
\

, in U.S. America

Burroughs

B 5500/B 5700
ELECTRONIC INFORMATION

PROCESSING SYSTEMS
OPERATION MANUAL

Burroughs Corpora.tion
Detroit, Michigan 48232

$15.00

9-68
Revised 6/15/71 by
PeN 1024916·015 1024916

COPYRIGHT © 1966, 1964, 1963 BURROUGHS CORPORATION

AA 820300, AA.745636, M 662176, AA 662175, AA 619948

The revised edition of this manual, dated 9-68, incorporated the
following PCN's:

1024916-001 (Mar. 1, 1968)
1024916-002 (Mar. 15, 1968)
1024916-003 (May 15, 1968)
1024916-004 (Jun. 6, 1968)
1024916-005 (Jul. 15,1968)
1024916-006 (Aug. 29, 1968)

This reprint includes the information released under the following
PCN's:

1024916-007 (Feb. 21, 1969)
1024916-008 (Mar. 28, 1969)
1024916-009 (May 1, 1969)
1024916-010 (May 26, 1969)
1024916-011 (Sep. 5,1969)

Burroughs B 5500 Electronic Information Processing System

SECTION

1

2

TABLE OF CONTENTS

TITLE

INTRODUCTION •

SYSTEM DESCRIPTION •

General.

Functional Description •

System Design.

Data Communications System •

SYSTEM EQUIPMENT •

General.

Operator Console •

Control Panel.

Supervisory Printer.

Functional Characteristics •

Control Panel.

B 5005 Basic Auxiliary Memory Subsystem.

Control Panel.

B 122 Card Reader.

Functional Characteristics •

Control Panel.

Operating Procedures •

Not Ready Conditions •

Card Jam •

Stacker Full •

Cover Not in Place •

Empty Hopper •

STOP Switch Pressed.

FEED CHECK Indicator Lit •

READ CHECK Indicator Lit •

Operator Maintenance •

B 123 Card Reader.

Functional Characteristics •

Control Panel.

PAGE

xvii

1-1

1-1

1-2

1-2

1-3

2-1

2-1

2-1

2-2

2-4A

2-4A

2-5

2-8

2-8A

2-8B

2-8C

2-9

2-11

2-12

2-13

2-14

2'7 1 5

2-15

2-15

2-15

2-15

2-16

2-17

2-17

2-19

Revised 6/15/71 by
PCN 1024916-015 V

I

•
II

SECTION

2 (cont)

I

vi

TABLE OF CONTENTS (cont)

TITLE

Operating Procedures •

Not Ready Conditions •

Read Check Condition.

Feed Check Condition.

Card Jam .Iff;,: '-:0 '{ ~: 0)\1.

Stacker Full

Cover Not in Place •

Empty Hopper • • • • • •

STOP Switch Pressed.

READ CHECK Indicator Lit •

FEED CHECK Indicator Lit •

Operator Maintenance • • • • •

B 9111 and B 9112 Card Readers

B 9111 Card Reader • •

Functional Characteristics

Control Panel •••••

Operating Procedures •

Not Ready Conditions •

Feed Error Condition.

Card Jam •

Operator Maintenance

B 9210 Card Punch.

Functional Characteristics •

Control Panel •••••

Operating Procedures • •

Unloading Cards •••••••

.

Not Ready Conditions ••••••

FEED CHECK Indicator Lit •••

STOP Switch Pressed. • ••••••

Empty Hopper • • • • • • • • • • • • •

Cover Opened •

PAGE

2-21

2-26

2-27

2-27

2-28

2-29

2-29

2-29

2-30

2-30

2-30

2-32

2-33

2-33

2-34

2-34

2-34

2-34A

2-34A

2-34A

2-34A

2-34A

2-34A

2-34D

2-36

2-37

2-37

2-38

2-43

2-43

2-43

SECTION

2 (cont)

TABLE OF CONTENTS (cont)

TITLE

Card Not at Ready Station.

Punch Die Not in Place •

Card Not at Read Station •

PUNCH CHECK Indicator Lit.

Stacker Full • • •

Operator Maintenance

B 9211 Card Punch. • • •

Functional Characteristics •

Control Panel •••••

Operating Procedures

Unloading Cards ••••••

Not Ready Conditions •

FEED CHECK Indicator Lit •

STOP Switch Pressed ••

Empty Hopper • • • • •

Feed Roll Block Not Locked •

Punch Block Not Locked • •

Card Not at Prepunch Station • •

Primary, Error, or Auxiliary
Stacker Full • • • • • • • • • •

Covers Not in Place •••••

PUNCH CHECK Indicator Lit ••

Operator Maintenance • • • •

B 92l2-l/B 9213-1 Card Punches •

B 9213-1 Card Punch. •

Functional Characteristics •

Control Panel •••••

Operating Procedures •

Unloading Cards ••••

Not Ready Conditions.

Empty Hopper

Full Stacker

Failure to Feed. •

Revised 6/15/71 by

PAGE

2-43

2-43

2-43

2-43

2-44

2-44

2-45

2-46

2-47

2-49

2-51

2-52

2-53

2-56

2-56

2-56

2-56

2-57

2-58

2-58

2-58

2-58

2-59

2-59

2-60

2-61

2-62A

2-62B

2-62B

2-62C

2-62C

2-62C

PeN 1024916-015 vii

I

SECTION

2 (cont)

viii

TABLE OF CONTENTS (cont)

TITLE

Pressing STOP Switch.

Jam Condition •••••

Punch Mechanism Not Locked •

Feed Roll Block Not Locked

Cover Not Closed • • •

PUNCH CHK Indicator On

Operator Maintenance • • •

B 9240/B 9241 Line Printers ••

B 9240 Line Printer. • • • • •

Functional Characteristics •

Control Panel •••

Forms Handling •

Tape Punching. •

Operating Procedures

Changing the Ribbon. •

.

Inserting the Carriage Control Tape ••

Tape and Forms Registration. •

Not Ready Conditions ••.•

END OF PAPER Indicator Lit

Print Drum Not in Position

PAGE

2-62D

2-62D

2-62E

2-62E

2-62F

2-62F

2-62F

2-62G

2-62G

2-62G

2-62H

2-63

2-64

2-66

2-69

2-74

2-75

2-76

2-76

2-77

Line Selection Knob in N Position. • • 2-77

Paper Slews for More than
One Second • • • • • • • •

STOP Switch Pressed.

Operator Maintenance

B 9242 and B 9243 Series Line Printers •

B 9242-4 Line Printer. • . . .
Functional Characteristics •

Control Panel ••

Forms Handling •

.
Tape Punching.

Operating Procedures •

Changing the Ribbon.

2-77

2-77

2-77

2-78

2-78A

2-78A

2-78B

2-78C

2-78C

2-78D

2-78G

SECTION

2 (cont)

TABLE OF CONTENTS (cont)

TITLE

Inserting the Carriage Control Tape ••

Tape and Forms Registration.

Not Ready Conditions •••

END OF PAPER Indicator Lit

Print Drum Not In Position.

Paper Slew for More Than One Second. •

START/STOP Switch Pressed. • •••

Operator Maintenance

B 9120 Paper Tape Reader •

Functional Characteristics • •

Channel Select Plugboard • • • • • • •

B 9926 Input Code Translator • ••••

Control Panel •••••

Operating Procedures • • • • • • • • • • •

Stopping Tape Movement •

Unloading Paper Tape •

Applying Adhesive Opaque Strips ••

Operator Maintenance •

B 9220 Paper Tape Punch. • • • • • • • • • • •

Functional Characteristics • • •

Channel Select Plugboard • •

B 9928 Code Translator •

Control Panel •••

Loading Paper Tape •

Unloading Tape •

Rewinding Tape •

Chad Receptacle ••

Splicing Paper Tape.

. .

Operator Maintenance • •

B 9391/B 9394-1/B 9396 /B 9396-1
Magnetic Tape Units ••••.

B 9396 Magnetic Tape Unit •••••

Functional Characteristics • •

Revised 6/15/71 by
PeN 1024916-015

PAGE

2-78J

2-78K

2-78K

2-78L

2-78L

2-78L

2-78L

2-78L

2-78M

2-80

2-80

2-81 •
2-84

2-87

2-90

2-91

2-9l

2-92

2-93 I
2-94

2-95

2-95 • 2-100

2-102

2-105

2-105

2-106

2-106

2-107

• 2-108

2-108 •
2-109

viiiA

SECTION

2 (cont)

I

I
I

viiiB

TABLE OF CONTENTS (cant)

TITLE

Control Panel •••

Loading the Supply Reel.

Unloading the Supply Reel ••

Loading the Take-Up Reel • •

Unlcading the Take-Up Reel •

Rewinding. • • • •

Attaching Leaders.

Splicing Magnetic Tape • •

Operator Maintenance •

Magnetic Tape Care • •

Magnetic Tape Storage.

Magnetic Tape Handling

Magnetic Tape Loading. •

.

Magnetic Tape Library Procedures •

B 9410 Peripheral Switching Unit •

Control Panel.

Disk File System • •

Functional Description • •

B 450 Basic Disk File/Data
Communications Cabinet • • • • • •

B 5374-3 Basic Disk File/Data
Transmission Terminal Unit Cabinet ••

B 5374-4 Disk File Expanded Control.

B 5374-5 Disk File Control Unit •••

B 9373 Disk File Electronics Unit.

Control Panel ••••••

Disk Lockout Switches ••

B 9374-1 Systems Memory Storage Module •

B 5376 File Protect Memory
(Shared Disk System) • • • • •

Data Communications Systems.

Data Communications System I •

B 5352-2 Data Transmission Control
Uni t (DTCU). • • • • • • • • • • •

. . . .

PAGE

2-110

2-112

2-116

2-117

2-118

2-118

2-118

2-120

2-121

2-122

2-122

2-123

2-123

2-124

2-124

2-126

2-128

2-128

2-129

2-129

2-129

2-130

2-132

2-132

2-134

2-134

2-136

2-138

2-139

2-139

SECTION

2 (cont)

3

TABLE OF CONTENTS (cont)

TITLE

B 5352-3 Data Transmission Terminal
Uni t (DTTU). • • • • •• ••••

Buffer Conditions •••
B 5350 Data Communications Processor
(System II). • • •• • •••

Control Panel ••••••

LOADING AND MAINTAINING THE SYSTEM •

General ••••••

Systems Material •

SYMBOL Tape.

Basic Change Deck.

Merging Patches ••

Compiling Source •

Examples •

SYSTEM Tape •••

Card Load Select Programs ••

ESPOL Loader P .i'ug"L'cun •

Halt/Load Program ••

Cold Start Program •

Cool Start Program •

.

Tape to Disk MCP Loader Program. •

Disk to Disk MCP Loader Program. •

Halt/Load Kernel Program.

Core to Tape Dump Program. •

MCP Loader Decks

Tape to Disk MCP Loader Deck •

Disk to Disk MCP Loader Deck •

System Loader Decks.

Cold Start Deck.

DRCTRYTP Card. • •

DIRECT Card. • •

PAGE

2-140

2-141

2-143

2-145

3-1

3-1

3-1

3-1

3-6

3-6

3-7

3-7

3-14

3-14

3-15

3-15

3-15

3-16

3-16

3-17

3-17

3-17

3-17

3-18

3-18

3-19

3-19

3-20

3-20

Revised 6/15/71 by
PeN 1024916·015 ix

I

I

SECTION

3 (cont)

4

x

TABLE OF CONTENTS (cont)

TITLE

ESU Card • • • •

SYSTEMS Card

FENCE Card •

DATE Card. •

FILE Card Group. •

OPTION Cards

STOP Card. •

Cool Start Deck • •

Control Cards for System Loading •

Disk Halt/Load Card .•••••••

Control Cards Used to Load Compilers

PAGE

3-21

3-21

3-22

3-22

3-23

3-26

3-35

3-35

3-36

3-37

onto Disk. • •• •••••••••• 3-37

System Procedures •• •••• ••. 3-37

System Start-Up Procedure. • • • • • 3-38

Loading the System from the System
Tape • • • • • • •

Program Scheduling Information

The Selection Algorithm •.•

The Multiprocessing Factor.

CONTROL INFORMATION •••

General • • • • •

Conventions.

Definitions.

Control Information Via Punched
Cards. • •

Control Cards • • •

COMPILE Card • •
Compile-and-Go Run. •

Compile-for-Library Run •

Compile-for-Syntax-Check Run. •

EXECUTE Card • • • • • • •

REMOVE Card.

DUMP Card - UNLOAD Card. •

LOAD Card - ADD Card •

CHANGE Card. • • • • •

3-38

3-39

3-40

3-41

4-1

4-1

4-1

4-1

4-8

4-8A

4-9

4-9

4-9

4-10

4-10

4-11

4-12

4-15

4-l6A

SECTION

5 (cont)

TABLE OF CONTENTS (cant)

TITLE

Loading a Control Deck
File onto Disk •

Card Reader CONTROL DECK File.

Magnetic Tape CONTROL DECK File.

Pseudo Decks on Disk •

Removing Pseudo Decks from Disk.

Copying a Control Deck onto Tape •

Calling the LDCNTRL/DISK Program
Out for Execution.

Parity on a Control Deck
Magnetic Tape File •

Pseudo Card Readers and the Use
of Pseudo Card Decks. ".

The RN Message to Turn On
Pseudo Card Readers.

The RN Message to Turn Off
Pseudo Card Readers.

Removing Decks from Pseudo
Card Readers •

Handling of Control Card Errors
in Pseudo Card Decks •

S}~bolic Library File on Disk.

Control Card Syntax •

Semantics.

Maintenance Function Examples.

End of Job and Error Messages •

Setup •

Copying Symbolic Library Tapes
onto Disk •

Log Maintenance.

Log Entry Specifications.

Code Word.

Control Card Information .

Compiler and Object Program
Information.

Special Records and Log Initialization.

Record Zero.

Record n + 1 .

Revised 1/8/71
by peN 1024916-014

PAGE

5-1

5-2

5-2

5-2

5-3

5-3

5-3

5-4

5-4

5-4

5-5

5-5

5-5

5-5

5-6

5-8

5-10

5-18

5-18

5-19

5-19

5-19

5-20

5-20

5-22

5-26A

5-26A

5-26B

xi

SECTION

TABLE OF CONTENTS (cant)

TITLE

Initializing the Log ••.

Remote Log Specifications.

Log Entry Specifications •

Type 1 Log-Out Entry •

Type 2 Log-In Entry. .
Type 3 Control Card Entry.

Type 4 Control Card Entry.

Type 5 Job Statistics.

· · ·
· · ·
· · ·

Creation of Remote Log Entries •

File Maintenance Procedures ••

Statistics Log • • • •

General Characteristics •

Time Sharing. •

Standard System •

Operation • • • •

File Descriptions • •

System Statistics File •

Statistics Log File .•.

Time-Sharing Log Additions ••

Disk Directory

Printer Backup Information •

Format of a PBT • • •

Format of Blocks on a PB File

·
·
·

Format of Records on a PB File ••

Format of Printer Backup File on Disk

File Opening Action •

Special Forms.

Closing a Print File on Disk.

Logging of PB Files.

APPENDIX A - Character Representation.

APPENDIX B - Identifiers •

APPENDIX C - Messages •••

. . .

APPENDIX D - The Remote SPO Station Facility

APPENDIX E - File Security System •••••••

xii

. .

. .

PAGE

5-26B

5-26B

5-26B

5-27

5-27

5-27
5-28

5-28

5-29

5-31

5-32
5-32

5-34
5-34

5-34

5-35
5-35
5-38

5-39
5-41
5-44

5-44

5-45
5-45
5-46

5-47

5-47
5-48

5-48

A-I

B-1
C-l

D-l

E-l

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE

APPENDIX F - Extended ALGOL Syntactical Error Messages . F-l

APPENDIX G - COBOL Compiler Error and Diagnostic Messages.. G-l

APPENDIX H - FORTRAN Compiler Error Messages • H-l

APPENDIX I - FORTRAN Translator Error Messages •

APPENDIX J - Compatible ALGOL Compiler Error Messages ••

APPENDIX K - The Breakout Process.

INDEX.

FIGURE

1-1

1-2

2-1

2-2

2-J

2-4

2-4A

2-4B

2---:5

2-6

2-7

2-8

2-9

2-10

2-11

2-12

2-lJ

2-14

2-14A

2-14B

2-15

2-16

LIST OF ILLUSTRATIONS

TITLE

Functions of a Data Processing System. •

Typical Systems Configuration.

Operator Console

Operator Console Control Panel •

Supervisory Printer ••

Supervisory Printer and Keyboard Controls ••

B 5005 Basic Auxiliary Memory Subsystem.

B 5005 Basic Auxiliary Memory Subsystem
Control Panel. ••••• • ••

B 122 Card Reader •••

B 122 Card Reader Control Panel.

B 122 Card Reader Read Mechanism ·
B 122 Card Reader Read Head Removed. ·
B 12J Card Reader. . . · · · · · ·
B 12J Card Reader Control Panel. · · · · ·
Stacker End Plate Assembly · · · · ·
Adjusting Stacker Front Wall · · · · · · ·
Loading Cards. . · · · · · · · ·
B 9111 Card Reader · · ·
B 9111 Card Reader Control Panel ·
B 9111 Card Reader Guide Plate Area. · · .
B 9210 Card Punch. • ·
B 9210 Card Punch Control Panel. · · .

. . .

. . .

Revised 6/15/71 by
PeN 1024916-015

I-I

J-l

K-l

one

PAGE

1-1

I-J

2-2

2-2

2-5

2-6

2-8

2-8A

2-8C

2-9

2-lJ

2-14

2-17

2-19

2-21

2-22

2-24

2-JJ

2-J4

2-J4B

2-J4B

2-J4D

xiii

I

•
I

LIST OF ILLUSTRATIONS (cont)

FIGURE TITLE PAGE

2-17 Loading Blank Cards. · · · · · · · · · 2-37

2-18 Unloading Punched Cards. · · · · · · · · · 2-38

2-19 Card Punch Assembly, Top View. · · · · 2-39

2-20 Removing the Chip Box. · · · · · · · · · · 2-40

2-21 Chip Box Area. . · · · · · · · · · 2-41

I 2-22 B 9211 Card Punch. · · · · 2-45

2-23 B 9211 Card Punch Control Panel. · · · · · · · 2-47

2-24 Loading Cards. . · · · · · · · · · · · · · 2-50

2-25 Removing Cards from Error Stacker. 2-51

2-26 Removing Cards from Normal Stacker · · · · 2-52

2-27 B 9211 Card Punch, Left Side Open. · · · · · · · · 2-54

2-28 B 9211 Card Punch, Right Side Open · · · · 2-55

2-28A B 9213-1 Card Punch. · · · · · · · · · · · 2-60

2-28B B 9213-1 Card Punch Control Panel. · · · · · · 2-62

2-28C B 9213-1 Card Punch, Top Cover Raised. 2-62D

2-29 B 9240 Line Printer. · · · · · · · · · · · 2-62G

2-30 B 9240 Line Printer Control Panel. · · · · 2-62I

2-31 Carriage Control Tape Punch. · · · · · 2-65

I 2-32 B 9240 Line Printer Component Layout · 2-67

2-33 Line Printer Paper Guide, Rear View. · · · · · · · 2-70

2-34 Removing the Printer Ribbon. · · · · · · · · · · · 2-71

2-35 Side View of Print Mechanism · · · · · · · 2-72

2-36 Ribbon in Proper Position. · · 2-73

2-37 Removing Ribbon from Tracking Device · 2-74

2-38 Carriage Control Tape Mechanism. · · · 2-75

2-38A B 9242-4 Line Printer. · · · · · · · · · · · · · · 2-78A

2-38B B 9242-4 Line Printer Control Panel. · 2-78B

2-38C B 9242-4 Line Printer Component Layout. 2-78D

2-39 B 9120 Paper Tape Reader · · · · · · · 2-79
2-40 Channel Select Plugboard Wiring. · · · · · · · 2-80

2-41 Plugboard Layout · · · · · · · · · · · · · · · 2-82

• 2-42 B 9120 Paper Tape Reader Control Panel · · · · 2-84

2-43 Threaded Paper Tape. · · · · · · · · · 2-89

xiv

FIGURE

2-44

2-45

2-46

2-47

2-48

2-49

2-50

2-51

2-52

2-53

2-54

2-55

2-56

2-57

2-58

2-59

2=59A

2-59B

2-60

2-61

2-62

2-63

2-64

2-65

5-1

5-2

5-3

TABLE

1-1

2-1

LIST OF ILLUSTRATIONS (cont)

TITLE

Paper Tape in Operating Position

Location of Opaque Strip on Paper Tape

B 9220 Paper Tape Punch. •

Channel Select Plugboard •

Plugboard Layout • • • •

B 9220 Paper Tape Punch Control Panel.

B 9220 Paper Tape Punch Transport ••

B 9396 Magnetic Tape Unit ••••

Magnetic Tape Unit Control Panel

Tape Follower Arm and Clamp •••

Magnetic Tape Reel with Write Ring.

Mounting the Supply Reel • •

Connecting the Tape Leader

Cutting Ends of Magnetic Tape.

Applying Adhesive Tape to Magnetic Tape Ends •

Location of BOT and EOT Markers.

B 9410 Peripheral Switching Unit • • •• • ••

B 9410 Peripheral Switching Unit Control Panel ••

B 450 Disk File/Data Communications Cabinet .•

B 9373 Disk File Electronics Unit •••••••

B 9373 Disk File Electronics Unit Control Panel ••

Disk Lockout Switches ••••

B 9374-1 Systems Memory Storage Module •

B 5350 Data Communications Processor •

Log Entry Formats •••••

Format of General Program Information. •

Format of One File-Information Record. •

LIST OF TABLES

TITLE

System Configuration Chart

Operator Console Switches and Indicators ••

PAGE

2-90

2-92

2-94

2-96

2-97

2-101

2-104

2-109

2-111

2-113

2-114

2-114

2-115

2-119

2-120

2-120

2-125

2-126

2-131

2-132

2-133

2-135

2-135

2-143

5-21

5-22

5-24

PAGE

1-4

2-2

Revised 6/15/71 by
PeN 1024916-015 xv

•

I

TABLE

2-2

• 2-2A

2-3

2-4

2-5

2-6

2-6A

2-7

2-7A

2-8

2-9

2-10

2-l0A

2-11

3-1

xvi

LIST OF TABLES (cont)

TITLE

Supervisory Printer Switches and Indicators.

B 5005 Basic Auxiliary Memory Subsystem
Control Panel Switches and Indicators ••

B 122 Card Reader Control Panel Switches
and Indicators • • • • • • • • • • • • •

B 123 Card Reader Control Panel Switches
and Indicators • •• •••••••••••

B 9210 Card Punch Control Panel Switches
and Indicators • • • • • •• •••

B 9211 Card Punch Control Panel Switches
and Indicators • • • • •

B 9213-1 Card Punch Control Panel Switches
and Indicators • • • • • • • • • • • • • •

B 9240 Line Printer Control Panel Switches
and Indicators ••••••••••••••

B 9242-4 Line Printer Control Panel Switches
and Indicators • • • • • • • • • • • • • • •

B 9120 Paper Tape Reader Control Panel
Switches and Indicators ••••••••

B 9220 Paper Tape Punch Control Panel
Switches and Indicators •••••

Magnetic Tape Unit Control Panel Switches
and Indicators • • • • • • • • •

B 9410 Peripheral Switching Unit Control
Panel Switches and Indicators •••••••

B 9373 Disk File Electronics Unit Control
Panel Switches and Indicators ••

SYMBOL/SYSTEM File Relationships • • • • • •

PAGE

2-6

2-8A

2-9

2-19

2-34D

2-47

2-62

2-62J

2-78B

2-85

2-101

2-111

2-127

2-133

3-1

INTRODUCTION

The productivity of a computer facility is largely dependent on an

operator's experience and knowledge of the hardware. When the pro-

grams produced for the installation have been refined and are ready

for use, the results obtained are largely controlled by the operator.

Therefore, some concept of the B 5500 System's logic and a thorough

knowledge of the hardware are important in order for the operator to

utilize the equipment effectively.

In preparing this manual for the B 5500 Information Processing

System, it was necessary to make some assumptions which affect its

content. A presumption was made that the reader is familiar with

the components of the system and has some perception of their func-

tions. Without this presumption, it would be difficult to prepare

a manual and still remain within reasonable limitations.

This manual is divided into the following five sections, and provides

a complete reference and operating guide, thus enabling personnel to

perform their duties efficiently on the B 5500 System.

SYSTEM DESCRIPTION .

SYSTEM EQUIPMENT •

LOADING AND MAINTAINING
THE SYSTEM .

CONTROL INFORMATION.

· Describes the B 5500 System configuration

and its functional capabilities.

• Depicts the units of peripheral equipment

that make up a B 5500 System and the

necessary procedures for placing them in

operation.

· Presents the procedures for starting the

system and introducing jobs both for

initial start-up and in-process condi­

tions.

Describes in detail the various types of

cards which supply control information

to the B 5500 System.

xvii

UTILITY ROUTINES . Presents and explains the routines in

the programing system that are designed

to facilitate the job of the programmer

and operator.

In addition, nine appendices supplement the subjects dealt with in

the text.

It should be understood that the information in this manual has been

acquired by Sales Technical Services from actual operating experience.

Each installation may encounter unique conditions in its operations

which may not be covered in this manual. Therefore, the assistance

of Burroughs Corporation is provided for any phase of the operation

by the District Sales Technical and Field Engineering staffs.

xviii

SECTION 3

LOADING AND MAINTAINING THE SYSTEM

GENERAL.

This section describes the materials ~nd procedures for loading and

maintaining the system.

SYSTEMS MATERIAL.

The following materials are required for loading and maintaining the

system. The items are described in more detail in subsequent para­

graphs.

a. SYMBOL Tape(s).

b. Basic change decks.

c. SYSTEM Tape(s).

d. Card Load Select Programs.

e. MCP Loader Decks.

f. System Loader Decks.

g. Disk'Halt/Load Card.

h. Control cards for system loading.

SYMBOL TAPE.

The SYMBOL Tape is a multifile tape; i.e., each SYMBOL Tape can con­

tain one or more files. Each file on the SYMBOL Tape is the symbolic

(source) program for a specific system (object) program. Table 3-1

shows the relationship between symbolic and system programs. Updated

SYMBOL Tapes are released to installations when the MARK level (sys­

tems software level) is changed; this allows all previous SYMBOL

Tapes, basic change decks, and patches to be discarded.

Table 3-1

SYMBOL/SYSTEM File Relationships

SYMBOL File Compiler SYSTEM File Program Function

SYMBOL/DCEPSY ESPOL MCP/DISK Data Communications Master
Control Program

Revised 11/20/70
by peN 1024916-013 3-1

SYMBOL File

SYMBOL/INTRNSY

SYMBOL/DUMPTAP

SYMBOL/COOLSY

SYMBOL/TAPEDSK

SYMBOL/DSKDSK

SYMBOL/KERNAL

SYMBOL/PMERG

SYMBOL/ESPOL

SYMBOL/XALGOL

SYMBOL/ALGOL

SYMBOL/TSPOL

SYMBOL/BASIC

SYMBOL/COBOL

SYMBOL/COBOL68

3-2

Table 3-1 (cont)

SYMBOL/SYSTEM File Relationships

Compiler SYSTEM File Program Function

-., --.~

ESPOL ~T/D~~~: Data communications in­
trinsic routines for MCP

ESPOL

ESPOL

ESPOL

ESPOL

ESPOL

XALGOL

ALGOL

ALGOL

ALGOL (

ALGOL

ALGOL

ALGOL

ALGOL

- '.
PATCH/MERGE'

Routine which generates
machine language core
dump deck

Routine which generates
Cold Start or Cool Start
Deck

Routine which generates
MCP Tape to Disk Loader
Deck

Routine which generates
MCP Disk to Disk Loader
Deck

Routine which generates
MCP Directory Search and
Disk to Core Loader Deck

Program to edit and merge
patches to update software

ESPOL Compiler Programming
System

"XALGOL/DISK-"\ Compatible ALGOL Compiler
. Programming System

'-.
ALGOL/DISK) ALGOL Compiler Programming

.-. System

TSPOL/DISK TSPOL Compiler Programming
System

BASIC/DISK BASIC Compiler Programming
System

COBOL/DISK COBOL Compiler Programming
System

- _-.-..........,

"-'COBOL68/DISK ~ COBOL (CODASYL- 68) Com­
r-.. '-. ..._. __ ._ .. -./' piler Programming System

Table 3-1 (cont)

SYMBOL/SYSTEM File Relationships

SYMBOL File Compiler

SYMBOL/FORTRAN ALGOL

SYMBOL/FORTLTR ALGOL

SYMBOL/CFILTER ALGOL

SYMBOL/AFILTER ALGOL

SYMBOL/DCFILL ALGOL

SYMBOL/DUMPANL ALGOL

SYMBOL/MAKCAST ALGOL

SYMBOL/TEXTED ALGOL

SYMBOL/INTERP ALGOL

SYMBOL/UPDATE ALGOL

SYMBOL/LOGOUT ALGOL

SYSTEM File

FORTRAN/DISK

FORTRAN/TRANS

CFILTER/DISK

AFILTER/DISK

DCFILL/PRT

DUMP/ANALYZE

1_/;' --.........,
....- '"',

(MAKCAST/DISK ";
~-.,.----' ~

TEXT/EDITOR

INTERP/DISK

UPDATE/USERS

LOGOUT/DISK

LDCNTRL/DISK

Program Function

FORTRAN Compiler Program­
ming System

FORTRAN Translator Con­
version System

COBOL Filter Conversion
System

ALGOL Filter Conversion
System

Data communications
program to create STUFF
Disk File for use with
DUMP/ANALYZE

Data communications
program to analyze and
print memory dump

System to create and
maintain symbolic li­
brary files

System to create and
maintain symbolic disk
files remotely

System for rapid compu­
tational use of remote
console

Data communications pro­
gram to create or update
valid security file with
MCP file security pro­
cedures

Data communications pro­
gram for analysis of
standard log

Object program to load
decks into pseudo
readers

Revised 11/20/70
by peN 1024916-013 3- 3

SYMBOL File

SYMBOL/DCLOGAN

SYMBOL/MASTER

SYMBOL/CHECKAL

SYMBOL/TSSMCP

SYMBOL/INTRNSY

SYMBOL/TSFILL

SYMBOL/TSDUMP

SYMBOL/TAPDSK

SOURCE/CANDE

USERSC/CANDE

MESAGE/CANDE

MSLDSC/CANDE

SYSDSK/CANDE

3-4

Table 3-1 (cont)

SYMBOL/SYSTEM File Relationships

Compiler

ALGOL

ALGOL

ALGOL

ESPOL

ESPOL

TSPOL

TSPOL

ESPOL

TSPOL

TSPOL

TSPOL

TSPOL

SYSTEM File

REMOTE/LOGAN

MASTER/TEST

CHECKAL/ALGOL

TSS/MCP

TSS/INT

TSFILL/PRT

TSDUMP/ANALYZE

CANDE/TSHARER

USER/CANDE

MESAGE/CANDE

MSGLDR/CANDE

SYSDISK/MAKER

PRNPBT/DISK

Program Function

Data communications
program for analysis of
remote log

COBOL maintenance test
routine

ALGOL maintenance test
routine

Time Sharing MCP

Time sharing intrinsic
routines for MCP

Time sharing program to
create STUFF Disk File
for use with TSDUMP/
ANALYZE

Time sharing program
to analyze and print
memory dump

Routine to generate Time
Sharing MCP Tape to Disk
Loader Deck

Time Sharing Program
Command and Edit Data
Communications Handler

Time sharing utility
program

Time sharing utility
program

Time sharing utility
program

Time sharing utility
program

Object program to print
MCP printer backup
tapes

SYMBOL File

HARDSC/CANDE

LETRSC/CANDE

PATCH/FIND

PATCH/QUIKLST

PATCH/REPLACE

SKEDSC/CANDE

LOADSC/CANDE

LISTSC/CANDE

MERGSC/CANDE

RESEQSC/CANDE

GARDSC/CANDE

COPYSC/CANDE

FILESC/CANDE

DLETSC/CANDE

PAPRSC/CANDE

Table 3-1 (cont)

SYMBOL/SYSTEM File Relationships

Compiler SYSTEM File Program Function

TSPOL HARD/CANDE Time sharing utility
program

TSPOL LETTER/CANDE Time sharing utility
program

TSPOL FIND/CANDE Time sharing verb
routine

TSPOL QUIKLST/CANDE Time sharing verb
routine

TSPOL REP LAC E/CANDE Time sharing verb
routine

TSPOL SCHEDUL/CANDE Time sharing verb
routine

TSPOL LOAD/CANDE Time sharing verb
routine

TSPOL LIST/CANDE Time sharing verb
routine

TSPOL MERG/CANDE Time sharing verb
routine

TSPOL RESEQ/CANDE Time sharing verb
routine

TSPOL GUARD/DISK Time sharing verb
routine

TSPOL COPY/CANDE Time sharing verb
routine

TSPOL FILES/CANDE Time sharing verb
routine

TSPOL DELETE/CANDE Time sharing verb
routine

TSPOL PAPER/CANDE Time sharing verb
routine

Revised 11/20/70
by peN 1024916-013 3- 5

Table 3-1 (cont)

SYMBOL/SYSTEM File Relationships

SYMBOL File Compiler SYSTEM File Program Function

APNDSC/CANDE TSPOL APPEND/CANDE Time sharing verb routine

PLSTSC/CANDE TSPOL PLIST/CANDE Time sharing verb routine

RSQBSC/CANDE TSPOL RESEQB/CANDE Time sharing verb routine

SYMBSC/CANDE TSPOL SYMB0 L/CANDE Time sharing verb routine

PNCHSC/CANDE TSPOL PUNCH/CANDE Time sharing verb routine

LFILSC/CANDE TSPOL LFILES/CANDE Time sharing verb routine

BASIC CHANGE DECKS.

Basic change decks have three purposes:

a. Execution of the PATCH/MERGE routine to analyze patch

releases and to generate a newly sequenced patch deck

in the form of a pseudo reader file.

b. Incorporation of the sequenced patch deck with the SYMBOL

(source) Tape.

c. Compilation of the SYMBOL Tape, with the patches, to create

an object file.

MERGING PATCHES. The basic change deck setup for the analysis, sub­

stitution, sorting, and printing of patches by PATCH/MERGE is:

3-6

a. ? EXECUTE PATCH/MERGE

b. ? DATA CARD

c. $.(number of patch decks) PATCHES FOR

(multifile ID).(mark level) CONFLICTS

d. $*COMPILE (object multifile ID)/(object file ID)

(compiler) LIBRARY

e. $*(compiler) FILE TAPE = SYMBOL/(source file ID)

f. $*FILE (input/output option) = (change option)

g. $*DATA CARD

h. $ (compiler option cards)

i. $#(patch deck serial number) FOR (multifile ID).(mark

level number) (number of cards in this patch deck)

j. (patch cards)

If more than one release patch deck is run at the same time, the cards

listed in i, j, and k above must be repeated for each deck.

COMPILING SOURCE. Once the PATCH/MERGE Operation has been completed,

Lhe compile deck with the edited patches may be executed by entering

the message RN (number of pseudo readers). This causes the edited

patches to be merged with the SYMBOL (source program) Tape by the com-

piler, and an object file to be created. In most cases, this object

file resides on disk; exceptions are those routines required to be in

card-deck format, such as the Tape to Disk MCP Loader Program Deck.

(It should be noted that these decks are produced with label cards

which should be discarded.) In cases where the object disk file has

been compiled under a name other than that in the relationship table,

the name of the old version should be changed through use of the Change

Control Card to avoid a duplicate library condition.

EXAMPLES. Basic change deck format examples for different conditions

are given in the following paragraphs.

An example of a basic change deck format for the Master Control Program

is as follows:

Revised 11/20/70
by peN 1024916-013 3-7

3-8

? EXECUTE PATCH/MERGE

? DATA CARD

$.xx PATCHES FOR MCP.XI CONFLICTS

$*EXECUTE ESPOL/DISK .COMPILE STANDARD MK XI MCP

$*PROCESS = 600; IO = 600

$*FILE STUFF = OOOOOOO/MCP DISK

$*FILE TAPE = SYMBOL/DCESPSY

$*FILE NEWTAPE = MCP/SOURCE TAPE

$*FILE LINE = MCP/LISTING BACK UP DISK

$*DATA CARD

$-CARDS NEEDED FOR MCP COMPILATION

$ SET BREAKOUT = TRUE

$ SET BREAKOUT = FALSE

$ SET DEBUGGING = FALSE

$ SET DEBUGGING = TRUE

$ SET DUMP = FALSE

$ SET DUMP = TRUE

$ SET DFX = FALSE

$ SET DFX = TRUE

$ SET INQUIRY = FALSE

$ SET INQUIRY = TRUE

$ SET DATACOM = FALSE

$ SET DATACOM = TRUE

$ SET DCSPO = FALSE

$ SET DCSPO = TRUE

$ SET DCLOG = FALSE

$ SET DCLOG = TRUE

$ SET CHECKLINK = FALSE

$ SET CHECKLINK = TRUE

$ SET DISKLOG = FALSE

$ SET DISKLOG = TRUE

$ TAPE LIST PRT STUFF NEW TAPE

NOTE

Since the last card for

each option determines

its setting, an option

may be changed by chang­

ing its card position.

$#PATCH NUMBER 1 FOR MCP.XI CONTAINS n CARDS

(n sorted patches)

$#PATCH NUMBER 2 FOR MCP.XI CONTAINS n CARDS

(n sorted patches)

$#PATCH NUMBER xx FOR MCP.XI CONTAINS n CARDS

(n sorted patches)

? END

NOTE

When the MCP is compiled, it is neces­

sary to execute the FILL/PRT Program

which builds the MCP/PRT Disk File used

by DUMP/ANALYZE. If the MCP is compiled

in the manner shown, FILL/PRT should be

executed as follows: '.I

? EXECUTE FILL/PRT

? FILE MCP = OOOOOOO/MCP DISK

? FILE INT = OOOOOOO/INT DISK

? END

An example of a basic change deck format for INTRINSICS is as follows:

? EXECUTE PATCH/MERGE

? DATA CARD

$.xx PATCHES FOR INTRINSICS.XI CONFLICTS

$*EXECUTE ESPOL/DISK .COMPILE STANDARD INTRINSICS

$*FILE STUFF = OOOOOOO/INT DISK

$*FILE NEWTAPE = INT/SOURCE TAPE

$*FILE DISK = INT/DISK

$*FILE TAPE = SYMBOL/INTRNSY

$*PROCESS = 60; 10 = 60

$*DATA CARD

$-CARDS NEEDED FOR INTRINSICS COMPILATION

$ SET TIMESHARING = TRUE

$ SET TIMESHARING = FALSE

$ SET INQUIRY = TRUE

$ SET INQUIRY = FALSE

Revised 11/20/70
by peN 1024916-013 J - 9

$ TAPE INTRINSIC LIST PRT STUFF

$#PATCH NUMBER 1 FOR INTRINSICS.XI CONTAINS n CARDS

(n sorted patches)

$#PATCH NUMBER xx FOR INTRINSICS.XI CONTAINS n CARDS

(n sorted patches)

? END

The $INTRINSIC Option is required when compiling the symbolic file

for the INTRINSICS of the B 5500 Programming System. When compiling

these INTRINSICS, the ESPOL file DISK is equated to INT/DISK.

NOTE

When the INTRINSICS are compiled, it is

necessary to execute the FILL/PRT Pro­

gram which builds the MCP/PRT Disk File

used by DUMP/ANALYZE. If the INTRINSICS

are compiled in the manner shown, FILL/

PRT should be executed as follows:

? EXECUTE FILL/PRT

? FILE MCP = OOOOOOO/MCP DISK

? FILE INT = OOOOOOO/INT DISK

? END

An example of a basic change deck format for the ESPOL Compiler is

as follows:

3-10

? EXECUTE PATCH/MERGE

? DATA CARD

$.xx PATCHES FOR ESPOL.XI CONFLICTS

$*COMPILE ESPOL/DISC ALGOL LIBRARY

$*ALGOL PROCESS = 60; ALGOL 10 = 60

$*ALGOL FILE TAPE = SYMBOL/ESPOLSY

$*DATA CARD

$-CARDS NEEDED FOR ESPOL COMPILATION

$ TAPE LIST PRT CHECK

$#PATCH NUMBER 1 FOR ESPOL.XI CONTAINS n CARDS

(n sorted patches)

$#PATCH NUMBER xx FOR ESPOL CONTAINS n CARDS

(n sorted patches)

? END

Following is an example of a basic change deck format for the ALGOL

Compiler:

? EXECUTE PATCH/MERGE

? DATA CARD

$.xx PATCHES FOR ALGOL.XI CONFLICTS

$*COMPILE ALGOL/DISC ALGOL LIBRARY

$*ALGOL PROCESS = 60; ALGOL IO = 60

$*ALGOL FILE TAPE = SYMBOL/ALGOLSY

$*FILE LINE = LINE BACK UP DISK

$*FILE NEWTAPE = "OCRDIMG" TAPE

$*FILE PNCH = PNCH PUNCH

$*DATA CARD

$-CARDS NEEDED FOR ALGOL COMPILATION

$ TAPE LIST PRT CHECK

$#PATCH NUMBER 1 FOR ALGOL.XI CONTAINS n CARDS

(n sorted patches)

$#PATCH NUMBER xx FOR ALGOL.XI CONTAINS n CARDS

? END

NOTE

The same setup is used to com­

pile XALGOL (SYMBOL/XALGLSY).

An example for the COBOL Compiler is as follows:

? EXECUTE PATCH/MERGE

? DATA CARD

$.xx PATCHES FOR COBOL.XI CONFLICTS

$*COMPILE COBOL/DISC ALGOL LIBRARY

$*ALGOL STACK = 750

Revised 11/20/70
by peN 1024916-013 3-11

$*ALGOL PROCESS = 60; ALGOL IO = 60

$*ALGOL FILE TAPE = SYMBOL/COBOLSY

$*FILE NEWTAPE = SOLT TAPE

$*FILE LINE = LINE BACK UP DISK

$*DATA CARD

$-CARDS NEEDED FOR COBOL COMPILATION

$ TAPE LIST PRT CHECK

$#PATCH NUMBER 1 FOR COBOL.XI CONTAINS n CARDS

(n sorted patches)

$#PATCH NUMBER xx FOR COBOL.XI CONTAINS n CARDS

(n sorted patches)

? END

Following is an example for the FORTRAN Compiler:

? EXECUTE PATCH/MERGE

? DATA CARD

$.xx PATCHES FOR FORTRAN.XI CONFLICTS

$*COMPILE FORTRAN/DISC ALGOL LIBRARY

$*ALGOL PROCESS = 60; ALGOL IO = 60

$*ALGOL FILE TAPE = SYMBOL/FORTSY

$*FILE LINE = LINE BACK UP DISK

$*FILE NEWTAPE = FORTSYN/TAPE

$*DATA CARD

$-CARDS NEEDED FOR FORTRAN COMPILATION

$ TAPE LIST PRT CHECK

$#PATCH NUMBER 1 FOR FORTRAN.XI CONTAINS n CARDS

(n sorted patches)

$#PATCH NUMBER xx FOR FORTRAN.XI CONTAINS n CARDS

(n sorted patches)

? END

An example for the BASIC Compiler is as follows:

3-12

? EXECUTE PATCH/MERGE

? DATA CARD

$.xx PATCHES FOR BASIC.XI CONFLICTS

$*COMPILE BASIC/DISK ALGOL LIBRARY

$*ALGOL PROCESS = 60; ALGOL IO = 60

$*ALGOL FILE TAPE = SYMBOL/BASICSY TAPE

$*DATA CARD

$-CARDS NEEDED FOR BASIC COMPILATION

$ TAPE LIST PRT CHECK

$#PATCH NUMBER 1 FOR BASIC.XI CONTAINS n CARDS

(n sorted patches)

$#PATCH NUMBER xx FOR BASIC.XI CONTAINS n CARDS

(n sorted patches)

? END

Following is an example for Card Load Select Programs:

a. COLD START.

? EXECUTE ESPOL/DISK .COMPILE MKXI COLD START

? FILE LINE = LINE BACK UP DISK

? FILE TAPE = SYMBOL/COOLSY

? DATA CARD

$ SET COOL = FALSE

$ TAPE LIST PRT DECK

? END

b. COOL START.

? EXECUTE ESPOL/DISK .COMPILE MKXI COOL START

? FILE TAPE = SYMBOL/COOLSY

? FILE LINE = LINE BACK UP DISK

? DATA CARD

$ SET COOL = TRUE

$ TAPE LIST PRT DECK

? END

c. DUMP.

? EXECUTE ESPOL/DISK .COMPILE DUMP CORE TO TAPE

? FILE TAPE = SYMBOL/DUMPTAP

Revised 11/20/70

99999999

99999999

by peN 1024916-013 3-13

? FILE LINE = LINE BACK UP DISK

? DATA CARD

$ TAPE LIST PRT DECK

? END

SYSTEM TAPE.

99999999

The SYSTEM Tape is a library tape which contains object programs

(routines) which have been compiled from the SYMBOL Tape(s). (Refer

to table 3-1.) The purpose of the SYSTEM Tape is to have all rou­

tines, compilers, and operating systems that are required for loading

and maintaining the system on one tape in an effort to eliminate

wasted time and trouble. The SYSTEM Tape has the identification of

SYSTEM/FILEOOO and is created by use of the Dump Control Card which

specifies the (multifile ID)/(file ID) of object programs which have

been compiled from the SYMBOL Tape.

The position of a file on the SYSTEM Tape should be determined by the

use of that file (i.e., the number of times a file may be expected to

be loaded or reloaded from the SYSTEM Tape); it is recommended that

the MCP be the first file, the INTRINSICS second, the compilers next,

followed by other routines and user programs.

Because of the importance of the SYSTEM Tape, each installation should

make a backup copy of it. This can be done with a Dump Control Card.

CARD LOAD SELECT PROGRAMS.

A Card Load Select Program is an object (machine language) routine

created by the ESPOL Compiler; it is loaded into the system through

Card Reader A with the console CARD LOAD SELECT switch/indicator in

the on position (lit).

The Cold Start, Tape to Disk, and Cool Start Card Decks may not be

used if an MCP is running on any of the systems attached to File Pro-

tect Memory. Disk to Disk and Kernel Card Decks, however, may be run

while an MCP is operating on one or more systems.

3-14

The Card Load Select Programs are listed below and described in the

following paragraphs.

a. ESPOL Loader.

b. Halt/Load.

c. Cold Start.

d. Cool Start.

e. Tape to Disk MCP Loader.

f. Disk to Disk MCP Loader.

g. Halt/Load Kernel.

h. Core to Tape Dump.

ESPOL LOADER PROGRAM. The ESPOL Loader Program is a I-card Card Load

Select Program which has the primary function of properly loading the

object card program that follows this card.

HALT/LOAD PROGRAM. The Halt/Load Program is a I-card Card Load Select

Program which has the primary function of calling on object routines

to load the MCP from disk into core memory and initiate running.

COLD START PROGRAN. The Cold Start Program is a Card Load Select

Program which has the primary function of:

a. Creating an initial Disk Directory.

b. Building the skeleton of, and placing the number of the

systems and the address of DIRECTORYTOP into, segment

zero while "zeroing out" the rest of the segment.

c. Setting initial operating conditions.

The Cold Start Program must be run before the MCP is used for the

first time since the MCP expects to find the Disk Directory.

NOTE

The Cold Start Program is generated with

$ COOL set to FALSE in the Cold Start

Program Basic Change Deck. (Refer to

the Cold Start example on page 3-13.)

Revised 11/20/70
by peN 1024916-013 3-1.5

COOL START PROGRAM. The Cool Start Program is a Card Load Select Pro­

gram which has the primary function of searching the Disk Directory

and removing each file that has the following characteristics:

a. The first character of the multiple-file-identification

or file-identification is not zero.

b. Any word in the file header has the flag bit ON.

c. The maximum number of declared areas is greater than 20.

d. The disk address of an area is less than DISKTOP or greater

than that possible, based on the number of disk electronics

units declared.

e. A disk address is present for an area that is outside the

maximum number of declared areas.

The names of the removed files are printed on the SPO if the portion

of the Disk Directory entry containing the file name is intact. The

removed files may be reloaded from tape after the system has under­

gone a Halt/Load.

The Cool Start Program also checks to see if it might remove the MCP.

If so, a message is printed on the SPO to indicate that a Tape to Disk

should be performed to reload the MCP. Cool Start also removes the

intrinsics for the system on which Cool Start is being run. When Cool

Start finishes checking the Disk Directory, the operator may run Tape

to Disk to reload the MCP.

NOTE

The Cool Start Program is generated by

setting $ COOL to TRUE in the Cool Start

Program Basic Change 'Deck. (Refer to

Cool Start example on page 3-13.)

TAPE TO DISK MCP LOADER PROGRAM. The Tape to Disk MOP Loader Program

is a Card Load Select Program which has the primary function of:

3-16

a. Loading an MCP from tape to disk.

b. Updating the Disk Directory Header to actual MCP size.

c. Updating segment zero to show the actual name and address

of the MCP that is being loaded.

DISK TO DISK MCP LOADER PROGRAM. The Disk to Disk MCP Loader is a

Card Load Select Program which has the primary function of updating

segment zero to show the name and address of an MCP which is on disk

and on which the system is to be run at this time.

HALT/LOAD KERNEL PROGRAM. Halt/Load Kernel is a Card Load Select

Program which is used for clearing File Protect Memory and/or load­

ing the MCP from disk into core memory. Halt/Load Kernel may be run

independently of MCP Loader Decks and/or System Loader Decks. Fol-

lowing is the skeleton deck setup for the independent running of

Halt/Load Kernel:

a. ESPOL Loader Card Program.

b. Halt/Load Kernel Program.

c. Halt/Load Card Program.

CORE TO TAPE DUMP PROGRAM. Core to Tape Dump is a Card Load Select

Program used for debugging analysis. This program is run indepen-

dently of all other decks. It has the following deck setup structure:

a. Two-card ESPOL Loader.

b. Core to Tape Dump Program.

After Core to Tape Dump is executed, it inquires as to which tape unit

the contents of memory is to be written by typing out the WHICH TAPE?

message on the SPO. One of the valid replies to WHICH TAPE? might be

MTA.

MCP LOADER DECKS.

MCP Loader Decks are combinations of Card Load Select Programs which

function to load an MCP and/or update segment zero in the Disk

Directory.

Revised] 1/20/70
by peN 1024916-013 3-17

TAPE TO DISK MCP LOADER DECK. Following is the skeleton setup of the

Tape to Disk MCP Loader Deck:

a. ESPOL Loader Card (program).

b. Tape to Disk Loader (program).

c. Halt/Load Kernel (optional program).

d. Tape to Disk Parameter (specifier) Cards.

e. Halt/Load Card (program).

The Tape to Disk MCP Loader Deck loads an MCP file, MCP/DISK, from

a library tape, SYSTEM/FILEOOO, to an existing disk area. The disk

area to which the MCP file is loaded must have the identical file

name of the MCP file being loaded and should be declared in the Cold

Start Parameter Deck. Tape to Disk Parameter Cards may be supplied

to alter the sought (multifile ID)/(file ID) of an MCP file and/or

the (multifile ID) of a library tape.

The Tape to Disk Parameter Cards that may be used are:

a. FILE = (multifile ID)/(file ID)

The Loader loads the (multifile ID)/(file ID) file from

the tape to disk.

b. TAPE = (file ID)

The name of the library tape from which the MCP is to

be loaded is (file ID).

If the Kernel Deck is present, i.e., if the Kernel Deck is located

after the Tape to Disk Loader and before any (optional) Tape to Disk

Parameter Cards, it is loaded.

DISK TO DISK MCP LOADER DECK. Following is the skeleton setup of the

Disk to Disk MCP Loader Card Deck:

a. ESPOL Loader Card (program).

b. Disk to Disk MCP Loader (program).

c. Halt/Load Kernel (optional program).

d. Disk to Disk Parameter (specifier) Card.

3-18

The Disk to Disk MCP Loader assumes the Disk Directory already exists;

i.e., the Disk to Disk Loader is not a replacement for the Tape to

Disk Loader. The Disk to Disk MCP Loader takes the MCP name from the

parameter card after the Kernel and updates segment zero with the name

and address of the MCP. The parameter card may be coded in free form

(i.e., MCP/DISK or MCP DISK). A Disk to Disk must be performed on

each additional system after a Cold Start. The Loader does not need

the Kernel if a valid Kernel is already present on disk.

If the file name specified in the parameter card is not in the Disk

Directory, a message to this effect is printed and another card is

read. If the specified file is in the Directory, the SPO skips one

line and the file is loaded. The message (file specifier) LOADED is

typed, and a Halt/Load sequence is initiated.

SYSTEM LOADER DECKS.

System Loader Decks are combinations of Card Load Select Programs and

MCP Loader Decks which function to initialize or re-instate the Disk

Directory and MCP.

following:

System Loader Decks are classified as the

a. Cold Start Deck.

b. Cool Start Deck.

These card decks are described in the following paragraphs.

COLD START DECK. Following is the skeleton setup of the Cold Start

Deck:

a. ESPOL Loader Card Program.

b. Cold Start Program.

c. Cold Start Parameter Cards.

d. Tape to Disk MCP Loader Deck.

1) ESPOL Loader Card Program.

2) Tape to Disk Loader Program.

3) Halt/Load Kernel Program.

Revised 11/20/70
by peN 1024916-013 3-19

4) Tape to Disk Parameter Cards (optional).

5) Halt/Load Card Program.

e. Control Cards for system loading.

The Cold Start Program constructs the initial Disk Directory and

initializes the current date word and option codes. It builds the

skeleton of segment zero and puts the number of systems and the ad­

dress of DIRECTORYTOP into segment zero while zeroing out the rest

of that segment.

The Cold Start Parameter Cards have a free-field format. They are

described in the following paragraphs.

NOTE

The last Cold Start Parameter Card

must be a Stop Card, i.e., a card

containing the word STOP. Three or

more parameter cards must immedi­

ately precede the Stop Card.

DRCTRYTP Card. <; e e ;,/-:; () PENCe;- ('ar~ /~c7t. e 5'- 2 2-

The DRCTRYTP (Directory Top) Card provides an integer which specifies

the absolute disk address of the segment known as DIRECTORYTOP. A

DRCTRYTP Card must appear in the Cold Start Deck. It must be the

first parameter card in the deck.

The DRCTRYTP Card must have the following information:

DRCTRYTP (integer)
t;e~ /V1Ct:> k£IQ'(tlce iviall/,{;J ~ fag t 2:. 2 ,

Example

DRCTRYTP 1199

DIRECT Card.

The DIRECT Card provides an integer which specifies the address of

the highest addressed disk segment which should be used for the Disk

Directory. A DIRECT Card must appear in the Cold Start Deck.

3-20

When determining the figure to be specified as the upper boundary, it

should be realized that every 15 files on the disk use 16 segments in

the Directory.

The DIRECT Card must have the following information:

YI()+e~ -n.n. Pi.;k ~cfor '/
oVice ove r-+lo wed /.(j i~
DRcnTTP ;;: 12D3
P I e.e.c ., -= Z-Sb3

(12..%ses~) ~ ~
c-n)y 'is 9'1 ~; les l"->£k'e Jtr.ecJ
by PSI<. [)(12/ UTI uri (It..:..." DIRECT (integer)

c.. ~~)
Example

DIRECT 2500

ESU Card.

The ESU (electronics storage unit) Card supplies an integer which

indicates the number of electronics units connected to the system.

If there are no electronics units on the system which are unique to

DKB (i.e., Disk File Control Unit 2), this card should contain an

integer which reflects the total number of electronics units on the

system. (This is generally the case when an exchange is present.)

If there are electronics units which are unique to DKB, the integer

on this card must have a value which expresses the sum of the number

of electronics units on DKA (i.e., Disk File Control Unit 1) plus 100

times the number of electronics units on DKB. For example, if a sys-

tern has three electronics units on DKA and two on DKB, the integer on

the ESU Card should be 203. An ESU Card must appear in the Cold Start

Deck.

The ESU Card must contain the following information:

ESU (integer)

Examples

ESU 1

ESU 202

SYSTEMS Card.

To specify the number ofAsystems,

Cold start Deck.

the SYSTEMS Card is required in the I
Revised 11/20/70
by peN 1024916-013 3-21

The SYSTEMS Card must contain the following information:

SYSTEMS = (physical number of s..ystems)

Examples

SYSTEMS = 1

SYSTEMS = 4

FENCE Card. See a/so DriJE(TcRYTO/~ (alf.,~ /JClf,(3 2c

The FENCE Card initializes DIRECTORYTOP [19J which is used by the

Time Sharing MCP only. The purpose of the "fence" is to separate

memory into two areas:

a. Overlayable - that area occupied by the MCP, MCP Tables,

and Run jobs.) ..

b. Swapping - that area occupied by Execute jobs.

The format of the FENCE Card is:

FENCE = (integer)

DATE Card.

NOTE

Any (integer) less than 8192 is changed

to 8192 by the system. Any (integer)

greater than 28582 is changed to 28582.

Any (integer) is changed to the nearest

number that is a multiple of 1024.

The DATE Card is optional and should precede all FILE Cards in the

Cold Start Deck, if any. A date supplied in a DT keyboard message,

entered subsequently to the use of the DATE Card, supersedes the

information in the DATE Card.

The DATE Card provides three integers separated by the character I.
The first integer specifies the two digits of the month, the second

integer specifies the day, and the third specifies the last two

3-22

"

digits of the year. This card causes the date-word on the disk to be

set to the date specified. (This date-word contains the current date

used, e.g., in tape labels.)

The DATE Card must contain the following information:

DATE (i~teger) / (integer) / (integer)

Example

DATE 12/29/64

FILE Card Group.

The function of a FILE Card Group is to define a user file which is to

be listed in the Disk Directory. This method of defining a file, as

opposed to defining a file through use of a file declaration in a pro­

gram, allows an installation to explicitly assign specific disk ad­

dresses for files.

A FILE Card Group consists of a FILE Card and one or more File Address

Cards. There may be as many FILE Card Groups in the Cold Start Deck

as desired.

The FILE Card contains the word FILE which identifies the FILE Card

Group. It supplies the following information in the order listed.

The information is separated by commas. (Refer to the FILE Card

examples in section 4.)

a. Data file specifier which provides the data file name to be

listed in the Disk Directory.

b. (integer) @ (integer) construct, where the first integer I
specifies the number of areas on disk to be used by the file,

and the second integer specifies the number of 30-word disk

c.

segments in each area. (The symbol

the multiply character.)

@ in this construct is I
Integer which specifies the purge factor for the file (i.e.,

the number of days past the date of last access that the file

is to be retained on disk).
Revised 11/20/70
by peN 1024916-013 3-23

In summary, a FILE Card must contain the following information:

I FILE (data file specifier) , (integer) ~ (integer) , (integer)

Example

I FILE PREFIX/NAME , 2 ~ 1000, 30

I A File Address Card contains a single integer which, if different

from zero, specifies the absolute disk address of the first word in

an area to be used by the file whose name is supplied by the preced-

I

I

I

ing FILE Card. There must be one File Address Card for each area

specified for the file. The first File Address Card in a FILE Card

Group provides the beginning address of the first area to be used by

the file; the second File Address Card provides the beginning address

of the second area to be used; and so on. A zero integer for an ad­

dress denotes that the MCP is to assign the address for that area.

As noted above, a File Address Card must contain the followi~g

information:

(integer)

Examples

2000

o

Three examples

a. FILE

0

b. FILE

2500

3400

0

c. FILE

4300

8000

3-24

of a FILE Card Group are as follows:

SYSTEM/LOG, 101000 , 2

SAVES/AREA, 3 ~ 9000, 15

B 280/RESERVE, 2 ~ 1500, 365

It should be noted that if log information for the system is to be

recorded, a file with the file identification prefix SYSTEM and the

file identification LOG must be defined on the disk. Also, this file

must be limited to one area on the disk. Consequently, if system log

information is to be retained, a FILE Card Group (such as the first

example above) should appear in the Cold Start Deck.

The following list contains examples of FILE Cards which are required

for the given circumstances:

a. General.

b.

c.

d.

1)
D/fcrRY

FILE MIt138'¥:RY/DISK,1 @ (size), (save factor)

2)

(address = DIRECTRYTP+4) ~ ~,tc." &"'CT - otc-r,.YTP- 4-

.SJO
FILE MCP /DISK, 1 @ ~, 999 IfII/II16.
(address = (DIRECTRY/DISK address)+(~)+l)

Dump Analyzer. r , , I ~~

]

(AeX t;'~~S~ \A..c...!) ~ Cc.~

FILE DMPAREA/DISK,l @100,999 1590 .witt, r;..J.l..ft!SS ftAMC,~~
<'address = <'MCP/DISK address '>+(llrO~+ 1 '> \\1\ l.-C.MJ. Jref~~ -t-u

, " /' / I Me"""cl u.""'(l e.c..k

Systems Log.

FILE SYSTEM/LOG,l@(size),(save fac~~~)
(address = (DMPAREA/DISK address)+(JIIr)+l)

Statistics Pseudo Logs.

1) Macro-Temporary.

FILE SYSTEM(system mnemonic)/STATS,l @ (size),

(save factor)

(address = (SYSTEM/LOG address)+(size)+l)

2) Macro-Permanent

FILE SYSTAT(system mnemonic)/DISK,l @ (size),

(save factor)

Revised 11/20/70
by peN 1024916-013 3-25

(address = (SYSTEM(system mnemonic)/STATS address)+

(size)+l)

3) Micro-Permanent.

OPTION Cards.

FILE STLOG(system mnemonic)/STATS,I~(size),(save

factor)

(address = (SYSTAT(system mnemonic)/DISK address)+

(size)+l)

If the option cards described in the following paragraphs are not

used, the corresponding options are automatically set to OFF.

The USE DRA or OPTN 47 Card specifies that a system is equipped with

a drum memory unit designated DRUM A. Consequently, this option can

be used only when the system is so equipped. When this option is

specified, the MCP uses DRUM A for overlay storage in preference to

disk. When the USE DRA Option is specified, a Loader which loads the

MCP from disk to core at Halt/Load time is placed on the drum so that

a Halt/Load from the drum can be used to initiate the operation of the

system. However, in this case only, a Halt/Load Card must physically

be the last card in the Cold Start Deck, thereby making the STOP Card

the next-to-the-Iast card (see below). If the USE DRA Option is not

used, a CARD LOAD SELECT, HALT, and LOAD must be performed to initiate

• the system. This is done by using the Disk Halt/Load Card which is

described later in this section.

The USE DRA Card must contain either USE DRA or OPTN 47.

Examples

USE DRA

OPTN 47

The USE DRB or OPTN 46 Card specifies that a system is equipped with

a drum memory unit designated DRUM B. Consequently, this option can

only be used when the system is so equipped. When this option is

3-26

specified, the MCP uses DRUM B for data overlay storage, and, when

available, drum memory is used in preference to disk memory.

The USE DRB Card must contain either USE DRB or OPTN 46.

Examples

USE DRB

OPTN 46

The TYPE BOJ or OPTN 45 Card specifies that a BOJ message is to be

typed each time the MCP initiates a compiler or an object program.

The TYPE BOJ Card must contain either TYPE BOJ or OPTN 45.

Examples

TYPE BOJ

OPTN 45

The TYPE EOJ or OPTN 44 Card specifies that an EOJ message is to be

typed by the MCP when a compiler or an object program has come to a

normal completion.

The TYPE EOJ Card must contain either TYPE EOJ or OPTN 44.

Examples

TYPE EOJ

OPTN 44

The TYPE OPEN or OPTN 43 Card specifies that a message is to be typed

by the MCP whenever an object program opens a file other than a disk

file.

The TYPE OPEN Card must contain either TYPE OPEN or OPTN 43.

Examples

TYPE OPEN

OPTN 43

Revised 11/20/70
by peN 1024916-013 3-27

The USE TERMNATE or OPTN 42 Card specifies that the Terminate

Procedure of the MCP is to be called if the MCP must discontinue

processing of a program because of an error condition.

