
r

~u®®
COMPUTER

MAINTENANCE

Volume I
SECOND EDITION

CONTROL DATA INSTITUTE

1700 COMPUTER

MAINTENANCE TRAINING MANUAL, VOLUME I

CONTROL DATA CORPORATION

For Training Purposes Only

This book was compiled and
written by instructors of

Training Department
Control Data Institute
CONTROL DATA CORPORATION

Publications Number
60169500B
August, 1970

REVISION RECORD
REVISION DESCRIPTION

(2-66) First edition.

(7-61) Manual revised.

A

(8-10-70) Manual revised. Affected pages are title paRe. revision record

B 31 1-1 1-2 1-4 1-5 1-10 1-31 2-2 2-3 2-7 .~-4 ~-13 A-I

~

[publication No.
60I69500B

Ie) 1967

by Control Data Corporation

Printed in the United States of America

18 23 24 25 26 27 28 29 30

A-2 And A-26

Address comments concerning this
manual to:

CONTROt DATA EDUCATION INSTITUTES
4530 West 77th Street
Minneapolis, Minnesota 55435

ATTN: Advanced Technology
Development Division
Hardware Development, PGT310

FOREWORD

This manual has been prepared to acquaint the reader with the CONTROL DATA
1700 Computer instructions. Information covers the operation of all 1700
machine language instructions and addressing modes. The Appendix contains
flow diagrams of most 1700 instructions and also includes various tables
to facilitate the reading or writing of 1700 machine language programs.

Work projects are interspersed throughout the manual and should be completed
before continuing to subsequent areas. Answers to the projects are given
at the end of the chapter containing the project.

In any technical writing effort, possibilities of errors are always present.
Although Control Data Institute makes a conscious effort to minimize errors in
its publications, errors are nevertheless inevitable. If you would like to
make the existence of errors known, or would like to make comments or suggestions
concerning the manual, you might find the Comments Sheet at the end of the man­
ual to be of help. Forward your comments to the Educational Development Section,
Control Data Institute, 3255 Hennepin Avenue South, Minneapolis, Minnesota
55408.

iii

1700 TRAINING MANUAL,

Chapter I

Chapter II

Chapter III

Appendix

1700 TRAINING MANUAL,

Chapter I

Chapter II

Chapter III

Chapter IV

1700 TRAINING MANUAL,

Chapter I

Chapter II

Chapter III

Chapter IV

Chapter V

GENERAL TABLE OF CONTENTS

VOLUME I

VOLUME II

VOLUME III

tv

Non-addressable Instructions

Addressable Instructions

Addressing Modes

Flow Diagrams & Tables

1700 Basic Logic & Timing

Registers & Controls

Adder/Shifter

Memory

Common Synchronizer

Teletypewriter Controller

Paper Tape Reader Controller

Paper Tape Punch Controller

Card Reader Controller

CONTENTS

CHAPTER I NON-ADDRESSABLE INSTRUCTIONS

Introduction •

Register Reference Group

Skip Group

Interregister.

Shift Group.

Answers - Chapter I.

CHAPTER II ADDRESSABLE INSTRUCTIONS

Introduction •

Instructions

CHAPTER III ADDRESSING MODES

Introduction •

Relative

Indirect

Indexing

Multiple Addressing.

Answers - Chapter III

APPENDIX FLOW DIAGRAMS & TABLES

v

1-1

1-3

.1-17

.1-22

.1-27

.1-31

2-1

2-1

3-1

3-1

3-3

3-6

3-8

.3-12

INTRODUCTION TO THE 1700 COMPUTER SYSTEM

INTRODUCTION TO THE 1700 COMPUTER SYSTEM

BASIC INDUSTRIAL CONTROL SYSTEM CONCEPTS

The world in which you live is an analog world. You continually receive analog
~epresentations of the physical phenomena from your environment. The other
animal and plant life of the environment also receive and respond to the same
analog representations. Man, however, in his development has found it necessary
to convert these analog representations into a form in which they can be more
easily recognized and measured.

Analog representations appear in many forms; for example, a temperature, the
flow of fluid, the flow of electricity, atmosphere or other gas pressures and
complex chemical compositions.

To become very basic in our early discussion of the analog world, let's look
at some well-known examples. The thermostat in your home is a good example of
man's conversion of analog representations into a recognizable and measurable
form. The thermostat on your wall is normally a bi-metal instrument; that is,
an instrument that has as its heart two pieces of metal bonded together. The
two metals expand at different rates so that as the temperature changes this
bonded unit will tend to warp.

SWITCH

IT.
SWITCH

Meta I If!
Metal :(12

FIGURE 1

As you can see in the illustration, when the temperature is low the bonded
unit does not warp. The switch connection is closed. This low temperature
condition illustrates a method by which your furnace can be turned on. As the
temperature rises, the bonded unit warps. Metal #1 expands faster than metal
#2. As warping continues the switch connection is broken and for our illustra­
tion~ the furnace is turned off.

Another example of analog conversion is the water meter in your home. When
you turn the water in your home on, a small turbin-like wheel revolves in the
stream of water entering your house. A small counter attached to the wheel

1

begins to revolve and the number of revolutions are recorded on a counter.
(Figure 2) This counter actually converts revolutions into the volume of
water which flows through the meter.

eTR
\

\

FIGURE 2

Similar examples can be repeated by many devices which you encounter daily.
The electrical meter on the side of your house is built around a small induction
motor. When you turn on a switch in the house, current begins to flow. This
current induces a current in the meter and causes the meter to revolve. In
a manner similar to our water meter, the revolutions of the electrical meter
are converted into the amount of electricity used.

As you can see, physical phenomena such as temperature, revolution, flow,
torque, and others are difficult for us to see and measure; therefore, a wide
range of instruments have been developed to convert these analog representations
into measurable form. These instruments appear in many forms; digital displays,
charts, scale markings and dials. In Figure 3 we have used our bi-metal
instrument with the addition of a needle indicator and graduated scale, and
have illustrated the digitizing of an analog value.

FIGURE 3

Using this simplified description of physical measurement, we can now proceed
to develop a sample Industrial Control System.

2

MATERIAL .() A~DUCT
'V PROCESS U
----------------~----------------~ l SENSOR

INSTRUMENT

FIGURE 4

In Figure 4, we see only the measurement of a discrete property of a pro­
cess. There are three components in our basic system; the PROCESS itself, a
SENSOR, which measures the variable, and an INSTRUMENT to display this measure­
ment. For example, the heat in our process can be measured by a simple mercury­
filled thermometer. The mercury is our sensor. As the temperature in the
process increases, the mercury expands and rises in the column of the thermometer.
The instrument is the column in which the mercury rises and the display is the
scale marking on the thermometer column from which we can read values for temper­
ature.

We can expand our system by the introduction of a controller.

MATER . .-.IA=L--'jIop,{ A~.
PROCESS

~ SENSOR

'----I CONTROLLER

FIGURE 5

The controller has the capability of storing and comparing predetermined values
with the value received from the sensor. To use the comparison results and
develop our controller, we must add a control response element to our system.
The capability of generating a response signal provides the means to use the
result of this unit comparison and thereby creates a controller.

For example, using our bi-metal as a sensor, we can preset the gap in the switch
contact. When the temperature in the process reaches a predetermined value

3

called the set point, our bi-metal switch opens and the HEAT ON control signal
sent to the process is discontinued (open switch) (Figure 6). As the process
cools, our bi-metal returns to the closed switch position and again heat is
added to the process.

TO PROCESS

FIGURE 6

A further expansion of our control system should be the addition of some method
of adjusting the set point value in the controller, rather than having the
value permanently built into the controller. In the simplest form this could
consist of a knob on the side of the controller.

HATEIIAL. Q
CONTROL

IESPONSE

PROCESS

CONTROLLER

f
SET POINT

CONTROL

SENSOR

FIGURE 7

0 PRODUCT -----

This knob would allow the changing of the set point. With this additional
capability in the controller, an operator can adjust process variables and
control the composition of the end product.

As the process becomes more complex, full process understanding and product
improvement result from thorough study of all aspects of the process. In order
to accomplish this process improvement effort, the process engineer needs
continuous measurement and recording of the process variables. To continuously
record process changes we can add components and build a data logging system.

4

MATERIAL ---.. 9
CONTROL

RESPONSE

PROCESS

SENSOR

CONTROLLER t---

i AID
SET POINT CONVERTER

DATA
LOGGER 4--

! J
TYPEWRITER PAPER TAPE

FIGURE 8

PRODUCT
---..

The heart of our data logging system is a small digital computer which con­
verts, edits and prints out process variables determined by the sensor. How­
ever, in order to enter sensor data into the digital computer, we must make
provision for the conversion of analog information into digital form. This
conversion is accomplished by an analog to digital device.

A further requirement of our system is a component which will produce a per­
manent record of the values we are measuring. A typewriter or paper tape
punch can well perform this function.

Now we have added (Figure 8) the necessary components which will permit our
sensor to continuously transmit values into the data logger. At predetermined
intervals controlled by the data logger, these values are recorded in permanent
form by the typewriter or output device.

In order to achieve better control of the numerous variables in a process,
we can further expand our system and accomplish the process control function
automatically.

5

--- -------

MATERIAL
--... Q

CONTROL
RESPONSE

j'rYPEWRITER

PRO'~!SS 6--:!O
DUCT

~ J SENSOR

CONTROLLER

• . L
sET '" DIGITAL TO POINT ANAr.oG

ANALOG TO DIGITAL
~V~~TF~

ON~LINE
CONTROL

:~

I I
OPERATOR
CONSOLE

FIGURE 9

Using the data logging system, the operator necessarily interprets values
as they are typed out, and manually adjusts controls to alter conditions in the
process. By the addition of another component to our system, we can automati­
cally alter control values.

In order to accomplish this function we require a digital to analog device;
for example, a device which will provide a signal to move a valve or close a
switch. In Figure 9 we show our closed loop system. By examination of the
diagram you can see that a condition in the process sensed, converted, logged
and is available to the control computer for decision making. The control
computer then makes a determination; for example: Is the temperature too high,
or too low? and transmits a signal to the controller which, in turn, generates
a control response to the process.

In this system our process can proceed automatically. All factors which affect
the process and product are monitored and adjusted as required.

As technologies improve, instrumentation techniques also improve. It is now
possible to economically sense process conditions on devices which provide
direct digital output signals.

6

MATERIAL -9 9~ODUCT
PROCESS

CONTROL
RESPONSE SENSOR

It

DIRECT
DIGITAL

CONTROLLER

ON-LINE
CONTROL
COMPUTE.R

I I

TYPEWRITER OPERATOR
CONSOLE

FIGURE 10

In Figure 10 we have shown the introduction of direct digital sensors into
our process. As you observe by review of the diagram, we have eliminated the
requirement for AID conversion. The control sequence using direct digital
sensors is functionally the same as described in our previous process.

In many cases, direct digital control is more expensive than the previous analog
methods; however, the repeatable accuracy, flexibility, and time sharing capabi­
lity gained from the direct digital method can provide the economic justifi­
cation required for its selection.

TYPICAL INDUSTRIAL COMPUTER SYSTEM APPLICATION

Although several segments of the metals industry have been among the leaders
in the use of on-line computers, the mineral or are processing function has
not seen the application of on-line digital computers. Only in recent years
has considerable interest developed in use of on-line digital control systems.

In the iron are industry, blast furnace operating improvements have spurred
developments in the preliminary are processing. For example, blast furnace
operations are much more efficient with pelletized raw materials than with con­
ventional ores. Experiments in this area were spurred partially by the devel­
opments in the taconite industry in the upper midwest. Because of the demand
by these blast furnace operations for pelletized are, a number of are bene­
ficiation plants are being constructed in this country, in Canada, and overseas.

The processing operations in new plants approach the process complexity and
large capital investment requirements of continuous chemical processes. It
is not surprising, then, to see the mineral processing industry following the

7

MINE

CRUS1iIR

SIZE

CLASSIFICATION

. ,

STOIAGE

TAI1.INGS

WATER
RECOVERY

,

TYPICAL FLOW DIAGRAM

RECYCLE
WATER

IRON ORE BENEFICIATION & PELLETIZING FACILITY

FIGURE 11

8

GRINDING

SEPARATION

MAIC! UP
WATER

I

CONCENTRATE ORE

DRYER

BALLING

KILN

CONCENTRATE
PELLETS

STORAGE

1

SHIPPING

lead of the chemical and petrochemical processors in the utilization of on-line
digital computers to increase their process knowledge and to give better con­
trol of their processes.

Typical Ore Processing Plant

Figure 11 represents, in flow diagram form, a mineral processing facility
typical ot iron ore operations in a number ot operat1ng anO planneo-ror
plants. The prime purpose of a plant of this type is to increase the iron
concentration of the ore to be shipped and to pelletize this ore before ship­
ping to give best blast furnace operation. After the ore is blasted and
removed from the ore body, the first operation in a beneficiation plant is to
crush the ore into a more uniform size and provide a storage stock pile with
classification of sizes and grades.

The next stage is a grinding operation to provide a fine powder. The separa­
tion of iron from rock may be done in many steps using the principles of (1)
magnetic separation in which the magnetic iron particles are separated from the
non-magnetic silica, (2) centrifugal forces may be used in which the separation
is achieved by the difference in density of the iron rich ore and the base
material, and (3) electrostatic potentials may be utilized to perform a separa­
tion based upon the different electrical characteristics of the desired ore
and the base.

Enriched ore is sent on to a drying stage and then to a pellet-making operation
in which the iron particles are mixed with clay materials and formed into
pellets. These pellets are then fired at very high temperatures in a fluidized
bed furnace or in a traveling grate furnace to sinter the pellets. The pellets
are now ready to be shipped to the blast furnace.

All along the line, a considerable amount of waste material is generated and
must be disposed of properly and according to modern land and water conserva­
tion principles. Extensive amounts of water are required by these plants, and
a considerable part of the plant is devoted to water recovery and waste removal.

A number of variables are of interest to operating personnel of these plants
and include many of the following: ore flows, water flows, material inventories,
chemical composition of various flows, power per ton of material processed, metal
recovery from the raw ore (process yield), production rates (comparing shifts
or daily, weekly, and monthly averages), operating hours on heavy equipment,
equipment availability and many temperatures, fuel flows, product flows, etc.
These variables represent the basic information inputs to an operational
information system utilizing a digital computer.

Typical Computer System Configuration

Figure 12 is a configuration of a typical Control Data Operational Information
System and shows some of the functional modules required in this equipment
and approximate numbers of signals commensurate with a mineral processing plant.
The system receives on/off or pulse inputs from alarm relays, belt scales which
weigh various solid material flows, and other transducers generating digital
on/off information. A typical system might include 500 to 1000 such inputs.

9

ANALOG
INPUTS

LOW LEVEL
I-NPUTS

TIC
INPUTS

CONTACT
CLOSURE
INRITS

RElAY
OUr-PUTS

DIGITAL
INPUTS

DIGITAL
OUTPUTS (

I I 1105 DRUM INTERFACE
INTERRUPTTDA.T AND STORAGE I CHANNEL

1750 1706 1708
INDUSTRIAL BUFFERED STORAGE

r---------1 I~~~~ r---"C",:",~",'A"'E"-L_.iI_N_CR_E_ME_NT __ -_4_K-I

TYPICAL CONTROL DATA 1700

1704
BASIC CDMRJTER

4K STORAGE

OPERATIONAL INFORMATION SYSTEM

FIGURE 12

10

Analog measurements of temperature, flow rates, and similar variables are
essential input information and are entered through analog input multiplexers.
Usually there are both high level and low level signals coming in to such a
system. Modern electronic instruments generate primarily high level signals
and represent the bulk of the inputs to such a system, however, thermocouples
and similar devices generate millivolt readings and are often brought directly
into the system~ Again, these analog signals are multiplexed, amplified, and
converted to digital signals in an analog to digital converter. A typical
system might contain hundreds of analog inputs.

The digital input information and the digitized analog information is sent
into the computer through some form of computer input/output interface connec­
tion. The input/output interface is under control of the digital computer
and contains the circuitry required to decode the information from the computer
as to what signal it is requesting and to transmit data to or from the computer.
Digital computers utilized in these systems generally use a basic core memory
for high speed arithmetic and data manipulation. This memory is quite often
supplemented by a drum or disc memory offering greater bulk storage at lower
cost. This type storage contains information to be logged periodically,
averaged, etc. A number of logging typewriters are desired for such things as
shift logs, daily logs, alarm logs, and other operational information logs
required by operating personnel.

There is also a necessity for an operations console which allows operating
personnel to insert information and receive information from the computer on
an as-desired, point by point basis rather than by complete logging. Control
of the process through the computer either initiated by the operator or by a
computer program is accomplished by routing signals back to the process either
as discrete output signals such as relay closures which can raise or lower
motors, etc., or as analog information which comes from digital to analog
converters.

Often systems of this type represent only sub-loops in an overall management
control system for a large intricate plant, in which case it is necessary to
have teletype or telephone data communication links to other computers at this
location or remote sites.

Features

High speed alarm scan and log.

Shutdown sequence determination.

Pulse counting.

Logging operator actions.

Analog scan with high-low limit comparisons.

Real time clock.

Input variable averages (hourly, daily -- - yearly)

11

On-line connection to analytical laboratory.

Composition calculations weighted by flow rates.

Operator entry under program control.

Periodic and demand logs.

Typewriter or paper tape output.

Control system failure monitor.

Performance calculations written in FORTRAN.

Control outputs (raise-lower contacts or D/A converters).

Equipment availability calculated and operating times accumulated.

Trend recording.

Post-failure review (process history).

Operational performance calculations and management reports.

1700 CHARACTERISTICS

The Control Data 1700 computer is a small, stored-program, parallel mode
digital computer designed to meet modern demands for fast, low-cost computation
and control. Unique hardware features, coupled with a broad range of program­
ming packages, make the 1700 a powerful, versatile tool for industrial control,
data acquisition and communications uses.

The 1700 is characterized by:

1. Advanced circuits which give the 1700 a storage cycle time and
instruction execution times well below those of many large computer
systems.

2. All-silicon components and ruggedized construction enabling the 1700
to operate under varying and difficult environments with no special
adjustments necessary.

3. Its ability to communicate not only with standard peripherals (tape
units, printers, card readers, and the like), but also with many
types of specialized industrial control and communications devices.
A direct access connection to storage facilitates high-speed data
transfers.

4. The ease with which the system may be expanded as the user's needs
dictate. The enormous computing power of the Control Data 3000 and
6000 series computers can be combined with the 1700 by means of a
special adapter connecting the main frames.

12

5. Its software providing the capability to handle a real-time and a
conventional program simultaneously.

1700 SPECIFICATIONS

Hardware

18-bit storage word (16 data bits, Program Protect bit, parity bit)
16-bit instruction word
4096-word basic storage, expandable to 32,768 words
1.1 microsecond storage cycle time
Program Protect System
Parity checking
2 indexable registers
Multi-level indirect addressing

16-level priority interrupt system, internal and external interrupts
Hardware-buffered and interrupt-buffered Input/Output
One's complement, signed arithmetic
Fixed-point Add, Subtract, Multiply, Divide
Control Data 6600-type silicon circuits
Components cooled by room air
Console switches and indicators
Standard non-buffered I/O bit rate: 1.4 million bits per second

Software

The capabilities of the 1700 computer system are exploited to the fullest by
an advanced library of software routines. All software can be operated on-line
on a time-shared basis. Standard software catagories are as follows:

Real-Time Operating System
Modular Industrial Process Control Packages
Symbolic Assembler
Macro Assembler
Fortran Compiler
Time-sharing monitor
Arithmetic Package
Utility Routines

1700 APPLICATIONS

Industrial Process Control

The logical design and physical specifications of the 1700 computer are pointed
toward making it adaptable to the vast number of uses and environmental condi­
tions encountered in industry.

