3

Way-of-merge

WIERO

wkbksz

Work file

A-4

Number of strings being combined by
the current merging operation

Outputs special error messages

RUN command parameter: specifies
size of data portion of work file buffer

Intermediate files used to process
records and record pointers by
Sort/Merge

Y labels

z

Labels in the fixed tables. All labels
begin with a Y.

Escape character. When used in place
of a comma or field in RUN, KEYS,
IN FILE, or OUTFILE statements, this
cance.1s the operator's current input and
returns him to the start of the prompt­
ing (if any) for that statement.

96769260 A

I
\

.' " .'

c

r "

r
'-. .. '

r
\~, .'

'-_ .. ' '

r-­
(
\

SUBROUTINE HIERARCHY B

C)
,r---

,r ,

i

I
I
\"---)

'-'d e !¥AI ''''P't "iM,l"

The following is a list of callers and the procedures they call
their callees, by phase. Within a phase, the arrangement
breaks down some of the higher level routines. A brief
description of subroutine functions is given in the Procedure
Names section. This description of internal structure is
provided to assist the analyst in understanding the internal
operation of the Sort/Merge utility package. Specific
parameters are subject to change as a result of program
modification by CDC.

SMC PHASE

SMC - LOAD (GTFILE is used by LOAD)

LOAD - SMCMON/SMCEDT/SMCSRT/SMCIMG/SMCFMG

SMCMON PHASE

SMCMON - DISP/INIT/LOAD/REL/TYPOUT.

INIT - BOMB/MONI/RELOC/SYFMLU/TYPOUT

REL - DULU/GORQT/HADOUT/LUFNO/RELFIL/RESAQI/
SA VAQI/WIERD

TYPOUT - DISP/MONI/RESAQI/SAVAQI

BOMB - DISP/HADOUT/TYPOUT

SYFMLU - GFMLU

DULU - WIERD

/-~" GORQT - ACCEPT/HADOUT

eJ
..
,~

('J

,l"'~'\

"-...J

()
(,
\
'-...;'

0

HADOUT - RESAQI/SA VAQI/TPHEX/TYPOUT

LUFNO - TPDEC

WIERD - BOMB/TPDEC

ACCEPT - TYPIN/TYPOUT

TPHEX - HXBCD/MOVE/TYPOUT

TPDEC - TPHEX

TYPIN - BOMB/DISP/MONI/RESAQI/SAVAQI/TYPOUT

HXBCD - BINDEC/BINHEX

BINDEC - RESAQI/SAVAQI/WIERD

BINHEX - B2HXBT

EOS - CLSU/PUTSEQ

CLSU - TYRCT/WRTD/WRTT

96769260 A

"'.+.; F*

PUTSEQ - BOMB/RESAQI/SAVAQI/WRTD

TYRCT - BIGADD/BIGSUB/LUFNO/TYRCTY

WRTD - BADBLK/BOMB/CLRBIO/DEF/DULU/PUTSEG/
STOSEQ/WIERD/WRTDIN

WRTT - BADBLK/BOMB/DISP/MONI/STATUS

TYRGCTY - BTDEC

BADBLK - GORQT/HADOUT/HEXDMP/LUFNO

CLRBIO -CLR

DEF - BOMB/DEFFIL/LUFNO/RANDOM/RANNIT/TPHEX/
WIERD

PUTSEG - CLRBIO/CLRFT/DEF/PTSGWT

STATUS - MONI

BTDEC - TPDEC

HEXDMP - BINHEX/TYPOUT

CLRFT - CLRBIO

PTSGWT - WRTD/WRTDIN

GETSEQ - BOMB/RDD/RESAQI/SA VAQI

RDD - BADBLK/GETSEG/RDDNIT/RTVSEQ/WIERD

GETSEG - BOMB/CLRBIO/CLRFT/RDD/RDDNIT/REL

GETU - BADBLK/BIGCNT/RDD/RDT/TYRCT

RDT - BADBLK/DISP/MONI/STATUS

PUTU - BIGCNT/MOVE/WRTD/WRTT

BOS - CLRFT/DEF

BIGB2D - BINDEC

SMCEDT PHASE

SMCEDT - BIGNUM/BOMB/CKYSIZ/INFILE/KEYS/LlNK/
MEM/NEWSCL/OUTFIL/RELOC/RUN/TPDEC/
TYPOUT/XCK

BIGNUM - SCDIAG/TOKEN

INFILE - ALPHA/BIGADD/BINDEC/COMALF/COMBIG/
COMMA/COMPOS/NEWSCL/PROMPT/SCDIAG/
TOKEN

KEYS - ALPHA/COMALF /COMMA/COMPOS/KEYFWA/
KRANGE/NEWSCL/PROMPT

B-1

LINK - WIERD

MEM-DETG

OUTFIL - ALPHA/COMALF/COMPOS/NEWSCL/PROMPT

RUN - ALPHA/COMALF/COMPOS/NEWSCL/PROMPT

SCDIAG - BLANK/BOMB/MOVE/NEWSCL/RESAQII
SAVAQI/TYPOUT

TOKEN - DIGTST/MOVE/SCLBYT

ALPHA - SCDIAG/TOKEN

COMALF - ALPHA/COMMA

COMBIG - BIGNUM/COMMA

COMMA - SCDIAG/TOKEN

COMPOS - COMMA/POSNUM

PROMPT - TYPOUT

SCLBYT - RESAQI/SAVAQI/TYPIN

POSNUM - BIGNUM

SMCSRT PHASE

SMCSRT - BTDEC/CLSU/GET/IEOR/INIT/PUT/PUTU/
TOURN/TPDEC

GET - GMPKEY /IEOR/MOVE

IEOR - CLRFT/GETU/GORQT/MOVE/TPDEC

INIT - CLRFT/LINK/RELOC/TURNIT/TYPOUT

PUT - BOS/EOS/PUTU

TOURN - CMPKEY

LINK - WIERD

SMCIMG PHASE

SMCIMG - BTDEC/GET/INIT/MGINIT/MTOURN/PUT/
TPDEC

GET-GETU

INIT - DETM/LINK/RELOC/TPDEC/TYPOUT

MGINIT - BOS/FTINIT/TURNIT

MTOURN - CMPKEY

PUT - CMPKEY/EOS/GORQT/HEXDMP/PUTU/TYPOUT

DETM - WIERD

LINK - WIERD

FTINIT - CLRFT/GETSEQ

B-2

SMGFMG PHASE

SMCFMG - BTDEC/GET/INIT/MTOURN/PUT/TPDEC/
TYPOUT

GET-GETU

INIT - BUFALO/CLRFT/GETSEQ/GORQT/LINK/MOVE/
RELOC/TPDEC/TURNIT/TYPOUT/WIERD

MTOURN - CMPKEY

PUT - CLSU/CMPKEY GORQT/HEXDMP/PUTU/TYPOUT

LINK-WIERD

PROCEDURE NAMES

ACCEPT

ALPHA

B2HXBT

BADBLK

BIGADD

BIGB2D

BIGCNT

BIGNUM

BIGSUB

BINDEC

BINHEX

BLANK

BOMB

BOS

BTDEC

BUFALO

CKYSIZ

Sends messages to operator and accepts one­
word replies

Decodes alphabetic characters for operator
input messages

Converts hexadecimal 10 through 15 to A
through F

Informs operator that program found a bad
data block; requests operator instructions

Handles output sums greater than 10,000

Converts 32 bits of binary number to BCD
format

Updates two-part counter with breakpoint at
10,000

Decodes eight-digit operator input for
_SMCEDT

Handles output differences requiring special
borrows

Converts 16 bits to binary number to BCD
format

Converts binary number to hexadecimal for­
mat

Blanks out the correctly entered parts of the
request in the expected/received error mes­
sage that is sent to the operator

Outputs the fatal error message when
Sort/Merge aborts

Begins sequence processing by defining a
filnum on the logical unit, initializing file
table and starting sequence directory process­
ing

Outputs prefix with two-word BCD number

Allocates output buffer

Checks for sufficient core size to perform
requested Sort/M erge

96769260 A

(
'

"~

' ,

I, , ...

,~

I
'-.

I
('~.

\
'-..-.-

.,
r-~

I
\

(
\

r--
\, ... -

,,------,

' , ...

r-' ("

",.-~,~

(I

'0

C)

o
............. ,

I)

~j

o
()

0,

o

o
c~

o

CLR

CLRBIO

CLRFT

CLSU

CMPxxx

COMALF

COMBIG

COMMA

COMPOS

DEF

DEFFIL

DEFGLU

DETG

DETM

DIGTST

DISP

DULU

EOF

EOS

FTINIT

GET

GETSEG

GETSEQ

GETU

GFMLU

GORQT

HADOUT

HEXDMP

HXBCD

96769260 A

Clears the region of core specified by the
input request

Clears selected I/O buffer areas and param­
eters

Clears file table

Closes and writes the current block

Subroutines used to execute the tournament
sorting process

Decodes comma plus alphabetic character
from operator's input message

Decodes eight-digit number and comma for
SMCEDT

Decodes com mas in operator input messages

Computes address of error message

Prepares DEFFIL requests

File manager request to define a file

Processes errors for DEFFIL r,equests

Determines G (group size) for the tournament

Determines order of I-merges (final merging)

Tests if operator input is in decimal format

Dispatcher

Checks status (up or down) of logical unit

End-of-file processor

Ends sequence processing by closing the cur­
rent block and completing the sequence direc­
tory

Initializes merge input file tables

Gets records and moves them for tournament
input for sorting

Get next segment (file)

Calculates sequence logical unit and filnum

Gets a new buffer

Finds logical unit to be formatted by SYFMLU

Decodes operator reply of GO (continue), QT
(delete file), or BY (continue bypassing this
type of error)

Generates $ prefix for hexadecimal output and
outputs special messages

Dumps buffer in $ format on output device

Convert hexadecimal to BCD

IEOR

IN FILE

KEYFWA

KEYS

KRANGE

Finds files and requests' operator to ready
them

Decodes INFILE message inputs to SMCEDT

Computes and stacks relative first word
address

Decodes KEYS message inputs to SMCEDT

Generates key word tables

LINK Links program entry points to SMCMON

LOAD Loads SMC or SMCMON

LUFNO Identifies the file

MEM Algorithm that computes core required for the
run

MGINIT Initializes intermediate merge operations

MOVE' Moves words in core

MTOURN Tournament algorithm

NEWSCL Points to new operator-entered field in input
control messages to SMCEDT

OUTFIL Decodes OUTFILE message inputs to SMCEDT

POSNUM ,Sets up positive numbers less than or equal to
32K .