Since it is the function of the Terminate Procedure to clear the

system of all information pertaining to a discontinued program, the

USE TERMNATE Option generally should always be specified. However,

if an error condition should occur where it is necessary to obtain

a memory dump that reflects core conditions at error time, the USE

TERMNATE Option should not be used.

The USE TERMNATE Card must contain either USE TERMNATE or OPTN 42.

Examples

USE TERMNATE

OPTN 42

.The TYPE DATE or OPTN 41 Card specifies that #DT PLEASE is to be

typed by the MCP at Halt/Load time and that the system operator must

enter a DT keyboard input message before processing can commence.

The TYPE DATE Card must contain either TYPE DATE or OPTN 41.

Examples

TYPE DATE

OPTN 41

The TYPE TIME or OPTN 40 Card specifies that TR PLEASE is to be typed

by the MCP at Halt/Load time and that the system operator must enter

a TR keyboard input message before processing can commence.

The TYPE TIME Card must contain either TYPE TIME or OPTN 40.

Examples

3-28

TYPE TIME

OPTN 40

OPTN 39, ONEBREAK, is no longer used and should be reset.

The USE AUTOPRNT or OPTN 38 Card specifies that printer backup tapes

(not including those created previously to the latest Halt/Load) are

to be automatically printed when a backup tape and a line printer are

not in use at the same time. If the option is not specified, printer

backup tapes are printed only if the system operator enters a PB key­

board input message.

The USE AUTOPRNT Card must contain either USE AUTOPRNT or OPTN 38.

Examples

USE AUTOPRNT

OPTN 38

The USE CLEARWRS or OPTN 37 Card specifies that the MCP is to attempt

to keep remote data communications stations (which have SPO capabili­

ties) from remaining in a Write-Ready Condition if object program out­

put is not available when the condition occurs. (The Write-Ready Con­

dition occurs when an output messagp. whi~h does not end in a eroup

•

mark is sent to a data communications station. When a data communi­

cations station is Write-Ready, input cannot be received.) If a Write­

Ready Condition occurs when no more output is queued for a station,

if the station has SPO capabilities, and if the USE CLEARWRS Card is

used, the MCP sends a group mark to the station, thus clearing the

Write-Ready.

NOTE

This option is applicable to data

communications systems only.

The USE CLEARWRS Card must contain either USE CLEARWRS or OPTN 37.

Examples

USE CLEARWRS

OPTN 37

Revised 11/20/70
by peN 1024916-013 3-29

The TYPE DISCONDC or OPTN 36 Card specifies that the MCP is to write a

disconnect code on any data communications station which is not logged

in when the station is disconnected from a program. This option

should not be set if any data communications equipment on the system

is connected to any telephone company equipment not wired to handle

disconnect codes.

NOTE

This option is applicable to data

communications systems only.

The TYPE DISCONDC Card must contain either TYPE DISCONDC or OPTN 36.

Examples

TYPE DISCONDC

OPTN 36

The TYPE CMPLFILE or OPTN 35 Card specifies that file-open and file­

close messages are to be typed for compiler files according to the

respective settings of the TYPE OPEN and TYPE CLOSE options. If this

option is not specified, messages are not typed because of the opening

and/or closing of files used by compilers.

The TYPE CMPLFILE Card must contain either TYPE CMPLFILE or OPTN 35.

Examples

TYPE CMPLFILE

OPTN 35

The TYPE CLOSE or OPTN 34 Card specifies that a message is to be

typed by the MCP whenever an object program closes a file other than

a disk file.

The TYPE CLOSE Card must contain either TYPE CLOSE or OPTN 34.

Examples

3-30

TYPE CLOSE

OPTN 34

The TYPE ERRORMSG or OPTN 33 Card specifies that object-time error

messages are to be typed by the MCP if errors are encountered during

the running of an object program and if programmatic recovery is used

in the program.

The TYPE ERRORMSG Card must contain either TYPE ERRORMSG or OPTN 33.

Examples

TYPE ERRORMSG

OPTN 33

The TYPE RET or OPTN 32 Card specifies that magnetic-tape retention

messages are to be typed by the MCP.

The TYPE RET Card must contain either TYPE RET or OPTN 32.

Examples

The

are

TYPE RET

OPTN 32

TYPE LIBMSG or

to be typed by

(program ID)

(program ID)

(program ID)

(program ID)

OPTN 31 Card specifies that

the MCP when appropriate:

LOADED (unit mnemonic)

DUMPED (unit mnemonic)

REMOVED

CHANGED TO (program ID)

The TYPE LIBMSG Card must contain either TYPE

Examples

TYPE LIBMSG

OPTN 31

the following messages

LIBMSG or OPTN 31.

The TYPE SCHEDMSG or OPTN 30 Card specifies that a message is to be

typed by the MCP whenever a job is placed in the schedule.

Revised 11/20/70
by peN 1024916-013 3-31

I

The TYPE SCHEDMSG Card must contain either TYPE SCHEDMSG or OPTN 30.

Examples

TYPE SCHEDMSG

OPTN 30

The TYPE SECMSG or OPTN 29 Card specifies that File Security main­

tenance messages are to be typed by the MCP.

NOTE

This option is applicable to data

communications systems only.

The TYPE SECMSG Card must contain either TYPE SECMSG or OPTN 29.

Examples

TYPE SECMSG

OPTN 29

The USE DSKTOG or OPTN 28 Card specifies that any object program

attempting input or output at any absolute disk address below the

user disk area is to be discontinued by the MCP, and an INVALID PRL

message is to be typed.

NOTE

This option is applicable to data

communications systems only.

The USE DSKTOG Card must contain either USE DSKTOG or OPTN 28.

Examples

USE DSKTOG

OPTN 28

The USE RELTOG or OPTN 27 Card specifies that all object programs

running under_~le Security which attempt to perform an ALGOL RELEASE

Statement referencing disk are to be automatically discontinued by

the MCP.

3-32

NOTE

This option is applicable to data

communications systems only.

The USE RELTOG Card must contain either USE RELTOG or OPTN 27.

Examples

USE RELTOG

OPTN 27

The TYPE PBDREL or OPTN 26 Card specifies that printer backup disk­

release messages are to be typed by the MCP when OPTN J8, USE AUTOPRNT,

is not set.

The TYPE PBDREL Card must contain either TYPE PBDREL or OPTN 26.

Examples

TYPE PBDREL

OPTN 26

The USE CHECK or OPTN 25 Card specifies that the MCP is to check all

memory links for validity whenever allocation or deallocation of mem­

ory is performed. If an invalid link is found, the message INVALID

LINK is printed on the SPO. A Halt/Load must then be performed. This

option (refer to section 4) is available only when the MCP is compiled

with:

$ DEBUGGING=TRUE

If this option is not set (reset) or if the MCP is compiled with

DEBUGGING=FALSE, the MCP only checks adjoining links when allocating

or deallocating memory.

The USE CHECK Card must contain either USE CHECK or OPTN 25.

Examples

USE CHECK

OPTN 25
Revised 11/20/70
by peN 1024916-013 J-JJ

The TYPE DISKMSG or OPTN 24 Card specifies that disk retry messages

are to be typed by the MCP even though retrying is successful. If

this option is not set (reset), the retry message is provided only

if the retry is not successful.

The TYPE DISKMSG Card must contain either TYPE DISKMSG or OPTN 24.

Examples

TYPE DISKMSG

OPTN 24

The TYPE DISKLOG or OPTN 23 and TYPE LIBERR or OPTN 22 Options are

used only in the Time Sharing System MCP.

The USE PBDONLY or OPTN 21 Card specifies that all output to the line

printers (except from printer backup) is forced to printer backup disk.

The USE PBDONLY Card must contain either USE PBDONLY or OPTN 21.

Examples

USE PBDONLY

OPTN 21

The USE SAVE~BT or OPTN 20 Card specifies that all printer backup

tapes are to be rewound and locked by the MCP when released by the

creating program.

The USE SAVEPBT Card must contain either USE SAVEPBT or OPTN 20.

Examples

USE SAVEPBT

OPTN 20

The TYPE RSMSG or OPTN 19 Card specifies that a message is to be

typed by the MCP whenever the "access flag" on a disk file is set

or reset by a control card.

3-34

The TYPE RSMSG Card must contain either TYPE RSMSG or OPTN 19.

Examples

TYPE RSMSG

OPTN 19

The USE AUTOUNLD or OPTN 18 Card is used to specify system action

when a NO USER DISK message occurs. If the option is set when a NO

USER DISK occurs, the operator must type in (mix number)WY; the MCP

then initiates an UNLOAD EXPIRED TO XP (Julian date)=/=. The control

card is built at sequences 06365230-06365250 in the MCP and may be

changed if it is desired to dump specific files, and so forth. The

AUTOUNLD Option is reset following the UNLOAD Operation.

Examples

USE AUTOUNLD

OPTN 18

STOP Card.

The STOP Card must physically be the last card of the Cold Start Deck

and must contain STOP; at least three parameter cards must precede thel

STOP Card.

Example

STOP

COOL START DECK. Following is the skeleton setup of the Cool Start

Deck:

a. ESPOL Loader Card Program.

b. Cool Start Program.

c. Cold Start Parameter Cards (except File Cards).

d. MCP Loader Deck (optional).

1) Tape to Disk MCP Loader Deck (tape option).

a) ESPOL Loader Card Program.

b) Tape to Disk MCP Loader Program.

Revised 11/20/70
by peN 1024916-013 3-35

c) Halt/Load Kernel Program.

d) Tape to Disk Parameter Cards.

2) Disk to Disk MCP Loader Deck (disk option).

a) ESPOL Loader Card Program.

b) Disk to Disk MCP Loader Program.

c) Halt/Load Kernel Program.

d) Disk to Disk Parameter Card.

e. Halt/Load Card Program.

The Cool Start Program should be run whenever the Disk Directory ap­

pears to contain incorrect entries. Use of the Cool Start Program, in

most cases, eliminates the necessity of performing a Cold Start when

consistent system problems are occurring. The following conditions

are good indications that the Directory contains incorrect entries:

a. The system "hangs up" during a Halt/Load.

b. The system attempts to address an electronics unit which

is not on-line.

c. The system attempts to address a disk module which is not

on-line.

d. The system hangs up during disk parity retry operations.

e. Any program accessing the Directory is terminated with a

-FLAG BIT error message.

f. Several system hang-ups occur in a short period of time.

The Cool Start Parameter Deck is set up identically to the Cold Start

Deck with one exception: The File Cards must not be included.

I
CONTROL CARDS FOR SYSTEM LOADING.

At the end of a Cold Start Deck, control card parameters may be

entered to load the System Files.

The LOAD Cards which cause programs to be read from the System Tape

and entered as library files on the user disk are identical in

3-36

construct to the LOAD Cards described in section 4 of this document.

For example, a LOAD Card to load the ALGOL Compiler onto disk could

appear as follows:

? LOAD FROM SYSTEM ALGOL/DISK

DISK HALT/LOAD CARD.

The Disk Halt/Load Card is a binary card containing code that causes

the MCP to be initiated. This card must be used in conjunction with

a CARD LOAD SELECT, HALT, and LOAD Operation to initiate the MCP. The

only exceptions to this occur when the system is equipped with a drum

memory unit and the DRA Option is specified, or when the system has

I

the Disk Halt/Load hardware feature installed. (Refer to the Halt/ I
Load Program description on page 3-15.)

CONTROL CARDS USED TO LOAD COMPILERS ONTO DISK.

The control cards used in the System Loader to load compilers onto

disk are:

a. A LOAD Card specifying the library tape name SYSTEM and the

names of tho compilers to be loaded.

b • An END Card.

The following example shows a possible choice of such control cards:

? LOAD FROM SYSTEM ALGOL/DISK, COBOL/DISK

? END

SYSTEMS PROCEDURES.

The following procedures are supplied for loading and maintaining the

system:

a. System start-up.

b. Loading the system from the System Tape(s).

c. Program scheduling.

d. Selection Algorithm.

e. Multiprocessing Factor.

Revised 11/20/70
by peN 1024916-0 l3 3-37

.These procedures are described in the following paragraphs.

SYSTEM START-UP PROCEDURE.

Before beginning any operation, the system must be turned on by press-

l ing the POWER ON switch on the operator console. All other hardware

units which are to be used must be readied as described in section 2.

LOADING THE SYSTEM FROM THE SYSTEM TAPE.

The entire software package (MCP, compilers, system programs, etc.)

is contained on the System Tape. Any or all the above items can be

loaded onto disk by means of the System Loader. This loading can be

accomplished all at one time or at different times. Once the desired

I items have been placed on disk, they remain there until a REMOVE Oper­

ation is called for.

To load the system with all items on the System Tape at the same time,

the operator must perform the following steps:

a. Press the CARD LOAD SELECT and HALT switches on the operator

console. (These switches light when in the conditions shown

on the switches.)

b. Place the System Tape, without a write ring, on a tape unit.

c. Press LOCAL, then LOAD on the tape unit.

d. When the tape reels stop moving, press REMOTE on the tape

unit.

e. Place the System Loader Card Deck in the card reader.

f. Press RESET, then START on the card reader.

g. Press LOAD on the operator console.

Since the MCP Loader and the Cold Start are independent routines, they

may be loaded onto disk separately or together by placing the respec­

tive card decks in the card reader and performing a CARD LOAD SELECT,

I HALT, and LOAD Operation. Also, the Disk Halt/Load Card can be used

3-38

anytime the MCP and the Disk Directory are on disk. The control cards

used to load the compilers may be used any time the MCP is in opera­

tion. Therefore, the MCP Loader, the Cold start, the Disk Halt/Load, •

or the Software Load Cards may be used separately. For example, if a

compiler that has not been loaded is required on disk, a Load Card

alone can be used to place the compiler on disk. If a modified MCP is

to replace the MCP currently on disk, the MCP Loader alone can be in­

itiated with a CARD LOAD SELECT, HALT, and LOAD Operation.

There are messages which are typed out while loading the system. They

are as follows:

Message

MCP FILE LOADED

DIRECTORY BUILT

-H/L-

INCORRECT CARD

(unit mnemonic) ERROR

Description

The MCP Loader has successfully

loaded the MCP onto disk.

Cold Start has constructed a Disk

Directory.

The MCP has assumed control of the

system.

An erroneous card is read during the

operation of the Cold Start. This

situation can be remedied by placing

the correct card in the card reader,

pressing RESET, then START on the

card reader.

Self explanatory.

PROGRAM SCHEDULING INFORMATION.

After the desired information has been loaded onto disk, the MCP is

ready to begin processing. The MCP is "told" what is to be processed

by means of control information. This information, made available to

the MCP via punched cards, is placed in an available card reader by

the operator.

Revised 11/20/70
by peN 1024916-013 3-39

•

The MCP scans the available input/output units and reads a record

from each input file. During this scanning operation, the MCP rec-

ognizes the card it reads as containing the needed control informa­

tion. The card is then analyzed, and the indicated operation is

performed.

THE SELECTION ALGORITHM •

• The Selection Algorithm in the MCP attempts to prevent too many pro­

grams from being executed at the same time; otherwise, the number of

programs which are multiprocessed together would be limited only by

MIXMAX. Presented with too many jobs at the same time, the system

might load all the jobs into core memory with the following possible

results:

I a. The system might run out of core memory, thereby requiring

a Halt/Load.

b. The system might become overlay-bound, with the total

elapsed time for the multiprocessed mix greater than that

required to run the jobs serially.

The Selection Algorithm runs only as many programs that fit together

in core. Estimates of core requirements for programs are constructed

by the ALGOL, FORTRAN, and COBOL Compilers. The MCP determines how

much core memory is available for the processing of object programs.

As each program is started, its core requirements are added to the

total. A program is not started if the sum of its core requirements

plus the sum of the core requirements for jobs already running exceeds

the total amount of core storage available for the processing of ob­

ject programs.

The Selection Algorithm contains several variants which make it more

useful.

a.

3-40

These are as follows:

Any program is loaded immediately, regardless of its core

requirement, if there are no other jobs running.

b. The core estimates created by the compilers are reasonably

accurate. It should be understood, however, that it is

logically impossible for a compiler to determine exactly how

much core space a program needs in order to run efficiently.

(The compiler could easily determine a maximum core require­

ment, but program logic determines which program segments,

arrays, and files should coexist in core storage for effi­

cient operation.) A program-parameter card, called a CORE

Card, is provided to allow the programmer or operator to

override the core requirement provided by the compiler.

c. Programs which have been presented to the MCP to be run,

but which have not been started because of the lack of

core space, are said to be in the "schedule."

d. The operator may choose to cause a program which is in the

schedule to be loaded in spite of the fact that the MCP does

not think the program will run efficiently with the jobs al­

ready in the mix. (Refer to XS input message in appendix C.)

e. The operator may choose to terminate a program which is still

in the schedule. (Refer to ES input message in appendix C.)

THE MULTIPROCESSING FACTOR.

At Halt/Load time, the MCP determines the total amount of core ptor­

age available in the system and subtracts from this the amount of

core used for non-overlayable MCP program segments and tables. This

number is then multiplied by the Multiprocessing Factor (nominally

set to 1) to determine how much core space should be considered to

be available for scheduling purposes.

The Multiprocessing Factor can be changed by the operator so that

the MCP thinks it has more, or less, core storage to use for running

object programs. On a system containing eight memory modules, for

example, the amount of core available for object programs is approxi­

mately 28,800 words. If the operator chooses to set the Factor to

0.8, the MCP considers that only 23,040 words are available to object

Revised 11/20/70
by peN 1024916-013 3-41

programs. Thus, the jobs which can run together have core require­

ments which total less than 23,040 words, and any other jobs are left

in the schedule until one of the jobs in the mix comes to End-of-Job.

If, on the other hand, the Factor has been set to 1.2, the MCP con­

siders that 34,560 words are available to user programs and continues

to introduce jobs into the mix until the sum of their core require-

Iments approaches 34,560 words.

In effect, the Multiprocessing Factor allows the operator to increase

or decrease the tendency of the MCP to multiprocess. By increasing

the Factor, the MCP can load more programs to be multiprocessed to­

gether; by decreasing the Factor, the MCP cannot load as many programs

to be multiprocessed.

Experience has shown that a Factor of 1 causes the MCP to make quite

reasonable decisions as to which jobs should be multiprocessed. It

is conceivable that the Factor might be set as high as 1.5, or as low

as 0.8, to effect better performance at some particular installation.

Factors outside of this range are not suggested. In particular, a

Factor greater than 2 almost certainly causes the MCP to load every

job presented to it, causing the system to run out of memory if job

requests are presented indiscriminately. A Factor of 0 (zero) causes

only one job to be run at a time, with the feature that ZIPped pro­

grams are not loaded until the calling program reaches End-of-Job.

Changing the Factor causes the MCP to "remember" the new value until

it is changed. A Halt/Load does not reset the Factor.

3-42

GENERAL.

SECTION 4
CONTROL INFORMATION

Information about the various functions to be performed by the B 5500

is normally entered into the system via punched cards or typewriter

messages. These cards, commonly called the schedule deck, are of two

basic types: control cards and program-parameter cards. It is

necessary to note that there are other cards that may appear in the

schedule deck, notably source-deck cards and $ sign cards.

This section describes in detail the control cards, the program-

parameter cards, and the compiler-option cards.

messages, refer to Appendix C.

CONVENTIONS.

For typewriter

In describing the format of control information, the following con­

ventions are used:

a. If a word in a description is a word that would appear as

part of the control information, this word is in UPPER CASE

letters.

b. If a word in a description is merely a word used in the

expression of the description, the word is in lower case

letters.

c. If a word or phrase in a description has a particular defi­

nition, the word or phrase is contained within broken

brackets; i.e., <).

DEFINITIONS.

A number of terms are used throughout the discussion of control

information. Although many of these terms are well known, they are

defined in order to avoid misinterpretation and to provide meanings

for any persons unfamiliar with the terms.

4-1

Term

letter

digit

integer

space

special character

legitimate character

illegitimate character

4-2

Definition

Any letter of the alphabet of the

English language.

Anyone of the characters listed

below:

o
1
2
J
4
5
6
7
8
9

A contiguous string of digits.

One or more blank card columns, or one

or more horizontal space movements on

a typewriter, whichever is relevant.

Anyone of the characters listed

below:

[F $ @

] < -
(> + &

) < " x %
= > * # /

A letter, a digit, a special character,

or a single space.

Any card code that does not represent

a legitimate character. When used in

descriptions of control cards and

Term

quote

string

identifier

reserved character

reserved word*

Definition

program-parameter cards, an illegiti­

mate character is represented as a

question mark (1).

The character "

Any contiguous string of legitimate

characters, excluding quotes, that is

preceded by and followed by a quote.

Any contiguous string of letters and/

or digits that begins with a letter

and that is not greater than 63 char­

acters in length.

Anyone of the five characters listed

below:

=

Any one of the words listed below:

ALGOL EU LOAD SERIAL

BACK EXECUTE NO SLOW

CC FAST PAPER SPECIAL

CHANGE FILE PRINT SPO

COBOL FORM PRIORITY STACK

COMMON FORTRAN PROCESS SYNTAX

COMPILE FREE PUBLIC TAPE

CORE FROM PUNCH TO

DATA INFO RELEASE UNIT

DISK IO REMOVE UPDATE

DUMP LABEL RUN USE

END LIBRARY SAVE USER

* A reserved word is not recognized as such if it appears as a string.
The same is true of a reserved character.

Revised 1/8/71
by peN 1024916-014 4- J

I

Term

comment

separator

program identifier

program suffix

program name

program specifier

file identification

file identification prefix

Definition

Any list of legitimate characters that

does not contain either reserved words

or reserved characters. A comment

can consist entirely of spaces.

An identifier, providing it is not a

reserved character, a reserved word,

a string, or a special character.

An identifier of seven or less char­

acters, excluding reserved words, or

* a string of seven or less characters.

An identifier of seven or less char­

acters, excluding reserved words, or

* a string of seven or less characters.

Program identifier or program iden­

tifier suffix.

Program identifier, separator, or

program identifier suffix.

An identifier of seven or less char­

acters excluding reserved words, or a

* string of seven or less characters.

An identifier of seven or less char-

acters excluding reserved words, or

* a string of seven or less characters.

* A program identifier, a program identifier suffix, a file identi­
fier, or a file identifier prefix may appear in control information
as more than seven characters; however, when this is the case, only
the first seven characters are taken to be significant.

4-4

Term

multiple file identification

data file name

data file specifier

data file designator

file list

change element

change list

rdc

Definition

A file identification prefix.

A file identification prefix/file

identification, or a file identifica­

tion, in which case the file identifi­

cation prefix is assumed to be zeros.

A file identification prefix/file

identification.

A data file specifier, or a file

identification, in which the file

prefix is assumed to be zeros.

A file specifier, or a file list, file

specifier.

A (program specifier) (separator)

(program specifier), or 8 (data file

specifie+) (separator) (data file

specifier).

A change element, or a change list,

change element.

A term with one of the following

three formats:

,rrr

,rrr, ddddd

,rrr, ddddd, cc

where rrr is an integer of three or

less characters and specifies the reel

number, ddddd is a five character

integer - its first two digits specify

4-5

Term

compiler name

library tape name

unit mnemonic

Definition

the number of the day of the year;

and cc is an integer of two or less

characters and specifies the cycle

number.

COBOL, ALGOL, or FORTRAN, with

(identifier)/DISK.

multiple file identification.

Anyone of the three-character codes

listed below. The definition of each

unit mnemonic, as recognized by the

MCP, is listed to the right of the

code.

Code Definition

MTA Magnetic tape unit A

MTB Magnetic tape unit B

MTC Magnetic tape unit C

MTD Magnetic tape unit D

MTE Magnetic tape unit E

MTF Magnetic tape unit F

MTH Magnetic tape unit H

MTJ Magnetic tape unit J

MTK Magnetic tape unit K

MTL Magnetic tape unit L

MTM Magnetic tape unit M

MTN Magnetic tape unit N

MTP Magnetic tape unit P

MTR Magnetic tape unit R

MTS Magnetic tape unit S

Term

system mnemonic

Definition

Code Definition

MTT Magnetic tape unit T

MTX All scratch tapes

CRA

CRB

LPA

LPB

CPA

PPA

PPB

PRA

PRB

SPO

CDA through
CDZ, exclud­
ing CDI and
CDO, and CD2
through CD9

DCA

DKA

DKB

Card reader A

Card reader B

Line printer A

Line printer B

Card punch A

Paper tape punch unit

Paper tape punch unit

Paper tape reader A

Paper tape reader B

Supervisory printer

Pseudo card readers A
through Z, excluding

A

B

I and 0, and 2 through 9

Data communications
control unit

Disk control A

Disk control B

Anyone of the J-character codes

listed below. The definition of

each system mnemonic, as recognized

by the MCP, is listed to the right

of the code.

Code

SYA

Definition

System A (also
referred to as ° or blank*)

*Pertains to those
messages and entries
concerning system
identification when
not under Sharedisk.

Revised 1/8/71
by peN 1024916-014 4-7

Term

aggregate file name

aggregate file list

MCP module list

Definition

Code Definition

SYB System B (also
referred to as 1)

SYC System C (also
referred to as 2)

SYD System D (also
referred to as 3)

= / = or = / file identification or = /
program identification suffix, or file

identification prefix / = or program

identification / =.

File list, or aggregate file name, or

aggregate file list, file list, or ag­

gregate file list, aggregate file name.

A list of the module options set TRUE

when the current MCP version was com-

piled.

CONTROL INFORMATION VIA PUNCHED CARDS.

As stated previously, the punched cards used to supply control infor­

mation to the MCP are classified as control cards and program param­

eter cards. These cards are distinguishable from other punched cards

used in the system in that they are required to have an invalid char­

acter in column 1.

Aside from the invalid character in column 1, the information on con­

trol cards and program-parameter cards is in a free-field format, with

the exception of label cards. Label cards have a fixed format. Al­

though the information on control cards is in a free-field format, it

must appear in the order denoted by the following descriptions.

Only the first 72 columns of a control card (with the exception of

the label card) or label equation card may contain control informa­

tion. The MCP ignores the information in columns 73-80. Also, if

4-8

the special character • (period) appears in a control card or label

equation card, and is not a part of a (string), all information fol­

lowing the period is ignored.

In the following descriptions (control cards, program-parameter cards,

etc.), the information specified as being contained in a particular

card may, in fact, be contained in more than one card, except in the

case of a label card. If it is desired to continue information from
~ :.~ ~ _. ___ .. _.-' •••• ___ • .,_ " .. _ .. .". __ _ ._.<1