It is ideally suited to serve such diverse areas of industry as conventional
and nuclear power stations, steel mills and other metals, chemical productions,
and oil and gas pipe lines. Among the functions which a 1700 control system
is capable of performing are:

13

r-----'----r--- -- ---I
I I I , ,

I

00'
I

0\ , <") I
0' 0 , 0 ,
...... ' , ,
~, ~ ~ , , I

STORAGE B ... US ..

1704

I

It

COMMON
SYNCHRONIZER

I~

,It

CONTROLLERS

l I
1 t/ ~1

1729 17 23/ 24 1721/22

Card Reader Paper Tape Punch Paper Tape Reader

FIGURE 13

1700 BASIC COMPUTER SYSTEM

14

.~

LO W-SPEED
ACKAGE P

l711/l21J 3J
Teletypewriter

COMMON
SYNC.

!
CONTROLLERS

Ir'

JiI'

1729 1723 1721

r-

If

1711/
1712

DIRECT ACCESS
1 Data Cable .
2. Address Cable ,..-- -- -," - - - -, - - - - - - " " -.

1 I

I I

~I (j'\ , t"')

0 I 0
1" I' , I'
.-I, .-I .-I ,

I ,
STORAG~ BUS

•
1704

I
I 1705 '-Trrrr - I

, I v (

I/O
EQUIPMENTS

FIGURE 14

, , ,
I
I ,
I

-- -I ,
, 1
,
I

' 5 INTERRUPT ,
/ LINES ,

,
I

L
I

-.f-.-"

IJ
1706 ~
III

~*

1706 ~
112 ~*

1706 ~
iff3 ~*

* Eight- I/O Equipments
Maximum

~

~

1700 EXPANDED COMPUTER SYSTEM

15

1. Logging
2. Data Display
3. Alarm Monitoring
4. Direct Digital Control
5. Performance Calculations
6. Remote Supervisory Control
7. Event-Oriented Control
8. ~eport Preparation

Data Acquisition and Conversion

The extremely high speed of the 1700 Computer has special relevance for the
field of research and development. Through the use of ana1og-to-digital and
digital-to-analog conversion equipment, combined with the high-speed paralle1-
processing capabilities of the computer, an opportunity for laboratory analysis
hitherto unfeasible with digital computers exists.

Areas in which the speed and versatility of the 1700 system may be applied
include medical research, wind-tunnel and aerospace research, auto-correlation,
radar and sonar studies, analysis of vibration and resonance in physical
structures, and atomic research.

Communications and Data Collection

The 1700 Computer, by virtue of its speed and input/output flexibility, meets
the requirements of message-switching and collection systems, where large
volumes of data must be transmitted over great distances in a minimum of time.

The 1700 may function as a self-contained communications center or as a high­
speed buffer, receiving data from remote terminal stations and routing it to
a large central computer for further processing.

MODEL DESCRIPTION

One of the outstanding features of the 1700 is the ease with which storage and
I/O capabilities may be expanded. Following are brief descriptions of the
standard and optional units.

1704

1705

A l700-Class computer with the following features: arithmetic,
including single-precision Multiply and Divide; basic 4096-
word storage; non-buffered output to the Common Synchronizer;
8-bit teletype communication. It includes one internal and
one low-speed interrupt.

Interrupt/Data Channel. This option increases the I/O capability
of the 1704 Computer. The 1705 enables reading from and writing
into storage via the A and Q registers and the direct access
bus. It adds 15 external interrupt lines increasing the
capability by 14 Interrupt levels to a total of 16. It imple­
ments buffered and non-buffered I/O transfers.

1706 Buffered Data Channel. This option enables buffered I/O

16

operations. It connects to the 1705 Interrupt/Data Channel and
to the direct access bus to storage. For non-buffered I/O, only
the 1705 need be add.ed to the basic computer; for buffered I/O,
both the 1705 and 1706 are necessary. A maximum of 3 1706's
may be connected to a computer.

1708 A 4096-word storage increment which may be added to a 1704 Compu­
ter, giving a total storage capacity of 8,192 words.

1709 An 8,192-word storage increment which may be added to a 1704
Computer to which a 1708 storage option has been added, giving
a total storage capacity of 16,384 words.

1703 A 16,384-word storage increment which may be added to a 1704
Computer to which a 1708 and a 1709 storage increment has been
added, giving a total storage capacity of 32,768 words for a 1704
Computer.

Storage Size':' Models Required

4k 1704

8k 1704, 1708

16k 1704, 1708, 1709

32k 1704, 1708, 1709,

~'Storage capacities of 12k and 24k are also
available as special options.

1703

1716 Coupling Data Channel. This option permits communication between
two 1700 Computers and also enables the two computers to have
access to the same peripheral devices via the 1705 Interrupt/Data
Channel. When the 1716 is used, only two 1706's may be connected
in a maximum system.

Common
Synchronizer

A Card/Paper Tape Data Channel for direct interface into the A
and Q registers of the 1704 without the need for a 1705 option.
The following devices may be connected to this synchronizer:
the 1721 Paper Tape Reader, the 1723 Paper Tape Punch, the 1729
Card Reader, and the 1711 (or 1712, 1713) Teletypewriter.

17

FUNCTION
TRANSLATOR. STOIAGE , 4~ .. ~~

F EXTERNAL
"

EXTERN
STORAGE STORAGE

8 BITS ~CCES~ !CCESS
Z S

AL

4~
..... .. ~

18 BITS 15 BITS

• 4~

U

X Y f4--.... 16 BITS • 16 BITS
INTERNAL INTER , • LOW SPEED

15 EXTERNAL LINES~l IDECREMENTER I
III

IIII! 121110

INTERRUPT r- MASK

4 BITS OR 16 BIT

P
~ 15 BITS

+ 1

• r ,. •• ~~ • .t
Q ~

ADDEND AUGEND
~

16 BITS GATES GATES A
16 BITS

~~ 4 4

.' •
I/O I/O
CONNECT CODE FUNCTION

CODES
~r ..

LOGIC~ 14-- LOG ICAL
STATUS

DIFFERENCE ADDER PRODUCT DATA

SHIFT ~
LEFT SHIFTER. ~ SHIFT

I.!GHT

I

FIGURE 16 Block Diagram

Rev. B 18

1704
Registers

A Register

VEImCAL "RELAY
flACK FRAME
(£_0 liD) .

I
l..!.l'lf~Ul i)AtA I/OU) .. .
~..... I

HORIZONTAL REL ... Y
RACK FR E
(EXPANDED 110)

BASIC COMPUTER

FIGURE 15 1700 Computer System with 1/0 Modules

See Figure 16

The principal arithmetic register. It contains 16 bits, with the 16th bit
being the sign bit. The results of most arithmetic and logical operations are
placed in A. It also serves as a data pegister for I/O transfers.

Q Register

A l6-bit auxiliary arithmetic register. It contains address information during
I/O instructions and is also used as an index register.

P Register

The IS-bit program address register. It holds the address of each program step.

X Register

The 16-bit exchange register. It holds data going to or from storage and one
of the parameters in most arithmetic operations.

Y Register

A 16-bit register. Storage addresses are formed and held here for transfer

19

during a storage reference. It is also used as a counter during Multiply,
Divide, and Shift instructions.

F Register

The 8-bit function register. This register holds the instruction identifica­
tion and/or addressing mode during instruction execution.

Z Register

The l8-bit storage data register. It transfers data to or from the computer,
the external access, and storage. Each time a word is read from storage it is
transferred to Z and parity is checked. Word parity is generated when data is
in Z prior to being written into storage.

S Register

The IS-bit storage address register. This register holds the address of the
word being read from or written into storage. The upper 3 bits designate one
of eight 4K storage modules; the remaining bits specify an address within the
selected storage module.

Mask Register

This register is the enable for the interrupt levels. It is either 4 or 16
bits. To select an interrupt on a given level, the corresponding Mask bit must
be set.

20

PROGRAMMING AIDS

In the appendix are various tables which are intended to save time in reading
or writing 1700 programs. Tables I and II provide numerical and alphabetical
listings of 1700 instructions while Table III gives all possible methods of
forming the effective address and lists the location of the next instruction
for each addressing mode. Parentheses mean lithe contents ofll whatever is in
the parentheses. For example: (Q) means the contents of the Q Register,
(P+l) means the contents of location P + 1 (since P + 1 does not indicate
a register) and (+ f::,.) means the contents of location + f::,. (again, since
+ f::,. does not indicate a register). A good example of the use of parentheses
is the formation of the effective address (E.A.) if 6 = a and the
addressing code is IIFII. In this instance, the E.A. is formed by (P+l +
(P+l) + (Q) + (OOFF) which says, to form the effective address:

1. Read the contents of the location specified by the quantity
P+l added to the contents of location P+l.

2. To the result in #1, above, add the contents of the Q Register.

3. To the result in #2, above, add the contents of location OOFF.

If two hexadecimal numbers are to be added, use Table IV and find one digit
along the left and the other digit along the top of the table. The hexadecimal
sum is the quantity contained in the area where the selected column and row
intersect. If the numbers being added contain several digits each, consider
one pair of digits at a time keeping track of the carries generated. Table
IV can also be used for subtraction by locating the subtrahend digit along
the top of the table then going down the column until the minuend digit
is found in the body of the table. The difference is the number of the row
(left-hand column) where the minuend is found. Whenever a digit is being
subtracted from one of smaller value, the minuend will be a 2-digit number
(due to the borrow).

Table V can be used to perform hexadecimal multiplication or division. Use
of the table is similar to Table IV. Be certain that additions (for
multiplication) and subtractions (for division) are also performed in
hexadecima 1.

21

HEXADECIMAL NUMBER SYSTEMS

The 1700 uses the hexadecimal (base 16) numbering system to represent it's data
and instructions. A review of the decimal, binary, and hexadecimal systems alon
with useage of hexadecimal arithmetic will be useful at this time. As you pro­
ceed through the chapters on programming an increasing amount of hexadecimal
arithmetic will be encountered. Instructions are coded in hexadecimal, numbers
are displayed in binary but are converted to hexadecimal by the computer operato
for the sake of making comparisons with antici~ated values after a program is ru
Storage addresses are coded in hexadecimal and are added to or subtracted from
in hexadecimal. A review of the number systems used in the 1700, their conversil
to other bases, and hexadecimal arithmetic will follow in the succeeding paragra]

A look at the three number systems which win be encountered will be the first
subject. It will be assumed that you have a knowledge of binary at this time.
Counting in the three systems goes something like this:

Decimal Binary Hexadecimal

0 0000 0000 0
1 0000 0001 1
2 0000 0010 2
3 0000 0011 3
4 0000 0100 4
5 0000 0101 5
6 0000 0110 6
7 0000 Olll 7
8 0000 1000 8
9 0000 1001 9
10 0000 1010 A
II 0000 lOll B
12 0000 1100 C
13 0000 1101 D
14 0000 1110 E

15 0000 llll F
16 0001 0000 10
17 0001 0001 11
18 0001 0010 12
19 0001 0011 13
20 0001 0100 14

22

Notice that after the hexadecimal 9 the letter A is used to represent 10. A
through F are used to represent the last six numerals of the hexadecimal system.
Also, hexadecimal 10 follows the number F in the numerical sequence. It might
be well to note at this time that the number 7FFF would be represented in the
1700 as a binary number *111 1111 1111 1111. The * position is the sign. If
a "0" occupies that position the number is positive, but if it is a "I", then,
the number is negative.

HEXADECIMAL TO DECIMAL CONVERSION

The methods of conversion from decimal to hexadecimal and hexadecimal to decimal
will be useful before starting into the instructions and programming. The con­
version from hexadecimal to decimal can be done either of two ways. The first
example will use the polynomial method of conversion. The number 7A46 will be
used as an example.

each number has positional
value as shown.

Once the positional values have been written down, expand them by raiSing the
base (16) to the amount indicated by the exponent. After this is done, multiply
the number times its positional value.

7A46

I JI' ~ i~~ 1 x 6 6
16 x 4 64

163 256 x A 2560
16 4096 x 7 2867.2

7A46l6 31,30210

Remember that the A has to be converted to 10 before it can be multiplied times
the positional value of 256. If the most significant digit is larger than 7 the
number is negative. To convert it, it must be complemented and then be converted.

FF67 16 = - 0089 16

Complement the number by subtracting FF67 from FFFF and affix the minus sign to
the complemented number. The example, -0098, can now be converted to decimal.

-0098
1 t :160 1 x 8 8

161 16 x 9 144
152

-009816 -15210

23 Rev. B

Rev. B

Another method of converting from hexadecimal to decimal is with the aid of the
conversion chart in the appendix. Using the same number used in the first example,
a conversion will be made uSing the chart.

AOO r§ 7000

\11 : 4~
7A46

28,672
2,560

64
6

31,302

Start by looking up the most significant digit, 7000, in the fourth hexadecimal
column. Continue looking up t he remaining digits in sequence in columns 3, 2,
and 1. Add up the conversions for each digit.

Convert the following hexadecimal numbers to their decimal equivalent.

Hex. Decimal

1. 53,FF6

2. 1O,04E

3. 579,F65

4. 567,999

5. 48A,000

6. FACE

7. CAFE

8. DDE,904

9. FA,875

10. F6,45D,6FA

DECIMAL TO HEXADECIMAL CONVERSION:

Conversion from decimal to hexadecimal is also necessary. Again, there are two
methods; one by division, the other by the use of the conversion chart. In the
event that a conversion chart is not handy it may be well to illustrate the
division method.

24

195
...!.Lf3i3oT

16
153
144

90
80
102

96

(J

7
122
112

U
G)

7
o

Q

The conversion is made by dividing 16 into the decimal number to be converted.
The remainder is the least significant digit of the hexadecimal number. The
dividend is then divided by 16 to produce the next digit. Continue doing this
until the conversion has been completed. This method may take more time, but it
doesn't require any tables or charts to make the conversion. However, if a con­
version chart is handy, it will save considerable time. The number 31,302 will
again be use for illustration.

31,302
28,672

2,630
2,560 •

70
64
6"

6 •

7000

• •• AOO

• • 40

. .6
7A46

Using the conversion chart on page A-26 of the appendix, it is found the 28,672
is the closest decimal number to 31,302 without exceeding it. Subtract the
28,672. from 31,302 and write down the hexadecimal 7000 for future use. Next,
look up the decimal number that is equal to or less than the difference between
31,302 and 28,672 (2,630). It can be found in the third column of the decimal
numbers. Again, a subtraction is made between 2,630 and 2,560 resulting in a
difference of 70. The AOO, hexadecimal equivalent of 2,560, is added to the
hexadecimal 7000 to form an additional portion of the conversion. Continue with
the conversion until it is completed. When making conversions, use whichever
method you wish, keeping in mind that the final result is the important thing.

25 Rev. B

Rev. B

Convert the following decimal numbers to hexadecimal.

Decimal Hexadecimal

1. 24,088

2. 76,744

3. 524,288

4. 1,234,567

5. 7,633,994

6. 56,744,485

7. 1,357,998,765

8. 1,879,048,191

9. 1,000,000,000

10. 3,333,333,333

ADDITION

The next subject will be hexadecimal arithmetic. Finger counting is permissible,
but the chart for hexadecimal arithmetic on page A-24 will be more useful. As
an example, C405 l6 and 804516 will be added together.

end-a round-carry

8,045
C.405

l4.44A
1

4,44B

Use the chart on page A-24 as an aid. First find the number 5 on the left hand
margin. Move across from that point until you are under the 5 at the top of the
chart. Your finger should now be on the number A. The 4 and ° for the next two
additions should be no problem. When finding the sum of 8 and 6 use the same
procedure that was used to find the sum of 5 and 5. Locate the 8 on the left
margin. Move to the right until your finger is on the number in the column
headed by the number C.' As indicated by the chart the sum of C and 8 are 14. The
1 is carried around and added to the least significant digit. You cannot exceed
four hexadecimal numbers as the result of an addition. The adder will accomodate
only the four numbers. If a thought came to you that this was overflow you are
wrong. Overflow can occur only when two like signed numbers are added together
and the sum results in a change of sign. Remember that numbers larger than 7 would
indicate that they are negative. An illustration of overflow can be illustrated
by the following examples.

26

7FFF positive
0001 Eositive
8000 negative

8000 negative
8000 negative

1 0000
1

0001 positive

Solve the following hexadecimal addition problems.

1. 5C02
0227

6. 0006
FFFE

SUBTRACTION;

2. AF02
1245

7. 0105
CCCC

3. 2377
l5FF

8. CAFE
BCDE

4. 8100
9011

9. FACE
4333

5. ABCD
1234

10. F07A
C5D3

Subtraction is a reverse process of addition. Subtracting 3243 16 from 7AB6l6 can
illustrate the process of subtraction.

7AB6
3243
4873

Locate the number 3 on the left side of the addition chart. Move to the right
until you come to the number 6. The number at the top of that column will be the
difference between 3 and 6. Next locate the number 4 in the left hand column.
Move to the right until you come to the B. The number at the top of that column
is the difference between 4 and B. Continue until the remainder of the problem
is completed.

Solve the following hexadecimal subtraction problems.

l. 3210 2. 1600 3. F07A 4. 3789 5. FFFF
1022 ~OFF 609F 308D 7ACE

6. CAFE 7. 4567 8. FACE 9. 2D6E 10. 5BD6
ABCE 3F4D 9D6B 1A7F 3A2l

27 Rev. B

MULTIPLY

Occasionally it may be necessary to check a multiply problem in the 1700. If
you can work out the problem on paper, you can check the product which the
computer is to come up with. A couple of points which must be kept in mind
when doing a multiply; overflow can never occur, and negative numbers are
complemented before the multiply operation takes place. A four digit hexadecimal
number is multiplied times a four digit number. The product will be an eight
digit hexadecimal number. Negative numbers are complemented before the multiply
operation because multiplication is the process of finding the product of
absolute values (absolute values are expressed in a computer only by positive
numbers). After the multiply operation is completed the product is complemented
if only one of the operands was negative.

The multiply chart on page A-25 will be needed to do multiplication. Use the
same procedure used when mUltiplying decimal numbers. Remember to add the carries
to the next partial product as you proceed. Suppose the number 45 is multiplied
times 36. Locate the 6 on the left hand column of the multiply chart.
Move across on that row until you are under the column headed by 5. 6 times 5
for a partial product will be IE. Put down the E and carry the 1. Multiplying
6 times 4 for the next partial product will give 18. Add the 1 carry to it for a
partial product of 19E. Multiply the next digits and add the partial products
together for a final product of E8E.

Rev. B

45
36

19E
CF
E8E

You may find the Addition chart useful during the mUltiplying when large numbers
are to be added.

