
EXTENDED ALGOL REFERENCE MANUAL

for the
Burroughs 8 5 0 0 0

... ~ · ~[1 · ill1lffj ~1&!P [1 1 ~ ~.-Y.<:%w-m oor · rn•~~ L[[fj; :Jr [[• IDL£Zf,w;. i 1 m~, ,[[--~WL. >.. '··

5000-21012
November, 1962

(Revised August, 1963)

EXTENDED ALGOL REFERENCE MANUAL

for the

Burroughs B 5000

Equipment and Systems Marketing Division

Sales Technical Services

Burroughs Corporation

Detroit , Michigan

COPYR:G:-:-:- © 1962 BURROUGHS CORPORATION

ii

PREFACE

One of the programing languages utilized by the Burroughs B 5000 Information

Processing System is Extended AWOL. In addition to implementing virtually

all of ALGOL 60, Extended ALGOL prov.ides for communication between the

processor and input-output devices, enables editing of data, and facilitates

program de bugging. Within the framework of an Extended .AIGOL program, the

programmer can thus exercise close control over data transmission and manipu­

lation to any desired degree.

This manual is a detailed re.ference source for Extended ALGOL. It describes

all the structures contained in the language, through the use of syntactical

descriptions, pertinent examples, and semantics. Although the material

contained herein is not intended as a teaching aid, serious and careful study

should provide the reader with a thorough understanding of Extended ALGOL.

The reader is assumed to have had some experience in systems programing. For

those unfamiliar with ALGOL 60, the Burroughs B 5000 Information Processing

System, or both, the following publications are suggested:

1. An Introduction to ALGOL 60 (Bulletin 5000-21001-P)

2. Master Control Pro ram Characteristics for the Burro hs B 5000
Information Processing System (Bulletin 5000-21003-P

3. The Descri tor a Definition of the B 5000 Information Processin
System (Bulletin 5000-20002-P

4. File Control on the Burroughs B 5000

5. Stream Procedure, a Part of Extended ALGOL for the Burroughs B 5000

6. Operational Characteristics of the Processors for the Burroughs B 5000

7. Input-Output Facilities-A Part of Extended ALGOL for the Burroughs B 5000

8. Naur, P., et al., Report on the Algorithmic Language ALGOL 60
(Communications of the Association for Computing Machinery, Vol. 3,
No. 5; May, 1960).

9. McCracken, Daniel D., An Introduction to ALGOL Programming (New York,
New York: John Wiley and Sons, 1962)

-iii-

In many cases, portions of reference 8 have been reproduced in this

manual with little or no change, in order to adhere as closely as possible

to the formal definition of ALGOL 60.

Every effort has been made to produce a complete, precise, and concise

definition of Extended AIGOL. Suggestions and corrections for future

editions of this manual will be appreciated, and should be addressed to:

Manager, Sales Technical Services
Burroughs Corporation
6071 Second Avenue
Detroit, Michigan

NOTE: Changes and additions made in the revision of August, 1963

are reflected in the Table of Contents. However, the Index

is virtually unaffected, and therefore has not been revised.

-iv-

TABLE OF CONTENTS

(NOTE: The various elements of Extended AIGOL are discussed in subsections

or paragraphs labelled Syntax, Examples, and Semantics, immediately following

each pertinent subject heading. To avoid meaningless repetition, these sub­

ordinate headings have been omitted from the Table of Contents.)

Introduction

1 .O Structure of the Language ..

1 .1 Conventions Used in the Description of the Language ..

1 . 2 Character Set .

2.0

2. 1

2.2

2.3
2.4

2.4.3
2.4.4

2.5

2.6
2.6.4

2.7
2.7.4
2.8

2.9

3.0

3. 1

3 .1.4

3. 1.5

3.1.5.1

3.1.5.2

3.2

3.2.4

Basic Components: Basic Symbols, Identifiers, Numbers, and Strings

Letters ...

Digits

Logical Values.

Delimiters.

Spacing.

The Use of CO:MJ\1EN1r .

Identifiers .

Numbers

Size Limitations of Numbers.

Strings .

Use of Strings .

Quantities, Kinds, and Scopes .

Values and Types

Expressions .

Variables

Simple Variables .

Subscripted Variables.

Number of Subscripts.

Evaluation of Subscripts.

Partial Word Designat0Ts ..

Values Allowed for Field .

-v-

3

4

5

6

6

7

7

7
8

9

9

10

11

11

12

12

12

13

13

14

14

14

15

15

16

Function Designators. 3.3
3.3.4

3.3.5
3.3.5.1
3.3.5.2

Standard Functions

Type Transfer Functions.

ENTIER

REAL ..

3.3.5.3 BOOLEAN

3.4 .Arithmetic Expressions

3.4.3.1 Simple .Arithmetic Expressions .

3.4.3.2 General .Arithmetic Expressions.

3.4.4 Operators a.~d TY})es ...

3.4.4.1 Arithmetic Operators.

3.4.4.2 .Arithmetic Expression TJTI)eS .

3.4.5 Precedence of Operators

3.4.6 Numerical Limitations and Significant Digits

3.5 BOOLEAN Expressions

3.5.3.1 Simple Boolean Expressions ..

3.5.3.2

3.5.4
3.5.5

3.5.5.1

General Boolean Expressions

TYJ)eS.

Relational and Logical Operators .

Relational Operators ..

3.5.5.2 Logical Operators ..

3.5.6 Precedence of Operators

3.6 Designational Expressions

3.6.3.1 Simple Designational Expressions.

3.6.3.2
3.6.4
3.6.5

4.o

General Designational Expressions

The Subscript Expression of a Switch Designator ..

Unsigned Integers as Labels

Statements.

4. 1 Compound Statements and Blocks. .

4.1.3.1 Nested Blocks .

4.1 .3.2 Disjoint Blocks .

4.2
4.2.4
4.3
4.4

Assignment Statements . .

TYJ)eS.

GO TO Statements.

Dummy Statements.

-vi-

16

17
18

18
., 0
10

18

19

20

21
21

21

23
23
24

25
26

27
28

28

28

28

29
29
30

31
31

31

33

33

35
35
35
36

37

38

4.5 Conditional Statements .

4.5.3.1
4.5.3.2
4.5.3.3

IF Statement

IF ... THEN ... ELSE Statement .

IF ... FOR Statement . .

FOR Statements . . 4.6
4.6.4
4.6.4. 1

4.6.4.2
4.6.4.3
4.6.4.4

The For List. .

Arithmetic Expression Element.

Step-Until Element

WHILE Element

STEP-WHILE Element

38

39

4.6.5
4.6.6

Value of the Controlled Variable Upon Exit from the FOR Statement

39
40

4o

41
42
42

43
43
44

44

44
46

47
49

49
49
51
52

53

GO TO Leading Into a FOR Statement.

4.7 Procedure Statements

4.7.3.1
4.7.3.2
4.7.4
4.8

Value Assignment (Call by Value)

Name Replacement (Call by Name) ..

4.8.2
4.8.3
4.8.4

4.9

Restrictions ...

I-0 Statements .

READ Statement.

WRITE Statement . .

RELEASE Statement .

FILL Statement

4.9.3.1 Row Designator.

4.9.3.2 Value List ..

5.0 Declarations

5.1 Type Declarations ..

5.1 .4 Local or OWN ...

5. 1 • 5 Type.

5.2 ARRAY Declarations .

5.2.3.1 SAVE Arrays

Local or OWN .

Type

Bound Pair List .

SWITCH Declarations ..

5.2.3.2
5.2.3.3
5.2.4
5.3
5.3.4
5.3.5

Evaluation of Expressions in the Switch List.

Influence of Scope.

-vii-

53
54

55
. ... 56

56

57
57
53

. . . . 58
58

59
59
60
60

5.4 DEFINE Declarations. 60
60 5 . 4 . 1 Syntax

5.4.2

5.4.3
5.4.4

5. 4.5

5.5
5.6
5.6.3.1

5.6.3.2

5.6.3.3
5~6.3.4

5.6.3.5
5.6.3.6

5.6.3.7
5.6.3.8

5.6.3.9

5.7
5.7.3.1
5.7.3.2

5.7.3.3
5.7.3.4
5.8

5.9

Examples .

Semantics

Influence of Scope .

Restrictions

LA.BEL Declarations .

FILE Declarations ..

Buff er Part . .

I-0 Unit Control ..

Disposition

Blocking ..

End-of -File .

Save Factor

FILE REVERSE.

Scope

Restrictions ..

FORMAT Declarations.

Input Editing Specifications ..

Input Editing Phrases

Output Editing Specifications

Output Editing Phrases ..

LIST Declarations

FORWARD Reference Declarations .

60

60
60

61

61
61
62

62

63
63
63
64
64
64

. . . . 64

65
65
66
68
68

70
. . . . 72

5. 10 Diagnostic Declarations 72

73 5 . 10. 4 MONITOR

5.10.4.1

5.10.5
5.10.5.1

5. 11

5.11.3.1

5.11.3.2

5.11.3.3
5.11.4

5. 11 . 5

Monitor List Elements. 73

DUMP. . • • • • • • • • • • • • • 74
Dump List Elements . . 74

PROCEDURE Declarations 76

Procedure Heading. 77

Procedure Body 78

Scope of Identifiers Other Than Formal Parameters. 78
Values of Function Designators. 78
Restriction on 78

-viii-

5. 12

5.12.3.1

5.12.3.2

5.12.3.3

5.12.3.4

5. 12.4

5.12.5

5.12.5.3

5.12.5.4

5.12.5.5

5.12.5.6

5.12.6

5.12.6.3

5. 12.6.4

5.12.6.5

5.12.6.6

5.12.6.7

5.12.6.8

5.12.6.9

5.12.6.10

5. 12. 7

5.12.8

5. 12 .9

5.12.10

5.12.11

5.12.12

5.12.13

5.12.13.4

5.12.13.5

5.12.13.6

5.12.13.7

5.12.13.8

STREAM PROCEDURE Declarations . .

Value Part

Stream Declarations ..

Compound Stream Tail .

Automatic Index Adjustment .

Stream Statements

Stream Address Statement.

Set Address Statement.

Store Address Statement.

Recall Address Statement

Skip Address Statement .

Destination String Statement ..

Transfer Words

Transfer Characters.

Input Convert.

Output Convert . .

Transfer and Add .

Transfer Character Portions.

Literal Characters .

Literal Bits . . .

Stream GO TO Statement ..

SKIP Bit Statement ...

Stream TALLY Statement.

Stream Nest Statements, .

Stream RELEASE Statement ..

Compound Stream Statement .

Conditional Stream Statement ..

Source with Literal ...

Source with Destination.

Source Bit .

TOGGLE

Source for Alpha .

79
. . . . 80

80

. . . . 81

. 81

. 82

82

83

83

84
. ... 84

. 84

85

85

86

86

86

87

87
88

88
88

89

89

90

.... 90

91

. . . . 91

. 92
92
92

92

Appendix A: B 5000 Internal Character Codes (with text references) A-1

Index

Metalinguistic Variables. I-1

Reserved Words I-7

-ix-

INTRODUCTION

Extended ALGOL, one of the languages used for programing the Burroughs B 5000

Information Processing System, is based on the definitive "Report on the

Algorithmic Language ALGOL 60 11 (Communications of the ACM, Vol. 3, No. 5;
May, 1960). Extended ALGOL implements virtually all of ALGOL 60, and adds

certain extensions which are necessary to handle situations peculiar to com­

puter operations: input-output operations, partial-word operations, character

manipulation, and diagnostic facilities. The extensions which have been added

were designed with the philosophy used in the design of ALGOL 60. The section

and paragraph numbering used herein is similar to that employed in the document

referenced above.

,

1 .0 STRUCTURE OF THE LANGUAGE

Extended AIGOL employs a vocabulary of reserved words and symbols. These

reserved words and symbols may no~ be used in a program for any purpose

other than that defined by the language description. Reserved words and

symbols are grouped in a manner prescribed by the syntax to form the various

constructs of the language. These constructs can be divided into .three

major categories: expressions) statements, and declarations.

Whereas ALGOL 60 itself is concerned with the formation of rules for cal­

culation of a value or values) Extended ALGOL also includes the means

req_uired by a programmer to communicate with the computing eq_uipment.

The rules for calculation are called expressions. Three different forms

of expressions are present in the language: arithmetic) Boolean, and

designational.

The results produced by the evaluation of arithmetic and Boolean expres­

sions can be assigned as the values of variables by means of assignment

statements. These assignment statements are the principal active elements

of the language.

In addition) to provide control of the computational processes and external

communication for a program) certain additional statements are defined.

These statements provide iterative mechanisms) conditional and unconditional

program control transfers) and input-output operations. In order to provide

control points for transfer operations, statements may be labelled.

Declarations are provided in the language for giving the compiler information

about the constituents of the program such as array sizes) the types of values

that a variable may assume, or the existence of subroutines. All identifiers

which are to be used in a program must be declared before they are used.

-3-

A series of statements enclosed by the reserved words BEGIN and END is called

either a compound statement or a block; each provides a method for grouping

related statements. If a declaration of identifiers appears immediately after

the word BEGIN, the statement group is called a block. A statement group may

contain subordinate statement groups. A. program is a grouping of statements,

usually a block. (To be completely precise, a program may also ~e a compound

statement .)

1 .1 Conventions Used in the Description of the Language.

1 .1.1 The syntax of the language is described through the use of metalin­

guistic symbols. These symbols have the following meanings:

()

{ }

The left and right broken brackets are used to contain one or
more characters which represent a metalinguistic variable whose
value is given by a metalinguistic formula.

The symbol : : = means "is defined as, 11 and separates the metalin­
guistic variable on the left of the formula from its definition
on the right.

The symbol I means 11 or. 11 This symbol separates multiple defini­
tions of a metalinguistic variable.

Braces are used to enclose metalinguistic variables which are
defined by the meaning of the English language contained within
the braces. This formulation is used only when it is impossible
or impractical to use a metalinguistic formula.

The above metalinguistic symbols are combined to form a metalinguistic formula.

A metalinguistic formula is a rule which will produce an allowable sequence of

characters and/or symbols. The entire set of such formulas defines the con­

structs of Extended ALGOL.

Any mark or symbol in a metalinguistic formula which is not one of the above

metalinguistic symbols denotes itself. The juxtaposition of metalinguistic

variables and/or symbols in a metalinguistic formula denotes juxtaposition

of these elements in the variable indicated.

-4-

In order to indicate specifically the differences between Extended ALGOL and

ALGOL 60, each metalinguistic formula is preceded by an underlined number.

These numbers have the following meanings:

* Same as ALGOL 60 except for character set

2 Different from .ALGOL 60

1 In addition to ALGOL 60 (all or in part)

To illustrate the use of syntax, the following example is offered:

n (identifier) ::=(letter) f (identifier) (letter) I (identifier) (digit)

The above metalinguistic formula is read as follows: an identifier is defined

as a letter or an identifier followed by a letter 2!. an identifier followed by a

digit.

This metalinguistic formula defines a recursive relationship by which a construct

called an identifier may be formed. Evaluation of the formula shows that an

identifier begins with a letter; the letter may stand alone, or may be followed by

any mixture of letters and digits.

The number g (.1_, g, or J_) indicates the departure of the defined construct from

the definitions of ALGOL 60, as noted above.

1.2

1 . 2. 1

1

Character Set

Syntax

(character) ::= (string character) f {string bracket character)
(illegitimate character)

1 (string character) ::=(visible string character) / (single space)

1 <visible string character> : : = . H I (/< l+-1 & I$ I* D b 1-s 1-1 I I, 1% I= I
] I# I @I : I> I~ l + I A I BI c ID IE IF I G IHI I I

x /JfKfLfMfNfoIPfQfRff fsfTfufvfwf
x/Yfzfof1 J2f3f4/5f6J7f8f9

* Formulas preceded by the number 1 represent the material presented in
"Report on the Algorithmic Language, ALGOL 60" (Journal of the Association
for Computing Machinery~ Vol. 3, No. 5; May, 1960), as modified by the
changes which were made during the Rome meeting of the ALGOL Cormrdttee

(April 2=3, 1962).

-5-

1 (single space)::={ a single unit- of horizontal spacing which is blank}

1 (space)::= (single space) (space) (single space)

3 (string bracket character) .• - n

1 (illegitimate character) ::=?

(NOTE: This character is not used in writing Extended ALGOL programs. It

serves to represent, in the B 5000, any illegitimate card code de­

tected during a card read operation. It is shown here merely to

complete the illustration of the character set.)

(empty) ::= tthe null string of symbols}

1.2.2 Semantics

The above character set has been defined for the B 5000; therefore the definition

of Extended ALGOL will reflect the use of this character set. The visible string

characters, the string bracket character, the single space, and the illegitimate

character provide a total of 64 characters.

2. 0 BASIC COMPOJ\1ENTS :
BASIC SYMBOLS, IDENTIFIERS, NUMBERS, AND STRINGS.

2.0. 1 Syntax

(basic symbol) t:= (letter) I (digit) I (logical value) I (delimiter)

2.0.2 Semantics

The entire Extended ALGOL language is formed from the above symbols.

2.1 Letters

2.1 .1 Syntax

(letter) ::= A.fBjcfnjEfF!G!HIIIJ!KILfMfNfolPIQfRfsfTluJvlwJxfYIZ

2.1 .2 Semantics

The alphabet defined for Extended ALGOL is restricted to the upper-case letters

of the English alphabet. The lower-case letters are specifically disallowed.

Individual letters do not have individual meaning but serve to form identifiers

and strings (see section 2.4, Identifiers, and section 2.6, Strings).

-6-

2.2 Digits

2. 2. 1 Syntax

l (digit) ::= of1 /2f3J4/5l6/7J8f9

2.2.2 Semantics

Digits are used for forming numbers, identifiers, and strings.

2.3 Logical Values

2.3. 1 Syntax

l (logical value) ::=TRUE/FALSE

2.3.2 Semantics

Logical values are the only values defined for BOOLEAN quantities (see

section 5.1, Type Declarations).

2.4 Delimiters

2 .4. 1 Syntax

l (delimiter) ::= (operator) I (separator) I (bracket) J (declarator)

(specificator)

1 (operator) ::=(arithmetic operator) I (relational operator)

(logical operator) I (sequential operator)

1 (arithmetic operator) ::= +f-Jxf/fDIVf*fMOD

1 (relational operator) ::= <Js/=l~J>ll
1 (logical operator) ::= EQVJrMP/oRJANDfNOT

1 (sequential operator) ::= GOjTOjIFjTHENjELSEjFoRjDOjREADjWRITEj

RELEASEjDSjTOGGLEjJUMPjSKIPjDBIDijSETI

cr1scjDCjRESETISBjsrjTALLYjPAGEIDBLjNO

;i (separator) ::= ,j .l@I: j;j+-j(single space)ISTEPfUNTrLJWHrLEj

COMMENTjLOclwnsfADDjSUBILITjCHRINUMIZoNIDECjocTI

WITHjFILL

1 (bracket) : : = (I) I [j] I" I BEGIN) END!#

-7-

l (declarator) .. - OWN} BOOLE.A ... l\Jj INTEGER! REALI DOUBLE I ARRA.YI SWITCH I LA.BELi

LocALIFoRWA.~DlsAVEIPROCEDUREjSTRE.AMILISTjFoRMATI
INlouTjMONITORjDUMPjFILEIALPHAjDEFINEjREVERSE

(specificator) .. - VAL1JE

2.4.2 Semantics

Delimiters are the class of operators, separators, brackets, and spe­

cificators. As the word 11 delimitern indicates, an important function of

these elements is to separate the various entities which go to make up a

program. The exact meaning of each delimiter will be made clear as it appears

in various constructs below. The delimiters may not be used for any purpose

other than that defined by the language description. The symbols and words

which make up the delimiters constitute the reserved vocabulary of Extended

ALGOL. For a complete list of the reserved words see Appendix A.

2.4.3 Spacing

In the ALGOL 60 Reference Language, spaces have no significance since basic

components of the language, such as BEGIN, are construed as one symbol. In

a machine implementation of such a language this approach is not practical

because of hardware limitations. In Extended AIDOL for instance, BEGIN is

composed of five letters, TRUE is composed of four, and PROCEDURE of nine.

No space may appear between the letters of a reserved word, otherwise it

will be interpreted as two or more elements. The basic corrwonents (reserved

words and symbols) are used, along with variables and numbers, to form ex­

pressions, statements, and declarations. Because certain o:f these constructs

place quantities which have been defined by the programmer next to delimiters

composed of letters, it is necessary to separate one from the other. The

space is used as a delimiter in these cases. Therefore it is required that

a space separate any two basic components of the following forms:

multi-character delimiter
identifier
logical value
unsigned number

Aside from these requirements a space may appear (if desired) between any two

basic components without affecting their m.eanir.1.g.