one card to another, the character following the information which is
-'-._-_._ _- ~,~-"-- .~<.-.~~------,,---...... ,--..... -~"-... ~....-.- --"'-

~~~ued'~~st be a hyphen ri.-;-~--, -the reserved character -). The hy-

phen cannot, however, divide an (identifier). Also, the cards onto 

which the information is continued must not contain an (invalid char­

acter) in column 1. 

Through the use of the semicolon (i.e., the reserved character ;), one 

punched card can contain information for more than one control card 

and/or program-parameter card. The appearance of a semicolon in a 

control card or program-parameter card denotes the logical end of that 

card and the beginning of another. When the semicolon convention is 

used, a question mark is neither required nor accepted in the control 

information following. 

CONTROL CARDS. 

In the following paragraphs, each control card used in the system is 

listed together with a detailed function of each card. 

Revised 1/8/71 
by peN 1024916-014 4-8A 



COMPILE CARD. 

The COMPILE card is used to callout the Compiler for the purpose 

of compiling a source program. The COMPILE card designates the 

compiler to be used and the type of compile run to be made. A 

compile-and-go run, a compile-for-library run, or a compile-for­

syntax-check run may be specified. Each of these three runs is 

described in the following paragraphs. 

COMPILE-AND-GO RUN. This run causes the given program to be sched-

uled to run after an error-free compilation, but does not enter the 

program in the disk directory. The disk space used by the program 

is returned after the program is run. The COMPILE card for a 

compile-and-go run must contain the following information. 

? COMPILE (program specifier) (comment) (compiler name) 

(comment) 

COMPILE-FOR-LIBRARY RUN. This run causes the given program to be 

left on the disk and entered in the disk directory after an error­

free compilation, hl1t it does not cause the proeram to be scheduled 

to run. The COMPILE card for a compile-for-library run must contain 

the following information: 

? COMPILE (program specifier) (comment) (compiler name) 

(comment) LIBRARY (comment) 

Any label equation or program-parameter cards presented when a 

program is compiled to the library are retained and used for the 

execution of the program. The effect of these cards is overridden 

by other cards presented at execution time. 

Suppose, for example, it is desired that a certain library program 

should have a priority of 4 whenever it is executed. This effect 

can be achieved by including a PRIORITY card when the program is 

compiled for the library. 

4-9 



The effect of this PRIORITY card is overridden by presenting another 

card at execution time. An EXECUTE callout, which includes a card 

which changes the priority to 2, will cause that execution to run 

with priority 2, but will have no effect on subsequent executions. 

COMPILE-FOR-SYNTAX-CHECK RUN. This run causes no execution or direc­

tory action after the compilation. The COMPILE card for a compile­

for-syntax-check run must contain the following information: 

Examples: 

? COMPILE (program specifier) (comment) (compiler name) 

(comment) SYNTAX (comment) 

? COMPILE JOB BY CMB WITH ALGOL FOR LIBRARY 

? COMPILE PATSER BY RNF ALGOL SYNTAX 

? COMPILE "124-6A"/VEW USING ALGOL 

? COMPILE PF SEPARATE "10" ALGOL LIBRARY 

? COMPILE BRUTE BY BILL IN COBOL. GO GO GO 

A compiler may have any [multi-file identification]. The [file 

identification] must be DISK. 

For example, the control card 

? COMPILE, ABC/DEF WITH GARBAGE; END 

would cause program ABC/DEF to compile using a compiler named 

GARBAGE/DISK. 

The word WITH must be present. The first identifier following the 

word WITH will be treated as the [multi-file identification] of the 

compiler. The word WITH is not necessary if the compiler's [multi­

file identification] is ALGOL, COBOL, or FORTRAN. 

EXECUTE CARD. 

The EXECUTE card is used to callout a library program from the disk 

for execution. The EXECUTE card must contain the following informa­

tion: 

? EXECUTE (program specifier) (comment) 

Examples: 

? EXECUTE JOB/CMB 

? EXECUTE PF NUMBER 10 

? EXECUTE PROSORT BY IRP. THIS IS RUN 2. 

4-10 



REMOVE CARD. 

The REMOVE card causes the specified file(s) to be removed from the 

disk directory and causes the disk space used by the file(s) to be 

made available for other use. 

NOTE 

The files SYSTEM/LOG and DIRCTRY/DISK 

cannot be removed from the disk. 

To specify what files are to be removed, file lists and/or aggregate 

file names (i.e., an (aggregate file list») are used. A file list, 

of course, provides a file specifier for each file to be removed. 

An aggregate file name specifies one or more files which are to be 

removed. Specifically, the various choices for REMOVE card informa-

tion are explained as follows. 

a. If a REMOVE card contains information of the form: 

? REMOVE (file list) 

then all files that are both in the file list and the disk 

directory are removed. 

b. If a REMOVE card contains information of the form: 

? REMOVE :;; / (file identification) 

or 

? REMOVE = / (program identification suffix) 

then all files with the given file identification or program 

identification suffix, which are on the disk, are removed. 

c. If a REMOVE card contains information of the form: 

? REMOVE (file identification prefix) / = 

or 

? REMOVE (program identification) / = 

then all files with the given file identification prefix 

or program identification, which are on the disk, are 

removed. 

Revised 2/21/69 
by peN 1024916·007 4- 1 1 



d. If a REMOVE card contains information of the form: 

? REMOVE = / = 

then all files on the disk are removed. 

To summarize, the information on a REMOVE card must contain the 

following information: 

Examples: 

? REMOVE (aggregate file list) 

? REMOVE PROG/CAL, PROG/IRA, DATA/IRACAL 

? REMOVE = / IRA 

? REMOVE PROG / = 

? REMOVE = / = 

? REMOVE P/I, = / DISK, DATA / =, A/B 

DUMP CARD - UNLOAD CARD. 

The DUMP or UNLOAD card causes one or more library programs and/or 

data files to be copied on a scratch tape from disk. The file 

information written on the magnetic tape forms a multi-file reel, 

and is referred to as a library tape. DUMP and UNLOAD requests run 

with a MIX number as a program named LIBMAIN/DISK. LIBMAIN/DISK 

may be treated like any normal state program {ioe., DS-ed, ST-ed, 

etco} with the exception that a UL message must be given in response 

to the # NO FILE message. 

The DUMP card facility does not remov'e files from the disk directory. 

The UNLOAD card removes the specified file from the directory after 

the file has been dumped 0 The number of files to be dumped on a 

library tape may be specified. The maximum is 511 files. The MCP 

will start a sufficient number of LIBMAIN/DISK programs to dump all 

the files specified. 

? DUMP 240 TO SYSTEM = / DISK; END 

4-12 



If 362 files with a (file-identification) of "DISK" were on the 

disk, two copies of LIBMAIN/DISK could be run at the same time if 

core requirements allow. The tape labeled SYSTEM would contain 240 

files, and 122 files would be dumped to a tape labeled SYSTEMI. 

NOTE 

The files SYSTEM/LOG and DIRCTRY/ 

DISK cannot be dumped. 

To specify what files are to be dumped, file lists and/or aggregate 

file names (i.e., an (aggregate file list» are used. A file list, 

of course, provides a file specifier for each file dumped. An 

aggregate file name specifies that one or more files are dumped. 

Specifically, the various choices for DUMP card information are 

explained as follows: 

a. If a DUMP card contains information of the form: 

? DUMP TO (library tape name) (file list) 

then all files both in the file list and the disk directory 

are dumped. 

b. If a DUMP card contains information of the form: 

? DUMP TO (library tape name) = / (file identification) 

or 

? DUMP TO (library tape name) =/ (program 

identification suffix) 

then all files with the given file identification or program 

identification suffix, which are on the disk, are dumped. 

c. If a DUMP card contains information of the form: 

? DUMP TO (library tape name) (file identification 

prefix) / = 

Revised 2/27/70 
by peN 1024916-012 4-13 



or 

? DUMP TO (library tape name) (program 

identification) / = 

then all files with the given file identification prefix 

or program identification, which are on the disk, are 

dumped. 

d. If a DUMP card contains information of the form: 

? DUMP TO (library tape name) = / = 

then all files on the disk are dumped. 

e. If a DUMP card contains information of one of the following 

forms: 

? DUMP ACCESSD TO (library tape) (file list) 

? DUMP (integer) ACCESSD TO (library tape) (file list) 

? UNLOAD ACCESSD TO (library tape) (file list) 

? UNLOAD (integer) ACCESSD TO (library tape) (file list) 

then, only newly created disk files and disk files which 

have been accessed, except program files, since the last 

library LOAD, are dumped. 

To summarize, the information on a DUMP or UNLOAD card must contain 

the following information: 

Examples: 

4-14 

? .DpMP (separator) (library. tape name) (aggregate file 

list) 

? DUMP TO IRASYST PROG/CAL, PROG/IRA, DATA/IRACAL 

? DUMP TO IRASYST = / IRA 

? DUMP TO CALSYST PROG / = 



? DUMP TO LIBTAPE =/= 

? DUMP TO LIBTAPE P/I, =/DISK, DATA/=, A/B 

? UNLOAD TO SYSTEM =/= 

? DUMP 240 TO SYSTEM =/DISK 

? DUMP ACCESSD TO LIB =/USERTS 

? UNLOAD ACCESSD TO LIB =/USERTS 

? DUMP 173 ACCESSD TO LIB =/TSUSER 

? UNLOAD 173 ACCESSD TO LIB =/TSUSER 

LOAD CARD - ADD CARD. 

The LOAD Card causes the files specified by (library tape name) and 

(file list) to be loaded on the disk and entered in the Disk Direc­

tory. The ADD Card loads the specified files only if the files are 

not already in the Directory. The LOAD or ADD requests run with a mix 

number as a program named LIBMAIN/DISK. LIBMAIN/DISK may be treated 

as any normal state program (i.e., DSed, STed, etc.) with the excep­

tion that a UL Message must be given in response to the # NO FILE 

Message. 

NOTE 

The files SYSTEM/LOG and 

DIRCTRY/DISK cannot be loaded. 

A variation of the LOAD Construct also makes it possible for files to 

be loaded to a specified disk file electronics unit (EU) or a speci-

fied "speed of disk. " Examples are as follows: 

CC LOAD TO EU(integer) FROM (label) =/=; END 

CC LOAD TO FAST FROM (label) -/_. - -, END 

CC LOAD TO SLOW FROM (label) -/_. - -, END 

If the specified EU or SPEED is not available, standard-library-main­

tenance, no-user-disk action is taken. 

To specify what files are to be loaded, file lists and/or aggregate 

file names (i.e., an (aggregate file list» are used. A file list 

provides a file specifier for each file to be loaded. An aggregate 

Revised 1/8/71 
by peN 1024916-014 4-15 



I 

I 

I 

I 

file name specifies one or more files are to be loaded. Specifically, 

the various choices for LOAD Card information are explained as follows: 

4-16 

a. If a LOAD Card contains information of the form: 

? LOAD FROM (library tape name) (file list) 

all files that are both in the file list and the library 

tape are loaded. 

b. If a LOAD Card contains information of the form: 

c. 

or 

? LOAD FROM (library tape name) =/(file identification) 

? LOAD FROM (library tape name) =/(program 

identification suffix) 

all files with the given file identification or program 

identification suffix, which are on the library tape, are 

loaded. 

If a LOAD Card contains information of the form: 

or 

? LOAD FROM (library tape name) (file identification 

prefix)/= 

? LOAD FROM (library tape name) (program 

identification)/= 

all files with the given file identification prefix or 

program identification, which are on the library tape, 

are loaded. 

d. If a LOAD Card contains information of the form: 

? LOAD FROM (library tape name) =/= 

all files on the library tape are loaded. 



To summarize, the information on a LOAD or ADD Card must contain the 

following information: 

? LOAD (separator) (library tape name) 

(aggregate file list) 

Examples 

? LOAD FROM IRASYST PROG/CAL, PROG/IRA, 

? LOAD FROM IRASYST =/IRA 

? LOAD FROM CALSYST PROG/= 

? LOAD FROM LIBTAPE -/-- -

DATA/IRACAL 

? LOAD FROM LIBTAPE P/I, =/DISK, DATA/=, A/B 

? ADD FROM SYSTEM =/A, B/= 

CHANGE CARD. 

The CHANGE Card is used to change the names of program files and/or 

data files which are on disk. The first (file specifier) in a (change 

element) signifies the name of the file whose name is to be changed. 

The second (file specifier) in a (change element) signifies the new 

name for the file. The CHANGE Card must contain the following infor-

mation: 

? CHANGE (change list) 

Examples 

? CHANGED DATAl/"OOl" TO DATAl/"OOOl" 

? CHANGE ALGOL/DISK TO OLDALGOL/A, NEW ALGOL/A TO ALGOL/DISK 

? CHANGED A BY ME TO B BY ME, AB/C TO AC/B, BAD/N TO GOOD/N 

LABEL CARD. 

The LABEL Card may be used to relate a card file with a (data file 

name) and other label information. With the exception of the (invalid 

character) required in column 1, the information in a LABEL Card is 

defined as it is for a standard system label, as would be used on a 

magnetic tape file. 

Revised 1/8/71 
by peN 1024916-014 4-16A 



II 

I 

A LABEL Card has a fixed format as described below. In the descrip­

tion below, the character b signifies a single (space). 

DATA CARD. 

Characters 

1-8 

9 

10-16 

17 

18-24 

25-27 

28-32 

33-34 

35-64 

65-72 

Field Description 

Must contain ?LABELbb 

Must be 0 (zero) 

Multiple file identification 

Must be 0 (zero) 

File identification 

Reel number 

Creation date 

Cycle number 

(Irrelevant for card files) 

User's portion (for COBOL) 

The DATA Card can be used in lieu of a LABEL Card if the (multiple 

file identification) for a card file consists of zeros and if there 

is no desire to provide label information other than a (file identi­

fication). The DATA Card must contain the following information: 

? DATA (file identification) 

Example 

? DATA CARDS 

SET ACCESSD OR RESET ACCESSD CARD. 

The SET ACCESSD or RESET ACCESSD Card is used to set or reset the flag 

which is set when a disk file has been accessed. 

Whenever a program write-accesses a permanent file, the MCP sets the 

file access bit of the disk file header. This bit is reset only when 

the file is loaded by LIBRARY LOAD or by the RESET Control Card. By 

this implementation, only accessed files are dumped by the DUMP 

ACCESSD Control Card. 

4-16B 



The SET ACCESSD or RESET ACCESSD Card must contain the following 

information: 

? SET ACCESSD (file list) 

or 

? RESET ACCESSD (file list) 

Examples 

? SET ACCESSD A/B 

? RESET ACCESSD A/B,C/D,Y/Z 

END CARD. 

The primary function of the END Card is to denote the end-of-card 

information for a particular program. This designation of the end 

of information is required by the MCP whenever a program is termin­

ated for any reason while it has card information yet to be read. 

Consequently, the END Card is required to be the last card in a deck 

pertaining to a program. Thus, the END Card relevant to a particular 

program should normally not be followed by any other control card, 

program-parameter cards, or any data cards for that same program. 

If a program attempts to read an END Card as data, an end-of-file 

notification occurs. However, the END Card is not required to denote 

the end of a data file. An attempt to read any control card as data 

causes an end-of-file notification. Consequently, if a program re­

quires more than one card file, the end of one file is denoted by the 

LABEL Card or DATA Card for the next. 

The END Card must contain the following information: 

? END (comment) 

Example 

? END 

END CONTROL CARD. 

The END CONTROL Card is used to denote the end of a CONTROL DECK 

File used by the system program LDCNTRL/DISK. This card serves to 
Revised 1/8/71 
by peN 1024916-014 4-17 

I 



discontinue card reader input to a disk, pseudo-reader file and 

causes LDCNTRL/DISK to go to End-of-Job. 

NOTE 

This does not affect those card 

decks previously read into the 

pseudo reader; they continue to 

execute until the pseudo reader 

is turned off {set to zero}. 

The END CONTROL Card must contain the following information: 

? END COlt'f'ROL ? E /VP Pr-\CKfTS 

j~~ ,~{~-'v-.;Ze tf fo, A-rP X' f) (> I 1 
, ) I 

Example 

? END CONTROL 

PROGRAM-PARAMETER CARDS. 

Program-parameter cards are classified as program-parameter cards for 

compilers and program-parameter cards for object programs. The only 

difference between the two classifications is that the cards for com­

pilers have a (compiler name) following the (invalid character) and 

refer to the specified compiler; the cards for object programs do not 

contain a (compiler name) and refer to the object program. 

Program-parameter cards for a compiler are included in the program­

parameter cards that immediately follow a COMPILE Card. Also, for a 

compile-and-go or a compile-for-library run, the program-parameter 

cards for the object program are included in the program-parameter 

cards immediately following the COMPILE Card. For compile-for-syntax 

check, program-parameter cards may be included as for a compile-and­

go run, but they are ignored. 

When an object program is called for execution through use of an 

EXECUTE Card, the program-parameter cards for the object program 

4-18 



must immediately follow the EXECUTE card. 

parameter cards, order is irrelevant. 

Within a group of program-

In the paragraphs that follow, each program-parameter card of the 

B 5500 System is listed, together with the function of each card. 

PROCESS CARD. 

The PROCESS card specifies the maximum amount of processor time an 

object program or compiler is allowed. If the processor time for 

the program concerned exceeds the amount specified, the MCP will 

terminate the program. The (integer) on the PROCESS card specifies 

the maximum processor time in minutes. The (integer) on the process 

card must not contain more than eight digits. 

The PROCESS card for a compiler must contain the following informa­

tion: 

Example: 

? (compiler name) PROCESS (comment) = (integer) 

? ALGOL PROCESS TIME = 1 

? COBOL PROCESS = J 

The PROCESS card for an object program must contain the following 

information: 

? PROCESS (comment) = (integer) 

Example: 

? PROCESS = 4 
? PROCESS MAXIMUM = 5 

IO CARD. 

The IO card specifies the maximum amount of I/O channel (i.e., I/O 

control unit) time an object program or compiler is allowed. If the 

I/O channel time for the program exceeds the amount specified, the 

4-19 



MCP will terminate the program. The (integer) on the IO card speci­

fies the maximum channel time in minutes. The (integer) contained 

on an IO card must not contain more than eight digits. 

The IO card for a compiler must contain the following information: 

? (compiler name) IO (comment) = (integer) 

Examples: 

? ALGOL IO = 4 
? COBOL IO TIME MAX = 5 

The IO card for an object program must contain the following infor­

mation: 

? IO (comment) = (integer) 

Examples: 

? IO = 4 
? IO MAXIMUM ALLOWED = 3. COMMENT 

STACK CARD. 

The STACK card specifies the number of words assigned in core memory 

for the stack of the compiler or the object program. The MCP assigns 

512 words unless a STACK card specifies otherwise. The (integer) 

in the STACK card specifies the stack size in B 5500 words. 

The STACK card for a compiler must contain the following information: 

? (compiler name) STACK (comment) = (integer) 

Examples: 

? ALGOL STACK = 320 

? COBOL STACK SIZE = 640 

4-20 



The STACK card for an object program must contain the following 

information: 

Examples: 

? STACK (comment) = (integer) 

? STACK SHALL BE = 256 

? STACK = 560 

PRIORITY CARD. 

The PRIORITY card specifies the priority assigned a compiler or 

object program. Priorities may range from 0 to 32767, where 0 is 

the highest priority and 32767 is the lowest. For scheduling 

purposes, priorities greater than MIXMAX; i.e., priorities greater 

than the maximum number of programs allowed in the MIX, are taken to 

be equivalent to MIXMAX. However, during processing, the specified 

priorities are used, regardless of value. The MCP assigns a priority 

of (MIXMAX+l)DIV2 unless a priority card specifies otherwise. The 

(integer) on the PRIORITY card specifies the priority assigned. 

The PRIORITY card for a compiler must contain the following informa­

tion: 

Examples: 

? (compiler name) PRIORITY (comment) = (integer) 

? ALGOL PRIORITY FOR THIS RUN = 1 

? COBOL PRIORITY = 3 

The PRIORITY card for an object program must contain the following 

information: 

? PRIORITY (comment) = (integer) 

Examples: 

? PRIORITY = 0 

? PRIORITY LOWEST I AM ALLOWED = 4 

Revised 9/5/69 
by PeN 1024916-011 4-21 



I 

I 

FILE CARD (LABEL EQUATION). 

The FILE card, often referred to as the label equation card, may 

specify the (data file name) to be associated with a file identifier 

used in a source program to refer to a particular file. Also, the 

FILE card can specify various options for output files. 

In the following description, the term (file identifier) refers to 

the file identifier used in I/O statements in the source program. 

The terms described in the following paragraphs are optional; i.e. 

they mayor may not be used. However, if they are included, they 

must occur in the order specified. 

4-22 

a. The term (rdc) may be included. 

b. The ter.m forms option may be used to cause the MCP to 

notify the system operator before a file requiring special 

forms is opened. The following word specifies (forms 

option) : FORM. 

c. The term no-label option may be used to notify the MCP not 

to place a label on the specified file. The following words 

are used to specify the (no-label option) : NO LABEL. 

d. The term (output medium) may be used to specify the type 

of output to be used for the file. 

1) The (output medium) BACKbUP can specify that a line­

printer file is to be placed on a printer backup file. 

2) The (output medium) PRINT OR BACKbUP can specify that a 

line-printer file can be placed on a printer backup 

file if a line printer is not available. 

J) The (output medium) SPECIAL denotes that the first 

three characters of the (file identification) specify 

the (unit mnemonic) for the output unit to be used for 

the file. LJ',\\ o~i~ Y6P6tlL'I 



4) If (output medium) DISK is specified, a random accessing 

technique is assumed. SERIAL and UPDATE refer to disk 

files with serial and update accessing techniques. 

5) The (output medium) terms, DISK, SERIAL, UPDATE, or TAPE'I 
can also be used to equate input files to disk or tape. 

6) The remaining choices for (output medium) are self-ex­

planatory. If no (output medium) is specified, magnetic 

tape (i.e., TAPE) is assumed. 

7) Any of the following reserved words are used for (output 

medium) : 

DISK BACKbUP 

TAPE PRINT OR BACKbUP 

PUNCH SERIAL 
/ 

/ PAPER TAPE UPDATE 

PRINT spa 

SPECIAL 

The information on a FILE card for a compiler must appear as follows: 

Examples: 

? (compiler name) FILE (file identifier) = (data file 

designator) (rdc) (forms option) (no-label option) 

(output medium) 

? ALGOL FILE CARD = MFID/FID SERIAL 

? ALGOL FILE TAPE = ZILCH 

? ALGOL FILE LINE = LINE BACKbUP 

The information on a FILE card for an object program must appear as 

follows: 

Examples: 

? FILE (file identifier) = (data file designator) (rdc) 

(form option) (no-label option) (output medium) 

? FILE REED = MULFILE/FILEID 

? FILE RITE = MUL/FID NO LABEL TAPE 

Revised 1/8/71 
by peN 1024916-014 4-23 

• 

• 



? FILE RIGHT = L/pRNT FORM PRINT 

? FILE ABC = ffoOl"/KZOO,01,64350, 02 

? FILE XYZ = MIN, 3, 64351 

? FILE Fl = MTEFXOI SPECIAL 

COMMON CARD. 

The COMMON card may specify an (integer) which is converted to binary 

and stored as an integer in the PRT (Program Reference Table) of an 

object program or compiler, just before the object program or 

compiler is initiated. The PRT cell in which the integer is stored 

is the first cell beyond cell 20, which contains a zero at load 

time. PRT cells reserved for simple variables, arrays, and various 

other program entities, contain zeros at load time. Consequently, 

when the COMMON card is used, the variable which is to receive the 

value of the (integer) should occur as the first identifier declared 

in the program. 

The (integer) contained on a COMMON card must not contain more than 

eight digits. There is at most one COMMON card per object program 

or compiler. 

The COMMON card for a compiler must contain the following informa­

tion: 

? (compiler name) COMMON (comment) = (integer) 

Examples: 

? ALGOL COMMON = 127 

The COMMON card for an object program must contain the following 

information: 

COMMON (comment) = (integer) 

Example: 

? COMMON = 12345678 

4-24 



THE UNIT CARD. 
~ 

The UNIT card may be used to relate a (dati file name) to a particular 

I/O unit. It is required when an input file does not have a label 

and the IL (unit mnemonic) is not to be used. 

The UNIT card must contain the following information: 

? UNIT (unit mnemonic) = (data file designator) 

or 

? UNIT (unit mnemonic) = (data file specifier) (rdc) 

Examples: 

? UNIT MTE = UNLAB/FIEL 

? UNIT MTA = FILEID, 2, 66262 

THE CORE CARD. 

The CORE card is a program-parameter card which allows the operator 

or programmer to override the compiler's estimate of the amount of 

core storage required for efficient execution of a program. The 

core requirement referred to here is effective only in deciding when 

the program should be multiprocessed with other programs. 

This card need be used only when it is noticed that the compiler's 

estimate is unusually high or low. If it is noticed that the MCP 

has a general tendency to load a particular program when it probably 

should not have been loaded (i.e., the system bogs down unacceptably 

because of overlay aft~r starting the job), then a CORE card should 

be used to increase the compiler-provided core requirement for that 

job. 

The (integer) contained on the CORE card is the core requirement in 

B 5500 words, and is not greater than 32768. If the (integer) on 

the CORE card is greater than 32768, a value of 32768 is used instead. 

4-25 



The CORE card for the compiler must contain the following information: 

? (compiler name) CORE (comment) = (integer) 

Example: 

? ALGOL CORE = 10000 

The CORE card for an object program must contain the following 

information: 

? CORE (comment) = (integer) 

Example: 

? CORE = 6000 

THE SAVE CARD. 

The SAVE card may be used when a program is being compiled to the 

library, and to specify how long the compiled program will be saved 

on disk without becoming expired. The names of all expired files 

may be obtained by using the EX message. 

The (integer) on the SAVE card must not contain more than eight 

digits; it specifies the number of days the program will be retained. 

A SAVE card for a compiler will have no effect and should not be 

used. The SAVE card for an object program must contain the following 

information: 

? SAVE (comment) = (integer) 

Example: 

? SAVE PERIOD = 15 DAYS 

COMPILER OPTION CARDS. 

The Compiler Option cards are discussed in the following paragraphs. 

4-26 



$ CARD. 

The absence of this card specifies that the source program is entered 

as input via the card reader and listed. A further discussion of this 

card is covered separately below for ALGOL, COBOL, and ESPOL. 

ALGOL SOURCE PROGRAMS. 

The format of this card for use with ALGOL is free form except for the 

following conditions: 

a. The $ is placed in column 1. 

b. The input medium option (i.e., CARD or TAPE) must precede all 

other options used. 

c. The options are delimited by at least one blank. 

The syntax of the $ Card for ALGOL is as follows: 

($ card) ::= $ (control options) 

(control options) ::= (option) I (option) (control option) 

(option) .. -.. - CARD I TAPE I LIST NEWbTAPE I NEW I PRT I DEBUGN 

SGL I SINGLE I PUNCH I CHECK I (sequence option) I VOID 

(empty) I VOIDT I SEQXEQ 

(sequence option) ::= SEQ (start) (inc) I SEQ (inc) 

(start) ::= (integer) (empty) 

(~nc) ::= + (integer) (empty) 

CARD ::= The source program is entered as input via the card reader. 

CHECK ::= The format of the ALGOL Control Card ($ Card) provides a 

sequence-checking facility. The CHECK appearing anywhere 

on the $ Card causes the ALGOL Compiler to check all input 

card images (from card reader, OCRDIMG Tapes, or CAST Tapes) 

for proper sequence order. If the next card to be compiled 

Revised 1/8/71 
by peN 1024916-014 4-27 



has a lower sequence number than the previously compiled 

card, a warning message, SEQ, is printed to the right of 

the card image on the line printer. If the line printer 

is not open, it is opened to print the card image and the 

warning message. The message SEQ is only a warning and is 

not considered an error by the Compiler. 

TAPE .. -.. - The source program is entered as input via magnetic tape. 

Updating source program cards is accepted from the card 

reader. 

LIST ::= The source program is listed. In addition, the segment 

number and the relative address of the last word generated 

for each source program statement appear to the right of 

the sequence number of the statement. 

NEWbTAPE or NEW ::= Generates OCRDIMG Tape. 

PRT ::= The relative PRT locations of the program assigned by the 

Compiler are printed immediately following, and to the left 

of, the associated source program statement. 

DEBUGN 

PUNCH 

.. -.. -

.. -.. -

The object code produced by the Compiler is listed 

following each ALGOL Statement. 

If a source program card or card image is encountered which 

contains a syntactical error, the card is punched in its 

original form. 

SINGLE or SGL ::= The source program listing produced by the LIST 

Option is single-spaced. This option has no ef­

fect if LIST is not also specified. 

VOIDT 

SEQXEQ 

4-28 

.. -.. -

.. -.. -

This option acts similarly to VOID with the exception that 

VOIDT specifically voids card images on the TAPE Input File 

and has no effect on other card images being read (compiled). 

This is the time sharing option which is automatically set 

when running under the time sharing system from a remote 



SEQ .. -.. -

terminal. The option gives line numbers (card numbers) 

of syntax errors to the associated remote terminal. 

a. This option resequences the listing on the LINE File as well 

as any NEWTAPE File that is being made. 

b. The specifications following SEQ have the following inter­

pretations: 

(start) - the sequence number to be assigned to the 

first card of the source program. 

(inc) - increment. 

Revised 1/8/71 
by peN 1024916-014 4-28A 

I 



VOID .. -.. - All records on the source file whose sequence numbers are 

equal to or greater than the VOID card sequence number and 

less than the restart sequence number will be skipped. 

The restart sequence number is from one to eight contigu­

ous characters, excluding an invalid character, following 

$ VOID. 

t COBOL PROGRAM. ] 

The format for the $ card for COBOL is now free form, except for 

the following conditions: 

a. The $ must be placed in Columns I or 7. If it is in 

Column 7, then Columns I through 6 are assumed to be a 

Sequence number. 

b. The input media option (i.e., card or tape) once set need 

not be set every time and must occur, if present, immedi­

ately after the $. 

c. The options are delimited by at least one blank. 

The absence of any $ card specifies that the source program is in­

put via the card reader and that it is listed. 

The syntax for the $ card for COBOL is as follows: 

($ CARD) ::= (control options) I $ (options) 

(control options) ::= CARD I TAPE I VOID I (options) 

(options) ::= LIST I NEW TAPE I PRT I PUNCH I SPEC I DEBUGN 

(sequence option) I (inc) I SINGLE I SGL 

(sequence option) ::= SEQ (start) (inc) I SEQ (inc) I SEQ 

TSSEDIT I FREE 

(start) ::= (integer) I (empty) 

(inc) ::= + (integer) I (empty) 

CARD ::= The source program is input via the card reader. 

TAPE ::= The source program is input from another source; 

i.e., magnetic tape or disk. 

Updating source program cards are accepted from the 

card reader. 

Revised 9/5/69 
by PeN 1024916-011 4-29 



VOID · .-· .- The compiler will remove the source program card whose 

sequence number is identical to the one in columns 1-6 of 

this card. If there is a number after the VOID in the $ 

card the voiding option will continue until that number is 

exceeded. If the number is less than six digits then it 

is left justified and zero filled on the right. 

LIST ::= The source program is listed. 

NEW TAPE 

PRT · .-· . -

The source, 

netic tape. 

independent of input, is placed on a mag-

The label of this tape is SOLT. 

The program's relative PRT locations assigned by the com-

piler are listed. The paragraph number is also printed. 

PUNCH ::= The source program, independent of input, is reproduced 

on the card punch. 

SPEC · . -· .- This will suppress MOVE TRUNCATION, SEQUENCE ERROR and 

corresponding messages. 

DEBUGN ::= The object code produced by the compiler is listed. 

SEQ · . -· . - This option will resequence the source deck using the ex­

isting sequence number of this card (columns 1-5) and in-

crementing by 100. If an integer occurs after SEQ and 

before a + then this integer is assumed to be the new 

sequence number. The integer after a + is assumed to be 

the increment for resequencing. Zero suppression is assumed 

if an integer is less than six digits. 

SINGLE or SGL .. -.. - This option will cause the compiler to produce 

a single spaced listing. 

A $ TAPE card is used at any point in the card deck to initiate 

reading from the SOLT tape. A subsequent $ CARD will suppress 

reading from the SOLT tape. Reading from the tape will begin again 

when another $ TAPE card is encountered, starting with the record 

4-30 



following the last one processed before the $ CARD was encountered. 

The card deck following the last $ TAPE card must contain a se­

quence number higher than any on the SOLT tape (such as 999999), 

unless the last card contains END-OF-JOB in columns 8-17. 

$ CARDs which are not first in the deck must allow for sequence 

numbers. To do this, the $ sign is put in column 7 instead of 

column 1 and the other option-fields. For example, CARD, LIST, and 

PRT are placed six columns to the right of the above $ CARD layout. 

$ CARD FOR ESPOL. 

ESPOL has two types of $ cards: a $ card which specifies I/O op­

tions, such as is used with the Extended ALGOL Compiler and a $ 

VOID card. 

The format of I/O option $ cards for ESPOL is similar to that for 

$ cards in Extended ALGOL. A $ must appear in column 1 followed 

either by the word CARD or the word TAPE. The remainder of the card 

may contain any of the following option words in a free field for-

mat: 

LIST 

PRT 

NEW TAPE 

DECK [digit] [digit] 

DEBUGN 

STUFF 

INTRINSIC 

SGL 

SINGLE 

Revised 1/8/71 
by peN 1024916-014 4-30A 

I 



The words CARD and TAPE are used with the ESPOL Compiler for the same 

purpose as with the Extended ALGOL Compiler. CARD is used when the 

source program is on cards alone, and TAPE is used when compiling from 

tape using the card file as a patch deck. Also, the words LIST, PRT, 

NEW TAPE, SGL, SINGLE, and DEBUGN provide the same actions for ESPOL • 

as they do for the Extended ALGOL Compiler. The word DECK, which is 

not an ALGOL option, is used to specify that the program generated by 

the compilation is punched on cards rather than written on disk. Once 

the DECK option is set, it is not revoked due to subsequent $ cards 

which do not specify the option. 

The use of the STUFF option causes a card to be punched with the fol­

lowing format for each procedure, array, or variable assigned to the 

PRT by the Compiler. 

Columns Field Content 

1-4 Decimal class, where: 

10 = Procedure 

12 = Stream Procedure 

13 = Boolean Stream Procedure 

14 = Real Stream Procedure 

15 = Integer Stream Procedure 

17 = Boolean Procedure 

18 = Real Procedure 

19 = Integer Procedure 

21 = Boolean 

22 = R~al 

23 = Integer 

25 = Boolean Array 

26 = Real Array 

27 = Integer Array 

30 = Name 

Revised 1/8/71 
by peN 1024916-014 4-31 



Columns 

5-8 

9-80 

Field Description 

Decimal PRT address 

Identifier, left justified, with blank fill 

The production of these output cards is initiated by the appearance 

of the word STUFF on a $ card. The introduction of another $ card 

not containing the word STUFF will inhibit the punching of these 

cards. 

The INTRINSIC option is turned on by the appearance of the word 

INTRINSIC on a $ control card signifying to ESPOL that it is compil­

ing an intrinsic file and enabling it to produce a disk file in the 

format expected by the MCP. 

An intrinsic program (i.e., the symbolic input to ESPOL when using 

the $INTRINSIC option) is subject to the following restrictions: 

a. The outer block of the program may contain only declara­

tions; no statements are allowed. 

b. Only Non-Save Procedures may be declared. 

and Stream Procedures are prohibited. 

NOTE 

ESPOL uses a modified construct 

of the Stream Procedure which 

is referred to as the In-Line 

STREAM Statement. 

c. No SAVE array may be declared. 

SAVE Procedures 

d. Any variable declared in the outer block must be equated 

to an R or F relative address through use of a [relative 

address expression] in its declaration. 

It is noted that the $INTRINSIC option is required when compiling the 

symbolic file for the intrinsic of the programming system. When com­

piling these intrinsics, the ESPOL file DISK is equated to INT/DISK. 

The $ VOID card has the format $ VOID [sequence number]; the $ is in 

column one, and the [sequence number] is recognized as the field of 

eight consecutive characters starting with the first non-blank 

4-32 



character following the word VOID. A VOID card in an ESPOL patch deck 

causes cards on the symbolic input tape to be deleted from the compi­

lation, and, if a NEW TAPE is being created during the compilation, 

the voided cards are not written on the new tape. Card images on a 

symbolic input tape which are affected by a VOID card are those with 

sequence numbers equal to or greater than the sequence number of the 

VOID card and less than the value in the [sequence number] field. 

MCP MODULARITY. 

The current MCP is modular in design, and it incorporates all func­

tions available in previous standard MCP's. 

Modularity is achieved by the inclusion of $INCLUDE and $OMIT cards. 

The parameters defined on these cards must be given values of TRUE or 

FALSE by using $SET cards in the change deck at compile time. The 

compiled MCP is a function of the values given the parameters. It re-

quires approximately 10 minutes to compile any MCP, regardless of the 

modules chosen. 

Parameters for which $SET cards must be included when compiling DCEPSY 

are: 

PARAMETER 

BREAKOUT 

DEBUGGING 

DUMP 

DESCRIPTION 

If BREAKOUT is set TRUE, then code for the breakout­

restart facility is included in the MCP. If set FALSE, 

the breakout-restart facility is not available. 

If DEBUGGING is set TRUE, then all debugging facilities 

of the MCP are available including memory dump, console 

access to core memory, access to disk via the console, 

and trace. If DEBUGGING is set FALSE, then debugging 

facilities are unavailable with the exception noted be­

low by the DUMP parameter. 

If DUMP is set TRUE, then the memory dump facility is 

provided via the console. If DUMP is set FALSE, this 

facility is not provided. 

Revised 1/8/71 
by peN 1024916-014 4-33 



PARAMETER 

DUMP (cont) 

DFX 

INQUIRY 

DATACOM 

DCSPO 

4-34 

DESCRIPTION 

NOTE 

DEBUGGING set TRUE overrides 

the setting of the DUMP option 

since a system with full debug­

ging facilities has memory dump 

capabilities via the console. 

DFX set TRUE indicates that the user has a B 451 Ex­

panded Disk File Control and two disk file control 

units. Code is compiled into the MCP to optimize disk 

I/O for this system configuration. 

If INQUIRY is set TRUE, code is included in the MCP for 

the data communications INQUIRY System. If INQUIRY is 

set FALSE, this code is omitted. 

NOTE 

An INQUIRY System precludes a 

DATACOM System and vice versa. 

The parameters INQUIRY and DA­

TACOM should not both be set 

TRUE. 

If DATACOM is set TRUE, code is included in the MCP for 

data-communications DATACOM II facilities. If DATACOM 

is set FALSE, this code is omitted. 

NOTE 

An INQUIRY System precludes a 

DATACOM System and vice versa. 

The parameters INQUIRY and DA­

TACOM should not both be set 

TRUE. 

If DCSPO is set TRUE, SPO facilities are available to 

the user at remote stations. If DCSPO is set FALSE, 

remote stations have no SPO capabilities. 



PARAMETER 

DCSPO (cont) 

DCLOG 

DISKLOG 

SAVERESULTS 

SHAREDISK 

STATISTICS 

DESCRIPTION 

NOTE 

The DCSPO and DCLOG facilities 

are functions of a DATACOM Sys­

tem. DCSPO and DCLOG should be 

set FALSE if DATACOM is set FALSE. 

If DCLOG is set TRUE, logging facilities for remote 

stations are compiled into the MCP. If DCLOG is set 

FALSE, this facility is not provided. 

NOTE 

The DCSPO and DCLOG facilities 

are functions of a DATACOM Sys­

tem. DCSPO and DCLOG should be 

set FALSE if DATACOM is set FALSE. 

If DISKLOG is set TRUE, logging facilities for disk 

files are compiled into the MCP. If DISKLOG is set 

FALSE, .this facili ty is omi tted. 

If SAVERESULTS is set TRUE, code is included in the 

MCP for the possible debugging of data communications 

I/O descriptors and result descriptors. If SAVERESULTS 

is set FALSE, the SAVERESULTS code is omitted. 

If SHAREDISK is set TRUE, code is included in the MCP 

for the SHAREDISK System. If SHAREDISK is set FALSE, 

the SHAREDISK code is omitted. The SHAREDISK and 

BREAKOUT Options are mutually exclusive; hence, break­

out-restart facilities are not available under SHARE­

DISK. The shared disk features enabled by this option 

are dependent on SHAREDISK hardware. This option can­

not be used if the File Protect Memory Unit is not 

present. 

If STATISTICS is set TRUE, code is included in the MCP 

Revised 1/8/71 
by peN 1024916·014 4-35 



PARAMETER DESCRIPTION 

III STATISTICS (cont) for maintenance of three additional pseudo logs. 

If STATISTICS is set FALSE, the STATISTICS code 

is omitted. 

FORTRAN COMPILER. 

The format of the Dollar Sign Card for FORTRAN is: 

Card Columns 

1 

2-72 

73-80 

Contents 

$ 

Options in free field format 

Card number or blank 

The Dollar Sign Card is placed: 

4-36 

a. Immediately after the MCP control cards used for compilation 

and immediately before the first FORTRAN FILE Card or FORTRAN 

Source or Patch Card if no FILE Cards are used. 

b. Anywhere else in the source or patch deck with a proper se­

quence number in order to change options at some point in 

compilation; e.g., to list only a part of the compiled source 

program. 



Example: 

$ CARD 

A=B+C 

$CARD LIST 

X=SQRT 

PAR=TAN(X/A) 

V=SIN(X+Y-Z) 

$ CARD 

Sequence 
Number 

00000100 

00009000 

00009100 

00009200 

00009300 

00012200 

00012300 

Only cards 00009200 through 00012200 are listed on the file LINE. 

When dollar sign cards are grouped together, all of them are 

ignored except for the last one. If no dollar sign card is in-

cluded with the source deck, then the CARD and LIST options are 

assumed. 

The various options available are as follows: 

TAPE or CARD 

a. One of these, but not both, is the first option on the 

dollar sign card immediately following the dollar sign. 

b. CARD indicates to the compiler that the source program 

input is entirely from the file labeled CARD. 

c. TAPE indicates to the compiler that the source program 

input is from the file labeled TAPE and that change or 

patch cards may be input from the file labeled CARD. If 

a change or patch card file is used, then it is merged 

into the source program from the file labeled TAPE as a 

function of the sequence number in columns 73-80. If a 

Revised 1/8/71 
by peN 1024916-014 4- 36A 



LIST 

listing is obtained, then the source statements from the 

TAPE file will have a T following the sequence number, 

and the source statements being merged from the CARD file 

will have an R following the sequence number on the com­

piled source listing. The merging process uses the 

B 5500 alphanumeric collating sequence. 

a. If present, then a compiled source listing of the source 

program is made on the file LINE, including any change or 

patch cards. 

b. Segment and address information is also listed with the 

source program. 

NEW or NEW TAPE 

PRT 

DEBUGN 

a. If present, a new source tape file labeled FORSYM is 

created which includes all change or patch cards and 

FILE cards, but does not include dollar sign cards. 

a. If present, then a listing of the source program is made 

on the file LINE, including any change or patch cards. 

At the end of each program unit listing, a listing of 

PRT and stack assignments for each local identifier 

within that program unit is made. 

b. At the end of the entire program, PRT assignments for 

all global names are listed. 

c. If PRT is specified, then LIST is assumed. 

a. If present, then the actual machine code emitted by the 

compiler is also listed on the file LINE together with 

octal values of constants and format of PRT entries. 

b. If DEBUGN is specified, then PRT and LIST are assumed. 

4-37 



TRACE 

a. If present, then information is listed on the file LINE 

which indicates how the FORTRAN compiler is analyzing 

the syntax of the source program. 

b. TRACE is used only in extreme cases because of the great 

volume of output produced. 

c. If TRACE is specified, the LIST, PRT, and DEBUGN options 

are assumed. 

SEQ f s i 

4-38 

a. If present, the listing on file LINE and the new source 

~rogram on the file NEWTAPE, labeled FORSYM (if NEW or 

NEW TAPE is specified), are resequenced. 

b. The specifications following SEQ have the following 

interpretations: 

f - the sequence number of the first card of the 

source program. 

s - any special character, usually plus (+) or 

comma (,). 

i-increment. If i=O, or i is not a number, then 

an increment of 1000 is used. 

c. The SEQ option, if used, is the last option on the dollar 

sign card. 



HOL 

a. If the source cards are punched in IBM card code, then 

the HOL option need not be used. If this is the case, 

then the listing of the source program produced by the 

compiler is in IBM card codes; e.g., it is printed as %, 
= is printed as #, etc. However, the compiler will 

properly interpret the source program and compile it. 

b. If the source cards are punched in IBM card code and the 

HOL option is used, then all characters are converted to 

BeL before printing on the file LINE. 

c. If the source cards are punched in IBM/360 card code, then 

the HOL option must be used to convert the source program 

to BeL. 

d. The HOL option will translate all IBM or IBM/360 cards 

to BeL, including strings and Hollerith constants. This 

option also causes the object program produced by the 

compiler to automatically convert into BeL data read with 

an A format specification and data read into Hollerith 

strings. 

e. The use of the HOL option will slow compilation speed. 

For repeated compilations from large source programs, 

it is advantageous to use the NEW TAPE option with 

HOL on the first compilation. Thereafter, compilations 

are made without the HOL option from the generated 

source tape. 

4-39 



TIME 

CHECK 

VOID n 

4-40 

a. If present and if the LIST option is not present, then 

the source program is not listed, but, at the end of the 

compilation, compilation information is listed on the 

file LINE. 

a. If present and if TAPE and CARD files are being merged 

at compilation, then the sequence numbers in columns 

73-80 of the two files are checked. If a record{s) from 

from the CARD file is not in sequence, then a warning 

message is printed on the file LINE: 

SEQUENCE ERROR "n" < "p", 

where n is the new sequence number and p is the old 

sequence number. The B 5500 alphanumeric collating 

sequence is used. 

a. If present, VOID is the only option on the dollar sign 

card. This option is used only when merging a CARD 

and TAPE file. 

b. If the NEW option is previously specified, VOID is 

present, and n is blank, then the record on the TAPE file 

with the same sequence number (in columns 73-80) as the 

$VOID card is ignored by the compiler. Also, it is not 

listed on the file LINE, and it is not inserted in the 

file NEWTAPE. 



c. If present, and if n is not blank, n must be the sequence 

number of a record existing in the TAPE file and, in addi­

tion, the $VOID card must have a sequence number in columns 

73-80. The records in the TAPE file, starting with the 

record which has the same sequence number as the $VOID card 

(columns 73-80), are ignored up to but not including the 

VOIDT n 

record ion the TAPE file with the sequence number n. These 

records are ignored by the compiler, not listed in the file 

LINE, and not inserted in the file NEWTAPE, if the NEW op­

tion has been specified previously. 

a. The syntax is the same as the dollar sign VOID card. 

b. This option enables one to void an area on tape according 

to the range specified. Cards in the patch deck which lie 

in the voided range are unaffected and inserted. 

ALGOL $$ CARD. 

The $$ card is used to callout symbolic subprograms from a source 

language library file (made by the MAKCAST/DISK Program). The 

(ALGOL) file called may be a symbolic program to be compiled in its 

entirety, or it may be used as a patch or recipient of a patch. The 

format of this card is free form except for the following conditions: 

a. The two $ symbols must appear in columns 1 and 2. 

b. Column 72 is blank. 

c. For proper sequence recognition of the source file by the 

ALGOL Compiler, columns 73-80 should contain zeros if the 

card is placed at the beginning of the source deck; or, if 

placed within the deck at the point of patching, the se­

quence field should contain the sequence number of the 

source program card previous to that of the first card im-

age of the symbolic subprogram considered. The ALGOL Com-

piler does not overwrite that card image but only uses its 

sequence number as a reference point for patching. 
Revised 1/8/71 
by peN 1024916-014 4--41 



The syntax of the $$ card is as follows: 

($$card) ::= (symbolic tape id.) (subprogram id.) (partial program 

option) (sequence no.) 

(symbolic tape id.) ::= A I B I C 

(partial program option) ::= [(starting card number) 

of cards)J I (empty) 

NOTE 

(number 

The starting card number is the relative 

location of the card image in the subpro­

gram, not the actual card sequence number. 

The insertions are similar to those made when patching a OCRDIMG tape 

file with a card deck. The following example inserts the first eight 

cards of the CASTA subfile called FIEL into the program currently be­

ing compiled. 

Example: 

$$ A FIEL [1:8J (sequence number) 

COBOL $$ CARD. 

The COBOL $$ card has the following format: 

Column 

1-2 

J 

4-10 

Contents 

$$ 

Blank 

Subfile ID 

The subfile ID in the above format refers to the subfile ID on the 

CASTA library file, and it is limited to a maximum of seven charac­

ters. The $$ card must appear before any other cards in the deck, 

except that $ cards with a $ sign in column 1 must precede the $$ 

card. Only one $$ card is allowed in a deck. 

Cards following the $$ card are merged with the records in the CASTA 

subfile under sequence number control. The CASTA subfile may not con­

tain the COPY FROM LIBRARY statement. The entire CASTA subfile is 

processed through the compiler. All $ card options are permissible 

4-42 



except TAPE. Once the CASTA subfile has been processed, the SaLT file 

may be initiated with a $ TAPE card. 

Revised 1/8/71 
by peN 1024916-014 4-42A 



SOURCE PROGRAM CARDS. 

The discussion of these cards is covered separately for ALGOL and 

COBOL programs. 

ALGOL SOURCE PROGRAMS. 

Unless the source program is coming from tape, the last statement 

is END. The period in END. should not occur in card column 72. 

Additional $ cards are placed within the source program deck. The 

action taken is that specified by the last $ card encountered during 

processing. 

COBOL SOURCE PROGRAMS. 

Unless the source program is coming from tape, the last statement is 

END-OF-JOB. 

NINES CARD. 

This card is used only if the source program is coming from tape and 

the last statement of the source program updating cards is not END. 

(for ALGOL) or END OF JOB. (for COBOL). The format of this card is: 

Column 

1-6 

7-72 
73-80 

FORTRAN TRANSLATOR CONTROL CARDS. 

Contents 

All 9's 

Blanks 

All 9's 

The FORTRAN Translator requires three control cards at all times 

and, in some cases, more. These Translator control cards are punched 

in the same format as the FORTRAN statements themselves. They are 

punched in columns 7-72 (blanks are ignored), and they may be 

continued on succeeding cards, providing other than a blank is 

punched in column 6 of each continuation card. 

Each FORTRAN deck is preceded by two FORTRAN control cards. The 

first card should contain either TWO$ or FOUR$, depending on the 

language in which the program is written. The second is the START$ 

card which will be discussed later. 

4-43 



The FORTRAN deck should be re-ordered so that each subprogram is 

placed ahead of all subprograms that reference it. Otherwise, 

forward procedure declarations will have to be inserted either in 

the ALGOL deck prior to compilation, or in the FORTRAN deck by use 

of A cards. 

The final control card following the FORTRAN deck is the LAST$ card. 

If the translation is for syntax only or if the ALGOL source deck 

is to be punched out, the FORTRAN programs may be stacked. A 

FINISH$ card is then needed to end each job except the final one. 

A START$ card must be included in each job. 

card should be used for the entire stack. 

Only one TWO$ or FOUR$ 

The START$ card contains all information needed to translate the 

FORTRAN program. The syntax for the START$ card follows: 

(START$ CARD) ::= START$ (empty) I START$ (start list) $ 

(start list) ::= (start list element) I (start list element)/ 

(start list) 

(start list element) ::= (punch options) I (FORTRAN listing option) 

(ALGOL listing option) I (tape file 

request) I (sense switch option) I (sense 

light option) I (ignore equivalence 

option) I (ignore common option) I (global 

options) (octal option) I (syntax only 

option) I (inhibit subscript switching 

option) I (eliminate prefix option) I (disk 

file option) 

(punch options) ::= pclpco 
(FORTRAN listing option) ::= SFL 

(ALGOL listing option) ::= SAL 

(tape file request) ::= TAPES, (tape list) I TAPES­

(unsigned integer) 

(tape list) ::= (unsigned integer) 

(tape list) 

4-44 

(unsigned integer) , 



(sense switch option) sw, (sense list) I SW-

(unsigned integer) 

(sense light option) ::= SL, (sense list) I SL 

(sense list) 

(unsigned integer) 

(unsigned integer) I (unsigned integer) , 

(sense list) 

(ignore equivalence option) ::= XE 

(ignore common option) ::= XC 

(global options) ::= GLOBAL I GLODCL 

(octal option) ::= OCTAL - integer I OCTAL 

(syntax only option) ::= SYNTAX 

(inhibit subscript switching option) .. - ISS 

(eliminate prefix option) ::= NOPFX 

(disk file option) .. - DISK (disk description) 

(disk description) ::= (unit number), (disk configuration») 

(unit number), (disk configuration»), 

(disk description) 

(unit number) ::= (integer) 

(disk configuration) ::= (disk item) I (disk item), 

<disk configuration) 

(disk item) ::= (file type) I (disk access technique) 

(number of areas) I (size of areas) I 
(size of logical record) I (size of physical 

record) (associated variable) I (save factor) 

(file type) ::= PERM I TEMP 

(disk access technique) ::= SERIAL I RANDOM I UPDATE 

(number of areas) ::= AREAS - (integer) 

(size of areas) ::= LOGICAL RECORDS - (integer) 

(size of logical record) ::= WORDS - (integer) 

(size of physical record) ::= BLOCKED RECORD SIZE - (integer) 

(associated variable) ::= AV - (integer variable) 

(save factor) ::= SAVE - (integer) 

If (file type) is omitted, TEMP is assumed. If (disk access 

technique) is omitted, ~NDOM is assumed. If (number of areas) 

is omitted, one area is assumed. (size of areas) is necessary for 

Revised 2/21/69 
by peN 1024916-007 4-45 



I 

all files that are being created. (size of logical record) is 

necessary for all files. (size of physical record) is necessary 

for blocked files and must be a multiple of the (size of logical 

record). (associated v"ariable) is necessary for all random files. 

(save factor) is necessary for all permanent files that are being 

created. 

Example: 

START$ DISK (4, SERIAL, PERM, AREAS - 2, 

LOGICAL RECORDS - 1200, WORDS - 10, BLOCKED RECORD SIZE -

150, AV - INDEX, SAVE - 10) $ 

would be translated as: 

SAVE FILE DISK4 DISK SERIAL [2:l200J (2,10,150, SAVE 10); 

This file will have the name 0000000/DISK4 on the disk file. 

The <start list elements) may be in any order and their effects are 

as follows: 

4-46 

a. PC - an ALGOL deck is punched. 

b. PCO - an ALGOL deck is only punched. The ALGOL source 

program is not retained as a tape or disk file. 

c. SFL - suppress FORTRAN listing. 

d. SAL - suppress ALGOL listing. 

e. TAPES, n, m, etc. - FILE TAPE n 2(2,15); 

FILE TAPE m 2(2,15); etc. are 

declared. 

TAPES - n - the first n tapes are declared. If the 

tapes option is not present, the first 16 

tapes are declared. 



f. SW, or SW- - sense switch statements are translated. 

A Boolean array SENSW [0:6J is set up. If 

SW, is used, all sense switches specified 

in (sense list) are set TRUE. All switches 

not specified are assumed FALSE. If SW- n 

is used, all switches through n are set 

FALSE. If the SW option is not used, the 

use of sense switch statements will cause 

~ syntax error. 

g. SL, or SL- - sense light statements are translated. A 

Boolean array SENSL [0:4J is set up. If 

SL is used, all sense lights specified in 

(sense list) are set TRUE. 

All lights not specified are assumed FALSE. 

If SL- n is used, all lights through n are 

set FALSE. If the SL option is not used, 

the use of sense light statements will cause 

a syntax error. 

h. XE - all EQUIVALENCE statements which occur in the 

FORTRAN program are ignored. 

i. XC - all COMMON statements which occur in the FORTRAN 

program are ignored. 

j. GLOBAL - all identifiers in COMMON will appear as 

comments and will not be declared in the ALGOL 

program. 

k. GLODCL - All identifiers contained in COMMON in the 

first subprogram will be declared immediately 

before the first subprogram heading as indi-

vidual items. COMMON will then be ignored 

in that subprogram, all succeeding subprograms, 

and the main program. This option should only 

be used if: 

4-47 



1) COMMON is present and identical in all 

subprograms and the main program. 

2) An identifier contained in COMMON does 

not appear in an EQUIVALENCE statement. 

1. OCTAL - The Write Tape instructions are written in 

octal. The integer represents the record block 

size and cannot exceed 1023. If no integer is 

present, a record block of 256 is assumed. 

m. SYNTAX - The ALGOL source program file is not retained 

and the ALGOL listing is suppressed. 

n. ISS - The subscripts of the arrays are not reversed in 

the translation from FORTRAN to ALGOL. This option 

does not apply to arrays referenced by EQUIVALENCE 

or to an array referenced by COMMON unless the 

GLODCL is used. If the ISS option is not used, the 

array subscripts are automatically reversed. 

o. NOPFX - The prefixes emitted by the FORTRAN Translator 

before all identifier names in the ALGOL trans­

lation are omitted. Identifier names that 

correspond to ALGOL reserved words or to iden­

tifiers used by the Translator are suffixed with 

the appropriate number of Q's to force the 

identifier name to contain seven characters. 

This is done to prevent duplication of identi­

fiers. 

In addition to the required control cards already discussed, one 

other control card is sometimes used. This card immediately 

precedes the first required control card and may be one of the 

following forms: 

$~~ 

$ CARD NEW TAPE 

4-48 



$ CARD NEW TAPE RESEQ n 

$ TAPE 

$ TAPE NEW TAPE 

$ TAPE NEW TAPE RESEQ n 

where n represents an unsigned decimal number between 1 and 100,000. 

The $ must be in column 1, and only one space should separate NEW 

and TAPE. 

CARD indicates the FORTRAN source program is coming from the card 

input file CARD. TAPE indicates the FORTRAN source program is 

coming from the tape input file TAPE. When the FORTRAN source 

program is on file TAPE, the file CARD can be used to read in 

patch cards to the program. If patching is to be done, the FORTRAN 

source program must contain sequence numbers, strings of eight 

consecutive digits, in columns 73-80. 

NEW TAPE indicates that a new copy of the FORTRAN source program is 

to be made which will include the patches, if any are present. 

RESEQ n will resequence the new copy in intervals indicated by the 

letter n. 

If a $ CARD is not present, the $ CARD is assumed. 

DECK STRUCTURE. 

Following is an example of a deck set up to translate a FORTRAN 

source program from punched cards to an ALGOL source program which 

is stored on a tape labeled OCRDIMG. The ALGOL program is then 

compiled and executed. 

? EXECUTE FORTRAN/TRANS 

? DATA CARD 

$ CARD 

(
FORTRAN deck wi th) 

control cards 

4-49 



? COMPILE IDl/ID2 ALGOL 

? DATA CARD 

$ TAPE LIST 

{~LGOL patches} 
lf any 

? DATA (File Name) 

Data 

? END 

99999999 
\. J ---V"'---'" 
col. 73-80 

The internal files of the FORTRAN Translator may be on disk. 

These files are named as follows: 

CARD - Card Input File (FORTRAN source) 

LINE - Print Output File (FORTRAN & ALGOL source) 

FORFIL - Tape Output File (ALGOL source) 

PNCH - Punch Output File (ALGOL source) 

TAPE - Tape Input File (FORTRAN source) 

NEWTAPE - Tape Output File (FORTRAN source) 

The files that are to be placed on disk require the use of a FILE 

CARD immediately following the EXECUTE CARD. The FILE CARDs are: 

? FILE CARD - IDl/ID2 DISK SERIAL 

? FILE LINE - IDl/ID2 DISK SERIAL 

? FILE FORFIL - IDl/ID2 DISK SERIAL 

? FILE PNCH - IDl/ID/2 DISK SERIAL 

? FILE TAPE - IDl/ID2 DISK SERIAL 

? FILE NEWTAPE - IDl/ID2 DISK SERIAL 

If the ALGOL source file FORFIL is placed on disk, an ALGOL FILE 

card is needed immediately following the COMPILE card. The disk 

file names of FORFIL and TAPE must be identical. 

4-50 



? ALGOL FILE TAPE - IDl/ID2 DISK SERIAL 

When compiling the FORTRAN Translator, the following FILE cards 

must always be used: 

? FILE LINE - LINE PRINT OR BACK UP TAPE 

? FILE FORFIL - "OCRDIMG" TAPE 

? FILE PNCH - PNCH PUNCH 

? FILE NEWTAPE - NEWTAPE 

FORTRAN translator control cards are punched in the same format as 

the FORTRAN statements themselves. They are punched in columns 

7-72, blanks are ignored, and they are continued on succeeding cards, 

providing a punch other than a blank is punched in column 6 of each 

continuation card. 

Each FORTRAN deck is preceded by the two FORTRAN control cards. The 

first card should contain either TWO$ or FOUR$, depending on the 

language the program is written in. The second is a START$ card. 

The FORTRAN deck is re-ordered so that each subroutine is placed 

ahead of all subroutines which call upon it. Otherwise, forward 

procedure declarations will have to be inserted in the ALGOL deck 

prior to compilation. 

Each FORTRAN deck should be followed by a LAST$ card. 

SYNTAX. The syntax for the START card is as follows: 

(START$ CARD) ::= START$ (empty) I START$ (start list) $ 

(start list) ::= (start list element) I (start list element) / 

(start list) 

(start list element) ::= (punch options) I (FORTRAN listing option) 

(ALGOL listing option) I (tape file 

request) I (sense switch option) I (sense 

light option) I (suppress equivalence 

option) I (suppress common option) I 

4-51 



(global option) I (octal option) I (synt~x 
only option) I (inhibit subscript switching 

option) I (eliminate prefix option) I 
(disk file option) 

(punch options) ::= pclpco 
(FORTRAN listing options) ::= SFL 

(ALGOL listing options) ::= SAL 

4-52 



GENERAL. 

SECTION 5 

UTILITY ROUTINES 

There are a number of routines in the B 5500 programing system that 

are designed to facilitate the operation of the system. These 

routines are: 

a. Scheduling from disk. 

b. Symbolic library maintenance. 

c. Log maintenance. 

d. Disk directory. 

e. Printer backup. 

For purposes of presentation, these routines have been arbitrarily 

called utility routines. The manner in which each routine performs 

its particular function will be discussed in detail in this section. 

SCHEDULING FROM DISK. 

The system program LDCNTRL/DISK and special features of the MCP 

provide a means whereby card deck information, including control 

information, can be placed on disk in the form of a pseudo card 

deck, and then used as though it were in a card reader. The LDCNTRL/ 

DISK Program, pseudo card readers, and pseudo card decks are described 

in the following paragraphs. 

LDCNTRL/DISK PROGRAM. 

The system program LDCNTRL/DISK is a specially coded program which 

is partly contained within the MCP and partly contained as an object 

program on the system tape. The LDCNTRL/DISK Program can place 

either a magnetic tape file or a card file on the disk, and copy a 

file onto magnetic tape. 

LOADING A CONTROL DECK FILE ONTO DISK. The primary function of the 

program LDCNTRL/DISK is to read a file with the (multiple file 

identification) CONTROL and the (file identification) DECK, and to 

place that file on disk in a special format, as one or more pseudo 

card decks. The file labeled CONTROL DECK may be a file in a card 

reader or a file on magnetic tape. 

5-1 



CARD READER CONTROL DECK FILE. If a CONTROL DECK file is to be 

read from a card reader, the file must be preceded by a LABEL CARD 

to identify it. Also, the last card in the CONTROL DECK must be 

an END CONTROL card, containing the information: ? END CONTROL. 

MAGNETIC TAPE CONTROL DECK FILE. If a CONTROL DECK file is to be 

copied from magnetic tape onto disk, the tape must be properly label­

ed and, as is the case with a CONTROL DECK from a card reader, the 

last card image on the tape file must be an ? END CONTROL card. In 

addition to these requirements, the tape file must be properly for­

matted so that question mark cards (i.e., control card and program­

parameter cards) can be recognized. Specifically, the tape must 

have the following characteristics: 

a. The tape must be unblocked. 

b. Each record containing a question mark card is recognized 

as 9 words in length. 

c. Each record containing a card which is not a question mark 

is recognized as 10 words in length. 

PSEUDO DECKS ON DISK. When the LDCNTRL/DISK Program reads a CONTROL 

DECK file, it places it on disk as one or more pseudo card decks. 

The number of pseudo decks created depends upon the number of ? END 

cards located within the CONTROL DECK. That is, each time a ? END 

card is encountered, it is taken to denote the end of a deck; 

creation of another pseudo deck is then initiated. As each new 

pseudo deck is created, it is given an identification of the form: 

# (integer). 

It should be noted that what is referred to as a pseudo deck is 

analogous to a single continuous deck that would be placed in a card 

reader. Therefore, if a pseudo deck contains more than one file, 

each file following the first will be recognized only when the file 

preceding it has been passed. 

5-2 



It should also be noted that there is no set limit to the number 

of cards that may be contained in a CONTROL DECK file, but a pseudo 

card deck (the end of which is denoted by a ? END card) can contain 

no more than 12,000 cards. 

REMOVING PSEUDO DECKS FROM DISK. When each pseudo card deck is 

placed on disk, the deck is linked to the previous de~k, forming a 

queue waiting to be used by a pseudo card reader. Because of the 

queue feature, the RD keyboard input message must be used to remove 

pseudo decks from the disk. 

COPYING A CONTROL DECK ONTO TAPE. The secondary function of the 

