
INPUT-OU'I1PUI F AC ILITJ:ES

EXT:sIJD~D ALGOL

for the

BURROUGHS B 5000

INPUT-OUTPur FACILITIES

a :part of

EXTENDED ALGOL

for the

BURROUGHS B 5000

Automatic Prograrning
BURROUGHS CORPORATION

460 Sierra Mad.re Villa
Pasadena) California

December) 1961

TABLE OF CONTENTS

Section Page

PR.E:F1 AC E • • • • • • • • • • • • • • • • . • v

I:NPUT •••......•.•.... · • • • • · · • • • · · · · · · • · · · · · · · · · • · · · • • • · • • • · • • • · · · •

Designation of Input Eq_uipment Type ••••.•.•.•...•.•.•••••..• 2

The Programing Language • • • • • . . . • . • . • • . . . • • • • . • • . • . . 3
Input File Declaration " • . 3
Input Format Declaration. • • . • . • • • • . . . • • • • • . • • • . . • • . • • • 4

Alphanumeric (Editing Phrase Type)s •••••.••.•.••. 6
Binary (Editing Phrase Type)s ••••••.••••••..••..• 8

Input List Declaration ..•....•••.•....••..•..••..••.•• 10
Read Statement. . . . • • . . . • . • . . • . . . • . • . • • • . . • • • . • • . . 11

Summary of Read Statement .••.....••..•••..•.••.•. 17
Input Release Statement. • • • . • . . • • . • . • . • . . • • . • . . • • . • . • . 17

2 OUTPIJT. • • . • • . . . • • • • • • • . . . • • . . • . • • . . . • • . . • . • . . . • . . • . • • • • • • • • 20

Appendix

Designation of Output Eq_uipment Type ••.......•..•..•..•••..• 21

The Programing Language • • • • • • • . • • . . • . • • • • • • • • . • . • • . • • . . 22
Output File Declaration. • • • . . • • • . • • • . • . . • • • • • • • • . • 23
Output Format Declaration. . • . • • • . • • • . . . • • • . . . • . . • • • • • . 23

Alphanumeric (Editing Phrase Type)s .••••.•.•••••• 24
Binary (Editing Phrase Type) ..•••••••••.•••••...• 26
Plotter (Editing Phrase Type) •.....•..•••••..•.•• 26

Output List Declaration •••••...••.•.•.•.•••••••.•••..• 29
Write Statement •••.•••••...•.••..••.••.•••••.••.••..•. 30

Summary of Write Statement .••...•.•.•••.••••••..• 37
Output Release Statement ...••.•...••...••.••••••••..•• 38

A COMPUTER WORD STRUCTURES I:N THE B 5000 •••••.••••••.•.•••••••••...• 40

B PROBLEM SOLUTIONS. • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • . • • • • • • • . • • . • • . • 4 1

C MINIWJM BlJ.Fli1ER SIZES • • • • . • • • • • • • • • • . • . • . • • . • • 4 7

iii

PREFACE

One of the programing languages utilized by the Burroughs B 5000 Information

Processing System is ALGOL 60. This algorithmic language was designed to describe

computational processes, and is excellent for this purpose. The formulation of

this language was restricted to areas which are machine independent. Implemen­

tation of machine-dependent elements was recognized to be the responsibility of

the individual computer manufacturer. For example, ALGOL 60 alone is incomplete

when a computer is to be used for the execution of computational processes, since

the means of communicating data to and from a particular computer are no~ provided.

ALGOL 60, together with these Burroughs extensions, henceforth will be referred

to in Burroughs literature as Extended ALGOL. Extended ALGOL provides the B 5000

programer with complete input-output facilities; STREAM PROCEDURE declarations

which allow use of the B 5000 character mode functions; the ability to perform

symbolic debugging; plus· other useful miscellaneous facilities, incluciing the

ability to perform partial-word arithmetic and double-precision arithmetic.

This advance release completely describes the input-output portion of Extended

ALGOL. The material presented herein will be included in forthcoming documents

covering Extended ALGOL in its entirety.

This language has been patterned after familiar programing concepts and fitted

into the structure of ALGOL 60. It is assumed that the reader is familiar with

ALGOL 60 and the B 5000 Information Processing System. Background reading should

include the following Burroughs material: An Introduction to ALGOL 60 (Bulletin

5000-21001-P); Master Control Program Characteristics for the Burroughs B 500Q

Information Processing System (Bulletin 5000-21003-P); The Descriptor, a Definition

of the B 5000 Information Processing System (Bu:lletin 5000-20002-P); and File

Control on the Burroughs B 5000. In addition, the reader should be familiar with

uReport on the Algorithmic Language ALGOL 60, n Communications of the Association

for Computing Machinery, Vol. 3, No. 5, May 1960.

v

1

SECTION ONE

INPUT

Input to a program is the means by which variables of a program are given

initial values. This method is used for initializing variables, the beginning

values of which vary from run to run. For variables with fixed initial values,

the (assignment statement) 1 may be used.

Input may be visualized as a communication from an external source to the

program. The B 5000 provides two types of equipment through which this com­

munication can be effected: card readers and magnetic tape units. Information

may be recorded on punched cards and magnetic tape in either of two codes:

alphanumeric or binary.

The contents of the communication (data) may be expressed in a variety of

forms which are made available to accommodate the various kinds of data in­

troduced to programs: alphabetic characters, integer numbers, decimal fractions,

logical values, and numbers with exponents .

.Any number of variables may be initialized with a single input of data. In

addition, the program.er has complete freedom to designate the location of each

value on the input document.

The purpose of the input language portion of Extended ALGOL is to specify a

fixed set of the above alternatives for every communication.

PUNCHED CARD PRT ARRAY

INPUT BUFFER[_ ________________ --==-=~'-------:'
LOCATION OF VARIABLES

STACK
ARRAY

The use of broken brackets () is intended to direct the reader to the
syntax of ALGOL 60 and of these extensions, for a statement of the specific
form of the enclosed entity.

The need for program input is communicated to the B 5000 by means of a

(file declaration). At such a point in a program) input buffer areas are

established in memory and filled with data. Each buffer accommodates the

unedited contents of one unit of input) that is) a punched card or a magnetic

tape record.

When input is actually called for by means of a read statement) data is edited

and selectively stored in memory in the locations previously reserved for

those variables being initialized. As soon as the reading process is completed,

two things occur: the buffer is refilled) and at the same time the progTam

starts using the data which has just been provided it. More than one buffer

may be used by indicating this need in the (file declaration).

Designation of Input Equipment Type

Whether data is to be read from punched cards or magnetic tape) and in which

mode) is designated in the program parameter card. This card informs the

Master Control Program (MCP) that a program is ready for processing and gives

enough information about the program to enable the MCP to schedule it.

The contents of the program parameter card are not part of a program; there­

fore) they are not expressed in Extended ALGOL·. This information is rather

a message from the human operator of the system to the MCP. This card contains

a complete' list of (file identifier)s which appear in the program and thA type

of component to be used by each.

As a consequence) the (file identifier)s remain constant in the program. The

associated components, on the other hand, may change from run to run, since

their designation is from outside the program. Therefore) initial values may

be obtained from punched cards for one run and from magnetic tape in the next

nm) with out any change to the program.

2

The Programing Language

INPUT FJJ.iE DECLARATION

Syntax:

(file declaration) ::=FILE (input or output) (file part)

(input or output) ::=IN /OUT

(file part) ::=(file identifier) ((buffer part)) / (file part),

(file identifier) ((buffer part))

(buffer part) ::= (nuniber of buffers), (buffer size)

(number of buffers) ::=(unsigned integer)

(buffer size) : :=(unsigned integer)

(file identifier) - (identifier)

Examples:

FILE Il'J DATA 1 (2, i 0), DATA2 (3, 20)

FILE IN IN1 (1, 1023)

Semantics:

The purpos~ of the input (file declaration) is to describe the buffers needed

for handling the input of the file. The number of buffers desired and the size

of each are called for in the file declaration. It, like all other (declaration)s,

must appear in some (block head) in the program.

An input (file declaration) results in the establishment of the designated number

of buffer areas, each with the number of words indicated by (buffer size). .u·

sufficient memory is not available to assign that (number of buffers), a lesser

number is allocated by the MCP at run time.

In addition, the buffers are filled with data: the contents of one punched card

or magnetic tape record per buffer. The size of the buffer area must be large

enough to accommodate the entire contents of the particular unit of input being

used. For instance, an 80-column card read in alpha mode requires a (buffer size)

3

of 10. The same size card, read in binary mode, re~uires 20 words. A magnetic

tape record may vary in size from one to 1023 words.

The buffer areas are retained in memory until an exit is made from the block

in which the (file declaration) appeared.