PROMPT Determines prompting level selected by oper­
ator and outputs messages appropriate to that
level

PTSGWT Writes segment list

PUT Updates tables using tournament intermediate
results (used by SMCSRT)

PUTSEG

PUTSEQ

PUTU

RANDOM

RANNIT

RDD

RDDNIT

RDT

REL

RELFIL

RELOC

Updates segment list

Builds sequence directory entries

Puts current record in buffer if there is room
or writes buffer and gets a new buffer for
current record

Continues generating random numbers

Initializes random number sequence

Checks status of data blocks

Sets up retrieval sequence call

Executes and checks FREAD operation

Prepares to release file normally or abnorm­
ally

Release the filnum

Relocates programs and tables during loading

B-3

RESAQI Restores the A, Q, and I registers TPDEC Outputs prefix with BCD number

RTVSEQ Retrieves sequence information TPHEX Outputs full hexadecimal number

RUN Decodes RUN message inputs to SMCEDT TOURNIT Updates TSA to initialize tournament

SAVAQI Saves A, Q, and I register contents TYPIN Reads formatted input from operator, checks
('
\' ,

SCDIAG Returns expected/received operator selected
it, and requests input if errors occur

input to operator and requests correct reentry TYPOUT Sends formatted output message to operator
of parameters. Used by SMCEDT

TYRCT Calculates number of records passed
SCLBYT Maintains byte counters while decoding oper-

ator inputs to SMCEDT TYRCTY Displays number of records passed ,~

(

STATUS Sets up status word WIERD Outputs special error messages

STOSEQ Stores sequence WRTD Writes blocks for STOSEQ and checks write
status

SYFMLU Formats logical units in tables during initiali-
zation WRTT Writes formatted data and check status of the

operation
TOKEN Decodes format of operator input message to

SMCEDT XCK Cross checks operator input message param-
eters to SMCEDT

TOURN Tournament algorithm

r--
I

........... '

c

B-4 96769260 A

("~I
'--../'

o

,--" (,

I
I '
\.....)

()

SORT/MERGE CORE USAGE C

, ... ,,16'4; N,E'i'fi§ _ .WitM!1;liijWM

The memory layouts in figure C-1 are for a sort run, which
involves internal sorting, intermediate merging, and the
final merging operation.

Step Action

1 *SMC brings SMC into core.

2 SMC has initialized itself and has loaded
SMCMON over the SMC initialization logic.

3

4

5

6

7

96769260 A

SMCMON has initialized itself and has loaded
SMCEDT high in core, so that tables may be
built in the region between SMCMON tempor­
ary a'nd SMCEDT temporary.

Variable tables have been built over
SMCMON temporary (and perhaps some other
core), but in this case the tables were not
extensive enough to overlay the SMCEDT
temporary region. This is the typical situa­
tion.

SMCSRT has been loaded.

SMCSRT has initialized itself and has partiti­
oned remaining unprotected core. SMCSRT
has' occupied the space formerly used by
SMCSRT temporary, SMCEDT temporary, and
SMCEDT permanent.

SMCIMG has been loaded, replacing SMCSRT,
which completed its processing. Communica­
tion between SMCSRT and SMCIMG is

8

9

10

&*6+ ld f+#k+fz,.-f'·\ ·N a.l,.: If at·

Action

accomplished using the fixed tables (not
shown) located at the top of SMCMON
permanent.

SMCIMG has initialized itself and has parti­
tioned remaining unprotected core. SM CIM G
temporary, which is no longer needed, has
been overlayed by buffers, etc.

SMCFMG has been loaded, replacing
SMCIMG. Communication between SMCIMG

, and SMCFMG is accomplished by the fixed
tables mentioned in step 7.

SMCFMG has initialized itself and has parti­
tioned remaining unprotected core. SMCFMG
temporary, which is no longer needed, has
been overlayed by buffers, etc.

A sort-only run might involve only steps 1 through 6, and 9
and 10, with SMCFMG replacing SMCSRT in step 9. Also, a
sort-only run might involve only steps 1 through 6. A copy
run would use steps 1 through 6; however, step 6 would not
use the core space between the input buffer and protected
core.

A merge-only run would use only steps 1 through 4, and 9
and 10. In step 9, SMCFMG would be loaded without
replacing a previous phase. In step 10, if there were a
runtime deletion of input files, there would be some unused
core at the top of the input buffers and the input file tables.
There would also be unused 'core at the top of unprotected
core.

v-l

STEP 1

MSOS

SMC PERMANENT

SMC TEMPORARY

UNUSED

PROTECTED CORE

LOADER PHASE

0335

C-2

STEP 2 STEP 3 STEP 4

MSOS MSOS MSOS

SMC PERMANENT SMC PERMANENT SMC PERMANENT

SMCMON PERMANENT SMCMON PERMANENT SMCMON PERMANENT

SMCMON TEMPORARY SMCMON TEMPORARY VARIABLE TABLES

UNUSED UNUSED UNUSED

SMCEDT TEMPORARY SMCEDr TEMPORARY

SMCEDT PERMANENT SMCEDT PERMANENT

PROTECTED CORE PROTECTED' CORE PROTECTED CORE

START OF MONITOR
PHASE - MONITOR
CONTROLS ALL
SUBSEQUENT
OPERATIONS

RUN DEFINITION PHASE

Figure C-l. Core Maps during Sort/Merge Processing (Sheet 1 of 3)

96769260 A

r-

\"

r-,
\
'-~ .

..,.---.

.,..----

t..o

/'--"

r;.

r--
(

...... ",., ...

. /-
' ~ "

c
c

\'-. .. .-'

C
('

"-'--'~

,--..... ,
I

.......... '

(..-....

'--.-

!~

,
\ _".

¥

~

(

c

C~

(.-"

~
I,

'-.... -

(
I

o STEP 5 STEP G STEP 7 STEP 8

MSOS MSOS MSOS MSOS

o SMC r>ERMANENT

SMCMON PERMANENT

SMC PERMANENT

SMCMON PERMANENT

SMC PERMANENT

SMCMON PERMANENT

SMC PERMANENT

SMCMON PERMANENT

o VARIABLE TABLES

SMCSRT PERMANENT

VARIABLE TABLES

SMCRT PERMANENT

VARIABLE TABLES

SMCFMG PERMANENT

VARIABLE TABLES

SMCIMG PERMANENT

(J SMCSRT TEMPORAR Y OUTPUT BUFFER SMCFMG TEMPORARY OUTPUT BUFFER

INPUT BUFFER INPUT BUFFER 1

o
INPUT BUFFER IW A Y

(J INPUT FILE TABLE 1

UNUSED RSA UNUSED

INPUT FILE TABLE
IWAY
RSA BIN FOR INPUT
FILE IWAY ,,--...,

L' SEQUENCE NUMBER
ARRAY

RSA BIN FOR INPUT
FILE IWAY

SEQUENCE NUMBER
ARRAY

TSA TSA

UNUSED UNUSED

. PROTECTED CORE PROTECTED CORE PROTECTED CORE. PROTECTED CORE

SORT PHASE INTERMEDIATE MERGE PHASE

()
Figure C-l. Core Maps during Sort/Merge Processing (Sheet 2 of 3)

()

()

o

o
96769260 A C-3

/'
,

(
'-

("
\

'-

r-'-.

STEP 9 STEP 10 '.

MSOS MSOS ~--,

,
c

SMC PERMANENT SMC PERMANENT

SMCMON PERMANENT SMCMON PERMANENT

(--
..........

...
VARIABLE TABLES VARIABLE TABLES ('

SMCFMG PERMANENT SMCFMG PERMANENT '"-..

SMCFMG TEMPORARY OUTPUT BUFFER ('
" .-

INPUT BUFFER 1

(---
INPUT BUFFER FWAY

1,'--'

INPUT FILE TABLE 1 ('
\,

UNUSED
INPUT FILE TABLE
FWAY
RSA BIN FOR INPUT C~'
FILE 1

~,

RSA BIN FOR INPUT
FILE FWAY
SEQUENCE NUMBER
ARRAY

TSA

UNUSED
(--
I
\ ~

PROTECTED CORE PROTECTED CORE
, , .. ('

FINAL MERGE PHASE "--._- .

(
'--Figure C-l. Core Maps during Sort/Merge Processing (Sheet 3 of 3)

('
\,--

('
\,,, ...

r"
" "- ..

p

('

C'

C-4 96769260 A C
I~
,

C::

o

o
o
o

()

o
()

()

()

o
(~)

o
o
(J

o

PROGRAM DESCRIPTION D

, M!i"'iE ;'S' 1i'''" .t',I''''I''M'CAI,L541 Ni

The following description of internal structures is provided
to assist the analyst in understanding the internal operation
of the Sort/Merge utility package. Users need not normally
be concerned with this information. Specific parameters in
this section are subject to change as a result of program
modifications by CDC.

Sort/Merge is executed in six separate phases:

• Phase 1 - Calling Sort/Merge initializer module (SMC)

o Phase 2 - Executing the main program (SMCMON)

• Phase 3 - Defining and checking the run definition
(SMCEDT)

• Phase 4 - Sorting (SMCSRT)

o Phase 5 - Intermediate merging (SMCIMG)

• Phase 6 - Final merging (SMCFMG)

PHASE 1 - CALLING SORT/MERGE
(SMC)

The job processor is activated as usual (i.e., *JOB). Then,
before calling Sort/Merge, the operator selects the input and
list devices using a *K,Ix,Ly statement. This causes the run
definition to be accepted from logical unit x and the general
output of all messages to be made to logical unit y. For
example, if the conversational display terminal (COT) is
used both for run definition and for comments to the
operator, and if the CDT is assigned to I/O channel I,
*K,I4,L4 may be used. Sort/Merge is then activated with an
*SMC statement. Appendix C shows the phases of loading
and executing all Sort/Merge programs.