LDCNTRL/DISK Program is to read a file labeled CONTROL DECK, de­

limited by a ? END CONTROL card, and to copy it onto magnetic tape. 

If the CONTROL DECK being copied is a card file, the file will be 

copied onto tape in the required format specified above (see page 

5-2). If the CONTROL DECK being copied is a magnetic tape file, 

a tape copy is performed. 

CALLING THE LDCNTRL/DISK PROGRAM OUT FOR EXECUTION. The LDCNTRL/ 

DISK may be called out either hy a keyboard input message or control 

cards. 

If LDCNTRL/DISK is to be executed to place a CONTROL DECK on the 

disk, the keyboard input message 

LD DK 

may be used or a control card containing 

? EXECUTE LDCNTRL/DISK 

may be used. 

If LDCNTRL/DISK is to be executed to copy a CONTROL DECK onto tape, 

the keyboard input message 

LD MT 

5-3 



may be used or control cards containing 

? EXECUTE LDCNTRL/DISK 

? COMMON = I 

may be used. 

PARITY ON A CONTROL DECK MAGNETIC TAPE FILE. If a parity error is 

encountered in a CONTROL DECK file being read from magnetic tape, 

the parity file is skipped. 

is completely ignored. 

In effect, the file containing parity 

PSEUDO CARD READERS AND THE USE OF PSEUDO CARD DECKS. 

To make use of pseudo card decks, the MCP contains logic which can, 

in effect, supply the system with up to 32 pseudo card readers. 

These pseudo card readers in many ways appear to be much like 

physical peripheral units. That is, system messages are typed for 

the pseudo card readers as though they were card readers, and key­

board input messages can reference the pseudo card readers. The 

pseudo card readers are identified by the (unit mnemonic)s: 

CDA through CDZ, excluding CDI 

and CDO, and CD2 through CD9. 

At HALT-LOAD time, all pseudo card readers are turned off. The 

system operator may cause these readers to be turned on through use 

of an RN keyboard input message. 

THE RN MESSAGE TO TURN ON PSEUDO CARD READERS. When an RN (digit) 

message is initially entered and the (digit) is not equal to zero, 

the MCP automatically searches for pseudo card decks to satisfy the 

need of the specified number of pseudo card readers. Thereafter, 

as long as pseudo card readers are on and pseudo card decks are 

available, the MCP will keep the readers loaded. 

5-4 



THE RN MESSAGE TO TURN OFF PSEUDO CARD READERS. If the system 

operator wishes to turn off pseudo card readers, he need only type 

in an RN message that specifies the number of pseudo card readers 

he wants left on. The MCP will then turn off a sufficient number 

of readers to meet these requirements as soon as the readers complete 

processing their current deck. 

REMOVING DECKS FROM PSEUDO CARD READERS. If, for any reason, it is 

desired to remove a deck from a pseudo card reader (e.g., a card 

file never opened by a program that was discontinued), the removal 

can be accomplished by entering an ED keyboard input message. 

HANDLING OF CONTROL CARD ERRORS IN PSEUDO CARD DECKS. If, while a 

pseudo card deck is being read, an error is detected in a control 

card or program-parameter card, the MCP will remove the deck in 

which the erroneous card appears and will continue to the next avail-

able pseudo deck. 

on pseudo decks. 

Load, DUMP, or REMOVE operations are not permitted 

SYMBOLIC LIBRARY FILE ON DISK. 

The symbolic library Ta~ility (MAKCAST/DISK) is such that library 

files can exist on disk as well as on magnetic tape. In making this 

disk capability available, the ALGOL Compiler file CASTA and the 

COBOL file LIBRAR have been set up so that the library files they 

reference are expected to be on disk. (The ALGOL Compiler files 

CASTB and CASTC are set up to expect library files on magnetic tape.) 

Although the standard media for symbolic library files is as noted 

above, the media can be specified through use of label equation 

cards. Also, if it is desired to change the standard setup for the 

files, that change can be accomplished by changing the file declara­

tions for those files, and recompiling the compilers. 

If label equation cards are to be used in reference to the files for 

symbolic libraries, or if file declarations are to be modified, the 

makeup of the file declarations within the compilers must be known. 

5-5 



The card images for the symbolic library files in the ALGOL Compiler 

contain the following information (BUFFSIZE is DEFINEd equal to 56.): 

File Declaration 

FILE CASTA DISK SERIAL "CASTA" "LIBRARY" (1, BUFFSIZE): 

FILE CASTB (1, BUFFSIZE); 

FILE CASTC (1, BUFFSIZE); 

The card images for the symbolic library file in the COBOL Compiler 

contain the following information: 

File Declaration 

FILE LIBRAR DISK SERIAL "CASTA" "LIBRARY" (1, 56); 

An example of a label equation card which could be used to specify 

disk as the media for an ALGOL symbolic library file is as follows: 

? ALGOL FILE CASTC = CASTC/LIBRARY SERIAL 

An example of a label equation card which could be used to specify 

tape as the media for a COBOL symbolic file is as follows: 

? COBOL FILE LIBRAR = CASTA TAPE 

CONTROL CARD SYNTAX. 

The expanded control card syntax is as follows: 

(control card) ::= $$$ (master control card) I (code) 

(subcontrol card) I $$$ (end card) 

(code) ::= $$$ (continuation code) 

(continuation code) ::= $-$ 

(master control card) ::= DISPLAY (tape identifier) (master display 

features) I MAKE (tape identifier) (master 

make features) I MAKE (tape identifier) 

FROM (tape identifier) (master make 

features) 

(tape identifier) ::= AlBic 

5-6 



(master display features) ::= LIST 1 PUNCH 1 DIR 1 SINGLE 1 (master 

display features) LIST 1 (master 

display features) PUNCH 1 (master 

display features) DIR 1 (master display 

features) SINGLE 1 (empty) 

(master make features) ::= (master display features) 1 COpy 1 

(master make features) COPY 1 (empty) 

(subcontrol card) ::= (display types) 1 (make types) 

(end card) ::= END 

(display types) ::= (subprogram identifier) (list-punch option) 

(list-punch option) .. - LIST 1 PUNCH 1 (list-punch option) LIST 

(list-punch option) PUNCH 1 (empty) 

(make types) ::= DELETE (subprogram identifier) (list-punch option) 1 

REPLACE (subprogram identifier) (replacement option) 

(rename option) (make features) 1 PATCRA 

(subprogram identifier) (location option) 

(rename option) (make features) 1 

PATCHC (subprogram identifier) (location option) 

(rename option) (make features) 1 ADD (subprogram 

identifier) (location option) (insertion option) 

(rename option) (make features) 1 (subprogram 

identifier) (location option) (rename option) 

(make features) 

(subprogram identifier) ::= (identifier) 

(replacement option) ::= WITH (subprogram identifier) (location 

option) I (empty) 

(rename option) ::= RENAME (subprogram identifier) 1 (empty) 

(location option) ::= ON (tape identifier) 1 ON OCRD 1 (empty) 

(make features) ::= (list-punch option) 1 (sequence option) 1 

(make features) (list-punch option) 1 (make 

features) (sequence option) 1 (empty) 

(sequence option) ::= SEQA (increment) 1 SEQC (increment) 1 (empty) 

(increment) ::= 10110011000110000110000011000000110000000 

(insertion option) ::= AFTER (subprogram identifier) 1 END 1 (empty) 

5-7 



SEMANTICS. The control cards for the symbolic library maintenance 

routine are designed to provide the features needed in creating, 

updating, and displaying a symbolic library. 

There are three kinds of control cards: Master, Subcontrol, and 

End cards. The first three columns of the Master and End cards 

must contain the control card flag: $$$. The first three columns 

of the Subcontrol card may contain $$$ or the continuation code: 

I-I. The continuation code is provided in case one Subcontrol 

card is not enough to contain all of the required subcontrol options. 

As many Continuation cards as necessary may be used, with all cards 

except the last one in the group starting with I-I; the last Contin­

uation card in the group must have $$$. 

The information on all control cards is free-field, with the restric­

tion that each syntactically defined element must be separated from 

the next by at least one blank column. Further, a syntactically 

defined element may not be split across two Continuation cards. 

Normally, all control-card information must be entered in columns 

1-72, with columns 73-80 reserved for comments. However, a percent 

sign (%) inserted anywhere on a control card (except columns 1-3, 

which must contain the control card flag) will have the effect of 

marking the end of the card; comments may be inserted after the 

percent sign. 

The Master control card indicates whether a new library file is to 

be made (MAKE) or information about an existing library is required 

(DISPLAY). If a new library is being made, the Master control card 

indicates whether an existing library is to serve as a base for the 

new library (MAKE FROM). If FROM is not used, the new library will 

contain only those subprograms called for explicitly in Subcontrol 

cards. When FROM is used, all subprograms on the existing input 

library will be transferred to the new library unless Subcontrol 

cards indicate otherwise (e.g., REPLACE or DELETE). If a library is 

to be displayed (DISPLAY), the Master control card specifies the 

input source: CASTA, CASTB, or CASTC. 

5-8 



Other reserved words appearing in the control cards have the follow­

ing meanings: 

a. DIR specifies that a directory of all subprograms on the 

library is to be printed. (For MAKE functions, the direc-

tory reflects the contents of the new output library; for 

DISPLAY functions, the directory reflects the contents of 

the input library.) The number of subprograms that can be 

recorded on one library is limited by the directory size; 

the directory will hold up to 1344 characters. Each iden-I 

tifier to be placed in the directory, corresponding to a 

subprogram placed on the library, will use N + 4 characters, 

where N is the number of characters in the subprogram 

identifier. 

b. A, B, and C refer to the three possible subprogram libraries 

which can be referenced. The libraries which are labeled 

CASTA, CASTB, and CASTC are referenced in the control 

cards as A, B, and C, respectively. 

c. OCRD refers to a tape labeled OCRDIMG being used as input. 

d. PATCRA and PATCRC are used to distinguish patching of 

ALGOL and COBOL subprograms. PATCRA (ALGOL patching) 

utilizes sequence numbers as they appear in columns 73-80 

of the data cards. PATCRC (COBOL patching) utilizes 

sequence numbers as they appear in columns 1-6 of the data 

cards. 

e. SEQA and SEQC are used to distinguish resequencing of ALGOL 

and COBOL subprograms. SEQA 100 (ALGOL resequencing), for 

example, specifies that the data cards are to be resequenced 

in columns 73-80, with the resulting cards numbered 

00000100, 00000200, 00000300, . . . , etc. Similarly, SEQC 

100 (COBOL resequencing) specifies that the data cards 

are to be resequenced in columns 1-6, with the resulting 

cards numbered 001000,002000,003000, ... , etc. 

Revised 5/26/69 
by peN 1024916-010 

5-9 



f. LIST, PUNCH, or both, may appear on the Master and/or the 

Subcontrol cards. When LIST and/or PUNCH appear on the 

Master control card, the effect is that of having requested 

the indicated option(s) on every Subcontrol card which 

follows. 

g. SINGLE appearing on a Master control card specifies that 

page skipping is not to be performed on the line printer 

output. When SINGLE is omitted, the listing for each sub­

program will begin at the top of a new page; also, each 

control card will be printed at the top of a new page. 

h. COpy appearing on a MAKE or MAKE FROM Master control card 

specifies that an additional copy of the new library is to 

be made on tape. 

MAINTENANCE FUNCTION EXAMPLES. The following are maintenance func-

tion examples. 

5-10 

a. DISPLAY function. 

Example: 

$$$ DISPLAY A DIR 

$$$ END 

1) This control deck would yield the directory of a CASTA 

file. 

Example: 

$$$ DISPLAY A LIST DIR 

$$$ END 

2) When no Subcontrol cards are present to select speci­

fied subprograms, the LIST-PUNCH option on the Master 

control card will cause all subprograms on the file to 

be listed and/or punched, as requested. The above 

example would yield a directory of the CASTA library, 

and a listing of all subprograms on the library. 



Example: 

$$$ DISPLAY A PUNCH DIR 

$$$ SUBI 

$$$ SUB2 LIST 

$$$ SUBJ 

$$$ END 

J) This control deck would yield a punched card output of 

SUBl, SUB2, and SUBJ, a listing of SUB2, and a directory 

of the CASTA library. 

4) When subprograms are punched, the card output for each 

subprogram includes a header card; this card contains 

$$$ in columns l-J and the subprogram identifier start­

ing in column 5. 

b. MAKE function (ADD). 

Example: 

$$$ MAKE A FROM B DIR LIST 

$$$ ADD SUBI SEQA 10 PUNCH 

(Followed by data cards, which cannot have $$$ or 

$-$ in columns l-J.) 

$$$ ADD SUB2 SEQC 100 

(Followed by data cards, which cannot have $$$ or 

$-$ in columns l-J.) 

$$$ ADD SUBJ ON OCRD AFTER B4 PUNCH 

$$$ ADD c4 ON C END 

$$$ ADD C2 ON C RENAME NEW 

$$$ END 

5-11 



OCRDIMG 

1) The following shows the effect of using the above card 

deck. 

Master Input Input New 
Input Tape Library B Library C Library A Other Output 

Bl Cl 

B2 C2 

BJ CJ 

SUBl 

SUB2 

Bl 

Listing and 
card output 

Card images B4 c4 B2 

Listing 

Listing 

Listing 

Listing 

Listing 

Listing and 
card output 

corresponding B5 C5 BJ 

to SUBJ 

5-12 

B4 

SUBJ 

B5 

c4 

NEW 

Listing 

Listing 

Listing 

Directory of new 
CASTA library 

2) The ADD function is allowed only in conjunction with 

the MAKE FROM function. (An ADD Subcontrol card cannot 

reference a subprogram on the master input library, 

e. g., the CASTB library in the above example.) When 

the ADD Subcontrol card does not locate the source of 

the subprogram (e.g., ADD XYZ ON A), it is assumed that 

the subprogram is in the card reader following the ADD 

Subcontrol card. Note that LIST appearing on the 

Master control card not only has the effect of having 

requested the LIST option on each of the subprograms 

referenced in Subcontrol cards, but additionally will 

cause a listing of each subprogram transferred from 

the master input library to the new library. The 

ADD -- END card specifies that the referenced subprogram 

is to follow any remaining subprograms on the master 

input library. 



c. MAKE function (DELETE). 

Example: 

$$$ MAKE A FROM B LIST 

$$$ ADD C5 ON C AFTER BJ 

$$$ DELETE B4 

$$$ ADD C2 ON C PUNCH 

$$$ DELETE B6 LIST 

$$$ END 

1) The following shows the effect of using the above card 

deck. 

2) 

Master Input Input New 
Library B Library C Library A Other Output 

Bl Cl El Listing 

B2 C2 B2 Listing 

BJ CJ BJ Listing 

B4 c4 CS Listing 

B5 C5 C2 Listing and 
card output 

B6 c6 B5 Listing 

B7 Listing (of B6) 

B8 B7 Listing 

B8 Listing 

The DELETE function is allowed only in conjunction with 

the MAKE FROM function. (A DELETE Subcontrol card 

can reference only a subprogram on the master input 

library, e. g. , the CASTB library in the above example.) 

Note that subprograms to be deleted are not listed or 

punched when LIST or PUNCH appears on the Master control 

card. If listing and/or punching of a subprogram to 

be deleted is desired, then LIST and/or PUNCH must 

appear on the DELETE Subcontrol card. 

5-1J 



5-14 

REPLACE B4 

4) To replace B4 with a subprogram in the reader which is 

to be renamed CARDS, the Subcontrol card would state: 

REPLACE B4 WITH CARDS 

or 

REPLACE B4 RENAME CARDS 

5) To replace B4 with the subprogram on a OCRDIMG tape 

which is to be renamed NEW, the Subcontrol card would 

state: 

REPLACE B4 WITH NEW ON OCRD 

6) To replace B4 with the subprogram on a OCRDIMG tape 

which is to have the same name, the Subcontrol card 

would state: 

REPLACE B4 WITH B4 ON OCRD 

7) A subprogram to be replaced cannot be listed or punched, 

if such action is desired, use the DELETE function (see 

page 5-lJ). 

e. MAKE function (identifier). 

Example: 

$$$ MAKE B DIR 

$$$ YXZ LIST 

(Followed by data cards, 
$-$ in columns I-J. ) 

$$$ Al ON A 

$$$ BJ ON B LIST 

$$$ C2 ON C 

$$$ A2 ON A PUNCH LIST 

$$$ END 

which cannot have $$$ or 



d. MAKE function (REPLACE). 

Example: 

SSS MAKE A FROM B 

SSS DELETE B2 

SS$ ADD C3 ON C 

SSS REPLACE B4 WITH CION C LIST 

SSS REPLACE B6 RENAME CARDPROGRAM LIST 

(Followed by data cards which cannot have S$$ or 
$-S in columns 1-3.) 

S$$ END 

1) The following shows the effect of using the above card 

deck. 

Master Input Input New 
Library B Library C Library A Other Output 

Bl Cl Bl 

B2 C2 C3 

B3 C3 B3 

B4 c4 Cl Listing 

B5 C5 B5 

B6 c6 CARDPROGRAM Listing 

2) The REPLACE function is allowed only in conjunction with 

the MAKE -- FROM function. (A REPLACE Subcontrol card 

can reference only a subprogram on the master input 

library, e.g., the CASTB iibrary in the above example.) 

When the new subprogram to be added is in the card 

reader, the REPLACE Subcontrol card does not specify 

WITH -- ON. For subprograms located on an A, B, C, 

or OCRDIMG tape, the reserved words WITH -- ON will 

specify the source. 

3) For example, to replace B4 with a subprogram in the 

reader which is to have the same name, the Subcontrol 

card would state: 

5-15 



1) 

Input 
Library A 

Al 

A2 

A3 

A4 

2) 

The following shows the effect of using the above card 

deck. 

Input Input New 
Library B Library C Library B Other Output 

Bl Cl XYZ Listing 

B2 C2 Al 

B3 C3 B3 Listing 

B4 c4 C2 

B5 A2 Listing and card 

B6 output Directory of 
CASTB library 

A Subcontrol card starting with a subprogram identifier 

is allowed in conjunction with both the MAKE and 

MAKE -- FROM functions. This type of Subcontrol card, 

when used with the MAKE -- FROM function, cannot refer­

ence a subprogram on the master input library. 

f. MAKE function (PATCH). 

Example: 

5-16 

$$$ MAKE A FROM B 

$$$ PATCH C Bl SEQC 100 

(Followed by patch cards, which cannot have $$$ or 
$-$ in columns 1-3.) 

$-$ PATCHA XYZ ON 

$$$ OCRD SEQA 10 

(Followed by patch cards, which cannot have $$$ or 
$-$ in columns 1-3.) 

$$$ ADD CARDPROGRAM 

(Followed by data cards, which cannot have $$$ or 
$-$ in columns 1-3.) 

$$$ END 



1) The PATCH function is allowed in conjunction with both 

the MAKE and MAKE -- FROM functions. A PATCR Sub­

control card may reference a subprogram on any sub­

program tape or the OCRDIMG tape. If PATCH is used 

with the MAKE -- FROM function and the Subcontrol card 

does not specify ON (e.g., PATeRA AJ), it will be 

assumed that the source program to be patched is on the 

master input library. 

2) Patching will be performed according to the collating 

sequence. For example, a card sequenced as bbbbAIOO 

will precede a card sequenced as bbbbB200. A card 

sequenced as bbJ40000 will precede a card sequenced as 

00000010. 

J) In regard to sequence number: 

a) When the patch card is less than «) the subprogram 

card, the patch card will be selected. 

b) When the patch card is equal to (=) the subprogram 

card, the patch card will replace the subprogram 

card. 

c) When the patch card is greater than (» the sub­

program card, the subprogram card will be selected. 

4) The user will find it convenient at times to use a 

dummy calIon the PATCH function. If, for example, we 

have a CASTB library with subprograms Bl, B2, BJ, ... , 

BlO, and we wish to generate a new CASTB library exactly 

the same except for resequencing of subprogram B5, the 

simplest control deck to accomplish such a function 

would be: 

$$$ MAKE B FROM B 

$$$ PATCRA B5 SEQA 100 

$$$ END 

5-17 



5) With no B5 patch cards in the reader, the effect will 

be simply to resequence B5. All the subprograms will 

retain their original order. 

END OF JOB AND ERROR MESSAGES. 

The line printer or printer-backup file is used to log error messages 

or the job-complete message. The following messages may appear 

during a run of MAKCAST: 

a. JOB COMPLETE. NO ERROR SITUATION ENCOUNTERED. 

b. JOB TERMINATED. ERROR IN MASTER CONTROL CARD. 

c. JOB TERMINATED. ERROR IN SUBCONTROL CARD. 

d. JOB TERMINATED. ITEM NOT FOUND IN DIRECTORY. 

e. JOB TERMINATED. DIRECTORY HAS IMPROPER FORMAT. 

f. JOB TERMINATED. REFERENCED PROGRAM IS NOT FORWARD ON THE 

MASTER LIBRARY. 

g. JOB TERMINATED. OUTPUT TAPE DIRECTORY OVERFLOW. 

SETUP. 

The setup to make a CAST library tape is as follows: 

a. ? EXECUTE MAKCAST/DISK. 

b. ? DATA CARD. 

c. Master control card. 

d. First Subcontrol card. 

1) First subprogram card images. 

e. Second Subcontrol card. 

1) Second subprogram card images. 

Last Subcontrol card. 

Last subprogram card images. 

5-18 



End Card. 

? END. 

COPYING SYMBOLIC LIBRARY TAPES ONTO DISK. 

To change existing library files from magnetic tape onto disk, a pro­

gram need only perform a direct copy onto disk. The copying program 

should use read symbolic library tapes as unblocked 56-word records 

and should write them on disk in the same fashion. Examples of file 

declarations which could be used by a copying program written in ALGOL 

are: 

FILE IN CASTA (2, 56); 

FILE OUT CASTA DISK SERIAL [20:240J "CASTA" "LIBRARY" 
(2, 56, SAVE 30); 

LOG MAINTENANCE. 

Log information for programs run on the system is written in a file 

on user disk. The log file occupies one area on disk, and has the 

(multifile identification) SYSTEM and the (file identification) LOG. I 
It is the user's responsibility to provide this file.* 

The tOile SYSTEM/LOG is blocked. There are six logical records per 

physical record. The logical records are five words (i.e., 40 

characters) in length; the physical records are 30 words in length. 

LOG ENTRY SPECIFICATIONS. 

Entries in the log can be considered to fall into one of three 

categories: 

a. Compile and go entries. 

b. Compile only entries. 

c. Execute entries. 

With respect to these categories, the following rules determine how a 

program is entered in the log: 

* For information as to how this area should be reserved, reference 

should be made to page 3-24. 

Revised 1/8/71 
by peN 1024916-014 5-19 



a. If a compile-and-go is made and the program being compiled 

contains no syntax errors, the log information for both the 

compiler and the object program is listed in a compile-and­

go entry. 

b. If a compile-and-go run is made and the program being com­

piled contains syntax errors, if a compile-for-syntax run is 

made, or if a compile-to-library run is made, the log infor­

mation for the compiler is listed in a compile-only entry. 

c. If an execute run (i.e., library callout) is made, the log 

information for the object program is listed in an execute 

entry. 

The general format of each of the three types of log entries is shown 

in figure 5-1. The first log entry starts in the record with rela­

tive address 1. 

CODE WORD. As shown, each log entry contains (1) control card infor-

mation and (2) compiler and/or object program information. The code 

word preceding each group of information denotes the type of informa­

tion. That is, information preceded by a 1 pertains to the ALGOL Com­

piler; information preceded by a 2 pertains to the COBOL Compiler; in-

formation preceded by a 3 pertains to an object program. Code 4 de-

notes the end of log information, and code 5 pertains to printer back-

I 
up information. Since under SHAREDISK there is one system log for all 

systems, the system ID (0,1,2,3) is placed in the [1:2J field of the 

code word in each log entry. 

CONTROL CARD INFORMATION. Control card information is contained in 

the first two records of a log entry, starting at the second word of 

the first record. This information is a copy of the contents of the 

first 72 columns of the COMPILE card or EXECUTE card that caused the 

particular run to be scheduled. 

5-20 



C 
0 
0 
E 

--

CONTROL CARD 
INFORMATION .-. 

FIRST 72 
COLUMNS OF 

COMP I LE CA RD 

C 
0 
0 
E 

--

COMPILE AND GO ENTRY 

COMPILER INFORMATION 

( 

: C GENE RAL I FILE 
0 PROGRAM : INFOR-
0 INFORMATION I MATION 
E I 

_ 1- - .-

OBJECT PROGRAM 
INFORMATION 

'""'" 
I 
I 

GENERAL I FILE 
PROGRAM I INFOR-

I 
INFORMATION I MATION 

1 __ i _ 

'\ 

-
2 RECORDS 

.. -- 2 RECORDS 
-~!-- .. -

2 RE CORDS 
·f- .. 

'N RECOR[ S 1M RECORDS 
(CODE = 3) 

C 
0 
0 
E 

---

C 
0 
0 
E 

--

(CODE = 1, 2, 6, (CODE = 0) 
7, 9, or 10) 

COMPILE ONLY ENTRY 

CONTROL CARD 
INFORMATION 

FIRST 72 
COLUMNS OF 

-, 

COMPILE CARD 

-2 RECORDS -
(CODE = 3) 

COMPILER INFORMATION 

., 
I 

C 
, 

GENERAL 1 FILE 
0 PROGRAM 

1 
• INFOR-

0 INFORMATION : MATION 
E 1 

- -..1- -- ... - .. 
2 RECORDS N RECORDS 

(CODE = 1, 2, h, 
7, 9, or 10) 

EXECUTE ENTRY 

CONTROL CARD 
INFORMATION 

~ 

FIRST 72 
COLUMNS OF 

EX E CUTE CARD 

2 R OS ECOR 
(CODE = 3) 

.. ... 

C 
0 
D 
E 

---

NOTE 

OBJECT PROGRAM 
INFORMATION 

GENERAL 
PROGRAM 

INFORMATION 

2 RECORDS 
(CODE = 0) 

I 
I 
I FILE 
• INFOR-
: MATION 
1 

_1..- -"1- .. . 
M RE CORDS 

N = Number of files declared by compiler. 
M = Number of files declared by object program. 
CODE (WORD) ::= (SYSTEM ID=[1:2]) (CODE=[J:4S]). 

Figure 5-1. Log Entry Formats 

Revised 1/8/71 
by peN 1024916-014 

I 

5-21 



The word immediately preceding control card information is a code 

with the integer value 3. 

COMPILER AND OBJECT PROGRAM INFORMATION. Compiler information and 

object program information have identical formats; therefore, the 

format of this information is discussed under the general name, 

program information. 

Program information falls into two categories: general information 

and file information. The general program information is contained 

in two records. The file information, which is a copy of the FPB 

(File Parameter Block) for the program, requires a variable number 

of records, depending on the number and use of files declared by the 

program. If a file is closed more than once or uses more than one 

physical reel of tape, an additional record appears in the log for 

each additional closing or tape reel. 

The format of general program information in a log entry (including 

the code word) is shown in figure 5-2 and described below. 

: 21[3: 45] GENERAL PROGRAM INFORMATION fj..: 30J [46: 2J 

~ I~ ~ 
~ Q 

::s NO. OF 10 
::> FILES I/O PRO- START START STOP STOP u 

USER z PROCESS 
1= 

::e CODE DE- TIME TIME RATED DATE TIME TIME DATE rI.l CODE 
~ CLARED TIME I~ 
E-t Z 
rI.l Ir=: >c 
rI.l 

I 

1 RECORD 

Ii WORD -I t WOR~ 
1 RECORD 

Figure 5-2. Format of General Program Information 

5-22 



Entry 

CODE[1:2] 

CODE[3: 4 5] 

NO. OF FILES DECLARED 

PROCESS TIME 

I/O TIME 

PRORATED TIME 

START DATE 

START TIME 

STOP TIME 

Description 

INTEGER - 0, 1, 2, 3 for respective system 

A, B, C, D 

INTEGER - 0 - object program was executed 

1 - ALGOL Compiler was executed 

2 - COBOL Compiler was executed 

3 - control card information 

INTEGER 

INTEGER 

4 - end of log 

5 - printer backup 

6 - FORTRAN Compiler was executed 

7 - BASIC Compiler was executed 

8 - disk file 

9 - XALGOL Compiler was executed 

10 - TSPOL Compiler was executed 

time in 60ths of a second 

INTEGER - time in 60ths of a second 

INTEGER - time in 60ths of a second 

BCL - YYDDD format, e.g., 65046 (The YYDDD 

format provides that the YY characters 

specify the last two digits of the 

year, and the DDD characters specify 

the number of the day of the year in 

Julian format. The number is right 

justified.) 

INTEGER - time in 60ths of a second since 

Halt/Load time 

INTEGER - time in 60ths of a second since 

Halt/Load time 

Revised 1/8/71 
by peN 1024916-014 5-23 



Entry 

I 
STOP DATE .[1:30 J 

FINISH CODE .[46:2J 

• 
I USERCODE 

Description 

BINARY - YYDDD format, e.g., 65047 (Refer to 

START DATE.) 

BINARY - 0 - end of job 

1 - syntax error 

2 - DSed or ESed 

3 - abort 

The format of one file-information record is shown in figure 5-3 and 

described below. 
FILE INFORMATION 

I 
MULTI- C / E F z 

R PLE FILE R FILE REEL Y ~HYSICAl 0 R U 0 T ~ LENGTH OF ~ 
F IDENTI- F IDENTIFICA- NO. DATE C REEL R N R Y 0 TIME FILE 
E ~ICATION E TION L NUMBER C 0 I M P ~ WAS OPENED 

E 0 R T S E ...:l 
~ 

D ~ 

E 

~ WORD 1 ·14 ·1· WORD 3 ·1· ·1· 
:1 

WORD 2 WORD 4 WORD 5 

1 RECORD 
Figure 5-3. Format of One File-Information Record 

Word Entry Field Contents --
1 MULTIPLE FILE [6:42J 7-character multifile 

IDENTIFICATION identification 

2 FILE [6:42J 7-character file identification 

IDENTIFICATION 

3 REEL NO. [0:18J Reel number (three alphabetic 

characters) 

DATE [18:30 J Creation date in five 

characters (YYDDD) 

5-24 



Word 

4 

Entry 

CYCLE 

PHYSICAL REEL 

NUMBER 

I/O CODE 

ERROR 

UNIT 

Field 

[0:6J 

[6:17J 

[23: 1 J 

[24:12J 

[36 : 6 J 

Contents 

Cycle number (binary) 

Physical reel number (binary) 

Tape I/O code 

o - output 

1 - input 

Number of errors in handling 

this file (binary) 

I/O unit used by this file 

(binary) • This number cor-

responds to Logical Unit 

Number plus one. 

Value I/O Unit 

0 Not opened 
1 MTA 
2 MTB 
3 MTC 
4 MTD 
5 MTE 
6 MTF 
7 MTH 
8 MTJ 
9 MTK 

10 MTL 
11 MTM 
12 MTN 
13 MTP 
14 MTR 
15 MTS 
16 MTT 
17 DRA 
18 DRB 
19 DKA 
20 DKB 
21 LPA 
22 LPB 
23 CPA 
24 CRA 

Revised 1/8/71 
by peN 1024916-014 5-25 



Word Entry Field Contents 

Value I/O Unit 

25 CRB 
26 SPO 
27 PPA 
28 PRA 
29 PPB 
30 PRB 
31 DCA 

FORMS [42:lJ 1 indicates special forms 

required 

TYPE [43:5J Type of file (binary) 

Value ~ 

0 CP/CR 

1 LP only 

2 MT 

3 DG (designated) 

4 LP/PBT 

5 Specified unit 
(unlabeled) 

6 PBT only 

7 PT 

8 PT unlabeled 

9 MT unlabeled 

10 Disk random 

11 SPO 

12 Disk serial 

13 Disk update 

14 Data communications 
(input or output) 

15 PBD only 

16 PBT/PBD 

17 LP/PBD 

18 LP/PBT/PBD 

19 REMOTE - data communi-
cations (input/output) 

5-26 



Word 

5 

Entry 

FILE OPEN 

LENGTH OF TIME 

FILE WAS OPENED 

Field 

[l:lJ 

[2:46J 

~ontents 

1 indicates file open 

I/O time on this unit in 60ths 

of a second (binary). Cumula­

tive time from INITIATEIO to 

IOFINISH 

SPECIAL RECORDS AND LOG ~NITIALIZATION. 

RECORD ZERO. The first record in SYSTEM/LOG (i.e., the record with 

relative address 0) is used by the MCP when making log entries. The 

value of the first word in record zero specifies the number of rec­

ords written in the log. The value of the second word specifies the 

record capacity of the log. The third and fourth words are used in 

conjunction with the warning messages supplied by the MCP which sig­

nify when the log is half-full and full. The fifth word contains, in 

BCL, DISKLOG. 

Revised 1/8/71 
by peN 1024916-014 5-26A 



RECORD n + 1. The first word of the record immediately following 

the last log entry contains a code with the value 4. This record 

denotes the end of log information, and it is not included in the 

value contained in the first word record of record zero. 

INITIALIZING THE LOG. If a user program wishes to initialize the 

log (i.e., set up the log so that the MCP considers the log empty), 

the following action must be performed: 

a. The 1st, 3rd, and 4th words in record zero must be set 

to zero. 

b. The 1st word in record 1 must be set to 4. 

REMOTE LOG SPECIFICATIONS. The remote log information for the data 

communications facilities is written in a file on the user disk. 

The file has the (file identification prefix) "REMOTE" and the 

(file identification) "LOG." The file REMOTE/LOG is blocked and 

must be confined to one area on the disk. There are five logical 

records per physical record. A logical record is five words in 

length or forty characters; a physical record is thirty words in 

length. It is the user's responsibility to provide this file. 

Logging for data communications is bypassed if the system does not 

provide a REMOTE/LOG file. 

LOG ENTRY SPECIFICATIONS. Entries in the Remote Log can be consid-

ered to be of five types: 

Type 1 

Type 2 

Type 3 

Type 4 

Type 5 

5-26B 

Log-Out Entry 

Log-In Entry 

Control Card Entry of less than 32 characters 

Control Card Entry of 32 characters or more, not 

greater than 72 characters 

Job Statistics Entry 



Type 1, Type 2, and Type 3 entries each require one logical record 

in the log. Types 4 and 5 require two logical records per entry. 

Type 1 LOG-OUT Entry. The following information is entered into the 

file REMOTE/LOG when a data communications station logs out. 

1 Record 

Word 0 [9:9J Station Number ([9:4J=TU,[14:4J=BUF) 

[42:6J Code = 1 

Word 1 User Identification (as specified by the 
FILE SECURITY SYSTEM) 

Word 2 Current Date (YYDDD-BCL) 

Word 3 Time of day at Log-Out 

Word 4 Unused 

Type 2 LOG-IN Entry. The MCP enters the following information in 

the file REMOTE/LOG when a data communications station logs in. 

1 Record 

Word 0 [9:9J Station Number ([9:4]=TU,[14:4J=BUF) 

[42:6J Code = 2 

Word 1 User Identification (as specified by the 
FILE SECURITY SYSTEM) 

Word 2 Current Date (YYDDD-BCL) 

Word 3 Time of day at Log-In 

Word 4 Unused 

Type 3 CONTROL CARD Entry (31 characters or less). The MCP enters 

the following information -- or Type 4 information -- in the file 

REMOTE/LOG when a job is selected to run. Every RUN or EXECUTE 

from a remote station is logged. 

5-27 



1 Record 

Word 0 

Word 1 
thru 

Word 4 

Station Number ([9:4J=TU,[14:4J=BUF) 

[18:24J RUN NUMBER* 

[42:6J Code = 3 

Contents of Control Card 

Type 4 CONTROL CARD Entry (32 characters up to 72 characters). The 

MCP enters the following information -- or Type 3 information in 

the file REMOTE/LOG when a job is selected to run. Every RUN or 

EXECUTE from a remote station is logged. 

2 Records 

Word 0 [9:9J Station Number ([9:4]=TU,[14:4]=BUF) 

[18:24J RUN NUMBER* 

Word 1 
thru 

Word 9 

[42:6J Code = 4 

Contents of Control Card 

Type 5 JOB STATISTICS. The MCP enters the following information in 

the file REMOTE/LOG when a station detaches from a job. 

Word 0 [2:1J 

[9:9J 

[18:24J 

[42:6J 

Word 1 

1 if this station attached by entering an 

EXECUTE or RUN card; 0 if attached by READ 

SEEK or WRITE 

Station Number 

RUN NUMBER (as specified in the Type 3 or 
Type 4 Entry) 

Code = 5 

User Code 

* Entries in the file REMOTE/LOG corresponding to entries in the file 
SYSTEM/LOG have the same RUN NUMBER, where a job's RUN NUMBER is 
defined to be its start time -- in the 60ths of a second -- as 
specified in the System Log. 

5-28 



Word 2 

Word 3 

Word 4 

Word 5 

Word 6 

Word 7 [3:21J 

[27:21J 

Word 8 

Word 9 

First name of the object program 

(7 characters) 

Second name of the object program 

(7 characters) 

Processor Time in 60th of a second 

(i.e., processor time used for this 

station, out of total used by job) 

Pro-Rated Time in 60th of a second 

(i.e. , pro-rated time used by this 

station, out of total used by job) 

I/O Time in 60th of a second 

(i.e. , I/O time used by this station, 

out of total used by job) 

Start Date--Date when job attached to 

this station (in binary) 

Stop Date--Date when job detached from 

station (in binary) 

Attach Time--Time when job attached 

to station 

Detach Time--Time when job detached 

from station 

CREATION OF REMOTE LOG ENTRIES. As indicated above, log-in, log-out, 

and control card entries are made at the time at which they occur. 

This is possible since the information contained in those entries 

is immediately available. 

The information contained within a Job Statistics entry is accumu­

lated during the time which a remote terminal is attached to a 

program. The entry is recorded in the Remote Log at the time a 

program and remote terminal become detached from one another. 

5-29 



The responsibility of dictating which remote station is to be 

charged for any particular "slice" of a program's processor, I/O, 

and pro-rated time is strictly that of the object program. The 

task invnlved in specifying the station to be charged is, however, 

an easy one. The procedure involved in slicing times is as follows. 

The MCP maintains a table, called USERSTA, which contains one loca­

tion for each program in the mix. The contents of a given program's 

location in this table is the station address of the remote station 

presently specified to be charged for the time used by that program. 

When a program enters the mix, its location in the USERSTA table is 

set to the address OT station 0/0, a non-existent remote terminal. 

(The times assigned to station % are those which the program does 

not assign to any given station, i.e., they are unassigned times.) 

Then from that time until the address in that program's USERSTA 

location changes, station % is charged for all processor, I/O, 

and pro-rated times charged to the program. When the address in 

the program's USERSTA location changes, the remote terminal whose 

address is then specified begins being charged for the times as­

signed to the program, etc. 

The way in which a program designates the address to be placed in 

USERSTA i.e., the way in which a program designates the station 

statement referencing the station. (In ALGOL this involves a state­

ment of the form STATUS (TUBUF,O) or STATUS (TUBUF,I); in COBOL it 

involves a statement such as MOVE FILENAME FROM TU,BUF TO STATUSWORD 

or MOVE FILENAME FROM TU, BUF AFTER CHECK TO STATUSWORD.) Each time 

such an interrogate is performed, the MCP checks to see if the term­

inal buffer address currently in the program's USERSTA location is 

different from the one specified in the interrogate statement. If 

it is, the "old station" is charged with all times since the pre­

vious change in USERSTA and the new station is established as the 

new recipient of time. 

5-30 



It should be noted that if a program wishes to designate certain times 

as being "unassigned" (i.e., assigned to station 0/0), it should per­

form a passive interrogate on station 0/0. 

Whenever a station is "detached" from a program, a job statistic entry 

is recorded in the log. This entry contains all the times which were 

allotted to the station in the manner described above. 

FILE MAINTENANCE PROCEDURES. To retain information for the file 

REMOTE/LOG, a FILE Card group should appear in the Cold Start Deck 

(refer to page 3-23). 

The first record of the file REMOTE/LOG (i.e., the record with rela­

tive address 0) describes the remainder of the file. Contents of 

record 0 are: 

Record 0 

File 

REMOTE/LOG 

Word 0 

Word 1 

Word 2 

through 

Word 4 

Value of word equals the number of logical 

records written in the file REMOTE/LOG. 

Value of word equals the record capacity (in 

logical records) of the file REMOTE/LOG 

Reserved for system use. 

A user program must initialize word 0 of the file REMOTE/LOG to 0 and 

word 1 to the record capacity of the file. For example, if the FILE 

card in the FILE Card group of the Cold Start neck has the form 

FILE REMOTE/LOG, 1 @ 1000 

then a user program must initialize record 0, word 0 to 0 and record 

0, word 1 to 6000. 

The operator is notified when the log is half-full and when the log 

is full. Should the log become full, wraparound occurs. 

If the log is not present, the operator is notified the first time 

the log is accessed. 

Revised 1/8/71 
by peN 1024916-014 5-31 

I 



Operator notification is via the SPO; the messages are: 

#REMOTE/LOG FULL 

This message is typed when the log is full. Wraparound 

occurs the next time the log is accessed. 

#DUMP REMOTE/LOG 

This message is typed when the log is half-full. 

#NULL REMOTE/LOG 

This message is typed the first time the remote log is 

accessed and not present. 

STATISTICS LOG. 

The following paragraphs describe the operation and use of the system 

measurement facilities as presently implemented on both the standard 

and time sharing versions of the Master Control Program. The facil­

ities are offered as a compile time option and can be included in a 

new system by giving the $ SET Card, with the STATISTICS parameter, 

the value of TRUE. These facilities, as they presently exist, form 

portions of a basic software monitor of system performance. General­

ly, they concentrate on: 

a. Disk activity as it relates to the total system. 

b. Detailed information on resource allocation on a job-to-job 

basis. 

It can be expected that both the configuration and scope of the 

measurement facilities now provided will change as statistical requi­

sites vary in the future. 

GENERAL CHARACTERISTICS. 

The overall approach has been to provide a statistical data base of a 

dual nature, the two portions of which provide a glimpse into the 

macro- and micro-levels of system utilization. These portions are, at 

present, complementary; but taken together, they provide a represen­

tative picture of system utilization. 

5-32 



One part of this data base is an extended log which contains a de­

tailed look at the actual resources used and system overhead en­

countered during job execution. Data are collected at various points 

in the MCP to reflect the various stages of job execution. These are 

gathered together and entered into the log at job termination. Such 

a data base provides a picture of the operating environment in which 

a particular job ran or that environment which existed over a speci­

fied period of time. 

The other portion of the basic data base exists in the form of a sys­

tem statistics file which is continuously updated and periodically 

transferred to permanent disk storage. This master statistics file 

is updated by information which is either time or task related. Time 

related information is initiated via the system timer. The nature of 

the information contained in this file has been, up to now, incremen­

tal and cumulative in nature. This information is updated in core 

and periodically (i.e., whenever NSECOND is called) written on disk 

for temporary storage. This temporarily stored information is; in 

turn, periodically (approximately every 30 minutes*) transferred as 

one record to a permanent system file on disk (SYSTAT (system mne­

monic) / DISK) from a temporary system file on disk (SYSTEM (system 

mnemonic)/STATS); after which the temporary storage area in core is 

re-initialized to zero and the acquisition of statistics begins anew. 

For both time sharing and standard versions an empty system statis­

tics file can be created with the SY message entered through the su­

pervisory printer. The name of the current statistics file (i.e., 

SYSTAT (system mnemonic) / DISK) is changed to (number 1) ON (number 

2) / SYSTAT (system mnemonic); and a new file, SYSTAT (system mne­

monic) / DISK, is created, where: 

(number 1) is a 2-digit number (00 through 99) of one of 

the statistics files for a particular date, and 

(number 2) is the day created (1 through 365). 

* The SI system message allows the adjustment of this value. The 

format of this message is SI(integer). 
Revised 1/8/71 
by peN 1024916-014 5-33 



If the MCP involved is compiled with the SHAREDISK $ SET Option set 

TRUE, the system designation refers to the system (i.e., SYSTEM A, B, 

C, or D) for ~hichthe file is created. Otherwise, the system desig­

nation is blank. 

The system statistics file is automatically filled with one record 

after a 30-minute interval, beginning with the time of the initial 

Halt/Load of the system. As the SY Message causes subsequent time 

intervals to begin at the time the message is entered, it can be used 

to cause the accumulation of statistics for periods beginning on the 

hour and half hour. 

TIME SHARING. 

Statistics relating to the time sharing system are kept in a system 

statistics file and in the TS Log. The log statistics are kept in 

both the Type 8, EOJ Statistics Message, already present in the TS 

Log, and a Type 19 Message used for statistics only. 

STANDARD SYSTEM. 

Statistics r~lating to the batch system are kept in the system sta­

tistics filJbreviously mentioned with respect to total system usage 

and in a pseudo log file for individual job statistics. This latter 

file contains one record per job run on the system, each of which con­

tains some of the information found in the regular system log (proces­

sor time, I/O time) in addition to the data obtained through increased 

job monitoring. This approach is taken to ease off-line analysis of 

job statistics while not hampering normal log analysis. The pseudo 

log has been implemented in such a way that an SL Message entered via 

the supervisory printer causes the current pseudo log file to be saved 

in much the same way the SY Message causes the system statistics file 

to be saved. That is, the current statistics log file, STLOG (system 

mnemonic) / STATS, is changed to (number 1) ON (number 2) / STLOG 

(system mnemonic); and a new STLOG (system mnemonic) / STATS is cre­

ated. 

OPERATION. 

Once initialized the system begins accumulating statistics without 

operator intervention. As noted previously the system statistics file 

5-34 



is updated at JO-minute intervals. The statistics log file, if pres­

ent, contains a new entry for each job initiated on the system. As 

the statistical information in core is stored in the current SYSTEM 

(system mnemonic) / STATS File and subsequently re-initialized to zero 

after an SY Message, this message can be used to gather data for peri­

ods of less than JO minutes. That is, an SY Message entered before 

and after a specified period of time creates a single record file con­

taining measurement data for that period. 

If either statistics file becomes full, the system automatically saves 

the filled file in the same manner as if either an SY or SL Message 

has been entered. 

FILE DESCRIPTIONS. 

SYSTEM STATISTICS FILE. This file is composed of 60-word logical 

records. The first word of the record following the last statis­

tical record contains a file terminate word in the form of the number 

@J77777777777777. The contents of both the time sharing and batch 

files are the same with the exception that information not applicable 

to the standard system (e.g., data related to swapping) have zero en­

tries in the pertinent elements of the record. The format of a typi­

cal record is as follows (entries marked by * pertain only to the time 

sharing file; word numbers included within parentheses contain the 

number of disk segments involved for the number of I/O's contained by 

the word whose number is to the left): 

Word Description 

o Total number of disk I/O operations for time period involved 

1 Time since last Halt/Load 

2 Total number of disk I/O operations handled by Disk File 

Controller A 

J Total number of timer interrupts 

4 ED 0 disk activity (number of disk I/O operations) 

Revised 1/8/71 
by peN 1024916-014 5-J5 



Word 

5 

6 

7 

8 

9 

10 (40) 

11 (41) 

12 (42) 

Description 

ED 1 disk activity (number of disk I/O operations) 

ED 2 disk activity (number of disk I/O operations) 

Number of timer interrupts occurring while Disk File 

Controller (DFC) A is in use 

Number of timer interrupts occurring while DFC B is 

in use 

Number of normal state disk I/O operations 

Number of disk I/O operations involving MCP code 

Number of disk I/O operations involving ESP code 

Number of disk I/O operations involving bypass 

directory 

* 13 Number of disk I/O operations originating below the 

fence 

14 

* 15 (45) 

* 16 (46) 

17 

18 (48) 

* 19 (49) 

* 20 (50) 

5-36 

Number of timer interrupts for which the mix is not 

zero 

Number of disk I/O operations resulting from swapping 

Number of disk accesses to DATACOM input/output tanks 

Number of timer interrupts occurring while both DFC A 

and DFC B are in use 

Number of disk I/O operations resulting from library 

maintenance 

Number of disk I/O operations resulting from code 

below fence 

Number of disk I/O operations resulting from code 

above fence 



Word 

* 21 (51) 

* 22 (52) 

* 23 (53) 

24 (54) 

25 (55) 

26 (56) 

27 (57) 

28 

29 

30 

31 

32 

* 33 

~- 34 

35 

Description 

Number of disk I/O operations resulting from data 

below fence 

Number of disk I/O operations resulting from data 

above fence 

Number of disk I/O operations involving SYSTEM/DISK 

Number of disk I/O operations involving log 

Number of disk I/O operations involving name portion 

of a directory section 

Number of disk I/O operations involving portions 

a directory section 

Number of disk accesses to program files 

Date - time sharing system MM/DD/YY 

- standard system YYDDD 

Time of day record is entered into file 

of 

Total number of disk segments involved for all disk 

I/O operations recorded 

Number of timer interrupts while mix is not zero 

Cumulative disk delay, i.e., time from I/O request 

to I/O initiation 

Cumulative swap delay 

Number of non-zero sway delays 

Number of disk I/O operations via I/O channel 1 

Processor idle/busy: number of timer interrupts 

occurring while MCP is in NOTHINGTODO state 

Revised 1/8/71 
by peN 1024916-014 5-37 



Word Description 

37 Number of disk I/O operations via I/O channel 2 

* 38 Number of timer interrupts for which PIMIX is equal to 

the mix number of CANDE 

39 Normal state/disk I/O overlap (number of timer interrupts 

for which mix is not zero and DFC A and DFC B is in use) 

43 Control state/disk I/O overlap 

44 Electronics unit 3 disk activity 

47 Time of day when data began being gathered for the 

particular record involved 

58 I/O channel 3 disk activity 

59 I/O channel 4 disk activity 

STATISTICS LOG FILE. The statistics log file contains one l5-word 

logical record for each job begun on the standard system. The first 

word of the record following the last log entry contains the end-of­

file marker as the system statistics file. The format for one record 

is as follows: 

Word Field Description 

o Multifile identifier 

1 File identifier 

2 Starting time 

3 Time of job termination 

4 Processor time (60ths of a second) 

5 I/O time (60ths of a second) 

6 [18:l5J Amount of core used by job 

7 [33: l 5J Amount of core in use by all jobs in mix 

8 Job type: 

5-38 



Word Field 

[ 42: 6 J 

[36 : 6 J 

Description 

o - not a compilation 

1 - ALGOL 

2 - COBOL 

6 - FORTRAN 

7 - BASIC 

9 - XALGOL 

10 - TSPOL 

0 - unknown object program 

1 - BASIC object program 

2 - ALGOL object program 

3 - COBOL object program 

4 - FORTRAN object program 

S - TSPOL object program 

6 - XALGOL object program 

type 

9 Unused 

10 [1:23J Number of data presence bit interrupts 

[24:24J Number of code presence bit interrupts 

11 [1:23J Number of data overlays 

[24:24J Number of code overlays 

12 Number of secondary code presence bit interrupts 

13 Number of jobs remaining in mix after job termination 

14 Unused 

TIME-SHARING LOG ADDITIONS. The Type 19 statistics message contains 

additional job information not found in the Type 8, EOJ statistics, 

Message. The contents of the Type 19 Message is as follows: 

Word Field Description 

1 Actual time in core 

2 [3: 1 SJ DALOC[PIMIX, OJ.[33:1SJ/2 = number of SOO-segment 

sections obtained 

Revised 1/8/71 
by peN 1024916-014 5-39 



Word 

3 

4 

5 

6 

7 

8 

9 

5-40 

Field 

[13:30 J 

[6:6J 

[12:6J 

[13: 6 J 

[24:6J 

[30 : 18 J 

[1:23J 

[27:27J 

[1:23J 

[24:24J 

[1:23J 

[27: 27J 

Description 

DALOC[PIMIX, (DALOC[PIMIX, OJ.[33:15J)J = 
number of 100-segment subsectiorts of last 

500-segment section in use by job 

Time spent in READYQUE 

(Number of chunks possessed by j~b) - 1 

Number of last chunk assigned to job 

Number of last chunk assigned to job 

Type of object 

1 - BASIC 

2 - ALGOL 

3 - COBOL 

4 - FORTRAN 

5 - TSPOL 

6 - XALGOL 

Creation date of object file 

Number of forced swaps 

Number of time swaps 

Number of data presence bit interrupts 

Number of code presence bit interrupts 

Number of data overlays 

Number of code overlays 

Number of jobs remaining in mix at job 

termination 

Number of secondary code presence bit 

interrupts 



DISK DIRECTORY. St'~ cf~o /} c.7!JC _~ - Z D 

The MCP maintains, on disk, a Disk Directory which provides informa-

tion about all permanent files on disk. The Disk Directory is com­

posed of one or more directory sections, depending on the number of 

files on disk. 

Each directory section may contain the directory information required 

for as many as 15 files. The last segment of a directory section con­

tains the names (i.e., file identifications) of each file defined in 

the section. The end of the Directory is marked by the first name be­

ing equal to 76. Removed files are marked by the first name being 

equal to 12. The remaining 15 segments are referred to as file 

headers. 

There is one file header for each file defined in the section. Each 

file header contains various information about the file, such as the 

creation date, date of last access, etc. Each file header also speci­

fies the number of areas declared for the file, the size of these 

areas, and the absolute disk address of each area. When a program is 

using a file, the file header is read into core memory and remains 

there while the file is being used. 

The format of the file header is as follows: 

Word 

o 

1 

2 

Field 

[0:15J 

[15: l 5J 
[30 : l 2J 
[42:6J 

[6:l8J 

[25: 23J 

[0:48J 

[l:lJ 

[l:lJ 

[6:42J 

Description 

Record length 

Block length 

Records per block 

Segments per block 

Creation date for logging (when on disk) 

Creation time for logging (when on disk) 

o - free file 

o - sole user, public, or private file 

1 - security file 

Primary user's code 

Revised 1/8/71 
by peN 1024916-014 5-41 



Word 

3 

4 

5-42 

Field 

[l:lJ 

[2:10J 

[12:18J 

[30 : 18 J 

[l:lJ 

[2:1J 

[3: 1 J 

[4:2J 

[6:1J 

[7: 1 J 

[9: 2 J 

[11:1J 

[12:4J 

[16:5J 

[21:5J 

[26:5J 

[31 :5J 

[ 36: 6 J 

Description 

1 - new file header format 

Save factor (binary) 

Date of last access (binary) 

Creation date (binary) 

1 - file is being loaded or name is being 

changed 

1 file is opened by an exclusive user 

1 - a program is waiting to use 

System number of exclusive user 

Used by autoprint to mark a PBD 

Used to mark pseudo decks that 

the time sharing system by ZIP 

2 file is data 

3 file is program 

o - unknown 

File accessed bit 

System file toggles 

Open count 2 for system 

Open count 2 for system 

Open count 2 for system 

Open count 2 for system 

0 type is unknown 

1 type is BASIC 

2 type is ALGOL 

3 type is COBOL 

0 (A) 

1 (B) 

2 (C) 

3 (D) 

the file 

file 

are created 

WITH FILE-ID 

on 



Word 

5 

6 

7 

8 

9 

Field 

[ 42: 6 J 

[0:42J 

[0:48J 

[l:lJ 

[6:42J 

[0:42J 
[0:48J 
[l:lJ 

[6:42J 

[l:lJ 

[2:1J 
[3: 1 J 

[4:1J 
[5: 1 J 

[6:1J 
[7: 1 J 
[8:1J 
[9:5J 
[14:5J 

Description 

4 type is FORTRAN 

5 - type is TSPOL 

6 - type is XALGOL 

7 type is SEQ 

8 - type is DATA 

9 - type is LOCK 

Not used 

o - free, public, or information file 

if [43: 6 J = ? 

o - sole user or security file 

1 - private file 

multifile ID of security file 

o - free or information file if [43:6J = ? 

o - sole user, public, or security file 

o - private file 

file ID of security file 

Number of logical records (EOF pointer) 

Number of segments per row 

Toggle 1 for system 0 (A) 

Toggle 1 for system 1 (B) 

Toggle 1 for system 2 (C) 

Toggle 1 for system 3 (D) 

Toggle 2 for system 0 (A) 

Toggle 2 for system 1 (B) 

Toggle 2 for system 2 (C) 

Toggle 2 for system 3 (D) 

Open count 1 for system 0 (A) 

Open count 1 for system 1 (B) 

Revised 1/8/71 
by peN 1024916-014 5-43 



Word Field DescriEtion 

[19:5J Open count 1 for system 2 (C) 

[24:5J Open count 1 for system 3 (D) 

[29: l4 J Not used 

[43:5J Maximum number of rows <" 
10-29 Disk addresses of rows (0 if not assigned) 

The Disk Directory begins at segment l~ and ends at the value of 

the DIRECT Card in the Cold start Deck. If it is desired to read the 

Directory, a permanent file should be placed on disk through use of 

the Cold start Deck. 

As shown above, the log date is kept in word 1, field [6:l8J in bi­

nary form. The dates that are kept in the file header are maintained 

as follows: 

a. When a new disk file is created, the creation date, date of 

last access, and log date are set to the time the file is 

opened. 

b. When an existing file is opened, the date of last access is 

updated. 

c. When a file is loaded from a library tape, the log date is 

updated. 

PRINTER BACKUP INFORMATION. 

FORMAT OF A PBT. 

A PBT is written in the binary recording mode. The first block on 

tape is a standard 10-word label. The multifile ID is PBTMCP and the 

file ID is BACK-UP. The second block on tape is a tape mark. The 

third and subsequent blocks are 90-word data blocks. The last block 

written on a PBT is a standard ending label. Preceding this block is 

a tape mark. If the tape contains more than one print file, there is 

5-44 



no tape mark separating them. Control of the files is maintained 

through the control word in each data record. 

FORMAT OF BLOCKS ON A PB FILE. 

Each block of a PB file is 90 words long, containing five logical rec­

ords. These records are packed in the block in inverted sequence. 

Therefore, record number 1 is in words 73 through 90, record number 2 

in words 55 through 72, and the fifth record in words 1 through 18. 

The last block of a print file may contain up to four garbage records. 

NOTE 

If a PBT is to be read or written 

by a user program, the file decla­

ration must reflect a 90-word rec­

ord size and a 90-word block size. 

The program does not function prop­

erly if the file declaration indi­

cates a record size of 18 words. 

FORMAT OF RECORDS ON A PB FILE. 

The first record of a print file is a control record and is identified 

by the last word of the record being equal to octal 0000004000000000. 

The format of this record is as follows: 

Word 1 - multifile identification of print file 

Word 2 - file identification of print file 

Words 3 and 4 - name of program which created this print file 

Words 5 through 13 - copy of control card which started program 

which created this print file 

Word 14 - special forms flag 

o - no forms required 

1 - forms message 

Words 15 through 17 - not used 

Word 18 - control word (octal 0000004000000000) 
Revised 1/8/71 
by peN 1024916-014 5-45 



The second record of each file is a copy of the label record for this 

print file. The control word in this record includes bit [32:1J which 

indicates a skip to heading (channell) after print. The rest of the 

records in this printer file are data records. The first 17 words of 

each record is the print line image. The 18th word in each record is 

a control word which is in the format of a printer I/O descriptor. 

The format of this descriptor is as follows: 

[0:9J - 554 

[9:9J - number of words to be printed (::17) 

[18:1J - memory inhibit. If ON, 

[19: 1 J - on but not used 

[20:1J end of print file flag. 

of this print file. 

[21:6J - not used 

[27:2J - space information 

o - no space 

1 - double space 

2 - single space 

3 - double space 

[29:4J - skip information 

blank results. 

If 1, this is last record 

= 0 - space paper as per bits [27:2J 

~ 0 - skip to channel [29:4J after print. 

[33:15J - logical record number of this record 

All skipping and spacing takes place after the line is printed. If a 

paper motion is required prior to printing, a separate print line is 

written with memory inhibit ON. 

FORMAT OF PRINTER BACKUP FILE ON DISK. 

Each PBD file (a printer-backup file on disk) has up to 20 900-segment 

areas. The name of a PBD file is PBD/nnnnrrr, where nnnn is a serial 

5-46 



number (in ECL) corresponding to the print file (which is incremented 

when a print file is opened on PED) , and rrr is the serial number of 

the backup file within the print file (analogous to reel number on a 

tape file). Thus, each print file may be composed of more than one 

physical backup file on disk, all with the same nnnn part. 

FILE OPENING ACTION. 

When a print file is to be opened, the following action occurs: 

a. If the file may go to a printer, the printers are checked 

for availability and one is used if possible. 

b. If the file may go to a PET (if an existing PET is avail­

able), it is used; otherwise, if tape is available, a PET 

is created and used. 

c. If the file may go to PED, a PED is created and used. 

d. If a unit is not found for the file, a message is typed 

to inform the operator. If a unit of the specified type 

is made available, it is used. If the operator changes 

the type with an OU reply, the above process is repeated. 

SPECIAL FORMS. 

If the print file is opened on a printer-backup file, any special 

forms requirement is deferred until the backup file is printed. If 

the print file is opened on a printer: 

a. A printer is chosen. 

b. The operator is informed that special forms are required on 

that unit by the message # (unit) FM RQD ••• The operator 

may then: 

1) Load the forms onto that unit and reply OK. 

2) Load the forms onto the other printer, SV the first 

printer, and reply OU LP. 

Revised 1/8/71 
by peN 1024916-014 5-47 



J) Reply au MT or au DK to force the chosen printer to be 

released to open a backup file. 

When a backup is printed which requires special forms, the message 

# FM RQD (unit) FOR (mfid) / (fid) OF (program name) is typed, to 

which the operator may reply with OK, WY, or DS. 

CLOSING A PRINT FILE ON DISK. 

When a print file on disk is closed and if the system option autoprint 

is set, it is scheduled to be printed. If autoprint is not set, a 

message is typed to inform the operator that a PBD exists and may be 

printed by the message PBD nnnn REL •••• 

LOGGING OF PB FILES. 

When a print file is printed from a PB file, an entry is made into the 

log containing the header card information of the program which in­

itially created the print file, and all other appropriate information. 

The code (in the first word of "General Program Information") is 5, to 

indicate the printing of a printer backup file. 

5-48 



BCl 
CHARACTER 

SET 

Blank 

. 
[ 

( 
< .. 
& 

$ 

* 
) 
; 
< --
I 
, 
Ok 
= 
J .. 
I 
@ 

: 
> 
~ 

APPENDIX A 

CHARACTER REPRESENTATION 

BI NARY CODES 

PUNCHED 
A B 

CARD PAPER TAPE 
CODE BCl CODE E C 

P SA 8421 l XOH 8421 

ZONE NUMERIC 

1 01 0000 00 1 0000 

12 8-3 1 11 1011 11 0 1011 
12 8-4 0 11 1100 11 1 1100 
12 8-5 1 11 1101 11 0 1101 
12 8-6 1 11 1110 11 0 1110 
12 8-7 0 11 1111 1 00 0 0000 
12 0 11 0000 11 1 0000 

11 8-3 0 10 1011 1011011 
11 8-4 1 10 1100 1001100 
11 8-5 0 10 1101 1011101 
11 8-6 0 10 1110 10 1 1110 
11 8-7 1 10 1111 10 0 1111 
11 1 10 0000 10 0 0000 

0 1 o 01 0001 01 1 0001 
0 8-3 o 01 1011 01 1 1011 
0 8-4 1 01 1100 01 0 1100 
0 8-5 o 01 1101 01 1 1101 
0 8-6 o 01 1110 01 1 1110 
0 8-7 1 01 1111 01 0 1111 

8-3 1 00 1011 00 0 1011 
8-4 o 00 1100 00 1 1100 
8-5 1 00 1101 00 1 1010 
8-6 1 00 1110 000 1110 
8-7 o 00 1111 001 1111 

C 

INTERNAL 
CODE 

BA 8421 

11 0000 

01 1010 
01 1011 
01 1101 
01 1110 
01 1111 
01 1100 

10 1010 
10 1011 
10 1101 
10 1110 
10 1111 
10 1100 

11 0001 
11 1010 
11 1011 
11 1101 
11 1110 
11 1111 

00 1010 
00 1011 
00 1101 
00 1110 
00 1111 

A-l 



Bel 
CHARACTER 

SET 

+ 
A 
B 
C 
D 
E 
F 
G 
H 
I 

x 
J 
K 
l 
M 
N 
0 
P 
Q 
R 

~ 
S 
T 
U 
V 
W 
X 
Y 
Z 

A-2 

APPENDIX A (cont) 

CHARACTER REPRESENTATION 

BINARY CODES 

PUNCHED 
A B 

CARD PAPER TAPE 
CODE BCl CODE E C 

P SA 8421 l XO H 8421 

ZONE NUMERIC 

12 0 0 11 1010 11 1 1010 
12 1 1 11 0001 11 o 0001 
12 2 1 11 0010 11 o 0010 
12 3 0 11 0011 11 1 0011 
12 4- 1 11 0100 11 o 0100 
12 5 0 11 0101 11 1 0101 
12 6 0 11 0110 11 1 0110 
12 7 0 11 0111 11 o 0111 
12 8 1 11 1000 11 o 1000 
12 9 0 11 1001 11 1 1001 

11 0 1 10 1010 10 0 1010 
11 1 0 10 0001 10 1 0001 
11 2 0 10 0010 10 1 0010 
11 3 1 10 0011 1000011 
11 4 0 10 0100 10 1 0100 
11 5 1 10 0101 10 0 0101 
11 6 1 10 0110 1000110 
11 7 0 10 0111 10 1 0111 
11 8 0 10 1000 10 1 1000 
11 9 1 10 1001 10 0 1001 

0 8-2 1 01 1010 01 o 1010 
0 2 0 01 0010 01 o 0010 
0 3 1 01 0011 01 o 0011 
0 4- o 01 0100 01 1 0100 
0 5 1 01 0101 01 0 0101 
0 6 1 01 0110 01 0 0110 
0 7 o 01 0111 01 1 0111 
0 8 o 01 1000 01 1 1000 
0 9 1 01 1001 01 1 1001 

C 

INTERNAL 
CODE 

BA 8421 

01 0000 
01 0001 
01 0010 
01 0011 
01 0100 
01 0101 
01 0110 
01 0111 
01 1000 
01 1001 

10 0000 
10 0001 
10 0010 
10 0011 
10 0100 
10 0101 
10 0110 
10 0111 
10 1000 
10 1001 

11 1100 
11 0010 
11 0011 
11 0100 
11 0101 
11 0110 
11 0111 
11 1000 
11 1001 



Bel 
CHARACTER 

SET 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
'1 

APPENDIX A (cont) 

CHARACTER REPRESENTATION 

BINARY CODES 

PUNCHED 
A B 

CARD PAPER TAPE 
CODE BCl CODE E C 

P BA 8421 L XOH 8421 

ZONE NUMERIC 

0 0 00 1010 01 0 0000 
1 1 00 0001 00 0 0001 
2 1 00 0010 00 0 0010 
3 o 00 0011 00 1 0011 
4 1 00 0100 00 0 0100 
5 o 00 0101 00 1 0101 
6 o 00 0110 00 1 0110 
7 1 00 0111 00 a 0111 
8 1 00 1000 00 a 1000 
9 o 00 1001 00 1 1001 

A II Other Card a 00 0000 00 a 1101 
Codes 

NOTES 

C 

INTERNAL 
CODE 

SA 8421 

00 0000 
00 0001 
00 0010 
00 0011 
00 0100 
00 0101 
00 0110 
00 0111 
00 1000 
00 1001 
00 1100 

1. Characters are listed in collating sequence. Blank is 

lowest and the invalid code (?) is highest. 

2. Internal code 00 1100 (?) is punched as card code 8-2. 

J. Paper tape feed punches are 11 1 1111. 

4. A paper tape feed code acts as a delete code and when 

read is not transferred to the associated processor. 

5. The paper tape sprocket hole is between channels 8 and 4. 

A-3 



APPENDIX B 

IDENTIFIERS 

Identifiers which may be required by control cards or program­

parameter cards for modification to any of the programs contained in 

the system are as follows: 

ALGOL Compiler 

Program Identifier 

Program Identifier Suffix 

File ID's 

Source program card input 

Source program tape input 

Source program tape output 

file ID 

file ID 

file ID 

Source program printer output file 

Source program punch 

COBOL Compiler 

Program Identifier 

Program Identifier Suffix 

File ID's 

output file ID 

ID 

Source program card input file ID 

Source program tape input file ID 

Source program tape output file ID 

Source program printer output file ID 

FORTRAN Compiler 

Program Identifier 

Program Identifier Suffix 

File ID's 

Source program card input file ID 

Source program tape input file ID 

Source program tape output file ID 

Source program printer output file ID 

ALGOL 

DISK 

CARD * 
TAPE 

NEWT APE 

LINE 

PNCH 

COBOL 

DISK 

CARD 

TAPE 

NEWTAPE 

LINE 

FORTRAN 

DISK 

CARD 

TAPE 

NEWTAPE 

LINE 

* It should be noted that the ALGOL, COBOL, and FORTRAN Compilers 
will use the card file immediately following the COMPILE card, 
regardless of file ID. 

Revised 1/8/71 
by peN 1024916-014 B- 1 



APPENDIX B (cont) 

IDENTIFIERS 

FORTRAN Translator 

Program Identifier 

Program Identifier Suffix 

ESPOL Compiler 

Program Identifier 

Program Identifier Suffix 

File ID's 

Source program card input 

Source program tape input 

file ID 

file ID 

Source program tape output file ID 

Source program printer output file 

Card output file for compiled code 

Disk output file for compiled code 

ID 

File ID's 

B-2 

FORTRAN program card input file ID 

Generated ALGOL program tape output file ID 

Generated ALGOL program punch output file ID 

Generated ALGOL program print output file ID 

FORTRAN 

DISK 

ESPOL 

DISK 

CARD 

TAPE 

NElvTAPE 

LINE 

DECK 

DISK 

CARD 

PUNCH 

PPUNCH 

PRINT 



GENERAL. 

APPENDIX C 

MESSAGES 

The operator and the MCP communicate with each other by means of the 

supervisory printer and keyboard. Through the use of the supervi­

sory printer, the MCP can direct the operator and supply the answers 

to inquiries from him. The operator, on the other hand, can acknowl­

edge instructions typed by the MCP and initiate inquiries that must 

be answered by the MCP. 

SYSTEM MESSAGES. 

The messages given to the operator are of two basic types: those 

for informative purposes only and those requiring action by the 

operator. To minimize the amount of time used by the supervisory 

printer, the messages are made up of mnemonic codes followed by the 

variable information that is needed to make the message meaningful. 

Each element of the message (including the mnemonic code) is sepa­

rated from adjacent elements by at least one blank. 

A system message which requires an action by the system operator is 

prefixed with the character #. 

System messages which denote that a program is to be discontinued 

before EOJ are preceded by the character -. 

System messages related to the breakout and restart facility are 

preceded by the character pair --. 

In the descriptions of system messages, the construct (job specifier) 

is used and is defined as follows: 