-8-

2.4.4 The Use of COMMENT

In order to include explanatory material at various points in the program,

several conventions exist as defined below. The reserved word COMMENT

indicates that the information following is explanatory rather than part of

the program structure.

Sequence of Basic Symbols

; COMMENT (any sequence of characters
not containing ;} ;

BEGIN COMMENT (any sequence of char­
acters not containing ;} ;

END (any sequence of characters not
containing END or ; or . or ELSE or
WHILE or UNTIL }

Equivalent

;

BEGIN

END

The above conventions mean that any construct which appears on the left may

be used in place of the corresponding construct on the right, without any

effect on the operation of the program.

2. 5 Identifiers

2 .5. 1 Syntax

(identifier) (letter) / (identifier) (letter) / (identifier) (digit)

2.5.2 Examples

I

ID

A5
G76D3

ARITHMETIC MEAN

2.5.3 Semantics

Identifiers are composed of letters and digits only, and must begin with a

letter. No space may appear within an identifier. Identifiers have no in­

herent meaning, but serve to name variables, arrays, labels, switches, pro­

cedures, files, formats, and lists.

-9-

The identifiers used in a program may be chosen freely except for the following

restrictions:

1. Reserved words of Extended AIGOL may not be used as identifiers.

2. kn identifier must start with a letter, 'which can be followed by
any combination of letters or digits or both. This restriction
also applies to labels, as integer labels are specifically disallowed.

3. Identifiers may be as short as one letter or as long as 63 letters
and digits.

2.6 Numbers

2.6. i Syntax

(number)::= (unsigned number)l+(unsigned number)j-(unsigned number)

(unsigned number) ::=(decimal number) I (exponent part) I
(decimal number) (exponent part)

(decimal number) ::=(unsigned integer) I (decimal fraction)

(unsigned integer) (decimal fraction)

(exponent part) ::= @(integer)

(decimal fraction) ::=.(unsigned integer)

1 (integer)::= (unsigned integer) /+(unsigned integer)/-(unsigned integer)

1 (unsigned integer) ::=(digit) j (unsigned integer) (digit)

2.6.2 Examples

Unsigned integers:

Integers:

+546
-62256

Numbers:

0
+549755813887

1. 7::@-40
4.31~8

Decimal fractions:

.5

.69

Exponent parts:

@68
@-46
@+54

-10-

Decimal numbers:

1354
.546

-1354.543
Unsigned numbers:

1354.543
@58
1354.543@68

2.6.3 Semantics

Numbers may be of two basic types, INTEGER and REAL. Integers are of type

INTEGER. A.ll other numbers are of type REAL.

Unsigned numbers are composed of digits and four basic symbols: . @+ and-.

No space may appear within an unsigned number, otherwise it will be in-

terpreted as more than one number.

2.6.4 Size Limitations of Numbers

In general, the number of digits (disregarding the decimal point and ex­

ponentiation, if any) in a decimal number may not exceed eleven, otherwise

the value will be truncated to the most significant eleven digits. T-welve

digits are allowed if, disregarding the decimal point and exponentiation,

they do not exceed 549755813887 in value. The last series of examples,

Numbers (subsection 2.6.2), shows the lower and upper limits of the absolute

values of numbers of both INTEGER and REAL types which are allowed in Extended

ALGOL. See also section 3.4.6, Numerical Limitations and Significant Digits.

2.7 Strings

2. 7. 1 Syntax

2 {string)::= "{proper string) 11 j"{string bracket character)"

2 (proper string) .. - (string character)j(proper string){string character)

2 (letter string) .,- {letter)f(letter string)(letter)j(space)/

2.7.2 Examples

Letter string:

A
ABC DEF
ALGOL

Proper string:

#P&FG
ALGOL

String:

''ALGOL''
Tl Tl II

(letter string){space)

11 THE FOLLOWING TABLE OF PiESULTS WAS BASED ON FOP.M:rJ'".uA.: A '.'.".: B*Cn

-11 -

2. 7 .3 Semantics

Strings in general are of three forms:

1. A. letter string
2. A proper string delimited on both ends with the string bracket character.
3. nun

The first case, a letter string, may incorporate a space as an integral part

of its construct, and any spaces appearing between the delimiters of a letter

string will be so interpreted.

2.7.4 Use of Strings

Strings can be used to form arithmetic expressions (see section 3.4, Arith­

metic Expressions), format declarations (section 5.8, Format Declarations),

and destination string statements (section 5.13, Stream Procedure Declarations).

A. letter string may be used for explanatory purposes in an actual parameter

list (section 4.7, Procedure Statements) or a formal parameter list (section 5.12,

Procedure Declarations). A. string may not exceed 63 characters in length.

2.8 Q"J.B.ntities, Kinds, and Scopes

The following kinds of quantities are distinguished in Extended ALGOL: simple

variables, arrays, labels, switches, and procedures. In addition certain

other constituents are declared: files, formats, defines, lists, forward

references, and diagnostics. The scope of any quantity or constituent is

the block in which the quantity or constituent is declared. All the above

quantities and constituents must be declared before they are referenced in

any manner.

2.9 Values and Types

Certain syntactical units have values. The value of an arithmetic expression

is a number, the value of a Boolean expression is a logical value, and the

value of a designational expression is a label. The value of an array identifier

is the ordered set of values of the associated subscripted variables; this may

be a set of numbers or a set of logical values.

The types (INTEGER, REAL, BOOLEAN, DOUBLE and .ALPHA) associated with syntactical

units refer to the values of these units.

-12-

3 . 0 EXPRESSIONS

Expressions are basic to any algorithmic process. The following kinds of

expressions are defined for Extended ALGOL: arithmetic, Boolean, and desig­

national. Expressions are rules for combining basic components in a fashion

such that meaningful values can be obtained. Expressions are formed from

the following quantities: logical values, numbers, variables, function

designators, partial word designators, and elementary arithmetic, relational,

logical, and sequential operators.

Because expressions are used to define subscripted variables and function

designators, and these quantities are in turn used to define expressions, the

definition of expressions is necessarily recursive.

3 .0. 1 Syntax

(expression) ::=(arithmetic expression) /(Boolean expression)/
(designational expression)

3. 1 Variables

3.1 .1 Syntax

(variable) ::=(simple variable)/(subscripted variable)

(simple variable) ::~(variable identifier)

(variable identifier) ::= (identifier)

1 (subscripted variable) ::= (array identifier)[(subscript list)]

1 (array identifier) :t= (identifier)

(subscript list) ::=(subscript expression)/(subscript list),
(subscript expression)

(subscript expression) ::= (arithmetic expression)

3.1 .2 Examples

Simple variables:

ALPHAINFO
BETA4
Q

-13-

Subscript lists:

5
ITH
ITH,JTH
ITH+ 2,JTH - ITH
IF BETA== 30 THEN -2 ELSE K + 2

Subscripted variables:

AI 5 J
AI ITH]
KRONECKER[ITH+ 2,JTH - ITH]
MAXQ[IF BETA. = 3 0 THEN -2 ELSE K + 2]

3. 1 .3 Semantics

A. variable is the symbolic representation of a particular value. A variable

may be used in an expression in order to produce another value. The value

designated by a variable may be changed through the use of an assignment

statement (see section 4.2, Assignment Statements). There are two forms of

variables: simple and subscripted.

3.1.4 Simple Variables

A. simple variable is defined ~s being composed of a variable identifier which

is in turn defined as an identifier. The tY}le of value that a simple variable

may represent is defined by its tY}le declaration (see section 5.1, TY.Pe Declara­

tions).

3.1.5 Subscripted Variables

A subscripted variable represents a value which is a m2mber of a set of values

described by an array. A. subscripted variable is composed of an array iden­

tifier and a subscript list. The array identifier specifies a particular array

(see section 5.2, Array Declarations). The subscript list specifies one ele­

ment of the array. A. subscript expression is defined as an arithmetic expres­

sion; each arithmetic expression used as a subscript expression occupies a

subscript position in the subscript listJ and is referred to as a subscript.

3.1 .5.1 Number of Subscripts

The total number of subscripts in a subscript list must e~ual the number of

dimensions given in the array declaraticn.

-14-

3.1 .5.2 Evaluation of Subscripts

Each subscript expression in the subscript list is evaluated from left to

right. Each subscript expression is treated as though it were a variable of

type INTEGER. If, upon evaluation, the subscript expression yields a value

of type REAL, the following transfer operation is automatically invoked:

subscript value = ENTIER (value of subscript expression+ 0.5)

(see subsection 3.3.5, Transfer Functions).

The values which result from the evaluation of the subscript expressions

provide the actual integral values of the subscripts by which the array

component is referenced. If the value of a subscript falls outside the

limits declared for the array, the value of the element so referenced is

undefined, and a program error will result.

3.2 Partial Word Designators

3.2.1 Syntax

1 {partial word designator) ::= (partial word operand).[(field description)]

1 {partial word operand) ::= (variable)J(function designator)]
((arithmetic expression))

1 (field description) ::=(left bit of field):(bits in field)

1 {le~ bit of field) ::= (unsigned integer)

1 (bits in field) ::= (unsigned integer)

3.2.2 Examples

Field descriptions:

3:6
9:39
1 t 1
2:1

42:6

Partial word designators:

x.[3:6]
Z(A).[1:1]
A[1,3] .[9:39]
(Q + 3.543).[2:1]

-15-

3 .2 .3 Semantics

The function of a partial word designator is to allow operations upon portions

of the numerical or character representations assigned to certain quantities,

rather than upon the entire representation or word. The quantities to which

partial word designators can be applied consist of simple and subscripted

variables, function designators (see section 3.3, Function Designators) and

arithmetic expressions enclosed in parentheses (see section 3.4, Arithmetic

Expressions).

3.2.4 Values Allowed for Field

The value of a partial word operand is contained in a word 48 bits in length.

The addressable bits in this word are numbered left-to-right from 1 to 47.

(Bit 0 cannot be addressed.) Therefore the value of (le~ bit of field) and

(bits in field) may not exceed 47. In addition, (left bit of field) is re­

stricted to values ranging from 1 to 47, and the sum of (left bit of field)

and (bits in field) must not be greater than 48 (e.g., [46:2] specifies bits

46 and 47).

3.3 Function Designators

3 .3. 1 Syntax

2

2

(function designator) : : ;: (procedure identifier) (actual parameter part)

(procedure identifier) ::=(identifier)

(actual parameter part) ::=(empty)! ((actual parameter list))

(actual parameter list) :r= (actual parameter)J(actual parameter list)
(parameter delimiter)(actual parameter)

{actual parameter) ::=

(parameter delimiter)

{expression)j(array identifier)j
(switch identifier) I (procedure identifier) I
(file identifier)j(format identifier)j
(list identifier)

: : = , I)" (letter string)" (

3.3.2 Examples

Actual parameter parts:

(~B + 2,Q[I,JJ)
(K)"TEMPERATURE" (T)"PRESSURE" (P)

Function Designators:

J(A1 B + 2,Q[I,L])
GAf3VOI1 (K} "TEMPEFATTTRB" (T} "P"RH:SST.JPP" ~?)
RA..1'JI)() MNO

-16-

3 .3 .3 Semantics

A function designator defines a single value. This value is produced as a

result of the application of a given set of rules defined by a special form

of a PROCEDURE declaration (section 5.11, Procedure Declarations). This set

of rules is applied to the actual parameters of the function designator,

thereby producing a single value.

A function designator may be used, depending upon its type, in either arith­

metic or Boolean expressions (see section 3.4, Arithmetic Expressions7 and

section 3.5, Boolean Expressions).

3.3.4 Standard Functions

T'ne standard functions supplied for Extended .AIGOL are listed below with

appropriate definitions. 'Where AE is an arithmetic expression, then:

ABS (AE)

SIGN (AE)

SQRT (AE)

SIN (AE)

cos (.AE)

ARCTAN (AE)

LN (AE)

EXP (AE)

produces the absolute value of .AE

produces one of three values depending upon the value
of .AE (+1 for .AE > o, 0 for AE = O, -1 for AE < 0)

produces the SQuare root of the value of AE

produces the sine of the value of .AE

produces the cosine of the value of .AE

produces the principal value of the arctangent of
the value of .AE

produces the natural logarithm of the value of AE

produces the exponential function of the value of AE,
i.e., eAE

These functions are understood to operate indifferently on arguments both of

tYJ>e REAL and type INTEGER. They will all yield values of type REAL, except

for SIGN (AE) which produc.es a value of type INTEGER. The function ABS (AE)

will also produce a result of tYJ>e INTEGER when the value which results from

evaluation of .AE is of tYJ>e INTEGER. For SIN, COS, and ARCTAN, the angle is

considered to be in radians. These functions may be used without a specific

procedure declaration, as they are an integral part of the compiler itself.

-17-

3.3.5 Type Transfer Functions

In addition to the set of standard functions provided for Extended ALGOL, a

set of type transfer functions is also provided. These type transfer functions

are listed below, with their definitions following.

ENTIER (AE)
REAL (BE)
BOOLEAN (AE)

3 .3 .5. 1 ENTIER

The function ENTIER yields a value o~ type INTEGER. This function is understood

to transfer an expression of REAL type to an expression of INTEGER type and produces

the value which is the largest integer not greater than the value of the arith­

metic expression.

*

3.3.5.2 REAL

The function REAL (BE) yields a value of type REAL. The use of this function

does not alter the internal B 5000 representation of the value, but allows

arithmetic operations to be carried out on quantities which have been declared

type BOOLEAN.

3.3.5.3 BOOLEAN

REAL (TRUE) == 1

REAL (FALSE) == 0

The function BOOLEAN (AE) yields a value of type BOOLEAN. The use of this

function does not alter the internal B 5000 representation of the value,* but

allows Boolean operations to be carried out on arithmetic quantities.

The functions RE.AL and BOOLEAN, used in conjunction, allow for handling masking

operations, since the logical operators (section 3.5.5.2) operate on the entire

word in the B 5000.

With the exception that arithmetic expressions of type DJUBLE are trWlcated
to type REAL.

-18-

3.4 Arithmetic Expressions

3 .4. 1 Syntax

! (arithmetic expression) ::=(simple arithmetic expression)/
(if clause)(simple arithmetic expression)
ELSE (arithmetic expression)

1 (simple arithmetic expression) ::= (term)j(adding operator)(terrn)f
(simple arithmetic expression)
(adding operator)(term)

1 (if clause) ::=IF (Boolean expression) THEN

1 (term) ::= (factor)/(term)(multiplying operator)(factor)

1 (factor)::= (primary)/(factor)*{primary)

l (primary) :1= (unsigned number)/(variable)J(function designator) I

((arithfil~tic expression))/(partial word designator)
(string)

1 (adding operator) ::= +J-

l (multiplying operator) ::= xJ//DIV/MOD

3.4.2 Examples

Primaries:

5.678
Y1[1, 2]
COS(A + B)
(IF X = 1 THEN 5.5 ELSE Q/2)
I.[9:39]
11 ALPHA.11

Factors:

5.678
2*(X + Y)
Y*3
Q*V*2

Terms:

Yl[1, 2]
2*(X + Y)
4 x R DIV S
P MOD 2

Simple Arithmetic Expressions:

COS(A + B)
Y*3
4 x R DIV S
+3
A[I] - B[J] + 5.3

-19-

i\rithmetic Expressions:

(IF X 1 THEN 5 .5 ELSE Y/2)
Q*V*2
P MOD 2
+3
IF ERROR(I] = 1 THEN "OVFLO'w-11 ELSE 11UNFLOW"
IF B = 0 THEN X ELSE Y + 2

3. 4. 3 Semantics

An arithmetic expression is a rule for computing a numerical value. Arithmetic

expressions may be divided into two categories, simple and general.

3.4.3.1 Simple Arithmetic Expressions

A. simple arithmetic expression is composed of arithmetic operators and primaries.

It is evaluated by performing the indicated arithmetic operations upon the actual

numerical values of the primaries of which it is composed. The arithmetic

operators are explained in detail in subsection 3.4.4.

The value of a primg,ry is obvious when it is a number. If the primary is a

variable, the value of the primary is the current value of that v--ariable.

VJhen the primary is a partial word designator, its value is that portion of

the current value of the indicated variable designated by the field (see

section 3 . 2, Partial Word Designators) .

The value of a function designator is that obtained by applying those com­

puting rules defined by the PROCEDURE declaration (section 5.11, Procedure

Declarations) to the current values of the actual parameters. In the case

of the standard functions, the computing rules to be applied are inherent

in the language and are not explicitly defined by a PROCEDURE declaration

(see subsection 3.3.4.). Finally, for a primary which is an arithmetic

expression enclosed in parentheses, the value derived must be described in

terms of the primaries from which it is formed.

A special case results when a primary is a string. If a primary is a string

it must not exceed ·.Six characters in length, and if it is used in an arith­

metic calculation it will be treated as a variable of type REAL (see section

-20-

3.4.3.2 General Arithmetic Expressions

A general arithmetic expression is composed of an IF clause followed by a

simple arithmetic expression which is delimited by ELSE and followed by an

arithmetic expression (see the last example under Arithmetic Expressions

in subsection 3.4.2).

The evaluation of the general arithmetic expression proceeds as follows:

The Boolean expression is evaluated (see section 3.5, Boolean Expressions).

If the value of the Boolean expression is TRUE, the simple arithmetic expres­

sion is evaluated and the evaluation of the general arithmetic expression is

complete.

If the value of the Boolean expression is FALSE, the arithmetic expression

following the delimiter ELSE is evaluated, thus completing the evaluation

of the expression. The arithmetic expression following the delimiter ELSE

may also be a general arithmetic expression. As a result, the general

arithmetic expression could contain a series of IF clauses. The Boolean

expressions in these clauses would be evaluated as above from left to right

until a logical value of TRUE was found. Then the value of the succeeding

simple arithmetic expression would be the value of the entire arithmetic

expression. If no Boolean expression had the value TRUE, the value of the

entire arithmetic expression would be that of the simple arithmetic expres­

sion following the last ELSE.

3.4.4 Operators and Types

The constituent variables of an arithmetic expression must be of type INTEGER,

REAL, DOUBLE, or ALPHA. Note, however, that variables of type BOOLEAN may

occur in an IF clause of an arithmetic expression. (See section 5.1, Type

Declarations.) Definitions of the various arithmetic operators are given

in the paragraphs below.

3.4.4.1 Arithmetic Operators

The operators +, -, x and / have the conventional mathematical meanings:

addition, subtraction, multiplication, and division.

-21-

The operator DIV is defined only for op"=rands of type INTEGEH. It yields

a result defined as follows:

Y DIV Z =SIGN (Y/Z) x ENTIER (ABS (Y/Z))

In the case of the operators / and Drv, the operation is undefined if the

value of the operand on the right e~uals zero.

The operator * denotes exponentiation. Its meaning depends on the types and

values of the operands involved, as shown below. Consider Y * Z:

IF Z IS TYPE INTEGER AND IF Z IS TYPE REAL OR DOUBLE AND
z > 0 z = 0 Z<O Z>O z = 0 Z<O

IF Y > 0 Note 1 1 Note 2 Note 3 1 Note 3

IF Y < 0 Note 1 1 Note 2 Note 4 1 Note 4
-IF Y = O

I -- . I -- . 0 1~ote 4 I ~ote 4
-- I

0 I l~ote 4 I Note 4

Note 1 : Y* z = y x y x ... x y (Z times).

Note 2: Y* Z = the reciprocal of y x y x ... x Y (Z times).

Note 3: Y* z = EXP(Z x LN(Y)).

Note 4: Value of expression is undefined.

The operator MOD produces a result defined as follows:

y MOD z = y - z x (SIGN(Y I Z) x ENTIER (ABS(Y I Z)))

The operator MOD is undefined if either or both operands are of type DOUBLE.

-22-

3.4.4.2 Arithm2tic Expression Types

The type of a value resulting from an arithmetic operation depends upon the

types of the operands as well as the arithm~tic operators used in obtaining

that value. All cases are shown in the following table. (See Note 1, below.)

OPERAND OPERAND VALUE RESULTING FROM THE ARITHMETIC OPERATOR
ON LEFT ON RIGHT +t-zX _J_ DIV * MOD

Integer Integer Integer Real Integer Note 2 Integer

Integer Real Real Real Undefined Real Real

Integer Double Double Double Undefined Real Undefined

Real Integer Real Real Undefined Real Real

Real Real Real Real Undefined Real Real

Real Double Double Double Undefined Real Undefined

Double Integer Double Double Undefined Double Undefined

Double Real Double Double Undefined Real Undefined

Double Double Double Double Undefined Real Undefined

Note 1: In arithmetic operations, operands of type ALPHA are handled as if

they were of type REAL.

Note 2: If the operand on the right is less than zero, REAL; otherwise,

INTEGER.

3.4.5 Precedence of Operators

In regard to evaluating a simple arithmetic expression, two distinct operations

should be understood: the determination of the numerical values of the pri­

maries, and the arithmetic operations involved when combining two operands ac­

cording to the rules associated with the arithmetic operators.