INPUT FORMAT DECLARATION

Syntax:

(format declaration) ::=FORMAT (input or output) (format part)

(input or output) ::=IN j OUT

(format part) ::=(format identifier)

(format identifier)

(format identifier) ::=(identifier)

(editing specifications)) I (format part))

(editing specifications))

(editing specifications) - (editing segment) I (editing specifications) / I

/ (editing specifications) I (editing specifications)

/ (editing segment)

(editing segment) : : = (editing phrase) I (repeat part) [(editing specifications)

(editing segment)) (editing phrase) I (editing segment) ,

(repeat part) [(editing specifications)]

(editing phrase) : := (repeat part) (editing phrase type) (field part) I (string)

(repeat part) : :=(empty) I (unsigned integer)

(editing phrase type) ::=A ID I EI F I I I LI 0 I PI X

(field part) : : = (empty) I (field width) I (field width) . (decimal places)

(field width) ::=(unsigned integer)

(decimal places) ::=(unsigned integer)

Examples:

FORMAT IN Fl (X4,2I6,E9.2)3F5.1)

FORMAT IN F21 (2L6)I8),F22 (18 0)

FORMAT IN F31 (A5,3A6,x5,A4),F32 (13A6,A2)

FORMAT IN F4 (A6,5[X3,2E9.2,2F6.1],3I7)

FORMAT IN F5 (8El0.3 I 16L5)

4

Semantics:

The input (format declaration) defines the editing necessary to be performed

on the data to make it acceptable to the program. The input buffer contents

may be a string of 6-bit characters (alpha mode) or a string of 48-bit binary

words (binary mode). It is the responsibility of the input (format declaration)

to indicate where) and in what form) the initial values of variables are to be

found in this string. The (editing phrase) accomplishes this task.

The syntax above shows that the (editing phrase) may be in either of two forms.

In the first form, the (repeat part) of the (editing phrase) is an integer which

indicates the number of times an (editing phrase) is to be used. If the (repeat

part) is (empty)) it is taken to be e~ual to one. Its purpose is to eliminate

the need for consecutively duplicating the same phrase. A series of (editing

phrase)s may also be designated for repetitive use by enclosing the set in s~uare

brackets. The number of uses is denoted by an integer immediately preceding the

left bracket. Each use of an (editing phrase) of this form, except those which

delete, accomplishes the initializing of one computer word.

The heart of the (editing phrase) is the (editing phrase type). There are eight

different input types, which are grouped into two categories corresponding to

the two basic representations of data, alphanumeric and binary. It is important

to recognize the difference between the form of the input data upon entry into

the buffer·area and the essential nature of the data; that is, the form in which

it is used by the program, since they do not necessarily correspond. A numeric

value may be in decimal form upon read in and be converted to binary form for use

by the program.

The (field part) of the (editing phrase) indicates the number of characters to

be effected by that phrase. It may, also, in the case of numbers, indicate the

presence of a decimal point and the number of digits after that decimal point.

It serves no function in binary-type (editing phrase)s, since each such phrase

always refers to one word.

The second form, (string), is used for output only. It is not allowed in an

input (format declaration).

5

ALPHANUMERIC (EDITING PHRASE TYPE)S

The (editing phrase type)s A,E,F,I,L and X are alphanumeric types. They are

used for editing data which is in the alphanumeric form upon entry. Such data

will be interpreted as being composed of 6-bit characters. Several ways are

provided for expressing data in this form, which are syntactically defined as

follows.

Syntax:

(character input data) (string input) I (logical input) I (numeric input) I
(character input data) (string input) I (character

input data) (logical input) j (character input data)

(numeric input)

(string input) ::=(any sequence of characters)

(logical input) ::=TRUE I FALSE I (space) (logical input)

(space) : :=(single space) I (space) (single space)

(numeric input) ::=(sign) (unsigned numeric input) I (space) (numeric input)
I ,.., ~ ,......,,., \ •• - ...L ~ . I I C' ~ n r<'lo STIR re\, \ .u ..l.C,ll I •• - I I - l \ ~Lb '- - -

(unsigned numeric input) ::=(decimal number) I 0 (decimal fraction) (power of ten)

(exponent) : : = (digit) (digit)

(decimal number) ::=(unsigned integer) J (w~signed integer) (decimal fraction) J

(decimal fraction)

(power of ten) ::=, (sign) (exponent)

.. - . (unsigned integer) (decimal fraction)

(unsigned integer) .. - (digit) I (unsigned integer) (digit)

The above syntax is not a part of Extended ALGOL, but is only a description of all

forms of input acceptable to a program written in Extended ALGOL using the

(format declaration).

Examples of Character Input Data

(string input)

ALGOL60

=~+A3"

6

(logical input)

bTRUE

FALSE

+5000

b961

-237

(numeric input)

b4.625

+.125

-167.7

2
b0.74,-01

b+o.18,b03

-O.l,+08

Note that in the above examples the numbers are se~arated into three groups:

integers, numbers with decimal points, and numbers with exponents. The (editing

phrase type)s used with these numbers are I, F, and E, respectively. Type A

is used for (string input) and type L for (logical input). Type Xis used to

delete characters from the input data. The (field part) indicates the number

of characters to be deleted. The effect of each type is shown in the following

illustration.

Assume that the input data, shown in the above ex~les, is read in from a card.

The contents of this card are as follows:

Col.
1 5 ID ~ ffi ~ ~ ~ ~ ~ ~ ~ ~ $ ~ ~ ~

~A.LGOL60=~+A3 11bTRUEF.ALSE+5000b96l-237b4.625+.125-167.7b0.74,-0lb+0.18,b03-0.l,+08

The input buffer would ap~ear as follows:

A L G 0 L 6 0 =

> + A 3 JI b T R

u E F A L S E +

5 0 0 0 b 9 6 1

- 2 3 7 b 4 6

2 5 + 1 2 5 -
1 6 7 . 7 b 0

7 4 ' - 0 1 b +
0 . l 8 b 0 ~

' J

- 0 . 1 _,]__ + 0 8

To illustrate how the (editing phrase type)s function, the following (format

declaration) will be applied to the above input data.

FORMAT IN F 1 (A5, X2, A6, 2L5, I5, 2 I 4, F6 . 3, F5 . 3, F6 . 1 , X9, E 1 0 . 2, E8 . 1)

2
The sign of an exponent must be indicated by either a minus (-) or a plus (+)
sign, or a blank. A blank is taken to be a plus (+).

7

CHARACTERS TO WHICH
EDITING PHRASE REFERS EDITING PHRASE

FORM IN WHICH INITIAL
VALUE IS S:JPLIED TO
THE PROGRAM

ALGOL=======~----A5-----------+I ol ol ol Al Lf GI ol LI
6o--------------X2----------No Characters Supplied

=~A3 11-----------~A6

bTRUEJ.,__ ________ 2L5
FALSE

+5ooo~~~~~~~~~~-I5

b961 Jt----------2 I 4
-237

b4 .625--------~F6

+. 125 F5

-167.7 F6

-{L5
L5

-{I4
I4

.3

.3

. 1

o} o} F=l2:l+1Al3l"
F++OO 0000000000001

F++OO 0000000000000

F++oO 0000000011610

F++oO 0000000001701

F-+00 0000000000355

F+-14 4500000000000

F+-15 1000000000000

F-12 2475463146314

b0.711-,-01 X9----------No Characters Supplied

b+o.18_,b03 E10. 2· F+-12 2640000000000

-0 . 1 _, +08 EB . 1 F--05 46 1 1 3 20000000

BINARY (EDITING PHRASE TYPE)S

The binary (editing phrase type)s are D and 0. They are used for editing data

which is in binary form upon entry, that is, in the form to be used by the pro­

gram; therefore, no conversion is necessary. Such input generally would be on

cards punched with straight binary code or on magnetic tape recorded in the

binary mode. The (field part) in these cases is irrelevant and should be

(empty).

The (editing specifications) of an input (format declaration) must not contain

a nlixture of (editing phrase type)s; that is, they must be either all alphanumeric

or all binary.

3see Appendix A for explanation of constructs of B 5000 computer words.

8

The table below summarizes the actions of the (editing phrase type)s.

TYPE WHEN USED FORM OF INPUT STRING

.ALPHANUMERIC

A when data is to remain in alpha form one field of characters

E when data is numeric in nature but one field of characters
externally represented in alpha as
a decimal fraction with an exponent

F when data is numeric in nature but one field of characters
externally represented in alpha as
a decimal number without an exponent

I when data is numeric in nature but one field of characters
\.0 externally represented in alpha as an

integer

L when data is logical in nature and one field of characters
externally represented in alpha as
a (logical value)

x when data in alpha form is to be one field of characters
deleted.

BINARY

0 when data is externally represented one binary word
in binary

D when data in binary form is to be one binary word
deleted

4
These alpha words contain not more than six characters.

5Decimal integers and decimal mantissas have a maximum value of 549755813887.