After Sort/Merge is loaded and activated, the MSOS GTFILE
routine is used to load the Sort/Merge monitor, SMCMON
(phase 2). When SMCMON is loaded, SMC activates it.
SMCMON controls all further operations. SMCMON imme­
diately loads the editor SMCEDT (phase 3), which receives
the operator's definition of the run, checks it for accuracy,
and informs the operator of selected run parameters if the
operator so requests.

Sort/Merge may be run in any of three intera~tive modes:

• Level 0 - No operator interaction

• Levell - Limited interaction

• Level 2 - Complete interaction by use of detailed
informative and error messages. .

Level 2 mode requires the most time and operator assis­
tance, but has the advantage that extensive error recovery
is available. On the other hand, if the file manipulation
techniques have been fully debugged, and the input files are
standardized and error-free, level 0 mode provides quick and
efficient operation.

96769260 A

ifi" IMI *# 5 ',rpAW"¥5!' i'E itMS'" PM t. ~ *-'i·"&.'· it'. tuitt'

After the run is defined, SMCEDT is ejected as SMCMON
loads the sorter, SMCSRT (phase 4). If merging is required
(e.g., not all files could be sorted within core,and interme­
diate disk storage of files is necessary), SMCSRT is ejected
by the Sort/Merge monitor and the· intermediate merge
program (SMCIMG) is loaded and executed (phase 5).
Finally, in all cases, the Sort/Merge monitor loads and
executes the final output processing program, SMCFMG
(phase 6). Then control returns to the Sort/Merge monitor,
which sends a message to the operator informing him that
the sort/merge/copy request has been completed.

PHASE 2 - EXECUTING THE MAIN
PROGRAM (SMCMON)

The Sort/Merge monitor (SMCMON) has an initial prepara­
tive operation (phase 2), but it also receives control after
each other phase is completed. SMCMON contains logic and
tables common .to the other phases of Sort/Merge. It is
responsible for calls to the following:

• SMCEDT, SMCSRT, SMCIMG, and SMCFMG

o The routines to display messages to the user

• The routines to accept replies from the user

• The logic for controlling physical and logical I/O
operations

o The routine for comparing user-defined key fields

o Tables of user-supplied and dynamic parameters, includ­
ing interphase communication

PHASE 3 - DEFINING AND CHECKING
RUN DEFINITION (SMCEDT)

SMCEDT prompts (asks) the user to supply parameters
defining the type of run desired (see section 4 for the format
of the messages that prompt the operator). Note, however,
that there is no prompting for the first user parameter that
is required; i.e., the level of prompting that selects the
interactive mode. The operator must select this before he
receives the first request for input parameters.

The prompting levels are as follows:

Level

o

1

Interaction Mode

No prompting; the first error is fatal. An
appropriate error message is sent, but the
sort/merge/copy request is aborted and must
be resubmitted.

The required statement type is named, and
limited interactive error recovery is pro­
vided.

. D-l

Level

2

Interaction Mode

The required statement type is named, its
format is described, and the user is explicitly
reminded that Sort/Merge is awaiting an
operator reply. The full range of interactive
error recovery is provided.

A t the time it is supplied, each user parameter is checked
and tabulated. For prompting levels 1 and 2, interactive
error recovery is provided. The three following examples
show the level of input checking and interaction:

1. The operator supplies an erroneous character in a RUN
(input file size/number), KEYS (key definition), INFILE
(input file definition), or OUTFILE (output file defini­
tion) statement.

The program returns an EXPECTED ••. RECEIVED .••
message. The operator then re-enters the full state­
ment with a· proper character string at the point
indicated.

2. The fixed tables are incompatible with file size.

This is an unrecoverable condition and the run is
aborted.

3. The input statements have been checked and accepted
during a sort run.

SMCEDT presents the operator with information about
record sorting, and intermediate or final merging (G =
n, iway = a, or fway = n). These are explained in the
SMCSRT, SMCIMG, and SMCFMG sections below.

SMCEDT returns control to SMCMON after the input
parameters have been checked and accepted.

If a set of parameters is to be used repeatedly, it is
convenient and efficient to degug using level 2 prompting
interactively, and. then to transfer the parameters to a
permanent medium such as paper tape.

PHASE 4 - SORTING (SMCSRT)

SMCSRT is used during copy and sort-only runs. In both
cases, multiple user input fiels are permitted.

The program asks the user to identify each input file, one at
a time, in the order it was described to SMCEDT. The user
must direct SMCSRT to process the file with or without
further operator intervention or to delete the file. SMCSRT
does not request operator assistance for another input file
until the program is finished with the file just specified.

For each user input file included in the run (whether copy or
sort-only), skipcnt records are deleted from the run and
docnt records are included in the run.

During acopy run, the input logical records are copied in the
original order onto the user output file. When all input
records have been copied, SMCSRT returns control to
SMCMON and that program terminates the run.

D-2

In a sort-only run, SMCSRT also copies the input logical
records included in the run. The logical records are not
normally copied in their original order, but onto work files
instead.

A queuing and partial sorting routine (tournament) delays
and saves some logical records while advancing others,
causing logical records' to be copied in bursts (called
sequences or strings) of user-defined order. Wherever
possible, pointers are moved instead of records, minimizing
actual record movement. SMCSRT moves each logical
record twice, first from the input buffer to the queue, and
then from the queue to the output buffer.

The group size G of the tournament is the number of logical
records that the tournament can process (delay and sort) at
one time.

Excluding the first sequence and the last sequence produced
by the tournament, the average number of logical records
per sequence is G*O, where 0 is a function of the inherent
ordering of tournament input relative to the output order of
the tournament.

Some sample 0 values are I, 2, and infinity, for inverse,
random, and perfect ordering of tournament input, respec­
tively. Normally, 0 assumes a value greater than or equal
to 1. SMCSRT usually produces more than one sequence.

SMCSRT moves records to work files in preparation for the
recursive merging of the two or more sequences after each
such output. SMCSRT returns to SMCMON with a flag that
causes SMCMON to continue the run. To permit subsequent
merging, both the sequences themselves and a sequence
directory must be written by SMCSRT onto work files.

Whenever feasible, SMCSRT generates a single sequence on
the user output file. In this case, SMCSRT returns control
to SMCMON, with a flag causing SMCMON to terminate the
run. Such a single output to the user output file occurs when
both of the following conditions exist:

• Tournament input is less than G logical records. (All
records can be contained in core for immediate sorting:
merging of sorted partial outputs is unnecessary.)

• blksiz for the user output file is greater than or equal to
wkbksz plus the largest blksiz of the user input files.

The sorting process always lists the count of logical records
output by SMCSRT, whether these are work files or the final
user output file. The count is saved both for sort-only runs
and for copy runs.

When the SMCSRT phase is a prelude to merging, the
program also lists s, the number of sequences produced by
SMCSRT.

PHASE 5 - INTERMEDIATE MERGING
(SMCIMG)'

MERGING

SMCIMG is not used either in a copy run or a merge-only
run.

96769260 A

/1",.,.-_.0

\
'

i--
'\..~

,,,,..---.......

\ ' - .

/,,-"
I

"-.
p

(-'
.....

C
('
,,-,.,o'

r ' ,

(
\.....

C
f'

''-.. ,

('
\..... .. ,.

('
\'-'

C

C

C
C~·

t'

C·
.r-'

~---

C'
('

o
(j
"'--"

r­
I I

\'-'

o

c
()

Intermediate merging is required for a sort-only run when
neither SMCSRT alone nor SMCSRT followed by SMCFMG
would produce a single sequence on the user output file from
the user input files.

SMCIMG merges the sequences produced by SMCSRT until
few enough sequences exist to allow SMCFMG to merge the
remaining sequences into one final sequence on the user
output file. SMCIMG deals only with work files, writing an
entry in the sequence directory for each sequence of
SMCIMG oututSj i.e., SMCIMG adds to the sequence direc­
tory begun by SMCSRT.

SMCIMG may have to merge strings produced earlier by
SMCIMG, as is shown in the second example in section 3.
The strategy to perform the recursive merging operations
may be considered to be a tree structure formed by the
pattern of merges performed first by SMCIMG and then by
SMCFMG. Prior to any merging, SCMIMG determines and
optimizes this tree structurej i.e., factors of core size and
numbers of merges are used as parameters to determine the
most efficient method of successively merging files.

SMCIMG first combines lSTWAY sequences, then it com­
bines the IWAY (the maximum possible for SMCIMG)
sequences. The shortest strings (determined by the number
of inputs to the tournament) are combined first.

The result of the preceding strategy is minimization of U,
the unit strings rating of all merging performed by SMCIMGj
i.e., how many times all data from an original string from
SMCSRT is processed by SMCIMG. Before the start of any
merging, SMCIMG computes and lists lSTWAY and U. Note
that on the first pass, records themselves are sorted in bins.
After that time. pointers to records are successively
merged, so that the records themselves need not be moved.
The following example makes the process clearer:

Consider the second sample run in section 3 (a sort run with
level 1 prompting). Given available core size, work block
size (wkbksz), record length (reclth), and number of records
(docnt), the tournament inputs are:

o Core size (internally known to the program)

o wkbksz (determined by the operator using appendix G
criteria): 3000 words

• reclth (fixed by the records themselves): 400 words

o docnt (operator specifies number of records): 300 words

The ideal size tournament for these parameters is G = 13.
Therefore. the first sorting must handle 300/13 = 23 + 24
sorts (sequences). On this sort. the records themselves are
compared by the tournament (sort criteria uses a C.A.76.5
keyj i.e •• character key. ascending from A to Z. and 76*5 =
3BO characters long). On subsequent mergers, 13 record
string pointers (not the records themselves) are merged: 13
by 13 into 26 entry stringsj then 26 by 26 into 52 entry
strings; then 52 by 52 into 104 entry stringsj and finally 104,
104. and 92 into a 300-entry string.