First, the numerical values of the prim~ries are determined from left to right,

yielding a number of values e~ual to the number of primaries in the simple

arithmetic expression. Next, these values are used tw·o at a time as operands

in arithmetic operations, reducing the number of values by one for each opera­

tion, until all operators have been utilized and a single value remains.

-23-

The sequence in which the arithmetic operations are performed is determined

by the following rules of precedence.

Each arithmetic operator has one of three orders of precedence associated with

it as follows:

First: *
Second: x I DIV MOD
Third: +-

When operators have the same order of precedence, the sequence of operation is

determined by the order of their appearance, from left to right.

The expression between a left parenthesis and the matching right parenthesis

is evaluated by itself and this value is used in subsequent calculations. Con­

sequently, the desired order of execution of operations within an expression

can always be arranged by appropriate positioning of parentheses.

3.4.6 Numerical Limitations and Significant Digits

Normally the result of an arithmetic operation involving the operators +, -,

and xis of type INTEGER if both operands are of type INTEGER (see section 3.4.4,
Operators and Types). If the value of the result exceeds 549r755,81~887 however,

it will become of type REAL to ensure that least-significant rather than most­

significant digits are lost. Therefore the maximum absolute value of type

INTEGER that an arithmetic operation may yield is 54~75~81~887.

Since the B 5000 utilizes an octal number system the range of absolute REAL

values can best be expressed as follows:

(8 * 13 - 1) x 8 * 63 to 8 * (- 63)) and zero

or approximately

4 .3 @68 to 7 .8 @- 56, and zero

The ranges of DOUBLE values are the same as those for REAL values. The dif­

ference between DOUBLE and REAL is in the number of significant digits.

Whereas REAL values have 13 significant octal digits, DOUBLE values have 26.

-24-

3.5 BOOLEAN Expressions

3 .5. 1 Syntax

(Boolean expression) ::=(simple Boolean)j(if clause)(simple Boolean)
ELSE (Boolean expression)

(simple Boolean) ::= (implication)j(simple Boolean) EQV (implication)

(implication) ::=(Boolean term)j(implication) IMP (Boolean term)

(Boolean term) ::=(Boolean factor)j(Boolean term) OR (Boolean factor)

1 (Boolean factor) ::=(Boolean secondary)j
(Boolean factor) JIJID (Boolean secondary)

1 (Boolean secondary) ::=(Boolean primary)!NOT (Boolean primary)

l (Boolean primary) ::=(logical value)j(variable)l(function designator)!
(relation) j ((Boolean expression)) I
(partial word designator)

1 (relation) ::=(simple arithmetic expression)(relational operator)
(simple arithmetic expression)

1 (relational operator) ::= </~/=1~/>/t

3 .5 .2 Examples

Boolean Primaries:

TRUE
DIODE
GATE[1,2]
J (A, B + 2 _, GATE [1 , 2])
A I c
(IF A I c THEN TRUE ELSE FALSE)
Q.[16:1]

Boolean Secondaries:

TRUE
NOT A f C

Boolean Factors:

GATE[l,2]
NOT A. f C
Q.[16:1] AND GATE[1_,2]

Boolean Terms:

TRUE
NOT A I c
GATE[1, 2]
A. f C AND (IF B =~THEN TRUE ELSE FALSE) OR GATE[l,2]

-25-

Implications:

TRUE
GATE[l,2]
NOT A. f C I}!JP Gicr1E[1,2]

Simple Boolean Expressions:

TRUE
DIODE
NOT A. f C IMP GATE[1,2]

Boolean Expressions:

TRUE
NOT A f C
Q.[16:1] AND GATE[1,2]
A= C AND (IF B = 4 THEN TRUE ELSE FALSE) OR GATE[1,2]
IF B = 4 THEN TRUE EQV GATE[1,2] ELSE Q.[16:1]

3.5.3 Semantics

A. Boolean expression is a rule for computing a logical value. Boolean ex­

pressions can be divided into two categories: simple Boolean expressions and

general Boolean expressions.

3.5.3.1 Simple Boolean Expressions

A. simple Boolean expression is formed of logical operators and Boolean

primaries. It is evaluated by carrying out the operations indicated by the

logical operators upon the associated Boolean primaries. The evaluation of

a simple Boolean expression is carried out according to the rules of precedence

defined for the logical operators (see subsection 3.5.5).

The logical operators are analyzed in detail below.

The value which results upon evaluation of a simple Boolean expression depends

upon the primary or primaries which are used to form the expression. When

the primary involved is a logical value, the value is obvious. If the pri-

mary is a Boolean variable, the value is that logical value currently repre­

sented by the variable. When the primary is a partial word designator, the

logical value is the field specified (see section 3.2, Partial Word Designators).

In the case where the primary is a function designator, the logical value is

obtained by applying those computing rules defined by the associated PROCEDURE

declaration (see section 5.11, Procedure Declarations) to the current values

-26-

of the actual parameters. If the primary is a relation, the simple arithmetic

expressions which form the relation are evaluated, the values produced are

tested against each other according to the operation of the specific relational

operator involved, and a logical value is produced as a result of this test.

Finally, when a primary is a Boolean expression enclosed in parentheses, the

logical value derived must be described in terms of the primaries from which

it is formed.

3.5.3.2 General Boolean Expressions

The general Boolean expression is composed of an IF clause, followed by a

simple Boolean expression delimited by ELSE, which is in turn followed by a

Boolean expression. The IF clause is composed of IF followed by a Boolean

expression delimited by THEN.

The simplest form of the general Boolean expression occurs when the IF clause

contains a simple Boolean expression. The evaluation of the general Boolean

expression in this case proceeds as follows: The simple Boolean expression

of the IF clause is evaluated according to the methods described previously

(paragraph 3.5.3.1) Simple Boolean Expressions). If the resulting logical

value is TRUE, the simple Boolean expression following the delimiter THEN is

evaluated, thus completing the evaluation of the general Boolean expression.

If the logical value produced in the IF clause is FALSE the Boolean expres­

sion following the delimiter ELSE is evaluated, thereby completing the

evaluation of the general Boolean expression.

The Boolean expression in the IF clause, or the one following the delimiter

ELSE, or both, can be a general Boolean expression. In this event, the IF

clause can consist of a series of IF clauses and the Boolean expression fol­

lowing the delimiter ELSE can also consist of a series of IF clauses. Such

a construct is said to be nested. The innermost Boolean expression of a

nested Boolean expression is evaluated first, then the next outer, and so on,

following the procedure described above.

-27-

3.5.4 Types

The quantities which are used to form Boolean expressions must have been

declared as type BOOLEAN (see section 5.1, Type Declarations, and subsection

5.11 .4, Values of Function Designators), with the exception of the con­

stituents of relations and those quantities which are under the influence

of type transfer functions (see subsection 3.3.5~ Type Transfer Functions).

3.5.5 Relational and Logical Operators

Two types of operators are defined for Boolean expressions: relational and

logical.

3.5.5.1 Relational Operators

The relatiom .. l operators denote the following relations:

< is less than

< is less than or equal to

== is equal to

> is greater than or equal to

> is greater than

f is not eq11al to

A relation is evaluated by comparing the values of the two simple arithmetic

expressions as designated by the relational operator. If the relation is

satisfied, the value of the Boolean primary is TRUE, othervrise it is FALSE.

3,5.5.2 Logical Operators

The operation of the logical operators NOT (negation), AND (logical product),

OR (logical sum), IMP (implication), and EQV (logical equivalence) is defined

by the following table.

-28-

B1 False False True True

B2 False Tl:ue False T:cue

NOT Bl true true false false

Bl AND B2 false false false true

Bl OR B2 false t1""ue true true

Bl I!vTI? B2 true true false true 81!S6'-.

B1 EQV B2 true false false true g,-::- 62..

3.5.6 Precedence of operators

The sequence of operations within a simple Boolean expression is generally from

left to right, with the additional rules shown below.

3.5.6.1 The following specific rules of precedence are defined.

First: arithmetic expressions according to subsection 3.4.5.

Second: < ::: = ~ > r
Third: NOT ""
Fourth: AND f\

Fifth: OR v
Sixth: IMP ~
Seventh: EQV "'.."'

3.5.6.2 A. Boolean expression contained in parentheses is evaluated by itself;

this value is then used any subsequent evaluation. Therefore the desired order

of execution of operations within an expression can always be arranged by ap­

propriate positioning of parentheses.

3.6 Designational Expressions

3.6.1 Syntax

(designational expression) ::=(simple designational expression)]
(if clause)
(simple designational expression)
ELSE
(designational expression)

-29-

(simple designational expression) ::= (label) !(switch designator)J
((designational expression)

(switch designator) ::=(switch identifier)[(subscript expression)]

(switch identifier) ::= (identifier)

2 (label) ::= (identifier)

3.6.2 Examples

Switch designators:

SELECT[2]
CHOOSEPATH[I + 3]

Simple designational expressions:

START
SELECT[2]
(START)

Designational expressions:

START
CHOOSEPATH[I + 2]
(START)
IF K = 1 THEN SELECT[2] ELSE START

3.6.3 Semantics

A designational expression is a rule for obtaining a label of a statement

(see section 4.o, Statements). Again, designational expressions may be dif­

ferentiated as simple designational and general designational expressions.

3.6.3.1 Simple Designational Expressions

The process of evaluating a simple designational expression depends upon the

constructs from which it is formed. If a simple designational expression is a

label, the value of the expression is self-evident. When a simple designational

expression is formed of a switch designator, the actual numerical value of the

subscript expression (see subsection 3.6.4) designates one of the elements in

the switch list. The element selected may be any form of simple designational

expression, which is then evaluated as stated above, or it may be a general

designational expression, which is evaluated as stated in paragraph 3.6.3.2,

below. If a simple designational expression is formed from a designational

expression in parentheses, the latter is evaluated according to the applicable

rules (see f0:regoing and ;arag:ra:ph 3. 6. 3. 2).

-30-

3.6.3.2 General Designational Expressions

The evaluation of a general designational expression proceeds as follows. The

Boolean expression contained in the IF clause is evaluated (see section 3.5,
Boolean Expressions). If a logical value of TRUE results, the simple desig­

national expression following the IF clause is evaluated, thus completing the

evaluation of the general designational expression. If the logical value

produced by the IF clause is FALSE, the designational expression following

the delimiter ELSE is evaluated, thereby completing the ev-aluation of the

designational expression.

Since the designational expression following the delimiter ELSE can be a general

designational expression, the analysis of the operation of a designational

expression becomes recursive, in a manner similar to that of general arithmetic

and Boolean expressions. In the case of a designational expression, however,

the result produced is a label.

3.6.4 The Subscript Expression of a Switch Designator

The value of the switch designator is defined only if the subscript expression

produces one of the positive integer values 1, 2, 3, ... , g,, where g is the

number of entries in the switch list. (See section 5.3, Switch Declarations.)

If the value of the subscript expression is of a type other than INTEGER, it

is converted to type INTEGER in accordance with the rules applicable to assign­

ment statements (see subsection 4.2.4, Types).

3.6.5 Unsigned Integers as Labels

The use of unsigned integers as labels is not allowed in Extended ALGOL.

-31-

4.o Statements

4.o.1 Syntax

{statement) ::=(unconditional statement)j(conditional statement)J
(for statement)

{unconditional statement) ::=(compound statement)j(block)f
(basic statement)

(basic statement) ::=(unlabelled basic statement)j
(label):(basic statement)

(unlabelled basic statement) ::=

4.0.2 Semantics

(assignment statement)!
{go to statement)!
(dummy statement)
(procedure statement)!
(I-0 statement)!
(fill statement)
(stream call procedure statement)

The basic constituents of an Extended ALGOL program are statements. Statements

may be divided into three major groups: unconditional, conditional, and FOR

statements. Unconditional statements are much like imperative sentences in

the English language, whereby a particular action is directly specified. A

conditional statement may be compared to a conditional sentenceJ as the function

of the conditional statement is to ask a question and7 depending upon the

answer, select an appropriate course of action in the program. The FOR state­

ment is used to describe a repetitive process.

Statements are normally executed in the order in which they are written. How­

ever, the sequence of operations may be changed by a conditional statement, or

by an unconditional statement which explicitly defines its successor.

4.1 Compound Statements and Blocks

4.1 .1 Syntax

(compound statement) ::= (unlabelled compound statement)j
(label):(compound statement)

{unlabelled compound statement) ::=BEGIN (compound tail)

(block) ::=(unlabelled block)j(label):(block)

2 (program) : :=(block) I (compound statement).

-33-

1 (unlabelled block) ::=(block head);(compound tail)

(block head) ::=BEGIN (declaration)j(block head);(declaration)

(compound tail) ::=(statement) END!(statement);(compound tail)

4. 1 . 2 Examples

The syntactical structure of the compound statement and the block can be illus­

trated in the following manner.

Given:

S = statement

S = compound statement
c

L == label

D = declaration

B = block

Then:

Compound Statement:

S =BEGIN S;S;S; ... ;SEND
c

== L:S
c

Block:

B =BEGIN D;D; ... ;D;S;S; ... ;SEND

= L:B

Because of the syntactical definition of statements (section 4.o), it should be

kept in mind that S in the above examples could itself be a compound statement

or a block.

4.1 .3 Semantics

A. series of statements which are common to each other by virtue of their defining

declarations and which are bounded by the bracket symbols BEGIN and END consti­

tute the active elements of a block. Every block automatically introduces

a new level of nomenclature. Therefore~ any identifier occurring within

the block may, through a suitable declaration (see section 5.0, Declarations),

be specified to be local to the block in ~uestion. Such a declaration means

that:

1) The entity represented by this identifier inside the block has no
existence outside the block, and

2) ltr1y entity represented by the same identifier outside the block is
completely inaccessible inside the block.

-34-

An identifier occurring within a block and not declared to the block will be

nonlocal to it, i.e., will represent the same entity inside the block and in

the level or levels immediately outside it, up to and including the level in

which the identifier is declared.

Since a statement within a block may itself be a block, the concepts of local

and non-local to a block must be understood recursively. Thus an identifier

which is non-local to block A. may or may not be non-local to the block B in

which A is one statement.

4.1 .3.1 Nested Blocks

Block B is said to be nested in Block A if Block B is a statement in the

compound tail of Block A.

4.1 .3.2 Disjoint Blocks

Block A and Block B are said to be disjoint if neither is a statement in

the compound tail of the other.

4.2 Assignment Statements

4. 2 • 1 Syntax

{assignment statement) ::=(left part list)(aritbm.etic expression)/
(left part list)(Boolean expression) .

(left part list) ::=(left part)J(left part list)(left part)/
(partial word designator) +-

(left part) ::= (variable) +-/(procedure identifier)+-

4.2.2 Examples

Left parts:

A+­
PROCID +-

Left part lists:

A+-
Q. [30: 1] +­
X +- Y +- Z-.+-

-35-

Assignment Statements:

A +- A + 1
Q. [30: 1] +- P > R
P +- "RESULT" -
A+-B+-C +-D+-1

4. 2. 3 Semantics

The assignment statement causes the value represented either by an expression

or a string to be assigned to the variable appearing to the left of each

assignment symbol. As shown in the last example, one value may be assigned

to two or more variables through the use of two or more assignment symbols.

The operation of the assignment statement proceeds in three steps, as follows:

The subscript expressions of the left part variables are
evaluated from left to right.

The expression on the right side of the assignment symbol
is evaluated.

The value of the expression is assigned to all the left
part variables, with subscript expressions, if any, having
values as determined in the first step.

4.2.4 Types

All the variables in the left part list must be of the same declared type;
see section 5.1, Type Declarations. If these variables are of type Boolean,
the value to be assigned must be that of a Boolean expression. If these

variables are of type BOOLEAN, the value to be assigned must be that of a

Boolean expression. If these variables are of type ALP~ the value to be

assigned must be that of a string.

If not BOOLEAN or ALPHA, the variables in a left part list are of an arith­

metic type: REAL, INTEGER, or DOUBLE. The value to be assigned, then,

must be that of an arithmetic expression, which in turn may also be any one

of the three arithmetic types.

A difference in arithmetic types is handled as shown below.

(1) If the left part list is of type REAL, and

-36-

(a) if the expression value is of type INTEGER, the value is stored

unchanged;

(b) if the expression value is of type DOUBLE, the least-significant

digits are truncated and the resulting single-precision value

is stored.

(2) If the left part list is of type INTEGER, and

(a) if the expression value is of type REAL, the transfer function

ENTIER (E + 0.5), where Eis the value of the expression, is au­

tomatically invoked, and the value obtained is stored;

(b) if the expression value is of type DOUBLE, the least-significant

digits are truncated and the resulting single-precision value is

taken to be the value of E in the transfer function ENTIER (E + 0.5);
the value thus obtained is stored.

(3) If the left part list is of type DOUBLE, and

if the expression value is of type REAL or INTEGER, least-significant

digits of zero are appended to the single-precision value to produce

a double-precision value, which is then stored.

4.3 GO TO Statements

4 .3. 1 Syntax

1 (go to statement)

4.3.2 Examples

GO TO STA.RT
GO TO SELECT[2]

- GO TO (designational expression)

GO TO IF K = 1 THEN SELECT[2] ELSE START

4.3.3 Semantics

The GO TO statement provides an unconditional transfer to the point in the

program defined by the designational expression. When the designational

expression is a label, the statement causes a transfer to the point in the

program indicated by the label. In the case of a more complex designational

-37-

expression~ the path taken depends upon the label produced by the expression

(see section 3.6~ Designational Expressions).

The normal consecutive sequence of statement execution is unaltered in the

case of an undefined switch designator; see subsection 3.6.4J The Subscript

Expression. Labels must be declared in, and therefore are local to, the

innermost block in which they appear as a statement label; a GO TO statement

cannot lead from outside. a block to a point inside that block, that is,

each block must be entered at the block head so that the associated dee-

larations can be invoked.

4.4 Dulr.my Statements

4.4. 1 Syntax

1 (dummy statement) .. - (empty)

4.4.2 Examples

L1:
EXIT:

4.4.3 Semantics

A dummy statement executes no operation. It may serve to place a label.

4.5 Conditional Statements

4 .5. 1 Syntax

l (conditional statement) ::=(if statement)f
(if statement) ELSE (statement)!
(if clause)(for statement) I
(label):(conditional statement)

(if statement) ::= (if clause)(unconditional statement)

(unconditional statement) ::=(compound statement)/(block)f
(basic statement)

(if clause) ::=IF (Boolean expression) THEN

-38-

4.5.2 Examples

IF Clauses:

.Lt'' A ;;> B Tlil:!;N
IF GATE[1, 2] AND GATE[1, 3] THEN

IF Statements:

IF A> B THEN A+-A+ 1
IF GATE[1,2] .AND GATE[1,3] THEW GO TO L1

Conditional Statements:

IF A > B THEN FOR I +- 1 STEP 1 UNTIL 5 00 R[I] +- P[I + 2]
IF A > B THEN A +- A + 1
IF GATE[1, 2] AND GATE[1,3] THEN GO TO CHI ELSE

IF GATE[1,4] AND GATE[1,5] THEN GO TO BOS ELSE GO TO ERROR1

4.5 .3 Semantics

Conditional statements provide a means whereby the execution of a statement or

a series of statements is dependent upon the logical value produced by a Boolean

expression.

4.5.3.1 IF Statement

One of the permissible forms of a conditional statement is the IF statement.

The IF statement operates as follows: The unconditional statement following

the sequential operator THEN is executed if the logical value of the preceding

Boolean expression is TRUE, otherwise the statement is ignored.

1 truel I l
IFBETHENS; S

Lfals~__j

4.5.3.2 IF ... THEN ... ELSE Statement

A second form of a conditional statement contains the sequential operator ELSE.

The operation of this conditional statement proceeds as follows: If the logical

value produced by the Boolean expression is TRUE, the unconditional statement

following the sequential operator THEN is executed and the statement following

the sequential operator ELSE is ignored. If the logical value of the Boolean

expression is FALSE, the unconditional statement following the sequential

operator TH.ti.,~ is ignored and the statement following the sequential operator

-39-

ELSE is exec~ted. This latter statement could also be another conditional state­

ment.

ltrue+I t
IF BE THEN S,, ELSE p; S

L false u. fL_j

4.5.3.3 IF ... FOR Statenent

The third allowable form of the conditional statement specifies a FOR statement

after the IF clause. It is completely analogous to the first form (see

paragraph 4.5.3.1).

rtrue+ f •

IF BE T'".tlEN Sf ; S
L or +

false

In the most general case, a conditional statement can be a series of conditions

and the evaluation continues until a logical value of TRUE is found. When this

occurs, the next succeeding unconditional statement is executed. If none of

the Boolean expressions has a logical value of TRUE, the statement following

the rightmost ELSE is executed. If no ELSE appears after the rightmost THEN,

control continues in sequence.