EDITED FORM FOR
PROGRAM USE

4 one alpha word

one binary wor a?

one binary word5

one binary word5

one binary word

nothing

one binary word

nothing

INPUT LIST DECLARATION

Syntax:

(list declaration) ::=LIST (list part)

(list part) ::=(list identifier) ((list)) I (list part) (list identifier)

(list))

(list identifier) : :=(identifier)

(list) : :=(list segment) J (list) , (list segment)

(list segment) : :=(expression part) I (for clause) (list segment) I (for clause)

[(expression list)]

(expression part)

(expression list)

Examples:

.. -

LIST L1 (X,Y,Z,PQ2)

(list identifier)

(expression list)

(arithmetic expression) I (Boolean expression)

(expression part) I (expression part)

LIST L2 (X[I], Y,R[J,K],Z), L21 (A,B,C[IJ)

LIST L3 (FOR I+-X STEP UNTIL 5 00 B[I], T, U)

LIST L4 (FOR I+-1 STEP UNTIL 10 00 FOR J+-1 STEP 1 UNTIL 15 00 A[I,J])

Semantics:

A (list declaration) can be used for both input and output. However, when used

for input, expressions in the (expression part) must be (variable)s only.

The input (list declaration) specifies a list of variables to be initialized

and also designates the order. The input (list) may consist of any or all of the

following constructs: variables, list identifiers, and FOR clauses.

Variables are of two types: simple and subscripted. Both are single valued.

They form the basic element of a list declaration, and may be either local or

non-local to the (list declaration) block. If local, their declaration must

precede the (list declaration) in which they appear.

If a (list declaration) contains variables which have already been declared in

another (list declaration), it is not necessary to list them again. Use of the

previously declared (list identifier) is sufficient. Recursive use of (list

identifier)s is meaningless and not allowed.

The (for clause) is used to initialize arrays either in whole or in part.

10

READ STATEMENT

Synt~"'C:

(I-0 statement) : : = (read statement) J (release statement) I (write statement)

(read statement) z:= READ ((input parameters))

(input parameters) ::=(file identifier) 1 (format identifier) 1 (list)

Examples:

READ (FILE1 1 FORMAT21 LIST3)

READ (FIN1, FORM1, FOR I+O STEP 1 UNTIL 13 DO HEAD [I])

READ (F6, FORM3, V ARY5)

READ (FILL1, MAT2, U, V, W, X, VARY1)

READ (F2, F3, L1)

Semantics:

Thus far, three kinds of declarations have been discussed: file declaration,

which creates and initially fills input buffers with data; format declaration,

which describes the editing to be performed on the data found in an input

buffer; and list declaration, which provides the names of variables to be given

initial values.

The <read statement> calls for the actual initializing of variables by associating

a set of these declarations. A list of variables can be indicated in two ways.

The programer can write a <list declaration> and use the <list identifier> as

an input parameter, or he can include the list of variables in the <read statement>

itself.

1 1

The reading process is illustrated below:

FILE1 declaration

Picked up
at FILE1

Next Buffer
of FILEl

READ (FILE 1 _, FORMAT2, LIST3)

f

FORMAT2 declaration

Edited by
FORMAT2

EDITED

f EDITED

EDITED

~

LIST3 declaration

Stored according
to LIST3

PRT

ARRAY

STACK

Since the (file declaration) precedes the read statement, the buffer is already

filled with data before the read statement is first encountered. If more than

one buffer is being utilized, they are sequenced so that a first-in, first-out

operation results.

The data is selected and edited according to the (format declaration). The

number of words represented by the sum of the (field width)s in the (editing

specifications) of the (format declaration) is normally equal to the (buffer size)

in the (fiie declaration). In all cases, it must be equal to or less than (buffer

size).

The data which is to be stored is then put in the locations previously assigned

to the variables in the (list).

The reading process is terminated when all variables in the (list) have been

initialized. More than one unit of input, card or magnetic tape record, may be

used with a single read statement.

An additional unit of input is called for each time one of the following occurs

before the (list) is exhausted:

1. A slash is encountered in the format declaration.

2. The end of the format declaration is reached.

12

The slash is used when formats differ from card to card or from tape record

to tape record. After a slash has caused an additional unit of input to be

read, subse~uent data is formulated according to the (editing segment) to the

right of the slash. Two adjacent slashes cause one unit of input to be ignored.

One slash at the beginning or end of a format declaration has the same effect.

When all editing phrases have been used before the (list) is exhausted, editing

of the next unit of input proceeds from the beginning of the format declaration.

After reading is completed, the buffer(s) used in the process is automatically

refilled) and all buffers are properly se~uenced in anticipation of the next

statement involving this file.

PROBLEM 1. To demonstrate the use of the type-A editing phrase and the (string)

phrase) assume the program makes use of a heading used for a printout which

varies from run to run. Assume this information includes the date, the name

of the person using the program, and his department number. Input is from a

card punched in alpha mode and the date is in columns 1-20, the name is in

columns 28-55, and the department number is in columns 63-80.

Selected portions of the program might appear as follows:

BEGIN

ARRAY HEAD [0: 13]; INTEGER I;

FILE IN FIN 1 (1 , 1 0);

FORMAT IN FORM1 (13A6, A2.) ;

READ (FIN 1) FORM1, FOR I+O STEP 1 UNTIL 13 DO HEAD[I])

13

The punched card from which the buffer is filled reads as follows:

Col.
1 10 30 70
DATE:bbNOV.b22,b1962bbbbbbbNAME:bbTHEODOREbI.bWENDELLbbbbbbbbbDEPT:bbENGINEERING

Il'JPUT BUFFER
FD~l

DATE bbN

0 v . b 2 2 ' b

1 9 6 2 b bb b

bbbNAME

bbTHEODO

R Eb I· • ·b WE

NDELLbbb
>:

bbbbbbDE

P T ::: b< h E: N G

I N E E R I N G

EDITING PHRASES

r-A6

.-A6

~A6

.-A6

t-A6

"r-A6

13A6 "r-A6

~A6

'r-A6

~A6

.,_A6

tA~
Ab

A2

VARIABLE LOCATIONS
HEAD [I]

0 0 D A T E : b

0 0 b N 0 v . b

0 0 2 2) b 1 9

0 0 6 2 b b b b

0 0 b b b N A M

0 0 E : b b T H

0 0 E 0 D 0 R E

0 0 b I . b w E

0 0 N D E L L b

0 0 b b b b b b

0 0 b b D E p T

0 0 : b b E N G

0 0 IN E E R I

0 0 0 0 0 0 N G

PROBLEl/: 2: To illustrate the input of numeric ar:d logical initial values, consider

the following program elements. Assume that input is from an alpha card read.

Note that the contents of two buffers are used to initiate variables with one
(read statement). As a conseQuence, the editing specifications are used twice.

The sur.1 of the field widths in FOR!v5 is eQual to So, which is eQuivalent to 10

words, the buffer size of F6.

BEGIN

BOOLEAN AR.RAY B [0:4];

BOOLEAN PJ.., A2, A3, A4, A5;

REAL X, Y, Z, Xl, X2, X3 _;

INTEGER I, J, K, L, M;

FILE IN F6 (2, 10);

FORMAT IN FORM3 (2El0.3, FS.3, I6, 113, XS, 5L5);

LIST VARY5 (X, Y, Z, I, J, FOR l-1f-O STEP 1 UNTIL 4 DO B[M], Xl, X2, X3, K, L,
Al, A2, A3 , A4, A5) ;

READ (F6,FORM3,VARY5)

14

Col.
1

The cards from which the buffers are filled are as follows:

JD

b0.645,+02+o.165,b02+735.125-13892bbbbbb-136421+137.931FALSEbTRUEbTRUEbTRUEFALSE

Col.
1 10 50

-o.173,+07-1.ooo,+OTbbl6.25ob+l416b54975581388Tbb-3.692bTRUEFALSEF.ALSEbTRUEFALSE

INPUT BUFFERS
F6

b0.645.i_+
o 2 +o .5

(.i. bl.Cl g + l1 3 5
. 1 2 3- if 3 ill

%1f® .. bbbbbb
-136421±
ii/ 3 '7 · ·· 9 3 .. (£ F
AL SEQ T J.1Jl
EbTRUEbT
>RUEF AL SE

- 0 . 1 7 3 J +
0 l1 :,...J, o.o.: 0.
l.1it.QJ1b b 1 6
• 2 5 0 rtt TlJU[4
~ i b 2 -1_ _2_ 1 ~-
5813887 J:l(
li· 7 .·.{,;. i.n a. b

T R U E lfiAitS
$FALSE))$
ft't)'@F AL SE

EDITING PHRASES
FORM3

VARI.ABLE LOCATIONS
VARY5

2El0 3-[El0.3
. El0.3

F8 .3-------1
I6 ~~~~~~!!"!!!"'!!!'~~

Il3---~-~~

X8
______________,.~

---------------none

515

2El

F8
I6
Il

-1L5 L5
15
L5
L5

0. 3-[El0.3~
El0.3~

.3

31

F++oO 0000000000000
F++OO 0000000000001
F++OO 0000000000001
F++oO 0000000000001
F++OO 0000000000000
F-00 00000061±Q2120
F--00 ooooo-zm113 200
F+-13 2020000000000
F++oo 0000000002010
F++OO Il.7LLLLULLLL

X8 --------------none

515-1~~
L5
L5

rn'._++00 0000000000001
F++OO 0000000000000
F++OO 0000000000000
F++OO ·0000000000001
F++OO 0000000000000

x
y

z
I
J

B[O]
B[l]
B[2]
B[3]
B[4]
Xl
X2

X3
K
L

Al
.A2
A3
A4
A5

PROBLEM 3. This problem illustrates the use of the binary-type editing phrases.