(program specifier) = (mix index) 

An example of a (job specifier) is: 

PROGID/SUPID=l 

The (mix index) provided in a (job specifier) is one to be used in 

Revised 11/20/70 
by peN 1024916-013 C-l 



APPENDIX C {cont} 

MESSAGES 

any keyboard input messages referencing the subject program if the 

input message requires a (mix index). 

Another construct which is used in describing keyboard output mes­

sages is (termination reference) which is defined as follows: 

S = (integer), A = (integer) 

where the (integer) following the S is the number of the program 

segment being executed when the subject program is discontinued {ex­

cept in the case of an intrinsic segment where the number refers to 

the last nonintrinsic segment executed}. The (integer) following 

the A is the relative address, within the segment specified, of the 

syllable last executed. 

A third construct is (file specifier) which is defined as follows: 

(file identification prefix) / (file identification) 

or 

(program identifier) / (program identifier suffix) 

The construct (time) is defined as the time of day as reckoned on 

a 24-hour clock. 

The construct (remote specifier) has the following form: 

(terminal unit number) / (buffer number) 

(terminal unit number) ::= unsigned integer 

(buffer number) ::= unsigned integer 

Both the (terminal unit number) and the (buffer number) have a field 

width of two digits. 

The construct (error condition) is defined as follows: 

(disk parity) (tape parity) (invalid record size on tape) 

(missing label on tape) 

C-2 



APPENDIX C (cont) 

MESSAGES 

The construct (unit mnemonic) is defined as any of the three-charac-

ter codes listed below. The definition of each unit mnemonic, as 

recognized by the MCP, is listed to the right of the corle. 

Code Definition 

MTA Magnetic tape unit A 

MTB Magnetic tape unit B 

MTC Magnetic tape unit C 

MTD Magnetic tape unit D 

MTE Magnetic tape unit E 

MTF Magnetic tape unit F 

MTH Magnetic tape unit H 

MTJ Magnetic tape unit J 

MTK Magnetic tape unit K 

MTL Magnetic tape unit L 

MTM Magnetic tape unit M 

MTN Magnetic tape unit N 

MTP Magnetic tape unit P 

MTR Magnetic tape unit R 

MTS Magnetic tape unit S 

MTT Magnetic tape unit T 

MTX All scratch tapes 

CRA Card reader A :#f 
CRB Card reader B 

LPA Line printer A 

LPB Line printer !3 

CPA Card punch A 

PPA Paper tape punch unit A 

PPB Paper tape punch unit B 

PRA Paper tape reader A 

PRB Paper tape reader B 

SPO Supervisory printer 

CDA through Pseudo card readers A through Z, excluding 
CDZ, exclud- I and 0, and 2 through 9 
ing CDI and 
CDO, and CD2 
through CD9 

Revised 11/20/70 
by peN 1024916-013 C-J 

I 



Code 

DCA 

DKA 

DKB 

APPENDIX C (cont) 

MESSAGES 

Definition 

Data communications control unit 

Disk control A 

Disk control B 

The construct (system mnemonic) refers to designations given to en­

tire systems, especially under Sharedisk. Given below is the defi-

nition of each system mnemonic as utilized by the MCP. System mne-

monic codes for input messages, output messages, and the internal 

method of system designation used by the MCP are listed to the left 

of each definition. 

Input Output Internal* Definition 
Code Code Code 

SYA A 0 First system under Sharedisk 

blank Any system not under Sharedisk 

SYB B 1 Second system under Sharedisk 

SYC C 2 Third system under Sharedisk 

SYD D J Fourth system under Sharedisk 

KEYBOARD OUTPUT MESSAGES. 

The keyboard output messages, or system messages, are listed and 

described in the following paragraphs . ..-!---_ 

(job specifier) = (mix index) ACCEPT 

This message 

request. 

is typed on the SPO for 

-ACTV INTRGT TU 0 (prog. id.) / (prog. id.) = (mix index) 

This message notifies the operator that a program attempting an 

active interrogate on terminal unit ° has terminated. 

I * Internally, Systems A, B, C, and D, respectively, are always re­
ferred to as 0, 1, 2, and J except in the case of disk segment zero 
where they are respectively referenced as Systems 1, 2, J, and 4. 

c-4 



APPENDIX C (cont) 

MESSAGES 

(priority):(job specifier) = (mix):BADUMP ON (unit) 

The system cannot copy a break file onto the indicated tape. 

will try again on a new reel. 

BED OVRFLW 

It 

The occurrence of this message denotes that too many entries have 

been made in the BED, a table used by the control section of the 

MCP. If the condition indicated by this message should occur, a 

HALT-LOAD operation is required. 

(job specifier) = (mix index) BOJ (time) FROM (remote specifier) 

This message is typed when an object program first begins to exe­

cute, providing the TYPE BOJ option is set. The FROM (remote speci­

fier) is included if the job is executed from a remote station with 

spa capabilities. 

(compiler name) / (program identifier) = (mix index) BOJ (time) 

FROM (remote specifier) 

This message is typed when either the ALGOL or the COBOL Compiler 

begins a compilation, providing the TYPE BOJ option is set. The 

FROM (remote specifier) is included if the compile is executed from 

a remote station with spa capabilities. 

(priority):(job specifier) = (mix):BREAKnn BUILT 

The specified job just broke, creating the break file (program name) 

/ BREAKnn. The break file is then moved to an output tape, if 

necessary. 

(unit mnemonic) BUSY 

The occurrence of this message denotes that an I/O operation was 

attempted on the specified unit, and the unit was found to be 

apparently busy. 

--CAN-T BREAK (data file designator) (rdc):(job specifier) 

The job tried breaking with a file of unsuitable type open. 

break try is ignored. 

Revised 11/20/70 

The 

by peN 1024916-013 C- 5 

I 

I 



APPENDIX C (cont) 

MESSAGES 

# CONTROL CARD ERROR (unit mnemonic) {information from control card} 

The occurrence of this message indicates that the MCP has expected 

to read control information from the designated I/O unit but has 

found the information to be in error. 

# CP RQD (data file designator) (rdc) : (job specifier) 

The occurrence of this message indicates that a program has need for 

a card punch and no such I/O device is currently available. 

# DATACOM / INQUIRY INTERRUPT IGNORED BY MCP 

This message is typed on the SPO if a data communications interrupt 

is received and the lvlCP has been compiled wi th the DATACO~1 and IN­

QUIRY options set FALSE. 

(unit mnemonic) / (I/O operation) DA = (integer); #SEG = (integer); 

#RTRY = (integer); #TRNS = (integer) 

This message is typed when retries had to be made on the disk file. 

I The (I/O operation) is an R if it was on a read, W if on a write. 

The number appearing after DA is the disk address. The number 

appearing after #SEG is the number of segments read or written. The 

number appearing after #RTRY is the number of retries necessary 

(modulo 10). If this number is equal to 0, a successful retry was 

not made. The number appearing after #TRNS is the number of disk 

transactions since the last HALT-LOAD operation. 

-DC TU NOT OUTPUT POSSIBLE (job specifier). (termination reference) 

The occurrence of this message denotes that an object program 

attempted to perform a write on a terminal unit that was not set 

for output. Because of this erroneous action, processing of the 

object program was discontinued. 

-DEC ERR : ARRAY DIMENSION = (integer) 

(job specifier), (terminal reference) is typed if an array with an 

illegal row size is declared. 

c-6 



APPENDIX C (cont) 

MESSAGES 

-DEC ERR: NO. DISK ROWS = (integer), 

(job specifier), (terminal reference) is typed if a disk file is 

declared with more than 20 rows. 

DECK # (integer) IN USE BY SYSTEM (system mnemonic) 

This message is typed when the operator of one system tries to re­

move a control deck in use by another system. 

DECK (integer) REMOVED 

This message is typed when a control deck is removed from the disk 

because of the completion of the job or a keyboard input message. 

-DIMENSION SIZE ERR (job specifier), (terminal reference) 

A BASIC program attempted to perform a matrix operation in which the 

resulting matrix is too small to contain the result of the matrix 

operation. The program is discontinued. 

ODIRERR 

The occurrence of this message denotes that the MCP has detected a 

bad entry in the Disk Direct~ry. The job accessing the file which 

has the bad entry is put to sleep permanently by the MCP, while the 

remaining jobs in the MIX are allowed to attempt to go to EOJ. The 

system slowly comes to a halt. Jobs should not be initiated after 

the occurrence of the above message. A COOL START should be per­

formed, and the system should then be HALT/LOADed. 

• (mfid) / (fid) DISK ADDRESS ERROR 

This message occurs when conflicting disk addresses are found in 

file headers. 

The file which caused the above message to be elicited may have 

valid addresses in the file header. A file previously processed by 

the complementing algorithm may have encroached upon disk space 

occupied by other file(s), thus causing the error. However, receipt 

of the above message indicates that directory destruction has occur­

red and the user should salvage as many files as possible. 

Revised 11/20/70 
by peN 1024916-013 C-7 

I 



APPENDIX C (cont) 

MESSAGES 

DISK FAILURE - (unit mnemonic) 

If this message occurs and is not followed by a ... #RTRY= ... mes­

sage, a HALT-LOAD must be performed. I DKA(R) 
DA=nnnnnnnn; #SEG=mm; #RTRY=x; #TRNS=yyyyyyyyyy; MIX=zz 

DKA(W) DA=nnnnnnnn; #SEG=mm; #RTRY=x; #TRNS=yyyyyyyyyy; MIX=zz 

DKB(R) DA=nnnnnnnn; #SEG=mm; #RTRY=x; #TRNS=yyyyyyyyyy; MIX=zz 

DKB(W) DA=nnnnnnnn; #SEG=mm; #RTRY=x; #TRNS=yyyyyyyyyy; MIX=zz 

n = absolute disk address in decimals. 

I
mx :_ number of segments required before successful completion. 

number of retrys. 1-9 indicates a successful retry. 

o indicates that a successful retry was not 

accomplished. 

y = number of read/writes in n area since the last HALT/LOAD • 

• z = mix number ,of program which performed the I/O operation. 

This message indicates an area on disk was accessed which caused the 

I/O error routines to attempt retries. This message generally 

occurs in conjunction with the DISK FAILURE message. Information in 

this message should be retained for analysis by the field engineers. 

-DIV BY ZERO (job specifier) , (termination ~eference) 

The occurrence of this message denQtes that an object program per-

formed a Divide operation using a zero denominator. 

processing of the subject program was discontinued. 

Consequently, 

DIV BY ZERO BRANCH (job specifier) , (termination reference) 

This message is typed upon the occurrence of a Divide by Zero when 

the programmatic recovery feature is being used. 

(job specifier) = (mix index) DS-ED 

This message is typed if processing of an object program is discon­

tinued before End-of-Job, providing the EOJ option is set. 

(compiler name) / (program identifier) = (mix index) DS-ED 

This message is typed if a compilation is discontinued before the 

C-8 



APPENDIX C (cont) 

MESSAGES 

compiler has reached End-of-Job, providing the TYPE EOJ option is 

set. 

# DT PLEASE 

This message is typed at HALT-LOAD time if the TYPE DATE option has 

been set. The system operator is' required to enter a DT message 

before processing can commence. 

DUMP REMOTE/LOG 

This message is typed when the log is half-full. 

(file specifier) DUMPED (unit mnemonic) 

This message is typed after the MCP has performed an operation 

specified on a DUMP control card. 

# DUP FIL (data file designator) (rdc) (job specifier) (duplicate 

file list) 

The occurrence of this message denotes that an object program wishes 

to open an input file and that the MCP has found more than one file 

with the desired identification. Files on disk are not taken into 

regard. The duplicate-file condition causes the designated program 

to be suspended until operator action is taken. The condition may 

be rectified by making only one of the acceptable files available 

and then entering a (mix index) OK message. 

ADDITIONAL USE OF THE IL MESSAGE 

The IL message may now be used to designate the file to be opened 

when the DUP FILE condition arises. 

# DUP LIBRARY (file specifier) : (job specifier) 

The occurrence of this message indicates that an attempt has been 

made to add a file to the disk library, but the file's name is iden­

tical to the name of a file already in the Disk Directory. The pro­

gram which attempted to add the file to the library is temporarily 

suspended until the operator remedies the situation. To remedy the 

situation, the system operator may eliminate the conflict by using 

a CHANGE card or REMOVE card and then an OK message, or he may DS 

Revised 11/20/70 
by peN 1024916-0 l3 C - 9 

I 



I 

APPENDIX C (cont) 

MESSAGES 

the program that attempted to place the new file in the library, or 

he may enter an RM keyboard input message. 

-EOF NO LABEL (file designator) (job specifier) , (termination 

reference) 

The occurrence of this message denotes that an object program has 

reached the end of the designated input file and has not specified 

what is to be done. Consequently, processing of the program is 

discontinued. 

(job specifier) = (mix index) EOJ 

This message is typed when an object program reaches End-of-Job, 

providing the TYPE EOJ option is set. 

(compiler name) / (program identifier) = (mix index) EOJ 

This message is typed when a compiler reaches End-of-Job, providing 

there were no syntax errors and providing the TYPE EOJ option is 

set. 

-EOT NO LABEL (file designator) (job specifier) (termination 

reference) 

The occurrence of this message denotes that an object program has 

reached the end of the designated file's declared area, as on disk. 

Consequently, processing of the program is discontinued. 

ESPDISK ERROR 

The occurrence of this message indicates that an error has occurred 

in the handling of the MCP's scratch disk, ESPDISK. If the condi-

tion indicated by this message should occur, a HALT/LOAD operation 

is required. 

-EXCESS TIME (job specifier) (termination reference) 

The occurrence of this message denotes that the process time of an 

object program has exceeded the time specified on its PROCESS 

program-parameter card. 

discontinued. 

C-10 

Consequently, processing of the program is 



(file specifier) EXPIRED 

APPENDIX C (cont) 

MESSAGES 

This message is typed in reference to files on disk in response to 

the EX input message if (the file's date of last access) + (the 

file's SAVE factor) does not result in a date greater than the 

current date. 

-EXPON OVRFLW (job specifier) (termination reference) 

The occurrence of this message denotes that an object program has 

performed an operation which caused an exponent overflow to occur. 

Consequently, processing of the program is discontinued. 

EXPON OVRFLW BRANCH (job specifier) (termination reference) 

This message is typed upon the occurrence of an exponential overflow 

when the programmatic recovery feature is being used. 

FACTOR = x, MAX CORE = y, USING z 

The MCP responds to a TF message with this message. The letter 

x is the Factor; y is the actual number of core cells available to 

multiplied by the Multiprocessine Factor; nnrl z is 

the sum of the core requirements of the jobs actually running. 

-FAE , (file specifier) (file attribute identifier) := {value} 

T = (output media digit) (job specifier) (terminal reference) 

This message indicates a file attribute error. The {value} assigned 

to a file attribute in a file attribute assignment statement has 

violated the prescribed bounds. (Refer to the Extended ALGOL Refer-

ence Manual for a list of the attributes and their corresponding 

value bounds.) Numeric {value}s within the range of [_107 , 108 J are 

displayed as a signed integer; others are displayed as a signed field 

of asterisks. Alphanumeric values, e.g., MFID, are displayed as an 

8-character alpha. 

-FAE , (file specifier) (file attribute identifier) {message} 

(job specifier) (terminal reference) 

This message indicates a file attribute error. During the execution 

of a file attribute assignment statement, an exceptional condition 

Revised 11/20/70 
byPCN 1024916-013 C-ll 



APPENDIX C (cont) 

MESSAGES 

has occurred relating to file disposition, file usage, and so forth. 

The {message}s are: 

a. MYUSE = CANTUSE 

The user has attempted to set an attribute, other than 

MYUSE, and MYUSE is CANTUSE. 

b. NOT RWND/CLSD 

The file attribute is fixed, and the file has not been 

(at least) rewound or CLOSED. 

c. NOT CLOSRELES 

The file attribute is fixed, and the file has not been 

(at least) CLOSE-RELEASED or LOCKed. 

d. CLS*, NOT ALTR 

The file attribute is fixed, the close performed prior 

to the assignment statement was a CLOSE (*), the file is 

tape, and the user is attempting to alter the TYPE or MFID. 

-FAE , (file specifier) . MYUSE , {message} (job specifier) 

(terminal reference) 

This message indicates a file attribute error. A READ or WRITE 

statement is performed on a file where MYUSE restricts the I/O. 

The {message}s are: 

a. TRIED READING 

MYUSE is CANTUSE or OUTPUT, and an input from the file 

has been attempted. 

b. TRIED WRITING 

MYUSE is CANTUSE or INPUT, and an output to the file 

has been attempted. 

(unit mnemonic) (read-write flag) FAILURE - D (integer) 

This message indicates that one of the following error conditions 

persisted after ten retries: 

C-12 



APPENDIX C (cont) 

MESSAGES 

(integer) = 19 - parity error between I/O control and 

core or disk file control. 

(integer) = 20 - parity error on transfer from disk. 

-FILE UNOPENED (job specifier) , (terminal reference) 

The occurrence of this message denotes that an object program at-

tempted to write on a file that has not been opened. 

processing of the program has been discontinued. 

Consequently, 

-FLAG BIT (job specifier) , (terminal reference) 

The occurrence of this message denotes that an object program has 

performed an operation which caused a word with a flag bit of 1 to 

be accessed as if it were an operand. 

the program has been discontinued. 

Consequently, processing of 

FLAG BIT BRANCH (job specifier) , (terminal reference) 

This message is typed upon the occurrence of a flag bit when the 

programmatic recovery feature is being used. 

#FM RQD (data file designator) (rdc) (job specifier) 

The occurrence of this message indicates that a program is ready to 

open a file which, as specified on a label equation card, is re-

quired to use special forms. The FM message must be entered before 

the subject program can continue processing. 

-FMT ERR NO LBL (job specifier) , (terminal reference) 

The occurrence of this message denotes that the object program tried 

to evaluate the editing phrase of an ALGOL format using a negative 

or undefined list element to evaluate a dynamic format phrase. An 

action label has not been supplied. 

program has been discontinued. 

(job specifier) GONE (time) 

Consequently, processing of the 

The job is a restart which is ESed or DSed before having restarted. 

Revised 11/20/70 
by peN 1024916-013 C-1J 

I 



APPENDIX C (cont) 

MESSAGES 

-H/L MARK DCMCP (Roman numeral) (integer) MODS RRRRRRRR-

This message is typed immediately following a HALT/LOAD operation. 

The Roman numeral identifies the level of the MCP, and the integer 

indicates the number of changes to the basic level. An @ appearing 

in the string of R's indicates a memory module that is not ready. 

(unit mnemonic) IN (data file designator) (rdc) (job specifier) 

This message is typed when a program opens a card or tape file for 

input, providing the necessary options have been set. The message 

is typed for object program files if the TYPE OPN option is set. 

The message is typed for compiler files if both the TYPE OPN and 

TYPE CMPLRFIL options are set. 

-INTGR OVRFLW (job specifier) , (termination reference) 

The occurrence of this message denotes that an object program has 

performed an operation which has caused an integer overflow to oc-

cur. Consequently, processing of the program is discontinued. 

INTGR OVRFLW BRANCH (job specifier) , (termination reference) 

This message is typed upon the occurrence of an integer overflow 

when the programmatic recovery feature is being used. 

-INVALD ADRSS (job specifier) , (termination reference) 

The occurrence of this message denotes that an object program has 

performed an operation which has addressed a memory location in an 

absent memory module or an address less than 00512. 

processing of the program is discontinued. 

INVALD ADRSS 

Consequently, 

The occurrence of this message denotes that an invalid address has 

occurred during processing in control state, and the invalid address 

cannot be associated with a particular program in the mix. If the 

condition indicated by this message should occur, a HALT-LOAD oper­

ation is required. 

INVALD LINK 

The occurrence of this message denotes that an invalid memory link 

c-14 



APPENDIX C (cont) 

MESSAGES 

has been detected by the MCP. If the condition indicated by this 

message occurs, an H/L operation is required. 

INVALID ARG CONCAT (job specifier) , (terminal reference) 

This message announces that execution of the FORTRAN intrinsic 

function CONCAT is terminated if the necessary conditions are not 

satisfied. The function provides general partial word facilities 

and is referenced as follows: 

CONCAT (A, B, Sl, S2, N) 

where A and B are any integer or real expressions; Sl, S2, and N 

are integer expressions. 

conditions: 

Sl > 0 

S2 > 2 

N > 0 

Sl + N < 48 

S2 + N < 48 

81, S2, and N must satisfy the following 

If these conditions are not satisfied, execution is terminated. 

The value of the function is the concatenation of A and B as speci-

fied by 81, 82, and N. 

to replace N bits of A, 

N bits are taken from B, starting at bit 

starting at bit Sl. This has the same 

effect as the ALGOL expression A and B [Sl:S2 = N], assuming Sl, S2, 

and N to be arbitrary expressions in ALGOL. The following ALGOL 

constructs can be performed with CONCAT: 

ALGOL FORTRAN 

C.[12:6]-"X"; C = CONCAT (C, "X", 12, 42, 6) 

C-A&B[18:4S:3]; C = CONCAT ( A, B, 18, 4S, 3) 

C-B.[36:6] C = CONCAT (C, B, 42, 36, 6) 

Note that, as in ALGOL, bit 0 (the flag bit) cannot be included 

in either field. 

Revised 11/20/70 
by peN 1024916-013 C-15 



APPENDIX C (cont) 

MESSAGES 

-INVALID EOJ (job spec~f~er) , (term~nat~on reference) 

The occurrence of th~s message denotes that a COBOL program has 

attempted to execute the END-OF-JOB statement. 

cess~ng of the program ~s d~scont~nued. 

Consequently, pro-

-INVALID INDEX (job spec~f~er) , (term~nal reference) , EFF INX IS -

(~ndex value) 

The occurrence of th~s message denotes that an object program has 

attempted to ~ndex out of the l~m~ts (~n a negat~ve d~rect~on) of 

the array be~ng referenced. Process~ng of the program ~s d~scon-

t~nued. The construct (~ndex value) has a max~mum s~ze of e~ght 

d~g~ t s. 

-INVALID INDEX (job spec~f~er) (term~nal reference) , (~ndex 

value) GEQ (descr~ptor s~ze f~eld) 

The occurrence of th~s message denotes that an object program has 

attempted to ~ndex out of the l~m~ts (~n a pos~t~ve d~rect~on) of 

the array be~ng referenced. Process~ng of the program ~s d~scon­

t~nued. The constructs (~ndex value) and (descr~pt~on s~ze f~eld) 

have a max~mum s~ze of four d~gits. 

INVALID INDEX BRANCH (job spec~f~er) , (term~nation reference) 

Th~s message ~s typed upon the occurrence of an ~nval~d ~ndex when 

the programmat~c recovery feature ~s be~ng used. 

-INVALID INPUT DATUM (job spec~f~er) , (term~nal reference) 

The data typed ~n response to an INPUT statement ~n a BASIC program 

~s not of proper form to sat~sfy the ~nput l~st. 

d~scont~nued. 

The program ~s 

-INVALID PRL (job spec~fier) , (term~nal reference) 

The occurrence of th~s message ~nd~cates that e~ther: 

c-16 

a. The DSKTOG (OPTN 28) ~s set and an object program has 

tr~ed to access an absolute d~sk address below the 

user d~sk area; or 



APPENDIX C (cont) 

MESSAGES 

b. The RELTOG (OPTN 27) is set and an ALGOL object program 

has attempted to perform a RELEASE statement referencing 

disk. 

In either case, processing of the program is discontinued. 

# (unit mnemonic) INV CRR IN COL (integer) 

This message is typed when a card has an invalid character in a 

column other than column 1 of a control card. The column with the 

invalid character is given in the message. 

place this card with a correct card. 

The operator must re-

INV KED {typed-in information} 

This message is typed if the MCP does not recognize a message en­

tered from the keyboard. 

-INV STN (tu) (buff) 

This message is typed if the MCP does not recognize the remote 

station address used in a remote terminal message. 

I/O ERROR (integer) (file designator) : (job specifier) 

There are a number of messages which have the above format; the 

(integer) in the message denotes its specific meaning. The meanings 

of this message are listed below according to the (integer). 

(integer) 
Value 

1 

J 

5 

Meaning 

A COBOL program has attempted to open an input 

file that is not closed; consequently, proces­

sing of the program is discontinued. 

A COBOL program has attempted to open-reverse a 

file that is not closed; consequently, processing 

of the program is discontinued. 

A COBOL program has attempted to open-reverse a 

file that is not blocked properly; consequently, 

processing of the program is discontinued. 
Revised 11/20/70 
by peN 1024916-013 C-l7 



C-lS 

(integer) 
Value 

6 

11 

12 

15 

16 

17 

IS 

19 

APPENDIX C (cont) 

MESSAGES 

Meaning 

A COBOL program has attempted to open an output 

file that is not closed; consequently, processing 

of the program is discontinued. 

An attempt has been made to close an input file 

which is closed or has never been opened. 

An attempt has been made to close an output file 

which is closed or has never been opened. 

An attempt has been made to read a file for which 

AT END has already been processed. 

The record count on an input tape does not agree 

with the internally accumulated record count. 

The external record or block count is printed 

out first in the error message; then the internal 

record or block count is printed. 

The block count on an input tape does not agree 

with the internally accumulated block count. 

The external record or block count is printed 

out first in the error message; then the internal 

record or block count is printed. 

The HASH TOTAL on a COBOL input tape does not 

agree with the internally accumulated HASH TOTAL. 

An irrecoverable parity error has occurred during 

reading of a file assigned to disk or tape. The 

message is typed once for each block which is in 

error unless a USE procedure has been specified. 

The USE procedure (if any) is executed and con­

trol is transferred to the statement following 

the READ statement. 



(integer) 
Value 

20 

21 

22 

23 

24 

25 

26 

APPENDIX C (cont) 

MESSAGES 

Meaning 

An irrecoverable parity error has occurred on an 

output tape or disk file. The USE procedure has 

been executed, allowing programmatic closing of 

files which must be saved, and the program is 

now being DSed. 

An attempt has been made to READ from a file 

opened as OUTPUT. The program is DSed. 

An attempt has been made to read from a row of a 

disk file which has never been created. To get 

this error, the record number must be less than 

the highest record number written and greater 

than 1. When a RANDOM file is written, but rec-

ords fall only in rows 1 and 3 of a 3-row file, 

attempts to access records in row 2 cause I/O 

ERROR 22 instead of executing INVALID KEY 

statements. 

A row of disk space is assigned, and the appro­

priate record is made available to the using 

program. The contents of the record made avail-

able is, of course, unpredictable. 

An attempt is made to WRITE on a file which has 

been opened as INPUT. The program is DSed. 

An attempt is made to WRITE on a file which has 

been opened REVERSED. The program is DSed. 

Improper code is passed to the COBOLIO intrin-

sics. The program is DSed. 

A block of less than eight characters has been 

read, or a zero record size has been encountered 

Revised 11/20/70 
by peN 1024916-013 C-19 



C-20 

(integer) 
Value 

26 (cont) 

27 

28 

29 

30 

31 

32 

33 

34 

APPENDIX C (cont) 

MESSAGES 

Meaning 

during the reading of a TECHNIQUE-B or TECHNIQUE­

C file which utilizes the SIZE DEPENDING option. 

The program is DSed. 

Not used. 

While operating under Time Sharing, a SEEK has 

been issued for a data communications device. 

The program is DSed. 

An irrecoverable parity error has occurred while 

reading a tape file which has been opened RE­

VERSED. The message is typed once for each block 

which is in error unless a USE procedure has been 

specified. The USE procedure (if any) is exe­

cuted, and control is transferred to the state­

ment following the READ statement. 

Not used. 

An attempt is made to READ from a file which is 

closed or has never been opened. The program is 

DSed. 

An attempt is made to WRITE to a file which is 

closed or has never been opened. The program is 

DSed. 

An attempt is made to SEEK on a file which is 

closed or has never been opened. The program is 

DSed. 

An attempt is made to WRITE BLOCK on an INPUT 

file. The program is DSed. 



(integer) 
Value 

35 

36 

37 

69 

71 

72 

74 

76 

79 

APPENDIX C (cont) 

MESSAGES 

Meaning 

An attempt is made to WRITE BLOCK on a file 

opened REVERSED. The program is DSed. 

Not used. 

An attempt is made to WRITE BLOCK on a file which 

is closed or has never been opened. The program 

is DSed. 

An attempt is made to write on disk at an address 

less than 100. The program hangs in a DO UNTIL 

FALSE loop. 

operator. 

The program may be DSed by the 

The number of records within a string on a tape, 

used by a COBOL SORT program, is wrong. This is 

due to an incorrect Read or Write on that tape. 

Consequently, processing of the program is dis­

continued. 

Parity or blank tape in the sort. 

Parity or blank tape in the merge. 

An error has occurred within a string being 

written by a COBOL SORT program; the number of 

records that should have been written do not 

equal the number written on the desiguated unit. 

Consequently, processing of the program is dis­

continued. 

The number of records that should have been read 

from other tape units in the final merge pass of 

a SORT, being performed by a COBOL SORT program, 

does not equal the number of records written on­

to the final output tape. However, after action 
Revised 11/20/70 
by peN 1024916-013 C-2l 



C-22 

(integer) 
Value 

79 (cont) 

80 

81 

82 

83 

84 

85 

APPENDIX C (cont) 

MESSAGES 

Meaning 

has been taken to type this message, the SORT 

has closed the final output reel or has executed 

the user's output routine, signaling End-of-File. 

Consequently, the output tape may be used in 

spite of this error message. The tape unit indi-

cated in this message is meaningless. 

The total number of records entered as input to 

the SORT, being performed by a COBOL SORT pro­

gram, is not equal to the number of records 

produced as output from the SORT in the final 

merge pass. However, after action has been taken. 

to write this message, the SORT has closed the 

final output file or has executed the user's out-

put routine signaling End-of-File. Consequently, 

the output tape may be used in spite of this mes-

sage. The tape unit indicated in this message 

is meaningless. 

The amount of disk available is insufficient 

for a disk-only or ITD mode sort. 

The number of records read from the input does 

not match the number written to the final out-

put. 

A disk file has been passed as an output file 

which is not large enough to hold all of the 

sorted output data. 

Disk-only mode. The amount of disk specified 

is insufficient to do a disk-only sort. 

ITD mode. The number of records read from a 

string on tape is not the same number written. 



I 

(integer) 
Value 

86 

87 

APPENDIX C (cont) 

MESSAGES 

Meaning 

Records have not been passed to either a COBOL 

or an ALGOL SORT program. 

A sort record description is greater in length 

than the record description of a file which is 

passed as an output file to a COBOL sort. 

(unit mnemonic) I/O INV ADDR 

The occurrence of this message denotes that an invalid address has 

occurred when data is to be transferred between an I/O channel and 

core memory. The MCP recognizes this error condition and rectifies 

the errors if possible. The primary purpose of this message is to 

draw attention to a condition which denotes a hardware failure if 

the condition occurs frequently. 

(unit mnemonic) I/O MEM PAR 

The occurrence of this message denotcs that a memory parity error 

has occurred during the transfer of data between an I/O channel and 

core memory. The MCP recognizes this error condition and rectifies 

the errors if possible. The primary purpose of this message is to 

draw attention to a condition which denotes a hardware failure if 

the condition occurs frequently. 

• # LOG HALF FULL 

This message is typed if the log file SYSTEM/LOG is half full as a 

warning to the operator so that log information is not lost because 

of a log wraparound. 

LOG WRAP AROUND 

This message is typed if the MCP has to write on the beginning of 

the log file SYSTEM/LOG because of the fact that the log file has 

been filled and not reinitialized. 

Revised 11/20/70 
by peN 1024916-013 C-23 

I 



I 

APPENDIX C (cont) 

MESSAGES 

# LP BACKUP ON (unit mnemonic) 

This message is provided to notify the operator that a print backup 

tape is on-line. (Operator action is not required unless it is 

desired to print the tape. 

sage must be entered.) 

If the tape is to be printed, a PB mes-

# LP, PBT MT RQD (data file designator) (rdc) (job specifier) 

The occurrence of this message indicates that a program has need for 

a line printer or printer backup tape and neither is available. The 

situation denoted by this message is remedied if a line printer, 

backup tape, or scratch tape becomes available. The nature of the 

condition can be altered through use of the OU message. 

# LP RQD (data file designator) (rdc) (job specifier) 

The occurrence of this message indicates that a program has need for 

a line printer and such an I/O device is not currently available. 

The situation denoted by this message is remedied when a line print­

er becomes available; however, the OU message may be used to alter 

the nature of the condition. 

-MAXN ARGMNT EXP: (job specifier) (terminal reference) 

This message is typed if the argument to the EXP intrinsic exceeds 

158 which causes the program to be terminated. 

-MEMORY PARITY (job specifier) , (terminal reference) 

The occurrence of this message denotes that a hardware failure has 

occurred which precluded further processing of the designated pro-

gram. Consequently, processing of the program is discontinued. 

# MORE THAN l2QOO CARDS IN (control card) 

This message is typed when there are more than 12000 cards in a card 

deck which is being placed on the disk by LDCNTRL/DISK. This card 

deck is then completely removed from the disk. 

MCP (version) (release level) INCLUDES (MCP module list) 

This message is typed in response to the keyboard input message WM. 

c-24 



APPENDIX C (cont) 

MESSAGES 

The message identifies the current MCP version, the patch level, and 

a list of the options under which the MCP has been compiled. 

# MT RQD (data file designator) (rdc) : (job specifier) 

The occurrence of this message indicates that a program is in need 

of a scratch tape to use for a magnetic tape file. 

-NEARLY SINGULAR MATRIX (job specifier) , (termination reference) 

The occurrence of this message indicates that a BASIC program has 

attempted to invert a singular or nearly singular matrix. The pro­

gram is discontinued. 

-NEGTV ARGMNT LN (program specifier) (termination reference) 

This message is typed upon the occurrence of a negative argument 

being passed to the LN intrinsic. 

-NEGTV ARGMNT SQRT (program specifier) (termination reference) 

This message is typed upon the occurrence of a negative argument 

being passed to the SQRT intrinsic. 

NEW LOG FILE IS (m)(d)(c)/SYSLOG 

This message occurs when the MCP initializes a new SYSTEM/LOG file, 

either in response to an LN keyboard message or automatically when 

the log is almost full. The new name given to the old SYSTEM/LOG 

file is (m)(d)(c)/SYSLOG where (m) is a 2-digit number representing 

the current month, (d) is a 2-digit number representing the day of 

the month, and (c) is a 2-digit number which is incremented each 

time the name-changing routine is invoked. 

NEW PBT ON (unit) 

This message is printed when a new printer backup tape is opened. 

NEXT MCP WILL BE: (mfid)/(fid) 

This message is typed in response to a valid CM message. 

# NO FILE (data file designator) (rdc) : (job specifier) 

The occurrence of this message denotes that a program has need for 

Revised 11/20/70 
by peN 1024916-013 C-25 

I 

I 
I 



APPENDIX C (cont) 

MESSAGES 

an input file which is apparently not available. If the subject 

file is labeled, the situation denoted by this message may be rem­

edied by making the file available. 

If the file is labeled, the IL message must be used. If the file 

is a COBOL optional file, an OF message may be entered. If a COBOL 

program has read the final reel of a multi-reel unlabeled file, the 

FR message may be entered. 

I # NO·FILE (library tape name) / FILEOOO:LIBMAIN/DISK = (mix index) 

This message occurs when an attempt is made to LOAD files from a 

library tape which is not available to the system. 

I 

I 

# NO FIL ON DISK (data file designator) (job specifier) 

The occurrence of this message denotes that a program has need for 

a file it expected to find on disk. If the file noted in this mes-

sage is made available on the disk so that the subject program can 

continue processing, the (mix index) OK message must be entered; 

again the MCP searches for the file to make it available to the pro-

gram. If the file noted in the message cannot be made available, a 

DS message should be entered for the subject program. 

NO MCP FILE (mfid) / (fid) 

This message is typed in response to an invalid CM message. 

(mix index) NO MEM 

The occurrence of this message denotes that the MCP has made an 

attempt to obtain an area in core memory but was unable to do so. 

After not obtaining the area, the MCP allows other processing, if 

any, to take place; and subsequently makes periodic attempts to ob-

tain the desired area. The NO MEM message is 

unsuccessful attempts have been made. If the 

suppressed until five 

area is ever obtained, 

the OK MEM message is typed. The (mix index) in this message de-

notes the program for which the area is to be obtained; 0 (zero) 

denotes the MCP. When the NO MEM message appears, it mayor may not 

be followed by an OK MEM message. The system operator is required 

c-26 



APPENDIX C (cont) 

MESSAGES 

to determine actions subsequent to the NO MEM message; a HALT-LOAD 

operation may be required. 

-NON-CONFORMAL ARRAYS (job specifier) , (terminal reference) 

A BASIC program attempted to perform a matrix operation on two ar­

rays which were dimensioned such that the result cannot be defined. 

The program is discontinued. 

-NON-SQUARE MATRIX 

A BASIC program attempted to either insert a non-square matrix or 

perform the IDN function on a non-square matrix. 

discontinued. 

The program is 

NO SM STATIONS ON MIX = (mix index) 

The mix SS message provides a means whereby a message can be sent 

to all "remote sport users of a particular mix who have requested 

mix messages via the SM message. The NO SM STATIONS ON MIX is typed 

if no users have requested messages. 

(unit mnemonic) NOT A LIBRARY TAPE 

A tape has been designated for a library load which is not in 

library-dump-tape format. If a nonmultifile tape has been speci-

fied, the tape is rewound and locked; and the proper tape is again 

requested. If a multifile tape that is not a library dump tape has 

been specified, LIBMAIN/DISK is terminated. 

(file specifier) NOT DUMPED (DISK PARITY) (unit mnemonic) 

This message indicates that a disk error occurred on the specified 

file. The user should attempt to dump the file and, if parity still 

exists, remove the file from the original dump deck. 

(file specifier) NOT DUMPED (INV REC SIZE) <unit mnemonic) 

This message indicates that some error condition occurred while 

attempting a library dump of the specified file. The user should 

dump that file to a different tape on a different unit. 

error occurs again, the file should be removed. 

If the 

Revised 11/20/70 
by peN 1024916-013 C-27 



APPENDIX C (cont) 

MESSAGES 

(file specifier) NOT DUMPED (INVALID USER) 

This message indicates that the user code attached to the library 

maintenance dump operation is neither that of the creator of the 

file nor an entry in the security file attached to that file. 

(file specifier) NOT DUMPED (NOT ON DISK) 

This message indicates that a file specified in a library mainte­

nance dump operation is not present on disk. 

(program-id) NOT EXECUTABLE CODE 

The occurrence of this message indicates that the MCP has performed 

a consistency check on a program and the program is not of execu­

table form. 

(file specifier) NOT IN DIRECTORY 

This message is typed if a control card references a file which is 

not in the disk directory. 

(file specifier) NOT LOADED (INV REC SIZE) (unit mnemonic) 

This message indicates that an error occurred when the library main-

tenance tape was created. It is suggested that the user move the 

tape to another unit and attempt to load the specified file. 

(file specifier) NOT LOADED (INVALID USER) (unit mnemonic) 

This message indicates that a file specified on a library load op­

eration has a file security status conflict with a file of the same 

name already present on disk. 

(file specifier) NOT LOADED (NO USER DISK) (unit mnemonic) 

This message indicates that library maintenance is unable to load 

the specified file. LIBMAIN/DISK then attempts to load the next 

file. 

(file specifier) NOT LOADED (NOT ON TAPE) (unit mnemonic) 

The indicated file does not appear in the directory of a library 

maintenance tape. 

C-28 



APPENDIX C (cont) 

MESSAGES 

(file specifier) NOT LOADED (TAPE PARITY) (unit mnemonic) 

The indicated file is not loaded because of inability to read the 

specified file. It is suggested that the user attempt to load the 

file from a different tape unit. 

# (unit mnemonic) NOT READY 

The occurrence of this message denotes that the MCP or an object 

program has attempted to perform an I/O operation on the designated 

unit and has found the unit NOT READY. 

(unit mnemonic) NOT READY EU NO. (digit) DA = nnnnnn MIX = (mix 

index) 

The occurrence of this message denotes that the MCP or an object 

program has attempted to perform an I/O operation on the designated 

unit and has found the disk file electronics unit not ready. 

(file specifier) NOT RESET (NOT ON DISK) or 

(file specifier) NOT RESET (INVALID USER) 

One of these messages is typed when an attempt is made to reset 

the access flag on a disk file by a control card, and is unsuc­

cessful because of the reason indicated, provided the TYPE RSMSG 

option is set. 

(file specifier) NOT SET (NOT ON DISK) or 

(file specifier) NOT SET (INVALID USER) 

One of these messages is typed when an attempt is made to set the 

access flag on a disk file by a control card, and is unsuccessful 

because of the reason indicated, provided the TYPE RSMSG option 

is set. 

NO USER DISK 

This message occurs if the MCP is requested to perform a library 

maintenance activity which requests an area on user disk, and no 

such area is available. If the condition indicated by this message 

should occur, a HALT-LOAD operation is required. 

Revised 11/20/70 
by peN 1024916-0l3 C-29 

I 



APPENDIX C (cont) 

MESSAGES 

# NO USER DISK: (job specifier) 

The occurrence of this message denotes that a program has attempted 

to obtain a file area on user disk, but an area of the required size 

is not available. If subsequent action is taken to make user disk 

available, the OK message must be entered to cause the MCP to again 

attempt to find the requested area. If user disk is not made avail-

able, a DS message should be entered for the program. 

**NO USER DISK FOR RESERVE/DISK 

This message is produced when the operator has entered MR through 

the SPO. The 2000 segments necessary for the RESERVE/DISK file are 

not available; the operator must enter a subsequent MR to create 

the file. 

-NULL LIBRARY (file specifier) 

This message indicates that a DUMP function proved to be vacuous. 

In other words, the item or items to be DUMPed do not exist on disk. 

If, for example, the operator requests that files A/= be DUMPed to 

a library tape called DEF and there are no files for which the first 

name is A, then the message is typed. 

# NULL REMOTE/LOG 

This message is typed the first time the remote log is accessed and 

is not present. 

NULL PBx xxx 

This message is typed if an attempt is made to print a printer back­

up file while the PRNPBT/DISK routine is not in the directory, a 

printer is not available, or the file does not exist. 

(mix index) OK MEM 

This message may occur after a NO MEM message. The occurrence of 

this message denotes that the condition indicated by the NO MEM 

message no longer exists. 

C-JO 



APPENDIX C (cont) 

MESSAGES 

-OPRTR DS-ED (job specifier) , (termination reference) 

This message is typed after the system operator causes processing of 

a program to be discontinued through use of a DS message. 

-OPRTR ES-ED (job specifier) 

This message is typed after the operator causes a program to be 

eliminated from the schedule by an ES message. 

# OPRTR ST-ED (job specifier) 

The occurrence of this message means that the job has been suspended 

in response to an ST keyboard input message. To resume processing of 

the program, the operator must use the OK message. 

(unit mnemonic) OUT (data file designator) (rdc) : (job specifier) 

This message is typed when a program opens a card, tape, or line 

printer file for output, providing the necessary options have been 

I 
I 

set. The message is typed for object program files if the TYPE OPEN • 

option is set. The message is typed for compiler files if both the 

TYPE OPEN and TYPE CMPLFILE options are set. 

-OUT OF DATA (job specifier) (terminal reference) 

A BASIC program has attempted to read beyond the end of the data in 

its DATA statement. The program is discontinued. 

(unit mnemonic) OUT PBTMCP BACKUP: (job specifier) 

This message is typed when a scratch tape is initially selected and 

used for a printer backup tape, providing the necessary options have 

been set. The message is typed when an object program places the 

first file on a printer backup tape if both the TYPE OPEN and TYPE 

CMPLFILE options are set. 

# PARITY ERROR (job specifier) 

A pa~ity error has been encountered while printing a printer backup 

tape. The operator may respond with an OK, which continues the 

printing, or aDS. 

PARITY ON (unit mnemonic) 

The occurrence of this message means that the MCP has tried to read 

Revised 11/20/70 
by peN 1024916-013 C-3l 

• 

I 



APPENDIX C (cont) 

MESSAGES 

this tape and received an irrecoverable parity condition while read­

ing the label information or scanning down a multifile reel. 

# (unit mnemonic) PARITY, RW/L 

The occurrence of this message indicates that the MCP has attempted 

to read the designated magnetic tape unit, but has received a parity 

error condition and has consequently made the unit inaccessible. 

The reason for the apparent parity condition might be that the tape 

unit has been set to the wrong density. If the subject unit is made 

ready again, either by placing the unit in LOCAL and then in REMOTE 

or through use of the RY message, the MCP makes another attempt to 

read the tape. Also, a PG message referencing the subject unit can 

be entered to purge the tape which makes it accessible. 

-PAR NO LABEL (file designator) (job specifier) , (termination 

reference) 

The occurrence of this message indicates there has been an irrecov-

erable parity on the designated file and the object program has not 

specified any action for such a condition. 

of the program is discontinued. 

# PBT MT RQD (data file designator) (rdc) 

Consequently, processing 

(job specifier) 

The occurrence of this message indicates a program is in need of a 

scratch tape to use for a printer backup file. The situation denot-

ed by this message is remedied when a scratch tape is made avail-

able. The nature of the condition can be altered through use of 

the OU message. 

(unit mnemonic) PG-ED 

This message is typed when a tape is purged either by a keyboard 

input message or a program. 

(unit mnemonic) PRINT CHECK 

This message is typed when a print check error has occurred during 

printing of a line on a line printer. This message is provided for 

the purpose of notifying the operator that the error has occurred; 

C-32 



APPENDIX C (cont) 

MESSAGES 

processing of the program using the line printer is continued as 

though the error has not occurred. 

# PP RQD (data field designator) (rdc) : (job specifier) 

The occurrence of this message denotes that a program has need for 

a paper tape punch and no such I/O device is currently available. 

(unit mnemonic) PUNCH CHECK 

This message is typed when a punch check error has occurred during 

the punching of a card. This message is provided for the purpose of 

notifying the operator that the error has occurred; processing of 

the program using the card punch is continued as though the error 

has not occurred. 

# (unit mnemonic) READ CHECK 

This message is typed when a read check occurs on a card reader. 

The operator must place the card in the card reader again. 

card is a badly worn card, it should be reproduced. 

# READ ERROR FOR {control card information} 

If the 

The occurrence of this message denotes that a read error, probably 

irrecoverable parity, has occurred during the reading of a control 

deck for the disk. The control card which is printed out denotes 

the deck which is to be deleted because of this error. 

lowing decks are still to be loaded. 

The fol-

(unit mnemonic) REL (data file designator) (rdc) (j ob specifi er) 

This message is typed when a program closes a card, tape, or line 

printer file, providing the necessary options have been set. The 

message is typed for object program files if the TYPE CLOSE option 

is set. The message is typed for compiler files if both the TYPE 

CLOSE and TYPE CMPLFILE options are set. 

# REMOTE/LOG FULL 

This message is typed when the log is full. 

next time the log is accessed. 

Wraparound occurs the 

Revised 11/20/70 
by peN 1024916-013 C-33 

I 

• 



# REMOTE LOG ON DISK 

APPENDIX C (cont) 

MESSAGES 

This message is typed when the REMOTE/LOG has been placed on disk 

and initialized. If the file with (file identification prefix) 

REMOTE and (file identification) LOG is not on disk, 1000 segments 

are obtained for the REMOTE/LOG file and it is entered in the Disk 

• Directory. The first 1000-ABRTLNGTH segments are reserved for log 

entries; the record capacity in logical records of this area equals 

6x 
(lOOO-ABRTLNGTH). The remaining segments are reserved for in­

formation pertinent to remote terminals currently attached to pro-

grams for abort logging if necessary. (An entry is made in this 

section of the file for each remote terminal attached to a job.) 

The maximum number of such entries is JX (ABRTLNGTH-l). 

(file specifier) REMOVED 

This message is typed after the MCP has performed an operation spec­

ified on a REMOVE control card. 

-RER NO LABEL (file designator) (job specifier) , (termination 

reference) 

The occurrence of this message denotes that there is an R-format 

error on the designated input file and the object program has not 

specified any action for such a condition. 

of the program is discontinued. 

Consequently, processing 

-RER NO LABEL (prog. id.) (termination reference) 

This message is printed if an R-editing phrase error is detected on 

an array row read statement and an action label has not been 

specified. 

RESERVE/DISK ALREADY PRESENT 

This message is produced in response to the MR keyboard input mes-

sage. The RESERVE/DISK file has already been created by a previous 

MR message. 

RESERVE/DISK CREATED 

This message indicates that the RESERVE/DISK file, consisting of 

c-J4 



APPENDIX C (cont) 

MESSAGES 

one row of 2000 segments, has been created in response to the MR 

keyboard message. 

(file specifier) RESET ACCESSD 

This message is typed when the access flag of a disk file is reset 

by a control card, provided the TYPE RSMSG option is set. 

(priority) (job specifier) = (mix index) RESTARTED 

The designated restart job has completed replacing core storage and 

now has a normal job structure; i.e., it has "restarted." 

(priority) : (job specifier) = (mix) RESTART IS (state) 

The (state) is either WAITING or MOVING. The operator requested 

(mix) WY before the job restarted. 

is doing. 

# (unit mnemonic) RW/L 

This response tells what RESTART 

The occurrence of this message denotes that an operation has been 

performed to rewind the tape on the designated unit and to make the 

unit inaccessible. The unit may be made accessible again by placing 

it in LOCAL and then REMOTE, or through use of the RY message. 

# (unit mnemonic) RW/L (library tape name) (LIBRARY DUMP) 

This message occurs after a library tape has been made through use 

of the DUMP card facility. The designated unit is the location of 

I 

the newly created library tape, and the unit may be made accessible • 

again by placing it in LOCAL and then in REMOTE, or through use of 

the RY message. 

-SELECT ERROR (file designator) (job specifier) , (termination 

reference) 

The occurrence of this message denotes that an object program has 

performed an invalid operation on the designated file, e.g., rewind-

ing a card reader. 

continued. 

Consequently, processing of the program is dis-

Revised 11/20/70 
by peN 1024916-013 C-J5 



I 
APPENDIX C (cont) 

MESSAGES 

(file specifier) SET ACCESSD 

This message is typed when the access flag of a disk file is set 

by a control card, providing the TYPE RSMSG option is set. 

SLATE OVRFLW 

The occurrence of this message denotes that too many entries have 

been made in the SLATE, a table used by the control section of the 

MCP. If the condition indicated by this message should occur, a 

HALT-LOAD operation is required. 

STA (integer) / (integer) MARKED NON-SPO 

This is an output SPO message. The DC MCP has a means for "remem-

bering" the locations of remote stations which have SPO capabili-

ties. It is sometimes desired, however, to designate that certain 

stations should no longer be identified as "remote SPO's" (e.g., 

when an adapter which does not facilitate SPO facilities replaces 

a TWX adapter). In order that stations may be marked as "non-SPO 

stations," the RR keyboard input message is provided. If a message 

of the form RR (integer) / (integer) is entered, where the first 

(integer) specifies a terminal unit number and the second a buffer 

number, the MCP removes that station's identity as a "SPO station." 

Also, if the station is logged-in, the MCP logs it out. 

-STACK OVRFLW (job specifier) , (termination reference) 

The occurrence of this message denotes that the operations performed 

by an object program have caused its stack to overflow its limit. 

Consequently, processing of the program has been discontinued. 

# STATION (terminal unit) / (buffer) DISCONNECT AT (time) 

This message is typed if a remote station becomes detached from the 

system without properly logging out. 

# STATION (terminal unit) / (buffer) LOGGED IN AT (time) BY (user 

code) 

This message is typed when a user logs in from a remote station. 

If the file REMOTE/USERS is not present, (user code) is (empty). 

c-J6 



APPENDIX C (cont) 

MESSAGES 

# STATION (terminal unit) / (buffer) LOGGED OUT AT (time) 

This message is typed when a user logs out from a remote station. 

(compiler name) / (program identifier) = (mix index) SYNTAX ERR 

This message is typed when a compiler reaches End-of-Job and the 

program being compiled contains syntax errors, providing the TYPE 

EOJ option is set. 

# SYSTEM (system mnemonic) CLEARED 

This message is typed in response to the CL (system mnemonic) 

message. 

# SYSTEM ERROR (data file designator) : (job specifier) 

Because the MCP and INTRINSICS no longer reside in a reserved loca­

tion on disk, there is now a new class of system files. These files 

are not reserved by name but are marked as system files in the Disk 

Directory. In addition to having library maintenance performed on 

these files disallowed, the files may not be accessed in such a 

manner that their information content could be changed. If an at-

tempt is made to improperly access one of these files, the job is 

suspended until the operator intervenes. The operator may then 

either DS the job or take action to change the file in question to 

a non-system file and then type (mix index) OK. (For instance, if 

a System 1 program attempts to change the INTRINSICS file currently 

in use by System 2, the INTRINSICS on System 2 would need to be 

changed before the System 1 program could continue.) 

# (unit mnemonic) TAPE MK, RW/L 

The occurrence of this message indicates that the MCP has attempted 

to read the designated magnetic tape unit, has found the first word 

of information to be a tape mark, and has consequently made the unit 

inaccessible. The reason for the app~rent tape mark condition may 

be that the tape unit has been set to the wrong density. If the 

subject unit is made ready again, either by placing the unit in 

LOCAL and then in REMOTE or through use of the RY message, the MCP 

again attempts to read the tape. Also, a PG message referencing 

Revised 11/20/70 
by peN 1024916-013 C-37 



I 

APPENDIX C (cont) 

MESSAGES 

the subject unit can be entered, and the tape is purged and made 

accessible. 

#. TR PLEASE 

This message is typed at HALT-LOAD time if the TYPE TIME option is 

set. The system operator is required to enter a TR message before 

processing can continue. 

-TYPE MISMATCH READ STMT (job specifier) , (terminal reference) 

A BASIC program has tried to READ data that is not in the proper 

form to satisfy the input list. The program is discontinued. 

UNEXP IO ERR 

The occurrence of this message denotes that the MCP has encountered 

an unexplained I/O error that cannot be directly associated with a 

particular program. 

tion is required. 

If this error should occur, a HALT-LOAD opera-

-UNEXP I-O ERROR, (unit mnemonic), LIB MAINT ABORTED 

The occurrence of this message indicates that a library load or dump 

has been aborted because of an unexpected I/O error. If this occurs 

during a load operation, the file currently being loaded is removed 

from the directory. 

UNEXP I-O ERROR ON (unit) RESULT = (error field); MASK = (mask). 

where: 

(unit) ::= the unit mnemonic (CRA, MTC, DKA, etc.). 

(error field) ::= result descriptor error field ([26:7J). 
(mask) .. -.. - mask specified by the calling procedure. A bit 

ON in the mask indicates a condition to be handled 

by the calling procedure. 

The message indicates that the MCP has performed an I/O operation 

which caused an unexpected I/O error. If the I/O operation is di­

rectly related to a particular object program, processing of that 

program is discontinued. Also, the MCP types the error field, the 

unit mnemonic, and the error mask field as additional information. 

C-3B 



(file name) UNOPENED 

APPENDIX C (cont) 

MESSAGES 

This message states that the I/O area was referenced while the file 

was not open. 

(unit mnemonic) WRITE LOCK 

The occurrence of this message denotes that a program has attempted 

to write on a magnetic tape with no write ring, or on a disk or drum 

which has been locked out through use of hardware lockout switches. 

Consequently, processing of the program using the unit has been 

discontinued. 

(unit mnemonic) WR PARITY 

The occurrence of this message denotes that an irrecoverable write 

parity has occurred on the designated unit. Consequently, proces-

sing of the program using the unit has been discontinued. 

--WRONG FILE (data file designator) (rdc) (job specifier) 

Reopening files on a restart attempt involves checking for compati-

bil~ty w~th those in use at breakout. This message luliicateo LhaL 

the designated file is not sufficiently compatible; the next mes-

sage hints why. The operator may reply with an OK, WY, or DS. OK 

initiates a recheck. 

--WRONG (hint), ... ,(hint) 

This message pertains to BREAKOUT RESTART and the hints include the 

following: 

a. WRITE STATE. The write ring of the file is in the wrong 

place (in the box or on the tape). 

b. LABEL. The file lacks (needs) a label. 

c. TYPE. A file on disk (tape, line printer) at break must 

be on disk (tape, line printer) at restart. For example, 

an LP file is broken and the operator tries reopening it 

as a PBD. 

Revised 11/20/70 
by peN 1024916-013 C-J9 



APPENDIX C (cont) 

MESSAGES 

d. ROWS USED. Disk files have up to 20 rows. The one found 

does not have the right one. 

e. NO. OF ROWS. The disk file found has the wrong number of 

rows allowed. 

f. EOF. It is too short. 

g. ROW LENGTH. Its rows are the wrong size. 

h. FORMAT. If it is a disk file, its blocking or record 

length is wrong. If it is a tape file, it is found 

beyond where it was in breakout. 

i. SECURITY. A security error occurred. 

j. NO DUMP. The tape file lacks a break file copy. 

ZIP ERROR - IGNORED 

This message is typed if a program performs a generalized ZIP state-

ment but provides control information containing an error. Occur-

rence of this message signifies that the error is present and that 

all control information following and including the error is 

ignored. 

-ZERO ARGMNT LN (program specifier) (termination reference) 

This message is typed upon the occurrence of an argument of zero 

being passed to the LN intrinsic. 

[KEYBOARD INPUT MESSAGES. , 

Operator messages are defined as messages with a free-field format 

which the operator can supply the MCP via the console keyboard. In 

keeping with the concept of permitting the system to perform the 

control functions, the operator messages are primarily restricted to 

those actions that facilitate processing. The messages are not 

intended to provide detailed information about individual programs, 

e.g., the settings for specific registers or the contents of 

designated memory locations. 

c-40 



APPENDIX C (cont) 

MESSAGES 

To enter information from the keyboard, the operator must first 

press the INPUT REQUEST key. The READY indicator on the supervi-

sory printer is turned on. At this time, the operator can enter 

his message. When he has finished keying in the message, he presses 

the END OF INPUT key. This key causes a group mark to be inserted 

immediately after the last character entered and signals the MCP. 

If the operator attempts to introduce a message that is not accept­

able, the MCP ignores it and notifies the operator that he has keyed 

in an invalid entry. 

The following list presents the allowable operator input messages. 

THE AX MESSAGE 

The AX message allows the console operator to communicate with the 

object program through the SPO in response to an ACCEPT message. 

All characters following the AX, including blanks, are available to 

the object program. 

mark. 

Following the last character typed is a group 

The AX message has the following format: 

(mix index) AX (message data) 

THE BK MESSAGE 

This message performs the equivalent of the break key function for 

a SPO console or the SPO. If (mix index) is specified, messages 

which have been queued up for the SPO by a particular program in 

the mix are discarded. 

The BK message has the following format: 

BK or (mix index) BK 

Examples 

BK 

3BK 
Revised 11/20/70 
by peN 1024916-013 C-41 



THE BS MESSAGE 

APPENDIX C (cont) 

MESSAGES 

The BS message sets the station indicated by (tu)/(buff) as a SPO 

console. (Refer to the description of SPO consoles.) 

The BS message has the following format: 

BS (tu)/(buff) 

Example 

BS 1/8 

THE BS SPO MESSAGE 

This message causes SPO output to be printed on the SPO. 

The BS SPO message has the following format: 

BS SPO 

Example 

BS SPO 

THE CC MESSAGE ? MESSAGE 

The CC message allows the system operator to supply control infor-

mation to the MCP via the console typewriter. The information fol-

lowing the letters CC in the CC message is recognized in the same 

fashion as the information following the character? on control 

cards and program-parameter cards. 

The character ? can be used in lieu of the characters CC in the CC 

message, if desired. 

When a CC message is entered and the END OF INPUT switch is pressed, 

the typewriter becomes READY again unless the CC message contains 

END card information. Consequently, the last CC message must always 

be an END card message. 

C-42 



APPENDIX C (cont) 

MESSAGES 

The term (control information) used below is defined as any infor­

mation defined valid for use on control cards or program-parameter 

cards. 

The CC message may have either of the two following formats: 

CC (control information) 

or 

? (control information) 

Examples 

CC EXECUTE C/P; END 

CC EXECUTE C/P 

CC END 

? COMPILE "00180" BY IRP WITH ALGOL 

? ALGOL FILE CARD = IRACARD 

? END 

? COMPILE A/B; ALGOL FILE CARD = "OXXXXXX"; END. 

THE CD MESSAGE 

The CD message causes the MCP to type the name and first card image 

of each pseudo card deck that has been placed on the disk by the 

LDCNTRL/DISK Program. The CD message can also specify the system 

for which decks are to be printed. The messages are as follows: 

a. CDSYA 

b. CDSYB 

c. CDSYC 

d. CDSYD 

e. CDALL 

If CD alone is typed, the system into which the message is entered 

is implied. If there are no pseudo card decks on disk, the fol-

lowing is typed: 

NO DECKS ON DISK 

Revised 11/20/70 
by peN 1024916-013 c-43 



APPENDIX C (cont) 

MESSAGES 

The CD message has the following format: 

CD 

THE CI MESSAGE 

The CI message causes the MCP to forget the current intrinsic file. 

If, at a time when an intrinsic file is already on disk, a new in-
C' ~ .. , .. , lJ .. '::"_' 

trinsic file has been created, and the operator wishes to r~ 

the old file and use the new one, the CI (for Change Intrinsics) 

message may be used. If the designated file is found, the MCP waits 

until the only jobs being processed are either LDCNTRL/DISK, PRNPBT/ 

DISK, or LIBMAIN/DISK, or a combination of these jobs, and then per-

forms the change. The change is also performed if nothing is in the 

mix. 

All systems may use the same intrinsic file, separate intrinsic 

files, or any combination thereof. The name of the intrinsic file 

is no longer changed to INTRNSC/DISK after the CI message is enter­

ed; therefore, the name INTRNSC/DISK no longer has any special 

meaning. 

The CI message has the following format: 

CI (file identification prefix) (separator) 

(file identification) 

Example 

CI INT/DISK 

THE CL (unit mnemonic) MESSAGE 

The CL message discontinues the job using the specified unit. If 

the job is using the specified unit, the label table entry for the 

unit is marked as not in use and the unit is made ready. 

The CL message has the following format: 

CL (unit mnemonic) 

c-44 



Example 

CL MTA 

APPENDIX C (cont) 

MESSAGES 

THE CL (system mnemonic) MESSAGE 

Operationally, the Sharedisk System is very similar to the present 

batch system. If a system within the network is HALT/LOADed, it 

first determines if there are other systems also in operation. If 

so, the HALT/LOADed system closes all disk files that were open and 

returns all user disk that was in use (without disturbing the other 

systems). If, on the other hand, the HALT/LOADed system is the only 

one presently running, it takes the same action that a non-shared 

disk system takes at HALT/LOAD (rebuilds the Disk Directory, etc.). 

If a system ceases to function and cannot be restarted because of 