A GO TO statement may lead to a labeled statement within a conditional statement.

The successor is then determined in the same way as if entrance had been made

at the beginning of the conditional statement.

4.6 FOR Statements

4. 6 . 1 Syntax

(for statement)::= (for clause)(statement)/(label)t(for statement)

(for clause) ::=FOR (variable)+- (for list) DO

(for list)::= (for list element)/(for list),(for list element)

(for list element) ::=(arithmetic expression)J(arithmetic expression)
STEP (arithmetic expression) UNTIL
(arithmetic expression)/
(arithmetic expression) WHILE
(Boolean expression) I
(arithmetic expression) STEP
(arithmetic expression) WHILE
(Boolean expression)

-40-

4.6.2 Examples

For List Elements:

A+ 2
1 STEP 1 UNTIL N
A. + 2 WHILE A > B
1 STEP 1 WHILE A > B

For Lists:

A. + 2

A.+ 2) 1 STEP 1 UNTIL N)A + 2 WHILE A> B, 1 STEP 1 WHILE A.> B

FOR Clauses:

FOR I +- A + 2 DO
FORK+- A.+ 2,1 STEP 1 UNTIL N DO

FOR Statements:

FOR I +- A + 2 DO BETA +- I + BETA
FORK+- A+ 2,1 STEP 1 UNrIL N DO P[K] +- R[K]

4.6.3 Semantics

A. FOR statement provides a method of forming loops in a program. It allows

for the repetitive execution of a statement zero or more times.

The FOR statement can best be understood by isolating three distinct oper­

ational steps:

1) value assignment to the controlled variable
2) test of limiting condition
3) execution of the statement following DO.

Each type of for list describes a different process and therefore will be

cilscussed separately. All, however, have one property in common: The initial

value assigned to the controlled variable is that of the leftmost arithmetic

expression in the for list element.

4.6.4 The For List

The for list may contain more than one for list element. However, for ex­

planatory purposes, it will be assumed tba.t there is only one. In order to

expand the meaning of a single for list element in a for list to that of

multiple for list elements, one need only consider the following: The process

described by more than one for list element in a for list is exactly like that

_)+ 1 -

which would be described by writing a series of FOR statements, each with one

of the for list elements, identical controlled variables, and the same state­

ment following each DO.

The for list element determines what values are to be assigned to the controlled

variable and what test to make of the controlled variable in order to decide

whether or not to execute the statement following DO. When a for list element

has been exhausted, the next element in the for list is considered, progressing

from left to right. When all the elements in a for list have been utilized, the

for list is considered exhausted and control is continued in sequence.

4.6.4.1 Arithmetic Expression Element

FOR v -E- AE DO sdo ; s

A for list element may be simply an arithmetic expression, in which case only

one value is assigned to the controlled variable, V. There is no limiting

condition, therefore no test is made. .After assigning the initial value to

the controlled variable the statement following ro is executed. The element

then is exhausted. A. concise description is:

V +- AE;

sdo;
S;

4.6.4.2 STEP-UNTIL Element

FOR v -E- AE1 STEP .AE2 UNTIL AE3 DO sdo; s

This element calls for a new value to be assigned to the controlled variable

each time the statement following IX) is executed. First, an initial value,

that of AEl, is assigned to the controlled variable. All subsequent assign­

ments are equivalent to: V ~ V + AE2, and are made immediately after the IX)

statement is executed. The limiting condition on the value of V is given by

AE3, which is evaluated anew each time through the loop.

A. test is made immediately after each assignment to V to determine whether

or not the value of V has passed AE3. Whether AE3 is an upper or lower limit

depends upon the sign of AE2; AE3 is an upper limit if A"E2 is positive, and

is a lower limit if AE2 is negative. If V has not passed AE3, the statement

following IX) is executed. If V has passed AE3, the element has been exhausted

-42-

and the statement following DO is not executed. A. concise description is:

V +- AE1;
L2tIF .AE2 =

S;

0 OR (SIGN(AE2) = +1 AND V ~ .AE3) OR (SIGN(.AE2) =
THEN BEGIN S do; V +- V + AE2; GO TO L2 END;

-1 AND V ~ AE)

It can readily be seen that if the value of .AE2 is zero, the program will be

caught in a closed loop.

4.6.4.3 WHILE Element

FOR v +- AE wtlILE BE DO sdo; s

This element causes the value of AE to be assigned to the controlled variable

V as long as the logical value of the Boolean expression, BE, is TRUE. The

detailed operation proceeds as follows. First, the value of AE is assigned

to the controlled variable. A test is made on the logical value produced by

BE; if the value is TRUE the statement following DO is executed. This pro­

cess is continued until the value of BE is FALSE, at which time the list

element has been exhausted and control is transferred to the next statement

in the program.

A. concise description is:

L2: V +- .lill;
IF BE THEN BEG IN S d ; GO TO L2 END
S· o
'

4.6.4.4 STEP-WHILE Element

FOR v +- .AE1 STEP AE2 WHILE BE DO sdo;

S;

This element calls for a n=w value to be assigned to the controlled variable

V if the value of BE is TRUE each time the statement following DO is executed.

First, an initial value, that of AEl, is assigned to the controlled variable.

All subsequent assignments are: V +- V + AE2, and are made immediately after

the DO statement is executed. The limiting condition in this case is the

logical value produced by BE. A test is made after each assignment to V to

determine if the logical value produced by BE is TRUE. If the value of BE

-43-

is TRUE, the statement following DO is executed; otherwise, control is trans­

ferred to the next succeeding statement. This can be stated concisely:

v - .AE1;
13: IF BE THEN BEGIN Sd

0
; V +- V + .AE2; GO TO L3 END

4.6.5 Value of the Controlled Variable Upon Exit from the FOR Statement.

Upon exit out of the statement S (supposed to be compound) through a GO TO

statement, the value of the controlled variable will be the same as it was

immediately preceding the execution of the GO TO statement.

If the exit is due to exhaustion of the for list, on the other hand, the value

of the controlled variable is not accessible a~er the exit.

4.6.6 GO TO Leading Into a FOR Statement

A transfer to a labelled statement within the scope of a FOR statement,

through the use of a GO TO statement outside the FOR statement, is not

allowed.

4.7 Procedure Statements

4. 7. 1 Syntax

(procedure statement) : : = (procedure identifier)(actual parameter part)

(actual parameter part) ::= (empty)j ((actual parameter list))

(actual parameter list) : : = (actual parameter) I

(actual parameter list)(pararneter delimiter)

(actual parameter)

2 (actual parameter) ::= (expression)l(array identifier) I

(switch identifier)l(procedure identifier)!

(file identifier)l(format identifier)!

(list identifier)l(array row)

2 (parameter delimiter) : : =,I) "(letter string)" (

l (letter string) ::= (letter)l(letter string)(letter)l(space)I

(letter string)(space}

1 (array row) : :=(array identifier) [(row designator)

1 (row designator) : : = * I (row), *
1 (row) ::=(arithmetic expression) I (row), (arithmetic expression)

4.7.2 Examples

.A.IJ}ORITHM123 (A + 2)

AffiORITHM546 (A + 2) "AVERAGE PLUS TWO" (CALCRULE)

-44-

4.7.3 Semantics

A. PROCEDURE statement causes a procedure body which has been previously defined

by a PROCEDURE declaration (see section 5. 11, PROCEDURE Declarations) to be

activated (called for execution). It may also cause the activation of a stream

block which has previously been defined by a STREAM PROCEDURE declaration. The

following discussion concerns conventional procedure calls only; stream pro­

cedure calls are discussed in section 5.12.

The procedure identifier references the procedure body" which is to be executed.

The actual parameter part contains a list of the actual parameters that are to

be supplied to the procedure. A one-for-one correspondence must exist between

the actual parameters in the actual parameter part and the formal parameters

which appear in the formal parameter part of the PROCEDURF declaration; this

correspondence is one of position, where the position of an actual parameter

given in the PROCEDURE statement corresponds to the position of a formal para­

m2ter in the PROCEDURE declaration.

A. general description of the operation of the PROCEDURE statement can be given

as follows:

1) The formal parameters which are named in the value part of the

'PROCEDURE declaration are assigned the values currently repre­

sented by the corresponding actual parameters. These formal

parameters will subsequently be treated as local to the pro­

cedure body.

2) The formal parameters not named in the value part are replaced,

wherever they appear in the procedure body, by the corresponding

actual para.meters. Identifiers thus introduced into the procedure

body may be identical to local identifiers already there. Each is

handled in such a way, however, that no conflict occurs.

3) The procedure body, when modified as stated above, is then entered.

The above discussion covers the basic operation of the PROCEDURE statement.

A more detailed analysis is necessary, however, because of the complexity of

call by value, call by name, and execution of the procedure body.

-45-

4.7.3.1 Value Assignment (Call by Value)

The actual parameters that may be called by value are expressions and array

identifiers. Expressions which are called by value fall into several cate­

gories: simple variables, subscripted variables, partial word designators,

and function designators; and arithmetic, Boolean, and designational expressions.

In the case of the simple variable, the assignment of its value is straight­

forward. Where a subscripted variable is an actual parameter, the subscript

expression is evaluated and the appropriate element of the array is assigned

to the corresponding formal parameter.

If a partial word designator is given as an actual pararreter, the field des­

ignated is assigned to the associated formal parameter in accordance with the

rules governing the operation of partial word designators (see section 3.2,

Partial Word Designators). Where a function designator has been listed as

an actual parameter, the function is evaluated and the resulting value is

assigned to the corresponding formal parameter. In the situation where an

arithmetic, Boolean, or designational expression is given as an actual para­

meter, the expression is evaluated according to the rules previously defined

(see sections 3.4, 3.5, and 3.6), and the resulting value is assigned to the

appropriate formal parameter.

In the case of an array identifier, an array local to the procedure is created

which is the same in all respects as the actual array. All values of the actual

array are then assigned to the corresponding elements of the new array. Wh·2n

an array identifier is given as an actual parameter, the corresponding formal

parameter must be used as an array identifier (see section 5.11, PROCEDURE

Declarations).

The evaluation of the actual parameters, and their subse~uent assignment to

the corresponding formal parameters, takes place according to the order indicated

by the value part of the procedure declaration.

These assignments take place before entry is made into the procedure body.

-46-

4.7.3.2 Name Replacement (Call by Name)

The actual parameters that may be called by name are expressions and array,

switch, procedure, file, format, and list identifiers. The action taken

in a call by name differs somewhat from that in a call by value. Instead

of a value 1 s being assigned, the actual expression or pertinent identifier

of the actual parameter replaces the corresponding formal parameter wherever

it appears in the procedure body. As in the case of call by value, a detailed

analysis of this mechanism re~uires that each kind of actual parameter allowed

be examined.

If a simple variable which is an actual parameter is called by name, the cor­

responding formal parameter is replaced,r wherever it appears in the procedure

body, by the identifier of the simple variable. The value represented by the

simple variable is referenced each time the variable is encountered during

the execution of the procedure body.

Where a subscripted variable is an actual parameter, the subscripted variable

is placed in the procedure body wherever the corresponding formal parameter

appears. The subscript expression remains intact, and is evaluated each time

the subscripted variable is referenced during the execution of the procedure

body.

If a partial word designator is given as an actual parameter, the partial word

designator replaces the corresponding formal parameter throughout the procedure

body. The partial word designator is referenced each time it is encountered

during the execution of the procedure body. The corresponding formal parameter

must not appear in the left part of an assignment statement.

Where the actual parameter is a function designator, the corresponding formal

parameter is replaced by the function designator wherever the formal parameter

appears in the procedure body. The function designator is evaluated whenever

it is encountered during the course of execution of the procedure body.

In the case where an arithmetic, Boolean, or designational expression is called

by name, the corresponding formal parameter is replaced by the expression in

~-

question. This expression is evaluated whenever it is encountered during the

execution of the procedure body.

When the actual parameter called by name is an array identifier, the cor­

responding formal parameter is replaced by the array identifier wherever the

formal parameter appears in the procedure body. In this case, no local array

is created, and any appearance of the formal parameter in the procedure body

makes reference to the actual array designated by the array identifier.

For those types of actual parameters thus far discussed., a call by value

differs significantly from a call by name. A call by value (1) creates a

quantity which is local to the procedure and which is identified by the for­

mal parameter, (2) assigns to it the value of the actual parameter, and (3)

makes the corresponding actual para.meter therafter inaccessible to the pro­

cedure (unless the procedure is called again, of course). A call by name,

on the other hand, utilizes the actual para.meter (or its constituents) as

nonlocal quantities. Thus, the value of a quantity used as an actual para.meter

cannot be changed as a result of the procedure execution, provided that the

corresponding formal parameter is called by value; if it is called by name,

however, the actual parameter is accessible throughout the procedure and can

therefore have its value altered.

If a switch identifier is used as an actual parameter, the corresponding

formal para.meter is replaced by the switch identifier wherever the formal

para.meter occurs in the procedure body. Thus a switch which has been de­

clared outside the :proeedure body can be accessed during the execution of

the :procedure body.

Where a procedure identifier has been given as an actual parameter, the cor­

responding formal parameter is replaced by the procedure identifier wherever

the formal parameter appears in the procedure body. Access can thus be made

to a procedure which has been declared outside the procedure body. However,

a STREAM PROCEDURE identifier must not be used as an actual parameter.

Where a file .. format,. or list identifier has been given as an actual parameter;

the corresponding formal parameter is replaced by the identifier of the actual

-48-

parameter wherever the formal parameter appears in the procedure body. I-0

statements in a procedure body can thus utilize files, formats, and lists

which have been declared outside the procedure body being executed.

4.7.4 Restrictions

In order that the PROCEDURE statement operate correctly, it is necessary that

the call by value and call by name mechanisms be capable of being carried out.

This means that the formal and actual parameters must correspond in type and

in kinds of quantities. In addition_, a formal parameter which occurs as a

left part variable in an assignment statement within the procedure body, and

which is not called by value, can correspond only to an actual para.meter which

is a variable.

Any quantity that is nonlocal to a procedure is inaccessible to that procedure

if that quantity is local to some other procedure. .. "'. N>l ;..~..rf ~"-'-'· " Ur CQ~.'f': ~deed~: . . _,

4.8 I-0 statements

The I-0 statements cause values to be communicated to and from the program.

These values are introduced through an input process and assigned to designated

variables, or are results which the programmer desires to include in an output

process.

4 .8. 1 Syntax

3_ (I-0 statement) :t= (read statement) f (write statement) f
{release statement)

4 .. 8.2 READ Statement

4.8 .2. 1 Syntax

1 (read statement) : : = RE.AD ((input para.meters))

l (input parameters)::= (file identifier),(format identifier),

(list) I (file identifier),(format identifier),

(list identifier)

1 (list) ::=(list segment) I (list),(list segme~t)

1 (list segment) ::=(expression part) f (for clause) (list segment)

(for clause) [(expression list)

-49-

1 (expression part) ::=(arithmetic expression) I (Boolean expression)

1 (expression list)

4.8.2.2 Examples

- (expression part) I (expression list),

(expression part) I (list segment)

(expression list), (list segment)

READ (FILE1 1 EDIT21 LIST4)

READ (F3, EDIT3, X, Y, A[3])

READ (FIL4, FO~ FOR I +- 0 STEP 1 UNTIL 10 DO A[I], X, Z)

4.8.2.3 Semantics

The READ statement assigns values to one or more variables through an input

process.

Since the B 5000 interrogates all input media, each file physically present in­

troduces itself, in effect, to the system. For this reason, programs never

need be altered to accomodate changes in file identification or input medium.

The input parameters of a READ statement specify the file identifier, the

format, and the variables to be initialized. The file identifier (see section

5.6, File Declarations) in a program is associated with the corresponding phys­

ical file by means of a program parameter card. Thus, neither the kind of

input equipment nor its physical unit number is ever specifically given in

an Extended ALGOL program for the B 5000.

The format identifier refers to a format declaration (see section 5.7, Normat

Declarations) which defines the editing specifications for the incoming in­

formation.

The list indicates the variables that are to be assigned values. The variables

may be contained in the READ statement, or may be referenced by a list identifer

(see section 5.8, List Declarations), or both. Since a list declaration may be

referred to in both READ and WRITE statements, the syntactical definition of a

list includes constructs which are meaningless in an input process. An input

list must contain variables only.

-50-

4.8.3 WRITE Statement

4 .8 .3. 1 Syntax

1 (write statement) ; : ;;:: w1GTE ((output parameters))

1 (output parameters) ::=(file identifier) (format and list parameters)

1 (format and list parameters) ::=, (format and list part) I (empty)

(carriage control)] I
(carriage control)],,(format and list part)

1 (format and list part) ::=(format identifier) I (format identifier~(list)

1 (carriage control) ::=(skip to next page) J (skip to channel) I
(double space) I (no space)

1 (skip to next page) ::=PAGE

l (skip to channel) ::=(unsigned integer)

1 (double space) : : = DBL

1 (no space) ::=NO

4.8.3.2 Examples

WRITE (FILE2, EDIT2, LIST4)

WRITE (F2[DBL], EDIT5, X, Y, A[I])

WRITE (FILE1[PAGE])

WRITE (F5, EDIT4, FOR I+- 0 STEP 1 UNTIL 10

DO [A[I], B[IJ], X, LIST2)

4.8.3.3 Semantics

The WRITE statement causes output of information in the form of computational
-li-e-

results and messages.

Since several kinds of output e~uipment are available and various formating

alternatives are provided, it is necessary to specify both when calling for an

output operation. The output parameters of a WRITE statement serve to specify

these as well as the information that is to be written (punched, printed, re -

corded on magnetic tape, etc.).

The file identifier (see section 5.6, File Declarations) is used in a manner

-51 -

analogous to its use in the READ statement (see paragraph 4.8.2.3, Read State­

ment, Semantics).

Carriage control may be included to allow for paper control on the line printer.

If the specified output e~uipment is other thari the line printer, carriage

control is irrelevant and is ignored.

The format identifier refers to a format declaration (see section 5.7, Format

Declarations) which defines the editing specifications desired for the informa­

tion. It may also specify messages to be included. If such a specified message

constitutes the entire output, no list is needed.

The list specifies the values that are to be included in the output. The values

may be included in the WRITE statement or referenced by a list identifier (see

section 5.8, List Declarations) or both. An output list may contain any arith­

metic or Boolean expression.

4.8.4 RELEASE Statement

4 .8 .4 .1 Syntax

l (release statement) ::=RELEASE ((file identifier)(word count))

i (word count) ::=(empty) I , (arithmetic expression)

4.8.4.2 Examples

RELEASE (FILE3)

RELEASE (Fl, N)

4.8.4.3 Semantics

The RELEASE statement causes the information contained in a buffer area as­

sociated with a file identifier (see section 5.6, File Declarations) to be

released by the program.

If the file identifier is that of an input file, the RELEASE statement causes

the buffer to be filled with new information from the applicable input device.

-52-

If the file identifier is that of an output file, the RELEASE statement causes

the information contained in the buffer to be transferred to the applicable output

device.

The number of words transferreq is determined by buffer size in the File Declara­

tion until a RELEASE statement associated with that file indicates an actual

word count. Subsequently, the number of words transferred is determined by the

last indicated word collll.t.

4.9 FILL Statement

4.9 .1 Syntax

1 (fill statement) : t= FILL {array identifier)[(row designator)] WITH
(value list)

(array identifier) : : == (identifier)

i (row designator) t := *f (row),*

i (row) ti= (arithmetic expression)l(row),(arithmetic expression)

,i (value list} ::=(initial value}j(value list),(initial value)

1 (initial value)::= (number)!(string)j OCT (octal number)

i (octal number) ::= (octal digit)f (octal number)(octal digit)

i (octal digit) n = OJ 1 J 2 f 3 J 415 J 6 j 7

4.9.2 Examples

FILL MA.TRIX[*] WITH 458 .54, +546, -1354.543@6_,. 1 €:@-12

FILL GROUP [l,*] WITH .25, "AIGOL", trrrn, OCT14, "365 11

4.9.3 Semantics

The FILL statement causes one row of an array to be filled with a list of

speci:fied values.

4.9 .3. 1 Row Designator

The row designator indicates which row is to be filled by designating a spe­

cific value for each subscript position except the rightmost, in which position

the symbol* appears. If the value of a row expression is other than INTEGER,

it is converted to type INTEGER, in accordance with the rules applicable to

assignment statements (aee subsection 4.2.4, Types).

-53-

4.9.3.2 Value List

Initial values have three forms, and a value list may contain a mixtu~e of these

forms. The concept of type does not apply to initial values) therefore no trans­

fer functions are invoked because of the declared type of the array being filled.

A number is converted to its octal equivalent) then stored. A string causes the

6-bit code for each character in the string) other than the two string bracket

characters at the ends, to be stored. The string may contain as many as 8

characters. If fewer than eight characters are in the string, leading zeros are

supplied. An octal number will be stored as such and must not exceed 16 digits.