Normally, input is from magnetic tape which has been produced by another program

and recorded in the binary mode.

The relevant ALGOL construct might be as follows.

BEGIN

BOOLE.AN Il, Y2, Z1, Z2;

REAL T, U, V, W, X;

INTEGER M, N, O;

FILE IN FILLl (1, 11);

FORMAT IN MAT2 (80, 2X);

LIST VARil (Yl, Y2, Zl, Z2);

READ (FILLl, MAT2, U, V, W, X, VARil)

15

mPUT BUFFER
FILLl

F+-16 23_2l401000000
F-t-lQ -13!2100221306
F--01 1055133520000
F-12 5D3210ooooooo
F++OO 0000000000000
F++OO 0000000000000
F++OO 0000000000001
F++OO 0000000000000
F4-13 1133200000000
F++OO 000000000102~

EDITING PHRASES
MAT2

0
0
0
0
0
0
0
0

VARI.ABLE LOCATIONS
VARil

F+....16 l.23_21401000000
F-+-lo t1342100521_3_o6
F-01 1050_1_335_20000
F--12 5-0-32100000000
F++OO 0000000000000
F++OO 0000000000000
F++OO 0000000000001
F++OO 0000000000000

x-----------~none

X none

PROBLEM 4. To illustrate the use of' a (f'or clause) in a (list declaration),

consider the following problem:

u
v
w
x
Yl
Y2
Zl
Z2

A 2-dimensional array A exists, and it is now desired to establish new values for

two of' its rows. These values are read in from an alpha punched card.

BEGIN

ARRAY A [0: 4, 0: 2];

FILE IN F2 (1, 10);

FORMAT IN F3 (6El3 • 6) ;

LIST Ll (FOR~ STEP 1 UNTIL 3 DO FOR J+-0 STEP 1 UNTIL 2 DO A[I,JJ);

READ (F2, F3, IJ.)

The card from which the buffer is filled reads as follows:
Col.

1 10 20 30 1.() ~ 6o

INPUT BUFFER
F2

b 0 . 6 4 5 0 0
0 , + 0 2 + 0 .
1 p- 5 0 0 0 J_ b
0 5 - 0 • 1 7 3
0 0 0 ' + 0 7 +
0 . 7 3 5 1 2 5
} b 0 3 - 0 . 1
3b 4 2 1 ..1. + 0
Q + 0 . 1 Q 22
0 0 ...1_ + 0 2 b b

EDITING PHRASES
F3

V AR·IABLE LOCATIONS

El3 .6-------1
~---+.---~---------. El3 .6-------1

6.El3.6

El3 . 6 ._____,,...._.,.-,.._.. _..---1

E13.6
El3.6
El3.6

16

F-t-11
F-07
F-+-13

133_1100000000
[1'-123450000000
2020000000000

A[2,0]
A[2,l]
A[2,2]

A[3,0]
A[3,l]
A[3, 2]

SUMMARY OF READ si:rATEMENT. 'I'he (read statement), together with its associated

file, format, and list, has been designed to take care of input conditions which

occur in scientific problems.

The programer, however, is not re~uired to use the (read statement). He has

the option of filling the input buffer or buffers by using the (file declaration),

and then operating upon the buffer contents with a STREAl~ PROCEDURE in any way

desired. In order to do this, the file identifier is passed as an actual parameter

to a STREAM PROCEDURE.

When the reading process connected with a (read statement) is completed, the

affected buffer contents are automatically destroyed by the input of more data.

A statement to cause the refilling of input buffers is needed, therefore, when

the (read statement) is not llll.Sed. The (release statement) serves this purpose.

INPUT RELEASE STATEIYIBNT

Syntax:

(release statement) ::=RELEASE ((file identifier))

(stream release statement) ::=RELEASE ((formal parameter))

Examples:

RELEASE (FILE3)

RELEASE (FILL5)

RELEASE (F)

Semantics:

The input (release statement) causes one input buffer of the file indicated

to be filled with new data. If more than one buffer is being used, a reordering

occurs which maintains the first-in, first-out operation.

The release statement is the only part of Extended Algol dealing with input­

output which may be included in a STREAM PROCEDURE. When so used it is

metalinguistically referred to as a (stream release statement). It looks the

same wherever it is used. The difference in syntax is to point up the fact

that in a STREAM PROCEDURE a formal parameter must be used to indicate the

file rather than the file identifier itself.

PROBLEM 1. To illustrate the buffer-ordering procedure, assume an input file which

uses three buffers. Only one name is used for all three buffers; therefore, some

means is re~uired to distinguish between them. The means employed can be visualized

as a pointer, which at any one time is directed toward the buffer which will be

used if the file is called for.

BEGIN

FILE IN FILE3 (3) 10);

This would result in three cards being read into the buffers. The pointe.r is at

buffer 1 as soon as that buffer is filled.

CARD 4

STREAM PROCEDURE EDIT (A,B,C);

BEGIN

- RELEASE(A);- - - -

END;

RELEASE (FILE3); EDIT (FILE3, KEY, TABLE);

END

18

BUF1FER
1

BUFFER
2

BUFFER
3

POINTER

Any use of the file identifier (FILE3) at this point refers to buffer 1. Either

the (release statement) or the (stream release statement) above would result in

the pointer being shifted to buffer 2. Then buffer 1 would be refilled with the

contents of card 4.

Since a read statement has an implied release at the end of its operationJ the

effect on the buffers is the same.

4 ------------------

CARD 5

19

BUFFER
1

BUFFER
2

POINTER

SECTION TWO

OUTPUT

Output is the means by which the program communicates the results it has

obtained to the programer. The B 5000 provides several types of equipment

through which output can be recorded: line printer, card punch, magnetic

tape, and plotter. The storage drum and message printer are reserved for use

by the MCP and its associated compilers.

Due to the variety of possible output communications, several formats are

available to the program.er. Numeric values, for instance, may be expressed

as integers, decimal numbers, or decimal fractions with an associated power of ten.

The information to be externally recorded normally involves the values of

certain variables in the program.

The purpose of the output language portion of Extended ALGOL is to enable

every communication to specifically designate the output equipment, the desired

format, and the expressions to be e-valuated.

PRT

STACK

EXPRESSION __ _..,.

EXPRESSION-----~

ARRAY

OUTPUT
BUFFER

THE OUTPUT PROCESS

20

PUNCHED
CARD

PLOTTED
l?OINT

The fact that a program involves output is indicated by means of an output

(file declaration). The output (file declaration) results in the establishment

of output buffers in memory.

Actual output is called for by a (write statement). This statement causes the

expressions in the (list declaration) to be evaluated and stored into the output

buffer in the form indicated by the associated (format declaration).

When a buffer has been filled,the data is transmitted to the specified output

e~uipment.

Designation of Output Equipment Type

Whether results are to be punched, plotted, printed, or recorded on magnetic

tape is specified by the program parameter card. This card informs the MCP

that a program is ready for processing, and provides sufficient information

to enable the MCP to schedule it.

The contents of the program parameter card are not a part of the program; there­

fore they are not expressed in Extended ALGOL. This information is a message

from the operator of the system to the MCP. The message contains a complete

list of (file identifier)s which appear in the program and the type of output

e~uipment to be used by each.

As a conse~uence, it is not necessary to alter the program, even though the

peripheral e~uipment may change from run to run. Therefore results may be

printed during one run and recorded on magnetic tape during the next run,

using the same program.

21

The Programing Language

OlJTPUT FILE DECLARATION

Syntax:

(file declaration)::= FILE (input or output) (file part)

(input or output) ::=IN I OlJT

(file part) ::=(file identifier) ((buffer part)) (file part),

(file identifier) ((buffer part))

(buffer part) ::=(number of buffers), (buffer size)

(number of buffers) ::=(unsigned integer)

(buffer size) ::=(unsigned integer)

(file identifier) : :=(identifier)

Examples:

FILE OUT RESULTS (2, 115), AN"S (1, 1)
FILE OUT PRINT (2,15)

Semantics:

The only difference in syntax between an input (file declaration) and an output

(file declaration) is (input or output). They both result in the establishment

of buffer areas in memory.