Multiply the following hexadecimal problems:

1. 4335
6389

6. 7FFF
7FFF

2. 1002
OOlA

7. 289A
3333

3. 67F8
3FBD

8. A33.2
2222

28

4. lEeF
2C6l

9. 8347
9246

5. 3ACE
2DAF

lO. F634
5FFF

DIVIDE:

Divide will possibly be the least used hexadecimal arithmetic. But then, if the
dividend of a divide problem were to be checked for accuracy it would be neces­
sary to know how to divide using hexadecimal numbers. Its method, when using
the chart, will follow a similar pattern that was used in subtraction. Suppose
6483 is to be divided by 7. Start by locating 7 on the left hand column in the
multiplication chart. Move right until you come to a number equal to or less than
64. The number nearest 64 will be 62. The E at the top of that column is the
partial quotient. Subtracting 62 from 64 leaves a remainder of 2. Bring down
the 8. Move across the 7 row until a number equal to or less than 28 is found.
23 is the nearest number giving a partial product of 5. Continue until the
problem is completed.

E5B
7 -.J 6483

62
28

23
53
4D

6

Complement negative operands before a divide is started as was done in the multiply.
If only the divisor or the dividend is negative, complement the quotent at the
end of the divide operation. If both are negative, do not complement the quotent.

Complete the following divide problems:

l.~ 2 • .E.JT463

4 • .L!7iiF

All of the operations which have been gone over
binary from the hexadecimal and then completed.
then have to be converted back to hexadecimal.
comfortable for you.

29

3.~

5 • .J.J6453

could have been converted to
The final binary answer would

Use the method which is most

Rev. B

Answers To Practice Problems

Conversion from hex to decimal
Page 24

1. 344,054
2. 65,6J4
3. 5,742,437
4. 5,667,225
5. 4,759,552
6. -1329
7. -13,569
8. -2,234,107
9. -22,410

10. -163,195,141

Conversion from decimal to hex
Page 26

1. 5El8
2. l2BC8
3. 80000
4. 120687
5. 747C4A
6. 361DA25
7. 50F16AAD
8. 6FFFFFFF
9. 3B9ACAOO

10. C6AEA155

Hex addition
Page 27

1. 5E29
2. Cl47
3. 3976
4. 1112 an overflow condition exists
5. BE01
6. 0005 notice that FFFE is the same as a -1
7. CDDl
8. 87DD
9. 3E02

10. B64E

Rev. B 30

Answers to practice problems (cont'd.)

Hex subtraction
Page 27

1. 21EE
2. 1501
3. 8FDB
4. 06FC
5. 8531
6. lF30
7. 061A
8. 5D63
9. 12EF

10. 21B5

Hex multiplication
Page 28

1. 1A2l765D
2. OOOlA034 the zeros are inserted to give a 8 digit product found in the 1700
3.
4.
5.
6.
7.
8.
9.

10.

19E2CA18
04D21D6F
OA7E68D2
3FFFOOOl
081EC4AE
F3A072C5
357478F8
FC53E9CA the F634 would have to be complemented before the multiplication

and then the product would have to be complemented do not
complement the product

Hex Division
Page 29

l. 2944 remainder of 1
2. 0365 remainder of 5
3. 02BE remainder of 16
4. OFFF remainder of 7
5. OE55 no remainder

31 Rev. B

CHAPTER I

NON-ADDRESSABLE INSTRUCTIONS

NON-ADDRESSABLE INSTRUCTIONS

INTROD UC TI ON

Instructions in the 1700 Computer are divided into two major categories -­
those which incorporate address modification and those which do not. All
addressable instructions have a hexadecimal format of I F 1 M 1-&- 1 where
function code F is the most significant hexadecimal digit in the instruction,
addressing code M is the second most significant hexadecimal digit in the
instruction and the lower half of the instruction forms a modifier or delta
(~) field.

An instruction is addressable if FrO; that is, if its upper-most hexa-
decimal digit is not a zero. Since there are only 1510 addressable instructions
in the 1700 instruction repertoire, a single hexadecimal digit (function code
F) will suffice to identify the instruction. The addressing code M of an
addressable instruction consists of the following bit designation
I r I ind I q I i I where llr" identifies the relative bit, "ind" the

indirect bit, llql1 the Q Index Register and IIi" the Memory Index Register.
The significance of these bits and the manner of addressing are explained
in another portion of this chapter. The delta field is also explained
during the discussion of addressing.

An instruction is non-addressable if F = O. Since all non-addressable
instructions must have their upper-most hexadecimal digit equal to 0, this
means that additional bits are required to identify the particular instruction.
Some non-addressable instructions will require only two hexadecimal digits for
identification while others will require more. A general format for all
non-addressable instruction is I F I F] I I where F = 0 and Fl identifies
the instruction or the group to which an instruction belongs.

Non-addressable instructions may be placed into one of four groups. The
register reference group includes those instructions which require only
two hexadecimal digits for identification. Most instructions in the group
have the format 1 0 I Fl 1-6-1 where the significance of the delta (6)
field depends on the instruction. To belong to this group of instructions
Fl must not equal 1, 8 or F.

The skip group of instructions are identified by Fl equaling 1 and have the
format t 0 I 1 1 F2 lsi where F2 identifies the particular skip
instruction and S represents a skip count. If the skip condition is
satisfied, program continuation will be at P+l+S; if not, continuation will
be at P+l.

The Inter-register group of instructions are identified by Fl equaling 8.
The format and general operation of this instruction group is given in the
1700 Computer Reference Manual.

1-1 Rev. B

Rev. B

Flow diagrams of most 1700 instructions are given on pages A-I through A-14 in
the Appendix. The purpose for such diagrams is to present a simple, overall
operation of the instruction (or instruction group) being considered. Some
instructions (Multiply or Divide) and the Inter-register instruction group
do not lend themselves to simple flow diagrams. For this reason, flow diagrams
for these instructions have not been included.

A brief description of each instruction is given in the 1700 Computer Reference
Manual, pages 3-2 through 3-20. You should read the appropriate description,
then become familiar with the flow diagram as each instruction is being
learned. The following pages will provide examples and explanations of the
various 1700 instructions.

1-2

REGISTER REFERENCE GROUP

Selective Stop (SLS) - 10 I 0 Vu!llJ'J
Instructions are read out of memory during the Read Next Instruction (RNI) mode.
This mode places the instruction into the 1704 X Register and then causes the upper
eight bit3 of the instruction (X) to transfer to the F Register. The contents
of the F Register are then translated to determine which instruction or in­
struction group is to be executed.

Whenever the F Register is all zeros (cleared), the computer executes the
Selective Stop (SLS) instruction. There are many ways in which the F Register
might become cleared. Each of these possibilities will be explored briefly.

If during RNI a SLS instruction is read from memory, the F Register will become
cleared and the computer will execute a SLS instruction. This would be the
normal SLS operation. A Master Clear (see page 6-1 of the Reference Manual) will
cause the F Register to become cleared. If the computer were first Master cleared
before execution of a program, the first operation would be a SLS. Under such a
condition the computer bypasses the stop circuitry and prevents stopping. If
this were not the case, the computer could never get started following a Master
Clear (M.C.) if the Selective Stop switch were on.

The F Register will become cleared if certain illegal operations are attempted.
When such operations are encountered, the computer reacts by forcing SLS operations.
This prevents execution of the illegal operation and will cause the computer to
stop if the Selective Stop switch is on.

Normally, the F Register becomes cleared due to a SLS instruction. For a SLS
instruction to stop the computer, the selective stop switch must be on. If the
switch is off, the instruction becomes a pass or do-nothing. By definition a
pass instruction is one which does only one thing: causes the contents of the
P register to be incremented.

For example, suppose the following routine is entered into the computer and
executed.

Initial Conditions: M.C., Selective Stop switch on, set P=OlOO and press RUN.

0100=0050
0101=1234

Refer to the Selective Stop flow diagram during the following explanation
(Appendix, page 1).

Since the computer was master cleared, this clears the F Register so a SLS oper­
ation will be executed as soon as the RUN switch is pressed. Beginning at the
start of the Selective Stop flow diagram, the following sequence would occur
(remember, the first instruction to be executed'in the program is at location
0100, which is the present setting of the P Register):

1-3

First Pass

1. Is Stop Switch ON? - yes
2. Was instruction preceded by M.C.? - yes
3. Contents of P transfers to the P and Y registers (that is, (P) and (Y)

both equal 0100)
4. The next instruction is read from the location specified by the contents

of Y. This places 0050 in the X Register, then 00 in the F Register.
S. Is the Stop Circuitry enabled? - no
6. Continue

Second Pass

1. Is Stop Switch ON - yes
2. Was instruction preceded by M.C.? - no, it was preceded by SLS.
3. Enable the Stop Circuitry
4. Increment P and send result to P and Y (this makes (P) and (Y) both

equal 0101).
5. The next instruction is read from the location specified by the contents

of Y. This places 1234 in the X Register.
6. Computer stops when instruction enters X.

Notice that the contents of the P register is the next consecutive location
following the SLS instruction when the computer stops. Also, the X Register
contains the contents of the memory location following the SLS instruction.

Enable Interrupt (EIN) - 1014 VIlMA

The Enable Interrupt (EIN) instruction causes the 1700 Interrupt System to become
enabled. Until the interrupt system is enabled no interrupts can occur. Once
the interrupt system has been enabled, the computer will be interrupted when one
of the selected interrupt conditions occurs.

If the Protect Switch is ON, the EIN instruction can be executed only if it is
stored in a protected location (that is, a location having its protect bit a "1").
An attempt to execute an unprotected EIN instruction (with the Protect Switch ON)
is considered illegal. The computer will clear the F Register and execute a SLS
instruction instead. With the Protect Switch OFF, all instructions are treated as
unprotected, thus the EIN instruction would be executed regardless of its protect
status.

The computer is so designed that one instruction will be executed after an EIN
instruction before the computer can be interrupted. This was included to help
simplify interrupt routines. For this course, the reader needs to know only that
the earliest an interrupt can occur is during RNI of the 2nd instruction following
the EIN instruction which enables the interrupt system.

For example, consider the following routine:

Initial Conditions: M.C., set P=0500, set Mask=OOOl, Selective Stop switch ON and
press RUN

Rev. B 1-4

0500
0501
0502
0503

0400
0400
0000
0000

Since the computer was Master Cleared, the computer will begin with the Selective
Stop operation. Upon completion of this pass the contents of (X) = 0400 and
(P)=0500. The upper 8 bits of X are transferred to F and translated as an EIN
instruction. Following is a sequence of the operations which follow--refer to
the Enable Interrupt flow diagram (Appendix, page 2).

Second pass

1. Is the Protect Switch ON? - no (no mention made under initial conditions).
2. Increment contents of P and send result to P and Y (making them equal

0501)
3. Enable the Interrupt System
4. Read next instruction at contents of Y (location 0501. This places the

2nd 0400 instruction in the X register
5. Start third pass

Third pass

1. Upper 8 bits of X transfer to F where the instruction is translated as
another EIN.

2. Is the protect switch ON - no
3. Increment (P) and send to P and Y
4. Since interrupt system is already enabled, the instruction is a pass.
5. Read next instruction at location specified by the contents of Y (which

is 0502). This places 0000 instruction in the X register
6. Start the fourth pass.

Fourth pass

1. Upper 8 bits of X transfer to F where the instruction is translated as
a SLS.

2. Is Selective Stop switch ON? - yes
3. Was instruction preceded by Master Clear? - no
4. -Enable the Stop circuitry
5. Increment (P) and send to P and Y
6. Read next instruction at location specified by the contents of Y

(location 0503). This places 0000 in the X register.
7. Is stop circuitry enabled? - yes
8. Computer stops.

The start of the fourth pass would have been the first possibility for a computer
interrupt. With the Mask register equal to 0001, the only interrupt condition
selected is an internal interrupt (see chapter 4 of the Reference Manual). Notice
that the second EIN instruction was a do-nothing since the interrupt system was
already enabled.

1-5 Rev. B

The computer is unable to be interrupted if it is stopped. If an interrupt con­
dition occurs after computer operations stop (even though the interrupt system has
been enabled) the condition will be ignored. For example, consider the following
program:

Initial Condltions: M.C., set P=0250, set Mask=OOOl, selective stop switch ON,
Internal Interrupt, and press RUN.

0250 0400
0251 0000
0252 0000

Due to master clear the first pass will merely cause 0250 to be placed into the
Y Register. RNI operations then occur from location 0250 and the instruction 0400
(EIN) is placed in X. During the second pass the EIN instruction is executed and
the contents of P incremented making P and Y equal 0251. RNI at 0251 occurs placing
the instruction 0000 in X.

During the third pass, the SLS instruction is executed and the contents of P
incremented making P and Y equal 0252. RNI operations place the instruction 0000
into X. Since the stop condition was satisfied the computer stops. The internal
interrupt condition present will not be recognized since the computer stops before
interrupts can be detected. (Interrupt, in this case, would have been detected
at the start of the fourth pass.)

One final point concerning the interrupt enable--it remains enabled until one of
three conditions occurs:

1. Master Clear
2. Inhibit Interrupt instruction is executed
3. An interrupt occurs.

Inhibit Interrupt (lIN) - 10 I 5 YT@IA

The Inhibit Interrupt (lIN) instruction causes the 1700 Interrupt System to become
disabled. Once disabled, the interrupt system is unable to detect any interruptible
conditions.

The lIN instruction requires protection; that is, with the Protect Switch ON the
location of the .lIN instruction must be protected. An attempt to execute an
unprotected lIN instruction (with the protect switch ON) is illegal. Under such
a condition, the computer will clear the F Register and execute a SLS instruction
instead. With the protect switch OFF, all instructions are treated as being
protected.

Consider the following routine:

Initial Conditions: M.C., set P=07l0, Selective Stop switch ON, protect switch ON
and press RUN -Note, all underlined addresses are protected.

1-6

0710
0711
0712
0713
0714

0400
0400
0500
0000
0400

1. Because of the M.C. condition the first pass will cause the contents of P
(0710) to transfer to Y and the instruction (0400) at that location be placed
into the X register.

2. The second pass will transfer 04 into the F Register where it is translated
as an EIN instruction. Since the protect switch is ON and the location (0710)
is protected (underline), the instruction is executed. The contents of Pare
increased and sent to P and Y and the instruction (0400) at that location
(0711) is placed into the X register.

3. The third pass will transfer 04 into the F register where it is translated as
an EIN instruction. Since the Interrupt System is already being enabled, this
second EIN instruction is a pass. (NOTE: If location 0711 were not protected,
the instruction would be illegal and would cause a protect fault, clear the F
register, etc.) The contents of P are increased and sent to P and Y and the
instruction (0500) at location 0712 is placed into the X register.

4. The fourth pass will transfer 05 to the F register where it is translated as
an lIN instruction. Since the protect switch is ON and the location (0712)
is protected, the instruction is executed. (NOTE: At the start of this pass
interrupts could be detected.) During execution of the lIN instruction, the
Interrupt System is disabled and the contents of P are incremented and sent
to P and Y. The instruction (0000) at location 0713 is placed into the X
Register.

5. The fifth pass will transfer 00 into the F Register where it is translated as a
SLS instruction. The contents of P are incremented and the next instruction is
read from memory and placed into the X register. Since the conditions for
stopping have been satisfied, computer operations stop.

1. What would be the status of the 1700 Interrupt System at the time each of the
following routines stop?

0735
0736
0737
0738
0739

a. Initial. Conditions: M.C., Selective Stop ON, protect switch ON, set P=
0735 and press RUN

0577
0400
0000
0000
0400

1-7

b. Initial Conditions: M.C., Selective Stop switch ON, set P=1000 and press
RUN

OFFF=OOOO
1000=0400
1001=0500
1002=0077
1003=0000

2. What will be the contents of the P Register when each of the following routines
stop?

0100
0101
0102
0103
0104

a. Initial Conditions: M.C., Selective Stop switch ON, set P=OlOO and press
RUN

0400
0400
OOAB
0500
0000

b. Initial Conditions: M.C., Selective Stop switch ON, Protect Switch ON, set
P=OlOO and press RUN

0100
0101
0102
0103
0104

0500
0400
0000
0400
0000

Set Protect Bit (SPB) - ! ° I 6 Vi/////lJ

The Set Protect Bit (SPB) instruction is the only means available of making a
memory location protected. This instruction requires protection, that is, either
the protect switch is OFF or, with the protect switch ON, the storage location of
the SPB instruction is protected. An attempt to execute a non-protected SPB
instruction with the protect switch ON is illegal resulting in a protect fault,
the clearing of the F Register and the execution of a SLS in place of the SPB.

The location to be protected must be placed within the Q Register before execution
of the SPB instruction. When executed, the SPB instruction references the location
specified by the contents of Q and causes that location to become protected. NOTE:
The quantity within that location is unaffected by the SPB instruction.

Consider the following program:

Initial conditions: M.C., set P=0500, selective stop switch ON, set Q=0501 and
press RUN

0500
0501
0502
0503

0600
0400
0000
0000

1-8

1. Because of the M.C. condition, the first pass will be a SLS with the contents
of P (0500) going to Y. The next instruction is read at the location
specified by Y and placed into the X Register.

2. The second pass causes the upper 8 bits of X (06) to transfer to F where it is
translated as a SPB instruction. Since the protect switch is OFF, the
instruction is legal. Assuming no parity errors, location 0501 will become
protected. The contents of P are incremented and sent to P and Y. The next
instruction is read at location 0501 (Y) and placed into the X Register.

3. The third pass starts the execution of the EIN instruction, causes P to in­
crement and reads the following instruction into X.

4. The fourth pass executes the SLS instruction (location 0502), enables the stop
circuitry, increments P and reads the next instruction into X. The computer
stops with the interrupt system enabled and location 0501 protected.

Clear Protect Bit (CPB)-- 101 7 VJ7J'i?/J

The Clear Protect Bit (CPB) instruction is the only means available of clearing
the protect bit of a memory location. The location to be cleared is specified by
the contents of the Q Register. To be executed, the CPB instruction requires
protection. An unprotected CPB instruction (that is, the protect switch ON and
the location of the CPB instruction being unprotected) is illegal and results in
a protect fault, the clearing of t~ F Register and the execution of a SLS in
place of the CPB.

Consider the following routine:

Initial Conditions: M.C., set P=0300, Selective Stop switch ON, Protect Switch ON,
set Q=0301 and press RUN. NOTE: Underlined locations are
protected.

0300
0301
0302

0600
0700
0000

1. The first pass reads the instruction from location 0300 and places into X.

2. The Second pass executes the SPB instruction causing location 0301 to become
protected. The next instruction (0700) is read from memory and placed into X.

3. The third pass executes the CPB instruction causing location 0301 to become
unprotected. The next instruction (0000) is read from memory and placed into
X.

4. The fourth pass executes the SLS instruction causing the stop circuitry to be
enabled. The next instruction (contents of 0303) is read from memory and
placed into X and the computer stops.

1-9

NOTE: The 0700 instruction would have been illegal had not the SPB instruction
protected location 0301. This would have caused the computer to stop at
the end of the third pass.

Increase A (INA) - 10191-,6.-1

The Increase A (INA) instruction provides a means of modifying the contents of
the A Register without the need of storing the amount to be modified in memory,
then using an ADD or SUB instruction. This, obviously, saves time sinc7 memory.
does not have to be referenced to execute the instruction. Use of the ~nstruct~on
is limited, however, to those applications where the change is no greater than + 7F.

A 09 code in the F Register identifies the INA instruction. The quantity ~
(lower half of the instruction) is treated as a signed quantity (the upper bit of ~
being the sign bit). The sign of this quantity is extended throughout X then added
to the contents of A, the result going to A.