The number of initial values in the value list may differ from the number of

elements in the row being filled. If the number of values is less than the number

of elements, the elements with the largest subscript values retain their former

values. If more, the rightmost values in the value list are not used.

4.9.3.3 Restrictions

A defined identifier must not be used in a FILL statement.

There must be no space between OCT and the octal number which follows.

4. 10 Stream Call Procedure Statement

4 . 10 . 1 Syntax

(stream call procedure statement) ::=(stream procedure identifier)
(stream actual parameter part)

(stream procedure identifier) ::=(identifier)

(stream actual parameter part) ··=((stream actual parameter list))

(stream actual parameter list) ··=(stream actual parameter} I
{stream actual parameter list),
{stream actual parameter)

(stream actual parameter) ::=(stream value parameter) I (stream name parameter)

(stream value parameter) ::={arithmetic expression) I (Boolean expression)

(stream name parameter) : :=(array identifier) I (array row}
(file identifier) I (variable)

(array row) ::=(array identifier) [(row designator)]

4. 10.2 Examples

EDIT (FILEID, A)

MOVE (A[*], X, I+l, A[I+2])

-54-

4.10.3 Semantics

A stream call procedure statement causes the actual parameters to be supplied

to the stream procedure and then transfers control to the stream procedure body.

A stream procedure must have an actual parameter part; it may not be empty.

A one-to~one correspondence must exist between the actual and formal parameters.

The formal parameters· are either call by name or call by value. The actual

parameters are therefore in two classes: those actual parameters whose cor­

responding formal parameters are in the value part of the stream procedure

declaration (stream value parameter), and those actual parameters which

correspond to call-by-name formal parameters (stream name parameter).

4.10.4 Value

Stream value parameters may only be arithmetic or Boolean expressions. The

corresponding formal parameters are supplied the value of the stream actual

parameter when the stream call procedure statement is executed.

4. 10.5 Name

A stream name parameter may be array and file identifiers, variables, and

array rows. When the stream call procedure statement is executed an absolute

address is supplied to the corresponding formal parameters.

If a stream name parameter is a file identifier, an address of a pointer

word is supplied. This pointer word contains the address of the file buffer.

If a stream name parameter is a variable, the address of that variable is

supplied.

Arrays are mapped in memory by rows. Elements of a row are contiguous but

rows are not.

If a stream name parameter is an array identifier the address supplied is:

1. For a single dimensional array the address is that of the lowest

element of the array.

2. For a multi-dimensional array the address is that of the lowest

element of the highest level dope-vector.

If a stream name parameter is an array row, the address supplied is that of

the lowest element of that row.

-54A-

4. 10.6 Restrictions:

Designational expressions, switch identifiers, list identifier, form.al

identifiers, and call-by-name expressions are not allowed as actual

parameters to stream procedures.

-54B-

5.0 Declarations

5 .0. 1 Syntax

l (declaration) ::=(type declaration) j (array declaration)

(switch declaration) (label declaration)

(define declaration) (file declaration)

(format declaration) (list declaration)

(diagnostic declaration) I (forward reference declaration)

(procedure declaration) I (stream procedure declaration)

5.0.2 Semantics

The purpose of a declaration in a program is to define the characteristics of

a quantity and assign an identifier to the quantity so that it m~y be referenced.

The scope of a declaration is the block in which it appears. This means that,

at the time of entry into a block (through the BEGIN, since the labels inside

are local and therefore inaccessible from outside), all identifiers declared

in the block head assume the significance implied by their declarations. Then,

at the time of exit from a block (through END, or by a GO TO statement), all

identifiers which were declared in the associated block head lose their ap­

plicable significance.

A conflict of significance can arise when blocks are nested, that is, when one

block is a statement in the compound tail of another block. This situation

occurs when the same identifier is declared in two block heads of nested blocks.

The conflict is resolved as follows.

Assume: Block A - outer block

Block B - inner block

When in block B, the identifier has the significance implied by its declaration

in block head B. The quantity declared in block head A and identified by the

common identifier is inaccessible in Block B. This is the only case where an

identifier loses its significance prior to exit from the block in which it is

declared. Upon exit from block B the identifier again assumes the significance

given by the declaration in block head A.

-55-

A;part from the identifiers associated with the standard functions (see sub­

sections 3.3.4, Standard Functions, and 3.3.5, Type Transfer Functions, all

identifiers of a program must be declared. .An identifier may not be declared

to represent more than one quantity in a single block head.

5.1 Type Declarations

5.1 .1 Syntax

{type declaration) ::={local or own type)(type list)

(local or own type) ::=(type) J OWN (type)

l (type) : : = REAL I INTEGER f BOOLEAN I DOUBLE I ALPHA

(type list) ::=(simple variable) I {type list),(sinrple variable)

5.1.2 Examples

INTEGER A, B,, C

ALPHA NAME,CODE,AREA

OWN REAL Q, R, T

5 . 1 . 3 Semantics

A type declaration declares one or more identifiers to represent certain

simple variables, and defines the types of values that may be represented

by these variables.

5.1 .4 Local or OWN

The local or OWN portion of the type declaration indicates whether the value

associated with a simple variable is to be retained upon exit from the block

in which it is declared. A variable which has been declared as OWN retains

its value upon exit from the block, and at the time of reentry into that block

is defined as to value. The values of variables not declared OWN are undefined

upon reentry into the block, and those variables must be initialized again.

-56-

5 .1.5 Type

Five declarators are defined for tYPe declarations; their meanings are shown below.

RE.AL Positive and negative values including zero

INTEGER

BOOLEAN

OOUBLE

ALPHA

Positive and negative integral values including zero

Logical values of TRUE and FALSE

Double precision values of type REAL

Any set of six or fewer characters not including {?)

5.2 ARRAY Declarations

5 .2. 1 Syntax

l (array declaration) ::={array kind) ARRAY {array list) I
SAVE (array kind) ARRAY (array list)

l (array kind) ::= (empty) I (local or own type)

l {local or own type) ::={type) I OWN (type)

l (array list) ::=(array segment) I (array list),(array segment)

1 (array segment) : := (array identifier)[(bound pair list)] I
(array identifier), (array segment)

1 (bound pair list) ::=(bound pair)) (bound pair list),(bound pair)

(bound pair) ::=(lower bound):(upper bound)

1 (lower bound) ::=(arithmetic expression)

1 (upper bound) ::=(arithmetic expression)

5.2.2 Examples

Bound Pair Lists:

1: 10

1: 10, 3: 9

A+ 2:B + 4
IF Bl THEN A + K ELSE A + I: IF B2 THEN B + K ELSE B + I

Array Segments:

MATRIX [1:10]

MATRIX, GROUP [1 : 1 0]

Array Li st s:

MA.TRIX [1:10]

MATRIX, GROUP ~ 1 : 10 J.. GATE [1 : 1 C_. 3: 9]

-57-

.Array Declarations:

INTEGER ARRAY MATRIX (1 : IF B2 THEN B + K ELSE B + I]

OWN REAL ARRAY GROUP [1:10]

SAVE OWN BOOLEAN ARRAY GATE [1 : 1o,3: 9]

5 .2.3 Semantics

.An ARRAY declaration declares one or more identifiers to represent multi<D.men­

sional arrays of subscripted variables, and gives the dimensions of the arrays,

the bounds of the subscripts,. and the types of the variables.

5. 2 .3. 1 SAVE Arrays

The declarator SAVE causes an area of core memory to be reserved for the

declared array. If this area must be overlaid, the array will be placed

back into the same area in memory when the array is again referenced. This

absolute storage allocation is necessary only when an array is being used

in conjunction with a STREAM PROCEDURE (see section 5.12, STREAM PROCEDURE

Declarations). In order to maintain the validity of the stream address

indexes upon exit and reentrance to the STREAM PROCEDURE, the location of

the referenced area must remain constant. Whenever the SAVE declarator is

used inefficient allocation of core storage may result.

5.2.3.2 Local or OWN

.An array may be declared as OWN with the same effect as that given for simple

variables (see section 5.0, Declarations, and section 5.1, Type Declarations).

In the case of dynamic OWN arrays, i.e., those arrays whose elements behave

as OWN declared variables and whose subscript bounds may change with each

entrance to the block in which the array is declared, the array is remapped

in memory automatically.

5.2.3.3 Type

Each array must be declared as to type unless it is of type RE.AL. .An array

which is not declared as to type will be considered type RE.AL. .Arrays which

are declared together must be of the same type.

-58-

5.2.4 Bound Pair List

The bound pair list defines the dimensions of the array and the number of

elements in each dimension.

Bound pairs are formed of expressions and are evaluated in the same manner

as subscript expressions (see paragraph 3. 1 .5 .2, Subscript Expressions). The

expressions are evaluated once, from left to right, upon entrance into the

block. Expressions used in forming bound pairs can depend only on variables

and procedures which are nonlocal to the block for which the array declara­

tion is valid. It follows that arrays declared in the outermost block must

use constant bounds •

kn array is defined only when the values of all upper bounds are not smaller

than those of the corresponding lower bounds. In addition, no dimension may

contain more than 1023 elements. If an array is declared OWN, th= values of

the corresponding subscripted variables are defined only fer those variables

which have subscripts within the most recently calculated bounds.

5.3 SWITCH Declarations

5.3.1 Syntax

l (switch declaration) : := SWITCH (switch identifier) +- (switch list)

l (switch list) :t= (designational expression) I
(switch list),(designational expression)

5.3.2 Examples

SWITCH· CHOOSEP.ATH +- L1, L2; L3, L4, SW1 [3 J, LAB
SWITCH SELECT+- START,ERRORI,CHOOSEPATH[I + 2]

5 .3 .3 Semantics

A SWITCH declaration defines a set of values corresponding to a switch identi­

fier. These values are the designational expressions in the switch list. With

each of these designational expressions there is associated a positive in­

teger, 1, 2, .•• , obtained by counting the items in the list from left to right.

This integer indicates the position of the designational expression in the

switch list. The value of the switch designator corresponding to a given value

-59-

of the subscript expression (see section 3.6, Designational Expressions)

determines which designational expression is selected from the switch list.

The designational expression thus selected supplies a label in the program

to which control is transferred.

5.3.4 Evaluation of Expressions in the Switch List

An expression in the switch list is evaluated, each time it is selected,

using the current values of the variables from which it is composed.

5.3.5 Influence of Scope

If a switch designator occurs outside the scope of a quantity entering into

a designational expression in the switch list, and an evaluation of this switch

designator selects this designational expression, the quantity which is other­

wise inaccessible is used for the evaluation of the selected designational

expression.

5.4 DEFINE Declarations

5 .4. 1 Syntax

1 (define declaration) ::=DEFINE (definition list)

(definition list) ::=(definition) I (definition list), (definition)

{definition) ::=(defined identifier) =(well-formed construct)#

(defined identifier) ::=(identifier)

(well-formed construct) : :=(basic component set)

(basic component set) ::=(delimiter) I {identifier) I (unsigned number) I
(string) I (logical value) {basic component set)
{delimiter) I (basic component set)(identifier) I
{basic component set){unsigned number)

5.4.2 Examples

(basic component set){string) I (basic component set)
{logical value)

DEFINE RK = RUNGEKU'IT.A#, ROOT= (-B + SQJ{r(B*2-4xAxC))/(2xA)#

DEFINE INT = INTEGRATE (X, Y, Z)#

5 .4.3 Semantics

The DEFINE declaration serves to define an identifier as a set of basic Extended

AIGOL components. Any basic component used in a definition must be completely

contained therein. All identifiers in the definition must have been previously

declared and the meaning thereby given is always employed whenever the defined

identifier is used.

The appearance of a defined identifier results in it being replaced by its

associated definition. Such replacement must result in a legitimate Extended

ALGOL construct.

5.4.4 Influence of Scope

If a defined identifier appears in a nested block with respect to its scope, any

redeclaration of an identifier which was in its definition does not alter that

definition and quantities otherwise inaccessible may thereby be referenced.

-60-

5.4.5 Restrictions
The well-formed construct of a definition must not contain a dec:arator or a

specificator. A defined identifier must not be used in a FILL statement, a

FORMAT declaration nor as an actual parameter.

5.5 LABEL Declarations

5 .5. 1 Syntax

1 {label declaration) : : = LABEL (label list)

1 (label list) ::= (label)l{label list},(label)

2 (label) : :=(identifier)

5.5.2 Examples

LABEL ST.ART
LABEL ENTER,EXIT,ST.ART,LOOP

5.5.3 Semantics

As is true of all identifiers, a label must be declared before it is used.

A label must be declared in the head of the innermost block in which the

associated labeled statement appears.

If any statement in a PROCEDURE body is labeled, the declaration of this

label must appear within the PROCEDURE body.

A PROCEDURE body itself must not be labeled.

5.6 FIIE Declarations

5.6. 1 Syntax

l (file declaration)::= FIIE (I-0 part){file part)

1 {file part) : :={file identifier)(buffer part)(I-0 unit control)
(file control part))!

(file part),(file identifier)((buffer part)(I-0 unit control)
(file control part))

1 (I-0 part) : : = IN! OUT! REVERSE

1 {file identifier) ::={identifier)

1 (buffer part) : :=(number of buffers),(buffer size)

1 (number of buffers) :: =(unsigned integer)

1 (buffer size} : :=(unsigned integer)

1 (I-0 unit control) ::= (empty)l,ol, 1

l (file control part) ::=(empty) I [{disposition)(blocking)](end of file)\
[(disposition)(blocking)](save factor)

l {disposition) : := ol 112!3(simple variable)

1 (blocking) : : =,(blocking option) {records per block) I (empty)

l (blocking option) ::= ol 11213

1 {records per block) ::= {empty)!,(unsigned integer)

-61-

l (end of file) ::= (label)f {em;pty)
l {save factor) ::={unsigned integer)f {empty)

5.6.2 Examples

FILE INFO (2,500),Fl (1,, 10)

FILE IN F2 (2,1000[1,1,100] EOF)

FILE OUT F3 (2,15,,1)

FILE OUT F4 (1, 100[1, 1_, 25])

FILE OUT F5 (21 100[0,3]30)

FILE REVERSE F2 (2,1000,1[2,1,1oo]FEND)

FILE REVERSE F4 (1,, 100,0[3, 1, 25])

5.6.3 Semantics

The file declaration associates a file identifier with the specifications which

govern the handling of a file.

5.6.3.1 Buffer Part

The buffer part specifies the size (number of B 5000 words) needed for a buffer

area, and the number of buffer areas desired.

The information in one punched card interpreted in the alpha mode requires a

buffer of 10 words. A buffer of 15 words is req_uired for one line of print

on the line printer. A variable number of words may be contained in one

mg,gnetic tape block, but must not exceed 1023 .

If more than one buffer is specified and storage is inadequate to accommodate

the number designated, the program is automatically run with a lesser number.

5.6.3.2 I-0 Unit Control

The maximum number of I-0 units required at any one time in a program is in­

dicated, according to ty:pe, in the program para.meter card. When the program

has passed the point requiring the maximum number, an I-0 unit may be released

to the system for use by another program by means of the appropriate I-0 unit

control in the File Declaration.

-62-

If the I-0 unit control is empty or o, the I-J unit will remain reserved for

use by the program. If the I-0 unit control is 1, the I-0 unit will be re­

leased to the system for use outside the program.

When the disposition is 0 or 1 for a magnetic tape file, the fact th9.t the I-0

unit must be retained by the program is implied. Therefore, I-0 unit control

is automatically given a value of 0 in all such cases.

5.6.3.3 Disposition

The disposition digit designates the action to be taken when exit is made from

the block in which the file declaration appears, and is meaningful for mg,gnetic

tape files only. If the file is not on magnetic tape, the disposition digit

is ignored. The disposition digits have the meanings shown below:

0: Rewind the tape for further use by the program.
1 : Do not rewind the tape for further use by the program •
2: Rewind and lock the tape for removal and retention.
3: Rewind and release the tape to the system for other use.

If the file control part is empty, or if the disposition variable has a value

other than o, 1, 21 or 3, the action indicated by digit 0 is carried out.

5.6.3.4 Blocking

Blocking specifies the method to be used in blocking magnetic tape records. The

digits which control blocking have the meanings shown below.

O: No blocking is to be performed; each block contains one record, there­
fore records per block should be empty or 1 •

1: Each block contains a number of fixed-length records as indicated by
records per block.

2: Each block contains a number of variable-length records as indicated
by records per block.

3: Each block contains a variable number of records and each record is of
variable length, therefore records per block should be empty.

If no blocking option digit is present, the action specified for digit 0 is

carried out •

5.6.3.5 End-of-File

End-of-file is applicable to input files only, and specifies the labeled state­

ment to which control is transferred when the entire file has been exhausted.

If the file control part is empty and the end of the file is encountered, con-

-63-

trol continues in sequence; that is, the statement following the RRA.D statement

will be executed.

5.6.3.6 Save Factor

The save factor is applicable to output magnetic tape files only, and represents

the number of days to be added to the current date to give the purge date. If

the file control part is empty, a save factor of zero will be added. If the

file is not on magnetic tape, the save factor is ignored.

5.6.3.7 FILE REVERSE

A FILE REVERSE declaration applies to input magnetic tape files only, and specifies

that information is to be read in the reverse direction.

Before a file identifier may be declared REVERSE, it must be declared IN or OUT

in an earlier disjoint block.

5.6.3.8 Scope

The scope of a file identifier differs from that of other identifiers in a program.

All file identifiers in a program must be unique. An identifier is declared to

be a file identifier in the program parameter card. Therefore file identifiers

designate specific physical files throughout the program regardless of the block

structure of the program.

The file declaration does not declare an identifier to be a file identifier,

but declares a method of file handling to be applied to the file designated

by the file identifier. The block structure thus specifies the scope of a

file handling method.

5.6.3.9 Restrictions

A program may contain more than one file declaration involving the same file

identifier, but each such declaration must appear in a block which is disjoint

from the others.

A file identifier may designate a file on a multiple-file magnetic tape (as in­

dicated in the program para.meter card). More than one such file may be used

-64-

in a program; each file declaration involving these files, however~ must appear

in a block which is disjoint from the others.

5.7 FORMAT Declarations

5 . 7. 1 Syntax

1 (format declaration) : := FORMAT (input or output)(format part)

l (input or output) : :=IN I OUT I (empty)

l (format part) ::= (format identifier)((editing specifications))!
(format part),(format identifier)((editing specifications))

1 (format identifier) ::=(identifier)

1 (editing specifications) ::= (~diting segm.ent)f (editin? specifications)/)
/\editing specifications) I
(editing specifications)/(editing segment)

l (editing segment) : :=(editing phrase) I (repeat part)

((editing specifications)) I (editing segment),

(editing phrase) I (editing segment),(repart part>

((editing specifications))
1 (editing phrase) ::= (repeat part)(editing phrase type)(field part)j(string)

l (repeat part) t:= (empty))(unsigned integer)

1 (editing phrase ty:pe) ::= A}DIEIFIIf Ljojx

1 (field part) t t= (empty) I (field width) J (field width). (decimal places)

l (field width) : := (unsigned integer)

l (decimal places) ::= (unsigned integer)

5.7.2 Examples

FORMAT IN EDIT (x4, 2I6J' 5E9 • 2, 3F5 • 1, x4)

FORMAT Fl (A6, 5(X3, 2El0.2, 2F6.1), 317), F2 (3D,930,4D)

FORMAT OUT FORM1 (X56, "HEADINGu,X57),FORM2 (X10,4A6/A{,5A6/X2;5A6)

FORMAT OUT F3 (1 023 0)

5. 7 .3 Semantics

The format declaration associates a set of editing specifications with a format

identifier. The discussion of format declarations is divided into two parts:

those used for input and those used for output.

5.7.3.1 Input Editing Specifications

Input data can be introduced to the B 5000 by various media, such as punched

-65-

cards or magnetic tape. Once the information is in the system, however, it

may be considered a string of bits~ regardless of the input equipment used.

For editing purposes this string can be processed in one of two ways: either

as a set of 6-bit characters (see Append.ix A, showing internal codes for char­

acters), or as a set of 48-bit B 5000 words. The input editing specifications,

through the editing phrases, designate where and in what form the initial values

of variables are to be found in this string.

5.7.3.2 Input Editing Phrases

Editing phrase types D and 0 cause the input string to be processed as 48-bit

B. 5000 words. Other editing phrase types designate six-bit character proces­

sing. The editing specifications associated with one format identifier must

designate only one of the two methods of processing. Characteristics of the

input editing phrase types are summarized in the following table.

Editing Editing Type of Example
Phrase Phrase Variable Being of Field
Type Example Processed As Initialized Contents

A A6 6-bit characters ALPHA TX@95%

D D 48-bit words None Any 48 bits

E E9.2 6-bit characters REAL +O. 18@-03

F F7 .1 6-bit characters RE.AL -3892.5

I 16 6-bit characters INTEGER +76329

L 15 6-bit characters BOOLEAN FALSE

0 0 48-bit words .Any type but DOUBLE An.y B 5000 operand

x X7 6-bit characters None Any 7 characters

The definition of each input editing phrase type is given below.