The output (buffer size) must be sufficiently large to contain the contents of

one unit of output. These minimum sizes are as follows:

Line Printer

Card Punch

Magnetic Tape

Plotter

1 line

1 80-Col. Card

1 record

1 point

22

15 words

10 words

May vary from 1 to 1023 words

1 word

OUTPUT FORMAT DECLARATION

Syntax:

(forinat declaration) ::=FORMAT (input or output) (format part)

(input or output) ::=IN/ OUT

(format part) ::=(format identifier) ((editing specifications)) /

(format part) , (format identifier) ((editing specifications))

(format identifier) ::=(identifier)

(editing specifications) ::=(editing segment) I (editing specificationp) / I

(editing segment)

/ (editing specifications) / (editing specifications) /

(editing segment)

(editing phrase) I (repeat part) [(editing specifications)] I
(editing segment) , (editing phrase) I (editing segment) ,

(repeat part) [(editing specifications)]

(editing phrase) ::=(repeat part) (editing phrase type) (field part) / (string)

(repeat part) : :=(empty) I (unsigned integer)

(editing phrase type) ::=A/ D / E I F J I/ L / 0 / P / X

(field part) :l= (empty) I (field width) J (field width) . (decimal places)

(field width) : : = (unsigned integer)

(decimal places) : :=(unsigned integer)

Examples:

FORMAT OUT F6 (x56, "HEADING", x57),F7 (P4.l)

FORMAT OUT F8 (X5,F5.l,2[X14,Fll.3],x6o),F81 (1023 o)

FORMAT OUT F9 (X4,I4,X8,F7.l,X12,F9.l,X76),F91 (8El5.4)

FORMAT Our FlO (X6, "N",X12_, "Ltr,X19, "str,X8o)

FORMAT our Fll (3[X6,El0.2],X72)

The output {format declaration) defines the editing necessary in order for

the output to be meaningful. The output buffer may be filled with either

6-bit characters or 48-bit binary words. The function of the output (format

declaration) is to indicate where and in what form the values of the list

expressions are to be placed. The (editing phrase) accomplishes this task.

23

An output (editing phrase) may be in either of two forms. In the first form,

the (repeat part) of the (editing phrase) is an integer which indicates the

number of times an (editing phrase) is to be used. If the (repeat part) is

(empty), it is taken to be equal to one. The purpose of the (repeat part)

is to eliminate the need for consecutively duplicating the same phrase. A

series of (editing phrase)s may also be designated for repetitive use by

enclosing the set in square brackets. The number of uses is denoted by an

integer immediately preceding the left bracket.

Each use of an (editing phrase) of this form, except the X and D types, takes

the contents of one computer word as the expression value to be edited and stored

into the output string.

The controlling factor in an (editing phrase) is the (editing phrase type).

There are nine different output types which are grouped into three categories:

one for those which produce alphanumeric output, one for those which produce

binary output, and one designed for producing output for the plotter.

The (field part) of the (editing phrase) indicates the number of characters in

the output buffer to be filled. It may, also, in the case of numbers, indicate

the need for a decimal point and the number of digits after the decimal point.

For plotter output) the (field part) does not control the amount of the output

buffer to be filled, but indicates how the plot is to be acconq:>lished. It

serves no· function in the binary-type editing phrases (0 and D).

The second form of an (editing phrase) is a (string). This functions as a

literal; that is) output data is supplied by the (editing phrase) itself and

not by an expression value of the program .

.ALPHANUMERIC (EDITING PHRASE TYPE)S

The following are alphanumeric types: A,E,F,I,L and X. These types are used.

for editing data, so that it is in alphanumeric form for output. This form

of output is used for the line printer, the card punch and magnetic tape unit

(alpha mode). This data can be expressed in several ways) which are syntac-

tically defined as follows:

24

(character output data) - (string output) I (numeric output) I (logical output)

(character output data) (string output) I
(character output data) (numeric output) I
(character output data) (logical output)

(string output) : :=(any seQuence of characters)

(numeric output) ::=(single space) (unsigned numeric output) j
- (unsiimP Cl n11mP-ri ~ cmtnut) I (snace) {numeric output)

(unsigned numeric output) : : = (decimal number) J 0 (decimal fraction)

(scale factor)

(scale factor) ::=, +(exponent) / , - (exponent)

(logical output) ::=TRUE J FALSE / (space) (logical output)

(decimal number) ::=(unsigned integer) / (unsigned integer) (decimal fraction) /

(decimal fraction)

(decimal fraction) ::=. (unsigned integer)

(exponent) ::=(digit) (digit)

The above syntax is not a part of Extended ALGOL but is only a description of

forms of output possible from a program written in Extended ALGOL which uses

the (format declaration).

Examples of Character Output Data

(string output)

ALGOL

Y=

(logical output)

bTRUE

FALSE

(numeric output)

-13892

bbl4l6

b735.l25

bb-735.13

b0.645,+02

bb-0.64500,+o2

In these examples the numbers are separated into three groups: integers, numbers

with a decimal point, and numbers with exponents. The (editing phrase type)s

used with these numbers are respectively, I, F and E. Type A and the (string)

editing phrase are used for (string output), and type Lis used for (logical output).

Type X serves to place blanks in the output string. The effect of these types is

shown in the following illustration.

25

Assume that the following expression values are to be punched in a card. To

illustrate how the (editing phrase type)s function, the following (format

declaration) will be applied.

FORMAT OUT F2 (A5,A2,2L5,2I6,XlO,F8.3,F9.2,El0.3,E14.5)

EXPRESSION VALUES EDITING PHRASE
CHARACTERS PRODUCED
FOR OUTPUT BUFFER

0 0 A L G 0 L 1----------A5 ---------ALGOL
0 0 0 0 0 0 y = I A2 Y=

F++OO 0000000000001 2L
5
-[L5 bTRUE

F++OO 0000000000000 L5 FALSE
F-+oO 000000003310 2 I6__r-I6 -13892
F++OO 0000000002 10 L_I6 bbl416

none XlO bbbbbbbbbb
F-+-ll 1331100000000 F8 .3--------b735 .125
F-11 1337100000000 F9.2 bb-735.13
F-t--12 1004-000000000 E 10.3 b0.645,+02
F-12 looJ.+000000000 E 14.5 bb-0.64500,+o2

BINARY (EDITING Ph.KASE TYPE)

Types 0 and Dare binary (editing phrase type)s. Type 0 is used when output is

desired which identically reflects the eA'}lression values as used in the program.

No conversion takes place. Type D inserts a zero value into the output. These

types are .used only for recording data on magnetic tape in the binary mode. In

this case, the (field part) is irrelevant and should be (empty).

PLOTTER (EDITING PHRASE TYPE)

Type P is designed for producing output for the plotter. It differs from all other

types in that a pair of expression values (instead of one) is used to develop each

element of the output string. All information necessary for plotting one point

is contained in one word. Therefore the P type produces one word in the following

form:

where:

The first character is irrelevant

26

second character (c) is a control digit which determines the -P ~ 1 1 ~~ ~..: - ~ •
.L U.L.LUW .Lllf::,;

1. whether or not to allow a grid to be printed

2. ·whether or not to allow paper to move before plotting

3. whether or not to print the units digit of the ordinate value.

This digit (c) is developed from the (field part) of the (editing phrase).

The effect of various (field part) values is shown in the following table.

(field part)

0
l
2
3
4
5
6
7

ALLOW GRID
TO BE PRINTED

Yes
Yes
Yes
Yes
No
No
No
No

ALLOW PAPER TO BE
MOVED BEFORE PLOT

Yes
Yes
No
No
Yes
Yes
No
No

PRINT UNITS DIGIT
OF ORDINATE VALUE

No
Yes
No
Yes
No
Yes
No
Yes

The third character (s) determines the plotting symbol and is obtained from

the (decimal places) of the (editing phrase). The synibols available are

shown below.

(decimal places)

0

1

2

3

4

PLOTTING SYMBOL

"'7

~

D
0

(random symbol)

The fourth and fifth characters are two decimal digits which stipulate the

X-abscissa increment. These digits are the decimal equivalent of the first

expression value) which may vary from 0 to 99 decimal.

The direction of paper movement depends on the sign of this expression value.

If paper movement is allowed by the control digit) forward movement takes

place when the sign is positive; movement is backward when the sign is

negative.

The sixth) seventh) and eighth characters are three decimal digits which

stipulate the Y-ordinate value to be plotted. These digits are the decimal

equivalent of the second expression value) which may range from 0 to 399

decimal.