For example, the instruction 0954 would cause 0054 to be added to the contents
of A while the instruction 09A7 would cause FFA7 to be added to the contents
of A. Since an arithmetic operation is involved, overflow status is recorded by
the computer. Overflow indicates that the result lies outside the range of the
computer. One of the skip instructions can be used by the programmer to determine
whether or not overflow occurred.

Consider the following routine:

Initial condition: M.C., set P=0179, set A=037A, Selective Stop switch ON and
press RUN.

0179 0901
017A 0000

1. Because of the M.C., the first pass would read the instruction at location
0179 and place into the X Register.

2. The INA instruction is executed causing the quantity 0001 to be added to the
contents of A (037A) reSUlting in 037B in the A Register. The next instruction
is read from memory and placed into the X Register.

3. The SLS instruction is executed causing the stop circuitry to be enabled. The
next instruction is read into X and the computer stops.

NOTE: If the contents of location 0179 had been 09FE, the quantity FFFE (-1)
would have been added to the A Register, causing the contents of A to be
reduced by 1.

Rev. B 1-10

ENTER A (ENA) - ! 0 I A 1-.6-1
The Enter A (ENA) instruction provides a means of placing small quantities into
the A Register without the need of previously storing that quantity in memory,
then using a Load A (LOA) instruction to place the quantity in the A Register.
Use of the instruction is limited, however, to those applications where the
contents of A are no greater than ± 7F.

A OA code in the F Register identifies the ENA instruction. The quantity ~
(lower half of the X Register) is treated as a signed quantity (the upper
bit of being the sign bit). The sign of this quantity is extended throughout
X then transferred to the A Register.

Consider the following routine:

Initial Conditions: M.C., Set P = 0200, Set A
ON and press RUN.

247A, Selective Stop switch

0200
0201

1.

2.

OA8S
0000

The ENA instruction causes FF8S to be placed in the A Register.

The SLS instruction stops the computer after reading the next instruction
into the X Register.

NOTE: Had the contents of 0200 been OA7S, the quantity 0075 would have
been placed in the A Register.

NO OPERATION - 1 0 I B fl'IIiIlA

A OB code in the F Register identifies the No Operation instruction. This
instruction is a pass or do-nothing operation. In writing machine language
programs, it is sometimes wise to include a No Operation instruction every
so often. Since such instructions can be inserted or removed without
affecting the operation of the program, they provide locations within the
program for absorbing changes. For example: Suppose a program is written
with every 5th instruction a No Operation type. Later, the program is
revised by inserting two instructions previously omitted. The two instructions
would be inserted in the proper sequence then two subsequent No Operations
removed, localizing the program change to an area of ten instructions or so.
If the original program had been written without No Operations, insertion of
additional instructions would cause all subsequent instruction locations to
change.

Another use of the No Operation instruction is to replace an instruction
deleted during program revision. This involves minimum effort on the part
of the programmer since only one location changes for each instruction deletion.

1-11

Once a program has been tried and proven, the programmer can then rewrite the
entire program removing all No Operations. His first concern is to get a
program written as soon as possible that works; then he concerns himself with
making the program efficient (if efficiency is important).

Consider the following routine:

Initial Conditions: M.C., set P=OlOO, Selective Stop switch ON, protect switch ON
set Q=OlOO and press RUN

0100 0600
0101 0400
0102 0901
0103 0400
0104 0000

The preceding program could be rewritten in the following manner without affecting
operation.

0100
0101
0102
0103
0104

OBOO
0400
0901
OBOO
0000

1. Give the final contents of A and P when each of the following routines stop.

0200
0201
0202
0203
0204
0205

0700
0701
0702
0703
0704
0705
0706

a.

b.

Initial Conditions: M.C., Set P=0200, Set Q=020l, Selective Stop switch
ON, Protect switch ON and press RUN.

0600
0400
09FE
0700
0902
0000

Initial Conditions: M.C., set P=0700, set Q=0702, set A=077A,
Selective Stop switch ON, and press RUN.

0600
0400
OA05
0500
090B
OBOO
0000

1-12

c. Initial Conditions: M.C., set P=09AF, set A=FOFO, selective stop
switch ON, protect switch ON and press RUN.

09AF
09BO
09Bl
09B2
09B3
09B4
09B5

09FE
0700
OAOO
0600
OBOO
0075
0000

2. What is the status of the interrupt system after each of the following
programs?

a. Initial conditions: M.C., Selective Stop switch ON, protect switch
ON, set Q=O002 and press RUN.

0000 0700
0001 0400
0002 0500
0003 0600
0004 0000

b. Initial Conditions: M.e., set P=0050, set Q=0052, Selective Stop
switch ON, Protect Switch ON and press RUN

0050 OBOO
0051 0600
0052 0400
0053 0955
0054 OBOO
0055 0700
0056 0000

1-13

ENTER Q (ENQ) ~ 101 C 1-6-1

The Enter Q (ENQ) instruction provides a means of placing small quantities into the
Q Register without the need of having previously stored those quantities in
memory then using a load Q (LDQ) instruction to place them in the Q Register.
Use of the instruction is limited, however, to those applications where the
quantity in Q is no greater than + 7F.

A OC Code in the F Register identifies the ENQ instruction. The quantity
(lower half of the instruction) is treated as a signed quantity. While in
Register, ~ undergoes sign extension. The resultant l6-bit quantity is
transferred to the Q Register.

Consider the following routine:

~
the X
then

Initial Conditions: M.C., Set P=0259, set Q=07F4, Selective Stop switch ON and
press RUN

0259
025A

OCOO
0000

1. The ENQ instruction places 0000 in the Q Register.

2. The SLS instruction stops the computer after reading the next instruction into
the X Register.

NOTE: Had the contents of location 0259 been OCFF, the quantity FFFF would have
been entered in the Q Register.

Increase Q (INQ) - 10 I D 1-A-I

The Increase Q (INQ) instruction provides a means of modifying the contents of the
Q Register within the range of +7F without the need of referencing memory. A OD
code in the 1704 F Register ide~tifies the INQ instruction. The quantity ~
(lower half of the instruction) is treated as a signed quantity. While in the X
Register, z6. undergoes sign extension. The contents of Q are then added to
the l6-bit quantity in X with the sum going to Q. Since an arithmetic operation
is involved, overflow status is recorded by the computer.

Consider the following routine:

Initial conditions: M.C., set P=1000, set Q=OOFF, selective stop switch on and
press RUN

1000 OD05
1001 0000

1. The INQ instruction will form the sum of 0005 (~ with sign extension) plus
OOFF (contents of Q), resulting in 0104 in the Q Register.

2. The SLS instruction will stop the computer after reading the next location
(1002) into the X Register.

1-14

NOTE: If the contents of location 1000 had been ODFA, the final contents of Q
would have been FFFA plus OOFF, resulting in OOFA, that is, 5 would have
been subtracted from A (FFFA is a-5).

Exit Interrupt (EXI) - \0 I EI-.6.-1

The Exit Interrupt (EXI) instruction will always be the last instruction of an
interrupt subroutine and provides for automatic return to the operation which was
interrupted. When a computer interrupt occurs, the operation being performed is
temporarily set aside and a routine to process the interrupt is performed. At
the time of interrupt, the computer stores into memory the address to which it
must return after completing the interrupt routine. Since there are 16 possible
interrupt levels (and one level can interrupt another level), 16 locations are set
aside in memory where the return address will be stored -- each level having its
own location. These 16 locations begin at address 0100 and differ by a hexadecimal
count of 4 so that level a would have its return address stored at location 0100,
level 1 would have its return address stored at location 0104, level 2 at location
0108, level 3 at alOe, level 4 at 0110, etc. Table 4-1 in the 1700 Reference Manual
lists the location for all interrupt levels.

Notice that all return address locations have the same upper two hexadecimal digits
(01). The EXI instruction will identify the lower two digits of the return
address location via the delta field. Thus, if the EXI instruction appears in the
level a subroutine, it will be written OEOO, if it appears in levell, it will be
written OE04, etc.

To be executed, the EXI instruction must be protected; that is, either the protect
switch is OFF or the location of the EXI instruction is protected. When executed,
the computer forms the address 01 ~ in the Y register, which should be the
location of the return address for that interrupt level. The return address is
read from memory and placed into X. The 16th bit of this quantity represents the
status of overflow at the time interrupt occurred. This status is automatically
returned to the computer overflow circuitry during the EXI instruction. The lower
15 bits of X represent the return address and are forced into P and Y. The
interrupt system is automatically enabled (thereby eliminating the need for EIN
instructions to re-enable the interrupt system) and the computer continues'by
reading the instruction at the location specified by Y.

If the EXI instruction is not protected, an attempt to execute it is illegal
resulting in a protect fault, the clearing of the F Register and the execution of
a SLS instruction in place of the EXI.

NOTE: Having the wrong digits in the f:::" field of the EXI instruction is a pro­
gramming error for which the computer is not responsible. Execution of the
EXI instruction will always read location 01.6. as a return address, will
always transfer bit 16 to the overflow circuitry (a negative quantity would
indicate overflow) and use the lower 15 bits as a return address.

1-15

Corisider the following routin~:

Initial Conditions: M.C., set P=0500, Selective Stop switch ON, Protect Switch
ON and press RUN

0100 9005
0500 OEOO
0501 0000
1005 0000

1. The EXI instruction (location 0500) reads location
quantity 9005 in X. The upper bit of X .(a Ill") is
circuitry (indicating, in this case, an overflow).
enabled and the quantity 1005 (lower 15 bits of X)
receives all 16 bits (9005). The next instruction
specified by the lower 15 bits of Y (1005).

0100 and places the
sent to the overflow
The interrupt system is

is sent to P while Y
is read from the location

2. The SLS instruction at location 1005 causes the computer to stop after reading
the next instruction into the X Register.

1. What would be the final contents ofP, A and Q in each of the following
rou'tines?

a. Initial Conditions: M.C., set P=0150, Set A=lOOO, Set Q=F754, Selective
Stop switch ON, protect switch ON and press RUN.

0150 0400
0151 OC7F
0152 OD7F
0153 OD57
0154 0600
0155 OE50
0156 OAOO
0157 0000
0400 0000

b. Initial Conditions: M.C., set P=0100, Selective Stop switch ON and press
RUN

0100 0600
0101 0901
0102 OEOO
0103 ODOI
0104 0105
0105 0000
0600 OCFF
0601 OE04
0602 0000

2. What will the following routine do?

1-16

Initial Conditions: M.C., set P=OOFF and press RUN

OOFF
0100
0101
0102

0600
OOFF
OUOl
OEOO

SKIP GROUP

Instructions belonging to the Skip group are identified by the upp~r two digits
being 01. Individual skip instructions are identified by the third (F2) digit.
In each case, a skip instruction senses a given condition within the computer.
If the condition being sensed exists, the skip is satisfied and program execution
continues at (p) +S+l, where S is the lowest digit of the skip instruction
(always positive). If the condition being sensed does not exist, the skip is not
satisfied and program execution continues at (p) + 1.

SKIP IF (A) = +0 (SAZ) - 1011101 S I
When the SAZ instruction is executed, the entire contents of the A Register are
checked. If the contents are found to be all zeros (+0), the skip is satisfied.
Any bit in the A Register being a "1" will disable the skip instruction, con­
verting it to a pass.

The SAZ instruction might be used to terminate a counting operation, such as in
the following routine.

Initial Conditions: M.C., set P=0170, set Q=lOOO, set A=OlOO, Selective Stop
switch ON and press RUN

016F
0170
0171
0172
0173
0174
0175

0170
09FE
0103
0600
ODOI
OE6F
0000

The preceding routine protects successive memory locations starting at the
location specified by the initial contents of Q. The number of locations to be
protected is determined by the initial contents of A. In this particular
routine, locations 1000 through 10FF become protected after which time the
computer stops.

SKIP IF (A) T + 0 (SAN) - I 0 I 11 11 S I

When the SAN instruction is executed, the skip condition becomes satisfied if
any bit in the A Register is a "III. This instruction might be used to terminate
a counting operation, such as in the following routine.

1-17

Initial Conditions: M.C., set P=0110, set Q===lOOO set A=OlOO, Selective Stop
switch ON and press RUN

OlOF 0110
0110 09FE
0111 0111
0112 0000
0113 0600
0114 --- 0001
0115 --- OEOF

This routine accomplishes the same thing as that given previously for the SAZ
instruction; that is, locations 1000 through 10FF are protected.- Notice that
skipping occurs every pass through the routine except when the contents of A
have been reduced to +0.

SKIP IF (A) IS + (SAP) - I 0 I 11 2 Is I

When the SAP instruction is executed, the sign bit of the A Register is sensed.
If the bit is a "0" (meaning A is positive), the SAP instruction will result in
a skip. If, instead, the quantity in the A Register is negative, the SAP
instruction becomes a pass.

SKIP IF (A) IS - (SAM) - 10 I 11 3 I S I

When the SAM instruction is executed, skipping occurs if the quantity in A is
negative; otherwise, the instruction becomes a pass.

SKIP IF (Q) = +0 (SQZ) -

The SQZ instruction is the same as the SAZ instruction except that the contents
of the Q Register are being sensed.

SKIP IF (Q) i +0 (SQN) - 10 11151 S I
The SQN instruction is the same as the SAN instruction except that the contents
of the Q Register are being sensed.

SKIP IF (Q) is + (SQP) -

The SQP instruction is the same as the SAP instruction except that the sign of
the Q Register -is being sensed.

SKIP IF (Q) IS - (SQM) -

The SQMinstruction is the same as the SAM instruction except that the sign of
the Q Register is being sensed.

SKIP IF SKIP SWITCH SET (SWS) - loll 181s I
The SWS instruction monitors the status of the Skip switch on the 1700 console.
If the switch is set (ON), the SWS instruction will result in a skip; if the
switch is not set (OFF), the SWS instruction becomes a pass.

1-18

SKIP IF SKIP SWITCH NOT SET (SWN) -

The SWN instruction results in a skip if the console skip switch is not set
(OFF). If the switch is set, the SWN instruction becomes a pass.

SKIP IF OVERFLOW (S¢V) -

The S¢V instruction senses the status of the overflow circuitry. If an Over­
flow condition is sensed, the S¢V instruction will result in a skip. Overflow
can occur as the result of any arithmetic operation except multiply. Once
overflow occurs, the overflow condition remains until the computer is Master
Cleared or a Skip instruction which senses the overflow status is executed. The
S¢V instruction, then, always leaves the computer in a no overflow state
regardless whether skipping occurred or not.

Consider the following routine:

Initial Conditions: M.C., set P=0200, set A=7FFF, Selective Stop switch set and
press RUN

0200
0201
0202
0203

0901
OlAl
0000
0000

In the preceding routine, the INA instruction results in an overflow so that
when the S¢V instruction is executed a skip will result and the overflow
condition will be removed.

SKIP IF NO OVERFLOW (SN¢) -

The SN¢ instruction will result in a skip if an overflow condition is not
present. If an overflow condition is present, the SN¢ instruction becomes
a pass. After sensing the overflow status, the SN¢ instruction leaves the
computer in a no overflow state regardless whether skipping occurred or not.

SKIP IF PARITY ERROR (SPE) - I 01 11 cis I
The SPE instruction senses the status of the Parity error circuitry within the
computer. Whenever memory is referenced, the quantity at the location being
referenced is checked for parity. In the 1700 computer, parity is odd; that
is, the total number of "1" bits in any memory location (including the protect
and parity bits) must be odd. When quantities are stored in memory odd parity
is insured by forcing the parity bit to be the proper configuration. Whenever
a memory location is referenced, then, total parity should be odd. If it is
not, it indicates a parity error. Once a parity error condition occurs it
remains until the computer is master cleared or an instruction which senses
parity error status is executed.

The SPE instruction will result in a skip if a parity error exists at the
time the instruction is executed and will become a pass if no parity error
exists. In either case the SPE instruction lelves the computer in a no parity

1-19

error state.

SKIP IF NO PARITY ERROR (SNP) - 1 0 I I I Dis

The SNP instruction will result in a skip if no parity error is present at
the time the instruction is executed. If there is a parity error, the SNP
instruction becomes a pass. After sensing the parity error status, the SNP
instruction leaves the computer in a no parity error state.

SKIP IF PROTECT FAULT (SPF) - ! 0 III E I S I
The SPF instruction senses the status of the protect fault circuitry within
the computer. A protect fault will occur under one of three conditions:

1. An illegal store into memory
2. An illegal execution of EIN, lIN, SPB, CPB, EXI iristructions or any

interregister instruction having the Mask Register as a destination.

3. An attempt to execute a protected instruction after a non-protected one.

An illegal store occurs whenever a non-protected instruction attempts to store
a quantity into a protected memory location (with the protect switch ON).

When a protect fault occurs, the fault condition persists until the computer
is Master Cleared or an instruction is executed that senses protect fault status.

The SPF instruction will result in a skip if a protect fault exists at the
time the instruction is executed. If no protect fault exists, the SPF instruc­
tion becomes a pass. In either case, the instruction will £ave the computer
in a no protect fault state.

Consider the following routine:

Initial Conditions: M.C., set P=lOOO, Selective Stop switch ON, Protect
Switch ON and press RUN

1000
1001
1002
1003
1004
1005

0400
0901
OBOO
aIEl
0000
0000

The preceding routine causes the Interrupt System to become enabled (EIN
instruction). The contents of A are then increased making A-GOOI. The third
instruction is a pass. When this instruction is read from memory, however,
a protect fault occurs (protected following non-protected) which converts the
instruction to a SLS. The computer stops after reading the SPF instruction
into X.

Note: If, after the first stop, the computer were restarted without first
Master Clearing, the SPF instruction would cause a skip to location
1005 and clear the protect fault condition.

1-20

SKIP IF NO PROTECT FAULT (SNF) - I 0 11 I F S

The SNF instruction will result in a skip if no protect fault is present
at the time the instruction is executed. If there is a protect fault, the
SNF instruction becomes a pass. In either case, the SNF instruction leaves
the computer in a no protect fault state.

What are the final contents of A, Q and P after each of the following routines?

1- Initial Conditions: M.C. , set P =0500, Selective Stop switch ON, set
Q=800F and press RUN

015F 0160
0160 OlAl
0161 0000
0162 0000
0500 ODEF
0501 0400
0502 OE5F
0503 0000

2. Initial Conditions: M. C., set P=0200, Selective Stop switch ON, set
Q=0202 and press RUN

OOFF OBOO
0100 OOFF

0200 0600
0201 0400
0202 OEOO
0203 01Fl
0204 0000
0205 0000

3. Initial Conditions: M.C., set P=OlOl, Set A=OOOl, Selective Stop switch
ON and press RUN

0100 0101
0101 0132
0102 0155
0103 0000
0104 0901
0105 0141
0106 OEOO
0107 0000
0108 09FE
0109 0141
010A OEOO
o lOB 0000

4. What would have been the final contents of A, Q and P in the routine for
problem f/:3 if the initial contents of A had been FFFE?

1-21

5. Under what condit ion will the following routine stop?

Initial conditions: M.C., set P=0150, Selective Stop switch ON and press RUN

014F
0150
0151
0152
0153
0154

0150
0183
0901
ODFE
OE4F
0000

6. In the routine for problem #5, what relat~onship will the contents of A and
Q have to each other each time the computer is stopped?