Note that each earlier string also had one string with less
tlian the normal number of entries (e.g., one string with one
entry in the l3-entry strings to make up the full 300
records).

96769260 A

When the user files have the same effective transfer rate as
the work files, total run time is roughly 1 (for SMCSRT) +
U/S (for SMCIMG) + 1 (for SMCFMG) = 2 + U/S * SMCSRT
time.

In a sort-only run. SMCSRT and SMCFMG each involves at
most one pass of all the· input data, but SMCIMG could
involve several passes. Therefore, at best, SMCIMG is not
used and, at worst, SMCIMG accounts for most of the run
time.

When merging records, SMCIMG uses an adaptation of the
tournament of SMCSRT. The SMCIMG queue is being fed by
several input sequences at the same time, in contrast with
the serial input of probably unsorted files to the SMCSRT
queue.

Since the input to the SMCIMG queue is presumably sorted,
the' separate input buffers constitute the actual logical
record delay area, and, within a single merge, each logical
record is moved only once from the corresponding input
buffer to the output buffer.

One string should always be produced by each merge, since
the input to the merge is presumably sorted.

SEQUENCE CHECKING

If the user selects sequence checking to detect hardware or
software malfunctions, SMCIMG compares each logical
record about to be output (residing in an input buffer) with
the logical record previously output (residing in the output
buffer) within the same merge. This comparison is made
before moving the new record to the output buffer. If an
error occurs, the last record output rather than the new
record might be the cause of the sequence error. The user
must determine which record is in error. Therefore, when
SMCIMG detects a sequence error, it sends a message to the
operator giving him the option of deleting the new record.
Use of this option avoids repeated sequence errors on
subsequent merges involving the same record.

SMCIMG returns control to SMCMON when the number of
sequences to be merged is less than or equal to FW A Y, the
maximum number of sequences that SMCFMG can handle.
Just before returning to SMCMON, SMCIMG lists the
number of records deleted and the number of records output.
SMCMON then loads and gives control to SMCFMG.

PHASE 6 - FINAL MERGING (SMCFMG)

SMCFMG is used in merge-only runs and it is the normal last
phase of a sort run (SMCSRT sometimes completes a sort­
only run). Copy runs do not use SMCFMG.

SMCFMG performs a single merging operation in which the
input files are either all user files (for merge-only runs) or
all work files (for the final merge of a sort run).

Therefore, SMCFMG is much like SMCIMG, although it lacks
multiple merge logic. On the other hand, it does contain
logic for processing user input files.

D-3

The SKIPCNT and DOCNT features are available for the
user input to a merge-only run.

The merge tournament logic and sequence checking logic is
the same as is used in SMCIMG.

After the final merging and before returning control to
SMCMON, SMCFMG announces the number of records

D-4

deleted and the number of records output. Also, for a final
merge, even if no records were deleted, SMCFMG checks
the number of records output by SMCFMG against the
output count for SMCSRT and sends a message showing any
disagreement between the two counts.

After receiving control .from SMCFMG, SMCMON returns
control to MSOS, ending the run.

96769260 A

(
\" .,'

r--­
I,

c

I

\
,~-..

(,,-....,

r '-.. ,

(--.
,-,."

(~

'-.---

r ~.

o
("

I

~/

o
o
b

'-.....-'

~'~

,---..
'\

~,--""I

.---)
~

~
"-./

)
~

~~

:J ,
.~'.

:J
.,. ... _'\

.J

SAMPLE TOURNAMENT TREE STRUCTURE E

hi i ';d YdW! .fU'.'; 4111 sew" h.,hitt;; ,jeq' iI I : an; t i9 I i""t'''iiCiSMU:I* i\.P'Eqi#tZeWMI,"4if'i4!.'tl pWIJ Iii . e (pa,

T~_T(9)jl) T~_T(8}j(3)

LT(4)~
L~ ___________ ~ ___________ ~

II------T(l)'-----.....

Figure E-l. Sample Tournament Tree Structure

96769260 A E-l

,r-- ,
I

CO

C
(

'I

c
c

('
""'-.,r

c
c
(~
',-_ .•

. c~
r" t

'--.,

(' ,
t , ,

,r
\ ...

o

o

r' t 'j
'---'"'

o

,,--.,
(\ "-,/

o

()

TOURNAMENT INITIALIZATION F

'n #wi' uw,;wet U"W,j,t 14'gIW'*d'·" iAfSfif.J'YdH t'ill.,i.*-·;"'p,,,

The tournament region is filled with winning dummy records;
i.e., phony records identified by use of a string number less
than G. These records therefore win over any real records,
which must have a string number greater than or equal to G.

The tags are set up in such a way as to force the tournament
to structure itself properly as the real records are sub­
mitted, one by one.

In the initialization example shown in figure F-l (which
corresponds to the tree structure in appendix E), there is an
apparently anomolous condition: T(2) indicates that B(2) was
a loser in the last contest associated with T(2). Inspection

96769260 A

'!I;P 13; ! (,'

of the sample tree structure shows that T(2) could not be
concerned with B(6). This' anomolous condition disappears as
real records are submitted to the tournament, since each
real record except the Gth initially loses to a winning
dummy and therefore gets recorded in a necessarily relevant
tag.

TAG: T(l) T(2) T(3) T(4) T(5) T(6) T(7) T(8) T(9)
CONTENTS: 8 6 4 2 9 7 5 3 1

Figur'e F-l. Initialization Example

F-l

c

r-'-­
I

,r---
\ '

' -.

c

(\
' ,

c

c

\ -'

o
o
C'I

o
o
()

o

()

o
C]

o
o
o

OPTIMIZING THE WORK BLOCK SIZE G

iF

Version 1.0 of Sort/Merge does not double buffer. There­
fore. the following equations compute an approximate time
for a Sort/Merge sort run, assuming there is no overlapping
of input. compute. and output operations.

Let CTRANS = Number of words of core for transient
tables. logic. buffers

C

CRES

K

F

= Number of words of core available to
Sort/Merge.

= Number of words of core needed for the
resident parts of the phases SM C· and
SMCMON. including fixed tables

= Number of sort keys (from the KEYS
statement)

= Number of input files (SKIPCNT and
DOCNT)

Assume that five words are needed for each average key
field (a minimum of two words and a maximum of seven
words).

Currently. SMCEDT uses eight words to tabulate the
parameters of each input file.

Then CTRANS = C-CRES-S*K-8*F

Let G

CSRT

= Number of real bins in the internal sort
tournament

= Number of words needed for resident
SMCSRT logic

BIN = Maximum user input block size

BWORK = Work block size (WKBKSZ in the RUN and
IN FILE statements)

R = Logical record size (RECLTH)

Then G = (CTRANS-CSRT-BIN-BWORK+1)/(R+2)

Let IWAY

CIMG

= Maximum way-of-merge for SMCIMG

= Number of words needed for resident
SMCIMG logic

Currently. 30 words are needed for each file table. two
words are needed for a merge tournament bin. and one word
is needed for each merge tournament sequence number and
tag •.

Then IWAY = (CTRANS-CIMG-BWORK+29)/(BWORK+34)

Let FWAY

CFMG

BOUT

96769260 A

= Maximum way-of-merge for SMCFMG

= Number of words needed for resident
SMCFMG logic

= User output block size

&.1 •

Then FWAY = (CTRANS-.cFMG-BOUT+1)/(BWORK+34)

Let TREE(X)

L2(X) =

Average number of tournament levels
encountered per logical record for a tour­
nament with G=X.

Then TREE(X) = 1 + L2(X)+«2**L2(X»/X)

The CPU time consumed within SMCSRT. SMCIMG. and
SMCFMG is accumulated on a per block basis for MSOS
calls. and on a per logical record basis for blocking.
deblocking. and tournament. Other costs such as per
sequence costs are insignificant.

Let TCPUS

ACPUS
BCPUS
CCPUS
DCPUS

= CPU time used by SMCSRT per logical
record

= Four separate constants

BIN A VG = Average user input block size

Then TCPUS = (ACPUS/BINAVG+DCPUS/BWORK)*R+
BCPUS+CCPUS*TREE(G)

Let TCPUI

ACPUI
BCPUI
CCPUI
DCPUI

= CPU time used by SMCIMG per logical
record per pass

= Four separate constants

Then TCPUI = (ACPUI+DCPUI)*R/BWORK+BCPUI+CCPUI+
TREE(IWAY)

Let TCPUF

ACPUF
BCPUF
CCPUF
DCPUF

= CPU time used by SMCFMG per logical
record

= Four separate constants

Then TCPUF = (ACPUF/BWORK+DCPUF/BOUT)*R+
BCPUF+CCPUF*TREE{FW AYl

For many devices there is a certain access time per block,
followed by a transfer time.

Let TINUS

TINWK

= I/O time per logical record for user input

= I/O time per logical record for work input
per pass

TOUTWK = I/O time per logical record for work
output per pass

TOUTUS = I/O time per logical record for user output

G-1

AINUS
AINWK
AOUTWK = Four separate constants

AOUTUS

Then TINUS = AINUS/BINAVG*R

TINWK = AINWK/BWORK*R

TOUTWK = AOUTWK/BWORK*R

TOUTUS = AOUTUS/BOUT*R

Let S = Number of strings written by SMCSRT

NRGC = Number of user input logical records

ORDER = Rating of inherent order in user input: 1,
2, infinity for inverse, random, perfect,
respectively

Then S = NREC/(ORDER*G)

Let U

P

DFAN

G-2

= Unit strings rating of SMCIMG

U/S ; i.e., the integer portion of the
number of SMCIMG merge passes

= Inadequacy of the fanout after P SMCIMG
passes

DNM = Number of extra IW A Y merges to incre-
ment the fanout by DF AN strings

Then P = 10gIW A y(S/FW A Y) ,

DFAN = S - (IWAY**P)*FWAY

DFAN
DNM = IWAY-l,

DNM *IWAY
U = P*S + if DNM

DNM +DFAN

Total time, T, for the Sort/Merge run is:

is

is not

T = NREC*(TINUS+TCPUS+TOUTWK
+(U/S)*(TINWK+TCPUI+TOUTWK)
+TINWK +TCPUF+TOUTUS)

an
integer

The constants used in the preceding equations are dependent
upon the specific I/O device and CPU involved. The
coefficients should be determined by programming the
preceding equations and fitting the equations to actual
timings.