27

f\)
CP

TYPE

ALPHANUMERIC

A

E

F

I

1

x

BrnARY

0

D

PLOT'rER

p

The (editing specifications) of an output {format declaration) must not contain

a mixture of (editing phrase type)s; that :Ls,, they must be either entirely alpha­

numeric) binary) or of the plotter type.

The table which follows swnmarizes the actions of the (editing phrase type)s.

WHEN USED.

when expression value is alphE~ in form

when expression value is to bE; represented.
as decimal fraction with an exponent

when express:Lon value is to bE~ represented
as decimal number without exponent

when expression value is to be represented
as an integer

when expression value is to bE:: represented
as a logical va.lue

FORM OF
EXPRESSION VALUE

one alpha word

one binary word

one binary word

one binary word

one binary word

for inserting blank characters in output stringl none

when expression values are to be communicated one binary word
in exactly the same form as they appear in
the program

for inserting zero words in output
-

string J none

when expression values are to be plotted two binary words

EDITED FORM
FOR OUTPill

one field of c:CJ.aracters

one field of characters

one field of characters

one field of characters

one field of characters

one field of characters

one binary word

one binary word

one alpha word

OUTPUT LIST DECLARATION

Syntax:

{list declaration) ::=LIST {list part)

{list part) : : = <list identifier) (<list)) I <list part)) {list identifier)

{list))

(list identifier) ::={identifier)

(list) ::=(list segment) I (list)) (list segment)

(list segment) : : = (expression part) I (for clause) [(expression list)] I
(for clause) (list segment)

{expression part)

(expression list)

Examples:

LIST PLOT (X_,Y)

(arithmetic expression) j (list identifier)

{Boolean expression)

(expression list) J (expression part) I (expression part)

LIST ANS (P+Q_, Z _, SQRT (Z)_, A[I J)

LIST Ll (FOR I+-0 STEP 1 UNTIL T DO FOR J+-0 STEP 1 UNTIL UDO A[I_,J])

Semantics:

The output· {list declaration) specifies a list of expressions_, the values of

which are to be included in one output communication. The expression values

are placed in the output string in the same order as their corresponding

expressions in the (list declaration).

A (for clause) may be used to reduce the amount of writing re~uired when the

elements of an array are included in the output.

If a (list declaration) contains expressions which have already appeared in another

(list declaration) _, it is not necessary to list them again. Use of the pre­

viously declared (list identifier) is sufficient. Recursive use of (list

identifier)s is not allowed.

29

WRITE STATEMENT

Syntax:

(write statement) : :=WRITE ((output parameters))

(output parameters) : :=(file identifier) (format and list part)

(format and list part) : : = , (format identifier) (list part) I (empty)

[(carriage control)] (format identifier) (list part)

flist part) : :=, (list) I (empty)

(carriage control) ::=(skip to next page) I (skip to channel) I (double space) I
(no space)

(skip to next page) : :=PAGE

(skip to channel) : :=(unsigned integer)

(double space) - DBL

(no space) ::=NO

Examples:

WRITE (A, C, M)

WRITE (C[DBL]F2)

WRITE (F2 [3]FORM,L2)

WRITE (F5 [PAGE])

WRITE (FILE2)

WRITE (FOU'I12, FORM2, FOR I~ STEP 1 UNTIL 13 DO HEAD[I])

Semantics:

Three :t:.inds of declarations have been presented: file declaratiori, which

establishes output buffer areas in memory; format declaration, which describes

the form of the data needed for output; and list declaration, which provides

the expression values that are to constitute the output.

The (write statement) serves to identify the specific place in the program where

output is to occur. It also associates the declarations necessary for producing

a given output. The (list declaration) is not reQuired. The (list) can be

specified directly in the (write statement).

30

More than one unit of output: printed line) punched card) magnetic tape record)

or plotted point can be produced with a single write statement. An additional

unit of output is called for each time one of the following occurs before the

(list) is exhausted:

1. A slash appears in the format declaration

2. The end of the format declaration is reached.

The slash is used when units of output are to be given different formats. A

format is assigned to each unit of output) according to the editing phrases

contained between slashes. Two adjacent slashes produce a blank line when

printing) or a blank card when punching. One slash at the beginning or end of a

format declaration has the same effect.

When all editing phrases in a format declaration have been used before the (list)

is exhausted) editing of the next unit of output proceeds from the beginning.

The (write statement) may be expressed in several forms and perform a different

function for each. The most common form is:

WRITE (FILE2)FORMAT3)LIST1)

This form is used when the output contains expression values. The process in­

volved is shown in the following illustration.

LISTl DECLARATION

(Selected Values According

to LISTl)

PRT

Array

Stack

FORMAT3 DECLARATION

(Edited by FORMAT3)

Edited

Edited

Edited

FILE2 DECLARATION

(Stored in FILE2)

lJext
Buff er
of
FIL

The expressions contained in the (list) are evaluated one at a time) from left

to right. Their values are then edited according to the (format declaration).

The (editing phrase)s are applied to the expression values in left to right

order and placed in the output buffer in the same order.

31

The writing process is completed when all expressions in the (list) have been

evaluated and the values placed in the output buf'fer. If the buf'fer has not

been filled and the next (editing phrase) is a (string), the (string) is placed

in the buffer. In any case, the bottom of the buffer will be filled with blanks

if the number of characters affected by the format declaration is less than

the buf'fer size. Arter the buffer is filled, its contents are transferred to

the output device automatically.

Another form of the (write statement) is one in which the (list part) is empty.

This construct occurs when the entire output buffer is to be filled with data

obtained from the (fonnat declaration). Therefore, the (editing specifications)

must contain only X-type and (string) editing phrases. No expression values

are involved. This kind of output would occur, for instance, when headings

are being printed.

WRITE (FILE1,F2)

WRITE (FILE2[DBL]FORM)

The (carriage control) has meaning only when output is being produced on a line

printer. It serves to activate the carriage control tape on the line printer

after printing a line. If other than a line printer is being used, the (carriage

control), if any, is ignored.

WRITE(F2[3]FORM4,L2)

Several options are provided for (carriage control). If an integer is given,

the tape skips to the next hole in the channel indicated by the integer. Channels

are numbered from 1 to 12. If [DBL] is used, a double space occurs after printing.

When no (carriage control) is present in a (write statement) which produces line

printer output, the paper is single spaced after printing. If [PAG:E] is used,

the paper skips to the top of the next page (channel 1). [NO] will result in

no spacing of the paper.

When it is necessary to space the paper before printing, the following form of

(write statement) is used:

WRITE(F2)

WRITE(F2[P.AGE])

32

Col.
1

PROBLEM 1. To illustrate the use of the type-A editing phrase, assume the same

problem that was presented in Problem 1 of the Input Section. In that case, the

date, programer 1 s name, and department were read into an array called HEAD. Now

consider what language is necessary to print that information. First assume it

is all printed on one line and the next print line is controlled by channel 3 of

the carriage control ta~e. Selected portions of the program would then be as

follows:

BEGIN

ARRAY HEAD [0: 13] ; INTEGER I;

FILE OUT FOUT2 (1,15);

FORMAT OUT FORM2 (x8,13A6,.A2);

LIST LOUT2 FOR I.+-0 STEP 1 UNTIL 13 DO HEAD [I]) ;

WRITE (FOUT2[3] FORM2, LOUT2)

EXPRESSION VALUES
HEAD [I]

EDITING PHRASES

0 0 D A
0 0 b N
0 0 2 2
0 0 b 2
0 0 b b
0 0 E :
0 0 E 0
0 0 b I
0 0 N D
0 0 b b
0 0 b b
0 0 : b
0 0 I N

T E : b
0 v .b
_J b 1 9
b b b b
b NA M
b b T H
D 0 R E
.b w E
E LL b
b b b b
D E p T
b EN G
E ER I

~

I-

~

~

~

~

I-

......
I-

......
I-

I-

A6
A6
A6
A6
A6
A6

13A6 A6
M
A6
A6
A6
A6
A6

OUTPUT BUFFER
FOUT2

b b b b b b b b
DA TE : b b N
0 v .b 2 2 __!_ b
1 --2_ 6 2 b b b b
b b b N Aj M E~:
b b T HE 0 D 0
RE b I . b w E
N DE LL b b b
b b b b b b DE
p T : b b E NG
IN E E R I NG
b b b b b b bb
b b b b b b b b
b b b b b b lb b

0 0 0 0 0 0 N G ~ 6 b b b b b b b b

The resulting line of print would-appear as follows:

JO

THEOOORE I. DEPr: ENGINEERING

6
Since the editing part of FORM2 affects only 88 characters, the last 32 blanks
are supplied automatically to fill the buf'fer.