INTERREGISTER (IR) Group

Instructions belonging to the Interregister group are identified by the upper
two digits being 08. Individual IR instructions are identified by the lower
two digits, which have the following format:

765 4 3 210

Operation Source Destination

Bits 6 and 7 of the IR instructions determine the operation to be performed
and have the following significance:

l. LP=O, XR=O indicates Add operation (symbol +)
2. LP=O, XR=l indicates Exclusive OR operation (symbol¥)
3. LP=l, XR=O indicates Logical Product operation (symbol /\)
4. LP=l, XR=l indicates Complemented Logical Product operation (symboli\)

Bits 3, 4 and 5 determine the operand source upon which the preceding operations
may be performed. Two operands are involved with every IR instruction. One
operand is determined by the status of bit 5. If the "A" source bit is a "l",
the first operand will be the contents of the A Register. If the "A" source
bit is a "0", the first operand will be negative zero (the quantity FFFF).
The second operand is determined by the status of both bits 3 and 4.

If both bits 3 and 4 are zeros, the second operand is negative zero (FFFF); if
the Q source bit is a zero and the M source bit is a "l", the second operand
is the contents of the Mask Register; if Q source= "1" and M source = 1t0", the
second operand is the contents of the Q Register; if Q source = "I" and M source
= "1", the second operand is the inclusive OR (symbol V) of the Q Register and
Mask Register contents.

1-22

Donlt get the inclusive OR and exclusive OR operations confused. If an IR
instruction had the follow bit configuration

7 6 5 4 3 2 1 o
o 1 1 1 1

it would mean that an exclusive OR (symbol~) of operands land 2 is to be
performed where operand 1 is the contents of the A Register and operand 2 is
the inclusive OR of the Q and Mask Register contents. This would be written
as ~] V- ~Q) V (M]

On the other hand, an IR instruction having the configuration

7 6 5 4 3 2 I o
1 o 1 1 1

would mean that a logical product (symboIA) of operands 1 and 2 is to be
performed where operand 1 is the contents of the A Register and operand 2 is
the inclusive OR of the Q and Mask Register contents. This would be written
as [~ "irq) V (M)

Bits 0, land 2 of the IR instructions determine the destination registers
which are to receive the result of the operation specified. If a destination
bit is a 11111, the corresponding register receives the result. Any combination
of destination registers may be indicated so that the A, Q and Mask registers
can all receive the same quantity. If no destination bits are ones, the opera­
tion is performed but the result is lost. If the operation being performed
is an add (bits 6 and 7 both zeros), overflow status is recorded. With an
add operation specified and no destination bits set, a prograrrnner can perform
magnitude comparisons without destroying the operands. This enables overflow
situations to be predicted and corrective action to be taken (if necessary)
in advance of an addition.

Two features of the IR instruction operations bears further consideration.
If one operand is negative zero and a logical product is performed, the result
is that the other operand transfers directly to the destination registers.
For example if an IR instruction has the following format,

7 6 5 4 3 2 1 o
1 o o 1 o 1 o o

1- 23

the contents of the Q Register would transfer to the A Register. The
following format would cause the contents of the A Register to transfer to
the Q and Mask Registers.

7 6 5 4 3 2 1 o
1 o 1 o o o 1 1

If one operand is negative zero and an exclusive OR is performed, the result
is that the other operand becomes complemented into the destination register.
Thus, to complement the contents of the A Register would require an IR
instruction having the following format:

7 6 5 4 3 2 1 o
o 1 1 o o 1 o o

One final precaution concerning the IR instructions. Any IR instruction
specifying the Mask register as a destination must be protected (The protect
switch OFF or the location of the instruction be protected) or the instruction
is considered illegal. If an illegal IR instruction is attempted, a
protect fault occurs and a SLS instruction will be executed in place of
the IR instruction.

NOTE: If the lowest hexadecimal digit of the IR instruction is odd,
the Mask destination bit is a !lltr.

1. Show in hexadecimal format an IR instruction which will:

d. [A] ~ A, Q and Mask

1-24

Table VII is included to enable analysis of logical operations to be performed
in hexadecimal rather than binary, thereby saving time. An example in the
use of table VII

Suppose an inter - register instruction is being executed that performs:

[A] l,J- [(Q) V (M)]

Given: (A) = l5F3, (Q) = 74B2 and (Mask) = OF05, the result would be:

1. Form the inclusive OR (V) of the Q and Mask Register contents using
the appropriate portion of table VII; thus:

(Q) = 74B2
(M) = OF05

(Q) V (M) = 7FB7

2. Form the exclusive OR fN.-) of the A Register and the result obtained
in step 1 using the appropriate portion of table VII; thus:

(A) = l5F3
(Q) V eM) = 7 FB 7

[A] -\f [(Q) V (M)]= 6A44

1-25

2. What would be the final contents of A, Q and Mask registers upon completion
of the following routines?

a. Initial Conditions: M.C., Set P = 0500, Set A = 0050, Set Q = FFFO,
Selective Stop switch ON and press RUN

0500 0830
0501 01A6
0502 0851
0503 0834
0504 OlBl
0505 0900
0506 0891
0507 0000
0508 OCOO
0509 0817
050A 0000

b. Initial Conditions: M.C., Set P = 0170, Selective Stop switch ON,
Protect switch ON and press RUN

0170 OAFF
0171 08A1
0172 0977
0173 0837
0174 0000

c. Initial Conditions: M.C., Set P = 0191, Set A = 1234, Set Q = 7000,
Selective Stop switch ON, Protect switch ON
and press RUN

0191 0834
0192 01B1
0193 0191
0194 OE93
0195 0600
0196 0851
0197 0181
0198 0000
0199 OE93

1-26

SHIFT GROUP

Instructions belonging to the Shift group are identified by the upper two
digits being OF. Individual shift instructions are identified by bits in
the lower half of the instruction, which have the following format:

7 6 5 4 3 2 1 o

DIRECTOR

Bit 7 is a director bit which determines the direction in which shifting
will occur. If L "111, shifting is to the left whereas if L = 110", shifting
is to the right.

Bits 5 and 6 identify the source of the shifted quantity. If A = lip the
A Register contents will be shifted; if Q = "P the Q Register contents will
be shifted; if both A and Q bits ones, both register contents will be
shifted and if both A and Q bits = zeros, no register contents will be
shifted.

Bits 0 through 4 identify the shift count. As shifting progresses, the
shift count is reduced each time the source is shifted one position.
Shifting continues until the shift count is reduced to zero.

If the source is a single register, left shifting will be end-around such as:

15 12 8 4 o

ORIGINAL

FINAL

1-27

while right shifting will be end-off with sign extension such as:

ORIGINAL

FINAL

If the source is both A and Q, the registers will be treated as a single
32-bit QA register so that left shifting will be end around as:

ORIGINAL

FINAL

~----------Q-----------'~".~---------A------~~

1-28

while right-shifting wi 11 be end-off with sign extension such as:

ORIGINAL

nNAL

... -----Q-----..... I •• ----- A -----.. ~I

1. What is the final contents of A and Q in each of the following routines?

a. Initial Conditions: M.C., Set P = 1000, Set A = 1234, Set Q = FE03,
Selective Stop switch ON and press RUN

1000 OF24
1001 OFFO
1,002 0000

b. Initial Conditions: M.C., Set P = 1500, Set A = OFF1, Set Q = 0185,
Selective Stop switch ON and press RUN

1500 OF85
1501 OF5F
1502 OCFF
1503 OF68
1504 0000

2. Write a routine that will take the original contents of the A register
and reverse the bits in every pair; that is, bits a and 1 reverse, bits
2 and 3 reverse, bits 4 and 5 reverse, etc.

3. Write a routine that will count the number of "1" bits in the A register
and place that count in the Mask register.

1-29

4. Write a routine that will require one second (accurate within a few
microseconds) to be executed.

5. Write a routine that will cause the overflow indicator to turn on and
off for one-second alternations repeated 10 times.

1-30

ANSWERS -- CHAPTER I

Pages 1-7 Ii< 1-8

1. a. Disabled. The instruction at location 0736 is illegal and causes
the computer to stop. The only instruction executed is the lIN
instruction at location 0735.

b. Disabled. Protect status isn't monitored. The lIN instruction at
location 1001 overcomes the effects of the EIN instruction at
location 1000. NOTE: The program starts at location 1000, not OFFF.

2. a. (p) = 0103. Always advance (P) and read up the next instruction
before stopping.

b. (P) = 0101. The instruction at location 0100 is illegal and causes
the computer to stop.

Pages 1-12 Ii< 1-13

1. a. (A) = FFFE, (P) = 0204

b. (A) = 0010, (P) = 0707

c. (A) = 0000, (P) = 09B3

2. a. The 0500 instruction at location 0002 is illegal and stops computer with
(p) = 0003.

b. Enabled. All instructions are executed until the CPB instruction
(location 0055) is attempted. This instruction is illegal and stops
the computer with (p) = 0056 and (A) = 0055.

Pages 1-16 Ii< 1-17

1. a. (P) = 0401, (A) = 1000, (Q) 0155

b. (p) = 0106, (A) = 0001, (Q) FFFF

2. Will cause all memory locations to become protected. By stepping through
the routine, specific locations can be protected by manually setting
Q to the location to be protected. Each pass through the routine will
protect one location and automatically increment Q. The routine stops
when the Selective Stop switch is turned on.

1-31 Rev. B

ANSWERS (continued)

Pages 1-21 & 1-22

1. (A) 0000, (Q) = 7FFF, (P) = 0163

2. (A) 0000, (Q) = 0202, (P) = 0101

3. (A) 0001, (Q) = 0000, (P) = 0104

4. (A) = 0000, (Q) = 0000, (P) = 0108

5. The routine will stop when the Skip switch is turned ON.

6. The two registers will always contain complements of each otherrs contents.

Pages 1-24 & 1-25

1. a. 0834

b. 085C or 08DC

c. 08FB

d. 0867 or 08E7

2. a. (A) 0041, (Q) FFFO, (Mask) = FFFO

b. (A) FFFF, (Q) 0000, (Mask) = 0000

NOTE: The unprotected instruction at location 0171 is a transfer
to the Mask Register. With the Protect Switch ON, the instruc­
tion is illegal causing the computer to stop.

c. (A) = 8234, (Q) = 7000, (Mask) = 0000

NOTE: The instruction at location 0191 Causes an overflow. The
instruction at location 0195 is illegal and stops the computer.

1-32

ANSWERS (continued)

Pages 1-28 & 1-29

l. a. (A) = FFEO, (Q) 1234

b. (A) = FFOO, (Q) FFFF

2. Routine will be checked by running it on a computer

3. same as if2

4. same as 112

5. same as iF2

1-33

CHAPTER II

ADDRESSABLE INSTRUCTIONS

ADDRESSABLE INSTRUCTIONS

INTRODUCT ION

Any instruction whose uppermost digit is non-zero is an addressable (or
Storage Reference) instruction. These instructions are characterized by two
facts; they all have memory reference capabilities and incorporate addressing
modes to arrive at the proper memory location to be referenced.

The format of all addressable instructions is

where F identifies the instruction, M identifies the addressing code and the
delta (~) field is a modifier. The addressing code M of the instruction
consists of four bits having the following format:

11 10 9 8

r ind q i

where the Itrlt bit indicates relative, the Itind lt bit indicates indirect, the
ItQIt bit indicates Q Register indexing and the Itilt bit indicates Memory
Register indexing. The significance of these addressing bits and the manner
in which addressing is accomplished will be explained in a latter portion of
this chapter.

INSTRUCTIONS

Jump (JMP) -

The Jump (JMP) instruction provides a means of leaving the normal instruction
sequence and continuing program execution from some other portion of memory
(called branching). Program continuation will be at the effective address
(determined by addressing). For example, assume a JMP instruction is
located at address 1000 and the effective address is 1500, program sequence
would go from the JMP instruction at location 1000 to the instruction at
location 1500 as if the two instructions were in consecutive memory locations.

One important use of the Jump instruction occurs when the effective address
forces branching to a previous instruction. This provides a means of looping
back to re-executed instructions common to a given operation. The programmer
would include a counting routine which would determine the number of passes
through the loop.

2-1

Rev. B

Multiply Integer (MUI) -- I 2 1M l-fS-1
The Multiply Integer (MUI) instruction forms a 32-bit product of the contents
of the A Register and the contents of the memory location specified by the
effective address. The contents of A is the multiplier while the contents
of the effective address is the multiplicand. The 32-bit product will
appear in the Q and A registers, Q containing the significant half. The
original contents of A and Q become destroyed as a result of the MUI
instruction.

Since the 1700 uses one1s complement arithmetic, a negative number is
merely the complement of a positive number. This introduces the negative
zero (FFFF) quantity, since it is the complement of positive zero (0000).
There is no such concept as -0 in arithmetic and whenever such a result
is obtained from a computer, a prob~em exists. Obtaining a -0 result due
to arithmetic operations can be minimized by adder design; however, certain
combinations of operands will still produce a -0 result. For the 1700,
MUI instructions will produce a negative zero only under the following
conditions:

(+0) x (-N)
(-N) x (+0)
(-0) x (+N)
(+N) x (-0)

Overflow can never occur as the result of a multiplication since the produc.t
of the two largest possible operands does not exceed the 32-bit capacity
available. (The reader might prove this to himself by squaring 7FFF).

Divide Integer (DVI) -- I 31M 1-.6.-1

The Divide Integer (DVI) instruction takes the 32-bit dividend in QA and
divides by the contents of the memory location specified by the effective
address. The original contents of Q is the significant half of the dividend
while the original contents of A is the insignificant half of the dividend.
The divisor is the contents of the effective address. A l6-bit quotient
will appear in the A Register while the final contents of the Q Register will
contain the remainder. The sign of the quotient is determined in accordance
with accepted division rules whereas the sign of the remainder will always
be the same as the sign of the original dividend.

For the 1700, DVI instructions will produce a negative zero only under the
following conditions:

(+0) ~ (-N) = (-0), R = (+0)
(-0) ~ (+N) = (-0), R = (-0)
(-2N) + (+N) = (-2), R = (-0)

Overflow can occur during a DVI instruction. Consequently, overflow is
monitpred by the computer and the status recorded. Once overflow has been
detected an overflow condition will continue to exist until either a S~V
or SN~ instruction is executed.

2-2

Store Q (STQ) -- I 4 ! M t-D.-I

The Store Q (STQ) instruction provides a means of placing the contents of
the Q Register into a memory location, the location being the effective
address formed during the addressing mode of the instruction. If the location
to which the contents of Q are to be stored is a protected location, the
STQ instruction must be protected (that is, the protect switch OFF or the
location of the STQ instruction be protected). If the STQ instruction is
unprotected, an attempt to store its contents into a protected location
will be illegal and will cause a protect fault. The effect of an illegal
store is to convert the instruction to a pass by preventing any new transfer
into memory. As a result, the original contents of the location referenced
will remain unchanged.

NOTE: An illegal store will not force the computer to execute a SLS
instruction, as was true for other causes of protect faults.

Parity errors are also monitored during store instructions. Should a
parity error exist and the STQ instruction is protected, the contents of Q
will be stored but the parity error will persist until cleared by a skip
instruction which senses parity status (SPE or SNP). Should a parity error
exist but the STQ instruction is not protected, the operation is converted
to a pass. The philosophy being that the parity error could have been caused
by the protect bit changing status (from protected to non-protected) and a
non-protected instruction must never be allowed to change the contents of a
protected location.

Return Jump (RTJ) -- SIM I-D.-I
The Return Jump (RTJ) instruction is a branching instruction which provides
for a return to the exact point where branching occurred. When the RTJ
instruction is executed, the addressing mode will form an effective address
which will specify the location for storing the return address. The return
address will be the location of the next executable instruction (P+l or P+2,
depending on the address mode used to form the effective address). Program
execution will continue at the location following the effective address.
For example, assume a RTJ instruction is located at address 1000 and the
effective address is 1050. If the next executable instruction is at
location 1001, the following sequence would occur:

2-3 Rev. B

LOC. CONTENTS

1000
Address of next __ ~_
executable ~1_0_0 __ 1~ ______________ -;
instruction

Effective
Address

1002

104F

1050 RET. ADDR.

1051 2

1 Addressing mode forms effective address (1050) and writes in that
location the return address (the address of the next executable
instruction -- 1001).

2 Program execution continues by executing the instruction at the
effective address +1.

Once the reason for branching has been fulfilled, a return to the preceding
program can be performed simply by executing a JMP instruction whose
effective address is the return address written into location 1050 (for this
example).

The RTJ instruction is a powerful instruction for the programmer in that it
allows frequently used routines to be accessed from any location in memory
and as many tinies as desirable without being concerned with the proper point
of return.

The RTJ instruction is treated as a store instruction and must conform to
protection requirements. If the location where the return address is to
be stored is protected, the RTJ instruction must be protected or it becomes
illegal, producing a protect fault and preventing the instruction from storing
the return address. If a parity error exists when a non-protected RTJ
instruction is attempted, the instruction is prevented from storing the
return address. In both cases program continuation will be at the effective
address +1. The effect, then, is that execution of RTJ instructions

2-4

under fault conditions will prevent writing the return address into memory;
however, branching will occur to the effective address +1.

Store A (STA) -- 61 M I-t::.-I
The Store A (STA) instruction provides a means of placing the contents of
the A Register into the memory location specified by the effective address
(formed during the addressing mode of the instruction). Execution of the
STA instruction under fault conditions is the same as previously explained
for the STQ instruction.

Store A, Parity to A (SPA)

The SPA instruction provides a means of determining the parity of whatever
is contained in the A Register. Execution of the SPA instruction will cause
the contents of A to be stored at the location specified by the effective
address. During this store operation, a parity bit will be generated for
memory. This parity includes the memory protect bit at the location where
(A) are stored. This is not necessarily the parity for the quantity
originally in the A Register. To eliminate the effect of the protect bit,
the parity bit and protect bit are exclusively ORed together. The result
reflects the proper parity for the contents of A alone. The A Register is
completely cleared, then the proper parity is transferred to Aoo. Execution
of the SPA instruction under fault conditions is the same as previously
explained for the STQ instruction.

Add (ADD) 81M I-t::.-I
The ADD instruction forms a 16-bit arithmetic sum of the contents of the
A Register (Augend) and the contents of the memory location specified by the
effective address (Addend). The sum replaces the original contents of the
A Register.

For the 1700, the ADD instruction will produce a negative zero only under
the condition:

(-0) + (-0)

Overflow is monitored during all ADD instructions and will occur when:

(-) + (-) +
(+) + (+)

NOTE: If the address code (M) = 1, 2, or 3 and t::.

address so formed becomes the 16-bit quantity added
A Register. This called the Immediate Operand mode
to reference memory for the Addend.

Subtract (SUB) --

= 0, the effective
to the contents of the
and eliminates the need

The SUB instruction forms a l6-bit arithmetic difference between the contents
of the A Register (Minuend) and the contents of the effective address

2-5

(Subtrahend). The difference replaces the original contents of the A
Register.

For the 1700, the SUB instruction will produce a negative zero only under
the condition:

(-0) - (+0)

Overflow is monitored during all SUB instructions and will occur when:

(-) - (+) = +
(+) (-) - -

NOTE: If the address code (M) = 1, 2, or 3 and 6. == 0, the effective
address so formed becomes the l6-bit quantity subtracted from the
contents of the A Register.

And With A (AND) -- A 1M 1-6.-1
The AND instruction forms the logical product (AND) of the contents of the
A Register and the contents of the effective address. The logical product
replaces the original contents of the A Register.