a hardware failure, the message CL (system mnemonic) should be typed 

into a functioning system. This causes all addresses in File Pro-

tect Memory that were locked by the disabled system to be unlocked, 

c~oses all files that were open, and returns all user disk that was 

in use. A£ter this process is completcd, the message #SYSTEM n 

CLEARED is typed; the system then performs the following tasks: 

a. Removes all contention bits set by SYN SY(n). 

b. Unlocks all addresses locked by SYN SY(n). 

c. Returns all disk space in the Scratch Directory of the 

system that is being cleared. 

d. Removes all files being loaded by the system that is 

being cleared. 

e. Closes all files that the offending system has opened. 

f. Removes all entries in the hold-list made by the system 

being cleared. 

g. Wakes up all processes in other systems that are waiting 

for a file that is in use (by any system). 

Revised 11/20/70 
by peN 1024916-013 c-4S 



APPENDIX C (cont) 

MESSAGES 

NOTE 

It is recommended that the CL message be used 

when a system ceases to function for any rea-

son. It has been found that the performance 

of the other systems within the network may 

be seriously reduced while a HALT/LOAD is 

being performed unless the disabled system 

is first cleared via the CL message. 

THE CM MESSAGE 

The MCP may be located anywhere on disk in the same fashion as any 

other file. This makes it possible for all systems to use MCP's 

with the same level with different options included (e.g., data 

communications, debugging) if so desired. The MCP may be loaded 

with the Tape to Disk Loader or, if the MCP is already on disk, the 

Disk to Disk Loader. If it is desired to change MCP's, the keyboard 

message CM (mid)/(fid) is entered. If that file is in the Disk Di­

rectory,. the message NEXT MCP WILL BE: (mid)/(fid) is typed and that 

MCP is used as soon as a HALT/LOAD occurs. If that file is not in 

the Disk Directory, the message NO MCP FILE (mid)/(fid) is printed 

and no further action takes place. When changing from a non-

SHAREDISK MCP to a SHAREDISK MCP, the COOL START Program must be 

run prior to HALT/LOADing. Similarly, while running on the SHARE­

DISK MCP, any attempt to CM a non-SHAREDISK MCP will be unsuccess­

ful. 

THE CT MESSAGE 

The CT message is used to change the time limits for a job. For 

either I/O or processor time limits, if the input is a non-zero 

integer, the time limit is changed to these new values. 

The CT message has the following format: 

(mix index) CT (processor part) (I/O part) 

c-46 



THE CU MESSAGE 

APPENDIX C (cont) 

MESSAGES 

The CU message allows the console operator to determine the core 

usage for a single program or all programs in the mix. 

The CU message has the format: 

(mix index) CU 

or 

CU 

THE DB MESSAGE 

The DB message is operational for those MCP's compiled with DEBUG-

GING set TRUE. This message places calls on MCP procedures which, 

through a special symbol/field-oriented language, allow the reading 

and writing of any area on disk. The DB message is used to initiate 

a debugging session; the semicolon terminates it. 

THE DD MESSAGE 

NOTE 

Because control is not maintained by 

the MCP when reading and writing a 

word to an address, the integrity of 

the system is the responsibility of 

those utilizing this function. 

The DD message is operational for those MCP's compiled with DEBUG­

GING set TRUE. This message places calls on MCP procedures which, 

through a special symbol/field-oriented language, allow the reading 

and writing of any area in core. The DD message is used to initiate 

the debugging session; the semicolon terminates it. 

NOTE 

Because control is not mainta~ned by 

the MCP when reading and writing a 

word to an address, the integrity of 

Revised 11/20/70 
by peN 1024916-013 c-47 



THE DP MESSAGE 

APPENDIX C (cont) 

MESSAGES 

NOTE (cont) 

the system is the responsibility of 

those utilizing this function. 

The DP message is operational for those MCP's compiled with DEBUGGING 

and/or DUMP set TRUE. This message allows an octal core dump to a 

line printer or a magnetic tape unit. 

The DP message has the following format: 

DP(unit) 

where (unit) is LP for line printer and MT for magnetic tape. 

THE DS MESSAGE 

The DS message allows the system operator to cause a program to be 

terminated. 

There are two forms of the DS message. One form of the message re-

quires that the program to be terminated be identified through use of 

a (mix index)* term; the other message requires that the program be 

identified through use of a (program specifier). 

If two or more programs in a mix have the same (program name) and a 

message using a (program specifier) is entered, the MCP arbitrarily 

terminates the program, with the name specified, that has the lowest 

(mix index). Consequently, if a situation such as noted occurs, the 

DS message which identifies the program through use of the (mix index) 

term is used. 

The DS message may have either of the two following formats: 

(mix index) DS 

*The term (mix index) is an (integer) that represents the mix index 

that the MCP has assigned to a particular program in the mix; i.e., 

a program that is currently in process. 

c-48 



or 

DS (program specifier) 

Examples 

2 DS 

DS ALGOL/"00180" 

THE DT MESSAGE 

APPENDIX C (cont) 

MESSAGES 

The DT message allows the system operator to change the value of the 

current date word used by the MCP. 

The DT message requires the use of three (integer)s, the first two of 

which must be followed by the character /. The first (integer) is 

recognized as the number of the month of the year, the second (inte­

ger) is recognized as the day of the month, and the third (integer) is 

recognized as the last two digits of the year. 

The DT message has the following format: 

DT (integer) / (integer) / (integer) 

Example 

DT 1/1/67 

THE ED MESSAGE 

The ED message can be used to eliminate a pseudo card deck which is 

contained in a pseudo card reader if the reader is not in use. 

The ED message may have one of the following formats: 

ED CDA 

ED CDB 

ED CDC 

ED CDD 

Revised 11/20/70 
by peN 1024916-013 C-49 



THE EI MESSAGE 

APPENDIX C (cont) 

MESSAGES 

The EI message responds with the message EIO and performs no useful 

function. 

THE ES MESSAGE 

This message terminates a program which is still in the schedule. 

This cannot be done with a DS message because the program is in the 

schedule and not in the mix. The program may be eliminated from the 

I schedule by typing in (schedule index) ES (meaning to eliminate from 

schedule). This causes the program to be loaded into the mix and 

DSed before any of its statements are executed. 

THE EX MESSAGE 

The EX message types out all expired disk file names. 

Examples 

EX ALGOL/= 

EX =/DISK 

EX 

THE FM MESSAGE 

The FM message must be entered in response to a # FM RQD message. 

The (mix index) in the message must agree with the (mix index) in the 

# FM RQD message, and the (unit mnemonic) must designate the unit to 

be used for the subject file. 

The FM message has the following format: 

(mix index) FM (unit mnemonic) 

Example 

I FM LPB 

THE FR MESSAGE 

The FR message allows the system operator to specify that the input 

C-50 



APPENDIX C (cont) 

MESSAGES 

reel, the reading of which has just been completed, is the final reel 

of an unlabeled file. 

The FR message has the following format: 

(mix index) FR 

Example 

J FR 

THE IL MESSAGE 

The IL message is used in response to a NOFILE or DUPFIL message and • 

allows the system operator to designate the unit on which a particu-

lar input file is located. The unit designated in the IL message may 

denote the location of a nonstandard file (a file with no standard 

label) or a standard file (a labeled file). In either case, the file 

on the unit designated in the IL message is assumed to be the file 

required in the related NOFILE or DUPFIL message. 

A (mix index) term must be used with the IL message since, during 

• 
multiprocessing, more than one NOFILE or DUPFIL message may be in • 

effect at the same time. 

The IL message must have the following format: 

(mix index) IL (unit mnemonic) 

Example 

I IL MTF 

THE IN MESSAGE 

The IN message allows the system operator to insert an (unsigned 

integer) into the Program Reference Table (PRT) of the program speci- I 
fied by the (mix index) at the relative location specified by the oc­

tal (index) unless the specified PRT cell contains a descriptor, or 

the (index) is less than 25 (octal) or out of the PRT bound. 

Revised 11/20/70 
by peN 1024916-013 C-51 



APPENDIX C (cont) 

MESSAGES 

The IN message has the following format: 

(mix index) IN (index) = (unsigned integer) 

Example 

2 IN 32 = 563 

THE LD MESSAGE 

The LD message causes the LDCNTRL/DISK Program to be called into core 

for execution. The LDCNTRL/DISK Program then searches for a tape or 

card file with the (multiple file identification) 

CONTROL 

and the (file identification) 

DECK 

Then, if the message entered is 

LD DK 

the file CONTROL/DECK is placed on disk in such a fashion that the 

MCP can read the file as a pseudo card deck. If the message entered 

is 

LD MT 

the file CONTROL/DECK is placed on a magnetic tape. 

o 
The LD message may have either of the following formats: 

LD DK 

or 

LD MT 

Examples 

C-52 

LD DK 

LD MT 



THE LN MESSAGE 

APPENDIX C (cont) 

MESSAGES 

The LN message activates an MCP routine which changes the name of the 

SYSTEM/LOG and initializes a new SYSTEM/LOG file. The new name given 

to the old SYSTEM/LOG is <m)<d)<c)/SYSLOG; where <m) is a 2-digit num­

ber representing the current month, <d) is a 2-digit number represent­

ing the day of the month, and <c) is a J-digit number that is incre­

mented each time the name-changing routine is invoked. The LN message 

has the following format: 

LN 

Example 

LN 

A keyboard message, which gives the new name, is written after the 

name has been changed. 

Example 

**** NEW LOG FILE IS 12J0007/SYSLOG 

In addition to being initiated by the LN message, the name-changing 

routine is automatically initiated when the log is almost full. 

THE LNDK MESSAGE 

The LNDK message causes all files on disk to be logged out and resets 

their creation date and time to current values. 

THE LR MESSAGE 

The LR message causes the library program with the <program identifier) 

LOGOUTR 

and the <program identifier suffix) 

DISK 

to be scheduled for execution. 

Revised 11/20/70 
by peN 1024916-013 C-5J 



APPENDIX C (cont) 

MESSAGES 

The LR message has the following format: 

LR 

Example 

LR 

THE MR MESSAGE 

The MR message is used to create a file labeled RESERVE/DISK consist­

ing of one row of 2000 segments in length. This file is used to cre­

ate a buffer in cases of NO USER DISK. When a NO USER DISK occurs, 

RESERVE/DISK is automatically removed if the requested space is less 

than that in RESERVE/DISK. The removal of the file is indicated by 

the NO USER DISK message followed by 

** RESERVE/DISK REMOVED 

Once the RESERVE/DISK file has been removed, the operator must enter 

MR to re-create the file once space is available. The possible re­

ponses to the MR message are: 

RESERVE/DISK CREATED 

RESERVE/DISK ALREADY PRESENT 

** NO USER DISK FOR RESERVE/DISK 

Example 

MR 

THE MX MESSAGE 

The MX message allows the system operator to request that the MCP 

type a list of (program specifier)s denoting the programs in the 

mix; the priority and (mix index) for each program is also listed.* 

* It should be noted that the maximum number of programs allowed in 
the mix is determined by two parameters which are DEFINEd in the 
MCP. The two parameters are MIXMAX and JOBNUMAX, where MIXMAX may 
be DEFINEd as an integer from 1 through 29 and JOBNUMAX must be 
DEFINEd as an ~ integer with a value of 20 x MIXMAX + 30. 

C-54 



APPENDIX C (cont) 

MESSAGES 

Specifically, each item in the list typed by the MCP in response to 

the MX message has the following format: 

(priority) : (program specifier) = (mix index) 

If there is nothing in the mix, the following message is typed: 

NULL MIX 

The MX message has the following format: 

MX 

THE OF MESSAGE 

The OF message allows the system operator to specify that a file re­

quested for a COBOL program is optional so that the specified program 

can proceed without it. 

The OF message has the following format: 

(mix index) OF 

Example 

1 OF 

THE OK MESSAGE 

The OK message causes the MCP to resume processing of a program which 

has been temporarily suspended because of the condition designated by 

the # DUP LIBRARY message, the NO USER DISK message, the NO FILE ON 

DISK message, or the #OPRTR ST-ED message. 

The OK message has the following format: 

(mix index) OK 

Example 

1 OK 

Revised 11/20/70 
by peN 1024916-013 C-55 



APPENDIX C (cont) 

MESSAGES 

THE OL MESSAGE 

The OL message allows the system operator to request that the MCP 

type information pertaining to labels of files on I/O units. 

The OL message has many formats. One format specifies that a specific 

(unit mnemonic) may be entered. The other formats require 2-letter 

codes which specify a type of I/O unit. The codes and the I/O units 

they represent are as follows: 

Code I/O Unit 

CD Pseudo card reader 

CP Card punch 

CR Card reader 

LP Line printer 

MT Magnetic tape 

PP Paper tape punch 

PR Paper tape reader 

If an OL message specifying a specific (unit mnemonic) is entered, 

the response message has one of the following formats, whichever is 

relevant. 

(unit mnemonic) (physical reel number) IN USE BY (program 

specifier) : (multiple file identification) (file identification) 

(rdc) 

(unit mnemonic) (physical reel number) LABELED (multiple file 

identification) (file identification) (rdc) 

(unit mnemonic) (physical reel number) SCRATCH 

(unit mnemonic) (physical reel number) UNLABELED 

(unit mnemonic) NOT READY 

If an OL message specifying a type of I/O unit is entered, and if a 

unit of the specified type is in use and/or labeled, the response 

message has one of the following formats, whichever is relevant. 

c-S6 



APPENDIX C (cont) 

MESSAGES 

(unit mnemonic) (physical reel number) IN USE BY (program 

specifier) : (multiple file identification) (file identification) 

(rdc) 

(unit mnemonic) (physical reel number) LABELED (multiple file 

identification) (file identification) (rdc) 

(unit mnemonic) UNLABELED 

If an OL message specifying a type of I/O unit is entered, and no 

unit of that type is in use and/or labeled, the following message 

is typed: 

NULL (unit mnemonic) TABLE 

The OL message may have one of the following formats: 

OL (unit 

OL CD 

OL CP 

OL CR 

OL LP 

OL MT 

OL PP 

OL PR 

Examples 

OL MTA 

OL CR 

OL MT 

mnemonic) 

OL MTX (where X calls for a list of all scratch tapes) 

THE OT MESSAGE 

The OT message allows the system operator to request the MCP to type 

out the value of a cell in the Program Reference Table (PRT) of a 

Revised 11/20/70 
by peN 1024916-013 C-57 



APPENDIX C (cont) 

MESSAGES 

program. The program is specified by the (mix index) and the cell by 

the octal (index). The typed MCP message has the following format: 

(job specifier) : R+ (index) = (PRT data) 

The value of (PRT data) is expressed as an octal number for a de­

scriptor, or an integer of up to eight digits for an operand. 

The aT message has the following format: 

(mix index) aT (index) 

Example 

2 aT 32 

THE au MESSAGE 

The au message allows the system operator to designate the output 

media option for a line printer file if a # LP RQD, a # LP PET MT RQD, 

or a # .PET MT RQD message has been typed which references the job that 

uses the file. 

The au LP form of this message specifies that the subject line printer 

file must be produced as output on a line printer. 

The au MT form of this message specifies that the subject line printer 

file must be produced as output on a printer backup tape. 

The au DK form of this message specifies that the subject line printer 

file must be produced as output on printer backup disk. 

The au form of this message specifies that the subject line printer 

file may be produced as output either on a line printer or a printer 

backup tape. The au message may have anyone of the following formats: 

(mix index) au LP 

(mix index) au MT 

(mix index) au 

(mix index) au DK 

C-58 



Examples 

2 au LP 

I au 
4 au 

THE PB MESSAGE 

APPENDIX C (cont) 

MESSAGES 

The PB message allows the system operator to specify that a printer 

backup file on a particular unit is to be printed. Any printer back­

up disk file may be printed on any (or all) system. If the file is 

being printed simultaneously on two or more systems (not considered a 

normal activity), the last system to finish printing removes the file 

from the Disk Directory. The PB command remains unchanged. If a 

specified tape is not a printer backup tape, the following message is 

typed: 

NaT PRINTER BACKUP TAPE 

The PB message has the following formats: 

PB (unit mnemonic) 

PB (PBD number) 

The term (PBD number) may be up to four digits and is the nnnn part 

of the PBD file name. 

Example 

PB MTN 

THE PD MESSAGE 

The PD message allows the system operator to request that the MCP type 

information pertaining to what files are listed in the Disk Directory. 

The formats of the PD message are shown below. The action caused by 

the PD message depends upon the format of the message. 

the actions caused by the PD message are as follows. 

Specifically, 

If a message of the form 

Revised 11/20/70 
by peN 1024916-013 C-59 



PD =/= 

APPENDIX C (cont) 

MESSAGES 

is entered, a list containing a (file specifier) for each file in the 

Disk Directory is typed. 

If a message of the form 

PD (file specifier) 

is entered and the file designated in the message is in the Disk 

Directory, the (file specifier) for the file is typed. If the file 

designated in the message is not in the Disk Directory, the message 

NULL PD (file specifier) 

is typed. 

If a message of the form 

=/(file identification) 

or 

=/(program identification suffix) 

is entered, a list of all files in the Disk Directory which have the 

designated (file identification) or (program identification suffix), 

if any, is typed. If no such files are in the Disk Directory, one of 

the following messages is typed: 

NULL PD(file identification prefix)/= 

NULL PD(file identification prefix) 

NULL PD(program identification)/= 

NULL PD(program identification) 

The PD message may have anyone of the following formats: 

PD -/-- -
PD (file specifier) 

PD =/(file identification) 

PD =/(program identification suffix) 

c-60 



PD 

PD 

PD 

PD 

Examples 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

PD 

APPENDIX C (cont) 

MESSAGES 

(file identification prefix)/= 

(file identification prefix) 

(program identification)/= 

(program identification) 

-/-- -
ALGOL/DISK 

=/PARTS 

=/DISK 

PERSNEL/= 

PERSNEL 

ALGOL/= 

ALGOL 

THE PG MESSAGE 

The PG message allows the system operator to purge a magnetic tape on 

a unit that is in REMOTE modp., in WRITE RING status, and not in use. 

One form of the PG message allows a physical reel number to be in­

serted into the scratch label written on the tape. The physical reel 

number can be altered only by using the form of the PG message that 

specifies the number; it is not altered by the normal PG message. The 

format is: 

PG (magnetic tape unit mnemonic) (physical reel number specifier) 

(physical reel number specifier) ::= -(5 digits) 

If the (physical reel number specifier) format is used, there must not 

be any space between the last character of the (magnetic tape unit 

mnemonic), the dash, and the (5 digits). 

Examples 

PG MTA 

PG MTA-12J45 

Revised 11/20/70 
by peN 1024916-013 C-6l 



THE PR MESSAGE 

APPENDIX C (cont) 

MESSAGES 

The PR message provides a means whereby the system operator can 

specify the priority to be assigned a program currently in the mix. 

The priority to be assigned is specified by the term (priority); the 

program to which the priority is to be assigned is specified by the 

(mix index). The term (priority) must be an (integer). 

The PR message has the following format: 

Ir (mix index) PR (priority) 

Example 

• 4PR7 

THE PS MESSAGE 

The PS message can be used to alter the priority of a program in the 

schedule. The priority to be assigned is specified by the term (pri­

ority); the program in the schedule to which the priority is to be as­

signed is specified by the (schedule index). Both terms are integers. 

The PS message has the following format: 

(schedule index) PS = (priority) 

Example 

5PS = J 

THE PT MESSAGE 

The PT message causes the declared disk file TRACE/AREA to be printed. 

This file contains trace output data when the MCP is compiled with 

DEBUGGING set TRUE and when calls are made on the TRACE procedure. 

THE QT MESSAGE 

I The QT message is used to cause PRNPBT/DISK or LIBMAIN/DISK to skip a 

file. In response to this message, the following actions for PRNPBT/ 

DISK files are: 

C-62 



APPENDIX C (cont) 

MESSAGES 

a. Printing of the current file is discontinued. 

b. Printing resumes with the first record of the succeeding 

file. 

c. If the file being printed is a printer backup disk file, 

printing is discontinued and the appropriate copy of PRNPBT/ 

DISK terminates. The PBD file is not removed from the Disk 

Directory. 

The QT message may have either of two formats: 

(mix index) QT 

or 

QT (unit mnemonic) 

Example 

1 QT 

QT MTA 

THE QV MESSAGE 

The Q-second timeout facility provides a means for causing the MCP to 

clear read-ready conditions from the terminal unit buffers of remote 

stations which have SPO capabilities in cases where an object program 

(to which the station is assigned) does not read the input within a 

given number of seconds; i.e., within Q seconds. The value of Q may 

be specified through use of a QV keyboard input message of the form: 

QV = (integer) 

In response to this message, the MCP sets Q to the value specified 

and types a SPO message of the form: 

REMOTE SPO Q VALUE = (integer) SECS 

Also, if a keyboard message of the form 

QV 

Revised 11/20/70 
by peN 1024916-013 c-63 



I 

APPENDIX C (cont) 

MESSAGES 

is entered, the MCP responds with a message, as shown above, which 

specifies the current value of Q. 

THE RD MESSAGE 

The RD message may be used to remove pseudo card decks from disk which 

were placed on disk by the LDCNTRL/DISK Program. 

Pseudo card decks are identified by names having the following format: 

# (integer) 

and the term (pseudo card deck list) is defined as: 

= I # (integer) I # (integer), .•• , # (integer) 

If the keyboard message RD= is entered, only those decks that were 

loaded on the system into which the message is entered are removed. 

If the message RD#nnnn is entered, the specified deck is removed re­

gardless of which system loaded it, providing the deck is not in use. 

The RD message has the following format: 

RD (pseudo card deck list) 

Examples 

RD #0072 

RD #0072, #6328 

RD = 

THE RM MESSAGE 

The RM message can be used in response to a # DUP LIBRARY message. 

The RM message causes the file on disk (with a name identical to the 

file created by the program specified in the # DUP LIBRARY message) to 

be removed, and then causes the subject program to resume processing. 

The RM message has the following format: 

(mix index) RM 

c-64 



Example 

IRM 

THE RN MESSAGE 

APPENDIX C (cont) 

MESSAGES 

The RN message is used to specify the number of pseudo card readers 

to be used. There are four pseudo card readers in the Time Sharing 

MCP and 32 in the Standard MCP. At HALT/LOAD time, the number of 

pseudo card readers specified to be used is zero. 

An RN message may be entered at any time. If an RN message specifies 

that more pseudo card readers are to be used than are currently being 

used, the MCP searches for pseudo card decks on disk and makes use of 

as many of the specified pseudo card readers as possible. If an RN 

message specifies that fewer pseudo card readers are to be used than 

are currently being used, a sufficient number of the pseudo readers 

are "turned off" as soon as the readers complete handling of the pseu­

do card deck in process, if any. 

All control decks are identified with the system that loads them, and 

run on that system unless special action is taken. A variation of the 

RN message is RN#nnnn where nnnn is the number of the control deck on 

disk. Providing the specified deck is not already in use, typing in 

this message places the deck in a pseudo reader regardless of which 

system loads it. If the deck is in use, the message DECK#nnnn IN USE 

BY SYSTEM n is typed. 

The RN message may have one of the following formats: 

RN 

RN (digit) 

RN#nnnn 

If a (digit) is not entered, I is assumed. 

Revised 11/20/70 
by peN 1024916-013 c-6S 



• 

Examples 

RN 

RN 0 

RN 1 

RN 2 

RN 3 
RN 4 

RN #1234 

THE RR MESSAGE 

APPENDIX C (cont) 

MESSAGES 

The DC MCP has a means for "remembering" the locations of remote 

stations which have SPO capabilities. It is sometimes desired, how-

ever, to designate that certain stations should no longer be identi­

fied as "remote SPO's;" e.g., when an adapter which does not facili-

tate SPO facilities replaces a TWX adapter. In order that stations 

may be marked as "non-SPO stations," the RR (Remove Remote) keyboard 

input message is provided. If a message of the form 

RR (integer) / (integer) 

is entered (where the first (integer) specifies a terminal unit number 

and the second a buffer number), the MCP removes the identity of that 

station as a "SPO station." Also, if the station is logged in, the 

MCP logs it out. 

THE RS MESSAGE 

This message allows the operator to add a break file to the Directory, 

the break file having been previously copied onto an output tape of a 

COBOL job. 

The break file, loaded onto disk from the specified tape unit by the 

RS message, may then be executed or run to initiate a restart. 

The RS message has the following format: 

RS (unit) 

c-66 



The responses are: 

a. RS (unit) INV KED 

APPENDIX C (cont) 

MESSAGES 

The unit is not a tape. 

b. (unit) (note) 

The note is either NOT READY, IN USE, SCRATCH, WRITE LOCK, 

or NO DUMP. The unit must be an available, labeled, write­

enabled tape with a break file copy. 

c. . (program name) / BREAK (break number) NOT ADDED. DUP 

LIB RS (unit) 

There is already a disk file with the names mentioned. The 

break file on the unit is not loaded. 

d. (unit) ERROR IN DUMP 

The tape/disk break file copy has gone awry. The break file 

is not loaded. 

e. (program name) / BREAK (number) ADDED. TAPE POSITIONED 

(unit) 

The RS (unit) is successful. The unit is left positioned 

and marked for the pending restart of the loaded break file. 

Example 

RS MTA 

THE RW MESSAGE 

The RW message allows the system operator to cause a rewind-and-lock 

action to be performed on a magnetic tape file that is not in use. 

The RW message has the following format: 

RW (unit mnemonic) 

Example 

RW MTE 
Revised 11/20/70 
by peN 1024916-013 c-67 



THE RY MESSAGE 

APPENDIX C (cont) 

MESSAGES 

The RY message allows the system operator to cause, by entering a 

keyboard message, an effect analogous to the effect caused by placing 

a magnetic tape unit in LOCAL and then REMOTE. That is, if the des­

ignated unit is not in use and in REMOTE, the MCP attempts to read a 

file label. 

The RY message causes locked files to be made accessible and causes 

label cards (or DATA cards), which have been read but not referenced, 

to be ignored. 

The RY message has the following format: 

I RY (unit mnemonic) (blank) I (unit mnemonic) (unit mnemonic) 

Examples 

RY MTC 

• RY CRACRBMTA 

THE SC MESSAGE 

The SC message types the SPO consoles. 

The SC message has the following format: 

SC 

THE SI MESSAGE 

When the MCP is compiled with STATISTICS set TRUE, the SI message 

allows the time-transfer value to be changed. The time-transfer value 

is used to calculate when to transfer the SYSTEM(system mnemonic)/ 

STATS File into the SYSTAT(system mnemonic)/DISK File. 

The SI message has the following format: 

SI(integer in minutes) 

The value of (integer in minutes) is initially JO. 

c-68 



THE SL MESSAGE 

APPENDIX C (cont) 

MESSAGES 

The SL message allows the operator to save the Pseudo Statistics 

(MICRO) Log File. (Refer to Statistics Log in section 5.) 

The SL message has the following format: 

SL 

THE SO, RO, and TO OPTION MESSAGES 

The MCP provides a number of features that are optional. That is, if 

a particular option is set, the MCP uses the respective feature; if 

the option is reset (i.e., not set), the feature is not used. (Refer 

to page 3-26 for an explanation of options.) 

The SO message allows the system operator to set options. 

The RO message allows the system operator to reset options. 

The TO message allows the system operator to request that the MCP 

type a message which lists the options and their settings. 

Each optional feature provided by the MCP may be referenced either 

mnemonically through use of an (option mnemonic) or numerically 

through use of an (option numeric code). 

An (option mnemonic) is defined as one of the following: 

USE DRA 

USE DRB 

TYPE BOJ 

TYPE EOJ 

TYPE OPEN 

USE TERMNATE 

TYPE DATE 

TYPE TIME 

USE ONE BREAK 

USE AUTOPRNT 

Revised 11/20/70 
by peN 1024916-013 c-69 



USE CLEARWRS 

TYPE DISCONDC 

TYPE CMPLFILE 

TYPE CLOSE 

USE ERRORMSG 

USE RET 

USE LIBMSG 

USE SCHEDMSG 

USE SECMSG 

USE DSKTOG 

USE RELTOG 

USE PBDREL 

USE CHECK 

TYPE DISKMSG 

USE PBDONLY 

USE SAVEPBT 

TYPE RSMSG 

USE AUTOUNLD 

APPENDIX C (cant) 

MESSAGES 

An (option numeric code) is defined as: 

USE OPTN (integer) 

where the (integer) used specifies the option. 

The SO message has either of the following formats: 

SO (option mnemonic) 

or 

SO (option numeric code) 

Examples 

SO TYPE BOJ 

SO USE OPTN 45 

The RO message has either of the following formats: 

C-70 



RO <option mnemonic) 

or 

APPENDIX C (cont) 

MESSAGES 

RO <option numeric code) 

Examples 

RO USE TERMNATE 

RO USE OPTN 42 

The TO message has the following format: 

TO 

THE SF MESSAGE 

The Multiprocessing Factor can be changed by typing in SF <decimal 

number) (meaning to set-the-factor). The <decimal number) is defined 

as in ALGOL, with the restriction that <unsigned integer)s are, at the 

most, two digits long: 

(decimal numbor) ::= (unsigned integer) (decimal fraction) 

<unsigned integer) <decimal fraction) 

<decimal fraction) ::= .<unsigned integer) 

<unsigned integer) ::= <digit) I <digit) <digit) 

THE SS ALL MESSAGE 

The SS ALL message provides a means whereby a message can be sent to 

all "remote SPO" users on the system. 

The SS ALL message has the following format: 

SS ALL: {any characters excluding those having control 

significance} 

Example 

SS ALL: P.M. STARTS IN 30 MINS. 

Revised 11/20/70 
by peN 1024916-013 C-71 



APPENDIX C (cont) 

MESSAGES 

THE (mix index) SS ALL MESSAGE 

The (mix index) SS ALL message provides a means whereby a message can 

be sent to "remote SPO" users of a particular program, regardless of 

whether they have requested messages via the SM message. 

If the given mix has no users, the message 

NO STATIONS ON MIX = (mix index) 

is returned. 

The (mix index) SS ALL message has the following format: 

(mix index) SS ALL: {any characters aside from those having 

control significance} 

Example 

2 SS ALL: YOU MUST BE OFF BY 0900; 

5 MIN. TO GO. 

THE SS MESSAGE 

The SS message may be used at the central SPO or, if preceded by a 

question mark, on a remote station with SPO capabilities. It directs 

a message to a remote station which has SPO capabilities, or to the 

SPO. If the station addressed is not recognized to have SPO capabili-

ties or is not ready, an INV STN message is returned. The message, 

as provided at the addressed station, has a prefix which includes the 

address of the originator. 

The SS message has one of the following formats: 

SS (remote station address) : (remote station message) 

SS SPO : (remote station message) 

Examples 

SS 1/0 ARE YOU THERE 

? SS SPO : I NEED A SCRATCH TAPE 

C-72 



THE (mix index) SS MESSAGE 

APPENDIX C (cont) 

MESSAGES 

The (mix index) SS message provides a means whereby a message can be 

sent to all remote SPO users who have requested mix messages via the 

SM message for a program with a particular (mix index). 

If no users have requested messages, the message 

NO SM STATIONS ON MIX = (mix index) 

is returned. 

The (mix index) SS message has the following format: 

(mix index) SS: 

Example 

{any characters aside from those having 

control significance} 

J SS: THE TAPE ON MTA IS ALMOST FULL. 

THE S'T MESSAGE 

The ST message allows the system operator to suspend the program 

referenced by the (mix index) as soon as that program becomes ready 

to be returned to normal state by the MCP. To resume processing of 

the program, the operator must use the OK message. 

The ST message has the following format: 

(mix index) ST 

Example 

I ST 

THE SV MESSAGE 

The SV message may be used to cause a peripheral unit to be made 

inaccessible until a HALT/LOAD operation occurs or until an RY message 

referencing the inaccessible unit is entered. If, when the SV message 

Revised 11/20/70 
by peN 1024916-013 C-7J 



APPENDIX C (cont) 

MESSAGES 

is entered and the specified unit is not in use, the message 

(unit mnemonic) SAVED 

is typed. If a unit is in use when an SV message referencing it is 

entered, the message 

(unit mnemonic) TO BE SAVED 

is typed, and the unit becomes inaccessible as soon as it is no longer 

in use. Until an RY message referencing the unit is entered or a 

_ HALT/LOAD occurs, the saved unit remains inaccessible. 

The SV message has the following format: 

I SV (unit mnemonic) (blank) I (unit mnemonic) (unit mnemonic) 

Examples 

SV.LPA 

SV MTT 

SV CRBMTAMTB 

THE SY MESSAGE 

The SY message allows the operator to save the Statistics Data Base 

(MACRO) Log File. (Refer to Statistics Log in section 5.) 

The SY message has the following format: 

SY 

Example 

SY 

THE TF MESSAGE 

The Factor can be interrogated by typing in TF (meaning to type out 

the Factor). 

C-74 



THE TI MESSAGE 

APPENDIX C (cont) 

MESSAGES 

The TI message causes the MCP to type out the amount of processor time 

that the subject program has used up at the time the TI message is en­

tered. The time is provided as one to three (integer)s separated by 

(space)s, for example: 

1 

or 

2 49 

or 

1 48 7 

The right-most (integer) specifies seconds, the second-from-right 

integer specifies minutes, and the third-from-right integer specifies 

hours. 

The TI message has the following format: 

(mix index) TI 

Example 

J TI 

THE TL MESSAGE 

The TL message provides a means whereby the MCP types the processor 

and I/O time limits for a designated job. 

The TL message format is: 

(mix index) TL 

THE TR MESSAGE 

The TR message allows the system operator to change the value of the 

time word used by the MCP. 

The time, specified by the (integer) in the TR message, is designated 

according to a 24-hour clock, i.e., military time. 

Revised 11/20/70 
by peN 1024916-013 C-75 



APPENDIX C (cont) 

MESSAGES 

The TR message has the following format: 

TR (integer) 

Example 

TR 0800 

THE TS MESSAGE 

The TS message makes it possible to determine the programs in the 

schedule. The MCP types out the names of each job in the schedule, 

together with the amount of core space needed by the program and the 

amount of time the program has been in the schedule. 

The format of the TS message is: 

(priority) (job specifier) = (schedule #) IN FOR 

(elapsed time in schedule), NEEDS (core requirement) 

THE UL MESSAGE 

The UL message is used in response to a no-file message and allows the 

system operator to designate the unit on which a particular unlabeled 

file is located. The unit designated in the UL message may denote the 

location of a standard file (a file on which the first record. is a 

standard label) or a nonstandard file (a file with no standard label). 

However, in either case, all records in the file, including the stan-

dard label, if any, are recognized as data records. This message dif-

fers from the IL message; when the IL message is used in reference to 

a standard file, a standard label is not recognized as a data record. 

The UL message can be used to designate a tape, which does not have a 

standard library dump tape label, for a library load. However, the 

tape so designated must conform to the library dump tape format (block­

ing size) except for the label. 

A (mix index) term must be used with the UL message since, during 

multiprocessing, more than one no-file message may be in effect at 

the same time. 

C-76 



APPENDIX C (cont) 

MESSAGES 

The UL message has the following format: 

(mix index) UL (unit mnemonic) 

Example 

1 UL MTT 

THE US SPO MESSAGE 

The US SPO message inhibits output to the SPO. 

The US SPO message has the following format: 

US SPO 

THE (mix index) WA MESSAGE 

The (mix index) WA message provides a means for determining what 

stations are assigned to a particular program. 

If any stations are assigned to the given mix, the MCP returns a 

message of the form: 

(integer)/(integer) ASSIGNED TO (program specifier) 

If no stations are assigned to the given mix, the MCP returns the 

(mix index) WA message preceded by the word NULL. 

The (mix index) WA message has the following format: 

(mix index) WA 

Example 

4 WA 

THE WD MESSAGE 

The WD message causes the MCP t~ type the date currently being used 

by the system. The date is given in the MM/DD/YY format. 

Revised 11/20/70 
by peN 1024916-013 C-77 

I 



APPENDIX C (cont) 

MESSAGES 

The WD message has the following format: 

w1) 

THE WI MESSAGE 

The WI message identifies the INTRINSICS currently being used by the 

MCP. 

The following constructs differ in that the first response is typed if 

no options are set TRUE when the INTRINSICS are compiled. 

INTRINSICS (version) . (release level) 

INTRINSICS (version) • (release level) INCLUDES 

(MCP compiled options) 

THE WM MESSAGE 

The WM message allows the system operator to request the current ver­

sion and release-level of the MCP. A list of the module options under 

which the current MCP has been compiled is also typed. 

The WM message has the following format: 

WM 

Example 

WM 

Response 

I MCP XI.14.l20 INCLUDES DATACOM, DCSPO, DEBUGGING 

THE WP MESSAGE 

The WP message provides a means for determining what programs are 

assigned to what remote stations. If the WP message is followed by 

tU/buf (where tu and buf are each 1- or 2-digit numbers), the MCP re­

turns a message specifying what programs are assigned to the specified 

C-78 



APPENDIX C (cont) 

MESSAGEtS 

stations, if any. If WP alone is entered, the MCP returns a complete 

list specifying what programs are assigned to what stations. 

The message, used to specify what programs are attached to what 

stations, is as follows: 

(integer) / (integer) ASSIGNED TO (program specifier) 

If a positive response cannot be provided for a WP message, the 

message is returned preceded by the word NULL. 

The WP message may have either of the following formats: 

WP (integer)/(integer) 

or 

WP 

Examples 

WP 2/6 

WP 

THE WR MESSAGE 

The WR message is used to create a REMOTE/LOG file on disk. If there 

is no REMOTE/LOG file on disk when this message is entered, 1000 seg­

ments are obtained for the file and it is entered in the Disk Direc-

tory. 

THE WT MESSAGE 

The WT message causes the MCP to type out the time of day currently 

recognized by the system. The time is given according to a 24-hour 

clock. 

The WT message has the following format: 

WT 

THE WU MESSAGE 

The WU message provides a means for determining the user 
Revised 11/20/70 
by PeN 1024916-013 C-79 



APPENDIX C (cont) 

MESSAGES 

identifications of remote SPO users. If the WU message is preceded by 

a mix index, the MCP identifies the users of that mix, if any_ If the 

WU is followed by tU/buf (where tu and buf are each 1- or 2-digit num­

bers), the MCP identifies the user of the given station, if any. If 

WU is used alone, the MCP identifies all users of remote SPO stations, 

if any. The message used to identify the user of a remote station is 

as follows: 

(integer) / (integer) USED BY (user code) 

If no users are referenced by a WU message, the message is returned 

preceded by the word NULL. 

The WU message may have one of the following formats: 

(mix index) WU 

WU (integer)/(integer) 

WU 

Examples 

JWU 

WU 1/4 

WU 

THE WY MESSAGE 

The WY message allows the system operator to request that the MCP 

provide information as to why a program has been temporarily sus­

pended, providing that the program has been temporarily suspended 

because of a reason previously designated in a system message which: 

C-80 

a. Is preceded by the character #. 

b. Contains a (job specifier), e.g., a program which has been 

suspended because of the condition denoted by a previous 

# NO FILE message. 



APPENDIX C (cont) 

MESSAGES 

In response to the WY message, the MCP: 

a. Lists tpe 2-letter codes for all keyboard input messages 

which can be entered to eliminate the condition that has 

caused the program to be temporarily suspended. 

b. Retypes the # message that was previously typed to inform 

the system operator of the condition that caused the program 

to be suspended. 

The WY message has the following format: 

(mix index) WY 

Example 

4WY 

THE XS MESSAGE 

The XS message causes a program which is in the schedule to be loaded 

in spite of the fact that the MCP does not think the program will run 

efficiently with the jobs already in the mix. This is done by typing 

in the XS message, meaning to execute from the schedule. 

The XS message has the followi,ng format: 

(schedule index) XS 

Examples 

IXS 

2XS 

THE XT MESSAGE 

The XT message is used to extend the time limits for a job. If 

(processor part) is (integer), the processor time limit is extended 

I 

by (integer) minutes. If either the processor or I/O time limits are I 
extended, a message is printed to notify the operator. 

the processor and I/O limits are typed out. 

In any event, 

Revised 11/20/70 
by peN 1024916-013 C-BI 



APPENDIX C (cont) 

MESSAGES 

The XT message format is: 

C-82 

(mix index) XT (processor part) (I/O part) 

(processor part) ::= (empty) I (integer) I * 
(I/O part) ::= (empty) I , (empty) I , (integer) I , * 



APPENDIX D 

THE REMOTE SPO STATION FACILITY 

GENERAL. 

Remote stations are equipped with many of the capabilities of the 

supervisory printers. Most keyboard input messages can be utilized 

by the remote user and some system messages, such as NO FILE messages, 

can be printed on remote stations. 

In order for a remote station to make use of SPO facilities, it must 

demonstrate that it is a typewriter station or TWX. One means whereby 

the MCP recognizes such a station is due to having received a WRU 

signal from that station. The WRU signal is automatically generated 

by a TWX after a remote operator successfully dials the computer. 

The WRU signal is also generated when the WRU key on a TWX or type-

write~ is pressed together with the control key. The second way in 

which a station is recognized as having spa capabilities is if a 

log-in (LI) message is entered. 

In order for a keyboard input message to be entered from a remote 

station, the operator is required to add a question mark as a prefix 

to the message to denote that it is directed to the MCP. Messages 

without a question mark prefix are assumed to be rlire~~erl ~n an 

object program to which that station is attached. 

It should be recognized that certain keyboard input messages are not 

allowed to be entered from remote typewriters. 

entered, an INV KED message will be returned. 

If such a message is 

When control cards are entered from remote stations, the keyboard 

input message may start with two question marks or a question mark 

followed by CC; i.e., a control card is entered as at the SPO with the 

exception that an additional question mark must precede the message. 

NOTE 

If more than one control card and/or program­

parameter card is to be entered and the cards 

are related to the same program (e.g., an 

Execute card and label equation cards), the 

Revised 2/21/69 
by peN 1024916-007 D- 1 



APPENDIX D (cont) 

THE REMOTE SPO STATION FACILITY 

cards must all be entered as one message, using 

the semicolon convention to separate the cards. 

Any SPO capable station may be specified to be an alternate SPO pro­

viding the station is in ready status at the time the BS message is 

entered. The station will remain an alternate SPO until a US message 

is entered for it or until the station goes not ready. A maximum of 

four alternate SPO's may be active at one time. If a US message has 

been entered for the SPO and no other SPO consoles are active, the 

SPO will automatically resume active status. 

Input is entered from a typewriter or TWX SPO console as from the 

SPO. There is no input request, and the left arrow (-) is used as 

the END-OF-MESSAGE signal. The break key is used as an input request 

key when the station is typing. The station will then remain idle 

until input has been entered. Typing will resume with the messages 

queued for output. The BK message may be used to clear this queue. 

Each SPO console gets only those messages it requested or which are 

necessary for effective system management. The following exception 

should be noted. If an input request is made to the SPO and the SPO 

is not active for output, the response to the input request will go 

to all SPO consoles. 

ATTACHING REMOTE STATIONS TO PROGRAMS. 

When it is said that a remote station is attached to an object pro­

gram, it means that some action has been taken to denote that input 

messages from that station can be read by that object program; i.e., 

more than one program can be attached to a given station. 

If a program wishes to attach a station to itself, it may do so by 

performing a READ, SEEK or WRITE statement which references that 

station. 

If the operator at a remote station which has SPO capabilities de­

sires to attach his station to a program, he may do so by entering an 

EXECUTE or RUN card for that program. 

D-2 



APPENDIX D (cont) 

THE REMOTE SPO STATION FACILITY 

A (remote station address) is defined as: 

(integer) / (integer) 

where the first (integer) specifies the number of the terminal re­

lated to the remote station being referenced, and the second (integer) 

specifies the relevant buffer number. 

A (remote station message) is defined as: 

a string of characters, the end of which is recognized to 

be a group mark, i.e., a left arrow (-) or END OF MESSAGE. 

THE RUN CARD. 

The RUN card is provided for use at remote data communications sta­

tions which have SPO capabilities. The purpose of the RUN card is to 

provide the operator of such a data communications station with the 

ability to attach his station to a program. 

If, when a RUN card is recognized by the MCP, the designated program 

is in the mix, the attaching process alone takes place and the message 

(job specifier) RUNNING 

is given in response to the RUN card. However, if the specified job 

is not in the mix, the program is scheduled and executed in the normal 

fashion. The station is then attached to the program. 

The RUN card must contain the following information: 

? RUN (program specifier) (comment) 

Example: 

? RUN MANYSTA/HANDLER 

ADDITIONAL KEYBOARD INPUT MESSAGES FOR REMOTE STATIONS. 

The following paragraphs describe messages made available for use at 

remote stations which have SPO capab~lities. 

Revised 11/20/70 
by peN 1024916-013 D- 3 



APPENDIX D (cont) 

THE REMOTE SPO STATION FACILITY 

THE BS MESSAGE. 

The BS message sets the station indicated by (remote specifier) as a 

SPO console. 

The BS message has the following format: 

BS (remote specifier) 

THE HR MESSAGE. 

The HR message is used to detach a station from a program. It can be 

considered to be the opposite of a RUN card. 

The HR message has the following format: 

(mix index) HR 

Example: 

1 HR 

THE LI MESSAGE. 

-The primary purpose of the LI message is to require that a remote 

operator identify himself as a legitimate user of the system in order 

for the MCP to allow him to make use of the system. 

If an LI message is entered while a remote operator is already logged 

in, the MCP logs out the previous user before logging in the new user. 

The LI message has the following format: 

Examples: 

LI (separator) (user code) (separator) (authentication code) 

LI : 007 : M 

LI BY CHARLEY 

THE LO MESSAGE. 

The LO message is provided so that a remote user may log out after 

having logged in. This is desirable in that anyone who attempts to 

D-4 



APPENDIX D (cont) 

THE REMOTE SPO STATION FACILITY 

use the remote typewriter, subsequent to the departure of the proven 

legitimate user, must also be a legitimate user. 

Revised 11/20/70 
by peN 1024916-013 D-4A 



APPENDIX D (cont) 

THE REMOTE SPO STATION FACILITY 

The LO message must have the following format: 

LO 

THE SM AND HM MESSAGES. 

The (mix) SM message requests MIX messages for a given job. MIX mes­

sages for other jobs attached to a station are not affected. 

The SM message requests MIX messages for all jobs which originate 

from a control console. This request is assumed at log-in time and 

remains in effect until an HM message is entered. 

The (mix) HM message turns off the request for MIX messages for a 

given job. MIX messages for other jobs attached to a station are 

not affected. 

The HM message requests that no MIX messages be given for jobs orig­

inating from a control station. This request remains in effect until 

an SM message is entered or until the station is logged out and logg­

ed in again. 

The SM message may have either of the following formats: 

SM 

or 

(mix index) SM 

The HM message may have either of the following formats: 

HM 

or 

(mix index) HM 

Examples: 

SM 

I SM 

Revised 2/21/69 
by peN 1024916-007 D- 5 



I 
APPENDIX D (cont) 

THE REMOTE SPO STATION FACILITY 

HM 

1 HM 

THE SS MESSAGE. 

The SS message may be used at the central SPO or, if preceded by a 

question mark, on a remote station with SPO capabilities to direct 

a message to a remote station which has SPO capabilities, or to the 

SPO. If the station addressed is not recognized to have SPO capabil­

ities or is Not Ready, an INV STN message is returned. The message, 

as provided at the addressed station, has a prefix which includes the 

address of the originator. 

The SS message has the following format: 

SS (remote station address) (remote station message) 

or 

SS SPO (remote station message) 

Examples: 

SS 1/0 : ARE YOU THERE 

?SS SPO : I NEED A SCRATCH TAPE 

THE US MESSAGE. 

The US message un-sets the station indicated by (remote specifier) 

from SPO console status. 

The US message has the following format: 

US (remote specifier) 

ALTERNATE SPO CONSOLES: 

Any SPO capable station may be specified to be an Alternate SPO pro­

viding that it is ready at the time the BS message is entered. It 

will remain an alternate SPO until a US message is entered for it or 

until the station goes not ready. Up to four alternate spots may be 

active at one time. There is provision made so that the SPO will 

automatically resume active status if there are no other active SPO 

D-6 



APPENDIX D (cont) 

THE REMOTE SPO STATION FACILITY 

consoles, even though an US message may be entered for it. 

Input is entered from a typewriter or TWX SPO console as from the 

SPO; however, there is no input request button, and the left arrow 

(~) is used as the end-of-message signal. The break key is used as 

an input request key when the station is typing. When this is used, 

the station will remain idle until there has been input entered. It 

then will resume with the messages queued for output. 

sage may be entered to clear this queue.) 

(The BK mes-

Each SPO console gets only those messages which it requested or which 

are necessary for effective system management. The exception to this 

is that if the SPO is not active for output, any Keyboard request 

response to input from the SPO will go to all SPO consoles. 

Revised 5/26/69 
by peN 1024916-010 D-7 



APPENDIX E 

FILE SECURITY SYSTEM 

ADDITIONS TO THE DATA COMMUNICATIONS MCP. 

LOG-IN PROCEDURE FOR DATA COMMUNICATIONS. 

Before a user can utilize the MARK III Data Communications system 

capabilities, he will first be required to "log-in" to the system 

by entering a Log-In (LI) message. This message will contain a 

"remote user identification" consisting of an identification code and, 

at the option of the installation, an authentication code which is 

not (empty). It is necessary to note that more than one "remote 

user identification" can contain the same user authentication code. 

In general, however, each "remote user code" must be unique. 

The MCP will check the "remote user identification" contained in the 

Log-In message against the file of authorized user codes called 

REMOTE/USERS. If the code entered is not in the file, the "user" 

will be so informed by the MCP and will be prevented from using the 

system until a correct Log-In message is typed in. If the code 

entered is in the list of authorized users, the MCP will log the 

station in, record its log-in time, and consider the station to be 

a bona fide user. Also, this user's station will be considered to 

have "SPO capabilities." 

A remote station having SPO capabilities can enter system keyboard 

input messages, including control card information. If a remote 

user is properly logged-in, three masks will be assigned to his 

station. These masks can be used to limit both the control card and 

keyboard input messages that this user is allowed to enter at his 

station, if the masks have been added to the REMOTE/USERS. If no 

list of authorized users has been supplied by the particular instal­

lation, then a user will be logged-in regardless of the code entered, 

but no log-in time will be recorded. In this case, the standard 

masks defined in the MCP will be used. 

The Log-In message has the following form: 

? LI (separator) (user code) (separator) 

(authentication code) 

E-1 



Examples: 

APPENDIX E (cont) 

FILE SECURITY SYSTEM 

? LI : 007 : M 

? LI BY CHARLEY 

USER CONTROL CARD. 

A USER Control Card is used to enter a user code from an input source 

other than a remote station. USER cards received from a remote 

station are ignored. The user code from a USER card is used to 

initialize a job's entry in an MCP table of user codes when a job 

is selected to run. A USER card must precede an EXECUTE card, and, 

if there is more than one USER card per deck, only the first card 

will have any significance. If no USER card is entered, a job's 

user table entry will be initialized to zero. 

The following information must appear on a USER control card: 

Examples: 

?USER=(user code) 

?USER=BATMAN 

?USER=SUPERMAN 

USER CODE AND AUTHENTICATION CODE. 

The user code is used to verify that a job in the system has been 

authorized to use a particular disk file. Checking for an authorized 

user is done by the MCP at file open or close time. A user code may 

be presented to the system via a USER Control Card at the central 

site card reader, or via the log-in procedure for remote stations. 

The MCP checks to make sure that only authorized users are permitted 

to use the system. 

The basic idea of the file security system is that the creator of a 

file must specify which users are authorized to use his file. This 

implies that a person must divulge his user code to anyone who has 

created files he wants to use. Therefore, one's user code cannot be 

E-2 



APPENDIX E (cont) 

FILE SECURITY SYSTEM 

kept completely confidential. For this reason, a person at a remote 

station may be required to type-in a log-in message which contains 

his "remote-user identificationfl, which consists of his particular 

authentication code as well as his user code. The authentication 

code would then be used by the MCP to verify that the person attempt­

ing to get access to the system is in fact authorized to use the 

specified user code. This authentication code need never be divulged 

to anyone else. Although an authentication code may be (empty), it 

can be used to provide a significant increase in the security of the 

system. 

User and authentication codes are restricted in size to seven alpha­

numeric characters. Any code longer than seven characters will be 

truncated to seven characters. 

Examples: 

(user code) ::= (letter) (digit) 1 (user code) (letter) 1 

(user code) (digit) 

(authentication code) ::= (letter) (digit) 

(authentication code) (letter) 1 

(authentication code) (digit) J I 
(empty) 

(letter) ::={any of the 26 characters of the alphabet} 

(digit) ::= 0111213141516171819 

BOND 

CHARLEY 

GOLDFINGER (truncated to GOLDFIN) 

4UIWILL 

LEVELS OF SECURITY. 

The file security system has been designed to prohibit unauthorized 

users from having access to the system or to any files belonging to 

authorized users. The system is based on the idea that files may be 

Revised 9/5/69 
by PeN 1024916-011 E- 3 



APPENDIX E (cont) 

FILE SECURITY SYSTEM 

made "private" by a "security filet. which contains a list of author-

ized users and programs which may access the file. Only the creator 

of a file may establish and maintain the security file associated 

with his file. A user trying to use a "private" file will be checked 

by the MCP against the list before the requestor is allowed to access 

any records contained in the file. If neither the user's user code 

nor the program specifier of the program being executed are contained 

in the security file for the file being opened, then program control 

will be transferred to either the parity action label (for ALGOL 

programs) or to the USE routine (for COBOL programs). The absence 

of an error handling label or routine will result in the termination 

of the program. 

Once the requestor is defined as being privileged (unlimited access), 

primary (unlimited access to files created by this user), secondary 

(access to the file for input or output), or tertiary user (access 

for input only), the file will be made available to the requestor, 

and the MCP will note the manner in which this requestor may access 

the file. Access to the file in any unauthorized manner will result 

in either transfer of control to the error handling label or routine, 

or termination of the program. 

IDENTIFIED USER. 

A user may be identified by either logging-in from a remote station 

or entering a USER control card. An identified user may open a 

private file for input if he is a privileged, primary, secondary or 

tertiary user. An identified user may open a private file for input/ 

output if he is a privileged, primary or secondary user. An identi­

fied user may maintain a private file (i.e., perform library or 

security file maintenance) if he is either the privileged or primary 

user. A user is considered the privileged user if his user code is 

the first entry in the REMOTE/USERS file. 

E-4 

(privileged user) ::= {a user who has unlimited access.} 

(primary user) ::= {the creator of the file; i.e., the user 

who caused the file to be entered into 

the disk directory.} 



APPENDIX E (cont) 

FILE SECURITY SYSTEM 

(secondary user) ::= {a user designated as being able to access a file 

for input or output} 

(tertiary user) ::= {a user designated as being able to access a file 

for input only} 

(security file) ::= {the file containing user codes for the secondary 

and/or tertiary users} 

(free file) ::= {a file open to all users for input, output, and 

library maintenance, and to the privileged user only 

for security maintenance} 

(public file) ::= {a file open to all users except for library or 

security file maintenance} 

(private file) ::= {a file with an associated security file} 

(sole-user file) ::= {a file whose only valid user is its primary user} 

(unlocked file) ::= {a file which may be read by all users; however, 

only the privileeed or primary user may write on 

it} 

FILE HEADERS. 

The Disk Directory file header of a nonfree file contains the user 

code of the primary user (creator) of the file and the name of the 

associated security file, if any. 

Revised 1/8/71 
by peN 1024916-014 E- 5 

I 



APPENDIX E (cont) 

FILE SECURITY SYSTEM 

Format of File Header for Various Types of Files 

~ Word 2 Word 5 Word 6 

Free File 0 [0:42J = 0 [0:42J = 0 

[42:6J = "1" [42:6J = "1" 
(OCT14) (OCT14) 

Sole User File [l:lJ = 0 0 0 

[6:42J = primary 
user's 
user 
code 

Public File [l:lJ = 0 [0:42J = 0 0 

[6:42J = primary [42:6J = "1" 
user's (OCT14) 
user 
code 

Private File [l:lJ = 0 [l:lJ = 1 [l:lJ = 0 

[6:42J = primary [6:42J = multi- [6:42J = file id 
user's file id of secur-
user of se- ity file 
code curity 

file 

Security File [l:lJ = 1 0 0 

[6:42J = primary 
user's 
user 
code 

Unlocked File [l:lJ = 0 [0:42J = 0 [0:42J = 0 

[6:42J = primary [42:6J = "1" [42:6J = "1" 
user's (OCT14) (OCT14) 
user 
code 

E-6 



APPENDIX E (cont) 

FILE SECURITY SYSTEM 

FORMAT OF SECURITY FILE ENTRIES. 

Entries in a security file must be one word in length to specify a 

user code, deleted entry, or last entry. An entry for a program 

specifierl must be two contiguous words in length and both words 

must be contained in the same record. Hence, the program identifier 

cannot fall in the last word of a record. 

Each one-word entry and the first word of a two-word entry must 

conform to one of the following formats. 

Bits [1:5J 

00000 

10000 

00011 

00010 

00000 

00000 

Bits [6:42J 

User code of a secondary user 

User code of a tertiary user 

Program identifier of a program 

which may access the file for 

input or output; i.e., in the same 

manner as a secondary user 

Program identifier of a program 

which may access the file for 

input only; i.e., in the same 

manner as a tertiary user 

12 (decimal) to indicate a deleted 

entry 

76 (decimal) to indicate the last 

entry 

The second word of a two-word entry must conform to the following 

format: 

Bits [1:5J Bits [6:42J 

00000 Program identifier suffix 

1 A program specifier is defined as: 

(program specifier) ::= (program identifier) (separator) 

(program identifier suffix) 

Revised 1/8/71 
by peN 1024916-014 E-6A 

• 



MCP ACTIONS. 

APPENDIX E (cont) 

FILE SECURITY SYSTEM 

The MCP maintains a table of user codes, called the USERCODE table, 

for each active mix index. This table contains the contents of the 

user code from either the log-in (LI) message or the USER control 

card. The table is used for the purpose of file protection whenever 

a disk file is opened or closed with a lock or purge. 

In addition to the USERCODE table, the MCP maintains a table contain­

ing user codes associated with each active (logged in) terminal buf­

fer. The Data Communications Interrogate function has been extended 

to update the USERCODE table with the user code associated with the 

specified terminal buffer. This facility is necessary to allow a pro­

gram which may handle more than one user to create and/or access files 

for any of those users. 

MCP actions for files (open input and output) already in the Disk 

Directory are as follows: 

a. All unlocked, free, and public files are made available to • 

any user. 

b. Sole-user files are available only to the primary user of 

the file. 

c. Accessing any private file requires that an entry in the 

associated security file be equivalent to the entry of the 

requesting job in the USERCODE table or to the program speci­

fier of the requesting program. If verification cannot be 

made, transfer is made to the parity action label (ALGOL) or 

the USE routine (COBOL), if one is present. Otherwise, the 

program is terminated. 

MCP actions for files (close output, close lock) not in the Disk 

Directory are as follows: 

a. If the USERCODE table entry is empty, the file is made a 

free file. 

Revised 1/8/71 
by peN 1024916-014 E-7 



APPENDIX E (cont) 

FILE SECURITY SYSTEM 

b. Otherwise, the file is entered into the Disk Directory as 

a sole-user file. 

For ZIP {(program specifier»), the MCP appends the user code from the 

USERCODE table to the control card information. For the use of the 

generalized ZIP, the MCP inserts the user code from the USERCODE table 

into the array or the file header. 

Any successive user codes entered via the USER control card are 

ignored. 

LIBRARY AND SECURITY FILE MAINTENANCE. 

Library maintenance functions require the presence of a user code for 

maintenance of any nonfree file. The user code must be introduced via 

a USER control card or log-in message which must precede the library 

maintenance control cards. Library maintenance is not performed on 

nonfree files unless the user code is equivalent to either the privi­

leged user or the primary user (creator) of the file. 

For the DUMP function, the MCP automatically dumps the associated 

security file as well as the specified private file • 

• Five Security File maintenance functions are provided to maintain 

security files and private files. These functions require the pres­

ence of a user code entered via a USER control card or log-in message 

preceding the Security File maintenance information. 

E-8 

a. USE Control Card. 

?USE (security file specifier) ON (file specifier) 

The (file specifier) is made into a private file using the 

(security file specifier) as its security file. The (secur­

ity file specifier) names a file which must have the security 

file format and must be a sole-user file. This file mayor 

may not be a security file for other files at this time. The 

(file specifier) must be a sole-user file, and the user code 

of the requester must be equivalent to the primary user 

(creator) of the file. 



APPENDIX E (cont) 

FILE SECURITY SYSTEM 

b. LOCK Control Card. 

?LOCK (file specifier) 

The (file specifier) is made into a sole-user file. The 

(file specifier) must be either a private, unlocked, or 

public file; and the user code of the requester must be 

equivalent to either the privileged or primary user of the 

file. In addition, the privileged user may LOCK a FREE file. _ 

c. PUBLIC Control Card. 

?PUBLIC (file specifier) 

The (file specifier) is made into a public file. The (file 

s pe c i fi er.) mu s t be a pri va t e, unlocked, 0 r sol e -us e r fi 1 e ; • 

and the user code of the requester must be equivalent to 

either the privileged or primary user of the file. 

d. FREE Control Card. 

?FREE (file specifier) 

The (file specifier) is made into a free file. The (file 

specifier) must be either a sole-user, private, unlocked, • 

or public file; and the user code of the requester must be 

equivalent to either the privileged or primary user of the 

file. 

e. UNLOCK Control Card. 

?UNLOCK (file specifier) 

Examples: 

The (file specifier) is made into an unlocked file. The 

(file specifier) must be a public, private, or sole-user 

file; and the user code of the requester must be equivalent 

to either the privileged or primary user of the file. 

?USER=BOSS; USE SECURE/BLOCK ON ALGOL/=,DIRCTRY/DISK;END. 

?USER=BOSS; LOCK COBOL/DISK,LOGOUT/DISK;END. 

?USER=CHARLEY; PUBLIC CHARLEYS/FILES;END. 

?USER=12J4S67; FREE PUBLIC/FILES; END. 

Revised 1/8/71 
by peN 1024916-014 E- 9 



• 

APPENDIX E (cont) 

FILE SECURITY SYSTEM 

SECMSG AND DSKTOG OPTIONS. 

The typing of Security File maintenance messages is controlled by 

OPTN 29, SECMSG. These messages can be enabled by setting this 

option, i. e • , 

SO USE SECMSG. 

Security File maintenance messages can be inhibited by resetting this 

option, i. e. , 

RO USE SECMSG. 

The setting of OPTN 29 is RESET. It is necessary, therefore, to SET 

this option in order to get the Security File maintenance messages . 

OPTN 28, DSKTOG, if SET, prevents an object program from performing 

any I/O operation at any absolute disk address less than the starting 

address of USER DISK. If an attempt is made to perform a disk opera-

tion on any address below the beginning of USER DISK, the message: 