A - Initializes a variable to the characters found in the field described

by {field width). If {field width) is greater than six, the rightmost

six characters are taken as the value to be assigned to the variable.

If {field width) is less than six, zeros are appended to the left of

-66-

the characters in the field to m9.k.e a total of six characters.

D - Causes one B 5000 word of 48 bits in the input data string to "be

ignored.

E - Initializes a variable to the number found in the field described by

(field width). (Field width) must be at least 7 greater than

(decimal places), since the input data is required to be of the

following form:

±. 0. dd---a@±_ee

The sign of the number must appear first. A zero and a decimal point

must follow the sign. One or more digits may follow the decimal point.

The number of digits must equal (decimal places) in the editing phrase.

Following the digits must be the symbol @, the sign of the exponent,

and a two-digit exponent.

The sign may be indicated by +, -, or a single space which is in­

terpreted as positive. The number must be right-justified in the

designated field.

F - Initializes a variable to the number found in the field described by

field width. The input data must be in one of the following forms:

+ nn ---n. dd--d

+ .dd--d

The sign of the number must appear first. A decimal point must be

present; zero or more digits may appear between it and the sign.

Finally there must be one or more digits after the decimal point;

the number of these digits must equal (decimal places) in the editing

phrase. Rules for indicating the sign and for justification of the

number are the same as for editing phrase type E.

I - Initializes a variable to the integer found in the field described

by ('field width). The sign of the integer must appear first, followed

by one or more digits. The sign and justification conventions given

for editing :phrase type E a::::-e appliC!B."ble.

-67-

L - Initializes a variable to the logical value found in the field described

by (field width). There are two possible values, TRUE and FALSE; these

must be right-justified in the field.

O - Initializes a variable to the contents of one B 5000 word of the input

string. The field part is ignored and should be empty.

X - Causes the number of characters indicated by (field width) to be

ignored.

An input editing phrase must not be a string; the string form is defined for

output only.

Each editing phrase, except the D and X types, describes a portion of the input

data string in which the initial value of one variable is to be found. A phrase

such as r.fu.r has the same effect as Aw, .fur, ••• , .fur (r times), where !:. is the

repeat part and !i:. is the field width. If the repeat part of an editing phrase

is empty, it is given a value of 1 .

The field part should be empty when the editing phrase type is 0 or D. If the

editing phrase type is not 0 or D, the field part must not be empty.

5.7.3.3 Output Editing Specifications

Output can be performed by the B 5000 through various media such as magnetic

tape and line printer. The information in the system, ready for output but

not yet transferred to the output e~uipment, may be considered a string of

bits regardless of the output equipment to be used. For editing pu-r:poses,

this string can be built in one of two ways: either from a set of six-bit

characters (see .Appendix A), or from a set of 48-bit B 5000 words. The output

editing specifications, through the editing phrases, designate where and in

what form the values of expressions are to be placed in this string.

5.7.3.4 Output Editing Phrases

Editing phrase types D and 0 designate that the output string be built from 48-
bit B 5000 words. Other editing phrase types specify that the output string

-68-

be built from six-bit characters. The editing specifications assoeiated with

one format identifier must designate only one of the two building processes.

Characteristics of the output editing phrase types are s111rnnarized in the fol­

lowing table. The letter b represents a blank.

Editing Editing Type of Example
Phrase Phrase Evaluated of Field
Type Example Processed As Expression Contents

A A6 6-bit characters ALPHA. RESULT

D D 48-bit words None 48 zero bits

E E11 .4 6-bit characters REAL -0.0125@+02

F F8.3 6-bit characters REAL 6735 .125

I I6 6-bit characters INTEGER bb1416

L L5 6-bit characters BOOLE.AN bTRUE

0 0 48-bit words Any type but DOUBLE Any B 5000 operand

x xB 6-bit characters None 8 blan_"k.s

Each output editing phrase type is defined below.

A - Places the value of one expression~ in this case six characters~ in

the field described by (field width). If (field width) is greater

than six, the six characters are placed at the right end of the field

and leading blanks are inserted to fill out the field. If (field

width) is less than six, the rightmost characters of the expression

value are placed in the field.

D - Places one 48-bit B 5000 word of all zeros in the output data string.

E - Places the value of one expression in the field described by (field

width). This value has the following form when placed in the output

data string:

±0.dd---d@±ee

-69-

If {field width) is more than 7 greater than {decimal places), leading

single spaces are used to complete the field. Then the sign of the

number, a zero, and a decimal point are inserted. The value of the

expression is rounded to the number of places indicated by {decimal

places) of the editing phrase. If the number of significant digits

in the expression value is less than {decimal places), the digits are

left-justified with trailing zeros. To complete the field, the symbol

@, the sign of the exponent, and the appropriate two-digit exponent

are inserted.

The sign of the number is represented by a single space if positive,

and a minus sign if negative. The sign of the exponent is either +

or -.

F ~ places the value of one expression in the field described by {field

width). This value has the following form when placed in the output

string:

-nn---n. dd--d

The expression value is rounded to the number of designated decimal

places. If the number of significant digits thus obtained is less

than {field width) minus two, leading single spaces are used to com­

plete the field. If the digits number more than {field width) minus

two, .most-significant digits are lost. The sign of the number and the

significant digits with an appropriately placed decimal point complete

the field.

The sign of the number is the same as for the E editing phrase type.

I ~ places the value of one expression in the field described by {field

width). The expression value is rounded to an integer and placed

right-justified in the field, preceded by the sign of the number and

leading single spaces, if any.

,;,..
The sign of the number is the same as for the E editing phrase type.

Most-significant digits are lost if the expression value contains more

digits than (field width) minus one.

-69A-

L - Places the value of one Boolean expression in the field designated by

(field width). Since the expression yields a logical value, either

TRUE or FALSE will be placed in the output string, therefore (field width)

should be 5 or more. If (field width) is greater than the number of

characters in the logical value, leading single spaces are inserted to

fill out the field.

0 - Places the value of one expression, in B 5000 48-bit form, in the out-

put string. The field part is ignored and should be empty.

X - Places a number of single spaces, as indicated by (field width), in

the output string.

An output editing phrase may itself be a string. This editing phrase is

defined as placing itself, except ~or the delimiting string bracket char­

acters, in the output string.

Each editing phrase describes a portion of the output data string into which

information is to be placed. This information may be one of three things: the

value of an expression, the characters of the editing phrase itself (when the

editing phrase is a string), or the insert characters 0 and single space.

The expression rAw has the same effect as Aw, Aw, ... , .fu:t" (r times), where~

is the repeat part and.!'.[_ is the field width. If the repeat part of an editing

phrase is empty, it is given a value of 1.

The field part should be empty when the editing phrase type is 0 or D. If

the editing phrase type is not 0 or D, the field part must not be empty.

5.8 LIST Declarations

5 .8. 1 Syntax

1 {list declaration) ::=LIST {list part)

1 (list part) ::=(list identifier) ((list)) I
(list part), (list identifier) ({list))

-70-

1 (list identifier) : :=(identifier)

1 (list::= (list segment) I (list), (list segment)

1 (list segment) : :=(expression part) I (for clause) (list segment) I
(for clause) [{expression list) J

1 (expression part) ::=(arithmetic expression) I (Boolean expression)

1 (expression list) : :=(expression part) (list segment) l (expression list),

(expression part) (expression list), (list segment)

5.8.2 Examples

LIST L1 (X,Y,A[J], FOR I~ P STEP 1 UNTIL 5 DO B(I])

LIST ANSWERS (P + Q,Z,SQRT (R)), RESULTS (x1,x2,x3,x4/2)

LIST ~IST3 (FOR I~ 0 STEP 1 UNTIL 10 DO FOR J ~ 0 STEP UNTIL 15 DO A(I,J])

LIST .L4 (B AND C, NOT .AB1. IF X = 0 THEN Rl ELSE R2)

LIST RESULTS (FOR I ~ 1 STEP 1 UNTIL N DO [A(I], FOR J ~ 1 STEP 1 UNTIL

K DO [B(I,J], C(J]]J)

5.8.3 Semantics

A list declaration serves to associate a set of expressions (aritbmetic or

Boolean) with a list identifier.

The list identifier may be used in a READ statement (section 4.8.2) for specify­

ing the variables to be initialized and the order in which the initializing is

to be done. Since any expression other than a variable is meaningless in an

input operation, a list identifier used in a READ statement must refer to a LIST

declaration which includes variables only. When used for input, the variables

in a LIST declaration must be of type REAL, INTEGER, BOOLEAN, or ALPHA.

The list identifier may be used in a WRITE statement (section 4.8.3) for

specifying values to be included in an output operation. These values are

placed in the output string in the order of their appearance in the LIST

declaration.

Variables in a LIST declaration may be either local or non-local to the block

in which the LIST declaration appears.

-71 -

5. 9 FORWARD Reference Declarations

5 .9. 1 Syntax

3_ (forward reference declaration)

3_ (forward procedure declaration)

::=(forward procedure declaration)J
(forward switch declaration)

::= (procedure type)
PROCEDURE (procedure heading) FORWARD

3.. (procedure type) ::= (empty)f (type)

3.. {forward switch declaration) : := SWITCH (switch identifier) FORWA.RD

5.9.2 Examples

SWITCH SELECT FORWARD
INTEGER PROCEDURE SUM (~ B; C); V .ALUE A, B_, C; INTEGER ~ B_, C; FORWARD

5.9.3 Semantics

Before a procedure or a switch can be called in a program, it must have been

declared previously. Two cases of interest arise: (1) a procedure which

calls another procedure, which in turn calls the first procedure; (2) a

switch which references another switch, which in turn references the first

switch.

The use of a FORWARD reference declaration does not eliminate the need for the

normal PROCEDURE and SWITCH declarations which must follow as soon as possible

in the program.

5.10 Diagnostic Declarations

5 • 1 0. 1 Syntax

i (diagnostic declaration) : : = MONITOR (monitor part) I
DUMP (dump pa.rt)

i (monitor pa.rt)::= {file identifier)((monitor list))j

i (monitor list)
(monitor part),(file identifier)((monitor list))

::=(monitor list element)j
(monitor list)J(monitor list element)

-72-

1 (monitor list element) . ·­.. - (simple variable)!
(subscripted variable)j
(array identifier) I
(switch identifier)!
{T'l"Y'f""'\norliiyao -l'rloY'l+-1'-P-l'o'Y'\ I {1 !::!hol \
\.l:'•"-''-"-'-"'-l.A....L'- ..L.1,,,A,,'-.L..L'-'..&...-1.....&...'-• / J \-'-"'""""'....,'-~/

1 (dump part) ::=(file identifier)((dump list))
(label):(dump indicator)l(dump part),(file identifier)
((dump list))(label):(dump indicator)

l (dump list) ::=(dump list element)l(dump list),(dump list element)

l (dump list element) ::=(simple variable)!
(subscripted variable)j(label)j(array identifier)

l (dump indicator) ::=(unsigned integer)l(simple variable)

5. 10 .2 Examples

MONITOR ANSWER (A, Q[I, J], GROUP1, START, SELECT, INTEGRATE)

_ DUMP INPUTDATA (.A, Q[I,J J, GROUP1, START) ENTER: 4,
OUTPUTDATA (.A, GROUP1) EXIT: X

5.10.3 Semantics

The diagnostic declarations MONITOR and DUMP declare certain q_uantities to be

placed under surveillance during the execution of the program, and cause the

identifiers for these q_uantities and their associated values to be released to

an output device under specified conditions.

5. 10 .4 MONITOR

Du.ring the execution of the program, each time an identifier included in the

monitor list is used in one of the ways described below, the identifier and

its current value are written on the file indicated in the MONITOR declaration.

5.10.4.1 Monitor List Elements

"When a simple variable in the monitor list is used as a left part in an assignment

statement, the following information is written on the designated file:

(simple variable) = [value of variable}

Wnen a subscripted variable in the monitor list is encountered during the execution

of the program as the leftmost element in a left part list, the following informg,­

tion is written on the designated fi~e:

-73-

(array identifier) [(value of subscript expression}]= [value of variable}

When a subscripted variable, with an array identifier which is given in the

monitor list, is encountered as the leftmost element in a left part list,

the following ihformation is written on the designated file:

(array identifier) [(value of subscript expression}] [value of variable}

When a switch designator is encountered with a switch identifier which is in the

monitor list, the following information is written on the designated file:

(switch identifier)

When a procedure identifier in the monitor list is used as a function designator

during the execution of a program, the following information is written on the

designated file:

(procedure identifier) = (value of function designator}

Each time a label which is in the monitor list is encountered in the program,

the label identifier is written on the designated file.

5.10.5 DUMP

Diagnostic information requested by means of the DUMP declaration is written

on the designated file when a statement~ carrying a label which is in the dump

list, has been executed a number of times equal to the dump indicator. Since

the DUMP indicator can be a simple variable, DUMP information can be obtained

more than once during each execution of the block containing the DUMP declaration.

The number of times the controlling statement is executed applies to only one

pass through the DUMP declaration block. The number is not cumulative from

one pass to the next.

5.10.5.1 Dump List Elements

A simple variable in the dump list causes the current value of that variable to

be supplied in the following form:

-74-

(simple variable)= [value of variable}

A subscripted variable in the dump list causes the current value of th~t variable

to be supplied in the following form:

(array identifier) [[value of subscript expression}] =[value of variable}

An array identifier in the dump list causes the current values of all elements

in that array to be supplied in the following form:

(array identifier) = [value of first element}

[value of second element}

[value of last element}

The order in which the array elements are written is as follows. All sub­

scripts are first set to their declared lower boundsJ and the corresponding

value is printed out. The rightmost subscript is then counted up, and the

corresponding value is printed; this procedure continues until the subscript

reaches its declared upper bound. After this printout, the rightmost sub­

script is again set to its declared lower bound, the next left subscript is

counted up, and the process recycles until all subscripts have reached their

declared upper bounds.

A label in the dump list causes a tally to be supplied which represents the

number of times the labeled statement has been executed during this pass through

the block containing the DUMP declaration. The tally is supplied in the fol­

lowing form:

(label) £number of times statement has been executed}

-75-

5. 11 PROCEDURE Declarations

5 • 11 . 1 Syntax

l (procedure declaration) ::=PROCEDURE (procedure heading)
(procedure body) I

(type) PROCEDURE (procedure heading)
(procedure body)

(procedure heading) ::=(procedure identifier)(formal parameter part);
(value part)(specification part)

{procedure identifier)::= (identifier)

{formal parameter part)::= (empty)j({formal parameter list))

{formal parameter list) ::=(formal parameter)J(formal parameter list)
(parameter delimiter)(formal parameter)

1

(formal parameter) ::=(identifier)

(value part);:= VALUE (identifier list);j(empty)

1 {identifier list) ::= (identifier)j{identifier list),(identifier)

2 (specification part) :1= {empty)l(specification list)

1 {specification list)::= (specification);j{speci.fication list)(specification);

1 (specification) ::= (specifier)(identifier list)l(array specification)

2 (specifier) :: = LA.BELj (type)jSWITCHjPROCEDURE!(type)PROCEDUREI

FILEILISTjFORMAT

1 (array specification) ::=ARRAY {array specifier list)j
(type) ARRAY (array specifier list)

1 {array specifier list) ::=(array specifier)j
{array specifier list),(array specifier)

i (array specifier) ::= (array identifier list)[(lower bound list)]

i {array identifier list) ::= {identifier list)

1 (lower bound list) ::= {specified lower bound)j(lower bound list),
(specified lower bound)

.3.. (specified lower bound) ::=(integer) I*
2 (procedure body) ::=(statement)

-76-

5.11 .2 Example

PROCEDURE ROOT (~ B, C, N, X1, X2, X3);

VALUE A, B, c, N;

INTEGER N; ARRAY A, B, C, X1, X2 [1 j; .ALPHA ARRAY X3 [1] ;

BEGIN

INTEGER I; REAL DISC; LABEL ST&C\T;

START: FOR I +- 1 STEP 1 UNTIL N DO

BEGIN DISC+- B[I] * 2 - 4 x A[I] x C[I];

IF DISC < 0 THEN X3 [I J +- IT IMAG II ELSE

END ROOT

5.11 .3 Semantics

END

BEGIN X1[I] +- (-B[I] +SQRT (DISC))/(2 x A[I]);

X2[I] +- (-B[I] SQ.RT (DISC))/(2 x A[I]);

X3[I] +-
11 REAL 11 END

A PROCEDURE declaration declares an identifier to represent a procedure, and

defines what this procedure shall be. Whenever the identifier followed by the

appropriate parameters appears in the program, it produces a call upon the pro­

cedure (see section 4.7, PROCEDURE Statements).

A PROCEDURE declaration is composed of two parts: the procedure heading and the

procedure body.

5.11.3.1 Procedure Heading

The procedure heading contains the identifier for the procedure and information

about the formal parameters.

The formal parameter part contains a list of all formal parameters used in the

procedure body. The value part specifies which formal parameters are to be called

by value. Formal para.meters called by value are called in the order in which

they appear in the parameter list. Those formal parameters not in the value

part are called by name. The specification part indicates certain character­

istics of the formal para.meters, that is, the kinds of identifiers they represent.

-t)'":{._, (~'--""'"'" ·" ·.~- ' ~ \J H '- Ut:.. ll'i

-77-

In the case of formal parameters used as array identifiers, information about

the lower bounds may be given. Im integer specified lower bound indicates that

any corresponding actual para.meter has a declared lower bound equal to this

value. A specified lower bound of * indicates that the declared lower bound

of the corresponding actual parameter may vary in value from one call on the

procedure to tbe next.

5.11 .3.2 Procedure Body

The procedure body is a statement that is to be executed when the procedure is

called. This statement may be any of those listed in subsection 4.0.1 (cover-

ing the syntax of statements) and therefore may be a procedure statement cal­

ling upon itself. Procedures may thus be called recursively.

5.11 .3.3 Scope of Identifiers Other Than Formal Parameters

Identifiers in the procedure body which are not formal parameters are either

local or nonlocal to the body, depending on whether they are declared within

the body or outside the body. Those which are non-local to the body may be

local to the block which contains the procedure declaration in its head.

Any quantity that is nonlocal to a procedure is inaccessible to

that procedure if that quantity is local to some other procedure

and is not declared to be OWN.

5.11 .4 Values of Function Designators

Certain procedures are called by means of function designators. In such cases,

the procedure declaration must start with a ty:pe declarator. In addition, the

procedure body must contain, and cause to be executed, an assignment statement

with the procedure identifier in the le~ part list.

5. 11.5 Restrictions

In using a GO TO statement in a ty:ped procedure, the following restriction must

be observed: No GO TO statement appearing in a typed procedure may lead out­

side that procedure.

Also, in using a procedure statement in a typed PROCEDURE, any PROCEDURE thereby

called for execution must not contain a GO TO statement leading outside of itself.

If any statement in a PROCEDURE body is labelled, the declaration of that label

must appear within the PROCEDURE body. A PROCEDURE body itself must not be labelled.

-78-

5.12 STREAM PROCEDURE Declarations

5 . 1 2 . 1 Syntax

l (stream procedure declaration) .. - STREAM PROCEDURE
(stream procedure heading)
(stream block) I
(type) STREAM PROCEDURE
(stream procedure heading)
(stream block)

l (stream procedure heading) ::=(procedure identifier)
{stream formal parameter part);
(value part)

l (stream formal pa.rameter part) ~== ((formal parameter list))

{formal parameter list) ::={formal parameter)l(formal parameter list)
{:i;:arameter delimiter){formal parameter)

1 {value part) ::= VALuE {identifier list);l(enrpty)

1 (identifier list) ::= (identifier)j(identifier list),{identifier}

l {stream block} : : = (stream bloek head}; {compound stream tail}

l (stream block head} : : = BEGIN {stream declaration) I
{stream block head);(stream declaration)

l (compound strea.'11 tail) : : = (stream statement) END J
(stream statement);{compound stream tail)

l (stream declaration) ::=(stream variable declaration) I
(label declaration)

l (stream variable declaration) ::=LOCAL (stream variable list)!
(empty)

l (label declaration) ::=LABEL (label list)

l (label list) ::= (label)l(label list),(label)

2 (label)::= (identifier)

l (stream variable list) ::=(stream simple variable)j
(stream variable list),
(stream simple variable)

l (stream simple variable) ::=(variable identifier)

(variable identifier) ::=(identifier)

-79-

5 . 1 2 . 2 Example

STREAM PROCEDURE TRANCHAR (SORC, X, DEST, Y, LGTH); VALUE X, Y, LGTH;

BEGIN SI+-- SORC; DI +--DEST;

END

SI +- SI + X; DI +- DI + Y;

DS +- LGTH CHR

5.12.3 Semantics

A. STREAM PROCEDURE declaration defines a procedure which utilizes the B 5000

character mode to be associated with a procedure identifier. Since the B 5000

character mode is designed exclusively for the manipulation of bits, characters,

and computer words, the language used to describe a sirREAM PROCEDURE declaration

differs from that of conventional procedures.