Once the coefficients are known, the user may wish to
prepare a program to accept parameters such as K,F ,BIN ,R,
BOUT,BINAVG,NREC,ORDER. The program would vary
BWORK, and hold all other symbols as constants.

The value of BWORK for which T is minimized would be
output by the program for use in running Sort/Merge.

96769260 A

/----.

\ ..

'-.. ..

(
'-....

c

c

c

c.
c

o

o
o
,

o

~ ",--'-...

I

I

'--~/

SORT/MERGE MERGING STRATEGY

'i 1.111MB,,, iii "ab

With maximal merges, except for lSTWAY, Sort/Merge
extends the tree from the output of' the final merge
(performed by SMCFMG) to the original strings (generated
by SMCSRT). SMCIMG determines to optimal tree structure
prior to merging any of the SMCSRT sorted strings. The
calculations below show how U (unit strings rating) is
minimized by minimized tree height (the number of merging
levels, which is four in the sample shown in figure H-1), and
by merging the shortest strings first.

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

ORGINAL STRINGS FROM INTERNAL SORT lSTWAY= 2

p

DFAN

DNM

U

Figure H-l. Merge Tree

96769260 A

'dfl' .Ii tAb'S e i¢'

log3{57/4) = 2

57-{3**2)*4 = 21

i-\ = 10.5

",,'9'! l.!die

2*57+ 10.5 +21 = 146

FINAL OUTPUT

H

! '·-iE 'eEP'fi

H-1

-to (:-
.......... ".

(
\

c
.",--....,

I '

('
\
'---

!
J

I

'--.,.;/

TABLE FORMATS AND USAGE

I. !!'fF-' ItI"S •

'fhe following descriptions of internal structure are provided
to assist the analyst in understanding the internal operation
of the Sort/Merge utility package. Normally, users need not
be concerned with the detail level of this appendix. Specific
parameters in the section are subject to change as a result
of program modifications by CDC.

The Sort/Merge module uses several tables resident in core
or on disk to perform sort/merge/copy tasks. The relation
of the tables to one another is shown in figure 1-1. A
summary of the tables, their location, and their use follows:

Location Name

Core FSLIST

Core RELOC4

FSUST

Use

Gives identification of
each logical unit that
holds file space.

Table is actually part
of resident MSOS.

Holds relocation values
for the major programs:
SMCMON, SMCEDT,
SMCSRT, SMCIMG, and
SMCFMG

LUN OF DEVICE 3 HOLmNG FILE SPACE

LUN OF DE\1CE 1 HOLDING FILE SPACE

LeN OF DEV!CE 0 HOLDING FILE SPACE

RELATIVE TO R,ECORD

RECORDS READ
INTO CORE IN
BURSTS USED BY
TOURNAMENT

RSA (RECORD
STORAGE AREA
FIRST. POINTERS
LATER)

tABSOLUTE ADDRESSES OF PROGRAMS WHEN BEING EXECUTED IN CORE

"

Location

Core

Core

Core

Disk

Disk

(\\'INNERI
LOSER)

1¥EEFM t "*' "ee' i

Name

Fixed tables
(y tables)

Variable Tables
File table

Key tables

Tournament Tables
RSA (record storage
area, i.e., bins)

Sequence number
array

TSA (tag storage
area)

Sequence directory

Segment directory

{
d

RELOC4
(6' VALUE TO
BE SUBTRACTED
TO ABSOLUTE

d MODULE IN CORE)

d
FIXED TABLES
(AL90 SIZES OF
BUFFERS ARE
PROGRAMS. 6 4
COUNTERS. FWAS
OF TABLES)

d

ADDRESS OF KEY SORTI~ ROUTINE'

51' .:LA ,iiR5i1i'Pf ' .. 1+ ., •

Use

Hold various parameter
values for run values
and for programs while
in core

Holds parameters for
all user and work files
Hold keys and key locations
in each file

Holds records (internal
sort) or record pointers
(intermediate or final
merge)
Pointers to RSA records
as written in sequences
of records
Bin indices

Parameters for each work
file, including filnum

Links filnums for work
files that extend to a
second disk

TOURNAMENT
PROCESSORS
(MAY OVERLAY
ONE ANOTHER)

Figure 1-1. Sample Relation of Sort/Merge Tables, Programs, and User Records

96769260 A 1-1

FSLlST

This file space list table (figure 1-2) is a core-resident part
of MSOS.

For each logical unit that holds file space for the file
manager, there is a corresponding entry in FSLIST. There­
fore, n such logical units would correspond to n contiguous
entries in FSLIST.

Sort/Merge uses FSLIST to determine which logical units
hold file space. This information is used when Sort/Merge
attempts to define a new segment for a work file (c.f.
segment list).

Figure 1-2 is a portion of FSLIST used by Sort/Merge. The
table is vertical in format, with all information for each file
space device held in contiguous words.

RELOC4

RELOC4 is the relocation values table. RELOC is the
routine that. adds a relocation factor to each of the
relocatable programs designated by the table RELOC4. The
table is used for SMCMON, SMCEDT, SMCSRT, SMCIMG,
and SMCFMG. The relocation factor used is the first word
address of a reference point labeled HERE. Each entry in
RELOC4 has the value:

FW A of some relocatable program - FW A of HERE

FSLIST

7 6 WORD 15

o
Nl = NO. OF WORnS IN ENTRY 11 L1 = LU OF DEVICE 1

Nl - 1 WORDS USED BY FILE MANAGER ,
BUT NOT BY SORT/MERGE

Nl-1 N2 = NO. OF WORm IN ENTRY 21 L2 = LU OF DEVICE 2

N2 - 1 WORm USED BY FILE MANAGER ,
BUT NOT BY SORT/MERGE

Nl+N2-2 N3 I 1.3

LAST FFFF16

,

0338
I • '

FIgure 1-2. FSLIST Format

1-2

o

,

,

FIXED TABLES I

These tables are grouped in a fixed format; i.e., the tables
have the same size and format for each run, but values for
the entries differ from run to run.

Entries in the 98 word, fixed table are grouped into six
categories:

o Parameters that are part of a general definition of the
current run

• Addresses of items in variable tables

e Memory limits

• Phase sizes

• Dynamic variables (e.g., a record count)

• Logic addresses

VARIABLE TABLES

Since the number and types of input files and key fields
differ from run to run, a variable amount of core must be
used to describe these variables.

The file table has two sections. The first portion is built by
SMCEDT; the latter portion is built later during the run.
Only the portion built by SMCEDT is a part of the variable
tables. The file table expansions are later generated higher
in core but are derived from the unexpanded file tables in
the variable tables.

Logic overlays (SMCSRT, SMCIMG, SMCFMG) are brought
into core immediately next to and above variable tables (see
appendix C).

FILE TABLE

\

I';'~- -

/'

('

('
\,

('
\

~~

(

"-

(~

\....-

~

'---'

~
(
'-- "

There is one file table for each user file and for each work
file. The table stores both static and dynamic parameters.
The first group of parameters is set up when input (
parameters are processed: '.

• Type/ID: storage device/skip, and do flags/ASCII or
Binary/LUN/work or data file flags/extended or normal
file

• Filnum

• Record and buffer length

• Skip and do counts

The remaining parameters are added as the file is processed

• I/O buffer address

• Record, block, and error counts

96769260 A

(
\,,- '

,~' ,
"'--'

'!'l

'I

(

~)

()

o

c
",

r \

o

()

• Deblocking data (current FRB from which data is being
drawn)

• Work area information

• Status of file when file manager last used it

• File address of FRB containing current 'record

KEY TABLE

SMCEDT sets the key table with the user's key definitions as
these are read and analyzed from the KEYS message input.

A completed key table describes each user key field in a
fashion chosen for efficient use by CMPKEY, the only key
table user other than SMCEDT. (If there were other users of
the key table, CMPKEY efficiency would still be the prime
influence on key table design because CMPKEY is used much
more often than any other Sort/Merge logic.)

Key table entries have one of three formats:

1. Fixed-length key: Word 0 = FW A of key minus
FWA of logical
record

Word 1= FWA minus 1 of
logic tailored to
type and order

2. Variable-length key: Word 0 = FW A of key minus
FWA of logical
record

Word 1 = FWA minus 1 of
logic tailored to
type and order

Word 2 = LWA+1 of key
minus FW A of logi-
cal record

Additional words are needed to describe keys that use
multi-pass processing (see the example that follows).

3. Key table terminator: Word 0 = FFFF16

The key-table terminator appears at the end of each key
table to indicate the end of the table.

The fixed-length key format is used to describe a key of
fixed-length, which is one of the following key types:

• Floating point

• Signed binary

• Logical binary

• Upper character (within a word)

• Lower character (within a word)

Since each of these key types is of fixed length, the entry
need only mention the key type, the relative start, and the
order (ascending or descending). It is assumed that the user­
defined key fields are oriented in the same way relative to
the start of each logical record.

96769260 A

Word 0 designates the start of the key field relative to the
start of any logical record containing that key field. Word 1
designates the address of the routine that processes that
type and order of the key field.

For a character key field on a word boundary with a word
length of two or more, .the variable-length key format is
used. Words 0 and 1 are used as before, but word 2 is added
to designate the end of the key field relative to the start of
any logical record containing that key field.

The following key table rules list the routines and con­
straints used for key processing.