33

The following example assumes the heading information is printed with different

formats on three different lines. Selected FOrtions of the program might appear

as follows:

BEGIN

ARRAY HE.AD [0: 13]; INTEGER I;

FILE OUT FOUT2 (3,15);

FORMAT OUT FORM2 (Xl0,4A6/x.7,5A6/x2,5A6);

WRITE (FOUT2, FORM2, FOR I+O STEP 1 UNTIL 13 00 HEAD [I]);

WRITE (FOUT2 [3])

EXPRESSION VALUES EDITING PHRASES
HEAD [I]
none------no

A6

4A6-EA
6

A6
A6

b_ 0 D A T E : b
Q 0 b N 0 v . b
0 0 2 2 J_ bl 9
0 0 b 2 b b b b

0 0 b
none------::t:7 A6

5A6 ~~
b b N A M

0 ("'\ "ti'
v .LJ : b b T H

A6
A6

0 0 E 0 D 0 R E
0 0 b I . b w E
0 0 N DE LL b

0 0 b b b b b b
0 0 b b D E p T
0 0 :b b EN G
0 0 IN EE RI
0 0 0 0 0 0 NG

none------:6t~
A6
A£

OUTPUI1 BUFFERS
FOUT2

b b b b b b b·b b b·b b b b b b b b b b b b b b

b b IJ:l I A !li Jil d I b b •• A [M ~l: ••• :E :li~ lll lll\lil"t::i
b N 0 v . b a~ b T H E 0 D :o :a= b E N G I Nf'E E
Lr b)1.[9• 6 __£ b b [,:FJ);f:;.JZ[3 b W E N R[:tt[lf Q b b b b
b b :b=b "b.li t=b DELL b)bb/b b b)b ·p:=b/likb lf
:n= b b b b b b '.'b (b b b b b b b Ji :b b b b b b b ::lt
fi p $. . 'b l> b b b b J:). :P. 'b 'b b b b ' 1f $ $?ti » b b b
bbb~••b~ bbb~~~~~ bbb~m~m~
b b b b b b b b b. b b b b b b,p Cb. b b b b b b 'b
lf b b b b b b 11. b:. b b b b b bl\ll Mi b b b b b b Yb'
b ti Vb b b. b b b b ti 'b 15 li b b b tb Tb.)b. <b. .b. b b b
o b . b JJ. b b b Fi H ='bfli \b b b b ·. Jl b

.'b. : .? [) : 1J "b: : ."b.: . :~: ~: . 1>.: [) :1:> l) [> : b:: :: [>);): J1. b b b b :=b: .• [) ••• "?
~'·~··~·~r~·~····~···~·· .l~~~.~~.tt ~'I~~~~···~··

The resulting printout would aFpear as follows:

COL.

10

NOV. 22, 1962
THEODORE I. WENDELL
ENGINEERING

4o

34

PROBLEM 2. To illustrate the output of' numeric and logical values, consider the

following: .Assume that output is produced by the line printer. One line is to

be printed with single spacing af'ter printing. The variables and their values

are taken from Problem 2 of' the Input Section.

BEGIN

BOOLE.AN" ARRAY B [0:4];

BOOLE.AN .Al, A2, PJ, A4, .A5;

REAL X, Y, Z, Xl, X2, X3;
INTEGER I, J, K, P;

FILE OUT FI1 (1, 15);

FORMAT OUT F02 (LB,3[X3,I2], 2L8, 2[X4,I9], 2[X4,I7], x4, F8.2, x4, El4.6, X3)
LIST LI3 (NOT B[3], FOR p.--0 STEP 1 UNTIL 2 00 B[P], B[4] AND A4,

(A1 OR A2) AND (A3 OR .A5), J _;I, XxY+Xl, .IF IC> 1000 THEN K ELSE
1000, SQRT ((-X2)/10), X3, Z);

WRITE (FI1, F02, LI3)

35

Al

.A2

A3
A4

A5
x
y

z
Xl

X2

X3
v.> I
O'\

J

K

ARRAY B B[O]

B[1]

B[2]

B[3]

B[4]

FALSE

VARI.ABLE LOCATIONS

F++OO 0000000000001

F++oo 0000000000000

F+l-00 0000000000000

F+l-00 0000000000001

F+t-00 0000000000000

F+-12 1004000000000

F+tOO 0000000040164

F+-11 1337100000000

F-+oO 0000006462720

F-+oO 0000046113200

F-+-13 2020000000000

F-+00 0000000033104

F-+00 0000000412345

F++OO 0000000002610

F++oO 0000000000000

F+tOO 0000000000001

F+tOO 0000000000001

F+tOO 0000000000001

F+tOO 0000000000000

EXPRESSION V.ALlJES EDITING PHRASES

NOT B[3]~oo ooooooooooooo~l ----t8

none-----X3

rl_F·HOO 00000000000001

none

B[P] { F++OO 0000000000001 }

none
..__ F++OO 0000000000001

AND A4 F++OO 0000000000000
OR .A2j AND
OR A5 F++OO 0000000000000

I2

X3
I2

X3

I2

L8

LS
none----- X4

J -I-------1IF-+oo 0000000357241 1----- I9

none-----

XxY+Xl------1~06 2424226000000 , --

none----­

!F IC> 1000---§00 0000000002610 , --

none-----

SQRT ((-X2) I 1 o---ff!:: 1 1 1 75 0000000000 to--1 -

X4

I9

x4

I7

x4

I7
none--------

3[X3, I2]

2L8

2[X4,I9]

2[X4, rrJ

x4

X3-------t~ 13 2020000000000 , _____ _ F8.2

none-----------x4

Z-------1~ 11 1337100000000 , ----E14.2

none-------X3

The resulting line of print would appear a.s follows:

0 FALSE FALSE -122529 -665750 1416 1000 16 .25

OUTPUT BUFFER

bbbFALSE

~L~(b< b o b ··~·· •1r
lb lbb'bb lb

&i~i.·.lf:e 8: :er b

~bbFALSEb

~;j~, ~: b b - 1 2

:2 5 2 9 ',~:, tL'ti· ;~ ·
b b - 6 6 5 7 5

0 IJi:!!;Ji'!§i b b b

1 4 1 6 ... :1,.\) b

-bbb 1 OOOb

·,b:bbb 16

• 2 5 'j) : .. , ••• }>),!~ b

·bo.73512

.5 ' + 0 3.Jlll

o.735125,+o3

PROBLEM 3. This example describes the process of output to the plotter. Assume

that values have been computed and stored in an array. A program for plotting

the above results would appear in part as follows:

BEGIN

ARRAY W[0: 1 0] ;

INTEGER X, I;

FILE OUT F(2, 1);

FORMAT OUT FM (P5 .3);

LIST Pr(FOR I+-0 STEP 1 UNTIL 10 DOfX,WfI]x100]);

x..-1;

WRITE (F,FM,Pr)

This write statement will result in the plotting of eleven points. The symbol

used is a small circle. The printing of a grid is inhibited since the plotting

paper is pre-printed. Each point is plotted one increment of spacing (.025 inches)

to the right of the previous point. The printing of the least significant digit

of each ordinate value is designated. This digit is printed directly under the

associated point at the bottom of the page.

SUMl/lARY OF WRITE STATEMENT. The write statement and the associated file, format

and list have been designed to accommodate output re~uirements for scientific

problems.

The programer, however, is not restricted to the output features available to him

in the write statement. He has the option of creating output buffers by use of

the file declaration and then filling those buffers in any way desired. This is

done by writing a STREAM PROCEDURE to fill the buffer instead_ of a format declara­

tion. The file identifier is then used as an actual parameter to the STREAM

PROCEDURE.

37

When the write statement is used, automatic transfer of data from buffer to

output device is accomplished as soon as a buffer is filled. Therefore a

statement to initiate this transfer is needed when the write statement is not used.

Such a statement is the release statement with an output file identifier as a

parameter.

OUTPUT RELEASE STATEMENT

Syntax:

(release statement)

Examples:

RELEASE (Fl)

RELEASE (POUT)

Semantics:

.. - RELEASE ((file identifier))

The output release statement causes the contents of one output buffer to be trans­

ferred to the appropriate output device. If more than one buffer is being used,

a reordering occurs which maintains the first-in, first-out operation.

PROBLEM 1. To illustrate the buffer-ordering procedure, assume an output file

which uses two buffers. Since there is only one name (file identifier) for both

of these buffers, some way is needed to distinguish between them. The means

employed is a pointer, which is pointing at the buffer to be used the next time

the file is called for.

BEGIN

FILE OUT F2 (2,15);

This· would establish two output buffers, each 15 words in length.

38

POINTER---ec:. ... BUFFER
1

RELEASE (li'2) ;

.Any use of the file identifier (F2) at this point in the program refers to

buf'fer 1. The release statement results in the pointer being shifted to buf'fer

2) and the contents of buffer 1 being transferred to the line printer) assuming

it to be the specified output device.