5 . 1 2 . 3 . 1 Value Part

All formal parameters of a STREAM PROCEDURE are treated as local to the stream

block. The corresponding actual parameters provide initial values for the formal

parameters as indicated by the value pa.rt.

T'ne formal parameters listed in the value part (call by value) are assigned the

values of the corresponding actual parameters when the STREAM PROCEDURE is called.

The formal parameters not listed in the value part (call by address) are

assigned integral values equal to the absolute addresses of the corresponding

actual parameters.

5.12.3.2 Stream Declarations

All stream simple variables in a stream block must be declared by a stream

variable declaration. Therefore all stream simple variables are local to the

stream block.

The LABEL declaration is a list of all labels in the stream block.

-Bo-

5.12.3.3 Compound Stream Tail

The stream block includes, in addition to the above two declarations, a stream

statement or a series of stream statements. These statements are uniQue to the

STREAM PROCEDURE declaration a.nd may not be used outside the declaration. Stream

statements and their uses are Qfscussed in the following sections.

For brevity and clarity, the following notation has been adopted for discussing

stream statements.

SI -- Word address portion of source index
w

DI -- Word address portion of destination index w
Sic -- _Character designator portion of source index; Sic = 0 for

leftmost character of word, 7 for rightmost character

DI -- Character designator portion of destination index;
c

DI = 0 for leftmost character of word, 7 for rightmost
c

character.

81t -- Bit designator portion of source index; Sib = 0 for

leftmost bit of character~ 5 for rightmost bit.

D1t -- Bit designator portion of destination index; D1p = 0

for leftmost bit of character, 5 for rightmost bit.

CI Word address portion of control index. w
CI Syllable designator portion of control index; CI = 0 s s

for leftmost syllable of word, 3 for rightmost syllable.

ri Repetitive indicator.

5.12.3.4 Automatic Index Adjustment

Before certain stream statements are executed, either the source index, the

destination index or both may be automatically adjusted. These adjustments

are conditional and fall into two categories. The controlling conditions and

the adjustments made are outlined below and will be referenced throughout the

succeeding discussion whenever applicable.

-81-

ADJUSTMENT CATEGORY I

Source Index

If S\ t 0 or SIC t 0 then Siw +- SIW + 1; S\ +-SIC+- 0.

If S\ = 0 and SIC = 0 then no adjustment is made.

Destination Index

If D\ f 0 or DIC f 0 then DIW +- Diw + 1; D\ +-DIC+- O.

IF D\ = 0 and DIC = 0 then no adjustment is made.

ADJUSTMENT CATEGORY II

Source Index

If S\ f 0 then S~ +- O; Sic+- SIC + 1 (therefore overflow into Siw may occur).

If S\ = 0 then no adjustment is made.

Destination Index

If D\ f 0 then D\-+- O; Dic +-DIC + 1 (therefore overflow into Siw may occur).

If D\ = 0 then no adjustment is ma.de •

5.12.4 stream Statements

5 .12.4.1 Syntax

l (stream statement) ::=(unlabelled stream statement) I
(label) : (stream statement)

l (unlabelled stream statement) : := (unconditional stream statement)
(conditional stream statement)

l (unconditional stream statement) ::=(stream address statement) I
(destination string statement)
{stream go to statement) I
(ski~ bit statement) I
(stream tally statement) I
(stream nest statement) I
{stream release statement) I
(compound stream statement> I
(dummy statement)

5 .12. 5 Stream Address Statement

5.12.5.1 Syntax

3 (stream address statement) ::={set address statement) I
{store address statement) j
{skip address statement) I
{recall address statement)

-82-

1 (set address statement) ::=SI+- (source address part) I
DI+- (destination address part)

_l (source address part) : : = LOC (stream simple variable) I SC

1 (destination address part) ::= LOC (stream simple variable) j JJC

i (store address statement) 2 := (stream simple variable) +- (stream address index)

i (stream address index) ::=SI I DI I CI

i (skip address statement) ::=DI+- DI (stream arithmetic expression) I
SI +-SI (stream arithmetic expression)

i (stream arithmetic expression) : := (adding operator) (stream primary)

(adding operator) ::= + J -

i {stream primary) : : = (unsigned integer) I {stream simple variable)

.1 (recall address statement) : := {stream address index) +- (stream simple variable)

5.12.5.2 Examples

SI+-- LOC Q1

DI +- DC

T2 +- DI

T3 +- CI

SI +- SOURCE

DI +- T2

SI +- SI + 3

DI+- DI - T4
5.12.5.3 Set Address statement

The set address statement using the delimiter LOC causes either the source or

destination index to be set to the stack location of the indicated stream variable.

The set add.res s statement using the delimiter SC or DC (see paragraph 5 . 12. 3 . 4,
category II) assigns the value contained in the next eighteen bits of the applicable

string to the source or destination ind.ex.

5.12.5.4 Store Address Statement

The store address statement causes the current value of the indicated index to

be assigned to the indicated stream variable.

If DI is the stream address index of a store address statement, the following

condition must be met. Before the statement is executed, if the destination

index (DI) is pointing to the location of the indicated stream variable, DI c
and D~ must both eq_ual 0.

-83-

5.12.5.5 Recall Address Statement

The recall address statement causes the value of a stream variable to be assigned

to the indicated index. If DI is the stream address index of a recall address

statement, the following condition must be met. Before this statement is executed,

if the destination index (DI) is pointing to the location of the indicated stream

variable, then Dic and Dib must both equal O.

5.12.5.6 Skip Address Statement

The skip address statement causes SI or DI to be increased or decreased by the
c c

value of the stream primary.

5.12.5.7 Restriction

The source index (SI) and the destination index (DI) must never point to the

same location, that is, SI must never equal DI . w w

5. 12.6 Destination String Statement

5 . 12 . 6 . 1 Syntax

1 (destination string statement) : : = DS +- (transfer part)

l (transfer part) ::=(source string transfer) I (literal transfer)

1 {source string transfer) ::=(repetitive indicator) {transfer type)

l (repetitive indicator) ::={repeat part) I (stream simple variable)

1 (repeat part) ::=(empty) I (unsigned integer)

i (transfer type) ::=(transfer words) I (transfer characters) I
(transfer and convert) J (transfer and add)
(transfer character portions)

1 (transfer words) : : = WDS

i (transfer characters) ::= CHR

i (transfer and convert) : : == (input convert) I (output convert)

i (input convert) : : = OCT

i (output convert) : : = DEC

i (transfer and add) ::=ADD I SUB

i (transfer character portions) ::= ZON I NUM

1 (literal transfer) ::=(literal characters) I (literal bits)

l (literal characters) ::= (unsigned integer) LIT (string)

i (literal bits) : :=(repetitive indicator) SET I {repetitive indicator) RESET

-84-

3_ (string) ::="(proper string)" I "(string bracket character)rr

l (proper string) ::=(string character) I (proper string) (string character)

l (string character) :t= (visible string character) I (single space)

l (visible string character) : : = . I [I (I < I +- J & I $ J * I) I ; I < I - I
/J,1%J=IJl#f@I l>l~l+IAI
B I c l D I E I F I G I H I I I x I J J K I L I

M) NI ol Pl Qj Rlf I sj Tl ul vlwl
x I Y I z I o I 1 I 2 J 3 I 4 I 5 I 6 I 1 I s J 9

3_ (single space) ::= {a single unit of horizontal spacing which is blank}

l (string bracket character) t: = "

5.12.6.2 Examples

DS +- 3 WDS

DS +- T CHR

DS +- 6 OCT

DS +- X DEC

DS +- 3 ADD

DS +- N SUB

DS +- VARY ZON

DS +- 4 NUM

DS +- 7 LIT "HEADING"

DS +- 6 RESET

DS +- X SET

5.12.6.3 Transfer Words

'Tue transfer words option (see paragraph 5.12.3.4, category I) causes the number

of words specified by the repetitive indicator to be transferred from the source

string to the destination string. The execution of this statement affects SI

and DI as follows:

SI +- SI + ri w w
DI +- DI + ri w w

5.12.6.4 Transfer Characters

The transfer characters option (see paragraph 5.12.3.4, category II) causes

the number of characters specified by the repetitive indicator to be trans-

-85-

ferred from the source string to the destination string. The execution of

this statement affects SI and DI as follows:

SI +-SI + ri (overflow into SI can occur)
c c w

DI +-DI + ri (overflow into DI can occur) c c w

5.12.6.5 Input Convert

The input convert option (paragraph 5.12.3.4) causes the number of source char-

acters (numeric bits only) specified by the repetitive indicator to be trans­

ferred and converted to one octal word in the destination string. The resulting

octal word is an integer. The sign of the integer is determined by the zone

bits of the rightmost character in the source field (10 =minus, otherwise plus).

The value of the repetitive indicator must not be greater than 8.

The execution of this statement affects SI and DI as follows:

SI +-SI + ri (overflow into SI can occur)
c c w

DI +- DI +
w w

5.12.6.6 Output Convert

The output convert option (paragraph 5.12.3.4) causes one octal word in the source

string to be transferred and converted to the number of destination characters

specified by the repetitive indicator. The octal word is treated as an integer.

The sign is placed in the zone bits of the rightmost destination character (00 =
plus, 10 =minus). All other destination zone bits are set to zero. The value

of the repetitive indicator must not be greater than 8. If the converted value

requires more than the specified number of destination characters, the most

significant digits are lost and TOGGLE is set to FALSE. Otherwise TOGGLE is

set to TRUE. The execution of this statement affects SI and DI as follows:

SI +- SI + 1 w w
DI +-DI + ri (overflow into DI can occur) c c w

5.12.6.7 Transfer and Add

The transfer and add option (see paragraph 5.12.3.4, category II) causes the

-86-

number of source characters specified by the repetitive indicator to be alge­

braical.ly added to or subtracted from a like number of destination characters.

The signs of the two fields are the zone bits of their respective rightmost

characters (10 = minus,_ otherwise plus). All other source zone bits are ignored.

All other destination zone bits are set to zero. The sign of the result is

placed in the zone bits of the rightmost destination character. If overflow oc­

curs in the destination field, TOGGLE is set to TRUE, otherwise FALSE. The

execution of this statement affects SI and DI as follows:

SI +- SI + ri c c
DI ..- DI + ri

c c

(overflow into SI can occur) w
(overflow into DI can occur) w

5.12.6.8 Transfer Character Portions

The transfer character portions option (see paragraph 5.12.3.4, category II)

causes either the zone bits or numeric bits of the number of source characters

specified by the repetitive indicator to be transferred to the same portions

of a like number of destination characters.

When transferring zone bits the numeric portions of the destination characters

are not affected. When transferring numeric bits the zone portions of the desti­

nation characters are set to zero. TOGGLE is set only when transferring nu­

meric bits, as follows: If the zone bits of the rightmost source character are

10 (minus), TOGGLE is set to TRUE, otherwise it is set to FALSE. The execution

of this statement affects SI and DI as follows:

SI +- SI + ri c c
DI +- DI + ri c c

(overflow into SI can occur)
w

(overflow into DI can occur) w

5.12.6.9 Literal Characters

The literal characters option causes the number of string characters specified

by the unsigned integer to be placed in the destination string. The unsigned

integer should eq_ual the number of characters in the string. If it is greater

than the number of string characters, repetitive left-to-right use is made of

the string characters until the designated number of destination characters are

filled. If it is less, the rightmost string characters are ignored. The ex-

-87-

ecution of this statement affects DI only, as follows:

DI +-DI + unsigned integer (overflow into DI can occur)
c c w

5.12.6.10 Literal Bits

Literal bits causes the number of destination bits specified by the repetitive

indicator to be set to one or reset to zero. The execution of this statement

affects DI onl;r.,, as :f"ollows:

D~ + D~ + ri (overflow into DIC can occur, as well as overflow into Diw)

5.12.6. 11 Repetitive Indicator

The value of the repetitive indicator must never exceed 63.

5.12.7 Stream GO TO Statement

5 . 1 2 . 7 . 1 Syntax

l (stream go to statement) : : = GO TO (label)

5.12.7.2 Example

GO TO ST.ARI'

5.12.7.3 Semantics

The stream GO TO statement causes transfer of control to the statement with

the designated label. The label must be one declared in the stream block.

5.12.7.4 Restriction

A stream GO TO statement must not cause transfer into nor out of a stream

nest statement.

5.12.8 SKIP Bit Statement

5.12.8.1 Syntax

3_ (skip bit statement) u= S:ICTP (repetitive indicator)
(sou:rce or destination bit)

l (source or destination bit) ::= SBjDB

5.12.8.2 Examples

SKIP N SB

SKIP 12 DB

-88-

5.12.8.3 Semantics

The SKIP bit statement affects only SI or DI, a.nd does so as follows:

S~ ~ S\ + ri (overflow into Sic can occur, as well as overflow into Siw)

D\ +- D\ + ri (overflow into DIC can occur, as well as overflow into Diw)

5.12.9 Stream TALLY Statement

5.12.9.1 Syntax

3_ (stream tally statement)

5.12.9.2 Examples

TALLY+- ABLE

TALLY +- TALLY + 1

TALLY +- TALLY + BETA

GAMMA+- TALLY

5 . 12. 9 . 3 Semantics

: : = TALLY+- (stream primary) I
TALLY+- TALLY + (stream primary) I
{stream simple variable) +- TALLY

The stream TALLY statement provides a counting mechanism for stream procedures.

TALLY has a value which is modulo 64; all overflows are lost.

5.12. 10 Stream Nest Statements

5 . 12 . l 0 . l Syntax

1 (stream nest statement) ::=(repetitive indicator)({compound nest))

1 {compound nest) ::= {nest)j{nest);{compound nest)

1 {nest) : : = (stream statement) I (jump out statement) I
{label):(jump out statement}

1 {jump out statement) : : = JUMP OUT I JUMP OUT {number of nests} TO (label)

1 {number of nests) ::=(empty) I (unsigned integer}

5.12.10.2 Examples

25 (IF SC = 11E" THEN JUMP OUT; SI +- SI + 1; TALLY +- TALLY + 1)

30 (IF 8 SC = DC THEN 8 (IF SC = ALPHA THEN JUMP OUT 2 TO L3; SI +- SI + 1);

TALLY+- TALLY + l)

-89-

5. 12.10.3 Semantics

The stream nest statement serves as a repetitive control statement, by means

of which loops can be described and the number of passes specified by the

repetitive indicator. Any stream statement may appear in the compound nest.

An additional statement, the JUMP OUT statement, is allowed in a compound

nest. It may not be used elsewhere. The simple form of JlJMP OUT statement

transfers control to the statement immediately beyond the next right

parenthesis. The JUMP OUT to a label form may be used to escape from as

many nests as desired and to a specific labelled statement. The JUMP OUT

statement may be labelled.

5. 12. 10.4 Restrictions

A stream nest statement may be entered only at its beginning.

5.12.11 Stream RELEASE Statement

5 . 12 • 1 1 • 1 Syntax

1 (stream release statement) : : = RELEASE ((formal parameter))

5.12.11.2 Examples

RELEASE (FILEN.AME:1)

5.12.11 .3 Semantics

The actual parameter corresponding to the f orma.l parameter of a stream RELEASE

statement must be a file identifier. This formal parameter must not be called

by value. If the file identifier is that of an input file, the stream RELEASE

statement causes one buffer of the file to be filled with new data. If the

file identifier is that of an output file, the stream RELEASE statement causes

the contents of one output buffer to be transferred to the appropriate output

device. Both SI and DI must be reset, since the values of both are lost with a

RELEASE statement.

5.12.12 Compound Stream Statement

5.12.12.1 Syntax

(compound stream statement) ::=BEGIN {compound stream tail)

5.12.12.2 Example

BEGIN SI~ IDC Q1; T2 --E- DI; DI -E- T1 END

-90-

5. 12. 12 .3 Semantics

The compound stream statement is a set of stream statements groUJ?ed together 8.nd

bounded by BEGIN and END.

5.12.13 Conditional Stream Statement

5.12.13.1 Syntax

2 (conditional stream statement) ::=(stream if clause)

(unconditional stream statement)

(stream if clause)

(label):(unconditional stream statement)

(conditional stream statement) ELSE

(stream statement)

l (stream if clause) ::=IF (test) THEN

.1 (test) ::=(source with literal) I (source with destination) I (source bit)
TOGGLE J (source for alpha)

1 (source with literal) :r= SC (relational operator) "(string character)" j
SC (relational operator) rr(string bracket character)n

i (source with destination) ::=_(repetitive indicator) SC (relational operator) DC

1 (source bit) ::=SB

.1 (source for alpha) : : = SC = ALPHA

5.12.13.2 Examples

IF SC = "E'' THEN GO TO BLAZES

IF 8 SC = OC THEN GO TO TUCSON

IF SB THEN SI +- SI + 1

IF TOGGLE THEN DS +- X ZON

5. 12. 13 .3 Semantics

The conditional stream statement causes the stream statement following the if

clause to be executed if the test is TRUE~ otherwise the statement is ignored.

Several kinds of tests are possible, as follows:

5.12.13.4 Source with Literal

The source with literal option (see paragraph 5.12.3.4, category II1 for SI only)

causes one source character to be compared with the character indicated in the

test. If the relation is satisfied, TOGGLE is set to TRUE, otherwise it is set

to FALSE.

-91-

5.12.13.5 Source with Destination

The source with destination option (see paragraph 5.12.3.4 category II) compares

a specified number of source characters with the same number of destination

characters. If the relation is satisfied, TOGGLE is set to TRUE, otherwise it

is set to FALSE. The execution of this statement affects SI and DI as follows:

SI +- SI + ri
c c

DI +- DI + ri c c

5. 12.13.6 Source Bit

(overflow into SI ca.n occur) w
(overflow into DI can occur) w

This test causes one source bit to be tested for 1. TOGGLE is set to TRUE

if the result of the test is true, otherwise it is set to FAISE.

5.12.13.7 TOGGLE

This test is merely one for the value of TOGGLE. It does not change the TOGGLE

value.

5.12.13.8 Source for Alpha

The source for alpha option (see paragraph 5.12.3.4, category II, for SI only)

tests one source character. If it is a letter or a digit, TOGGLE is set to

TRUE, otherwise it is set to FALSE.

5.12.14 Dummy Statement

5 • 12 . 14. 1 Syntax

l (dummy statement) : : = (empty)

5.12.14.2 Examples

BOTTOM:

FINI:

5.12. 14.3 Semantics

A dummy statement executes no operation. It may se:rye to place a label.