1. F ,A/D, even column is illegal (F = floating point, A/D =
ascending or descending).

2. F ,A/D, odd ~olumn uses CMPF A/CMPFD.

3. S,A/D, even column is illegal (S = signed binary) •.

4. S,A/D, odd column uses CMPSA/CMPSD.

5. L,A/D, even column is illegal (L = logical binary).

6. L,A/D, odd column uses CMPLA/CMPLD.

7. C,A/D, even column, 1 uses CMPCLA/CMPCLD (C
character).

8. C,A/D, odd column, 1 uses CMPCUA/CMPCUD.

9. C,A/D, even column, 2 uses CMPCLA/CMPCLD fol­
lowed by CMPCUA/CMPCUD.

10. C,A/D, odd column, 2 uses CMPLA/CMPLD.

11. C,A/D, even column, 3 uses CMPCLA/CMPCLD fol­
lowed by CMPLA/CMPLD.

12. C,A/D, odd column, 3 uses CMPLA/CMPLD followed by
CMPCUA/CMPCUD.

13. C,A/D, even column 4 uses CMPCLA/CMPCLD
followed by CMPLA/CMPLD followed by
CMPCUA/CMPCUD.

14. C,A/D, odd column, 4+2n for n
CMPWA/CMPWD.

0,1,2 ••• uses

15. C,A/D, even column, 5+2n for n = 0,1,2... uses
CMPLA/CMPLD followed by CMPWA, CMPWD.

16. C,A/D, odd column, 5+2n for n = 0,1,2... uses
CMPWA/CMPWD followed by CMPCUA/CMPCUD.

17. C,A/D, even column, 6+2n for n = 0,1,2... uses
CMPLA/CMPLD followed by CMPWA/CMPWD followed
by CMPCUA/CMPCUD.

The operator input KEYS statement generates the key
tables, as shown in figure 1-3.

TOURNAMENT ARRAYS

Tournaments take a number of input records (n) and order
them by comparing two records at a time. Using an
operator-designated key, the n records are successively

1-3

3-WORD ENTRY
3-WORD ENTRY l

2-WORD ENTRY 3-WORD ENTRY

~WORD E;::l ENTRY l 1 I [2-WORD r"::ORD ENTRY

~, \~~~~~~

LOGICAL BINARY, ASCENDING J START IN COLUMN 45

KEYS = ~Jl' 25- 3, 20, ~ 23, ~ 28, 6, 0 34, 5, ~ 39, 3, ~ 4

l
3' 2l' ~ I

START ON FIRST COLUMN OF J l SIGNED BINARY, DESCENDING

1-4

LOGICAL RECORD 2-CHARACTER KEY

CHARACTER, DESCENDING START IN COLUMN 43

START ON THmD COLUMN OF
LOGICAL RECORD

20-CHARACTER KEY

FLOATING POINT, DESCENDING

Word

0

1

2

3

4,

5

6

7

8

9

10

11

12

13

14

START ON COLUMN 23

CHARACTER,ASCENDING

START IN COLUMN 28

6-CHARACTER, KEY

Contents Comments

0
L, A, 1 entry

-1 + fwa of CMPLI\

1

-1 + fwa of CMPWD C, D, 3, 20 entry

11

11
F, D, 23 entry

-1 + fwa of CMPFD

13

-1 + fwa of CMPLA

14 C, A, 28, 6 entry

-1 + fwa of CMPWA

16

16

-1 + fwa of CMPLA C, A, 34, 5 entry

16

NOTE: fwa = fixed word address

CHARACTER,ASCENDING

3-CHARACTER KEY

START IN COLUMN 39

CHARACTER, DESCENDING

5-CHARACTER KEY

START IN COLUMN 34

CHARACTER, ASCENDING

Word Contents Comments

15 -1 + fwa of CMPCUA

16 17 C, A, 34, 5 entry

17 -1 + fwa of CMPWA

18 19

20 -1 + fwa of CMPLD
C, D, 39, 3 entry

21 20

22 -1 + fwa of CMPCUD

23 21
C, A, 43, 2 entry

24 -1 + fwa of CMPLA

25 22
S, D, 45 entry

26 -1 + fwa of CMPSD

27 FFFF
16

End of key table

Figure 1-3. KEYS Statement and Table

96769260 A

,------
(
'-..

r--

C_

l"
.......

r---

\~ ,- .
l:)

/,..-

I
\,~

.,.
(-,.
,~,

~.

... -......

~

\ '-

(~'

\ ...

C
(/-

,,,..---......
\
' , ~ .. '

,r-,

(.

(--",
\,,-,)

o

,1""--"'1

l) , - ./

()

o

compared until the records are totally ranked; i.e., if a
five-character letter key is used, with ascending order
specified, comparisons are made until each record appears in
its alphabetically ranked slot, as in a dictionary. Once every
initial tournament (which compares the records themselves)
is sorted alphabetically, the outputs may be merged in a
hierarchy of merging operations. This hierarchy is the
merge tree structure described earlier. ' For the example
used before (second example in section 3), each of the 300
input records is first sorted using the keys by 24 tourna­
ments, 13 records being sorted per tournament. These
records are placed in bins called a record storage area
(RSA), and written to disk in a single sorted sequence
(string).

Since it may be necessary to have several sequences
(tournaments), two other tables are necessary: the sequence
number array, which has pointers to each record in the
sequence, and the tag storage area (TSA), which is used for
merging operations.

After the first sorting (assuming intermediate merging is
necessary because not all the records could be sorted in core
during a single pass or tournament), the RSA does not
contain records but only pointers to records. At all times,
the TSA contains the ranked outputs of the tournaments
following merge operations. Merges occur only with sorted
outputs so the two compared items (one from each string)
need to be compared only to the same ranked item; e.g., the
following are compared:

AB ••. CA ••• AB wins over CA

BA •.• EN •.• BA wins over CA

ED •.• ES .•• CA wins over ED

Fl ••• NE ••• ED wins over EN

HA .•• TO .•• EN wins over FI

ES wins over FI

String lA String 2A FI wins over NE

HA wins over NE

TO is the residue

String IB

The formats of the RSA, sequence number array, and TSA
are described below. Their relationship is shown in
figure 1-4.

RECORD STORAGE AREA (RSA)

The RSA is an array of bins used for the internal sorting
operation or for the intermediate or final merging operation.
For the internal sorting operation, each bin holds one logical
record; for the intermediate merging and the final merging
operation, each bin holds a two-word line with the contents
defined below.

Word

o

1

96769260 A

Contents

FW A of a logical record residing in an
input buffer

FW A of the file table corresponding to the
input buffer and to the file from which
the logical record came

The rank of each RSA bin relative to the other RSA bins is
recorded in a binary tree structure called the TSA. Because
this binary tree structure must have an even number of RSA
bins for its oepration, an imaginary RSA bin may be used
(see Sequence Number Array below) when the number of real
bins is odd.

SEQUENCE NUMBER ARRAY

This table of one-word binary numbers has one entry for
each RSA bin. Its entries are used as the major key fields in
comparing the logical records associated with the RSA.

When the number of RSA bins is even, there is exactly one
sequence number for each RSA bin. To preserve the even
binary tree structure when the number of RSA bins is odd, a
sequence number of 7FFF is added. This losing-dummy
sequence number is held by the last word of the sequence
number array.

TAG STORAGE AREA (TSA)

This table stores indices that link the sequence number array
to the RSA bins. Suppose that the RSA bins, real and
imaginary. are numbered 0, ••• ,G-I. Each such number is
called a bin index and each G bin index designates an RSA
bin, as well as the corresponding entry in the sequence
number array.

Each TSA entry contains a bin index to designate the loser
of one contest between two RSA bins in a binary tree
structure of such contents; i.e., in a tournament. There­
fore, at any time there will be G-l one-word entries in the
TSA to indicate the relative rank of each RSA bin. At the
end of all tournaments, the TSA will have all records ranked
(sorted) according to the operator-entered sorting criteria
(key).

DISK-RESIDENT TABLES

SEQUENCE DIRECTORY

Each sequence output on a work file has an entry in the
sequence directory, which is a work disk file. The entries
are actually file records. The format of the entry is:

Word

o

1

2

3

Contents

Length of the entry, including this length
word

Number of the sequence this entry con­
cerns

Flags and logical unit number upon which
the first segment of the sequence resides
(c.f. logical unit of file table for format
of this word).

FILNUM (disk file identification) of the
first segment of the sequence

1-5

RSA (RECORD STORAGE
AREA) FOR AN INTERNAL
SORT (INTERMEDIATE OR
FINAL MERGE OPERATION) TABLE· INPUT BUFFER FWAS

FWA J ~ FWA ~

INPUT BUFFER
FILE 1,

FWA RECORD 1

:

B rF --RECORD 1

:

RECORD 1
BUFFERED
INPUT DATA
IN ITS
INITIAL
FORMAT

L...--.+

FILE 2,
RECORD 1

RECORD 2
~

TSA
BINS (TOP STORAGE AREA) SEQUENCE NUMBER ARRAY

RECORD 3 ~

RECORD 4

-

BIN INDICES=G NUMBERS

RANKED (INDICATES LOSERS OF
THE TOURNAMENT COMPARISONS)

~

NOTE: EACH TOURNAMENT MAY USE ONLY..!.. th OF THE TOTAL NUMBER OF RECORm WHEN M IS A (NON-EVEN) DIVISOR
m .

OF THE TOTAL NUMBER OF RECORm, N; FOR EXAMPLE, N = 300, M = 13, 26, 52, 104.

Figure 1-4. Tournament Tables

SEGMENT DIRECTORY

When a work disk file runs out of space, Sort/Merge
attempts to define a new filnum on another disk drive. The
two FILNUMs, one exhausted and one fresh; may be viewed
as segments of the same logical file.