-INVALID PRL (program specifier) , (terminal reference) 

is typed out and the program is terminated. This is sufficient to 

keep an object program from referencing the Disk Directory. 

If OPTN 28 is RESET, a check is not made, and the MCP behaves exactly 

as it has heretofore. 

The setting of the DSKTOG option, OPTN 28, is RESET. It is necessary, 

therefore, to SET the option in order to have the Directory protection 

check in force. 

E-IO 



APPENDIX E (cont) 

FILE SECURITY SYSTEM 

It should be restated that if the option is RESET, the entire File 

Security system can be bypassed in a relatively straightforward 

manner. If the option is SET, programs which now reference the 

Disk Directory as a file will not run and will have to be revised to 

use the Directory Search Statement. 

REMOTE/USERS FILE. 

A file called REMOTE/USERS will be maintained on the disk and will 

contain the list of authorized users. The only valid users of this 

file are the designated "privileged user" and the MCP. This file can 

be created and maintained by the privileged user with an ALGOL 

program, an example of which, adequate for most installations, is 

provided by Burroughs. This program is called UPDATE/USERS and is 

described in subsequent paragraphs. 

A record in the REMOTE/USERS file will contain at least the following 

information: 

a. User identification code. 

b. Control card mask. 

c. Information keyboard input message mask. 

d. Mix-related keyboard input message mask. 

At the option of each installation, an authentication code and/or 

comments can also be included in a record. The record size must be 

constant throughout the file and must be either 6, 10, 15, or 30 

words. Records that are deleted from the file must have a user code 

value of 76. 

The format of a REMOTE/USERS record is: 

a. Valid entry: 

Word 

o 
1 

2 

3 

Contents 

User identification code 

Control card mask no. 1 

Control card mask no. 2 

Information message mask no. 1 

E-ll 



\{ord 

4 

5 

APPENDIX E (cont) 

FILE SECURITY SYSTEM 

Contents 

Information message mask no. 2 

Mix-related message mask 

(The following entries are optional) 

6 If < 0, then authentication code 
If > 0, then available to user 

7-to-recordsize Available to user 

b. Deleted entry: 

Word Contents 

o 12 (octal value 014) 

I-to-recordsize Irrelevant 

c. Last record in file: 

Word Contents 

o 76 (octal value 114) 

l-to-recordsize Irrelevant 

UPDATE/USERS PROGRAM. 

The UPDATE/USERS program is an ALGOL program which can be used to 

create and maintain the REMOTE/USERS file. It is provided so that 

installations will have an immediate capability to create and main­

tain a REMOTE/USERS file. Although this program will be sufficient 

for most installations, it is also intended to serve as a guide for 

those installations wishing to write an installation-oriented program 

to maintain the REMOTE/USERS file in a specialized manner. 

The UPDATE/USERS program will create a new REMOTE/USERS file if none 

exists at the time it is executed. Alternatively, it will update 

the REMOTE/USERS file if one does exist at the time it is executed. 

If a REMOTE/USERS file does exist, the record size of the file will 

not be changed by the update run. If a new REMOTE/USERS file is 

being created, it is possible to specify the size of the records 

E-12 



APPENDIX E (cont) 

FILE SECURITY SYSTEM 

in the file by providing a COMMON value to the program. This COMMON 

value should be either 6, 10, 15, or JO. If a COMMON value is not 

provided or if the COMMON value is not one of the four integers men­

tioned, the file is created with JO-word records. 

The data deck for the UPDATE/USERS Program specifies the user codes 

for which some action is to be taken. 

An ADD card is used, during either a creation or update run, to insert 

a new "remote user identification" into the file. Following the ADD 

card are mask cards which specify which control cards and keyboard in­

put messages are allowable for this user. These cards are the CCMASK 

card which specifies the control cards that are allowable, the INFOMASK 

card which specifies the information keyboard input messages (e.g., 

MX, WT) that are allowable, and the MIXMAX card which specifies the 

mix-related keyboard input messages (e.g., nTI, nDS) that are allow­

able. Associated with each of the mask card types is a standard mask 

which is assumed if a card of that type is not present. Thus, if no 

CCMASK card follows an ADD card, the standard control card mask is 

assumed. Also, if more than one mask card of a given type appears 

after an ADD card, only the last card of that type is used. 

An ADD card can also be used during an update run to change the mask 

information associated with the user. If the "remote user identifi-

cation" on an ADD card matches a "remote user identification" in the 

REMOTE/USERS file, the mask cards following the ADD card are used to 

specify the mask information for that user, overwriting the previous 

mask information. 

A DELETE card is used to remove a user from the REMOTE/USERS file. 

This is done only if the "remote user identification" on a DELETE 

card matches a "remote user identification" in the REMOTE/USERS file. 

Mask cards are not used following a DELETE card. 

The ADD and DELETE functions are handled on a one-at-a-time basis. 

Therefore, it is possible to first delete a "remote user identifica­

tion" and then put it back into the file (perhaps with a different 

authentication code) in the same execution of the UPDATE/USERS Program. 

Revised 1/8/71 
by peN 1024916-014 E-lJ 



• 
• 

APPENDIX E (cont) 

FILE SECURITY SYSTEM 

Also, if several ADD cards conta~n the same "remote user identifica­

tion," only the mask cards behind the last ADD card are effective. 

The ADD card format is: 

ADD (user code) (separator) (authentication code) 

The above information may appear anywhere within columns 1-72. 

Columns 73-80 must be blank. The (authentication code) may be 

(empty) and is valid only if the record size is greater than 6. 

The DELETE card format is: 

DELETE (user code) (separator) (authentication code) 

The above information may appear any~here within columns 1-72. 

Columns 73-80 must be blank. An (authentication code) which 

is not (empty) is only required if the record to be deleted 

contains an (authentication code). 

The CCMASK card format is: 

A Yes in a column indicates that the corresponding control card is to 

be allowed; a No in a column indicates that the corresponding control 

card is not to be allowed. 

Column Word 

1-23 ~ 24 UNL 
25 USE 
26 LOCK 
27 FREE 
28 
29 
30 
31 
32 
33 
34 UNLOAD 
35 ADD 
36 LOAD 
37 REMOVE 
38 CHANGE 
39 UNIT 

E-14 

CCMASKl Bit 

29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

Standard 

no 
no 
no 
no 
no 
no 
yes 
yes 
yes 
no 

no 
no 
no 

Mask 

ALL 
Sff 

14-



Column 

40 
41 
42 
43 
44 
45 
46 
47 
48 

Column 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 

APPENDIX E (cont) 

FILE SECURITY SYSTEM 

Word 

Word 

EXPIRED 
ACCESS 
PROCESS 
IO 

Not Used 
Not Used 
Not Used 
ALGOL 
XALGOL 
FORTRA 

LIBRARY 
SYNTAX 
FROM 
TO 

CCMASKI Bit 

CCMASK2 Bit 

o 
1 
2 
3 
4 
5 
6 
7 
8 

1 
1 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

Standard Mask 

no 
no 
no 

--....-

Standard Mask 

no 

yes 

yes 
no 
yes 
yes 
no 

no 

no 
no 
no 
no 

s 

In addit~on, CCMASK must appear within columns 73-80. If a CCMASK 

card is~entered for an ADD, the standard mask is used. 

The INFOMASK card format is: 

A Yes in a column indicates that the corresponding message is to be 

allowed; a No in a column indicates that the corresponding message 

is not to be allowed. 

Revised 1/8/71 
by peN 1024916-014 E-15 

I 

I 



APPENDIX E (cont) 

FILE SECURITY SYSTEM 

Column Word INFOMASKl Bit Standard Mask 

1 Not Used 0 
2 PG 1 no 
3 MX 2 yes 
4 DD 3 no 
5 4 no 

5 yes 
7 6 no 
8 7 no 
9 8 no 

10 9 

A: 
11 10 
12 RS 11 
13 EI 12 
14 CC 

"-
13 yes () J3 .sOL tIC 15 PB ~ 14 / no 

16 RY ~15 / no Siycrrf 14-
17 TR 16 no SE'E 
18 OL 7 / yes 
19 LN 1 no 
20 WD 19 yes 
21 WT 20 yes 
22 LR 

A 
no 

23 RO no 
24 So 23 no 
25 TO 24 yes 
26 SV 25 no 
27 LD 26 no 
28 CD 27 
29 RD 28 
30 RN 29 
31 ED 30 
32 CI 31 no 
33 TE 32 yes 
34 33 no 
35 TS 34 yes 
36 ~R- ____ 35 no 

iV 
QV 

~ 

36 ~~-----
no 

38 EX ~ __ 37 yes 
3 PI ~38 yes 

0 LO yes 
41 LI yes 
42 SS yes 
43 SM 
44 HM 
45 TC 
46 zz yes 
47 BO yes 
48 WP no 

Column Word INFOMASK2 Bit Standard Mask 

49 Not Used 0 
50 'WU 1 no 

E-16 



APPENDIX E (cont) 

FILE SECURITY SYSTEM 

Column Word INFOMASK2 Bit Standard Mask 

51 LF 2 no 
52 LC 3 no 
53 LS 4 no 
54 XI 5 no 
5 WR 6 no 
56 WM 7 yes 

/ 57 BK 8 no 
58 BS 9 no 
59 US 10 no / 

60 C 11 no / 
61 C:C 12 / np 
62 QT 13 /tlo 
63 14 

/ 
WI / / no 

64 CU 15 j/ no 

In addition, INFOMASK must within colUIIl1}.i 73-80. If no INFO­
/ 

MASK card is the staridard mask will be 

used. 

The MIXMASK card format is: 
/ 

A Yes in a column indicates that th ~/orresponding message is to 

be allowed; a No in a column that the corresponding mes- I 
sage is not to be allowed. 

Column Word //MIXMASK 
/ 

B~ Standard Mask 

1 Not Used / 0 

~ ~t / ~ 
5 OK' 4 
6 FM / 5 

~ ~ ~ 
9 /OF 8 

/ 
10 / TI 9 
11 / WY 10 
12 // RM 11 
13 / UL 12 

no 
no 
no 
no 

\ no \ no 
no 

0 

y s 
ye 
no 
no 

14// ST 13 
+5' IN 14 

/16 OT 15 
I 17 QT 16 

no 
no 
yes \ 
no 

/ 18 PR 17 no 
19 PS 18 no 
20 xs 19 no 
21 ES 20 no 
22 SM 21 yes 
23 HR 22 yes 

Revised 5/1/69 
E-17 by PeN 1024916-009 



APPENDIX E (cont) 

FILE SECURITY SYSTEM 

Column Word MIXMASK Bit Standard Mask 

24 CT 23 no 
25 XT 24 no 
26 TL 25 no 
27 SS 26 no 
28 WU 27 no 
29 WA 28 no 
30 HM 29 no 
31 CU 30 no 

In addition, MIXMASK must. appear within columns 73-80. 

If no MIXMASK card is entered for an ADD then the standard mask 

will be used. 

The END card format is: 

An END card must be used to denote the end of the data deck. 

END can appear anywhere within columns 1-72. 

Example of an UPDATE/USERS data deck. 

? EXECUTE UPDATE/USERS; COMMON=15. 

? DATA CODES. 

ADD BOSS 

11111111111111 11111 

111111111111111111111 111111111 111 11111111111 1111111111 

111111111111111111111 

11 CCMASK 

INFOMASK 

MIXMASK 

THESE EIGHT WORDS ARE AVAILABLE FOR COMMENTS ...........•.••..•. 

ADD SIMPLE THE SIMON 

1 

ADD 

11111 

1 

1 

11 

11 

11 

ALL 

111 

111 111 1111 

THE OTHERS 

1 

1 

THESE USERS WILL BE ENTERED WITH THE STANDARD MASKS 

ADD PRIMO 

THIS USER ONLY NEED LOG-IN WITH HIS FIRST NAME 

END 

? END. 

? EXECUTE UPDATE/USERS 

? DATA CODES. 

E-18 

CCMASK 

INFOMASK 

MIXMASK 



DELETE PRIMO 

ADD CHARLEY/BROWN 

ADD LUCY 

END 

?END. 

APPENDIX E (cont) 

FILE SECURITY SYSTEM 

ADDITIONAL KEYBOARD INPUT AND SYSTEM MESSAGES. 

Incorporation of the File Security System has necessitated the addi­

tion of new Keyboard Input and System Messages. These are described 

below. 

THE TC MESSAGE. 

The TC message causes the Data Communications MCP to type out the 

amount of elapsed time that the station was logged-in with an iden­

tified user. The time is provided as one to three (integer) 's 

separated by colons. 

Revised 5/1/69 
by PCN 1024916-009 E- l8A 



Examples: 

or 

or 

5 

7:37 

2:48:59 

APPENDIX E (cant) 

FILE SECURITY SYSTEM 

The right-most (integer) specifies seconds, the second from the 

right (integer) specifies minutes, and the third from the right 

(integer) specifies hours. 

The TC message has the following format: 

?TC 

The MCP responds by typing out a message of the form: 

TIME SINCE LOG-IN IS XX:XX:XX 

CHANGES TO THE PD MESSAGE. 

The PD (Print Directory) message has been changed to type out only 

the names of free or public files, or those files for which the 

requestor is either the primary, secondary, or tertiary user. In 

essence, this change means that a person at a remote site will not 

be able to determine the name of, or even the existence of, any 

file he may not reference. 

This change has no effect if the PD message is entered at the SPO 

at the central site since the user code for the SPO is assumed to 

be the user code of the privileged user. 

THE LF, LC, AND LS MESSAGES. 

The LF, LC and LS messages allow the system operator to request that 

the Data Communications MCP type information pertaining to the 

E-19 



APPENDIX E (cont) 

FILE SECURITY SYSTEM 

creation or security of files listed in the Disk Directory. The 

formats of the messages are shown below. The action caused by the 

messages depend upon the format of the message. 

LF (LIST FILES). The action caused by the LF message is as follows: 

a. If the message of the form 

b. 

LF -/-- -

is entered, all (file specifier)'s of non-free files and 

their primary users (creators) in the Disk Directory will 

be listed. 

If the message of the form 

LF (primary user specifier) 

is entered, the (file specifier) and (primary user 

specifier) will be typed out for all files for which the 

(primary user) is the primary user. If no files can be 

found for which the (primary user specifier) is the creator, 

the message 

NULL LF (primary user specifier) 

will be typed out. 

LC - (LIST CREATOR). 

follows: 

The actions caused by the LC message are as 

E-20 

a. If the message of the form 

LC -/-- -

is entered, (file specifier)'s of all non-free files and 

their creators in the Disk Directory will be listed. 



APPENDIX E (cont) 

FILE SECURITY SYSTEM 

b. If the message of the form 

LC (file specifier) 

is entered and the (file specifier) is in the Disk 

Directory, and non-free, the (file specifier) and its 

creator will be listed. 

c. If the (file specifier) in the message is not in the Disk 

Directory, or if the (file specifier) is a free file, 

the message 

NULL LC (file specifier) 

will be typed out. 

d. If the message of the form 

LC =/ (file identification) 

or 

LC =/ (program identifier suffix) 

is entered, the names of all non-free files in the Disk 

Directory which have the designated (file identification) 

or (program identifier suffix) and their creators will be 

typed out. 

e. If no such files exist in the Disk Directory, a message 

of the form 

NULL LC =/ (file identification) 

or 

NULL LC =/ (program identifier suffix) 

will be typed out. 

E-21 



E-22 

APPENDIX E (cont) 

FILE SECURITY SYSTEM 

f. If a message of the form 

or 

or 

or 

LC (file identification prefix)/= 

. . 
LC (file identification prefix) 

LC (program identifier)/= 

LC (program identifier) 

is entered, the names of all non-free files in~the D~~k 

Directory which have the designated (file identification 

prefix) or (program identifier) and their creators will 

be typed out. 

If no such files exist in the Disk Directory, a message of 

the form 

NULL LC (file identification prefix)/= 

or 

NULL LC (file identification prefix) 

or 

NULL LC (program identifier)/= 

or 

NULL LC (program identifier) 

will be typed out. 



APPENDIX E (cont) 

FILE SECURITY SYSTEM 

LS (LIST SECURITY FILE). The actions caused by the LS message are 

as follows: 

a. If the message of the form 

LS -/-- -

is entered, all ~rivate (file specifier)'s and their 

(security file specifier)'s in the Disk Directory will be 

typed out. 

b. If the ~essage of the form 

LS (file specifier) 

is entered and the (file specifier) is in the Disk Directory 

and is a private file, the (file specifier) and its 

(security file specifier) will be typed out. If the (file , 
specifier) is not in the Disk Directory or the (file 

specifier) is not a private file, a message of the form 

NULL LS (file specifier) 

will be typed out. 

c. If the message of the form 

LS =/ (file identification) 

or 

LS =/< (program identifier suffix) 

is entered, the names of all private files in the Disk 

Directory which have the designated (file identification) 

or (program identifier suffix) and their (security file 

specifier) will be typed out. If no such files exist in 

the Disk Directory, a message of the form 

E-23 



E-24 

or 

APPENDIX E (cont) 

FILE SECURITY SYSTEM 

NULL LS =/ (file identification) 

NULL LS =/ (program identification suffix) 

will be typed out. 

d. If a message of the form 

LS (file identification prefix)/= 

or 

LS (file identification prefix) 

or 

LS (program identifier)/= 

or 

LS (program identifier) 

is entered, the names of all private files in the Disk 

Directory which have the designated (file identification 

prefix) or (program identifier) and their (security file 

specifier)'s will be typed out. 

If no such files exist in the Disk Directory, a message of 

the form 

NULL LS (file identification prefix) 

or 

NULL LS (program identifier)/= 

or 

NULL LS (program identifier) 

will be typed out. 



APPENDIX E (cont) 

FILE SECURITY SYSTEM 

To summarize, the LF message may have anyone of the 

following formats: 

LF -/-- -
LF (primary user specifier) 

The LC and LS message may have anyone of the following 

formats: 

XX -/-- -
XX (file specifier) 

XX =/ (file identification) 

XX =/ (program identifier suffix) 

XX (file identification prefix) /= 
XX (program identifier) /= 
XX (program identifier) 

where LC or LS may be substituted for XX's. 

THE BO (BLACK OUT) MESSAGE. 

In those instances where it is necessary to maintain security in 

regard to the user and authentication codes, the MCP will (upon 

request) black out a sufficient number of characters so that the 

log-in message can be typed over the blacked-out spaces. This 

feature can be used to make it extremely difficult for the log-in 

codes to be read. 

The black-out feature is invoked by typing in BO before logging-in. 

This message will cause the MCP to black out a line on the remote 

typewriter, leaving the carriage positioned at the beginning of 

the blacked-out area. 

ADDITIONAL SYSTEM MESSAGES. 

#STATION(terminal unit)/(buffer address):NULL VERIFICATION 

This message indicates that a user attempted to log-in at a remote 

station and no verification could be made with the log-in codes and 

the list of allowable users. 

E-25 



APPENDIX E (cont) 

FILE SECURITY SYSTEM 

-INVALID PRL(job specifier),(terminal reference) 

This message indicates that an object program has either attempted 

an input or output operation on a disk file using release logic, or 

has attempted an input or output operation on a disk address less 

than the starting address of USER DISK when the DSKTOG option was 

SET. Consequently, processing of the program was discontinued. 

-INVALID USER(file designator):(job specifier),(terminal reference) 

This message indicates that an object program has attempted an input 

or output operation on a disk file for which it was not a valid 

user, and the object program did not specify any action for such 

a condition. 

tinued. 

Consequently, processing of the program was discon-

(file designator) SECURITY MAINT IGNORED 

This message indicates that an attempt was made to perform Security 

File Maintenance on a disk file that was in a state such that the 

required maintenance could not be completed. 

(user code) INVALID USER OF (program specifier) 

This message indicates that an attempt was made to access a program 

file by a designated user who was not a valid user for the file. 

(user code) INVALID USER OF (data file identifier) 

This message occurs when an attempt is made to RM on a disk file in 

response to a duplicate file message. The program which is attempt-

ing to close the duplicate disk file is running under a user code 

which is not a primary user of the existing disk file. 

will not occur if the RM is done at the SPO. 

(file specifier) SECURED WITH (file specifier) 

This message 

This message is typed after the MCP has performed an operation 

specified by a USE Control Card, providing that the SECMSG option 

(OPTN 29) is SET. 

E-26 



APPENDIX E (cont) 

FILE SECURITY SYSTEM 

(file specifier) LOCKED FROM (file specifier) 

This message is typed after the MCP performs an operation specified 

by a LOCK control card, providing that the SECMSG option (OPTN 29) 

is SET. 

(file specifier) FREE FILE 

This message is typed after the MCP performs an operation specified 

by a FREE control card, providing that the SECMSG option (OPTN 29) 

is SET. 

(file specifier) PUBLIC FILE 

This message is typed after the MCP performs an operation specified 

by a PUBLIC control card, providing that the SECMSG option (OPTN 29) 

is SET. 

(file specifier) UNLOCKED 

This message is typed after the MCP performs an operation specified 

by an UNLOCK control card, providing that the SECMSG option (OPTN 29) 

is SET. 

Revised 1/8/71 
by peN 1024916-014 E-27 



Error 
Message No. 

000 

001 

002 

003 

004 

005 

006 

007 

008 

009 

010 

APPENDIX F 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGES 

Routine 

BLOCK 

BLOCK,ENTRY 

PROCEDUREDEC,ENTRY 

BLOCK,ENTRY 

BLOCK 

BLOCK 

BLOCK 

BLOCK 

BLOCK 

BLOCK 

BLOCK 

Meaning 

Declaration not followed by semi­

colon 

Identifier declared twice in same 

block 

Specification PART contains iden­

tifier not in format parameter 

PART. 

Nonidentifier in identifier LIST 

of declaration 

STREAM PROCEDURE Declaration pre­

ceded by illegal declarator 

PROCEDURE Declaration preceded by 

illegal declarator 

PROCEDURE Identifier repeated in 

same block (not FORWARD) 

PROCEDURE Identifier not followed 

by left parenthesis or semicolon 

in PROCEDURE Declaration 

Formal parameter LIST not followed 

by right parenthesis 

Formal parameter part not followed 

by semicolon 

VALUE PART contains identifier not 

in formal parameter LIST 

Revised 1/8/71 
by peN 1024916-014 F-l 



Error 
Message No. 

011 

012 

013 

014 

015 

016 

017 

018 

019 

020 

021 

022 

023 

024 

F-2 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGES 

Routine 

BLOCK 

BLOCK 

ARRAE 

ARRAE 

ENTRY 

ARRAE 

ARRAE 

ARRAE 

ARRAE 

BLOCK 

BLOCK 

BLOCK 

CHKSOB 

BLOCK 

Meaning 

VALUE PART not ended by semicolon 

Missing or illegal specification PART 

OWN used in ARRAY Specification 

SAVE used in ARRAY Specification 

ARRAY call by value 

ARRAY Identifier not followed by left 

bracket 

Lower bound in ARRAY Declaration not 

followed by colon 

Bound pair in ARRAY Declaration not 

followed by right bracket 

Illegal lower bound designator in ARRAY 

Specification 

OWN immediately before identifier (no 

type) in declaration 

SAVE immediately before identifier (no 

type) in declaration 

STREAM immediately before identifier 

(the word PROCEDURE left out) 

Declarator illegally preceded by another 

declarator 

LABEL passed to a function 



Error 
Message No. 

025 

026 

027 

028 

029 

030 

031 

032 

033 

034 

035 

036 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGES 

Routine 

BLOCK,ENTER 

IODEC 

IODEC 

IODEC 

IODEC 

IODEC 

BLOCK 

FORMATGEN 

IODEC,BLOCK 

IODEC 

IODEC 

FORMATGEN 

Meaning 

Declarator or specifier illegally 

preceded by OWN, SAVE, or another 

declarator 

Missing left parenthesis in FILE 

Declaration 

Missing record size 

Illegal buffer part or SAVE Factor 

in FILE Declaration 

Missing right parenthesis in FILE 

Declaration 

Missing colon in disk description 

Missing left parenthesis in LIST 

Declaration 

Missing left parenthesis in FORMAT 

Declaration 

SWITCH Declaration does not have 

or FORWARD after identifier. 

Missing - after SWITCH FILE 

Identifier 

NON-FILE Identifier in declaration 

of SWITCH FILE LIST 

SWITCH FORMAT Identifier not followed 

by -

Revised 1/8/71 
by peN 1024916-014 F- 3 



Error 
Message No. 

037 

038 

039 

040 

041 

042 

043 

044 

045 

046 

047 

048 

049 

F-4 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGES 

Routine 

FORMATGEN 

FORMATGEN 

BLOCK 

IODEC 

HANDLESWLIST 

HANDLESWLIST 

IODEC 

IODEC 

DEFINEDEC,BLOCK 

ARRAE 

TABLE 

BLOCK 

BLOCK 

Meaning 

Missing left parenthesis at start 

of SWITCH FORMAT LIST 

SWITCH FORMAT Segment > 1022 words 

Number of nested blocks > 31 

Program parameter block size 

exceeded 

Missing - after SWITCH LIST ID 

Illegal list ID appearing in SWITCH 

LIST 

Missing right bracket after DISK in 

FILE Declaration 

Missing left bracket after DISK in 

FILE Declaration 

Missing = after defined identifier 

Non-literal array bound not global 

to array declaration 

Item following @ not an integer 

Number of parameters does not agree 

with number of parameters in FOR­

WARD Declaration. 

Type of this parameter does not 

agree with its type as given in 

FORWARD Declaration. 



Error 
Message No. 

050 

059 

060 

061 

070 

071 

080 

090 

091 

092 

093 

094 

095 

100 

101 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGES 

Routine 

BLOCK 

ARRAE 

FAULTSTMT 

FAULTDEC 

CASESTMT 

CASESTMT 

SEQCOMPARE 

PARSE 

PARSE 

PARSE 

PARSE 

PARSE 

PARSE 

Anywhere 

CHECKER 

Meaning 

Value part differs from value part of 

FORWARD Declaration. Formal parameter 

of FORWARD Declaration and correspond­

ing parameter in actual declaration 

are specified respectively as call-by­

name and call-by-value, or vice versa. 

Improper ARRAY size 

Missing - in FAULT Statement 

Invalid FAULT Type; must be FLAG, 

EXPOVR, ZERO, INTOVR, or INDEX 

Missing BEGIN 

Missing END 

Sequence error 

Missing left bracket 

Missing colon 

Illegal bit number 

Field size must be literal 

Missing right bracket 

Illegal size 

Undeclared identifier 

Attempt has been made to address 

identifier which is local to one 

Revised 1/8/71 
by peN 1024916·014 F- 5 



Error 
Message No. 

102 

103 

104 

105 

106 

107 

108 

109 

110 

III 

F-6 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGES 

Routine 

AEXP 

PRIMARY 

Anywhere 

Anywhere 

PRIMARY 

BEXP 

EXPRSS 

Meaning 

procedure and global to another. 

If quantity is procedure name or 

OWN variable, restriction is 

relaxed. 

Conditional expression not of 

arithmetic type 

Primary may not begin with this 

type quantity. 

Missing right parenthesis 

Missing left parenthesis 

Primary may not start with 

declarators. 

Expression not Boolean type 

Relation may not have condi­

tional expressions as arithmetic 

expressions. 

BOOSEC,SIMPBOO,BOOCOMP Primary not Boolean type 

BOOCOMP Non-Boolean operator in Boolean 

expression 

BOOPRIM Expression (arithmetic, Boolean, 

or designational) may not begin 

with this type quantity. 



Error 
Message No. 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGES 

Routine 

BOOPRIM 

PARSE 

DOTSYNTAX 

DEXP 

IFCLAUSE 

BANA 

BANA 

COMPOUNDTAIL 

COMPOUNDTAIL 

ACTUALPARAPART 

ACTUALPARAPART 

ACTUALPARAPART 

Meaning 

Expression (arithmetic, Boolean, 

or designational) may not begin 

with declarator. 

Either syntax or range of literals 

for concatenate operator incorrect 

Either syntax or range of literals 

for partial word designator incor­

rect 

Expression not of designational 

type 

Missing THEN 

Missing left bracket 

Missing right bracket 

Missing semicolon or END 

Missing END 

Indexed FILE may be passed by name 

only, and only to STREAM PROCEDURE. 

STREAM PROCEDURE may not RELEASE 

this type parameter. 

Expressions may not pass by name 

to STREAM PROCEDURES. 

Actual and formal parameters not 

same type 

Revised 1/8/71 
by peN 1024916-014 F-7 



Error 
Message No. 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

F-8 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGES 

Routine 

ACTUALPARAPART 

ACTUALPARAPART 

ACTUALPARAPART 

AC TUA LPARAPART 

ACTUALPARAPART 

ACTUALPARAPART, 

IMP FUN 

RELSESTMT 

DOSTMT 

WHILESTMT 

LABELR 

LABELR 

LABELR 

FORMATPHRASE, 

EXPLICITFORMAT 

FORMATPHRASE, 

GETINT 

Meaning 

Actual and formal arrays not same 

number of dimensions 

STREAM PROCEDURE may not be passed 

as an actual parameter to PROCEDURE. 

Actual parameter may not begin with 

this type quantity. 

This type quantity may not be 

passed to STREAM PROCEDURE. 

Actual and formal parameters do not 

agree in number. Extra right pa­

renthesis 

Illegal parameter delimiter 

No FILE name 

Missing UNTIL 

Missing DO 

Missing colon in LABEL 

LABEL not declared in this block 

LABEL has already occurred. 

Improper FORMAT editing phrase 

FORMAT editing phrase does not have 

integer where required. 



Error 
Messas:e No. 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGE 

Routine 

FORMATPHRASE, 

DIVDE 

TABLE 

NEXTENT 

SCANNER,TABLE, 

FIXDEFINEINFO 

DEFINEGEN 

COMPOUNDTAIL 

STMT 

STMT 

STMT 

SWITCHGEN 

GETSPACE 

GETSPACE 

Meanins: 

Width too small in E or F editing 

phrase 

DEFINE nested more than eight deep 

Integer in FORMAT > 1023 

Integer or identifier more than 63 

characters 

DEFINE more than 2047 characters 

(blank suppressed) 

Extra END 

Statement may not start with this 

type identifier. 

Statement may not start with this 

type quantity. 

Statement may not start with decla­

rator. (It may be missing END of 

PROCEDURE or misplaced declaration.) 

More than 256 expressions in SWITCH 

Declaration 

More than 1023 program reference 

table cells required for this pro-

gram 

More than 255 stack cells required 

for this PROCEDURE 

Revised 1/8/71 
by peN 1024916-014 F-9 



Error 
Message No. 

150 

151 

152 

153 

154 

155 

157 

158 

159 

160 

161 

F-lO 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGES 

Routine 

ACTUALPARAPART 

FORSTMT 

FORSTMT 

FORLIST 

FORLIST 

IFEXP 

LISTELEMENT 

LISTELEMENT 

LISTELEMENT 

PROCSTMT 

PURGE 

PURGE 

PURGE 

EMITFORMAT 

Meaning 

Constants may not be passed by name 

to STREAM PROCEDURES. 

Index variable may not be Boolean. 

Missing - following INDEX Variable 

Missing UNTIL or WHILE in STEP 

Element 

Missing DO in FOR Clause 

Missing ELSE 

Designational expression may not be 

LIST Element. 

Row designator may not be LIST 

Element. 

Missing right bracket in elements 

Illegal use of PROCEDURE or function 

identifier 

Declared LABEL did not occur. 

Declared FORWARD PROCEDURE did not 

occur. 

Declared FORWARD SWITCH did not 

occur. 

Width of field more than 63 char-

acters 



Error 
Message No. 

164 

172 

173 

174 

199 

200 

201 

202 

203 

204 

205 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGES 

Routine 

UNKNOWNSTMT 

IMPFUN 

DEFINEDEC 

DEFINEDEC 

FIXDEFINEINFO 

E 

EMIT,EMITWORD 

VARIABLE 

VARIABLE 

VARIABLE 

VARIABLE 

VARIABLE 

Meaning 

Missing comma in ZIP or WAIT 

Statement 

Missing comma in delay parameter 

list 

Too many parameters in parametric 

define 

Right parenthesis or right bracket 

expected after parameters in para­

metric define declaration 

Incorrect number of parameters in 

parametric define invocation 

INFO TABLE Array has overflowed. 

Segment too large (> 4093 

syllables) 

Partial word designator not left­

most in left part LIST 

Missing • or -

Wrong number of subscripts in row 

designator 

Missing right bracket in row 

designator 

Row designator outside of actual 

parameter in LIST or FILL State­

ment 

Revised 1/8/71 
by peN 1024916-014 F-ll 



Error 
Message No. 

206 

207 

208 

209 

210 

211 

212 

250 

251 

252 

253 

255 

257 

258 

F-12 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGES 

Routine 

VARIABLE 

VARIABLE 

VARIABLE 

VARIABLE 

VARIABLE 

VARIABLE,DBLSTMT 

VARIABLE 

STREAMSTMT 

STREAMSTMT 

INDEXS 

INDEXS 

DSS 

RELEASES 

GOTOS, LABELS, 

JUMPS 

LABELS 

Meaning 

Missing right bracket 

Missing left bracket 

Wrong number of subscripts 

Partial word designator not left­

most in left part LIST 

Missing • or -

PROCEDURE Identifier appears out­

side of scope in left part. 

Sub-array designator permitted as 

actual parameter only 

Illegal STREAM Statement 

Missing -
Missing + or -

Missing number or STREAM Variable 

Missing string in DS- LT State-

ment 

Missing parenthesis, or FILE 

Identifier not a formal parameter 

LABEL specified not same nest 

level as preceding appearance of 

LABEL 

Missing colon 



Error 
Message No. 

259 

260 

264 

266 

268 

270 

271 

281 

282 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSA~ES 

Routine 

LABELS 

GOTOS 

JUMPS 

NESTS 

IFS 

IFS 

IFS 

IFS,RELEASES 

GOTOS, BLOCK 

EMITC 

TABLE 

IFS 

IFS 

DBLSTMT 

DBLSTMT 

Meaning 

LABEL appears more than once. 

Missing LABEL in GO TO or JUMP OUT 

TO Statement 

Missing OUT in JUMP OUT Statement 

Missing parenthesis 

Missing SC in IF Statement 

Missing relational in IF Statement 

Missing ALPHA, DC, or string in IF 

Statement 

Missing THEN in IF Statement 

LABEL undefined in GO TO Statement 

Repeat index ~ 64 specified; or 

too many formal parameters, locals, 

and labels 

Constant specified too large or 

too small 

Relational operator other than = 

in test (source for ALPHA) 

Improper construct for (source 

with literal) 

Missing left parenthesis 

Too many operators 

Revised 1/8/71 
by peN 1024916-014 F-1J 



Error 
Message No. 

283 

284 

285 

286 

300 

301 

302 

303 

304 

350 

351 

352 

353 

F-14 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGES 

Routine 

DBLSTMT 

DB LSTMT 

DB LSTMT 

DBLSTMT 

FILLSTMT 

FILLSTMT, 

MAKEALABEL 

FILLSTMT 

FILLSTMT 

FILLSTMT 

CHECKCOMMA 

OUTPROCHECK 

OUTPROCHECK 

OUTPROCHECK 

Meaning 

Too many operands 

Missing comma 

Missing right parenthesis 

Undeclared variable used 

Identifier following FILL not ARRAY 

Identifier 

Missing WITH in FILL Statement 

Improper FILL Element 

Nonoctal character in octal FILL. 

The three low-order bits are con­

verted and compilation continues. 

Improper row designator 

Missing or illegal parameter de­

limiter in SORT or MERGE Statement 

Illegal TYPE for SORT or MERGE 

Output Procedure 

Output procedure in SORT or MERGE 

Statement does not have exactly 

two parameters. 

First parameter of output procedure 

must be BOOLEAN. 



Error 
Message No. 

354 

355 

357 

358 

359 

364 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGES 

Routine 

OUTPROCHECK 

SORTSTMT 

HVCHECK 

HVCHECK 

HVCHECK 

EQLESCHECK 

EQLESCHECK 

EQLESCHECK 

EQLESCHECK 

INPROCHECK 

INPROCHECK 

INPROCHECK 

Meaning 

Second parameter of output procedure 

must be ONE-DIMENSION ARRAY. 

Missing left parenthesis 

Illegal TYPE for SORT or MERGE HIGH­

VALUE Procedure 

HIGHVALUE Procedure does not have 

exactly one parameter. 

HIGHVALUE Procedure Parameter not 

ONE-DIMENSION ARRAY 

SORT or MERGE COMPARE Procedure not 

BOOLEAN 

COMPARE Procedure does not have 

exactly two parameters. 

COMPARE Procedure first parameter 

not ONE-DIMENSION ARRAY 

COMPARE Procedure second parameter 

not ONE-DIMENSION ARRAY 

SORT Statement input procedure not 

BOOLEAN 

Input procedure does not have ex­

actly one parameter. 

Input procedure parameter not ONE­

DIMENSION ARRAY 

Revised 1/8/71 
by peN 1024916-014 F-15 



Error 
Message No. 

366 

367 

368 

400 

401 

402 

403 

404 

405 

406 

407 

408 

409 

F-16 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGES 

Routine 

SORTSTMT 

MERGESTMT 

MERGESTMT 

MERGESTMT 

MERRIMAC 

MERRIMAC 

MERRIMAC 

MERRIMAC 

MERRIMAC 

MERRIMAC 

MERRIMAC 

MERRIMAC 

MERRIMAC 

DMUP 

Meaning 

Missing right parenthesis 

Missing left parenthesis 

More than seven or less than two files 

to merge 

Missing right parenthesis 

Missing FILE Identifier in MONITOR 

Declaration 

Missing left parenthesis in MONITOR 

Declaration 

Improper subscript for MONITOR LIST 

Element 

Improper subscript expression de­

limiter in MONITOR LIST Element 

Improper number of subscripts in 

MONITOR LIST Element 

LABEL or SWITCH monitored at improper 

level 

Improper MONITOR LIST Element 

Missing right parenthesis in MONITOR 

Declaration 

Improper MONITOR Declaration Delimiter 

Missing FILE Identifier in DUMP Dec­

laration 



Error 
Message No. 

410 

411 

412 

413 

414 

415 

416 

417 

418 

419 

420 

421 

422 

424 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGES 

Routine 

DMUP 

DMUP 

DMUP 

DMUP 

DMUP 

DMUP 

DMUP 

DMUP 

DMUP 

DMUP 

READSTMT 

READSTMT 

READSTMT 

READSTMT 

Meaning 

Missing left parenthesis in DUMP 

Declaration 

Subscripted variable in DUMP LIST has 

wrong number of subscripts. 

Subscripted variable in DUMP LIST has 

wrong number of subscripts. 

Improper ARRAY DUMP LIST Element 

Illegal DUMP LIST Element 

More than 100 labels as DUMP LIST 

Elements in one DUMP Declaration 

Illegal DUMP LIST Element Delimiter 

Missing DUMP LABEL in DUMP Declaration 

Missing colon in DUMP Declaration 

Improper DUMP Declaration Delimiter 

Missing left parenthesis in READ 

Statement 

Missing left parenthesis in READ 

REVERSE Statement 

Missing FILE in READ Statement 

Improper FILE Delimiter in READ 

Statement 

Revised 1/8/71 
by peN 1024916-014 F-17 



Error 
Message No. 

425 

427 

428 

429 

430 

433 

434 

435 

437 

438 

F-18 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGES 

Routine 

READSTMT 

READSTMT, KLUDGE 

READSTMT,KLUDGE 

READSTMT,KLUDGE 

READSTMT,KLUDGE 

READSTMT 

HANDLETHETAIL­

ENDOFAREADOR­

SPACESTATEMENT 

SPACESTMT 

SPACESTMT 

SPACESTMT 

SPACESTMT 

WRITESTMT 

Meaning 

Improper FORMAT Delimiter in READ 

Statement 

Improper delimiter for second 

parameter in READ Statement 

Improper row designator in READ 

Statement 

Improper row designator delimiter 

in READ Statement 

Missing row designator in READ 

Statement 

Improper delimiter preceding LIST 

in READ Statement 

Missing right bracket in READ or 

SPACE Statement 

Missing left parenthesis in SPACE 

Statement 

Improper FILE Identifier in SPACE 

Statement 

Missing comma in SPACE Statement 

Missing right parenthesis in 

SPACE Statement 

Missing left parenthesis in WRITE 

Statement 



Error 
Message No. 

439 

440 

441 

442 

443 

444 

445 

446 

447 

448 

449 

450 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGES 

Routine 

WRITESTMT 

WRITESTMT 

WRITESTMT 

WRITESTMT 

WRITESTMT 

WRITESTMT 

WRITESTMT 

WRITESTMT 

WRITESTMT 

WRITESTMT 

READSTMT 

LOCKSTMT 

Meaning 

Improper FILE Identifier in WRITE 

Statement 

Improper delimiter for first parameter 

in WRITE Statement 

Missing right bracket in (carriage 

control part) of WRITE Statement 

Illegal carriage control delimiter in 

WRITE Statement 

Improper second parameter delimiter 

in WRITE Statement 

Improper row designator in WRITE 

Statement 

Missing right parenthesis after row 

designator in WRITE Statement 

Missing row designator in WRITE 

Statement 

Improper delimiter preceding LIST in 

WRITE Statement 

Improper LIST Delimiter in WRITE 

Statement 

Improper LIST Delimiter in READ 

Statement 

Missing left parenthesis in LOCK 

Statement 

Revised 1/8/71 
by peN 1024916-014 F-19 



Error 
Message No. 

451 

452 

453 

455 

457 

459 

460 

461 

462 

463 

464 

F-20 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGES 

Routine 

LOCKSTMT 

LOCKSTMT 

LOCKSTMT 

LOCKSTMT 

CLOSESTMT 

CLOSESTMT 

CLOSESTMT 

CLOSESTMT 

CLOSESTMT 

RWNDSTMT 

RWNDSTMT 

RWNDSTMT 

BLOCK 

BLOCK 

Meaning 

Improper FILE in LOCK Statement 

Missing comma in LOCK Statement 

Improper (unit disposition part) in 

LOCK Statement 

Missing right parenthesis in LOCK 

Statement 

Missing left parenthesis in CLOSE 

Statement 

Improper FILE in CLOSE Statement 

Missing comma in CLOSE Statement 

Improper (unit disposition part) in 

CLOSE Statement 

Missing right parenthesis in CLOSE 

Statement 

Missing left parenthesis in REWIND 

Improper (FILE part) IN REWIND 

Statement 

Missing right parenthesis in REWIND 

MONITOR Declaration in specification 

of PROCEDURE 

DUMP Declaration in specification of 

PROCEDURE 



Error 
Message No. 

465 

500 

501 

502 

503 

504 

505 

507* 

509 

APPENDIX F (cont) 

EXTENDED ALGOL SYNTACTICAL ERROR MESSAGES 

Routine 

DMUP 

SEARCHLIB 

SEARCHLIB 

SEARCHLIB 

SEARCHLIB 

SEARCHLIB 

SEARCHLIB 

SEARCHLIB 

IODEC 

Meaning 

DUMP Indicator must be unsigned 

integer or simple variable. 

Illegal LIBRARY Identifier 

LIBRARY Identifier not in Directory 

Illegal LIBRARY start point 

Separator required between start 

point and length 

Illegal LIBRARY length 

Missing bracket 

Magnetic tape positioning error 

Nonliteral FILE value not global to 

FILE declaration 

* Although this is actually the result of a hardware malfunction, it 
is detected by the compiler and is therefore emitted as a syntax 
error message. The program does not compile properly from this 
point on, but compilation continues. The Subprogram Library Tape 
should be tried on a different unit. 

Revised 1/8/71 
by peN 1024916-014 F- 21 



APPENDIX G 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

ACCESS MISSING 

ACT. KEY MISSING 

ACT. KEY QUALIFICATION ILLEGAL 

ACTUAL KEY must be 77 level CMP or CMP-l item. 

ACT. KEY SIZE ILLEGAL 

ACTUAL KEY > 11 digits 

ACT. KEY TYPE ILLEGAL 

ACTUAL KEY must be elementary. 

ACT. KEY USAGE ILLEGAL 

ACTUAL KEY must be COMPUTATIONAL or COMPUTATIONAL-l elementary item 

in WORKING-STORAGE. 

I 
• 

I 
ADD NO ELEMENT ITEMS • 

ARITHMETIC OPERAND CLASS xxxxx 

Data-name xxxxx should be arithmetic operand, but its CLASS is 

incorrect. 

ARRAY SIZE ERROR STATEMENT TRUNCATION 

Too many list elements in a diagnostic statement 

ASSIGN SYNTAX ERROR 

BUFFER MISSING 

Disk file has been reserved declaring no alternate areas. 

BY MISSING 

Word BY missing in PERFORM Statement 

CARD TRUNCATION xxxxx 

CARDS nnnnn 

Revised 1/8/71 
by PeN 1024916-014 G-l 

• 

• 

I 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

nn CHARACTERS MISSING 

Description does not match word boundary. 

xxx CHARACTERS MISSING 

COMPUTATIONAL item in record description is not word oriented, or 

record in file is not multiple of eight characters in length. Com­

piler inserts FILLER to make item start at beginning of word, thus 

changing record total size. 

CHECK RECORD SIZE 

This message caused by: 

a. RECORD SIZE declared different from SIZE in record 

description 

b. Character SIZE in BLOCK CONTAINS not integer multiple of 

record size 

CLASS DECLARATION ERROR 

Misplaced 77 level item 

CLASS ERROR 

In MEMORY SIZE clause, size not given as integer (should be given as 

number of words rather than number of memory modules) 

CLASS ERROR 

CLASS of item not declared with acceptable reserved word: NUMERIC, 

ALPHABETIC, ALPHANUMERIC, or AN 

CLASS ERROR xxxxx 

CLASS of data (xxxxx) either: 

a. Not numeric or edited numeric (arithmetic statement), or 

b. Invalid receiving field for MOVE Statement 

G-2 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

CLASS ERROR ILLEGAL OPERAND 

Operand in this statement has CLASS not legal in context. 

COMPILE ERROR 

If this message occurs after all other diagnostics have been removed, 

send SAR and source deck to Burroughs Corporation, Detroit. 

COMPILE ERROR 01347000 

Data-name has been defined more than 125 times. 

COMPILE O.K. MO-DA-YR 

Terminating message signifying successful compilation, as opposed to 

did-not compile. Certain warning messages, given by Compiler, may be 

shown without affecting compilation. This message does not imply that 

program is logically correct. • 

COMPILE TIME nnnnn SEC. 

Information on compile time 

CONDITIONAL GROUP SIGNED xxxxx 

Comparison operand contains signed item in group identified by xxxxx. 

CONDITIONAL GROUP SIZE xxxxx 

Group identified by xxxxx contains item of variable size, or groups 

are of different sizes. 

CONDITIONAL GROUP USAGE xxxxx 

Group identified by xxxxx contains item of COMPUTATIONAL usage. 

CONDITIONAL LITERAL OPERAND SIZE 

Limit of 63 characters length exceeded 

CONDITIONAL NAME ERROR 

Condition-name must not be reserved word. 

Revised 1/8/71 
by peN 1024916-014 G-3 

I 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

CONDITIONAL OPERAND CLASS ERROR 

Numeric item is not allowed in this statement, or this is comparison 

of signed and unsigned items. 

CONDITIONAL OPERAND SIGNED ERROR 

Comparison operand is signed numeric. 

I CONDITIONAL OPERAND USAGE ERROR 

Comparison of group items containing CMP items 

CONDITIONAL SPECIFICATION SIZE ERROR 

CONDITIONAL VALUE SIZE ERROR 

III 88 level on item of more than 63 characters 

COpy LEVEL ERROR 

Level-number beyond range 0 through 49 because of incrementation 

during copy 

(CORRESPONDING) XXXXX (DATA NAME) OF XXXXX (FILE NAME) 

Itemizes all corresponding items being acted upon by corresponding 

operation 

DECLARATION ERROR 

RENAMING option used, but file-name not shown in prior SELECT 

Statement 

I 
DID NOT COMPILE MO-DA-YR. 

DISK SIZE nnnnn 

Requested information 

• DUPL. FILE NAME 

Duplicated file-name in FD, MD, or SD entry 

• DUPL. $$ CARD 

G-4 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

DUPLICATE LABEL 

Name is duplicate of one previously defined. OBJECT-COMPUTER is 

specified two or more times (warning only) 

ERRORS nnnnn 

EXTRA ARITHMETIC OPERAND xxxxx 

Several data-names shown following TO. One of data-names requires 

qualification. 

EXTRA FILE DECLARATION ERROR 

More than 50 files declared for file; and/or number of files times 

18, plus length of all file-names in characters, plus 32 greater than 

1024. (Note that assign to sort disk is two files and assign to sort 

disk and three sort-tapes is five files.) 

FILE DECLARATION ERROR xxxxx 

MONITOR or DUMP Statement does not declare file for printer. 

FILE NOT SELECTED 

Caused by: 

a. Compiler expecting word SELECT as next word 

b. File-name not shown in SELECT Statement in ENVIRONMENT 

DIVISION 

c. No files SELECTed 

FROM MISSING PERFORM STATEMENT 

Word FROM missing in PERFORM Statement 

FROM MISSING xxxxx 

GROUP CONDITIONAL OPERAND SIZE 

Size of elementary item and group item in comparison is different, or 

one of items in comparison is variable-length. 

Revised 1/8/71 
by peN 1024916-014 G- 5 

I 
I 

• 

• 

I 



APPENDIX F (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

GROUP CONDITIONAL OPERAND USAGE 

COMPUTATIONAL ITEM contained in comparison between group and 

elementary item 

GROUP PICTURE SPECIFICATION SYNTAX ERROR 

PICTURE cannot be used at group level. 

GROUP SIZE ERROR 

Sum of SIZE of each elementary item does not agree with SIZE stated at 

group item level. Compiler continues, using sum of elementary item 

I 
sizes, or record is not multiple of eight characters. 

H-DATA-IMPROPER FOR TSS 

HIERARCHY GROUP LEVEL ERROR 

Level-number illegal; does not match previously defined group level­

number 

• HYPHEN SPELLING ERROR 

ILLEGAL ARITHMETIC CLASS xxxxx 

Data-name shown does not have proper CLASS for use as arithmetic 

operand. 

ILLEGAL ARITHMETIC LITERAL xxxxx 

Literal shown is non-numeric and cannot be used on operand in 

arithmetic statement. 

ILLEGAL ARITHMETIC OPERAND xxxxx 

Caused by: 

a. Literal may only be preceded by + or -. 

b. Symbol should be plus or minus. 

c. Word is spelled incorrectly or used illegally. 

• ILLEGAL ASSIGNMENT FD xxxx 

G-6 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

ILLEGAL ASSIGNMENT MD xxxx 

ILLEGAL ASSIGNMENT SD xxxx 

File assignments in FILE-CONTROL Section of source program have been 

checked against file descriptions in DATA DIVISION, and conflict has 

been found. For example, file assigned to DISK has been described 

with FD in FILE Section rather than MD. 

ILLEGAL ASSIGNMENT SPECIFICATION 

ILLEGAL BLOCK SIZE SPECIFICATION 

BLOCK SIZE for magnetic tape files specified greater than 1023 words 

ILLEGAL CLASS DECLARATION 

Sign has been specified for non-numeric field, or editing has been 

requested on non-numeric item. 

ILLEGAL CLASS SIZE DEPENDING OPERAND 

DEPENDING ON operand not unsigned integ~~'; numeric field required 

ILLEGAL CLASS SIZE DEPENDING OPERAND FILE xxxxx 

Numeric item required 

ILLEGAL CLASS SIZE DEPENDING OPERAND RECORD xxxxx 

Numeric item required. No character count specified for TECHNIQUE-B 

or TECHNIQUE-C records 

ILLEGAL CLASS SPECIFICATION 

ILLEGAL COMPILE OPERATOR 

Debugging compile MNEMONIC operator cannot be found. 

ILLEGAL CONDITIONAL OPERAND 

Caused by illegal Amount Comparison operand, or literal in condition 

having wrong CLASS 

Revised 1/8/71 
by peN 1024916-014 G-7 

I 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

ILLEGAL CONDITIONAL OPERAND xxxxx 

I Error in relation shown in xxxxx, 

undefined 

ILLEGAL CONDITIONAL OPERATOR xxxxx 

Missing Relational Operator 

ILLEGAL COpy 

relation incomplete, or xxxxx 

COpy of group item which includes this COpy entry 

ILLEGAL DECLARATION 

Numeric item JUSTIFIED LEFT must be integer; scaling not allowed 

• ILLEGAL DUPL. FILE NAME 

File-names must be unique. 

• ILLEGAL DUPL. NAME xxxxx 

Data-name given is duplicate, or xxxxx previously used as synonym. 

_ ILLEGAL DUPL. SPECIFICATION 

Item described within POINT LOCATION clause and PICTURE 

ILLEGAL FILE INPUT-OUTPUT USAGE SPECIFICATION 

More than one record per block in file declared as unblocked 

ILLEGAL FILE NAME 

• File-name missing in SEEK 

ILLEGAL FILE SIZE SPECIFICATION 

Number of characters greater than 1023 words 

ILLEGAL FILE TYPE xxxxx 

Diagnostic statement refers to file with other than TECHNIQUE-A or 

unblocked records. 

ILLEGAL FROM RECORD xxxxx 

WRITE FROM can only be used on 01 level record. 

G-B 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

ILLEGAL GO TO DEPENDING OPERAND 

DEPENDING Operand must be integer. 

ILLEGAL GROUP NAME xxxxx 

Occurs because: 

a. Not legal to move elementary numeric or edited numeric 

item into group field 

b. xxxxx should not be group item for MOVE in process 

c. Group item appears in formula. 

ILLEGAL GROUP OCCURS xxxxx 

Group item with OCCURS in diagnostic statement 

ILLEGAL INPUT-OUTPUT INTEGER 

Reel number greater than three digits 

ILLEGAL INPUT-OUTPUT SPECIFICATION 

a. INVALID KEY missing £rom WRITE to file assigned to disk 

b. Output file declared OPTIONAL 

c. TECHNIQUE missing when BLOCK CONTAINS> 1 

d. File-name or diagnostics missing 

e. OPEN OUTPUT 1 or CLOSE 1 on file assigned to disk 

ILLEGAL INTEGER OPERAND 

ILLEGAL INTEGER SORT SPECIFICATION 

Clause RESERVE n ALTERNATE AREAS used with sort-file (SD entry), and 

n other than 1 

ILLEGAL INTO RECORD xxxxx 

Object of READ INTO clause must be an 01 record-name; xxxxx is not 

I 

I 

for 01 record-name. • 

Revised 1/8/71 
by peN 1024916-014 G- 9 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

ILLEGAL LABEL xxxxx 

Paragraphs that may be ALTERed are those which contain only GO TO 

Statement. Subject paragraph not in that category 

I ILLEGAL LABEL OPERAND 

I 

I 

I 

I 

I 

Word beginning in column 8 of card not allowed there 

ILLEGAL LABEL USAGE xxxxx 

Label given is either reserved word, data-name, or non-unique or 

illegal reference to DECLARATIVES. 

ILLEGAL LITERAL xxxxx 

Receiving field in MOVE Statement cannot be literal. 

ILLEGAL LITERAL CONDITIONAL xxxxx 

Literal following ALL is non-integer numeric literal. 

ILLEGAL MOVE OPERAND CLASS 

Operand of MOVE attempts to place wrong CLASS of data in receiving 

field. 

ILLEGAL MOVE OPERAND xxxxx 

Improper MOVE made (e.g., ALPHABETIC, ALPHANUMERIC, or edited numeric 

field into numeric field) 

ILLEGAL MOVE RECORD xxxxx 

ILLEGAL MOVE USAGE OPERAND 

ILLEGAL NAME xxxxx 

Usually reserved word used incorrectly, data name> 30 characters, 

or integer used as data name 

ILLEGAL OCCURS LEVEL 

OCCURS clause used illegally at 01 level 

ILLEGAL OCCURS USAGE xxxxx 

Item in Diagnostic List is elementary OCCURS item. 

G-10 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

ILLEGAL OCCURS VALUE DECLARATION 

VALUE clause given for field requiring subscripting, 

size DEPENDING ON option used with VALUE clause 

ILLEGAL OPERAND NAME xxxx 

Not proper item for arithmetic 

ILLEGAL OPERAND xxxxx: 

Data-name xxxxx: 

a. Not allowed in arithmetic statement. 

or variable 

b. Other than elementary NUMERIC data item being varied in 

PERFORM Statement. 

c. Should be Figurative Constant other than END. 

d. Should be elementary item with DISPLAY USAGE. 

I 

e. When xxxxx is ), subscripting may be missing or incomplete. _ 

ILLEGAL OPERAND WRITE STATEMENT 

Integer associated with CHANNEL or LINES (e.g., nn LINES) not an un­

signed integer or not NUMERIC data-name with unsigned integer value 

ILLEGAL OPERATOR xxxxx 

The xxxxx represents data-name in specification OUTPUT REVERSE. 

ILLEGAL PICTURE SIZE DECLARATION 

PICTURE specifies repetition of more than 127 occurrences of symbol. 

ILLEGAL PICTURE SIZE SPECIFICATION 

PICTURE greater than 120 characters 

ILLEGAL PROCEDURE DIVISION MISSING END DEC 

End declarative terminator not present 

ILLEGAL PROCEDURE SPECIFICATION 
Revised 1/8/71 
by peN 1024916-014 G-ll 

• 
I 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

_ ILLEGAL PROGRAM IDENT 

Actual program-id does not have quotes surrounding entry. 

ILLEGAL QUALIFICATION 

or missing qualification. I Incomplete, incorrect, 

qualifier may be reserved word. 

Word used as 

ILLEGAL QUALIFICATION xxxxx 

When in synonym construct, synonym must be unique such that qual­

ification never required nor allowed. Synonym shown not unique 

ILLEGAL RECORD SIZE 

I Size of record exceeds 1023 words (8184 characters). 

1023 words 

77 level > 

ILLEGAL RECORD SIZE xxxxx 

• Diagnostic Statement Record SIZE must be at least 15 words (120 

characters). 

I ILLEGAL RECORD SIZE DECLARATION 

SIZE of record > 1023 words 

ILLEGAL RECORD SIZE SPECIFICATIO~ 

SIZE of record for magnetic tape exceeds limit of 1023 words (8184 

characters); size is not 80 characters for punch • 

• ILLEGAL RECORD SPECIFICATION 

I 

ILLEGAL RENAMES OPERAND 

Data-name given in RENAMES Statement does not appear in preceding 

record description. 

ILLEGAL SIZE DECLARATION 

Numeric item defined to have more than 63 integer places 

ILLEGAL SIZE OPERAND xxxxx 

In PERFORM Statement, data-name represented by xxxxx not allowed to 

have more than 11 characters 

G-12 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

ILLEGAL SIZE SPECIFICATION xxxxx 

The xxxxx is double-precision field (more than 11 digits) and 

illegal in: 

a. COMPUTE Statement. 

b. Argument furnished to intrinsic function. 

c. Formula. 

ILLEGAL SIZE/USAGE SPECIFICATION 

COMPUTATIONAL item greater than 18 digits in length. Either SIZE 

or USAGE specification in error 

ILLEGAL SORT FILE OPERATOR 

ILLEGAL SORT INPUT-OUTPUT SPECIFICATION 

Printed if TECHNIQUE was applied to sort-file. Warning-only 

message. TECHNIQUE ignored 

ILLEGAL STATE~1ENT xxxxx 

Word NEXT not followed by SENTENCE, or phrase TO PROCEED TO missing 

in ALTER Statement 

ILLEGAL STATEMENT GROUP xxxxx 

a. Word SENTENCE does n~t follow NEXT, or is misspelled. 

b. Conditional statement must be followed by ELSE, OTHERWISE, 

or period. 

ILLEGAL SUBSCRIPT COpy OPERAND 

COpy Statement illegally refers to subscripted data-name. 

ILLEGAL SUBSCRIPT MOVE OPERAND 

a. MOVE CORRESPONDING illegally refers to subscripted 

data-name. 

b. OPTION J of MOVE must not have subscripted operands. 
Revised 1/8/71 
by peN 1024916-014 G-lJ 

• 

I 

I 

II 



I 

I 

I 

APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

ILLEGAL SUBSCRIPT OPERAND 

Either sending item or receiving item requires subscript. 

ILLEGAL SYNTAX DECLARATION xxx xx 

RENAMES entry not allowed as part of diagnostic statement 

ILLEGAL TYPE xxxxx 

Qualifier not group item or record-name 

ILLEGAL USAGE OPERAND SIZE 

ILLEGAL VALUE 

Caused by: 

a. VALUE given not within allowable range or is improper 

b. VALUE may not be given for data-name in FILE SECTION, 

or VALUE stated for label record field not allowed 

ILLEGAL VALUE ASSIGNMENT xxxxx 

Occurs in DUMP "label: data-name", but data-name not elementary 

item or not numeric 

ILLEGAL VALUE DECLARATION 

SAVE FACTOR value illegal 

ILLEGAL VALUE NAME xxxxx 

CLASS of data-name xxxxx does not permit stated VALUE. 

ILLEGAL WRITE NAME xxxxx 

WRITE Statement must refer to 01 level record-name appearing in FILE 

SECTION with FD description, not to SD record-name and not to record­

name appearing in WORKING-STORAGE or CONSTANT SECTIONS. 

INPUT-OUTPUT MISSING xxxxx 

Word INPUT or OUTPUT missing in USE Statement xxxxx. 

G-14 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

INTEGER CONDITIONAL OPERAND ERROR 

Indicates: 

a. ALPHANUMERIC item not allowed 

b. Comparison of NUMERIC with non-numeric item; NUMERIC item 

not unsigned, integer, or of DISPLAY usage. 

INTO MISSING 

LABEL MISSING xxxxx 

Paragraph following USE statement does not contain label. 

LEVEL ERROR 

Used upon occurrence of one of following conditions: 

a. Level-number larger than 49 in record description 

b. 77 level-number in FILE SECTION 

c. 66 level-number not associated with RENAMES entry 

d. 77 level-number that appears after series of 77 level­

numbers broken 

LEVEL NOT RIGHT 

Compiler malfunction. Please report details. 

LIBRARY COPY SELECTED 

Ccpy contains nested copy. 

LIBRARY nnnn 

LIBRARY READ ERROR 

Error occurred in READ FROM LIBRARY. 

LITERAL OPERATOR LITERAL ERROR 

Statement indicates literal is compared with literal. 

Revised 1/8/71 
by peN 1024916-014 G-15 

I 
I 

• 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

• LITERAL SIZE ILLEGAL xxxxx 

LITERAL xxxxx CHARACTERS 

Non-numeric literal longer than 120 characters. Length xxx 

• LITERAL SPELLING ILLEGAL xxxxx 

I 

LITERAL SYNTAX PARENTHESIS 

LITERAL TRUNCATION 

Literal stated out of range of item 

LITERAL VALUE NAME xxxxx 

Value of xxxxx not proper in MOVE Statement, or not proper item for 

arithmetic statement 

MEMORY SIZE nnnn 

Requested information 

MISSING ARITHMETIC OPERAND xxxxx 

One of following conditions present: 

a. No receiving field following TO 

b. Only one operand shown 

c. Word xxx xx not proper in statement 

MISSING ASSIGNMENT 

SELECT clause should be followed by ASSIGN Clause • 

• MISSING ASSIGNMENT OPERATOR 

FROM, n, or EQUALS missing in COMPUTE Statement 

MISSING AT END READ STATEMENT 

Either first READ Statement for file must have AT END explicitly 

given and all other READs in program should not have explicit AT 

END, or else every READ Statement for file in entire program must 

have explicit AT END Statement. 

G-16 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

MISSING CONDITIONAL OPERAND xxxxx 

xxxxx not conditional operand 

MISSING CONDITIONAL OPERATOR xxxxx 

Relational operator should appear prior to xxxxx. 

MISSING DECLARATION SECTION 

Program does not contain section referred to by USE Statement in 

DECLARATIVES, or misspelling caused it to appear to be missing. 

MISSING DIVISION 

Heading for division missing or misspelled. 

MISSING END DEC ILLEGAL PROCEDURE DIVISION 

End declarative terminator not present 

MISSING FILE NAME 

File-name must follow words INPUT or OUTPUT in OPEN Statement. 

MISSING FILE SECTION SPECIFICATION xxxxx 

Heading xxxxx appears instead of FILE SECTION. 

MISSING FILE SIZE 

MISSING FILE SPECIFICATION 

Reference to BLOCK-COUNT, RECORD-COUNT, or REEL-NUMBER outside of 

USE Procedure not qualified by file-name 

MISSING GO TO PROCEDURE' 

ALTER refers to other than GO TO paragraph. 

MISSING INPUT-OUTPUT OPERAND 

Word INPUT or OUTPUT omitted from USE Statement 

MISSING INPUT-OUTPUT SPECIFICATION 

I 

• 

I 
• 

Invalid key clause missing in disk WRITE Statement, or verb OPEN not I 
followed by INPUT, OUTPUT, 1-0, or INPUT-OUTPUT 

Revised 1/8/71 
by PCN 1024916-014 G-17 



I 

I 

I 

APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

MISSING LABEL 

Label must identify first paragraph of section. 

MISSING LEFT PARENTHESIS xxxxx 

Left parenthesis is omitted: 

a. Instead of word xxxxx. 

b. Around argument for intrinsic function. 

c. Around diagnostic statement list. 

MISSING OPERATOR xxxxx 

Word BEFORE or AFTER not present in USE Statement 

MISSING PARENTHESIS xxxxx 

MISSING PERIOD 

Required period missing 

MISSING PERIOD xxxxx 

Period is expected instead of name or symbol shown by xxxxx, or 

diagnostic statement does not end with period. 

MISSING PROCEDURE DIVISION 

PROCEDURE DIVISION heading omitted 

• MISSING PROGRAM IDENT 

Non-numeric Ii teral of program-id inside tt " missing 

MISSING QUALIFICATION 

Word IN or OF omitted from qualification 

MISSING QUALIFICATION xxxxx 

Word xxx xx requires IN or OF as part of qualification. 

I MISSING QUALIFICATION NAME xxxxx 

G-l8 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

MISSING QUALIFICATION NAME 

Necessary qualification is missing, 

cannot be found in program. 

or word used as qualifier 

MISSING RECORD LEVEL 

An 01 level record-name entry is omitted, or 01 level record-name 

does not begin record description following 77 level entries. 

MISSING RECORD SIZE 

Data name has appeared where compiler expected to find level-number. 

MISSING RIGHT PARENTHESIS 

Terminating parenthesis following synonym missing 

MISSING RIGHT PARENTHESIS xxxxx 

Right parenthesis should appear instead of xxxxx: 

a. At end of arithmetic expression in COMPUTE Statement. 

b. In conditional clause. 

c. Terminating list in diagnostic statement. 

MISSING SECTION 

Word SECTION missing from DATA DIVISION heading 

MISSING SIZE DEPENDING DECLARATION 

MISSING SIZE DEPENDING DECLARATION FILE xxxxx 

MISSING SIZE DEPENDING DECLARATION RECORD xxxxx 

File declared as TECHNIQUE-B or TECHNIQUE-C does not have variable­

length data record. 

MISSING SIZE SPECIFICATION 

SIZE not specified for elementary item, or SIZE not specified for 

group item with VALUE Clause. 

following group item 

Level-number missing on item 

Revised 1/8/71 
by peN 1024916-014 G-19 

I 

I 

I 



I 

APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

MISSING STOP RUN STATEMENT 

STOP RUN Statement does not appear in program, or it has been 

skipped because of NOTE. 

MISSING SYNTAX OPERATOR xxxxx 

Condition stated in DUMP Diagnostic statement does not contain 

colon after xxxxx. 

MISSING xxxxx READ STATEMENT 

MISSING xxx xx WRITE STATEMENT 

I 
MONITOR STATEMENT MISSING 

Statement OPEN OUTPUT DIAGNOSTIC or CLOSE DIAGNOSTIC appears, but 

Compiler did not find DUMP or MONITOR. 

MOVE SYNTAX ERROR 

I 
Word following CORRESPONDING in MOVE Statement not proper, or non­

unique data name (possibly synonym), used with CORRESPONDING option 

or word TO, missing in MOVE statement 

MOVE TRUNCATION 

Because of differences in description of items in MOVE Statement, 

truncation of digits will occur. 

NEWTAPE nnnn 

NO ELEMENT. ITEMS IN MOVE GROUP 

MOVE CORRESPONDING Statement is given for which there are no 

corresponding elementary items. Level hierarchy of data-names 

referenced by CORRESPONDING option must match. 

NO. SEGS. nnn 

Information on number of segments 

• NOT FILE NAME xxxxx 

Symbol shown in READ Statement not file-name 

G-20 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

NOT RIGHT LEVEL 

Compiler malfunction. Please report details. 

NOT RECORD DECLARATION xxxxx 

Symbol xxxxx shown as 01 record-name does not appear in DATA 

RECORDS clause in file description entry. 

NOT RECORD NAME xxxxx 

NOT SELECTED SORT TAPES 

SD sort-file description file-name not subject of SELECT file-name 

ASSIGN TO n SORT-TAPES in ENVIRONMENT DIVISION (n is integer from 

3 to 8) 

OPERAND xxxxx NOT INTEGER 

Data-name xxxxx not integer quantity for PERFORM Statement to 

execute integer TIMES 

OPERAND RIGHT FILE RECORD xxxxx 

OPERAND SIZE ERROR 

DISPLAY Statement refers to data-name(s) whose total SIZE is greater 

than 176 characters. 

OPTNL DECLARATION ERROR 

Disk file may not be OPTIONAL. 

PICTURE ERROR 

PICTURE Specification is not proper, or number of symbols in PICTURE 

exceeds 30. 

PICTURE PARENTHESIS USAGE ERROR 

Number within parentheses specifying repetition not integer. 

• 

I 

I 

I 

PICTURE SIZE ILLEGAL xxxxx • 

Revised 1/8/71 
by peN 1024916-014 G- 21 



I 

APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

POSSIBLE ERROR RECORD SIZE 

RELEASE Statement uses FROM Option, but size of two record areas 

not the same. Compiler will use shorter length of the two. 

POSSIBLE MOVE CLASS ERROR 

Items moved to differen~ CLASS item 

PROCEDURE MISSING xxxxx 

USE Statement refers to label that is not part of DECLARATIVES. 

PROCEDURE SIZE ERROR 

Generated code for this procedure exceeds 1023 words in length. 

Additional dummy label should be added to procedure. 

PROCEDURE xxxxx SIZE xxxxx 

Information on procedure size 

PRT nnn 

Requested PRT number 

• PRT SIZE nnn 

PRT SIZE ERROR 

Caused by: 

a. Program Reference Table exceeds 511 words. Reduce number 

of 01 levels and COMP-l items (in DATA DIVISION). 

b. Program Reference Table exceeds 1023 words. Reduce number 

of labels used in program (in PROCEDURE DIVISION). 

I QUOTE MISSING LITERAL GREATER THAN 120 CHARACTERS 

READ STATEMENT SYNTAX ERROR 

In READ Statement, word END missing, or SENTENCE in clause AT END 

GO TO NEXT SENTENCE missing 

G-22 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

RECORD SIZE ERROR 

Record size of sort-file not equal to record size of input or output 

file of sort. Program not compiled if record size less than sort 

record size 

RECORD SIZE SELECTED; SORT VECTOR SIZE xxxxx 

RECORD SIZE SELECTED xxxxx 

SORT Statement information. Provided only when SPEC appears in $ 

Card and MEMORY SIZE is below minimum (two times record size) for 

sort 

REDEFINE ERROR 

Operand of REDEFINES Clause illegal 

REDEFINE SIZE ERROR 

Area being redefined not equal to size of new description 

REMOTE IMPROPER FOR NORMA T, SYS 

RIGHT PARENTHESIS MISSING 

Synonym entry requires terminating right parenthesis. 

RIGHT QUOTE MISSING 

SEQUENCE ERROR 

Sequence number appearing in card columns 1 through 6 not greater 

than number of preceding card. Message printed but compilation 

unharmed 

SEQUENCE ERROR nnnn 

SEQUENCE NUMBER TRUNCATION xxxxx 

SIZE DECLARATION ERROR 

Declared size of item and size shown by PICTURE not equal 

Revised 1/8/71 
by peN 1024916-014 G-23 

I 

I 

I 

I 

I 
I 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

SIZE ERROR STATEMENT xxxxx 

Word SIZE or ERROR missing from ON SIZE ERROR clause, or statement 

containing word or symbol shown by xxxxx has caused segment of code 

to exceed 1023 words in length. Additional labels should be added 

to reduce SIZE of segment. 

_ SIZE ERROR WRITE STATEMENT 

I 

SIZE ILLEGAL ACT. KEY 

SIZE ILLEGAL SIZE DEPENDING OPERAND 

Variable size item in this statement has SIZE DEPENDING operand with 

size greater than 11. 

SIZE ILLEGAL SIZE DEPENDING OPERAND FILE xxxxx 

SIZE DEPENDING data-name referred to by READ Statement contains more 

than 11 decimal digits. 

SIZE ILLEGAL SIZE DEPENDING OPERAND RECORD xxxxx 

SIZE DEPENDING data-name referred to by WRITE Statement contains more 

than 11 decimal digits. 

SIZE SPECIFICATION ERROR 

Item declared as CMP-l or COMPUTATIONAL-l cannot exceed 11 decimal 

digits in length. 

SORT MEMORY SIZE 

Amount of memory used for sort if insufficient amount specified 

SORT USAGE ERROR xxxxx 

I SORT VECTOR SIZE xxxxx 

STATEMENT GROUP SIZE ERROR 

Group size greater than 1023 words 

G-24 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

STATEMENT TRUNCATION 

Too many items in DUMP/MONITOR 

SUBSCRIPT SPECIFICATION ERROR 

Item declared as CMP-l or COMPUTATIONAL-l may not be subscripted. 

SUBSCRIPT TRUNCATION 

May not monitor item with more than 10 subscripts 

SUBTR. NO ELEMENT. ITEMS 

SYNTAX ERROR 

In IDENTIFICATION DIVISION, word DIVISION missing following 

IDENTIFICATION 

Any following errors within ENVIRONMENT DIVISION cause this message: 

a. Omission of word DIVISION 

b. Omission of period 

c. Statement form wrong 

d. Invalid hardware-name 

e. No SOURCE-COMPUTER statement (warning only) 

f. MODS used instead of MOD in DISK SIZE 

Any following errors within DATA DIVISION cause this message: 

a. Non-numeric literal specified when numeric literal needed 

b. Numeric literal specified when non-numeric literal needed 

c. VALUE Clause missing 

d. Format literal does not match item description. 

e. OCCURS Clause, with variable number of times, omitting 

DEPENDING ON specification 

f. Word SECTION missing from headers 

Revised 1/8/71 
by peN 1024916-014 G-25 

I 

• 

I 



I 

APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

g. FD or SD used incorrectly 

h. Reserved word used incorrectly 

i. Missing data-name 

j. Figurative constant used incorrectly 

k. Incorrect declaration, i.e., no level-number 

1. Item following SIZE (or SZ) not numeric 

m. Item following OCCURS not numeric 

Any following errors within PROCEDURE DIVISION cause this message: 

a. Illegal operator in EXAMINE Statement 

b. Incorrect record-name (other than one defined by SD) 

included in RELEASE Statement. 

c. END-OF-JOB Card misplaced in source program 

d. Reserved word being EXAMINED 