NOTE: If the addressing code (M) == 1, 2, or 3 and 6. = 0, the effective
address so formed becomes the l6-bit quantity ANDed with the contents
of the A Register.

Exclusive OR With A (E~R)

The E~R instruction forms the Exclusive OR of the contents of the A Register
and the contents of the effective address. The exclusive OR result replaces
the original contents of the A Register.

NOTE: If the addressing code (M) == 1, 2, or 3 and 6. = 0, the effective
address so formed becomes the l6-bit quantity exclusively ORed with
the contents of the A Register.

Load A (LDA) -- elM I-:.C:.-I
The LDA instruction provides a means of replacing the contents of the A
Register with a quantity read from memory. The memory location referenced
is the effective address.

NOTE: If the addressing code (M) = 1, 2, or 3 and 6. = 0, the effective
address so formed becomes the l6-bit quantity which replaces the
contents of the A Register.

Replace Add One (RA~) -- DIMI-~-I

The RA~ instruction reads the contents of the memory location specified by
the effective address, adds +1 to the quantity and stores the incremented

2-6

result at the location originally referenced. Execution of this instruction
will always require two memory references following the addresssing mode.
The first reference is to fetch the quantity to be incremented, the second
reference is to store the incremented quantity.

The RA~ instruction is treated as a store instruction and must conform to
protect requirements. If the instruction references a protected memory
location, the instruction must be protected (the protect switch OFF or the
location of the RA~ instruction be protected) to be executed. If a non­
protected RA~ instruction references a protected location, the instruction is
illegal. A protect fault is produced and the instruction becomes a pass.
If a parity error exists during execution of a non-protected RA~ instruction,
the instruction becomes a pass. However, even under fault conditions, the
instruction will make two memory references. Overflow can exist as the result
of an R~A instruction.

The RA~ instruction is useful in counting sequences where it becomes
impractical to use the contents of a reg~ter for incrementing. When the
count reaches a predetermined value, the sequence terminates.

Load Q (LDQ) --

The LDQ instruction provides a means of replacing the contents of the Q
Register with a quantity read from memory. The memory location referenced
is the effective address.

NOTE: If the addressing code (M) = 1, 2, or 3 and ~ = 0, the effective
address so formed becomes the l6-bit quantity which replaces the
contents of the Q Register.

Add to Q (ADQ) -- FIM I-~-I
The ADQ instruction forms a
memory location specified by
of the Q Register (Addend).
Q Register.

l6-bit arithmetic sum of the contents of the
the effective address (Augend) and the contents
The sum replaces the original contents of the

For the 1700, the ADQ instruction will produce a negative zero only under
the condition:

(-0) + (-0)

Overflow is monitored during all ADQ instructions and will occur when:

(-) + (-) = +
(+) + (+) = -

NOTE: If the addressing code (M) = 1, 2, or 3 and 6 = 0, the effective
address so formed becomes the l6-bit quantity to which the contents
of the Q Register are added.

2-7 Rev. B

CHAPTER III

ADDRESSING MODES

c

ADDRESSING MODES

INTRODUCTION

The execution of all addressable instructions requires the formation of an
effective address. Formation of such an address uses the addressing mode
capability of the 1700 computer. Since one hexadecimal digit (F) of each
addressable instruction is used to identify the instruction, a maximum of
12 bits would be available as an address, which is 3 bits less than is necessary
to reference 32K of memory. Because of the bit limitation in the instruction
word size, various addressing modes have been incorporated to enable addressing
capabilities to suit any need. The addressing mode is determined by another
hexadecimal digit (M) which is a code to inform the computer the manner in
which it is to arrive at the effective address. With two digits of the
instructions being used for coding, only 8 bits are left for addressing.
These 8 bits are referred to as the delta (~) field or modifier.

The format of all addressable instructions is:

I F I MI-~-I
where F must not equal 0 and M has the format:

11 10 9 8
r ind q i

During each Read Next Instruction eRNI) mode, an instruction is read from
memory, placed into the 1704 X Register after which the upper eight bits of
the instruction transfers to the F Register. The contents of the F Register
are immediately translated to determine which instruction is to be executed.
If the instruction is addressable, the addressing mode is immediately started.

The addressing flow diagram (Appendix, page 14) shows the sequence during
each addressing mode to arrive at the effective address. Each addressing
code possibility is explained in the following pages.

RELATIVE

Relative, ~ t- 0

Consider the Load A (LDA) instruction I C I 8 3 5 I. The function code
(C) identifies the instruction as LDA while the addressing code in this
example is the hexadecimal digit 8. In binary, this is equivalent to 1000.
Since the only bit set is 211 , it identifies the addressing mode as relative
only. The lower two digits (35) represent the quantity ~ •

3-1

As soon as the computer determines that the instruction is addressable
(the upper-most hexadecimal digit being non-zero), the addressing bits are
considered--highest order bit first. If the relative bit is set, ~ is
translated to determine whether or not it equals +0. In this example, ~
does not equal +0; consequently, its sign is extended (bit 27 determines the
sign of ~) to form a l6-bit quantity which is added to the contents of P.

The result of P ±~ is transferred to the Y register. If the only
addressing bit set is the relative bit, then P ±A (that is, the contents
of Y) is the effective address.

Once the effective address is determined, memory is referenced at that
address for execution of the instruction. Therefore, if the LDA instruction
used in this example were located at address 0100 of memory, the effective
address would be 0135. The contents of location 0135 would be referenced
and loaded into the A Register.

What if the instruction had been I C I 8 8 I 3 I ? In this case, the
quantity ~ is negative (bit 27 is set) so that P (0100) plus ~ with sign
extension (FF83) would become 0084.

Relative, D. = 0

What if the quantity ~ equals +O? Consider the LDA instruction I C I 8 I 0 I 0 I
If the quantity ~ equals +0, relative addressing is performed in two steps.
First, P + 1 is formed and sent to P and Y~ This location (Y) is then
referenced and its contents added to the present quantity in Y. Thus, if
the instruction C800 is located at address 0100, +1 is first added to P and
sent to P and Y. The contents of Y (location 0101) is referenced. The
quantity read from memory is then added to Y, the relative bit is cleared
and relative addressing ceases. In the example being used, if the contents
of location 0101 were 0050, the result of relative addressing would produce:

P + 1 + (P + 1) = 0101 + 0050 = 0151.

Relative, ~ = 0

In the LDA instruction I C 10 I 0 10 I ,the relative bit is clear and ~
equals zero. Under such a condition relative addressing forms P + 1,
placing the result in P and Y. If the instruction COOO were at location
02AF, the result of relative addressing would produce 02BOin the P and Y
registers.

Relative, A 1= 0

In the LDA instruction
equals BE. Under such
transfer of + ~ to Y.
addressing would place

I C I 0 I B I E I ,the relative bit is clear but ~
a condition relative addressing merely involves the
In this example, then, the result of relative

the quantity OOBE in the Y Register.

3-2

l. In the following partial programs, what would be loaded into the A
Register as a result of each LDA instruction?

a. 0222 C8A4 b. 0222 C800
0223 8800 0223 00A4
01C7 4321 0044 4321
lA23 1234 02C7 FFFF

c. 1234 C80l d. 1234 C885
1235 1500 1235 1500
1236 2000 llBA FFOO
1500 FFOO 1500 2468

2. Explain the difference, if any, between the results obtained by the
LDA instructions in each of the following partial programs.

a. 0500 C800 b. 0500 C80l
0501 2233 0501 FFFF

2233 OOFF 2233 OOFF
2734 FFFF 2734 2233

3. Where would each program (problem 2) continue after execution of the
LDA instruction?

INDIRECT

Following each relative operation, the computer checks the status of the
indirect bit. If thts bit is set, it informs the computer that indirect
addressing will commence where relative ends. If the indirect bit is not
set, indirect addressing will not be performed.

The following examples show combinations of addressing modes with the
indirect bit set. The first example shows non-relative, indirect and 6 O.

0035 -
0100
0101
0102

FOFO
C400
8102
0035

The LDA instruction at location 0100 has a 4 addressing code, which means
only the tlind tl bit is set. Since r = 0 and 6 = 0, relative operations
would form P + 1 in P and Y. This ends relative operations, at which time
indirect operations begin. Indirect addressing takes the contents of Y
(0101 in this case), references memory and makes a sign check of the
quantity when it gets into the X Register. If the sign bit (2 15) of X is
set, during indirect operations, it means the quantity just read from memory

3-3

Rev. B

is another indirect address. In this example the contents of location 0101
are negative. As a result, the contents of X (8102) are transferred to
Y and used as another indirect address. Since only the lower 15 bits of Y
have any significance regarding memory addressing, the actual location
indirectly addressed this time will be 0102. This multi-level indirect
operation continues until a positive quantity is read from memory. For this
example, the contents of location 0102 are positive. Once a positive
quantity is detected in X, the indirect bit is cleared causing further
indirect operations to cease. The last quantity read from memory transfers
to Y and awaits further addressing (indexing) if any.

In the preceding example, the e400 instruction would result in an effective
address (in Y) of 0035. Since the instruction is a LOA, location 0035 would
be referenced and its contents (FOFO) placed into the A Register.

The next example shows non-relative, indirect and ~ f o.

0002
0035
0100
0101
0102
70FO

0101
0102
e402
8102
0035
0100

In this instance the result of relative operations places + 1;:,. into Y; that
is, Y would equal 0002. Indirect operations use the contents of Y as an
indirect address which is referenced in the manner previously explained.
The result of the e402 instruction would be that the Effective Address
would be 0101. The contents of this location (8102) would be loaded into
the A Register.

The following partial program shows a LOA instruction which has relative,
indirect and ~ = O.

0100 eeoo
0101 7FFF
0102 0123
4eoo 0101

The eeoo instruction will form P + 1 in P and Y. The contents of Yare
referenced obtaining the quantity 7FFF which is added to Y. This makes
Y equal 8100, which is the indirect address. When memory is referenced, the
upper-most bit in Y is discarded so that (for this example) location 0100
will be referenced. Since the quantity eeoo is negative, indirect
addressing is repeated at location 4eoo. This produces an effective address
of 0101 so that the quantity 7FFF is loaded into the A Register.

The following indirect address example involves a LOA instruction having
relative, indirect and ~ f o.

3-4

OOAB = 8103
OOAC = 8102
0100 = CCAB
0101 = OOAB
0102 = OOAC
0103 = 8101

The CCAB instruction will form P ~ ~ in Y, making Y equal OOAC. This
location is indirectly addressed. Since its contents (8102) is negative,
indirect addressing is repeated at location 0102. The effective address
becomes OOAC so that the quantity 8102 is loaded into the A Register.

1. Repetitive (multi-level) indirect addressing is indicated in what manner?

2. What would be placed into the A Register as a result of the LDA
instruction in the following partial program?

0000 0088
0088 e489
0089 8090
0090 9000
1000 9001
1001 FFFF
7FFF 1234

3. In the preceding program, what would happen if the contents of location
1001 were 9000?

4. See if you can determine the quantity loaded into the A Register due
to the LDA instruction in each of the following partial programs.

a. OOFF = 8101 b. 0000 8102
0100 eCFF 0100 C400
0101 = 8805 0101 4321
0102 = 1234 0102 0101
OlFF = 80FF 4321 OFOF
4805 OOFF
4CFF 0100

c. 0000 ecoo d. 0000 CeOl
0001 8002 0001 8000
0002 FFFF 0002 1234
0003 FCOO 4eOl 0000
7COO 0001 8000 0001
7FFF = 0002

3-5

INDEXING

Two index registers are available for addressing purposes in the 1700
Computer. One is the Q Register and is selected by having the "q" bit
(29) of the addressing code set. The second register is the contents of
memory location OOFF and is selected by having the "i" bit (28) of the
addressing code set. If both bits are set, the contents of both registers
will be used with (Q) being used first.

Consider the LDA instruction \' C \2 \ 8 10 Since the addressing code is
2, only the Ifq" bit is set. 6. = 80 which becomes 0080 with zeros extended.
With only the Q bit set in the addressing code, the effective address is
formed by adding the contents of Q to -1-6 Thus, the effective address in
this particular example (assuming Q ~ 1234) would be 0080 -I- 1234 or l2B4.

NOTE: The largest possible address in the computer is 7FFF (15 bits).
Consequently, whenever the output of the adder is an address,
it will be reduced to 15 bits by dropping the most significant
(sign) bit. This occurs during the Y to S transfer only.

Example: I C I 2 I 8 I 0 I
The result of 0080 -I- C280 would be C300. However, the memory
location referenced would be 4300.

Let's consider the following partial program to illustrate indexing.

Q = 0101
0100 C20l
OlOl 1234
OlO2 = FFOO

In the preceding program the LDA instruction uses Q indexing and 6 = 01.
Q -I- 6 = OlO2 which is the effective address. The contents of 0102 are
then loaded into the A Register.

The LDA instruction I C 11 15 I 0 I has an addressing code of 1, which
identifies the use of the memory index register (location OOFF). If the
contents of OOFF = 8500, the effective address would be formed by adding
8500 to 0050, giving 8550. ThiS, in turn, is reduced to 15 bits (Y to S)
g~v~ng an effective address of 0550. The contents of 0550 would then be
loaded into the A Register.

The LDA instruction I c I 3 I 7 I A I has an addressing code of 3, which
identifies the use of both indexing registers. Assuming the contents of Q
to be CA7D and the contents of location OOFF to be DEFF, the effective
address would be formed in the following manner:

3-6

~ with zeros extended = 007A
Contents of Q = CA7D

l6-bit sum = CAF7

Contents of OOFF= DEFF
A9F6

1 -- end around carry -....,..--
Effective Address = A9F7 which, when

reduced to 15 bits
becomes 29F7.

The contents of location 29F7 would then be loaded into the A Register.

What would be the contents of the A Register due to the LDA instruction in
each of the following partial programs?

l. Q = 89FA 2. Q = FEDB
OOFF = 776F OOFF = 0057
0100 = C399 0100 = C277
0101 1234 0101 = 1234
0203 = FFFF 7F52 = 2468

3. Q = 0000 4. Q = OOFF
OOFF = 0102 OOFF = FF01
0100 = C100 0100 C3FF
0101 = 1234 0101 = 1234
0102 = DDFF
0203 = ABCD

3-7

MULTIPLE ADDRESSING

Each addressing mode considered previously has been designated by individual
bits of the addressing code. We have seen that relative and indirect
addressing modes can be combined. We have also seen that both index
registers may be used in one operation. Can indexing be combined with
relative? With indirect? With both? Yes, they can be combined. It is
this multiple addressing capability which provides a powerful tool to the
1700 programmer. The basic rule to remember in multiple addressing is that
each mode is performed using the results obtained in the previous mode. The
order of operation is:

1. Relative
2. Indirect
3. Q indexing
4. Memory indexing·

Let's consider the following partial program:

Q 0302
OOFF 0100
0500 = CFOO
0501 8503
0502 OOFF
0503 FFFF
OA04 80FF

In the preceding program, the CFOO instruction has all addressing bits set.
The manner in which the effective address is formed is as follows:

1. Form P + 1 in P and Y since relative set and t::. = 0
2. Reference location 0501.
3. Add contents of location 0501 to contents of Y, g~v~ng Y = 8A04
4. Indirect at location OA04 (contents of Y reduced to 15 bits)
5. Indirect at location OOFF (since the contents of OA04 are negative).
6. Stop indirect operations (since contents of OOFF are positive) and

sum the contents of OOFF with Q, giving 0402.
7. Sum 0402 with the contents of memory index register OOFF, giving

0502.
8. Load the contents of 0502 into the A Register, making A = OOFF.

Another example of multiple addressing is given in the following partial
program.

Q = 33FD
OOFF = 2510
1000 = C300
1001 = 8105
1002 = 1234
SA12 = FF44

3-8

If you have tried the preceding partial program, you probably concluded
that the quantity FF44 is loaded into the A Register. However, this is
not true. The actual quantity loaded into A is the final contents of Y,
DA12. For a moment, look back at the addressing flow diagram (Appendix) and
re-read the note. In effect, then, whenever relative with ~ = 0 and
indexing but not indirect, THE EFFECTIVE ADDRESS BECOMES AN OPERAND IF THE
INSTRUCTION NORMALLY READS AN OPERAND FROM MEMORY. Bear in mind that it is
the contents of P + 1 to which (Q) and/or (OOFF) are added. Remember, also,
the effective address is the contents of the Y register upon completion of
all addressing operations. The manner in which the preceding program would
execute the LDA instruction is as follows:

1. Relative and ~ = 00, form relative address P + 1 (1001).
2. Add the contents of Q to the quantity read from location 1001;

that is, 8105 + 33FD, giving B502.
3. Add the contents of memory index register (location OOFF) to B502;

that is, B502 + 2510, forming DA12 in the Y Register. Since the
instruction is one that normally reads an operand from memory, the
effective address (final contents of Y) becomes the quantity which
is loaded into the respective register. Consequently, the A
Register will be loaded with the quantity DA12. Notice that
Immediate Operand operations produce a l6-bit quantity.

Determine the quantity placed in the A Register during execution of the LDA
instruction in each of the following partial programs.

1. Q 57AF 2. Q = 7FFE
OOFF = FFFE OOFF = 543E
0100 C500 1000 = C200
0101 8102 1001 9002
0102 0101 1002 0100

3. Q 57AF 4. Q 87FE
OOFF 0500 OOFF F80E
0500 C101 0750 CBF2
0501 = 9002 0751 0246
0502 0500 0752 9999

5. Q = 1253 6. Q lF02
OOFF 0001 OOFF = lFOl
1250 = 1251 2000 = A002
1251 = FFFF 2001 = CEFE
1252 = C9FE 2002 OOFF
1253 = 1250 2003 FFFF

3-9

1. What is the final contents of the A, Q and P Registers for each of the
following routines?

a. Initial Conditions: M.C., Set P = 0500, Selective Stop switch ON
and press RUN.

04FF --- 0000
0500 OAB9
0501 --- OCOI
0502 --- OBB1
0503 OFE8
0504 OBB2
0505 OF4B
0506 0881
0507 9200
0508 0500
0509 0131
050A 0000
050B 1400
050C 04FF

b. Initial Conditions: M £., Set P =0200, Selective Stop switch ON,
Skip Switch ON, Set A = 0003, press RUN

OlFF OODO
0200 OC7F
0201 OD7F
0202 09 FE
0203 0101
0204 18FC
0205 --- 0004
0206 --- 88F9
0207 --- 08F1
0208 --- 0838
0209 --- OlBl
020A --- OEFF
OlOB --- BOOO
020C 0202
0200 --- 0000

c. Initial Conditions: M.C., Set P = 1500, Selective Stop switch ON
and press RUN

DOFF -,..- 0002
1500 -- - DAFO
1501 0079
1502 08F9
1503 ElOO
1504 --- 1500
1505 9000
1506 OOFF
1507 0879
1508 F400
1509 9506
150A --- 78EO
150B --- 0000

3-10

d. Initial Conditions: M.C., Set P = 2000, Selective Stop switch ON,
Protect switch ON, set A = 7085, Set Q = 5522,
Set Mask = 0005 and press RUN

2000 0807
2001 0121
2002 5000
2003 2004
2004 0000
2005 OBFE
2006 0000

e. Initial Conditions: M.C. Set P = 1700, Selective Stop switch ON
and press RUN

1700 OBF7
1701 5806
1702 D8FE
1703 0132
1704 09FE
1705 1400
1706 1701
1707 0000
1708 18F9
1709 0000

2. Write routines that will simulate the following 1700 instructions. You
are free to use any 1700 instruction in each routine except the one you
are simulating.

a. And with A
b. Load Q
c. Subtract
d. Exit the Interrupt State
e. Long Left Shift
f. Store A, send parity to AOO

3,..1l

ANSWERS CHAPTER III

Page 3-3

1. a. A= 4321
b. A = FFFF
c. A= 1500
d. A = FFOO

2. Nd differences. In either case A = FFFF.

3. Program "a" would continue at location 0502 while program lib" would continue
at location 0501.

Page 3-5

1. Multi-level indirect addressing is indicated if the quantity indirectly
addressed is negative. The sign bit of 'quantities indirectly addressed
is a flag notifying the computer whether indirecting is to continue or
to terminate.