The segment directory is a disk file containing entries
linking segments (filnums) together. The entries are
actually file records. The segment list is flagged in its file
table as a user file to avoid recursion should the segment list
logic try to extend the segment list across two devices.
Format of the segment directory is:

Word

o

1-6

Contents

Length of the entry, including this length
word

Word

1

2

3

4

Contents

Flags and logical unit number of the old
segment (logical unit number of the file
table for the format of this word)

filnum of the old segment

Flags and logical unit number of new
segment (logical unit number of file table
for format of this word)

filnum of new segment

The above entries, which are added to the segment list as
needed, remain in chronological order. However, during a
Sort/Merge sort run, a FILNUM for a work file may be
released and redefined several times. Therefore, the same

96769260 A

(
\
"- ...•.

r-'---'

17

r

~

(
',-,

.---..

r-'
I

c
,,,,""'-"""',

....... ,.

(r---.

\ '

r--'
(
\"-

('
.,"-....

('
I,

()

I:),
r-,
I 'I

i

l) ,--,'

•
:,.-,)
'-'"

o

FILNUM may appear several times as an old FILNUM or as a
new FILNUM within the segment list. However, using the
chronolgical order, Sort/Merge resolves these ambiguities
when looking up extension segments.

SEQUENCE DffiECTORY

~} OTHER
---. WORK

FILES
~.

SEGMENT DmECTORY

FILNUMA

FILNUMB -

0341

The sequences and their directory are the only files eligible
for extension via the above mechanism.

Figure 1-5 shows the relations of the files to the directories.

WORK FILE

~ WORK FILE

WORK FILE
FILNUMA

r---

) DISK a

WORK FILE
FILNUMB

~
WORK FILE
FILNUMA

) DISK{3

WORK FILE
FILNUMB

I'"

Figure 1-5. Disk Resident Tables

96769260 A 1-7

('
\

c

(",--.....,
I, '

r ,- .. ,

['
'".-
j"""--""

o

o
o

()

o

o

o
o

FILE MANAGER USE BY SORT/MERGE J

i J , ,L 1'" ,'4,# 1ft? ·1I.f,P p;;." I' iEN •• ·@,'4 b*: t \$I

The following is a brief introduction to the file manager.
For specific information, consult the MSOS File Manager
Reference Manual.

NOTE

If an MSOS file is specified in the OUT­
FILE command, that file is released and
redefined as an MSOS sequential file.
This ensures that the output is stored
beginning at record 1.

CAUTION

Only MSOS sequential files may be used
for Sort/Merge output.

From the point of view of the file manager, mass storage is
subdivided as follows: File space includes the logical unit
which includes the file which includes the FRB (file record
block) which includes the file record. Each file must reside
entirely on one logical unit.

....

... 3 FRB HEADER WORDS ..J
FRB

FIRST FILE
RECORD

Each file is described by an FIS (file information segment), a
group of 16 contiguous words recorded on mass storage. On
mass storage, for efficiency, the FISs are blocked into 96-
word FIS blocks, each containing up to five FISs. The FISs
locate the files in the file record blocks.

Files are written in single or linked 96-word file record
blocks (FRBs). Each FRB contains a three-word header
followed by n records of variable or fixed length. If the
record is longer than 93 words, linked sectors compose a
single FRB. Conversely, several short records can be
written on a single 96-word FRB. An example of an FRB is
shown in figure J-1.

A file record consists of one header word, a two-word
recorder-pointer if the file is indexed-linked, and zero or
more data words. Assume that the file is not indexed­
linked. A sample file record is shown in figure J-2.

NOTE

Sort/Merge skips removed file records
without notice to the operator.

ONE OR MORE FILE RECORDS

SECOND FILE
RECORD

..
p

NTH FILE
RECORD

NUMBER OF FILE RECORa) IN THIS FRB

SECTOR NUMBER OF NEXT FRB

96769260 A

SECTOR NUMBER OF LAST FRB

Figure J-1. Sample File Record Block

FILE RECORDS

HEADER WORD ZERO OR MORE DATA WORDS
p

N+l FmST DATA WORD NTH DATA WORD

LENGTH IN WORDS OF FILE RECORD, INC LUDING HEADER WORD

REMOVED BIT IMPLIES NONEXISTENT FILE RECORD IF EQUAL TO 1.

Figure J-2. Sample File Record

J-l

Sort/Merge supdivides file records into logical records, as if
the data words of the file record were a block of magnetic
tape. See figure J-3 for an example.

The file manager rounds the user-specified FRB size up to
the nearest multiple of sector size. As a user of the file
manager, Sort/Merge specifies that the maximum file record
size should be blksiz+1. Therefore, the actual FRB size is

3+1+blksiz
96 * 96 words

Therefore, to conserve mass storage space, blksiz+4 should
be equal to or slightly less than a multiple of 96 words.

The file manager uses an FIS directory (also held on mass
storage) to find the files. The FIS directory is indexed by
means of a scatter (hashed) code computed from filnum, the
unique numeric file identifier. Since the FIS directory
consists of pointers to FIS blocks, the file manager proceeds
quickly from a filnum identifier to a search of the correct
FIS block in the attempt to find a matching FIS.

When a filnum is released, the FRBs are returned to'
allocatable file space. The FIS, however, remains intact,
although it is flagged as released.

When a filnum is defined, the file manager first tries to find
a corresponding FIS in core. If that fails, the file manager
consults the FIS directory. The FIS directory search has one
of three results:

1. If a matching but previously relreased FIS is found, it is
reused after it is initialized to the attributes of the new
filnum.

2. If a matching still-defined FIS is found, the filnum
definition attempt is stopped since each filnum must
have a unique definition.

3. If a matching FIS did not exist, a new FIS is created.

The file manager supports a multitude of file organizations
and requests. However, Sort/Merge assumes that it is only
dealing with sequential files, and Sort/Merge only uses four
file manager requests: DEFFIL, STOSEQ, RTVSEQ, and
RELFIL.

DEFFIL defines a file with user specification of filnum,
maximum file record length, and logical unit.

STOSEQ stores a user-specified buffer as a file record
following the current last file record of a sequentially­
organized user-specified filnum.

RTVSEQ can be used on any file organization and reads the
next file record into a user-specified buffer from a user­
specified filnum, regardless of file organization. However,
Sort/Merge deblo~ks that file record so that is appears to
contain no record pointers; i.e., as if the file is not indexed­
linked.

RELFIL releases a user-specified filnum. The FIS remains
on disk for possible future reuse, and the FRBs are returned
to allocatable file space.

NOTE

Sort/Merge uses the master file combina­
tion of zero on all retrievals. File records
in removed status are skipped without
notice to the retrieving program. File­
locked status is ignored during retrieval
but is treated as an error during storage.
Sort/Merge checks the status of each file
manager request after it is completed.

FILE RECORD ..
~

HEADER WORD DATA WORns
~

~

. . . . FIRST SORT/MERGE I . . . I LAST SORT/ME RGE

LOGICAL RECORD LOGICAL RECORD

SORT/MERGE BLKSIZ

0343 Figure J-3. Subdivision of File Records into Logical Records

J-2 96769260 A

/~'
I

\"-.... .. ,

,,-- "
"

~-,

"

;,.

~
I

\""

('
"- ...

r'
,

('

~

(,

C
r-'

'-

('

('

/~

(

......

If
\ , ..

('
\ , ..

'1

('
\, ..

C.'
r,

('
',,-

r ',.,.

Ir---

(\
~

o

(J
t"

o
o
o

~\
I I

(J

I~,
~,-,i·

o
o

INSTALLATION OF SORT/MERGE

I; t'.,5 d' ""$ f.i»l. lUi i: IrP ;. : ' At ; §' i

The Sort/Merge module consists of six major programs:
SMC, SMCMON, SMCEDT, SMCSRT, and SMCFMG. Each of
these programs has its own deck, and each deck includes all
the supporting routines necessary for each program to
process its phase of the sorting, merging, or copying
operation.

The installation takes place under the control of the job
processor and the library editor. The decks used are all part
of Sort/Merge version 1.0. The deck identifications are
shown in table K-1.

1(e& Ii 9' 1M 1W

Program

SMC

SMCMON

SMCEDT

SMCSRT

TABLE K-1. SORT/MERGE PROGRAM
IDENTIFICATIONS

Identification Function

SOl SMC 1.0 Loader /Initializer

S02 SMC 1.0 Monitor

S03 SMC 1.0 Editor for operator-
input statements

S04 SMC 1.0 Sort (initial)

K

The listing in table K -2 shows the skeleton of the installa­
tion tape for absolutizing the binary records of the
Sort/Merge programs and for editing and installing them on
the program library. The installation tape is entered via the
input device (logical unit Ix) and loaded by typing *V,lu
(after *BATCH). The first record read from the tape is a
*JOB statement.

SMCIMG S05 SMC 1.0 Intermediate merging

0001

0002

0003

0004

0005

0006
0007

0008

0009

0010
0011

0012

0013

0014

0015

0016

0017

96769260 A

SMCFMG S06 SMC 1.0 Final merging and
output

FLOTN S08 SMC 1.0 Floating point

PARABN S07 SMC 1.0 Interface to CYBER 18/

COMNFP S09 SMC 1.0 1700 programs

TABLE K-2. INSTALLATION TAPE LISTING

Listing

*JOB, SMCINS, SORT MERGE INSTALLATION

*CTO,SORT/MERGE 1.0 INSTALLATION

*CTO,COPYRIGHTCONTROL DATA CORPORATION 1976

*CTO, REVISION DATE 14 JULY 1976

*LlBEDT

*K,I6
*K,P8

*L,SMC

SMC DECK-ID SOl SMC 1.0 SUMMARY-108

*P,F
SMCMON DECK-ID S02 SMC 1.0 SUMMARY-lOB

FLOTN DECK-ID S08 SMC 1.0 SUMMARY-108

PARABN DECK-ID S07 SMC 1.0 SUMMARY-108

COMNFP DECK-ID S09 SMC 1.0 SUMMARY-lOB

*T

*K,I8

*N ,SMCMON ",B

Comments

Call job processor

Call library editor

Specify input on logical unit 6 and binary
on logical unit 8

Add SMC

Generate absolute record for SMCMON in
96 word blocks

Transfer files to disk

Input from binary device

Enter update SMCMON in library

K-1

(
' ,

~~

'-...