-92-

Character

blank

<

&

*
)

<

I

'

%
=

"

@

>
>
+

.APPENDIX A

B 5000 INTERNAL CHARACTER CODES

In Order of Collating Se~uence

(with Text References)

6-Bit Code

11 0000

01 1010

01 1011

01 1101

01 1110

01 1111

01 1100

10 1010

10 1011

10 1101

10 1110

10 1111

10 1100

11 0001

11 1010

11 1011

11 1101

11 1110

11 1111

00 1010

00 1011

"'"' 11 C1 vv

00 1110

00 1111

01 0000

Text References

(1 . 2, 2. 4, 2. 7, 4. 7' 5. 12. 6)

(1.2, 2.4, 2.6, 3.2, 5.7, 5.12.6)

(1.2, 2.4, 3.1, 3.2, 3.6, 4.8.2, 4.8.3, 4.9, 5.2,

5.6, 5.7, 5.8, 5.11, 5.12.6)

(1.2, 2.4, 3.2, 3.3, 3.4, 3.5, 3.6, 4.7, 4.8.2, 4.8.3,

4.8.4, 5.6, 5.7, 5.8, 5.10, 5.11, 5.12, 5.12.6,

5 . 12. 10, 5 . 12 . 11)

(1 . 2, 2. 4, 3 . 5' 5 . 12. 6)

(1.2., 2.4, 4.2, 4.6, 5.3, 5.12.5, 5.12.6, 5.12.9)

(1.2, 2.4, 5.12.6)

(1.2, 5.12.6)

(1.2, 2.4, 3.4, 4.9, 5.11, 5.12.6)

(1 .2, 2 .4, 3 .2, 3 .3, 3 .4, 3 .5, 3 .6, 4. 7, 4 .8 .2, 4.8 .3,,

4.8.4, 5.6, 5.7, 5.8, 5.10, 5.11, 5.12, 5.12.6,

5 . 12. 1 o, 5 . 12. 11)

(1 .2_, 2.4, 4.1, 5 .11, 5 .12, 5 .12.6,, 5 .12.10)

(1 . 2, 2 . 4, 3 . 5' 5 . 12 . 6)

(1.2, 2.4, 2.6, 3.4, 5.12.5, 5.12.6)

(1 .2, 2.4, 3 .4, 5 .7,, 5 .12.6)

(1 .2, 2.4, 3 .1, 3.3, 4.6, 4.7, 4.8.2, 4.8.3, 4.8.4, 4.9,

.5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7J 5.8, 5.10,

5. 11, 5. 12, 5. 12. 6)

(1 . 2, 5 . 12. 6)

(1 . 2, 2. 4, 3. 5,, 5 . 4, 5 . 12. 6, 5 . 12. 13)

(1 . 2, 2 . 4' 3 . 1 ' 3 . 2' 3 . 6, 4 . 8 . 2, 4 . 8 . 3' 4 . 9, 5 . 2, 5 . 6'

5.7, 5.8, 5.11, 5.12.6)

(1.2, 2.4, 2.7, 3.3, 4.7, 5.12.6, 5.12.13)

(1 .2, 2.4, 5 .4, 5 .12.6)

(1.2, 2.4, 2.6, 5 .12.6)
(., ,..., 2 l. 3 2 4 "'), 1 4.;:;.), ()~ ·'"' :: 1 "' [:" 1 ,....).
\ I • C:. J • '-t' • J • VJ '+ • I J ,,, , '-t • ...,) ' - • c., ,) • VJ) • C:. • '+,

5. 12. 6, 5-~ 12. lC}

(1 . 2, 2 . 4, 3 . 5, 5 . 1 2 . 6)

(1 . 2, 2 . 4, 3 . 5, 5 . 1 2 . 6)

(1.2, 2.4, 2.6, 3.4, 5.12.5, 5.12.6, 5.12.9)

-A1-

.APPENDIX A (continued)

Character 6-Bit Code Text References

A 01 0001 (1.2, 2. 1, 5.7, 5.12.6)

B 01 0010 (1 .2, 2. lJ 5.12.6)

c 01 0011 (1 .2, 2. 1, 5.12.6)

D 01 0100 (1 .2, 2 .1, 5. 7J 5.12.6)

E 01 0101 (1 .2, 2.1, 5 . 7, 5 • 1 2 . 6)
F 01 0110 (1 .2, 2. 1, 5.7, 5.12.6)

G 01 0111 ("I 2
\ I • 1 2. 1, 5.12.6) ~

H 01 1000 (1 . 2, 2. 1J 5.12.6)

I 01 1001 (1 .2, 2. 1, 5.7, 5.12.6)

x 10 0000 (1 .2, 2.4, 3 . 4, 5 . 1 2 . 6)
J 10 0001 (1 .2, 2. 1, 5.12.6)

K 10 0010 (1 .2, 2 .1, 5.12.6)

L 10 0011 (1 . 2, 2. 1, 5.7, 5.12.6)

M 10 0100 (1 .2, 2. 1, 5.12.6)

N 10 0101 (1 .2, 2. 1, 5.12.6)

0 10 0110 (1 . 2, 2. 1, 5.7, 5.12.6)

p 10 0111 (1 .2, 2. 1, 5.12.6)

Q 10 1000 (1 .2, 2. 1, 5.12.6)

R 10 1001 (1 . 2_, 2. 1, 5.12.6)

I= 11 1100 (1 .2, 2.4, 3.5, 5.12.6)

s 11 0010 (1 .2, 2. 1, 5.12.6)

T 11 0011 (1 . 2,_ 2. 1, 5.12.6)

u 11 0100 (1 . 2,, 2. 1, 5.12.6)

v 11 0101 (1 . 2, 2. 1, 5.12.6)

w 11 0110 (1 • 2, 2. 1, 5.12.6)

x 11 0111 (1 .2, 2. 1, 5.7, 5.12.6)

y 11 1000 (1 . 2, 2. 1, 5.12.6)

z 11 1001 (1. 2, 2 .1, 5.12.6)

-P2-

APPENDIX A (continued)

Character 6-Bit Code Text References

0 00 0000 (1. 2,, 2.2, 4.9, 5 .6, 5 .12 .6, 5 .12 .13)

1 00 0001 (1.2, 2.2, 4.9, 5 . 6' 5 .12 . 6' 5.12.13)

2 00 0010 (1.2, 2.2, 4.9, 5 .6, 5 .12 .6)

3 00 0011 (1.2, 2.2, 4.9, 5 .6, 5 .12 .6)

4 00 0100 (1.2~ 2.2, 4.9, 5 .12.6)

5 00 0101 (1.2, 2.2, 4.9, 5 .12.6)

6 00 Olle1 (1.2, 2.2, 4.9, 5 .12 .6)

7 00 0111 (1.2, 2.2, 4.9, 5 .12 .6)

8 00 1000 (1. 2_, 2.2, 5 .12 .6)

a 00 1001 (1 '? 2 .2,_ 5 .12 .6) ./ \ ~,

? 00 1100 (1.2)

-A3-

INDEX

Metalinguistic Variables

The syntactical definition of each Extended AIGOL metalinguistic variable will

be found in the section or subsection shown below. Where more than one ref­

erence is given, the succeeding references represent the same definition in a

different context or a discussion of the semantics of the metalinguistic

variable. References in parentheses indicate the use of the metalinguistic

variable in the right-hand part of a syntactical definition.

{actual parameter) 3-3j 4.7

{actual parameter list) 3.3, 4.7

{actual parameter part) 3.3, 4.7

(adding operator) 3.4, 5.12.5

{arithmetic expression) 3.4
(3 .o, 3 .1, 3 .2, 4.2, 4.6, 4.8 2,
4.8.4, 4.9, 5.2, 5.8)

(arithmetic operator) 2.4

(array declaration) 5.2
(5 .o)

(array identifier) 3.1, 4.9
(3.3, 4.7, 5.2, 5.10)

{array identifier list) 5.11

{array kind) 5 • 2

(array list) 5.2

{array segment) 5.2

{array specification) 5.11

(array specifier) 5.11

(array specifier list) 5.11

(assignment statement) 4.2
(4.o)

(basic statement) 4.o
I I - \

\4.))

-Il -

(basic symbol) 2.0

(bits in field) 3.2

{block) 4.1
(4.o, 4.5)

(block head) 4.1

(blocking) 5.6

(blocking option) 5.6

(Boolean expression) 3.5
(3 .o, 3 .4, 4.2, 4.5, 4.6, 4.8 .2, 5 .8)

(Boolean factor) 3.5

(Boolean primary) 3.5

(Boolean secondary) 3.5

(Boolean term) 3.5

{bound pair) 5.2

(bound pair list) 5.2

(bracket) 2.4

(buffer part) 5.6

(buffer size) 5.6

(carriage control) 4.8.3

(character) 1 .2

(compound nest) 5.12.10

(compound statement) 4. 1
(4.o, 4.5)

(compound stream statement) 5.12.12
(5.12.4)

(compound stream tail) 5.12
(5 . 12 0 12)

(compound tail) 4.1

(conditional statement) 4 .5
(4.o)

(conditional stream statement) 5.12.13

(disposition) 5.6

(double space) 4.8.3

(dummy statement) 4.4
(b. ())
\ I. - '

(dump indicator) 5.10

(dump list) 5.10

(dump list element) 5.10

(dump part) 5 . 10

(5.12.4) (editing phrase) 5.7

(decimal fraction) 2.6

(decimal number) 2.6

(decimal places) 5.7

(declaration) 5.0
(4. 1)

(declarator) 2.4

(define declaration) 5.4
(5 .o)

(defined identifier) 5.4
(4.7)

(definition) 5.4

(definition list) 5.4

(delimiter) 2. 4
(2.0)

(designational expression) 3.6
(3.0, 4.3, 5.3)

(destination aadress part) 5.12.5

(editing phrase type) 5.7

(editing segment) 5.7

(editing specifications) 5-7

(empty) 1 .2
(3 .3, 4.4, 4.7, 4.8.J, 4.8.4, 5 .2, 5 .6,
5.7, 5.9, 5.11, 5.12, 5.12.6)

(end of file) 5.6

(exponent part) 2.6

(expression) 3.0
(3 .3, 4. 7)

(expression list) 4.8.2, 5.8

(expression part) 4.8.2, 5.8

(factor) 3.4

(field description) 3.2

(field part) 5.7

(field width) 5.7

(destination string statement) 5.12.6 (file control part) 5.6
(5.12.4)

(diagnostic declaration) 5.10
(5 .o)

{digit) 2.2
(2 .o, 2 .5, 2 .6)

-I2-

(file declaration) 5.6
(5 .o)

(file identifier) 5.6
(3.3, 4.7, 4.8.2, 4.8.3,

{file part) 5.6

{fill statement) 4.9
(4.o)

{for clause) 4.6
(4.8.2,, 5.8)

{for list) 4.6

(for list element) 4.6

{formal para.meter) 5.11
(5. 12, 5. 12. 11)

(formal p~ra.meter list) 5.11 1 5.12

{formal :parameter pa.rt) 5.11

{format and list para.meters) 4.8.3

(format and list part) 4.8.3

{format declaration) 5.7
(5 .0)

(format identifier) 5.7
(3 . 3, 4. 7, 4. 8. 2, 4. 8. 3)

{format part) 5.7

{for statement) 4.6
(4.o, 4.5)

(forward :procedure declaration) 5.9
(5 .o)

(forward reference declaration) 5.9

(forward switch declaration) 5.9

{function designator) 3.3
(3 . 2, 3 . 4, 3 . 5)

(go to statement) 4.3
(4.o)

(identifier) 2.5
(3.1, 3.3, 3.6, 4.9, 5.4, 5.5,
5.6, 5.7, 5.8_, 5.11, 5.12)

(identifier list) 5. 11, 5 .12

(if clause) 3.4, 4.5
(3.5, 3.6)

{if statement) 4.5

(illegitimate character) 1 .2

(implication) 3.5

{initial value) 4.9

{input convert) 5.12.6

{input or output) 5.7

(input parameters) 4.8.2

(integer) 2.6
(5. 11)

(I-0 part) 5 .6

(I-0 statement) 4.8
(4.o)

{I-0 unit control) 5.6

(ju.mp out statement) 5 .12.10

(label) 3 . 6, 5 . 5, 5 . 12
(4.o, 4. 1, 4.5, 4.6, 5 .6, 5. 1 o,
5. 12. 4, 5. 12. 7, 5. 12. 10)

{label declaration) 5.5, 5.12
(5 .o)

-I3-

(label list) 5.5, 5.12

(left bit of field) 3.2

(left part) 4.2

{left part list) 4.2

(letter) 2. 1
(2.0, 2.5, 2.7, 4.7)

(letter string) 2.7, 4.7

(list) 4.8.2, 5.8
(4.8.3)

(list declaration) 5.8
(5 .o)

(list identifier) 5.8
(3.3, 4.7, 4.8.2)

{list part) 5.8

{list segment) 4.8.2, 5.8

(literal bits) 5.12.6

(literal characters) 5.12.6

(literal transfer} 5.12.6

(local or own type} 5.1, 5.2

(logical operator} 2.4

(logical value) 2.3
(2.0, 3 .5)

{lower bound) 5.2

(lower bolllld list} 5.11

{monitor list) 5.10

{monitor list element) 5.10

{monitor part) 5.10

{multiplying operator) 3.4

(nest} 5. 12. 10

{no space) 4.8.3

{number) 2.6
(4.9)

(number of buf'fers) 5.6

(octal digit) 4.9

(octal number) 4.9

(procedure body} 5.11

(procedure declaration) 5.11
(5 .0)

(procedure heading)
(5 .9)

c:: 1 1
./•I 1

(procedure identifier} 3.3, 5.11
(4.2_, 4.7, 5.10, 5.12)

(procedure statement) 4.7
(4.o)

{procedure type) 5.9

(program} 4. 1

< t . \ 2 r- .. r-. /" proper s ring/ . (, J • 1 c . o

{read statement} 4.8.2
(4.8)

{recall address statement) 5.12.5

{records per block} 5.6

{relation} 3 .5

{relational operator) 2.4, 3.5
(5.12.13)

{release statement) 4.8.4
(4.8)

{repeat part) 5.7, 5.12.6

(repetitive indicator) 5.12.6
(operator) 2.4 (5.12.8, 5.12.10, 5.12.13)

(output convert) 5.12.6

(output parameters) 4.8.3

(parameter delimiter) 3.3, 4.7
(5. 11, 5 . 12)

(partial word designator) 3.2
(3.4, 3.5, 4.2)

{partial word operand) 3.2

(:prim.9.ry) 3 .4

(row} 4.9

(row designator) 4.9

(save factor) 5.6

{separator) 2.4

(se~uential operator) 2.4

{set address statement) 5.12.5

(simple arithmetic expression)
(3 .5)

-I4-

(simple Boolean) 3.5 (stream block) 5.12

(simple designational expression) 3.6 (stream block head) 5.12

(simple variable) 3 . 1
(5.1, 5.6, 5.10)

(single space) 1 .2, 5.12.6
(2.4)

(skip address statement) 5.12.5

(skip bit statement) 5.12.8
(r:. 12), \
\,.I • • "T J

(skip to channel) 4.8.3

(skip to next page) 4.8.3

(source address part) 5.12.5

(source bit) 5 . 12. 13

{source for alpha) 5.12.13

(source or destination bit) 5.12.8

{source string transfer) 5.12.6

{source with destination) 5.12.13

(source with literal) 5.12.13

{space) 1 .2
(2.7, 4.7)

{specification) 5.11

{specification list) 5.11

{specification part) 5.11

{specificator) 2.4

(specified lower bound) 5.11

(specifier) 5.11

(statement) 4.o
(4. 1, 4. 5' 4. 6, 5 . 11)

(store address statement) 5.12.5

{stream address index) 5.12.5

{stream address statement) 5.12.5
(5.12.4)

{stream arithmetic expression) 5.12.5

(stream declaration) 5.12

(stream formal parameter part) 5.12

(stream go to statement) 5.12.7
(5.12.4)

(stream if clause) 5.12.13

(stream nest statement) 5.12.10
(5 .12.4)

(stream primary) 5.12.5
(5. 12.9)

(stream procedure declaration) 5.12
(5 .0)

(stream pro~edure heading) 5.12

(stream release statement) 5.12.11
(5.12.4)

{stream simple variable) 5.12
(5.12.5, 5.12.6, 5.12.9

(stream statement) 5.12.4
(5.12, 5.12.10)

{stream tally statement) 5.12.9
(5 .12.4)

(stream variable declaration) 5.12

(stream variable list) 5.12

{string) 2.7, 5.12.6
(3 . 4, 4. 9, 5 . 7)

(string bracket character) 1 .2, 5.12.6
(2 • 7, 5 . 1 2 • 1 3)

(string character) 1 .2, 5.12.6
(2. 7 > 5. 12. 13)

(subscript expression) 3.1
(3 .6)

(subscript list) 3 .1

{subscripted variable) 3.1
(5. 10)

{switch declaration) 5.3
(5 .o)

-I5-

{switch designator) 3.6

{switch identifier) 3.6
(3.3, 4.7, 5.3, 5.9, 5.10)

{switch list) 5.3

{term) 3.4

{test) 5. 12. 13

(transfer and add) 5.12.6

(transfer and convert) 5.12.6

(transfer character portions) 5.12.6

(transfer characters} 5.12.6

(transfer part) 5.12.6

{transfer type) 5.12.6

{transfer words) 5.12.6

(tYJ;>e) 5.1
(5.2, 5.9, 5.11, 5.12)

(type declaration) 5.1
(5.0)

(type list) 5. 1

{unconditional statement) 4.o, 4.5

(unconditional stream statement) 5.12.4
(5.12.13)

(unlabelled basic statement) 4.0

(unlabelled block) 4.1

(unlabelled compound statement) 4. 1

{unlabelled stream statement) 5.12.4

(unsigned integer) 2.6
(3. 2, 4. 8. 3, 5. 6, 5. 7, 5. 1 o, 5. 12. 5'
5.12.6)

(unsigned number) 2.6
(3 .4)

{upper bound) 5.2

{value list) 4.9

(value part) 5.11, 5.12

(variable) 3 . 1
(3 .2, 3 .4, 3 .5,, 4.2, 4.6)

{variable identifier) 3.1, 5.12

(visible string character) 1.2, 5.12.6

(word count) 4.8.4

(write statement) 4.8.3

-r6-

INDEX (continued)

Reserved Words

Reserved words in Extended ALGOL a.re discussed and used in the sections and

subsections listed below. The use of parentheses indicates that these words

do not appear in the left-hand pa.rt of a syntactical definition.

ABS (3.3.4)

ADD (2.4, 5. 12.6)

ALPHA. (2. 4,, 5 . 1, 5 . 1 2 . 13)

AND (2.4, 3 .5)

ARCTAN (3.3.4)

A_"RR.AY (2.4, 5 .2, 5 .11)

BEGIN (2.4, 4.1, 5.12, 5.12.12)

BOOLEAN (2 .4, 5. 1)

CHR (2.4, 5.12.6)

CI (2 • 4, 5 . 1 2 • 5)

COMMENT (2.4)

cos (3.3.4)

DB (2.4, 5.12.8)

DBL (2. 4, 4. 8. 3)

DC (2 . 4, 5 . 1 2 . 5' 5 . 1 2 • 1 3)

DEC (2.4, 5. 12.6)

DEFINE (2.4, 5.4)

DI (2. 4, 5. 12. 5)

DIV (2.4, 3 .4)

DO (2.4, 4.6)

DOUBLE (2.4, 5. 1)

DS (2 . 4, 5 . 1 2 . 6)

DUMP (2.4, 5.10)

-I7-

ELSE (2.4, 3.4, 3.6, 4.5)

END (2 . 4, 4 . 1 ' 5 . 1 2)

ENTIER (3 .3. 5)

EQV (2. 4, 3 .5)

EXP (3.3.4)

FALSE (2 .3)

FILE (2.4, 5.6, 5. 11)

FILL (2.4_, 4.9)

FOR (2 .4, 4.6)

FORMAT (2.4, 5.7, 5.11)

FORWARD /2 I. \ . <+, 5.9)

GO (2. 4, 4. 3~ 5. 12. 7)

IF (2. 4, 3. 4, 4. 5, 5. 12. 13)

IMP (2 • 4, 3 . 5)

IN (2.4, 5.6, 5.7)

INTEGER (2.4, 5 .1)

JUMP (2. 4, 5. 12. 10)

LABEL (2.4, 5.5, 5.11, 5. 12)

LIST (2 . 4, 5 . 8, 5 • 11)

LIT (2 . 4, 5 . 1 2. 6)

LN (3.3.4)

LOC (2 . 4, 5 . 1 2 • 5)

LOCAL (2. 4, 5. 12)

MOD (2.4., 3.4)

MONITOR (2.4, 5.10)

NO (2 . 4} 4. 8 . 3)

NOT (2. 4, 3. 5)

NUM (2 . 4, 5 . 1 2 . 6)

OCT (2.4, 4.9, 5.12.6)

OR (2 .4, 3 .5)

OUT (2 .4., 5 .6, 5.7, 5.12.10)

OWN (2.4, 5.1, 5.2)

PAGE (2 . 4, 4 . 8 . 3)

PROCEDURE (2.4, 5.9, 5.11, 5.12)

READ (2.4, 4.8.2)

REAL (2.4, 5.1)

RELEASE (2.4, 4.8.4, 5.12.11)

RESET (2.4, 5.12.6)

REVERSE (2.4, 5.6)

SA VE (2. 4, 5 • 2)

SB (2.,4, 5. 12. 8, 5.12.13)

SC (2.4, 5.12.5, 5.12.13)

SET (2.4, 5 .12.6)

SI (2.4, 5.12.5)

SIGN (3.3.4)

SIN (3.3.4)

SKIP (2.4, 5.12.8)

SQRT (3.3.4)

S'"I1EP (2 .4, 4. 6)

5. i 2)

SUB (2.4, 5.12.6)

SWITCH

TALLY (2.4, 5.12.9)

THEN (2 .4, 3 .4, 4.5, 5. 12. 13)

TO (2.4, 4.3, 5.12.7)

TOGGLE (2 . 4, 5 . 1 2 . 13)

TRUE (2.3)

UNTIL (2.4, 4.6)

VALUE (2.4, 5. 11, 5 .12)

WDS (2 • 4, 5 . 1 2 • 6)

WHILE (2.4, 4.6)

WITH (2 .4, 4.9)

WRITE (2.4, 4.8.3)

ZON (2. 4, 5. 12. 6)

-::::8-

LffHO IN UJ;.A.

Burroughs Corporation
DETROIT, MICHIGAN 48232

Offices ,in Principal Cities
In Canada: Burroughs Business Machines Ltd., Toronto, Ontario

3-8-6

REV._ A

5000-21012

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	54A
	54B
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	69A
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	A-01
	A-02
	A-03
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	xBack