2. The contents of A would equal whatever was stored at location 1234.
Remember that the highest possible address with 32K of memory is 7FFF.

3. The computer would be caught in an endless indirect addressing loop
between locations 1000 and 1001. EmbarraSSing, to say the least, for
the programmer.

4. a. A = CCFF (Don't forget that the sign of 6 is extended and added
to P if "rtt and 6 r 0 exist).

b. A = OFOF (r and 6 = 0 forms P + 1 which is indirectly addressed.)

c. A= 8002 (Don't forget relative and 6 = 0)

d. A = CCOl (Remember, there are no addresses greater than 7FFF in
the 1700 system.)

3-12

Page 3-7

1. A = FFFF

2. A = 2468

3. A_= 1336. This is a tricky one. In the CIOO instruction, the condition
(r)(ind)(6 = O)(q + i) is satisfied so that the effective address
(formed by adding contents of P + 1 and contents of OOFF) becomes the
quantity loaded into A.

4. A = C3FF

Page 3-9

1. A = C500

2. A = 1001

3. A = 9002 (Don't forget, 6 is not equa 1 to zero.)

4. A = CBF2

5. A = C9FE

6. A = CEFE

Pages 3-12, 3-13, 3-14

1. a. (A) = F9Fl (Q) = 0100 (p) = 0500
b. (A) = OE7D (Q) = 0200 (P) = 020E
c. (A) = 0001 (Q) = 1504 (P) 150C
d. (A) 7085 (Q) = 5522 (P) = 2001

NOTE: Instruction at location 2000 is illegal, causing computer to
stop.

e. (A) = FFFE (Q) = 0000 (p) = l70A

2. Routines will be checked by running them in the computer.

3-13 Rev. B

APPENDIX

No

No

Continue

Enable
Stop
Circuitry

RN! at
(y)

Stop
When inst.
Enters X

Yes

)-P,Y

A-l

RN! at
(Y)

No

Rev. B

INPUT

NO

(p) +6---
P, Y

Rev. B

IS
A "REPLY"
RECEIVED?

OUTPUT

(P)+l-+P,Y

RNI AT
(Y)

OUT

ENABLE INTERRUPT INHIBIT INTERRUPT

EIN

Enable
Interrupt

S stem

EIN IlN

Is Protect
Switch

On?

(P)+l P,Y

lIN

Disable

RNI at
(Y)

Yes

Generate
Prot~ct
Fault

SET
PROTECT BIT

CLEAR
PROTECT BIT

Is the

No

Generate
Protect
Fault

Clear
F Register

No

(Q) - Y

Ref. Memor
at (Y)

No

Yes

Is the
r-____________ ~----~instruction

SPB

Set
Bit
New

(P)+l P, Y

RNI at
(Y)

A-3

protected?

No

Leave con­
tents of
memory
unchanged

INCREASE A ENTER A NO OPERATION

019 -..6---f olA -6-
INA ENA

(A)::6--'A :-6- A (P)+l ~P,Y

.. ,
Record

Overflow I at (Y)
Status

I ..
~~

P)+l-P,Y

1
RNI at (Y)

A-4

ENTER Q INCREASE Q

olc -6- olD -6--1

ENQ INQ

.. ~
~6-'Q j(Q) :L\-Q

.. ~
Record

Overflow
Status

.. --,. ...
(P)H-P,Y

1
RNI at

(y)

A-5

EXIT INTERRUPT

EXI

Is Protect
Switch

On?

No

Yes

Is the
Ia---~ instruction

Ref. Memory
at (Y) &.
Place in X

X15 ~

overflow
FF

(X) -+ P,Y

Enable
Interrupt

System

RNI at
(Y)

protected?

No

Generate
Protect
Fault

Clear
F Register

Instruction
is executed
as SLS

Yes

Right Shift
QA one
position

,s' /2. J'

o I

A

F

SHIFT

8765"'1 o
L A Q --K---

Is Yes
(Y) = O? 1--------------,

Are Both
"AII and IIQII
bits ones?

No

No

Is the
L Bit
= 1?

Yes

Are Both
IIAII and IIQII

bits ones?

I No No
~---------.-----~~~~~---------~ .. A=l • Q=l (A) (Q)=a..l,. A=l .Q=l

Right Shift Right Shift Left Shift Left Shift
A one Q one A one Q one
position position position position

....

Shift
No

Registers

Y - 1 to
Y

A-6

(P)H-P,y &

RNI at (y),

Yes

Left Shift
QA one
position

JUMP

JMP

Fonn
Effective
Address
in Y

RNI at
(Y)

A-7

Yes

No

Leave
(Memory)

Unchanged

STORE Q

STQ

Form
Effective
Address
in Y

Ref. Memory
at (Y)

Does a
Protect

Exist?

instruction
protected?
Yes

Q Memory

(P)+l--P,Y

RNI at
(Y)

No

Does a
Parity Error

Exist?

No

Yes

Leave
(Memory)
Unchanged

RETURN
JUMP

RTJ

Form
Effective

(P)+l -
Memory

(Y) - P

RNI at
(Y)

No

Does a
Parity Error

Exist?

No

Yes

A-8

STORE A

STA

Form .
Effective

Address in

Does a
Protect

Exist?

RNI at
(Y)

es

No

Parity Error
Exist?

No

Yes

STORE A,
PARITY TO A

SPA

Form
Effective

Address :in Y

Ref. Memory
at (Y)

Exist?

No

Does a
------~ Parity Error

Exist?

~----~instruction No

Leave
(Memory)
Unchanged

protected?

Yes

Clear A

Prot. Bit¥
Parity Bit
-A

A-9

Yes

t\ + Effect
Address-.A

ADD

ADD

Form
Effective

Ref. Memory
at (Y)

(A)+(Memory:
-A

Record
Overflow
Status

(P)+l-+P, Y

RNI at
(Y)

(A) - Effec
Address-+A

SUBTRACT

SUB

Form
Effective
Address :in Y

No

Ref. Memory
at (Y)

(I-.) - (Memory
.... A

Record
Overflow
Status

RNI at
(Y)

A-10

AND WITH A

Form
Effective
Add~ess in Y

No

Ref. Memory
at (Y)

(A)" (Memory)
-+A

(P)+l-'P~Y

lUU at
(Y)

(A,~ Effect
Address A

EXCLUSIVE OR
WITH A

EOR

Form
Effective

Address in Y

Ref. Memory
at (Y)

(A)V-(Memory
~A

(P)+l---+P,Y

RNI at
(Y)

A-ll

Effective
Address-+A

Form
Effective

Address in Y

Ref. Memory
at (Y)

(Memory)~A

I;P)+ l---.P, Y

RNI at
(Y)

REPLACE ADD ONE

Leave
(Memory)

Unchanged

RA~

Form
Effective
Address in Y

l{ef. Memory
at (Y)

Form
(Memory)+l

in X

ef. Memory
at (Y)

Exist?

No

Does a
Parity Error

Exist?

No
Is the

instruction
protected?

Yes

(X),t-+Memory

Ao .. 12

Effective
Address -.l> Q

LDQ

Form
Effective
Address :in Y

No

Ref. Memory
at (Y)

(Memory)-'Q

(P)+l-. P ,Y

RNI at
(Y)

Yes

Effective
Address +
(Q) -. Q

ADQ

Form
Effective
ddress :in Y

Ref. Memory
at (Y)

Ref. Memory
at (Y)

Memory)+(Q)
.... Q

Record
Overflow
Status

(P)+l'" P ,Y

RNI.at
(Y)

A-13

+6--+ Y

Is "q" Bit
Set?

No

Is "i"
Bit Set?

No

No

(y) =
Effective
Address

(P)+l P,Y

exist?

No

(Q)+(Y)-+Y,
Clear "q"

bit

Reference
Memory
at OOFF

1. (OQF-F)+
<Y) Y

• Clear
"i" bit

Did. im.op.
condition
exist?

No

RNI

Is Itr"
Bit Set?

Ref .Memory .
at (Y),
(Mem)~Y

Yes

(Y) =
Operand

A-14

Yes

Yes

Clear
"rll Bit

Reference
Memory
at (Y)

Is
(Memory)

Neg. ?

1. X Y
2. Clear

"indl! bit

Is
6= O?

Yes

(P)+l_P,Y

eLMem. at
(Y), (Mem)+

Y -*y

(X) -+ Y

Yes

* im.op. condition exists when:
(F)(ind)(6 =0) (q+i) and the
instruction is not STA, STQ,
SPA, RA~, JMP or RTJ.

1700
ADDRESSING FLOW DIAGRAM

TABLE I

1700 INSTRUCTIONS (NUMERICAL LISTING)

FORMAT (HEX) DES C RIP T ION MNE

0 0 ~ ~ SELECTIVE STOP SLS

0 1 0 S SKIP IF A IS + ZERO SAZ

0 1 1 S SKIP IF A IS NON-ZERO SAN

0 1 2 S SKIP IF A IS PLUS SAP

0 1 3 S SKIP IF A IS MINUS SAM

0 1 4 S SKIP IF Q IS + ZERO SQZ

0 1 5 S SKIP IF Q IS NON-ZERO SQN

0 1 6 S SKIP IF Q IS PLUS SQP

0 1 7 S SKIP IF Q IS MINUS SQM

0 1 8 S SKIP IF SKIP SWITCH SET SWS

0 1 9 S SKIP IF SKIP SWITCH NOT SET SWN

0 1 A S SKIP IF OVERFLOW FAULT Sr/JV

0 1 B S SKIP IF NO OVERFLOW FAULT SNr/J

0 1 C S SKIP IF STORAGE PARITY ERROR SPE

0 1 D S SKIP IF NO STORAGE PARITY ERROR SNP

0 1 E S SKIP IF PROGRAM PROTECT FAULT SPF

0 1 F S SKIP IF NO PROGRAM PROTECT FAULT SNF

0 2 A INPUT TO A INP

0 3 A OUTPUT FROM A ¢UT

0 4 ~ ~ ENABLE INTERRUPTS (REQUIRES PROTECTION) EIN

0 5 ~ ~ INHIBIT INTERRUPTS (REQUIRES PROTECTION) IIN

0 6 ~ ~ SET THE PROGRAM PROTECT BIT (REQUIRES PROTECTION) SPB

0 7 ~ ~ CLEAR THE PROGRAM PROTECT BIT (REQUIRES PROTECTION) CPB

0 8 0 0 SUM OF FFFF AND FFFF TO NO PLACE

0 8 0 1 SUM OF FFFF AND FFFF TO MASK

0 8 0 2 SUM OF FFFF AND FFFF TO Q

0 8 0 3 SUM OF FFFF AND FFFF TO Q AND MASK

0 8 0 4 SUM OF FFFF AND FFFF TO A
0 8 0 5 SUM OF FFFF AND FFFF TO A AND MASK

0 8 0 6 SUM OF FFFF AND FFFF TO A AND Q

0 8 0 7 SUM OF FFFF AND FFFF TO A, Q AND MASK

~MEANS NOT USED

NOTE: Any 08 instruction having bit 00 = "1" requires protection

A-iS

FORMAT(HEX) DES C RIP T ION MNE

0 8 0 8 SUM OF FFFF AND (MASK) TO NO PLACE

0 8 0 9 SUM OF FFFF AND (MASK) TO MASK

0 8 0 A SUM OF FFFF AND (MASK) TO Q

0 8 0 B SUM OF FFFF AND (MASK) TO Q AND MASK

0 8 0 C SUM OF FFFF AND (MASK) TO A

0 8 0 D SUM OF FFFF AND (MASK) TO A AND MASK

0 8 0 E SUM OF FFFF AND (MASK) TO A AND Q

0 8 0 F SUM OF FFFF AND (MASK) TO A, Q AND MASK

0 8 1 0 SUM OF FFFF AND (Q) TO NO PLACE

0 8 1 11- SUM OF FFFF AND (Q) TO DESTINATION REGISTER (S)

0 8 1 8 SUM OF FFFF AND (Q)~(MASK) TO NO PLACE *
0 8 1 9- SUM OF FFFF AND (Q)~(MASK) TO DESTINATION REGISTER (S) * F
0 8 2 0 SUM OF (A) AND FFFF TO NO PLACE

0 8 2
1-

SUM OF (A) AND FFFF TO DESTINATION REGISTER (S) 7

0 8 2 8 SUM OF (A) AND (MASK) TO NO PLACE AAM

0 8 2 9- SUM OF (A) AND (MASK) TO DESTINATION REGISTER (S) MM F
0 8 3 0 SUM OF (A) AND (Q) TO NO PLACE AAQ

0 8 3 1- SUM OF (A) AND (Q) TO DESTINATION REGISTER (S) MQ 7

0 8 3 8 SUM OF (A) AND (Q)~(MASK) TO NO PLACE * MB

0 8 3 9F SUM OF (A) AND (Q~(MASK) TO DESTINATION REGISTER (S) * MB

0 8 4 0 EXCLUSIVE OR OF FFFF AND FFFF TO NO PLACE CLR

0 8 4 1- EXCLUSIVE OR OF FFFF AND FFFF TO DESTINATION REGISTER (S) CLR
7

0 8 4 8 EXCLUSIVE OR OF FFFF AND (MASK) TO NO PLACE TCM

0 8 4 ~F EXCLUSIVE OR OF FFFF AND (MASK) TO DESTINATION REGISTER (S) TCM

0 8 5 0 EXCLUSIVE OR OF FFFF AND (Q) TO NO PLACE TCQ

0 8 5 ~- EXCLUSIVE OR OF FFFF AND (Q) TO DESTINATION REGISTER (S) TCQ

0 8 5 8 EXCLUSIVE OR OF FFFF AND (Q)V(MASK) TO NO PLACE * TCB

0 8 5 ~-F EXCLUSIVE OR OF FFFF AND (Q)~(MASK) TO DESTINATION REGISTER(S~*TCB

* ~ MEANS INCLUSIVE OR

NOTE: Any 08 instruction having bit 00 = "lJ' requires protection

A-16

mRMAT(HEX) DES C RIP T ION MNE

0 8 6 0 EXCLUSIVE OR OF (A) AND FFFF TO NO PLACE TCA

0 8 6 ,1~
7 EXCLUSIVE OR OF (A) AND FFFF TO DESTINATION REGISTER (S) TCA

0 8 6 8 EXCLUSIVE OR OF (A) AND (M) TO NO PLACE EAM

0 8 6 9-F EXCLUS IVE OR OF (A) AND (M) TO DESTINATION REGISTER (S) EAM

0 8 7 0 EXCLUSIVE OR OF (A) AND (Q) TO NO PLACE EAQ

0 8 7 1-
7 EXCLUSIVE OR OF (A) AND (Q) TO DESTINATION REGISTER (s) EAQ

0 8 7 8 EXCLUSIVE OR OF (A) AND (Q)~(M) TO NO PLACE * EAB

0 8 7 9-F EXCLUSIVE OR OF (A) AND (Q)~(M) TO DESTINATION REGISTER (Sl EAB

0 8 8 0 LOGICAL PRODUCT OF FFFF AND FFFF TO NO PLACE SET

10 8 8 1- LOGICAL PRODUCT OF FFFF AND FFFF TO DESTINATION REGISTER(S) SET 7

0 8 8 8 LOGICAL PRODUCT OF FFFF AND (MASK) TO NO PLACE TRM

0 8 8 9F LOGICAL PRODUCT OF FFFF AND (MASK) TO DESTINATION REGISTER(S TRM

0 8 9 0 LOGICAL PRODUCT OF FFFF AND (Q) TO NO PLACE TRQ

0 8 9 1--7 LOGICAL PRODUCT OF FFFF AND (Q) TO DESTINATION REGISTER (S) TRQ

0 8 9 8 LOGICAL PRODUCT OF FFFF AND (Q)~(M) TO NO PLACE * TRB
0 8 9 9- LOGICAL PRODUCT OF FFFF AND (Q)~(M) TO DESTINATION REG. (S~ TRB F

0 8 A 0 LOGICAL PRODUCT OF (A) AND FFFF TO NO PLACE TRA

0 8 A 1- LOGICAL PRODUCT OF (A) AND FFFF TO DESTINATION REGISTER (S) TRA 7

0 8 A 8 LOGICAL PRODUCT OF (A) AND (MASK) TO NO PLACE LAM

0 8 A 9- LOGICAL PRODUCT OF (A) AND (MASK) TO DESTINATION REGISTER (S" LAM F

0 8 B 0 LOGICAL PRODUCT OF (A) AND (Q) TO NO PLACE LAQ
0 8 B 1- LOGICAL PRODUCT OF (A) AND (Q) TO DESTINATION REGISTER (S) LAQ 7

0 8 B 8 LOGICAL PRODUCT OF (A) AND (Q)v (MASK) TO NO PLACE * LAB
0 8 B 9- LOGICAL PRODUCT OF (A) AND (Q)v (MASK) TO DESTINATION R. (S1 LAB F

0 8 C 0 COMPLEMENTED LOG. PROD. OF FFFF AND FFFF TO NO PLACE

0 8 C 1--7 COMP. LOG. PROD. OF FFFF AND FFFF TO DESTINATION REG. (S)

0 8 C 8 COMPLEMENTED LOG. PROD. OF FFFF AND (MASK) TO NO PLACE
0 8 C 9- COMP. LOG. PROD. OF FFFF AND (MASK) TO DESTINATION REG. (8) F

* V MEANS INCLUSIVE OR

NOTE: Any 08 instruction having bit 00 = "111 requires protection

A-17

FORMAT
(HEX) D E S C R

0 8 D 0 COMPLEMENTED LOG. PROD.
0 8 D 1-

7 COMPLEMENTED LOG. PROD.

0 8 D 8 COMPLEMENTED LOG. ·PROD.

0 8 D 9-
F COMPLEMENTED LOG. PROD.

0 8 E 0 COMPLEMENTED LOG. PROD.

0 8 E 1--7 COMPLEMENTED LOG. PROD.

0 8 E 8 COMPLEMENTED LOG. PROD.
0 8 E 9- COMPLEMENTED LOG. PROD. F

0 8 F 0 COMPLEMENTED LOG. PROD.