e. READ or WRITE on SD File 

f. Preceding statement incomplete 

g. Tape opened 1-0 

h. GO TO specifying data-name 

SYNTAX ERROR xxxxx 

xxxxx in error 

SYNTAX ERROR DIVISION MISSING 

Word DIVISION missing or misspelled following PROCEDURE in heading 

G-26 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

SYNTAX ERROR FILE DECLARATION xxxxx 

File-name used is reserved word or has previously been used. 

SYNTAX ERROR GO TO ERROR 

Word after GO not TO 

SYNTAX ERROR GO TO STATEMENT 

Word TO does not follow GO TO statement, or DEPENDING ON clause 

missing 

SYNTAX ERROR ILLEGAL SPELLING 

SYNTAX ERROR LIBRARY MISSING 

LIBRARY missing following FROM 

SYNTAX ERROR MISSING FILE NAME 

In CLOSE State, word following CLOSE not file-name 

SYNTAX ERROR MISSING LABEL 

Required label missing in statement, such as ALTER Label, TO PROCEED 

TO Label, or GO TO Label 

SYNTAX ERROR MISSING LITERAL 

STOP Statement not followed by reserved word RUN or by literal 

SYNTAX ERROR MISSING PERIOD 

Required period missing 

SYNTAX ERROR MISSING PERIOD xxxxx> 

Required period following xxxxx missing 

SYNTAX ERROR MISSING QUALIFICATION xxxxx 

xxxxx not valid qualifier, or MULTIPLY defined without qualifications 

SYNTAX ERROR MISSING VERB 

SYNTAX ERROR MOVE STATEMENT 

Revised 1/8/71 
by PeN 1024916-014 G-27 

I 
I 

I 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

I SYNTAX ERROR NAME -DATA­

SYNTAX ERROR NAME -REMOTE-

SYNTAX ERROR PERFORM STATEMENT 

I SYNTAX ERROR READ STATEMENT 

SYNTAX ERROR SORT STATEMENT 1 

I SORT Statement not first statement of paragraph, or attempt made 

to MONITOR paragraph which contains SORT Statement 

SYNTAX ERROR SORT STATEMENT 2 

Name of sort-file cannot be located in program. Probably because 

of misspelling 

SYNTAX ERROR SORT STATEMENT 3 

Word following SORT not file-name 

SYNTAX ERROR SORT STATEMENT 4 
File-name given, following SORT, is FD file description instead of 

SD sort-file description. 

SYNTAX ERROR SORT STATEMENT 5 

Wrong word appears following sort file-name. Normally, word is ON, 

ASCENDING, or DESCENDING. 

SYNTAX ERROR SORT STATEMENT 6 

Word following ON incorrect, possibly misspelled 

SYNTAX ERROR SORT STATEMENT 7 

Ordering of SORT Statement into ASCENDING or DESCENDING sequence not 

specified 

SYNTAX ERROR SORT STATEMENT 8 

More than 25 keys used in SORT Statement ordering 

G-28 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

SYNTAX ERROR SORT STATEMENT 9 

More than 25 keys used in SORT Statement ordering 

SYNTAX ERROR SORT STATEMENT 10 

Word ASCENDING or DESCENDING either missing or misspelled 

SYNTAX ERROR SORT STATEMENT 11 

One of key names given to ordering key cannot be located in program. 

SYNTAX ERROR SORT STATEMENT 12 

SORT Statement KEY data-name has USAGE that is neither DISPLAY nor 

COMPUTATIONAL. Caused by system failure of some type; either Master 

Control Program, COBOL Compiler, or hardware 

SYNTAX ERROR SORT STATEMENT 13 

CLASS of SORT Statement KEY data-name not correct. Caused by system 

failure within Master Control Program, COBOL Compiler, or hardware 

SYNTAX ERROR SORT STATEMENT 14 

SIGN of SORT Statement KEY data-name not correct. Caused by system 

failure within Master Control Program, COBOL Compiler, or hardware 

SYNTAX ERROR SORT STATEMENT 15 

SORT Statement KEY data-name requires subscripting that is not 

present. 

SYNTAX ERROR SORT STATEMENT 16 

Subscript for data-name in SORT Statement KEY is not unsigned integer 

quantity, and is illegal. 

SYNTAX ERROR SORT STATEMENT 17 

Closing parenthesis, following subscript list for SORT Statement KEY 

data-name, missing 

SYNTAX ERROR SORT STATEMENT 19 

Word following SORT Statement KEY data-name cannot be located in 

program, possibly because of misspelling. 
Revised 1/8/7] 
by peN 1024916-014 G- 29 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

SYNTAX ERROR SORT STATEMENT 20 

Word following sort KEY not found in Dictionary because of 

misspelling, etc. 

SYNTAX ERROR SORT STATEMENT 21 

Reserved word, or symbol such as comma or right parenthesis, expected 

after one of SORT Statement KEY data-names, but not present, or unable 

to be identified because of misspelling, etc. 

SYNTAX ERROR SORT STATEMENT 22 

Word following INPUT cannot be properly identified. 

SYNTAX ERROR SORT STATEMENT 23 
Word following INPUT not PROCEDURE 

SYNTAX ERROR SORT STATEMENT 24 

SORT Statement does not contain INPUT PROCEDURE; therefore, USING 

file-name must be present, but USING cannot be located probably be­

cause of spelling error. 

SYNTAX ERROR SORT STATEMENT 25 

File-name following USING not file-name or is misspelled 

SYNTAX ERROR SORT STATEMENT 26 

File-name following USING cannot be identified as file-name. 

SYNTAX ERROR SORT STATEMENT 27 

File-name following USING has SD sort-file description entry instead 

of FD file description. 

SYNTAX ERROR SORT STATEMENT 28 

Word following USING file-name clause, or INPUT PROCEDURE, cannot be 

identified. 

SYNTAX ERROR SORT STATEMENT 29 

Word following OUTPUT not PROCEDURE 

G-30 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

SYNTAX ERROR SORT STATEMENT 30 

OUTPUT PROCEDURE not specified in SORT Statement; therefore, GIVING 

file-name should be present 

SYNTAX ERROR SORT STATEMENT 31 

Data-name following GIVING cannot be identified in program. 

SYNTAX ERROR SORT STATEMENT 32 

Data-name following GIVING not file-name 

SYNTAX ERROR SORT STATEMENT 33 

Output file-name following GIVING described with SD sort-file 

description instead of FD file description 

SYNTAX ERROR SORT STATEMENT 34 

Period missing following SORT Statement. No other statement 

permitted within same sentence, or paragraph with SORT statement 

SYNTAX ERROR SORT STATEMENT 35 

Period terminating SORT Statement sentence missing 

SYNTAX ERROR SORT STATEMENT 36 

INPUT PROCEDURE and OUTPUT PROCEDURE both refer to same set of 

procedures. Illegal 

SYNTAX ERROR SORT STATEMENT 37 

SORT Statement attempting to use PRT locations in second half of PRT 

SYNTAX ERROR SORT STATEMENT 38 

Warning message, indicating more than one SORT Statement using same 

SD file as scratch tapes 

SYNTAX ERROR SORT STATEMENT 39 

Sort key not in sort record 

SYNTAX ERROR SORT STATEMENT 41 
One or more sort keys exceed 63 characters. 

Revised 1/8/71 
by peN 1024916-014 G-3l 

I 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

.. SYNTAX ERROR VERB SYNTAX ERROR 

SYNTAX ERROR WRITE STATEMENT 

Illegal advancing operand 

II SYNTAX ERROR xxxxx STATEMENT 

SYNTAX TYPE OPERAND 

I 

I 

Improper use of reserved word in EXAMINE Statement, or literal 

intended for SEARCH not bounded by quotes 

TAPE-IN nnnnn 

THIS PERFORM OPTION DELETED FROM TSS 

TO MISSING xxxxx 

xxxxx appears after EQUAL instead of TO 

TOTAL SEG. SIZE nnnnn 

Requested information 

TYPE ILLEGAL ACT. KEY 

UNIDENTIFIED ARITHMETIC NAME xxxxx 

Data-name xxxxx cannot be located in program. 

UNIDENTIFIED ARITHMETIC OPERAND xxx xx 

Data-name or symbol cannot be located in program, probably because 

of spelling errors. 

UNIDENTIFIED COpy OPERAND 

Data-name following COpy cannot be located in program thus far 

because of spelling errors or forward reference. 

UNIDENTIFIED HARDWARE 

Hardware-name used not permitted in Compiler 

G-32 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

UNIDENTIFIED LIBRARY NAME xxxxx 

Name cannot be located in library. 

UNIDENTIFIED NAME 

Name given cannot be located in program. 

UNIDENTIFIED NAME xxxxx 

Data-name or label xxxxx cannot be located in program, or Compiler 

is looking for reserved word. RECORD or CHARACTER may be misspelled 

in BLOCK CONTAINS. 

UNIDENTIFIED OPERAND xxxxx 

Data given in forward reference not in DATA DIVISION 

UNIDENTIFIED RECORD xxxxx 

Record-name xxxxx, defined by 01 level entry, is not given in DATA 

RECORDS Clause; or record-name xxxxx, appearing in DATA RECORDS 

Clause, does not appear as an 01 level entry. 

UNIDENTIFIED REDEFINE OPERAND 

Operand does not appear in prior description. 

UNIDENTIFIED VERB xxxxx 

Verb beginning statement cannot be identified by Compiler. 

-UNTIL- DELETED FROM TSS 

USAGE ERROR 

Caused by: 

a. COMPUTATIONAL usage has been declared for file which is to 

unit other than tape or drum. 

it will be binary word.) 

(If item is COMPUTATIONAL, 

b. Usage not declared as DISPLAY, COMPUTATIONAL, or CMP, or 

else omitted completely to imply DISPLAY 

c. Usage must be DISPLAY for item in EXAMINE Statement. 
Revised 1/8/71 
by peN 1024916-014 G- 33 

I 

I 

I 



APPENDIX G (cont) 

COBOL COMPILER ERROR AND DIAGNOSTIC MESSAGES 

II USAGE SPECIFICATION ERROR 

VALUE NOT INTEGER xxxxx 

Value stated in diagnostic dump statement, as condition when state­

ment is to be executed, not an integer 

VALUE TYPE ERROR 

VALUE stated for level 88 entry does not agree with CLASS given for 

conditional-variable. 

I -WHEN- DELETED FROM TSS 

G-34 



Error 
Message No. 

000 

001 

002 

003 

004 

005 

006 

007 

008 

009 

010 

011 

012 

013 

014 

015 

016 

017 

018 

019 

020 

021 

022 

023 

024 

025 

026 

027 

028 

029 

030 

031 

032 

APPENDIX H 

FORTRAN COMPILER ERROR MESSAGES 

Meaning 

Syntax error. 

Missing operator or punctuation. 

Conflicting COMMON and/or EQUIVALENCE ALLOCATION. 

Missing right parenthesis. 

ENTRY statement illegal in main program or BLOCK DATA. 

Missing END statement. 

Arithmetic expression required. 

Logical expression required. 

Too many left parentheses. 

Too many right parentheses. 

Formal parameter illegal in COMMON. 

Formal parameter illegal in EQUIVALENCE. 

This statement illegal in BLOCK DATA subprogram. 

INFO array overflow. 

Improper DO nest. 

DO label previously defined. 

Unrecognized statement type. 

Illegal DO statement. 

FORMAT statement must have label. 

Undefined label. 

Multiple definition. 

Illegal identifier class in this context. 

Unpaired quotes in FORMAT. 

Not enough subscripts. 

Too many subscripts. 

FUNCTION or SUBROUTINE previously defined. 

Formal parameter multiply defined in heading. 

Illegal use of NAMELIST. 

Number of parameters inconsistent. 

Cannot branch to FORMAT statemenL. 

SUBROUTINE or FUNCTION not defined in program. 

Identifier already given type. 

Illegal FORMAT syntax. 

H-1 



Error 
Message No. 

033 

034 

035 

036 

037 

038 

039 
040 

041 

042 

043 

044 

045 

046 

047 

048 

049 

050 

051 

052 

053 

054 

055 

056 

057 

058 

059 

060 

061 

062 

063 

064 

065 

H-2 

APPENDIX H (cont) 

FORTRAN COMPILER ERROR MESSAGES 

Meaning 

Incorrect use of file. 

Inconsistent use of identifier. 

Array identifier expected. 

Expression value required. 

Illegal file card syntax. 

Illegal control element. 

Declaration must precede first reference. 

Inconsistent use of label as parameter. 

Number of parameters disagrees with previous reference. 

Illegal use of formal parameter. 

Error in hollerith literal character count. 

Illegal use of formal parameter. 

Too many segments in source program. 

Too many PRT assignments in source program. 

Last block declaration had less than 1024 words. 

Illegal I/O list elemen~ 

Left side must be simple or subscripted variable. 

Variable expected. 

Illegal use of .OR. 

Illegal use of .AND. 

Illegal use of .NOT. 

Illegal use of relational operator. 

Illegal mixed types. 

Illegal expression structure. 

Illegal parameter. 

Record block greater than 1023. 

Too many optional files. 

File cards must precede source deck. 

Binary WRITE statement has no list. 

Undefined FORMAT number. 

Illegal exponent in constant. 

Illegal constant in DATA statement. 

Main program missing. 



Error 
Message No. 

066 

067 

068 

069 

070 

071 

072 

073 

074 

075 

076 

077 

078 

079 

080 

081 

082 

083 

084 

085 

086 

087 

088 

089 

090 

091 

092 

093 

094 

095 

096 

097 

098 

APPENDIX H (cont) 

FORTRAN COMPILER ERROR MESSAGES 

Meaning 

Parameter must be array identifier. 

Parameter must be expression. 

Parameter must be label. 

Parameter must be FUNCTION ident ifier. 

Parameter must be FUNCTION or SUBROUTINE 

Parameter must be SUBROUTINE ident ifier. 

ID. 

Parameter must be array identifier or expression. 

Arithmetic - logical conflict on stor~ 

Array ID must be subscripted in this context. 

More than one main program. 

Only COMMON elements permitted. 

Too many files. 

FORMAT or NA~IELIST too long. 

Formal parameter must be array identifier. 

Formal parameter must be simple variable. 

Formal parameter must be FUNCTION identifier. 

Formal parameter must be SUBROUTINE identifier. 

Formal parameter must be FUNCTION or SUBROUTINE. 

DO or implied DO index must be integer or real 

Illegal complex constant. 

Illegal mixed type store. 

Constant exceeds hardware limits. 

Parameter type conflicts with previous use. 

Complex expression illegal in IF statement. 

Complex expression illegal in relation. 

Too many formats referenced but not yet found. 

Variable array bound must be formal variable. 

Array bound must have integer or real type. 

Comma or right parenthesis expected. 

Array already given bounds. 

Only formal arrays must be given variable bounds. 

Missing left parenthesis in implied DO. 

Subscript must be integer or real. 

H-3 



£rror 
Message No. 

099 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

H-4 

APPENDIX H (cont) 

FORTRAN COMPILER ERROR MESSAGES 

Meaning 

Array size cannot exceed 32767 words. 

COMMON or EQUIVALENCE block cannot exceed 32767 words. 

This statement illegal in logical IF. 

Real or integer type required. 

Array bound information required. 

Replacement operator expected. 

Identifier expected. 

Left parenthesis expected. 

Illegal formal parameter. 

Right parenthesis expected. 

Statement number expected. 

Slash expected. 

ENTRY statement cannot start program unit. 

Array must be dimensioned prior to equivalence statement. 

Integer constant expected. 

Comma expected. 

Slash or end of statement expected. 

FORMAT, array or NAMELIST expected. 

End of statement expected. 

IO statement with NAMELIST cannot have IO list. 

Comma or end of statement expected. 

String too long. 

Missing quote at end of string. 

Illegal array bound. 

Too many hanging branches. 

Too many COMMON or EQUIVALENCE elements. 

Asterisk expected. 

Comma or slash expected. 

Data set too large. 

Too many ENTRY statements in this subprogram. 

Decimal width exceeds field width. 

Unspecified field width. 

Unspecified scale factor. 



Error 
Message No. 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

APPENDIX H (cont) 

FORTRAN COMPILER ERROR MESSAGES 

Meaning 

Illegal FORMAT character. 

Unspecified decimal field. 

Decimal field illegal for this specifier. 

Illegal label. 

Undefined NAMELIST. 

Multiply defined action labels. 

Too many nested DO statements. 

Statement FUNCTION ID and expression disagree in type. 

Illegal use of statement FUNCTION. 

Unrecognized construct. 

RETURN, STOP or CALL EXIT required in subprogram. 

Format number used previously as label. 

Label used previously as FORMAT number. 

Non-standard RETURN requires label parameters. 

Double or complex requires even offset. 

FORMAT parameter illegal in DATA statement. 

Sequence error "nff < "p", 
where n is the new sequence number and p is the old 
sequence number. 

H-5 



APPENDIX I 

FORTRAN TRANSLATOR ERROR MESSAGES 

Error 
Message No. Meaning 

01 The identifier is not a real or integer, single 

precision variable. 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

The statement number is negative or zero. 

The statement number contains more than five digits. 

A special character is incorrectly placed in the 

statement. 

An identifier contains more than six characters. 

An identifier is missing. 

The first character of an identifier is not alphabetic. 

An array contains a zero subscript. 

The identifier is not a simple variable. 

The maximum limit of an array subscript exceeds 32767. 

The number of subscripts of a subscripted variable does 

not agree with the number declared by the DIMENSION 

statement. 

A subscript of an identifier is in error. 

The statement is incomplete. 

The number of actual arguments of a function does not 

agree with the number of dummy arguments. 

The statement contains an undefined function. 

An identifier used -to represent a function has not been 

defined as such. 

I-I 



Error 
Message No. 

17 

18 

19 

20 

21 

22 

2J 

24 

25 

26 

27 

28 

29 

JO 

Jl 

I-2 

APPENDIX I (cant) 

FORTRAN TRANSLATOR ERROR MESSAGES 

Meaning 

The identifier is not an integer, real or logical, 

single precision variable. 

An identifier is used improperly in the statement. 

The subroutine name in the CALL statement has already 

been used to represent another identifier. 

There is an illegal identifier in a SUBROUTINE argument 

list. 

The expression contains an illegally placed character. 

The relational expression does not contain a relational 

operator. 

The FORMAT statement calls for a total field width 

count exceeding IJ2 print positions. 

The tape unit number is zero or exceeds the maximum 

limit. 

An illegal identifier is present in an I/O list or an 

assignment statement. 

An equal sign is missing from a compound I/O list. 

A right parenthesis is missing from a compound I/O list. 

A comma is missing from a compound I/O list. 

A compound I/O list contains duplicate index identifiers. 

The number of nested I/O implied DO loops exceeds the 

maximum allowed. 

A compound I/O list is incorrectly written. 



APPENDIX I (cont) 

FORTRAN TRANSLATOR ERROR MESSAGES 

Error 
Message No. Meaning 

32 An I/O list contains an identifier name that does not 

begin with an alphabetic character. 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

46 

A MONITOR or DUMP statement contains an illegal element. 

The array has been previously dimensioned. 

An array has more than three dimensions. 

A variable name used as a dimension is not present in the 

subprogram argument list. 

A variable name used as a dimension is not a simple 

integer. 

A DO loop overlays another DO loop. 

A FORMAT statement does not have a statement number. 

The name of a statement function has been used to repre­

sent another type identifier. 

The subprogram argument list contains duplicate arguments 

or an argument list that is represented by the same 

identifier as the subprogram. 

A DO loop ends with another DO statement. 

The terminal statement number of a DO loop precedes the 

DO statement. 

An index identifier of a DO statement is not an integer 

variable. 

An illegal identifier appears in a COMMON or EQUIVALENCE 

list. 

1-3 



APPENDIX I (cont) 

FORTRAN TRANSLATOR ERROR MESSAGES 

Error 
Message No. Meaning 

47 The number of arguments in the argument list of a SUB­

ROUTINE call does not agree with the number of dummy 

arguments. 

48 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

I-4 

This statement is not implemented. 

A SUBROUTINE identifier exceeds six characters. 

An identifier appears more than once in COMMON. 

A dummy argument of a subprogram appears in the 

EQUIVALENCE list. 

Two identifiers in COMMON have been set equivalent. 

An identifier is missing from an EQUIVALENCE list element. 

An identifier in an EXTERNAL statement is present in 

COMMON or in an EQUIVALENCE list. 

An identifier is defined before its appearance in a 

Type statement. 

The statement is undefined. 

The / is used illegally. 

The $ is used illegally. 

The first special character in the statement is in error. 

The statement number has been duplicated. 

The number of DATA elements in the DATA statement does 

not agree with the number of identifiers in the DATA 

list. 

A DATA list identifier is not a variable name. 



APPENDIX I (cont) 

FORTRAN TRANSLATOR ERROR MESSAGES 

Error 
Message No. Meaning 

63 An * in a DATA statement is preceded by a zero. 

64 The identifier is not a logical variable. 

65 

66 

67 

68 

69 

70 

71 

72 

74 

75 

77 

78 

79 

The character following the @ is in error. 

A MAX or MIN function has less than two arguments. 

The DATA statement contains an illegal logical constant. 

The number of characters in the statement exceeds the 

maximum allowed. 

The TAPE declaration on the START$ card specifies an 

excessive number of units. 

The integer following the OCTAL option on the START$ 

card exceeds 1023 or has been declared zero. 

The START$ card contains an illegal item. 

The final $ is missing on the START$ card. 

The statement function has been defined after the first 

executable statement. 

An identifier other than a subscripted variable is 

dimensioned. 

A file number < 0 has been given for a disk file. 

The number of areas given for a disk file is < 0 or > 20. 

The number of logical records for a disk file is < 0 or 

> 1048575. 

The number of words in a record for a disk file is < 0 or 

> 524287. 

I-5 



APPENDIX I (cont) 

FORTRAN TRANSLATOR ERROR MESSAGES 

Error 
Message No. Meaning 

80 The identifier representing an associated variable for 

a disk file exceeds six characters. 

81 

82 

83 

84 

85 

86 

90 

91 

92 

93 

95 

I-6 

The size of the record has not been given for the 

temporary file. 

The associated variable has not been specified for the 

random file. 

A Find statement is not necessary and is not implemented. 

The Define File statement is not necessary and is not 

implemented. 

There is not enough information for the disk file. 

The save factor for a disk file is < 0 or > 1023. 

A FORTRAN II logical expression contains an illegal 

symbol. 

A FORTRAN II logical expression uses a (-) incorrectly. 

A FORTRAN II logical expression is not assigned to a 

REAL name. 

A FORTRAN II IF statement contains an illegal two way 

branch. 

The TWO/FOUR indicator card is missing. 

An identifier name in FORTRAN II exceeds three characters 

and ends in F. 



ERROR 
NUMBER 

000 

001 

002 

003 

005 

006 

007 

008 

009 

010 

011 

012 

013 

014 

015 

016 

018 

019 

020 

021 

023 

APPENDIX J 

COMPATIBLE ALGOL COMPILER ERROR MESSAGES 

ROUTINE 

BLOCK 

BLOCK,ENTRY 

PROCEDUREDEC, 
ENTRY 

BLOCK,ENTRY 

BLOCK 

BLOCK 

BLOCK 

BLOCK 

BLOCK 

BLOCK 

BLOCK 

BLOCK 

ARRAE 

ARRAE 

ENTRY 

ARRAE 

ARRAE 

ARRAE 

ARRAE 

BLOCK 

BLOCK 

CHKSOB 

ERROR MESSAGE 

DECLARATION NOT FOLLOWED BY SEMICOLON. 

IDENTIFIER DECLARED TWICE IN SAME 
BLOCK. 

SPECIFICATION PART CONTAINS IDENTIFIER 
NOT APPEARING IN FORMAT PARAMETER PART. 

NON-IDENTIFIER APPEARS IN IDENTIFIER 
LIST OF DECLARATION. 

PROCEDURE DECLARATION PRECEDED BY 
ILLEGAL DECLARATOR. 

PROCEDURE IDENTIFIER USED BEFORE IN 
SAME BLOCK (NOT FORWARD). 

PROCEDURE IDENTIFIER NOT FOLLOWED BY 
( OR SEMICOLON IN PROCEDURE 
DECLARATION. 

FORMAL PARAMETER LIST NOT FOLLOWED 
BY ). 

FORMAL PARAMETER PART NOT FOLLOWED BY 
SEMICOLON. 

VALUE PART CONTAINS IDENTIFIER WHICH 
DID NOT APPEAR IN FORMAL PARAPART. 

VALUE PART NOT ENDED BY SEMICOLON. 

MISSING OR ILLEGAL SPECIFICATION PART. 

OWN USED IN ARRAY SPECIFICATION. 

SAVE USED IN ARRAY SPECIFICATION. 

ARRAY CALL-BY-VALUE NOT IMPLEMENTED. 

ARRAY ID IN DECLARATION NOT FOLLOWED 
BY [. 

LOWER BOUND IN ARRAY DEC NOT FOLLOWED 
BY:. 

BOUND PAIR LIST NOT FOLLOWED BY J. 
ILLEGAL LOWER BOUND DESIGNATOR IN 
ARRAY SPECIFICATION. 

OWN APPEARS IMMEDIATELY BEFORE 
IDENTIFIER (NO TYPE). 

SAVE APPEARS IMMEDIATELY BEFORE 
IDENTIFIER (NO TYPE). 

DECLARATOR PRECEDED ILLEGALLY BY 
ANOTHER DECLARATOR. 

Revised 1/8/71 
by peN 1024916-014 J-1 



I 

ERROR 
NUMBER 

024 

025 

026 

027 

028 

029 

0)0 

0)1 

0)2 

0)) 

0)4 

0)5 

0)6 

0)7 

0)8 

0)9 

040 

041 

042 

04) 

044 

045 

046 

047 

048 

049 

J-2 

APPENDIX J (cant) 

COMPATIBLE ALGOL COMPILER ERROR MESSAGES 

ROUTINE 

BLOCK 

BLOCK,ENTER 

IODEC 

IODEC 

IODEC 

IODEC 

IODEC 

BLOCK 

FORMATGEN 

IODEC,BLOCK 

IODEC 

IODEC 

FORMATGEN 

FORMATGEN 

FORMATGEN 

BLOCK 

IODEC 

HANDLESWLIST 

HANDLESWLIST 

IODEC 

IODEC 

DEFINEDEC,BLOCK 

ARRAE 

TABLE 

BLOCK 

BLOCK 

ERROR MESSAGE 

LABEL CANNOT BE PASSED TO FUNCTION. 

DECLARATOR OR SPECIFIER ILLEGALLY 
PRECEDED BY OWN OR SAVE OR SOME OTHER 
DECLARATOR. 

MISSING ( IN FILE DEC. 

MISSING RECORD SIZE. 

ILLEGAL BUFFER PART OR SAVE FACTOR 
IN FILE DEC. 

MISSING) IN FILE DEC. 

MISSING COLON IN DISK DESCRIPTION. 

MISSING ( IN LISTDEC. 

MISSING ( IN FORMAT DEC. 

SWITCH DEC DOES NOT HAVE - OR 
FORWARD AFTER IDENTIFIER. 

MISSING - AFTER FILED. 

NON FILE ID APPEARING IN DECLARATION 
OF SWITCHFILE. 

FORMAT ID NOT FOLLOWED BY -. 

MISSING ( AT START OF FORMATPHRASE. 

FORMAT SEGMENT> 102) WORDS. 

NUMBER OF NESTED BLOCKS IS GREATER 
THAN )1. 

PROGRAM PARAMETER BLOCK SIZE EXCEEDED. 

MISSING - AFTER SWITCH LIST ID. 

ILLEGAL LIST ID APPEARING IN SWITCH 
LIST 

MISSING] AFTER DISK IN FILEDEC. 

MISSING [ AFTER DISK IN FILEDEC. 

MISSING "=" AFTER DEFINE ID. 

NON-LITERAL ARRAY BOUND NOT GLOBAL 
TO ARRAY DECL. 

ITEM FOLLOWING @ NOT A NUMBER. 

NUMBER OF PARAMETERS DIFFERS FROM 
FWD DECL. 

CLASS OF PARAMETER DIFFERS FROM FWD 
DECL. 



ERROR 
NUMBER 

050 

059 

061 

062 

063 

070 

071 

072 

073 

074 

075 

076 

077 

078 

079 

080 

090 

091 

092 

093 

094 

095 

100 

101 

APPENDIX J (cont) 

COMPATIBLE ALGOL COMPILER ERROR MESSAGES 

ROUTINE 

BLOCK 

ARRAE 

FAULTDEC 

SCANSTMT OR 
REPLACESTMT 

SCANSTMT OR 
REPLACESTMT 

CASESTMT 

CASESTMT 

SCANSTMT OR 
REPLACESTMT 

SCANSTMT OR 
HEPLACESTMT 

SCANSTMT OR 
REPLACESTMT 

SCANSTMT OR 
REPLACESTMT 

REPLACESTMT 

REPLACESTMT 

SCANSTMT OR 
REPLACESTMT 

PRIMARY 

PRIMARY 

PARSE 

PARSE 

PARSE 

PARSE 

PARSE 

PARSE 

Anywhere 

CHECKER 

ERROR MESSAGE 

VALUE PART DIFFERS FROM FWD DECL. 

MISSING ~ IN FAULT STATEMENT. 

INVALID FAULT TYPE: MUST BE FLAG, EXPOVR, 
ZERO, INTOVR, OR INDEX. 

LEVEL OF POINTER EXPRESSION EXCEEDS 
LEVEL OF UPDATE POINTER IDENTIFIER. 

UPDATE POINTER MAY NOT BE CALL-BY-NAME 
FORMAL PARAMETER. 

MISSING "BEGIN". 

MISSING END. 

POINTER IDENTIFIER REQUIRED. 

SIMPLE ARITHMETIC VARIABLE REQ. 

RELATIONAL OP OR IN EXPECTED. 

CONDITION MUST START WITH WHILE OR 
UNTIL. 

BY MISSING AFTER DESTINATION POINTER. 

SOURCE MUST BE POINTER OR ARTTHMRTIC 
EXP. 

ALPHA REQUIRED AFTER IN. 

ILLEGAL EXPRESSION TYPE. 

MISSING COMMA. 

MISSING LEFT BRACKET. 

MISSING COLON. 

ILLEGAL BIT NUMBER. 

I 

FIELD SIZE MUST BE LITERAL. 

MISSING RIGHT BRACKET. 

ILLEGAL FIELD SIZE. 

UNDECLARED IDENTIFIER. • 
AN ATTEMPT HAS BEEN MADE TO ADDRESS AN 
IDENTIFIER WHICH IS LOCAL TO ONE 
PROCEDURE AND GLOBAL TO ANOTHER. IF 
THE QUANTITY IS A PROCEDURE NAME OR AN 
OWN VARIABLE, THIS RESTRICTION IS 
RELAXED. 

Revised 1/8/71 
by peN 1024916-014 J - 3 



ERROR 
NUMBER 

102 

10'3 

. 1104 

105 

106 

107 

108 

109 

110 

III 

112 

• 113 

114 

115 

116 

117 

11H 

119 

120 

121 

123 

124 

J-4 

APPENDIX J (cant) 

COMPATIBLE ALGOL COMPILER ERROR MESSAGES 

ROUTINE ERROR MESSAGE 

AEXP CONDITIONAL EXPRESSION IS NOT OF 
ARITHMETIC TYPEH. 

PRIMARY PRIMARY MAY NOT START WITH A QUANTITY 
OF THIS TYPE . 

Anywhere MISSING RIGHT PARENTHESIS. 

Anywhere MISSING LEFT PARENTHESIS. 

PRIMARY PRIMARY MAY NOT START WITH DECLARATOR. 

BEXP THE EXPRESSION IS NOT OF BOOLEAN TYPE. 

EXPRSS A RELATION MAY NOT HAVE CONDITIONAL 
EXPRESSIONS AS THE ARITHMETIC 
EXPRESSIONS. 

BOOSEC, SIMPBOO, THE PRIMARY IS NOT BOOLEAN. 
AND BOOCOMP 

BOOCOMP A NON-BOOLEAN OPERATOR OCCURS IN A 
BOOLEAN EXPRESSION. 

BOOPRIM NO EXPRESSION (ARITHMETIC, BOOLEAN, OR 
DESIGNATIONAL) MAY START WITH A QUANTITY 
OF THIS TYPE. 

BOOPRIM NO EXPRESSION (ARITHMETIC, BOOLEAN, 
OR DESIGNATIONAL) MAY START WITH A 
DECLARATOR • 

PARSE EITHER THE SYNTAX OR THE RANGE OF THE 
LITERALS FOR A CONCATENATE OPERATOR IS 
INCORRECT. 

DOTSYNTAX EITHER THE SYNTAX OR THE RANGE OF THE 
LITERALS FOR A PARTIAL WORD DESIGNATOR 
IS INCORRECT. 

DEXP THE EXPRESSION IS NOT OF DESIGNATIONAL 
TYPE. 

IFCLAUSE MISSING THEN. 

BANA MISSING LEFT BRACKET. 

BANA MISSING RIGHT BRACKET. 

COMPOUNDTAIL MISSING SEMICOLON OR END. 

COMPOUNDTAIL MISSING END. 

ACTUALPARAPART INDEXED FILES MAY NOT BE PASSED. 

A CTUALPARA PART THE ACTUAL AND FORMAL PARAMETERS DO NOT 
AGREE AS TO TYPE. 

ACTUALPARAPART ACTUAL AND FORMAL ARRAYS DO NOT HAVE 
SAME NUMBER OF DIMENSIONS. 



ERROR 
NUMBER 

126 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

APPENDIX J (cont) 

COMPATIBLE ALGOL COMPILER ERROR MESSAGES' 

ROUTINE 

ACTUALPARAPART 

ACTUALPARAPART, 
PROCSTMT 

ACTUALPARAPART, 
IMP FUN 

RELSESTMT 

DOSTMT 

WHILESTMT 

LABELR 

LABELR 

LABELR 

FORMATPHRASE 

FORMATPHRASE, 
GETINT 

FORMATPHRASE, 
DIVIDE 

TABLE 

NEXTENT 

SCANNER,TABLE, 
FIXDEFINEINFO 

DEFINEGEN 

COMPOUNDTAIL 

STMT 

STMT 

STMT 

SWITCHGEN 

GETSPACE 

GETSPACE 

ERROR MESSAGE 

NO ACTUAL PARAMETER MAY START WITH A 
QUANTITY OF THIS TYPE. 

EITHER ACTUAL AND FORMAL PARAMETERS DO 
NOT AGREE AS TO NUMBER, OR EXTRA RIGHT • 
PARENTHESIS. 

ILLEGAL PARAMETER DELIMITER. 

NO FILE NAME. 

MISSING UNTIL. 

MISSING DO. 

MISSING COLON. 

THE· LABEL WAS NOT DECLARED IN THIS 
BLOCK. 

THE LABEL HAS ALREADY OCCURRED. 

IMPROPER FORMAT EDITING PHRASE. 

A FORMAT EDITING PHRASE DOES NOT HAVE 

• 

AN INTEGER WHERE AN INTEGER IS REQUIRED. II 
THE WIDTH IS TOO SMALL IN E OR F 
EDITING PHRASE. • 

DEFINE IS NESTED MORE THAN EIGHT DEEP. 

AN INTEGER IN A FORMAT IS GREATER 
THAN 1023. 

INTEGER OR IDENTIFIER HAS MORE THAN 
63 CHARACTERS. 

A DEFINE CONTAINS MORE THAN 2047 
CHARACTERS (BLANK SUPPRESSED). 

EXTRA END. 

NO STATEMENT MAY START WITH THIS TYPE 
IDENTIFIER. 

NO STATEMENT MAY START WITH THIS TYPE 
QUANTITY. 

NO STATEMENT MAY START WITH A DECLARATOR 
- MAY BE A MISSING END OF A PROCEDURE 
OR A MISPLACED DECLARATION. 

MORE THAN 256 EXPRESSIONS IN A SWITCH 
DECLARATION. 

MORE THAN 1023 PROGRAM REFERENCE TABLE 
CELLS ARE REQUIRED FOR THIS PROGRAM. 

MORE THAN 255 STACK CELLS ARE REQUIRED 
FOR THIS PROCEDURE. 

Revised 1/8/71 
by peN 1024916·014 J - 5 

I 



I 

• 

ERROR 
NUMBER 

150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

199 

200 

J-6 

APPENDIX J (cant) 
COMPATIBLE ALGOL COMPILER ERROR MESSAGES 

ROUTINE 

THRUSTMT 

FORSTMT 

FORSTMT 

FORLIST 

FORLIST 

IFEXP 

LISTELEMENT 

LISTELEMENT 

LISTELEMENT 

PROCSTMT 

PURGE 

PURGE 

PURGE 

EMITFORMAT 

UNKNOWNSTMT 

IMP FUN 

PEXP 

PTRPRIMARY 

VARIABLE 

ARRAE 

SWAPSTMT 

SWAPSTMT 

DEFINEDEC 

DEFINEDEC 

FIXDEFINEINFO 

E 

EMIT,EMITWORD 

ERROR MESSAGE 

MISSING DO IN THRU CLAUSE. 

INDEX VARIABLE MAY NOT BE BOOLEAN. 

MISSING LEFT ARROW FOLLOWING INDEX 
VARIABLE. 

MISSING UNTIL OR WHILE IN STEP ELEMENT. 

MISSING DO IN FOR CLAUSE. 

MISSING ELSE. 

A DESIGNATIONAL EXPRESSION MAY NOT BE 
A LIST ELEMENT. 

A ROW DESIGNATOR MAY NOT BE A LIST 
ELEMENT. 

MISSING RIGHT BRACKET IN GROUP ELEMENTS. 

ILLEGAL USE OF PROCEDURE OR FUNCTION 
IDENTIFIER. 

DECLARED LABEL DOES NOT OCCUR. 

DECLARED FORWARD PROCEDURE DOES NOT 
OCCUR. 

DECLARED SWITCH FORWARD DOES NOT OCCUR. 

THE WIDTH OF A FIELD IS MORE THAN 63. 

MISSING COMMA IN ZIP OR WAIT STATEMENT. 

MISSING COMMA IN DELAY PARAMETER LIST. 

THE EXPRESSION IS NOT OF POINTER TYPE. 

POINTER PRIMARY MAY NOT START WITH A 
QUANTITY OF THIS TYPE. 

POINTER MAY NOT HAVE PARTIAL WORD SYNTAX. 

POINTER ARRAYS NOT PERMITTED. 

MISSING COMMA. 

PARAMETERS MUST BE 2-DIMENSIONAL ARRAYS. 

TOO MANY PARAMETERS IN PARAMETRIC DEFINE. 

RIGHT PARENTHESIS OR RIGHT BRACKET 
EXPECTED AFTER PARAMETER IN PARAMETRIC 
DEFINE DECLARATION. 

INCORRECT NUMBER OF PARAMETERS IN 
PARAMETRIC DEFINE INVOCATION. 

INFO "TABLE" ARRAY HAS OVERFLOWED. 

SEGMENT TOO LARGE (> 4093 SYLLABLES). 



ERROR 
NUMBER 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

218 

219 

268 

269 

281 

APPENDIX J (cant) 

COMPATIBLE ALGOL COMPILER ERROR MESSAGES 

ROUTINE 

VARIABLE 

VARIABLE 

VARIABLE 

VARIABLE 

VARIABLE 

VARIABLE 

VARIABLE 

VARIABLE 

VARIABLE 

VARIABLE 

VARIABLE, 
DBLSTMT 

VARIABLE 

MAKEPOINTER 

STRINGRELATION 

MAKEPOINTER 

VARIABLE 

VARIABLE 

STRINGRELATION 

BOOPRIM 

EMITC 

TABLE 

DBLSTMT 

ERROR MESSAGE 

VARIABLES: PARTIAL WORD DESIGNATOR 
NOT LEFT-MOST IN LEFT PART LIST. 

VARIABLES: MISSING • OR ~ • 

WRONG NUMBER OF SUBSCRIPTS IN A ROW 
DESIGNATOR. 

MISSING ] IN A ROW DESIGNATOR. 

A ROW DESIGNATOR APPEARS OUTSIDE OF AN 
ACTUAL PARAMETER LIST OR FILL STATEMENT. 

MISSING J. 

MISSING [. 

WRONG NUMBER OF SUBSCRIPTS. 

ARRAYS: PARTIAL WORD DESIGNATOR 
NOT LEFT-MOST IN LEFT PART LIST. 

ARRAYS: MISSING. OR ~ . 

PROCEDURE ID USED OUTSIDE OF SCOPE IN 
LEFT PART. 

SUB-ARRAY DESIGNATOR PERMITTED AS ACTUAL 
PARAMETER ONLY. 

POINTER REQUIRES ARRAY ROW, SUBSCRIPTED 
VARIABLE, OR ONE-DIMENSIONAL ARRAY ID. 

POINTER RELATION MUST BE = OR ~ ONLY. 

CHARACTER SIZE MUST BE LITERAL 6 or 8. 

LEVEL OR POINTER EXPRESSION EXCEEDS 
LEVEL OR LEFT-PART POINTER IDENTIFIER. 

LEFT-PART POINTER MAY NOT BE CALL-BY­
NAME FORMAL PARAMETER. 

POINTER UPDATE NOT PERMITTED WITH 
POINTER RELATION. 

RELATIONAL OPERATOR EXPECTED WHEN 
POINTER UPDATE CONSTRUCT USED. 

A REPEAT INDEX ~ 64 WAS SPECIFIED OR 
TOO MANY FORMAL PARAMETERS, LOCALS, 
AND LABELS. 

A CONSTANT IS SPECIFIED WHICH IS TOO 
LARGE OR TOO SMALL. 

MISSING {. 

Revised 1/8/71 
by PCN 1024916-014 J -7 



• 

• 

ERROR 
NUMBER 

282 

283 

284 

285 

286 

300 

301 

302 

303 

304 

305 

350 

351 

352 

353 

354 

355 

356 

357 

358 

359 

360 

J-8 

APPENDIX J (cant) 

COMPATIBLE ALGOL COMPILER ERROR MESSAGES 

ROUTINE 

DBLSTMT 

DBLSTMT 

DBLSTMT 

DBLSTMT 

DBLSTMT 

FILLSTMT 

FILLSTMT, 
MAKEALABEL 

FILLSTMT 

FILLSTMT 

FILLSTMT 

FILLSTMT 

CHECKCOMMA 

OUTPROCHECK 

OUTPROCHECK 

OUTPROCHECK 

OUTPROCHECK 

SORTSTMT 

HVCHECK 

HVCHECK 

HVCHECK 

EQLESCHECK 

EQLESCHECK 

EQLESCHECK 

EQLESCHECK 

ERROR MESSAGE 

TOO MANY OPERATORS. 

TOO MANY OPERANDS. 

MISSING ,. 

MISSING ). 

AN UNDECLARED VARIABLE WAS USED. 

THE IDENTIFIER FOLLOWING THE WORD FILL 
IS NOT AN ARRAY IDENTIFIER. 

MISSING WITH IN FILL STATEMENT. 

IMPROPER FILL ELEMENT. 

NON OCTAL CHARACTER IN OCTAL FILL. THE 
THREE LOW ORDER BITS ARE CONVERTED AND 
COMPILATION CONTINUES. 

IMPROPER ROW DESIGNATOR. 

NUMBER OF DATA WORDS EXCEEDS 1023. 

MISSING OR ILLEGAL PARAMETER DELIMITER 
IN SORT OR MERGE STATEMENT. 

ILLEGAL TYPE FOR SORT OR MERGE OUTPUT 
PROC. 

OUTPUT PROCEDURE IN SORT OR MERGE STMT 
DOES NOT HAVE EXACTLY TWO PARAMETERS. 

FIRST PARAMETER OF OUTPUT PROCEDURE 
MUST BE BOOLEAN. 

SECOND PARAM OF OUTPUT PROCEDURE MUST 
BE ONE-DIM ARRAY. 

MISSING {. 

ILLEGAL TYPE FOR SORT OR MERGE HIGHVALUE 
PRO. 

HIVALUE PROCEDURE DOES NOT HAVE EXACTLY 
ONE PARAMETER. 

HIVALUE PROCEDURE PARAM NOT ONE-DIM 
ARRAY. 

SORT OR MERGE COMPARE PROCEDURE NOT 
BOOLEAN. 

COMPARE PROCEDURE DOES NOT HAVE EXACTLY 
TWO PARAMETERS. 

COMPARE PROCEDURE FIRST PARAM NOT 1-D 
ARRAY. 

COMPARE PROCEDURE SECOND PARAM NOT 1-D 
ARRAY. 



ERROR 
NUMBER 

363 

364 

365 

366 

367 

368 

369 
400 

401 

402 

403 

404 

405 

406 

407 

408 

409 

410 

411 

412 

413 

414 

415 

416 

417 

418 

APPENDIX J (cont) 

COMPATIBLE ALGOL COMPILER ERROR MESSAGES 

ROUTINE 

INPROCHECK 

INPROCHECK 

INPROCHECK 

SORTSTMT 

MERGESTMT 

MERGESTMT 

MERGESTMT 

MERRIMAC 

MERRIMAC 

MERRIMAC 

MERRIMAC 

MERRIMAC 

MERRIMAC 

MERRIMAC 

MERRIMAC 

MERRIMAC 

DMUP 

DMUP 

DMUP 

DMUP 

DMUP 

DMUP 

DMUP 

DMUP 

DMUP 

DMUP 

ERROR MESSAGE 

SORT STMT INPUT PROCEDURE NOT BOOLEAN .• 

INPUT PROCEDURE DOES NOT HAVE EXACTLY 
ONE PARAMETER. 

INPUT PROCEDURE PARAMETER NOT ONE-D 
ARRAY. 

MISSING ). 

MISSING (. 

MORE THAN 7 or LESS THAN 2 FILES TO 
MERGE. 

MISSING ). 

MISSING FILE ID IN MONITOR DEC. 

MISSING LEFT PARENTHESIS IN MONITOR DEC. 

IMPROPER SUBSCRIPT FOR MONITOR LIST 
ELEMENT. 

IMPROPER SUBSCRIPT EXPRESSION DELIMITER 
IN MONITOR LIST ELEMENT. 

IMPROPER NUMBER OF SUBSCRIPTS IN MONITOR 
LIST ELEMENT. 

LABEL OR SWITCH MONITORED AT IMPROPER 
LEVEL. 

IMPROPER MONITOR LIST ELEMENT. 

MISSING RIGHT PARENTHESIS IN MONITOR 
DECLARATION. 

IMPROPER MONITOR DECLARATION DELIMITER. 

MISSING FILE IDENTIFIER IN DUMP 
DECLARATION. 

MISSING LEFT PARENTHESIS IN DUMP 
DECLARATION. 

ARRAYS: DUMP LIST HAS WRONG NUMBER OF 
SUBSCRIPTS OR MISSING RIGHT BRACKET. 

ARRAYS: DUMP LIST HAS WRONG NUMBER OF 
SUBSCRIPTS OR MISSING COMMA. 

IMPROPER ARRAY DUMP LIST ELEMENT. 

ILLEGAL DUMP LIST ELEMENT. 

MORE THAN 100 LABELS APPEAR AS DUMP 
LIST ELEMENTS IN ONE DUMP DECLARATION. 

ILLEGAL DUMP LIST ELEMENT DELIMITER. 

MISSING OR NON-LOCAL LABEL IN DUMP 
DECLARATION. 

MISSING COLON IN DUMP DECLARATION. 
Revised 1/8/71 
by peN 1024916-014 J-9 



ERROR 
NUMBER 

419 

420 

421 

422 

424 

425 

426 

427 

428 

429 

430 

431 

1433 

434 

• 435 

436 

437 

438 

439 

440 

441 

442 

J-10 

APPENDIX J (cant) 
COMPATIBLE ALGOL COMPILER ERROR MESSAGES 

ROUTINE ERROR MESSAGE 

DMUP IMPROPER DUMP DECLARATION DELIMITER. 

READSTMT MISSING LEFT PARENTHESIS IN READ 
STATEMENT. 

READSTMT MISSING LEFT PARENTHESIS IN READ 
REVERSE STATEMENT. 

READSTMT MISSING FILE IN READ STATEMENT. 

READSTMT IMPROPER FILE DELIMITER IN READ 
STATEMENT. 

READSTMT IMPROPER FORMAT DELIMITER IN READ 
STATEMENT. 

READSTMT IMPROPER DELIMITER FOR SECOND PARAMETER 
IN READ STATEMENT. 

READSTMT IMPROPER ROW DESIGNATOR IN READ 
STATEMENT. 

READSTMT IMPROPER ROW DESIGNATOR DELIMITER 
IN READ STATEMENT. 

READSTMT MISSING ROW DESIGNATOR IN READ STATEMENT. 

READSTMT IMPROPER DELIMITER PRECEDING THE LIST 
IN A READ STATEMENT. 

FCRSCAN IMPROPER SYNTAX. 

HANDLETHETAILEND- MISSING RIGHT BRACKET IN READ OR SPACE 
OFAREADORSPACEST- STATEMENT. 
ATEMENT 

SPACESTMT MISSING LEFT PARENTHESIS IN SPACE 
STATEMENT . 

SPACESTMT IMPROPER FILE IDENTIFIER IN SPACE 
STATEMENT. 

SPACESTMT MISSING COMMA IN SPACE STATEMENT. 

SPACESTMT MISSING RIGHT PARENTHESIS IN SPACE 
STATEMENT. 

WRITESTMT MISSING LEFT PARENTHESIS IN A WRITE 
STATEMENT. 

WRITESTMT IMPROPER FILE IDENTIFIER IN A WRITE 
STATEMENT. 

WRITESTMT IMPROPER DELIMITER FOR FIRST PARAMETER 
IN A WRITE STATEMENT. 

WRITESTMT MISSING RIGHT BRACKET IN CARRIAGE 
CONTROL PART OF A WRITE STATEMENT. 

WRITESTMT ILLEGAL CARRIAGE CONTROL DELIMITER 
IN A WRITE STATEMENT. 



ERROR 
NUMBER 

443 

444 

445 

446 

448 

449 

450 

451 

452 

453 

454 

455 

456 

457 

458 

459 

460 

461 

462 

463 

464 

465 

500 

APPENDIX J (cont) 

COMPATIBLE ALGOL COMPILER ERROR MESSAGES 

ROUTINE 

WRITESTMT 

WRITESTMT 

WRITESTMT 

WRITESTMT 

WRITESTMT 

READSTMT 

LOCKSTMT 

LOCKSTMT 

LOCKSTMT 

LOCKSTMT 

LOCKSTMT 

CLOSESTMT 

CLOSESTMT 

CLOSESTMT 

CLOSESTMT 

CLOSESTMT 

RWNDSTMT 

RWNDSTMT 

RWNDSTMT 

BLOCK 

BLOCK 

DMUP 

SEARCHLIB 

ERROR MESSAGE 

IMPROPER SECOND PARAMETER DELIMITER IN 
WRITE STATEMENT. 

IMPROPER ROW DESIGNATOR IN A WRITE 
STATEMENT. 

MISSING RIGHT PARENTHESIS AFTER A ROW 
DESIGNATOR IN A WRITE STATEMENT. 

IMPROPER DELIMITER PRECEDING A LIST 
A WRITE STATEMENT. 

IMPROPER LIST DELIMITER IN A WRITE 
STATEMENT. 

IMPROPER LIST DELIMITER IN A READ 
STATEMENT. 

MISSING LEFT PARENTHESIS IN A LOCK 
STATEMENT. 

IN 

IMPROPER FILE PART IN A LOCK STATEMENT. 

MISSING COMMA IN A LOCK STATEMENT. 

IMPROPER UNIT DISPOSITION PART IN A 
LOCK STATEMENT. 

MISSING RIGHT PARENTHESIS IN A CLOSE 
STATEMENT. 

MISSING LEFT PARENTHESIS IN A CLOSE 
STATEMENT. 

IMPROPER FILE PART IN A CLOSE STATEMENT. 

MISSING COMMA IN A CLOSE STATEMENT. 

IMPROPER UNIT DISPOSITION PART IN A 
CLOSE STATEMENT. 

MISSING RIGHT PARENTHESIS IN A CLOSE 
STATEMENT. 

MISSING LEFT PARENTHESIS IN A REWIND 
STATEMENT. 

IMPROPER FILE PART IN A REWIND 
STATEMENT. 

MISSING RIGHT PARENTHESIS IN A REWIND 
STATEMENT. 

A MONITOR DECLARATION APPEARS IN THE 
SPECIFICATION PART OF A PROCEDURE. 

A DUMP DECLARATION APPEARS IN THE 
SPECIFICATION PART OF A PROCEDURE. 

DUMP INDICATOR MUST BE UNSIGNED INTEGER 
OR SIMPLE VARIABLE. 

ILLEGAL LIBRARY IDENTIFIER. 

Revised 1/8/71 
by peN 1024916-014 J-11 



ERROR 
NUMBER 

501 

502 

503 

504 

505 

I 507 

508 

509 

J-12 

APPENDIX J (cont) 

COMPATIBLE ALGOL COMPILER ERROR MESSAGES 

ROUTINE 

SEARCHLIB 

SEARCHLIB 

SEARCHLIB 

SEARCHLIB 

SEARCHLIB 

SEARCHLIB 

Anywhere 

IODEC 

ERROR MESSAGE 

LIBRARY IDENTIFIER NOT CONTAINED IN 
DIRECTORY. 

ILLEGAL LIBRARY START POINT. 

SEPARATOR REQUIRED BETWEEN START POINT 
AND LENGTH. 

ILLEGAL LIBRARY LENGTH. 

MISSING BRACKET. 

TAPE POSITIONING HARDWARE-FAILURE. 

CONSTRUCT NOT ALLOWED IN TIME SHARING 
SYSTEM. 

NON-LITERAL FILE VALUE NOT GLOBAL TO 
FILE DECL. 



APPENDIX K 

THE BREAKOUT PROCESS 

ALGOL programs create a permanent break file on disk when a break 

statement is executed. COBOL programs act similarly when a RERUN 

Statement is executed or a RERUN Clause is invoked, with one excep­

tion: A COBOL Reel RERUN Clause specifies that the break file is 

placed on the beginning of an output reel of a tape file. 

In this instance, a temporary break file is created on disk and is 

copied onto the tape; the disk file is destroyed on completion or 

termination of the copy. 

The ONEBREAK Option is ignored. 

Tape, disk, and pseudo reader files, and line print files, regardless 

of back-up label equations, are permitted to be open when a break is 

done. Sort, card reader, and data communications files preclude 

breaking. If a break is attempted while one of the forbidden files 

is open, the break attempt is ignored; and the operator is told which 

file interfered with the break. 

Breaks are numbered cyclically from 00 through 99. The numbering of 

break files following a restart is the same as would occur if a re­

start was not done. Thus, if break file number 06 is used to restart 

a job, the next break file created by the file is 07. 

Provision has been made for the handling of write errors when the reel 

option is evoked, forcing the back-up file onto tape. If an error 

occurs, the operator is notified of a BADUMP, the reel is switched, 

and a new break file, having the same break number, is built. 

Break files are program files named according to their break number 

and to whichever program built them. Thus, break files, created when 

executing the program BREAKER/A, are named BREAKER/BREAKnn, where each 

nn is a break number. The files have 30 words per record, and the 

records are allocated in SOO-record chunks. 

Revised 1/8/71 
by peN 1024916-014 K-l 



APPENDIX K (cont) 

THE BREAKOUT PROCESS 

Break files differ from other program files, although segment zero is 

somewhat similar. A comment, detailing the differences of segment 

zero, follows the DCMCP Procedure BREAKOUT. 

A copy of the currently coded overlay disk of the jpb and intrinsics 

which the job might use are included in the break file. The file 

also has a map for exact replacement of some of the core areas of the 

job, primarily the nonoverlayable areas. 

Breakout usually takes about five seconds building a 2-chunk break 

file, during which time the system is disk bound. 

1.5 K of core storage. 

It uses about 

Breaking does not affect the contents of files; however, it is neces-

sary to save temporary files. Both temporary and permanent disk files 

are entered into the Directory when a break occurs. Tape files are 

marked to be saved. 

All label equation information is retained and is used to recognize 

files at restart. 

RESTARTING PROCESS. 

If the reel RERUN Clause is specified, the break file must be loaded 

from tape onto disk. This is accomplished by the RS(unit) message 

which checks to determine if the mentioned unit is a labeled, write-

enabled tape with a break file copy. If so, the system loads the 

copy unless there is already a permanent disk file with the same name 

as that of the copy. After loading, the unit is left marked and po­

sitioned for the pending restart. If the load try fails, the unit is 

set not-in-use and locked. Note that the RS Message only causes re­

loading of the break files; it does not initiate restarts. 

Files reopened while restarting must correspond closely to those open 

when the break file is built; the reopening files are therefore 

K-2 



APPENDIX K (cont) 

THE BREAKOUT PROCESS 

thoroughly checked before acceptance. The type of a file may not be 

changed between break and reopening. File reopening is detailed be-

low. 

To restart, the appropriate break file is executed or run. If the 

MCP is not compiled with the $ SET BREAKOUT=TRUE Module, the break 

file is considered to be nonexecutable code. 

Mapped areas must be replaced exactly where they are at breakout. 

This replacement is considered to be the "restarting" process. When 

replacement is complete, the operator is notified that the job has 

restarted; and the system begins reopening the files of the job. 

Replacement side-effects are presented below. Restarts must wait for 

particular areas to become available; therefore, restarts should be 

performed without jobs in the mix, preferably immediately after a 

Halt/Load. 

All control cards used in originally initiating the program are used 

to restart that program. The stack, label equation, and common cards 

are ignored by the restarting process. 

Once a restart job has been initiated (BOJ) and until the restarting 

process is complete, the system is occupied by replacing or rebuild­

ing the core areas of the job. It is possible that the entire address 

range required is not available, e.g., that some in-use area is inter-

fering with replacement. Simply waiting resolves some interference. 

Some areas must be moved or denied space during restarts since it is 

not possible to wait until the interference clears up. 

There are various consequences of replacement. The restart is auto­

matically ESed if the memory configuration differs from that at break. 

The IN, OT, and ST Operator Requests and changing intrinsics (either 

with a CI or XI) are not valid when applied to restarting jobs. 

Revised 1/8/71 
by peN 1024916-014 K- J 



APPENDIX K (cont) 

THE BREAKOUT PROCESS 

The operator may monitor the progress of a job in restarting. If the 

operator requests (mix)WY, he is advised if the restart is waiting 

because of interfering areas. Rarely, however, should the MCP (mix 

zero) or the restarting job cause interference. 

A restart job that does not have an excessive amount of overlay disk 

usually takes about four seconds restarting; none of its storage is 

overlayable. A restarting job uses less core storage than it does 

breaking. However, when resolving interferences involves moving many 

areas, a NO MEM situation may occur. In this event, movement is tem­

porarily abandoned, and the system recovers; a Halt/Load and a new 

restart attempt may be required. 

FILE HANDLING. 

After a job has restarted, its files are "reopened." The system finds 

files, checks them against data saved at break, and then repositions 

them forward accordingly. If a file checked is somehow unsuitable, 

the operator is advised of what is wrong; and the system tries finding 

the correct file. 

Only tape files are spaced. The restart job is terminated if an ir­

recoverable parity or other problem occurs. Positioning other files 

is ignored; their proper positioning derives from internal references 

left intact. 

It should be noted that file changes made after a break are not con-

sidered while reopening the file. For instance, errors may result if 

a record is added, deleted, or altered. 

immediately after the breakpoint. 

Such errors need not appear 

The MT, DK, CD, LP, PET, and PED Files of a job may be open at break. 

Reopening these files is discussed below. 

The checks which apply should be noted carefully. To break at all, 

other types of files and sort files must be closed; they are ignored 

while the system reopens files. 

K-4 



APPENDIX K (cant) 

THE BREAKOUT PROCESS 

LP, PBT, and PBD Files need no attention while breaking. At restart, 

line-print continues with whichever line logically follows the break. 

The line printer selected is neither positioned within the page nor 

physically labeled~ Back-up files restart similarly but with new 

files. Only type correspondence is checked. 

Disk files are permanent or nonpermanent according to whether they are 

mentioned in the Directory at break; temporary files become permanent. 

Their save factor is set to 63 if previously zero or unspecified. In­

formation in the Directory about permanent files in use may be inac­

curate; therefore, it is updated during each break. 

At restart, disk files are checked for blocking, record size, number 

and use of rows, allowed number of rows, and end-of-file suitability. 

Pseudo readers are checked for type correspondence only. Normal 

checks in the system detect short control-decks, and the other disk 

file checks are not relevant. However, control decks have internal 

control card linkages, references to which reopening does not check. 

Furthermore, the system cannot find a subdeck unless it is current in 

a pseudo reader. 

Tape files (not PBT) have a physical block count recorded during each 

break. Finding an input tape file may involve searching a multifile. 

Reopening tape files are found as though they are input files; once 

checked and accepted they are spaced forward according to the differ­

ence between current and break counts. 

Thus, a tape is effectively positioned relative to the beginning of 

its reel. 

As accepted, tapes are positioned in parallel. 

If an output tape reel is RSed to load the break just restarted, the 

tape is checked by the RS Handler; its unit is left not-in-use, posi­

tioned, and marked to prevent nonrestart jobs from finding it. The 

Revised 1/8/71 
by peN 1024916-014 K- 5 



APPENDIX K (cont) 

THE. BREAKOUT PROCESS 

unit is therefore checked for marks left by the RS Handler; if the 

unit is unmarked, a tape is found, checked like other tapes, and also 

checked for a break file copy. 

Other tapes (not PBT) are checked for type, label, "format," dump, and 

write-enable correspondence; tape "format" correspondence is wrong if 

the requested file is found after the block is broke. Tape label cor­

respondence is wrong if the broken file has a label and the file found 

has no label. Dump correspondence is wrong if the file found lacks a 

needed break file copy. Write-enable correspondence is wrong if the 

file needs (lacks) a write ring. 

SYSTEMS EFFECTS. 

Breakout-restart has been redesigned to eliminate its characteristic 

maintenance requirement. With this end in view, the new design con­

fines its attention to the job principally involved, thereby markedly 

reducing tangential interactions with the system and other jobs. Two 

of such remaining interactions warrant attention. 

It should be noted that breakout saves all intrinsics the job may use. 

This ensures the integrity of references thereto, but users may occa­

sionally restart with functionally dated intrinsics, resulting in an 

error. To avoid potential problems, the same MCP and intrinsics used 

at breakout time should be used at restart time. 

It should be noted that restart storage replacement involves moving 

areas. Such a movement must only occur when all extant references to 

the area can be corrected. Therefore, any MCP changes must be made 

cooperative with breakout/restart requirements. If control is lost 

with a new reference to such an area pending or if new areas are in­

troduced, it should be considered whether and how the areas should be 

moved. 

BREAKOUT MESSAGES. 

--CAN-T BREAK (data file designator) (rdc): (job specifier) 

K-6 



APPENDIX K (cont) 

THE BREAKOUT PROCESS 

The job tried breaking with a file of unsuitable type of open. The 

break try is ignored. 

(priority): (job specifier)=(mix): BREAK(break number) BUILT 

The specified job just broke, creating the brea~ file (program name)/ 

BREAK(break number). The break file is then moved to an output tape 

if necessary. 

(priority): (job specifier)=(mix): BADUMP ON (unit) 

The system could not copy a break file onto the mentioned tape. It 

will try again on a new reel. 

THE RS MESSAGE. 

This message allows the operator to add a break file to the Directory, 

the break file having been copied to the output tape of a COBOL job. 

The RS message format is: 

RS(unit) 

The responses are: 

a. RS(unit) INV KBD 

The unit is not a tape. 

b. (unit) (note) 

The unit must be an available, labeled, write-enabled tape 

with a break file copy. The note is either NOT READY, IN 

USE, SCRATCH, WRITE LOCK, or NO DUMP. 

c. . (program name)/BREAK(break number) NOT ADDED.DUP LIB 

RS(unit) 

There is already a disk file with the names mentioned. The 

break file on the unit is not loaded. 

d. (unit) ERROR IN DUMP 

The tape-disk break file copy went awry. The break file is 

not loaded. 
Revised 1/8/71 
by peN 1024916-014 K-7 



APPENDIX K (cont) 

THE BREAKOUT PROCESS 

e. (program name)/BREAK(number) ADDED.TAPE POSITIONED:(unit) 

The RS(unit) is successful. The unit is left positioned 

and marked for the pending restart of the loaded break file. 

RESTART MESSAGES. 

(job specifier)=(mix index) GONE (time) 

The job is a restart and was ESed or DSed before having restarted. 

(priority):(job specifier)=(mix index) RESTARTED 

The designated restart job has completed replacing core storage and 

now has a normal job structure; i.e., it has "restarted." The job 

will begin reopening files next. 

(priority):(job specifier)=(mix) RESTART IS (state) 

The (state) is either WAITING or MOVING. The operator requested 

(mix)WY before the job restarted. This response tells what restart 

is doing. 

--MIX: (mix), ••• ,(mix) IN THE WAY 

The mixes, e.g., zero for the MCP, are using core areas needed to 

replace storage of the restarting job. 

FILE REOPENING MESSAGES. 

--WRONG FILE (data file designator) (rdc):(job specifier) 

Reopening involves checking files for compatibility with those in use 

at breakout. The designated file is not sufficiently compatible; the 

next message hints why. The operator may respond with an OK, WY, or 

DS reply; OK initiates a recheck. 

--WRONG (hint), ••• ,(hint) 

The hints are among the following: 

K-8 

a. WRITE STATE 

The write ring of the file is in the wrong place (in the box 

or on the tape). 



b. LABEL 

APPENDIX K (cont) 

THE BREAKOUT P~OCESS 

The file lacks (needs) a label. 

c. TYPE 

A file on disk (tape, line printer) at break MUst be on 

disk (tape, line printer) at restart. For example, an LP 

File was broken, and the operator tried reopeniBg it as a 

PBD. 

d. ROWS USED 

Disk files have up to 20 rows. The one fotiR4 dIDeM n@t 

have the right one. 

e. NO. OF ROWS 

The disk file found has the wrong number of' rows alloweci. 

f. EOF 

It is too short. 

g. ROW LENGTH 

Its rows are the wrong size. 

h. FORMAT 

If it is a disk file, its blocking or r@cord length is 

wrong. If it is a tape file, it was fOil::l-M. l:9-@yond wh'er@ 

it was in breakout. 

i. SECURITY 

A security error occurred. 

j. NO DUMP 

The tape file lacks a break file copy. 

Revi~d 1/8/71 
by peN 1024916·a14 x ... 9 



• SIOO I Y 1'1 II .0' I NO.: I 

APPE,\l>I \. F· 

Ct/\SlHCCTIO\ (Jl ('OLD START 
A\J> COOL STAHl nECKS 

It is possiLl-:- -_ Cr·OL START tram the MARK X to the ~L\R1\ XI system 

rather than d :~~ ~ COLD START. The only condition n8c~5~~ry for 

this capaLili:~ ~5 tIlat DIRECTORYTOP in both systems mu~~ be equal. 

The MARK XI (.~ ~:.. .3TART is used in going from ~IARK X to ~lAF:.K XI and 

on the MARK XI ~~.'stem, and the ~tARK X COOL START is used ~n going 

f'rom MARK XI :: :he ~fARK X system. 

If a transi ti :':-. :::: made from MARK XI to MARK X, a Hal t/Load should 

be done on th~ ~~K XI system immediately before the MARK X COOL 

START is run ~~ ZEro the open counts in the disk file header. 

In the follo.i~€ 5~mple deck setups, the "KERNEL" has been included 

in the COLD S7_!-RT and COOL START decks under the belief that if some-

thing has hap;"'-=;a~d to disk so that a Halt/Load is :,.mpo·ss~.t.le, . a COOL"'-

START should t.;;. ~one. If the COOL START followed by a Tape to Disk 

is not suffici~~r to bring the system up, a COLD START is necessary. 

The Tape to D:' ~-:-:. loader, Disk to Disk loader, and "KERXEL" may also 

be used indel= c::--_-:~r.tly of the COL~START and COOL/START pr0grams. 

Each objec~ d~:~ Must be prece~d by a one card ESPOL lQader._~If 
the "KERXEL" :.~ 'J5€-1 independently, it will only initiat~ a Halt/ 

Load, the "KI.r~',~L" ..... ill not be placed on disk. 

COLD START DEC~: 

1 • 

') - . 
J. 

4. 

Onf:-~:-~ F..:;P()L ] ()acter. 

COLL ~:~RT parameter deck. 

A. DA7E card. 

B. u:;CTRYTP card. 



...... y., •• MO" NO.: 1 

C. DIRECT (' .n-":. 

D. ESU rard. 

E. SYSTEH ri1:-.7.. 

f. FEXCE card. 

G. FILE card£-o 

XOTE 

A FILE :ard must be present in the 

COLD ST.~~T deck for the MCP to- be 

loaded from tape with the Tape to 

Disk leader. 

I.e. FIll MCP/DISK,lxll70,999 

H. Option car~s. 

I. STOP card. 

~5. One card ESPOL loader. 

(~6. Tape to Disk loader object program. 

·7. OPTIONAL Tape YO Diek loader parameter cards. 

A. TAPE card. 

B. FILE card. 

COOL START DECK 

1. One card ESPOL loader. 

2. COOL START ob~'?ct program. 

J. "KERNEL" obj€c-~ program. 

4. COOL START par~7!eter deck. 

A. DATE card. 

B. DIRCTRYTP c.ard. 

c. DIRECT cdr';'. 

D. ESr card. 

E. SYSTEM car~. 

f. FENCE care. 

G. Option car'!s. 

H. STOP card. 

t:spo\.... L'~o~ 

TI\ PE" '"ft) D. S 1< 

p", 2 ... " c~ RO 



ALGOL $$ card, 4-41 

ALGOL error messages, F-l 

ALGOL source program, 4-43 

auxiliary memory, 2-8 

auxiliary stacker full, 
card punch, 2-58 

basic change deck, 3-6 

breakout process, K-l 

buffer conditions (DTTU) , 2-l4L 

card jam, card reader, 2-13, 
2-28, 2-34A 

Card Load Select Programs, 3-14 

card not at prepunch station, 
card punch, 2-57 

card not at read station, card 
punch, 2-43 

card not at ready station, card 
punch, 2-43 

card punches, 2-34A, 2-45, 2-59 

card readers, 2-8B, 2-17, 2-33 

card reader control deck 
file, 5-2 

carriage control tape insertion, 
line printers, 2-74, 2-78J 

chad receptacle, paper tape 
punch, 2-106 

CHANGE card, 4-l6A 

channel select plugboard, 
paper tape reader, 2-80 

channel select plugboard, 
paper tape punch, 2-95 

COBOL $$ card, 4-42 

COBOL Compiler error and 
diagnostic messages, G-l 

COBOL program, 4-29 

COBOL source program, 4-43 

INDEX 

code translator, paper tape 
punch, 2-95 

code word, 5-20 

Cold Start deck, 3-19 

Cold Start Program, 3-15 

COMMON card, 4-24 

Compatible ALGOL Compiler 
error messages, J-l 

Compile-and-Go run, 4-9 

• 
I 

• 

COMPILE card, 4-9 

Compile-for-Library run, 4-9 

Compile-for-Syntax-Check run, 4-10. 

compiler and object program 
information, 5-22 

compiler option cards, 4-26 

compiling source, 3-7 

control card errors in pseudo 
card decks, 5-5 

control card information, 5-20 

control card syntax, 5-6 

control cards, 4-8A 

control cards for system 
loading, 3-36 

control cards used to load 
compilers onto disk, 3-37 

control deck onto tape, 
copying a, 5-3 

control information, 4-1 

control information via 
punched cards, 4-8 

control panel, 

B 122, 

B 123, 

B 5005, 

B 5350, 

B 9111, 

one 

2-9 

2-19 

2-8A 

2-145 

2-34 

Revised 6/15/71 by 
PeN 1024916-015 

I 
I 



INDEX (cont) 

control panel (cont) 

B 9120, 2-84 

B 9210, 2-34D 

B 9211, 2-47 

B 9213-1, 2-61 

B 9220, 2-100 

B 9240, 2-62H 

B 9242-4, 2-78B 

B 9373, 2-132 

B 9396, 2-110 

B 9410, 2-124 

console, 2-2 

supervisory printer, 2-5 

Cool Start deck, 3-35 

I Cool Start Program, 3-16 

CORE card, 4-25 

Core to Tape Dump Program, 3-17 

cover not in place, 

B 122, 2-15 

B 123, 2-29 

B 9211, 2-58 

cover opened, 

B 9210, 2-43 

B 9213-1, 2-62F 

I 
DATA card, 4-l6B 

data communications 
processor, 2-143 

data communications 
system, 1-3, 2-138 

data transmission control 
• unit, 2-139 

data transmission terminal 
• unit, 2-140 

DATE card, 3-22 

deck structure, 4-49 

DIRECT card, 3-20 

Disk Directory, 5-41 

disk failure, C-5 

disk file., 2-128 

disk file control unit, 2-130 

disk file/data communications 
cabinet, 2-129 

disk file/data transmission 
terminal unit cabinet, 2-129 

disk file electronics unit, 2-132 

disk file expanded control, 2-129 

disk file system, 2-128 

disk Halt/Load card, 3-37 

disk lockout switches, 2-134 

Disk to Disk MCP Loader deck, 3-18 

Disk to Disk MCP Loader 
Program, 3-17 

Dollar Sign ($) card, 4-27 

DRCTRYTP card, 3-20 

DUMP card, 4-12 

END card, 4-17 

END CONTROL card, 4-17 

end-of-job and error 
messages, 5-18 

END OF PAPER indicator lit, 
line printers, 2-76 , 2-78L 

error stacker full, 
card punch, 2-58 

ESPOL, B-2 

ESPOL Loader Program, 3-15 

ESU card, 3-21 

EXECUTE card, 4-10 

FEED CHECK indicator lit, 

B 122, 2-15 

two 



INDEX (cont) 

FEED CHECK indicator lit (cont) 

B 123, 2-30 

B 9210, 2-38 

B 9211, 2-53 

feed error condition, 
card reader, 2-34A 

feed roll block not locked, 
card punch, 2-56, 2-62E 

FENCE card, 3-22 

FILE card (label equation), 4-22 

FILE card group, 3-23 

file descriptions, 5-35 

file opening action, 5-47 

file protect memory, 2-136 

file security system, E-l 

format of blocks on a PB 
file, 5-45 

format of printer backup file 
on disk, 5-46 

format of records on PB 
files, 5-45 

forms handling, line 
printer, 2-63, 2-78C 

forms, special, 5-47 

FORTRAN Compiler, B-1 

FORTRAN Compiler error 
messages, H-l 

FORTRAN Translator control 
cards, 4-43 

FORTRAN Translator error 
messages, I-I 

Halt/Load Kernel Program, 3-17 

Halt/Load Program, 3-15 

hopper empty, 

B 122, 2-15 

B 123, 2-29 

hopper empty (cont) 

B 9210, 2-43 

B 9211, 2-56 

B 9213-1, 2-62C 

input code translator, 
paper tape, 2-81 

IO card, 4-19 

LABEL card, 4-l6A 

LDCNTRL/DISK Program, 5-1 

leaders, attaching magnetic 
tape, 2-118 

line printers, 2-62G, 2-78 

line selection knob in N 
position, line printer, 2-77 

LOAD card - ADD card, 4-15 

loading a control deck file 
onto disk, 5-1 

loading and maintaining the 
system, 3-1 

loading paper tape, 2-102 

loading the system from the 
SYSTEM tape, 3-38 

loading the magnetic tape 
supply reel, 2-112 

loading the magnetic tape 
take-up reel, 2-117 

log entry specifications, 5-19 

log initializing, 5-26A 

log maintenance, 5-19 

logging of PB files, 5-48 

magnetic tape, 

three 

care, 2-122 

control deck file, 

handling, 2-123 

5-2 

Revised 6/15/71 by 
PeN 1024916-015 

I 
I 

• 



INDEX (cont) 

magnetic tape (cont) operator maintenance, 

library procedures, 2-124 B 122, 2-16 

loading, 2-123 B 123, 2-J2 

splicing, 2-120 B 9111, 2-34A 

storage, 2-122 B 9120, 2-92 

uni ts, 2-108 B 9210, 2-44 

maintenance function B 9211, 2-58 
examples, 5-10 B 9213-1, 2-62F 
MCP Loader decks, 3-17 B 9220, 2-107 
MCP modularity, 4-33 B 9240, 2-77 
messages, C-1 B 9242-4, 2-78L 
Multiprocessing Factor, J-41 B 9396, 2-121 

Nines card, 4-4J 
OPTION cards, 3-26 

Not Ready conditions, 
OPTN 18 card, 3-35 

B 122, 2-12 
OPTN 19 card, 3-34 

B 123, 2-26 
OPTN 20 card, 3-34 

B 9111, 2-34A 
OPTN 21 card, 3-34 

B 9210, 2-37 
OPTN 22 card, 3-34 

B 9211, 2-52 
OPTN 23 card, 3-34 

B 9213-1, 2-62B 
OPTN 24 card, 3-34 

B 9240, 2-76 
OPTN 25 card, 3-33 

B 9242-4, 2-78K 
OPTN 26 card, 3-33 

OPTN 27 card, 3-32 

operating procedures, OPTN 28 card, 3-32 

B 122, 2-11 OPTN 29 card, 3-32 

B 123, 2-21 OPTN 30 card, 3-31 

B 9111, 2-34 OPTN 31 card, 3-31 

B 9120, 2-87 OPTN 32 card, 3-31 

B 9210, 2-36 OPTN 33 card, 3-31 

B 9211, 2-49 OPTN 34 card, 3-30 

B 9213-1, 2-62A OPTN 35 card, 3-30 

B 9242-4, 2-78D OPTN 36 card, 3-30 

operator console, 2-1 OPTN 37 card, 3-29 

four 



INDEX (cont) 

OPTN 38 card, 3-29 

OPTN 39 card, 3-29 

OPTN 40 card, 3-28 

OPTN 41 card, 3-28 

OPTN 42 card, 3-28 

OPTN 43 card, 3-27 

OPTN 44 card, 3-27 

OPTN 45 card, 3-27 

OPTN 46 card, 3-26 

OPTN 47 card, 3-26 

paper slewing, line printer, 
2-77, 2-78L 

paper tape punch, 2-93 

paper tape reader, 2-78M 

paper tape splicing, 2-106 

parity on a control deck 
magnetic tape file, 5-4 

patches, merging, 3-6 

peripheral switching unit, 2-124 

primary stacker full 
(B 9211), 2-58 

print drum not in position, 
line printer, 2-77, 2-78L 

print file on disk, 
closing a, 5-48 

printer backup information, 

PRIORITY card, 4-21 

5-44 

PROCESS card, 4-19 

program-parameter cards, 4-18 

program scheduling 
information, 3-39 

pseudo card readers and the use 
of pseudo decks on disk, 5-4 

pseudo decks on disk, 5-2 

punch block not locked 
(B 9211), 2-56 

PUNCH CHECK indicator lit 
(B 9210), 2-43 

PUNCH CHECK indicator lit 
(B 9211), 2-58 

PUNCH CHK indicator on 
(B 9213-1), 2-62F 

punch die not in place 
(B 9210), 2-43 

punch mechanism not locked 
(B 9213-1), 2-62E 

Read Check condition (B 123), 2-27 

READ CHECK indicator lit 
(B 122), 2-15 

READ CHECK indicator lit 
(B 123), 2-30 

record n + 1, 5-26B 

record size error, G-23 

record zero, 5-26A 

records, special, 5-26A 

REMOVE card, 4-11 

RESET ACCESSD card, 4-16B 

ribbon changing, line 
printer, 2-69, 2-78G 

RN message to turn off pseudo 
card readers, 5-5 

RN message to turn on pseudo 
card readers, 5-4 

SAVE card, 4-26 

scheduling from disk, 5-1 

Selection Algorithm, 3-40 

SET ACCESSD card, 4-16B 

shared disk system, 2-136 

software, 3-1 

source program cards, 

STACK card, 4-20 

4-43 

five 
Revised 6/15/71 by 
PeN 1024916-015 

I 

I 

I 
• 

I 

I 



INDEX (cont) 

stacker full, 

B 122, 2-14 

B 123, 2-29 

B 9210, 2-44 

B 9211, 2-58 

B 9213-1, 2-62C 

.standard system log, 5-34 

statistics log, 5-32 

statistics log file, 5-38 

STOP card, 3-35 

STOP switch pressed, 

B 122, 2-15 

B 123, 2-30 

B 9210, 2-43 

B 9211, 2-56 

B 9213 .... 1, 2-62D 

B 9240, 2-77 

B 9242-4, 2-78L 

supervisory printer, 2-4A 

SYMBOL tape, 3-1 

symbolic library file on 
disk, 5-5 

symbolic library tapes onto 
disk, copying, 5-19 

system design, 1-2 

System Loader decks, 3-17 

system procedures, 3-37 

system start-up procedure, 3-38 

system statistics file, 5-35 

SYSTEM tape, 3-14 

SYSTEMS card, 3-21 

systems material, 3-1 

systems memory storage I module, 2-134 

tape and forms registration, 
line printer, 2-75, 2-78K 

tape movement, stopping paper 
tape reader, 2-90 

tape punching, line printer 
carriage control, 2-64, 2-78C 

tape rewinding, magnetic, 2-118 

tape rewinding, paper, 2-105 

Tape to Disk MCP Loader 
deck, 3-18 

Tape to Disk MCP Loader 
Program, 3-16 

time sharing log, 5-34 

time sharing log additions, 

TYPE BOJ card, 3-27 

TYPE CLOSE card, 3-30 

TYPE CMPLFILE card, 3-30 

TYPE DATE card, 3-28 

TYPE DISCONDC card, 3-30 

TYPE DISKLOG card, 3-34 

TYPE DISKMSG card, 3-34 

TYPE EOJ card, 3-27 

TYPE ERRORMSG card, 3-31 

TYPE LIBERR card, 3-34 

TYPE LIBMSG card, 3-31 

TYPE OPEN card, 3-27 

TYPE PBDREL card, 3-33 

TYPE RET card, 3-31 

TYPE RSMSG card, 3-34 

TYPE SCHEDMSG card, 3-31 

TYPE SECMSG card, 3-32 

TYPE TIME card, 3-28 

UNIT card, 4-25 

5-39 

unloading cards from the card 
punch, 2-37, 2-51, 2-62B 

six 



INDEX (cont) 

unloading paper tape, 2-91, 2-105 

unloading the magnetic tape supply 
reel, 2-116 

unloading the magnetic tape 
take-up reel, 2-118 

USE AUTOUNLD card,. 3-35 

USE AUTOPRNT card, 3-29 

USE CHECK card, 3-33 

USE CLEARWRS card, 3-29 

USE DRA card, 3-26 

USE DRB card, 3-26 

USE DSKTOG card, 3-32 

USE PBDONLY card, 3-34 

USE RELTOG card, 3-32 

USE SAVEPBT card, 3-34 

USE TERMNATE card, 3-28 

utility routines, 5-1 

seven 
Revised 6/15/71 by 
PeN 1024916-015 

I 


	001
	002
	003
	004
	005
	006
	007
	008
	008a
	008b
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-08a
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-16a
	4-16b
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-28a
	4-29
	4-30
	4-30a
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-36a
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-42a
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-26a
	5-26b
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	A-01
	A-02
	A-03
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	C-36
	C-37
	C-38
	C-39
	C-40
	C-41
	C-42
	C-43
	C-44
	C-45
	C-46
	C-47
	C-48
	C-49
	C-50
	C-51
	C-52
	C-53
	C-54
	C-55
	C-56
	C-57
	C-58
	C-59
	C-60
	C-61
	C-62
	C-63
	C-64
	C-65
	C-66
	C-67
	C-68
	C-69
	C-70
	C-71
	C-72
	C-73
	C-74
	C-75
	C-76
	C-77
	C-78
	C-79
	C-80
	C-81
	C-82
	D-01
	D-02
	D-03
	D-04
	D-04a
	D-05
	D-06
	D-07
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-06a
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-18a
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	E-25
	E-26
	E-27
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	F-17
	F-18
	F-19
	F-20
	F-21
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	G-20
	G-21
	G-22
	G-23
	G-24
	G-25
	G-26
	G-27
	G-28
	G-29
	G-30
	G-31
	G-32
	G-33
	G-34
	H-01
	H-02
	H-03
	H-04
	H-05
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	J-07
	J-08
	J-09
	J-10
	J-11
	J-12
	K-01
	K-02
	K-03
	K-04
	K-05
	K-06
	K-07
	K-08
	K-09
	_01
	_02
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07