Since a write statement has an implied release at the end of its operation) the

effect on the buffers when it is used is the same as shown here.

POINTER
BUFFER

2

39

.APPENDIX A

COMPUTER WORD STRUCTURES IN THE B 5000

The following information is presented here for reference purposes only. A

complete description of the B 5000 is contained in The Descriptor, Bulletin

5000-20002-P.

There are two basic forms in which data can be represented in the B 5000. This

manual depicts them as follows:

NUMERIC OPERAND

BITS 48 46 45 39
I

ro ro +> +> (/)
() QO
·rl ro lt--1 U) lt--1 ~ ~ +>
lt--1 rl 0 U) 0 Q) Q) ·rl Mantissa
•rl P:i ·rl ~ ~ QO

~ +> ~ 0 0 ·rl 13 Digits +> QO ~ QO Pl Pl~ i;::! i;::!
Q) 0 U3 ~ ·rl x x
rd ·rl (f} r:il r:il C\J

H +>

The illustrations in this manual which show nwueric values are in the above form.

The exponent and mantissa are composed of octal digits and each illustration contains

the octal values.

CHARACTER WORD

BITS 48 43'42 3736 3130 2524 i918 1312 76 1

H H H H H H H H
Q) Q) Q) Q) Q) Q) Q) Q)

+> +> +> +> +> +> ,£:! +> +>
() rd () () ,£:! () () () +> () ,£:! ()

+> ro i;::! ro rd ro +> ro ..c: ro ,£:! ro ~ ro +> ro w H 0 H H H H H +> H +> H ill H .£:! H
H d u ro ·rl ro ;:J ro ct--J ro ~ cd ?- ro

QO '° ·rl ,£:! Q) ,£:! ~8
0 ,£:! ·rl ,£:! ·rl ,£:! Q) ,£:! ·rl ,£:!

P:i u (f} u P:i u P:i u (f} u (f} u r:il u

The illustrations which show alphabetic data are in the above form. Each character

is composed of 6 bits.

40

Col.
1 5

APPENDIX B

PROBLEM SOLUTIONS

.An Introduction to Algol 60) Bulletin 5000-21001-P) (June 1961) contains sample

problems. The solutions to these problems do not include the input-output portion

since the language was not completely formulated at that time. The complete

solutions to those problems are given below.

EXAMPLE 1.

10 15

Assume that the results are printed with the following format:

0.0
0.5

25 30 35

-5.238
4.262

45 50

The program will then be:

BEGTIJ

REAL X)Y,YPRIME;

FILE OUT A(l:l5);

FOfil!lAT OUT C (X5)F5.1)2[Xl4)Fll.3J);

FOR X~ STEP . 5 UN"TIL 12 DO

END

BEGIN

Y~X*5-(X*3)/4-4xX*2+2lxX-5.238;

YPRIME+?xX*4-(3xX*2)/4-8xX+21;

WRITE (A)C)X)Y)YPRIME)

END

41

55 6o

21.000
17.125

70 85

Examp1-e 2. .Assume the results are printed with the following format:
COL.

l 5 10

0
O N
0
0 50 0
0 75
0 100
0
0
0
0
0
0
0

15 CD 23 J)

L

360.0
535.0
710.0

The program will then be:

BEGIN

REAL L,S; INTEGER N;

FILE our c (1,15);

l) 1.o 45 ::J:) 55 to 8) ID

s
9425.0

20700.0
36350.0

n Vl1 T (y4 T 1
• vo F7 1 Xl2 Fg l) J (~6_. "N" _, Xl2_, "Lu_, Xl9_, tt31t) _,· FO PJY" l'i...T '-' l ~ ~ \ ~ ~ ' - Lf-) 1--0' I ~ -) .) ,, • • ' .N - - - - - -

LIST 0 (N, L, s)J

WRITE (C[DBL]J);

FOR N+J)O STEP 25 UNTIL 300 00

END

BEGIN

Irl 7+ (N-l)x7;

~/2x (l 7+L);

WRITE (c,I,o)

END

42

Example 3. Assume the results are printed with the following format:

COL.
l 5 JD J5 ill ~ 30 J) 1,o 45 :n 55 Eb

(Cj-~~-
BEGIN

REAL A, RS, RT; INTEGER W, L, H;

FILE OUT J (l,15);

FORMAT OUT M (3[X5,Ell.4]);

"W+-12; L+-e7; H+-14; A+-e (WxL+WxH+LxH);

R~QRT (A/(4x3.14159265359));

R114-A/(4xRSx3.14159265359*2);

WRITE (J,M,A,RS,RT)

END

Example. 4. Assume the input to be from cards in the following form:

The first card contains the value of N in columns 1-4. Subsequent cards contain the

values of the N elements of array X. They are punched as decimal numbers with two

places after the decimal point. Every ten columns contain one value and the last

ten columns are used for a sorting sequence number. Therefore each subsequent

card contains seven values.

Assume the two possible outputs of the program to be printed in the following

formats:

43

COL. 1 5 10 15 d) 2)· 3) 35 LO 45 5) 5) tD 8) 70 75 Cb 85 gJ S5

Line 1
0
0
0

2
0

COMPtYl1ATION OF JYIE:AN V .ALUE, STANDARD DEVIATION, AND GREATEST DEVTATION

3
0
0

4
0
0 +nnnnnn.nn +nnnnnn.nn +nnnnnn.nn nnnn
0

5 0
0

6
0
0
0

If J=l [t 0 NO VALUES OF X[I] ARE EQUAL TO A 0
0
0

V'-

+:-
+

If J=l [t SEQUENCE NUMBERS OF TERMS EQUAL TO THE MEAN VALUE

8

9 nnnn nnnn nnnn nnnn nnnL nnnn nnnn nnnn

t Assume skip to line 7 is controlled by a punch in channel 3 of printer ts carriage control taiie.

The prograJ11 will then be:

BEGIN

REAL A)SUM)SUMSQ)ST.ANDEV)MAXDEV,Z;

INTEGER ~,I,J)INDEX;

INTEGER ARRAY Y [l: 1000];

REAL ARRAY X [1:1000];

FILE IN Fl (2)10);

FILE OUT F2 (2,15);

FORMAT IN FOfilvll (I4),FORM2 (7[Fl0.2]);

FORMAT OUT FORM3(B24)"CO:MPUTATION OF ME.AN VALUE, STANDARD DEVIATION, AND

GREATEST DEVIATION"), FORM4 (X31, 3 [x8, FlO. 2], X3, I5),

FORM5 (X43, JINO VALUES OF X[I] ARE EQUAL TO A")

FO RM6 (X3 5) 11 SEQUENCE NUMBERS OF TERMS EQUAL TO THE :MEAN V ALUEu) ,

FORM7 (x8,15[X2,I5],X7);

LIST 12 (A) ST.ANDEV) MAXDEV) INDEX);

READ (Fl,FORMl,N);

BEGIN

INTEGER P;

LIST L3(FOR P+-1 STEP 1 UNTIL N DO X[P]);

READ (Fl,FORM2,L3)

END;

SUM+-0;

FOR I+.l STEP 1 UNTIL N DO SUM+-BUM+X[I];

A+£UM/N; SUMS~;

FOR I+.l STEP 1 lJl'JTIL N IO SUMS~UMSQ+X[I]*2;

ST.ANDEV+-SQRT (SUMSQ/N-A*2);

MAXDEV+-ABS (X[1] -A) ; INDEX+-1;

FOR I~ STEP 1 UNTIL N DO

BEGIN Z+-ABS (X[I]-A); IF Z >MAXDEV THEN

BEGIN MAXDEV~; INDEX..-I END

END;

45

WRrrE (F2(DBL]FORM3);

WRITE (F2(3]FORM4,L2);

J-4-l;

FOR 1..-1 STEP 1 UNTIL NIX) IF X[I]=A THEN

BEGIN Y(J}+-I; J+iJ+l END;

IF J=l THEN WRrrE (F2,FORM5) ELSE

BEGIN

INTEGER Q;

LIST L4 (FOR Q+-1 STEP l UNTIL J-1 00 Y [QJ);

END

END

WRITE (F2[DBL]FORM6);

WRITE (F2,FORM7,L4)

46

APPENDD~ C

MINI:MUM BUFFER SIZES

Whenever buffers are established in memory by means of a file declaration) it is

necessary to indicate their sizes. The following table is presented for reference

purposes) and indicates the minimum buffer size required for each type of I-0

equipment.

INPUT FILE
(Buffer Size)

80-col. Alpha Card 10

80-col. Binary Card 20

Magnetic Tape 1-1023 Dependent upon number of words per record

OUTPUT

80-col. Alpha Card 10

Magnetic Tape 1-1023 Dependent upon number of words per record

Printer 15

Plotter 1

	001
	002
	003
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47