0 8 F 1- COMPLEMENTED LOG. PROD. 7

0 8 F 8 COMPLEMENTED LOG. PROD.
0 8 F !lJ - COMPLEMENTED LOG. PROD. F
0 9 -~- INCREASE A

0 A -6 - ENTER A

0 B ~ NO OPERATION

0 C - 6- ENTER Q

0 D -D.- INCREASE Q

0 E -,6 - EXIT THE INTERRUPT STATE

0 F 19-(p-
F NO OPERATION

0 F 3{ P- F () RIGHT SHIFT

0 F)5 O-F 1\ RIGHT SHIFT

0 F ~ O-F LONG RIGHT SHIFT

0 F %' O-F NO OPERATION

0 F U P- F Q LEFT SHIFT

0 F ~ P- F A LEFT SHIFT

0 F U' P- F LONG LEFT SHIFT

of< MEANS I NeLlIS IVE OR

~ MEANS NOT USED

I P T I 0 N

OF FFFF and (0) NO PLACE
OF FFFF and (Q)~ DESTINATION REGISTER(s)

OF FFFF and (Q)v(Mask) -+ No Place *

OF FFFF and (Q)V(MasktDESTINA~~g~STF.R(~)ok

OF (A) and FFFF-+ NO PLACE

OF (A) and FFFF~ DESTINATION REGISTER(s)

OF (A) and (Mask)~NO PLACE
OF (A) and (Mask)~DESTINATION REGISTER(s)

OF (A) and (Q~ NO PLACE

OF (A) and (Q~ DESTINATION REGISTER(s)

OF (A) and (O)v(Mask)--.NO PLACE"~
OF (A) and (Q)v(Mask~DES~~~~H2~(s)*

(REQUIRES PROTECTION)

NOTE: Any 08 instruction having bit 00 11111 requires protection

MNE

CAM

CAM

CAO

CAQ

CAB

CAB

INA

ENA
I

ENQ
ill ,

INO

EXI

NOP

QRS

ARS

LRS

OLS

ALS

LLS

FORMAT (HEX J DES C RIP T ION MNE

1 * -A- JUMP JMP

2 * -A- MULTIPLY INTEGER MUI

3 * -A- DIVIDE INTEGER DVI

4 * -A- STORE Q STQ

5 * -A- RE TIJRN JUMP RTJ

6 * -A- STORE A STA

7 * -A- STORE A, SEND PARITY TO AOO SPA

8 * -A- ADD TO A ADD

9 * -6- SUBTRACT FROM A SUB

A * -A- AND WITH A AND

B * -A- EXCLUSIVE OR WITH A EJ$R

C * -A- LOAD A LDA

D * -A- REPLACE ADD ONE IN STORAGE RA/J
E * -:-A- LOAD Q LDQ

F * -A- ADD TO Q ADQ

* Addressing Code =

Relative Bit

Indirect Bit

Q Index Register Bit

Memory Index Register Bit

A-19

TABLE II

1700 INSTRUCTIONS (ALPHABETICAL LISTING)

MNE DES C RIP T ION fORMAT (HEX

AAB TRANSFER ARITHMETIC SUM OF A AND QVM''(i(0 8 3 ~F
AAM TRANSFER ARITHMETIC SUM OF A AND M 0 8 2 ~F
MQ TRANSFER ARITHMETIC SUM OF A AND Q 0 8 3 P7
ADD ADD TO A 8 * -/l-

ADQ ADD TO Q F * -/l-

ALS A LEFT SHIFT 0 F ~UF
AND AND WITH A A -;'c -/l-

ARS A RIGHT SHIFT 0 F X OF
CAB TRANSFER THE COMPLEMENTED LOGICAL PRODUCT OF A AND QvM ** 0 8 F 8E

CAM TRANSFER THE COMPLEMENTED LOGICAL PRODUCT OF A AND M 0 8 E BF

CAQ TRANSFER THE COMPLEMENTED LOGICAL PRODUCT OF A AND Q 0 8 F D7

CLR CLEAR 'TIrE CONTE~TS OF THE DESTINATION REGISTER(S) TO +ZERO 0 8 4 P7
CPB CLEAR THE PROGRAM PROTECT BIT 0 7 ~
DVI DIVIDE INTEGER 3 * -/l-

EAB TRANSFER THE EXCLUSIVE OR OF A AND QvM ,b~ 0 8 7 ~F
EAM TRANSFER THE EXCLUSIVE OR OF A AND M 0 8 6 ~F
EAQ TRANSFER THE EXCLUSIVE OR OF A AND Q 0 8 7 P7

0 4 ~
~

EIN ENABLE INTERRUPTS
ENA ENTER A 0 A -/l-

ENQ ENTER Q 0 C -A-
MR EXCLUSIVE OR WITH A B * -/l-
EXI EXIT THE INTERRUPT STATE 0 E -/l-
IIN INHIBIT INTERRUPTS 0 5 ~
INA INCREASE A 0 9 -/l-

INP INPUT TO A 0 2 -/l-
INQ INCREASE Q 0 D -/l-
JMP JUMP 1 * -/l-
LAB TRANSFER THE LOGICAL PRODUCT OF A AND Qv M ** 0 8 B ~-
LAM TRANSFER THE LOGICAL PRODUCT OF A AND M 0 8 A ~-
LAQ TRANSFER THE LOGICAL PRODUCT OF A AND Q 0 8 B 07
LDA LOAD A C * -/l-
LDQ LOAD Q E * -/l-
LLS LONG LEFT SHIFT 0 F U U~F
LRS LONG RIGHT SHIFT 0 F ~ ,O-F

A-20

M NED ESC RIP T ION ~~I
MUI IMULTIPLY INTEGER 2 'k -6_-
N¢g NO OPERATION 0 F SIif F

¢UT 10UTPUT FROM A 0 3 -f.-
SlLS lQ LEFT SHIFT 0 F ~~~F

RA¢ REPLACE ADD ONE IN STORAGE D 'k -~-
RTJ RETURN JUMP 5 * _ ~_
SAM SKIP IF A IS MINUS 0 1 3 S

SAN ISKIP IF A IS NON-ZERO 0 1 1 S

SAP SKIP IF A IS PLUS 0 1 2 8

SAZ SKIP IF A IS ZERO 0 lOS

SET SET THE CONTENTS OF'l'HE DESTINATION REG~ (8) TO ALL ONESQ88 0- Z

SLS SELECTIVE STOP 0 0 ~
SN¢ ISKIP IF NO OVERFLOW 0 1 B S

SNF SKIP IF NO PROGRAM PROTECT FAULT 0 1 F S

SNP SKIP IF NO STORAGE PARITY ERROR 0 ID S

S¢V SKIP IF~0~VE~RllF~lL~OW __________________________________ ~rO~~1+-A~~8

SPA STORE A, SEND PARITY BIT TO AOO 7 * -~-
SPB SET THE PROGRAM PROTECT BIT 09 ~
SPE SKIP IF STORAGE PARITY ERROR 0 1 C S

SPF SKIP IF PROr.RAM PROTECT FAULT OLE S

SQM SKIP IF Q IS MINUS 0 1 7 S

SQN SKIP IF Q IS NON-ZERO 0 1 5 S

SQP SKIP IF<{ IS PLUS 0 1 6 S

SQZ SKIP IF Q IS ZERO 0 1 4 S

STA STORE A 6 'k -6.-
STQ STORE Q 4 *. -b.-
SUB SUBTRACT FROM A 9 * _ b.-
SWN SKIP IF SKIP SWITCH NOT SETQ 1 9 S

SWS SKIP IF SKIP SWITCH SET 0 1 8 S

A-21

M N E DES C RIP T ION (K~pu)T
TCA TRANSFER THE COMPLEMENT OF A 0 8 6 9-

TRANSFER THE COMPLEMENT OF QvM** n R Ii
8-TCB F

TCM TRANSFER THE COMPLEMENT OF M 0 8 4 ~-
TCQ TRANSFER THE COMPLEMENT OF Q 0 8 5 9-
TRA TRANSFER A 0 8 A 9-
TRB TRANS FER Q v M** 0 8 9 ~-
TRM TRANSFER M 0 8 8 ~-
TRQ TRANSFER Q 0 8 9 9-

* Addressing Code =
Index Re ister Bit

** V means "inclusive or" Bit

~ means "not used" Relative Addressin Bit

A-22

--------~-~~---- -- - ------

TABLE III

1700 ADDRESSING MODES

ADDRESSING 6 EFFECTIVE ADDRESS NEXT
CODE INSTRUCTION

0 +0 P + 1 P + 2 --
I

.,~

(P + 1) + (OOFF) * P + 2

2 (P + 1) + (Q) * P + 2

3 (P + 1) + (Q) + (OOFF) * P + 2

4 (P + 1) P + 2

5 (P + 1) + (OOFF) P + 2

6 (P + 1) + (Q) P + 2

7 (p + 1) + (Q) + (OOFF) P + 2

8 P + 1 + (P + 1) P + 2

9 P + 1 + (p + 1) + (OOFF) P + 2

A P + 1 + (P + 1) + (Q) P + 2
B P + 1 + (P + 1) + (Q) + (OOFF) P + 2

C (P + 1 + (P + 1» P + 2

D (p + 1 + (p + 1» + (OOFF) P + 2

E
'" l.f

(P + 1 + (P + 1» + (Q) P + 2

F +0 (P + 1 + (P + 1» + (Q) + (OOFF) P + 2

~\\\\ f\\ \ f\ \ \ '\ \ _~\ \ \ ~~~~\ ~-~~
0 '/=0 +6 P + 1

1 """ +6 + (OOFF) P + 1

2 +6 + (Q) P + 1

3 + 6 + (Q) + (OOFF) P + 1

4 (+6) P + 1

5 (+A) + (OOFF) P + 1

6 (+6) + (Q) P + 1

7 (+ A) + (Q) + (OOFF) P + 1

8 (p) +6 P + 1

9 (p) + 6 + (OOFF) P + l'
A (p) ±6 + (Q) P + 1

B (p) + 6 + (Q) + (OOFF) P + 1

C «p) +A) P + 1

D «p) + 6) + (OOFF) P + 1

E '\ "
«p)+6)+(Q) P + 1

F 1=0 « p) + ~) + (Q) + (OOFF) P + 1

* Effective Address = Operand For Instructions Which Read Operands

A-23

ll>
I
N
.p-

0

1

2

3

4

5

6

7

8

9

A

B

e
D

E
F

0

0

1

2

3

4

5

6

7

8

9

A

B

e
D

E

F

1 2

1 2

2 3

3 4

4 5

5 6

6 7

7 8

8 9

9 A

A B

B e
e D

D E

E F

F 10

10 11

3 4 5 6

3 4 5 6

4 5 6 7

5 6 7 8

6 7 8 9

7 8 9 A

8 9 A B

9 A B e
A B e D

B e D E

e D E F

D E F 10

E F 10 11

F 10 11 12

10 11 12 13

11 12 13 14

12 13 14 15

TABLE IV

HEXADECIMAL ADDITION

7 8 9 A B e D E F HEX ~INAR'

7 8 9 A B e D E F 0 0000

8 9 A B e D E F 10 1 0001

9 A B e D E F 10 11 2 0010 !

A B e D E F 10 11 12 3 0011

B e D E F 10 11 12 13 4 0100

e D E F 10 11 12 13 14 5 0101

D E F 10 1l 12 13 14 15 6 0110

E F 10 11 12 13 14 15 16 7 0111

F 10 11 12 13 14 15 16 17 8 1000

10 1l 12 13 14 15 16 17 18 9 1001

11 12 13 14 15 16 17 18 19 A 1010

12 13 14 15 16 17 18 19 1A B 1011

13 14 15 16 17 18 19 1A 1B e 1100

14 15 16 17 18 19 1A 1B Ie D 1101

15 16 17 18 19 1A IB Ie 10 E 1110

16 17 18 19 1A 1B Ie 1D IE F 1111

~
I
N
\.Jl

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0 1

00 00

00 01

00 02

00 03

00 04

00 05

00 06

00 07

00 08

00 09

00 OA

00 DB

00 DC

00 OD

00 DE

00 OF

2 3 4

00 00 00

02 03 04

04 06 08

06 09 Dc

08 De 10

OA OF 14

DC 12 18

DE 15 1e

10 18 20

12 1B 24

14 1E 28

16 21 2C

18 24 30

1A 27 34

1e 2A 38

1E 2D 3C

TABLE V

HEXADECIMAL MULTIPLICATION

5 6 7 8 9 A

00 00 00 00 00 00

05 06 07 08 09 OA

OA Dc DE 10 12 14

OF 12 15 18 1B 1E

14 18 1e 20 24 28

19 1E 23 28 2D 32

1E 24 2A 30 36 3C

23 2A 31 38 3F 46

28 30 38 40 48 50

2D 36 3F 48 51 SA

32 3C 46 50 SA 64

37 42 4D 58 63 6E

3e 48 54 60 6e 78

41 4E 5B 68 75 82

46 54 62 70 7E 8e

4B SA 69 78 87 96
L..-

B C D E F HEX BlNAR'i

00 00 00 00 00 0 0000

DB DC OD DE OF 1 0001

16 18 1A 1C 1E 2 0010

21 24 27 2A 2D 3 0011

2C 30 34 38 3C 4 0100

37 3C 41 46 4B 5 0101

42 48 4E 54 SA 6 0110

4D 54 5B 62 69 7 0111

58 60 68 70 78 8 1000

63 6C 75 7E 87 9 1001 I

6E 78 82 8C 96 A 1010 '

79 84 8F 9A AS B 1011

84 90 ge A8 B4 C 1100

8F 9C A9 B6 C3 D 1101
I

9A A8 B6 e4 D2 I

I
E 1110

AS B4 C3 D2 E1 I

I F 1111
I

TABLE VI

CONVERSION

HEX. DEC. HEX. DEC. HEX. DEC. HEX. DEC. HEX. DEC.

1 1 10 16 100 256 1000 4096 10000 65536
2 2 20 32 200 512 2000 8192 20000 131072
3 3 30 48 300 768 3000 12288 30000 196608
4 4 40 64 400 1024 4000 16384 40000 262144
5 5 50 80 500 1280 5000 20480 50000 327680
6 6 60 96 600 1536 6000 24576 60000 393216
7 7 70 112 700 1792 7000 28672 70000 458752
8 8 80 128 800 2048 8000 32768 80000 524288
9 9 90 144 900 2304 9000 36864 90000 589824
A 10 AO 160 AOO 2560 AOOO 40960 AOOOO 655360
B 11 BO 176 BOO 2816 BOOO 45056 BOOOO 720896
C 12 CO 192 COO 3072 COOO 49152 COOOO 786432
D 13 DO 208 DOO 3328 DOOO 53248 DOOOO 851968
E 14 EO 224 EOO 3584 EOOO 57344 EOOOO 917504
F 15 FO 240 FOO 3840 FOOO 61440 FOOOO 983040

HEX. DEC. HEX. DEC. HEX. DEC.

100000 1048576 1000000 16777216 10000000 268435456
200000 2097152 2000000 33554432 20000000 536870912
300000 3145728 3000000 50331648 30000000 805306368
400000 4194304 4000000 67108864 40000000 1073741824
500000 5242880 5000000 83886080 50000000 1342177280
600000 6291456 6000000 100663296 60000000 1610612736
700000 7340032 7000000 117440512 70000000 1879048192
800000 8388608 8000000 134217728 80000000 2147483648
900000 9437184 9000000 150994944 90000000 2415919104
AOOOOO 10485760 AOOOOOO 167772160 AOOOOOOO 2684354560
BOOOOO 11534336 BOOOOOO 184549376 BOOOOOOO 2952790016
COOOOO 12582912 COOOOOO 201326592 COOOOOOO 3221225472
DOOOOO 13631488 DOOOOOO 218103808 DOOOOOOO 3489660928
EOOOOO 14680064 EOOOOOO 234881024 EOOOOOOO 3758096384
FOOOOO 15728640 FOOOOOO 251658240 FOOOOOOO 4026531840

POWERS OF SIXTEEN

160 1
161 16
162 256
163 4096
16 4 65536
165 1048576
166 16777216
167 268435456

Rev. B A-26

0 1 2 3 4
0 0 0 0 0 0
1 0 1 0 1 0
2 0 0 2 2 0
3 0 1 2 3 0
4 0 0 0 0 4
5 0 1 0 1 4
6 0 0 2 2 4
7 0 1 2 3 4
8 0 OiO 0 0
9 0 1 0 1 0
A 0 0 2 2 0
B 0 1 2 3 0
C 0 0 0 0 4
D 0 1 0 1 4
E 0 0 2 2 4
F 0 1 2 3 4

LOGICAL PRODUCT
(/\)

5 6 7 8 9 A B C
0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0
0 2 2 0 0 2 2 0
1 2 3 0 1 2 3 0
4 4 4 0 0 0 0 4
5 4 5 0 1 0 1 4
4 6 6 0 0 2 2 4

TABLE VII

D E F 0 1 2 3 4
0 0 0 0 0 1 2 3 4
1 0 1 1 1 0 3 2 5
0 2 2 I 2 2 3 0 1 6
1 2 3 3 3 2 1 017
4 4 4 4 4 5 6 7 0
514 5 5 5 1 417 611
4 6 6 6 6 714 5 2

5
5
4
7
6
1
0
3

EXCLUSIVE OR
(.y..)

6 7 8 9 A B CID E
6 7 8 9 A B C D E

7 6 9 8 B A D C F

4 5 A B 8 9 E F e
5 4 B A 9 8 F E D
2 3 e D E F , 8 9 A
3 2 Die F E 9 8 B
0 1 E F e D 'A B 8

F
F
E
D
e
B
A
9

5 6 7 0 1 2 3 4 5 6 7 7 7 65 4 3 211 0 F E D e B A 9 8
0 0 0 8 8 8 8 8 8 8 8 8 8 9 A B e D
1 0 1 8 9 8 9 8 9 8 9 9 9 8 B AiD e
0 2 2 8 8 A A 8 8 A A A A B 8 9 E F
1 2 3 8 9 A B 8 9 A B B B A 9 8 F E
4 4 4 8 8 8 8 C C C C e e D E F 8 9
5 4 5 8 9 8 9 C D C D D D e F E 9 8
4 6 6 8 8 A A C C E E E E F e D A B
5 6 7 8 9 A B C D E F F F E D e B A

0
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

IA A
B B

1 2 3
1 2 3
1 3 3
3 2 3
313 3
5 617
5 7 7
7,6 7
7 7 7
9 A B

INCLUSIVE OR
(V)

4 5 6 7 8 9 A B
4 5 6 7 8 9 A B
5 5 7 7 9 9 B B
6 7 6 7 A B A B
717 7 7 B B B B
4 1 5 6 7 e D E F
5 5 717 D,D F F
6 7 16 7 E F E F
7 7 7'7 F Fi F F
C D E F 819 AB

9 B B D D F F 9!9iB B
BiA B E FIE F AlBIA B
B B B F F F F BB B B

e e D E F e D E F C D E F
D D D F F D D F F D D F F
E E F E F E F E F E F E F
F F F F F F F F F F F F F

A-27

C D E F
C D E F
D D F F
E F E F
F FIF F
e D E F
D D F F
E FIE F
F, F,F F
C DIEIF
D D'F F
E F E F
F F F F
C D E F
D D F F
E F E F
F F F F

E F 0 1 2 3 4 5 6 7
F E 1 0 3 2 5 4 7 6
e D 2 3 0 1 6 7 4 5
D e 3 2 1 0 7 6 5 4
A B 4 5 6 7 0 1 2 3
B A 5 4 7 6 1 0 3 2
8 9 6 7 4 5 2 3 0 1
9 8 7 6 5 4 3 2 1 0

FROM: Name:

Address!

COMMENT SHEET

1700 COMPUTER
MAINTENANCE TRAINING MANUAL, VOLUME I

Publication Number 60169500A

COMMENTS: (Describe errors, suggested additions or deletions, and include
page numbers, etc.)

CONTROL DATA
CORPORATION