TABLE K-2. INSTALLATION TAPE LISTING (Continued) "---

Listing Comments r-
I

0018 *K,I6
0019 *P,F Generate absolute record for SMCEDT
0020 SMCEDT DECK-ID S03 SMC 1.0 SUMMARY-108

,l

r-
0021 *T

"\... ..

0022 *K,I8 Transfer updated SMCEDT to disk \)

0023 *N,SMCEDT",B

0024 *K.I6 C
0025 *P,F Generate absolute record for SMCSRT
0026 SMCSRT DECK-ID S04 SMC 1.0 SUMMARY-108 ('
0027 *T \..

0028 *K,I8 Transfer updated SMCSRT to disk
0029 *N ,SMCSRT",B r
0030 *K,I9 \ '---

0031 *P,F Generate absolute record for SMCIMG
0032 SMCIMG DECK-ID S05 SMC 1.0 SUMMARY-108 /" .. ---

I
0033 *T '-.

0034 *K,I8 Transfer updated SMCIMG to disk
0035 *N,SMCIMG",B

0036 *K,I6 C
0037 *P,F Generate absolute record for SMCFMG
0038 SMCFMG DECK-ID S06 SMC 1.0 SUMMARY-108 f'
0039 *T
0040 *K,I8 Transfer updated SMCFMG to disk
0041 *N,SMCFMG",B

0042 *K,I6 ',-.

0043 *Z Terminate library processing for
Sort/Merge ('

'-.._ ..
0044 *CT<?, SORT/MERGE 1.0 IS INSTALLED

0045 *U c
0046 *END

c
c

C~

K-2 96769260 A c

o

,,,.--....\
f I
\.--.,/

o
(J

()
I~".

I I

L.,

'·,.-......'1
I '
! :
I,~/

o

o

(J

DIAGNOSTIC MESSAGES L

,;;*. lit "gilHeN' i 9bi4"1 . 6' 14 lll" " •. ,,.m .. !!a,!.

Table L-l contains an alphabetical listing of all Sort/Merge
diagnostic messages. In some cases parameters are an
integral portion of the message. A full explanation of the
parameters is found in Messages, section 4.

Included in table 'L-l are run parameter (RP) statements and
information-only (I) statements.

Run Parameter (RP)/
Information Only (I)

(I)

(I)

(I)

(I)

(I)

(I)

(I)

(I)

(I)

(RP)

96769260 A

TABLE L-l. SORT/MERGE DIAGNOSTIC MESSAGES

Statement

ABNORMAL ERROR = <n>

BLKSIZ/RECLTH f:. <parameters>

COpy BEGINS

DEFFIL REQIND = <parameters>

DELETES = <n>

DONE = <n>

EDIT. BEGINS

EXPECTED <parameter>
FOUND <character>

FINAL MERGE BEGINS

FREAD STATUS = <parameters>

FWRITE STATUS = <parameters>

FWAY = <n>

G = <n>

INFILE <n> = <parameters>

Meaning

Miscellaneous errors

The operator may direct the program to
reread the file, to delete it, or to
continue without operator interaction for
the record size type of error.

SMCSRT is loaded and is starting a copy
run.

Bad user-defined output file status; run
aborted

The phase is ended and n records have
been deleted

Number of records deblocked and pro­
cessed

Edit is ready for operator inputs using
prompting messages.

Editor did not find the type of parameter
that should have .been entered. Opera­
tor may be able to correct the error.

Sort-only run: SMCFMG is ready to
start the final merging process.

Operator may direct the program to
reread the file, to delete it, or to
continue without operator interaction for
format read errors.

Operator may direct the program to
rewrite the file, to abort the run, or
to continue without operator inter­
action for format write errors.

Sort-only run. Maximum number of
wkbksz string input buffers that can be
used during final merging

Sort-only run. Input has been checked
and accepted; <n>-l indicates largest
number of records that can be sorted
in core (if more than n records, Sort/
Merge and mass storage are required).

Operator should supply the input file
parameters.

L-l

Run Parameter (RP)/
Information Only (I)

L-2

(I)

(I)

(I)

(I)

(RP)

(I)

(RP)

(I)

(I)

(I)
(I)

(RP)

TA'BLE L-1. SORT/MERGE DIAGNOSTIC MESSAGES (Continued)

Statement

INTERMEDIATE MERGE BEGINS

ISTWAY = <n>

INTERNAL SORT BEGINS

INTERPHASE RECORD COUNTS
DISAGREE

IWAY = <n>

KEYS = <parameters>

LUN = <k>
FILNUM = <f>

MERGE-ONLY BEGINS

<n> = 12

OUTFILE <n> = <parameters>

OVERSIZE BLOCK <parameters>

PASSED = <n>

READY FILE = <n>

RECORDS IN = <m>
RECORDS OUT = <n>

RELFIL REQIND = <parameters>

RTXSEQ REQIND = <parameters>

RUN = <parameters>

Meaning

Sort-only run. SMCIMG is ready to
start its merging, process.

Sort-only run. SMCIMG has optimized
merge strategy - <n> is the number
of strings used for first merge.

SMCSRT is loaded and is starting a
sort-only run.

Number of output records does not equal
the number of input sort records.

Sort-only' run. Maximum number of
wkbksz input string buffers that can
be used during intermediate merging

Operators should supply the file keys.

The following messages concern file
f from logical unit <k>.

Merge-only run. SMCFMG is ready to
start the final merging process.

Erroneous SMCFMG fixed table size;
run aborted

Operator should supply the output file
parameters.

Operator may direct the program to
reread the file. to delete it. or to
continue without operator interaction
for this block size type error.

The specified file composed of <n>
records was either down or skipped.

The user should ready the file. or
direct Sort/Merge to delete or bypass
the file.

RECORDS IN specifies the number of
records sent from unblocking to pro­
cessing; RECORDS OUT specifies the
number of records for the converse.
Unless a record is deleted or lost
(hardware error). m is equal to n.

The release file operation failed.
Operator may direct program to retry
the release or to continue with or with-

. out operator interaction for this type
of error.

Operator may direct the program to
again retrieve the file. to delete it. or
to continue without operator interaction
for this type of retrieval error.

Operator should supply the run parameters.

96769260 A

\

\

.'~.

,----,

...

r

'-

9

("
' _ ...

(~
'

r--
I

r--

c

Ir--

(-----.

c

('
............

......... ,

L)

o
o
o
o
o
o
()

()

()

o
o

o
o
o

Run Parameter (RP)/
Information Only (I)

(RP)

(I)

(I)

(I)

(I)

96769260 A

TABLE L-l. SORT/MERGE DIAGNOSTIC MESSAGES (Continued)

Statement

SEGMENT LIST ERROR

SEQ DIR ERROR

SEQUENCE ERROR

SEQUENCES = <n>

SMC _BEGINS

SMC ENDS

STOSEQ REQIND = <parameters>

TOO LITTLE CORE

TOO LITTLE DISK

TYPE-IN ERROR

U = <n>

Meaning

Sort-only run. Work file accountability
lost; run abortect

Sort-only run. Sequence directory
read/write error; run aborted

Latest record should have preceded pre­
vious record in key merging. Operator
may direct program to delete the record
or to continue with or without operator
interaction for this type of error.

All completed logical records have been
grouped in n sequences foUowing a com­
plete,d internal sort procedure.

Program is beginning.

Program has been completed.

The operator may direct the program to
again store the file, to abort the run, or
to continue without operator interaction
for this type of store error.

Requested inputs cannot be processed in
available core. '

Sort-only run. Inadequate disk space; run
aborted

Error in trying to interpret operator's
command.

Sort-only run. SMCIMG has optimized
merge strategy; n is the unit strings
rating.

L-3

;'

\
..... _.'

r--'
\..._--

.-.".

I.
',--

~

(
\

fi

C

C~
(
I
',-."

(" ,

C'
r"

l '-.. ,

...............

c

(,
\....._/

r~'

U

C I

f)
~

0

0

0
C)

0
;,'~

r'\
I

L:

\ l ,. __ ... j

i:~

r'\
()
'----'"

r---..
t) ,----

(')
-......./

i'\
\~.

,
:"'~)
~

C)

0

0

~I

~I
CJI

S:
<I

~I
0

COMMENT SHEET

MANUALTITLE ___ C_O_N_T __ R_O_L __ D_A_T_~_®_R_S_o_r~t/~M~e~r~g~e~V~e~r~s~io~n~l~.O~R~e~fe~r~e~n~c~e~M~an~u~a~l~ ____________ _

96769260 A
. PUBLICATION NO. ____________________ REVISION ________________ _

FROM NAME: __ _

BUSINE~S
ADDRE~: __ ---___

COMMENTS: This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed'
by Control Data Corporation. An.yerrors, suggested additions or deletions, or general comments may
be made below. Please include page number ..

STAPLE

STAPLE

STAPLE

FOLD '
---------------------~

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAiLED!N U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
PUBLICATIONS AND GRAPHICS DIVISION
4455 EASTGATE MALL
LA JOLLA, CALIFORNIA 92037

FiRST CLASS
PERMIT NO. 3'33

LA JOLLA. CA.

---- - ----------~
FOLD

STAPLE

~
z
~

-J

0
Z

S
<
~
::>
0

',-- .

/"-.

/"

\.

~

c·
r'

I,

\

r-'
I,

'

~
1
',--

(---
\
'-.. ~

f"

(;---......

\
' "

.r---
(

""",,-- .. -

,,.--..
I

II
"",--,

(---'
.......... -

(
'

l. r--
,

c-
..,.

,r'
\
'-- ..

r-'
'---~

('

"'--

C
'

/

c

,--,
',,---

CORPORATE HEADQUARTERS. P.O. BOX 0; ..M!NNEAPOLIS. MINN. 55440 LITHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

\

~~
CONTI\.OL DATA CO~OR(\TION

