
A NARRATIVE DESCRIPTION

of the

, ,.0: ,". ,',,: ;, ,':,: . ~ '<:':.,;:, ':::' ::'·;:'·;;.·';;·'~;;,~~~r:j~>r:::;f!·:~:;.(:1~~ 't:;i::~::~;{~~!rs~~···'~~;!'?;t,·;",y·.;::,
,.'~ .. :. < .::" ;.;..:", .. """'~' .. , ,.:., .. ~ .;. ~.,<,,:',,',.,.~. .' ">':"." ... :.:~ ""~i';";"'/::<"'~':":"':':";/>"'> ~:.~ :'~/.';;>':i:Y,:·,<;:;" "; .,':,:., : ,"./ .. :." ',",-
: ';}';;:.' . ,,\~ }<y:;.;?~}",v.~:~>/}.? ''..;:: .t:",; (. ".' ; ;.<~. <,. ;;.~: >i-" . ./.:\>,<: «-l:'""i!· .. :~;>.'\f;<d ~,::<.>\.;/,'>}>".(~ :;.~/?//;~,~:\~:t;t-:·,':;~L.»<:·'~',<';/>.,: '~;,<,:';~,::<.:' /./ ... "'>"~":/;~

·B~i.if'j:tiiilRii~:;. ..' ';f
~. .. ~, ".-., .', "", , ... ~<. ,'.r:,~ .. \ :,.,>, ; :,.::(~. ~ '" ~' .. >.;" i/>:/~~ ~.,: 7<l. '<\":;:~:.~.\,,>~.~:;:}: :~;~.':' ~ ~~'<;: «~ ... ~: .~L:.·~~:::~<: .:: .~. >;.~;::;~.~ ; .. :;'~ ':>.': ." ~

DISK FILE

MASTER CONTROL PROGRAM

A NARRATIVE DESCRIPTION

of the

Burroughs B 5500
DISK FILE MASTER CONTROL PROGRAM

o 000

Business Machines Group

Bu rroug hs Corporation

Systems Documentation

Burroughs Corporation
Detroit, Michigan 48232

REVISED
OCTOBER, 1966

TABLE OF CONTENTS

SECTION TITLE PAGE

1

INTRODUCTION ix

BURROUGHS B 5500 INFORMATION PROCESSING SYSTEM 1

General 1

Stack .. 1

Program Reference Table (PRT) and Relative Addressing 2

Relative Address 2

Operand Call.. • 3

Store Operators 3

Notation Used for Word Description .. 5

Data Words 5

Operands 5

Data Descriptors 5

Bit Explanation 6

Identification Bit 6

Presence Bit.

Size Field

Address Field

6

6

6

Operand Call and Data Words 6

Operand Call on an Operand 6

Operand Call on a Data Descriptor 6

Indexing. 7

Polish Notation 7

Examples of Polish Notation ... 9

Syllables: Instructions for the B 5500 10

iii

SECTION

1

iv

TABLE OF CONTENTS (Cont'd.)

TITLE

Operand Call Syllable (10)

Descriptor Call Syllable (11)

Literal Call Syllable (00) ..

Operator Syllable (01)

Polish Notation and B 5500 Programs

Programs for the B 5500: Segmented and Address Independent

C Register: Address of Control

Examples of Statements and Resulting Code

PAGE

10

10

10

10

10

11

11

12

Transferring Control within Segments: Relative Branching. 13

Transferring Control to Other Segments and the Operand Call . 13

Procedures: Subroutines of the B 5500 . 14

F Register

Control Words for Procedures

Mark Stack Control Word .

Return Control Word

Procedure Descriptor. . . .

Calling a Procedure

Mark Stack Operator

Operand Call on a Procedure Descriptor .

Executing Procedure

Relative Addressing in the Sub-Program Level

Exiting a Procedure

Additional Remarks about Subroutines

B 5500 Processors and States

Normal State

Control State

14

15

15

15

15

15

15

15

16

16

17

18

18

18

18

TABLE OF CONTENTS (Cont·d.)

SECTION TITLE PAGE

1 Interrupts . 18

Processor Dependent and Processor Independent Interrupts. . 19

Action to Handle Interrupts. 19

Interrupt Control Word. 19

Interrupt Return Control Word. 19

Initiate Control Word . 19

Interrogate Interrupt Operator. 20

I/O on the B 5500. 20

Initiating an I/O •............................. 20

I/O Descriptor 21

Operation of an I/O Control Unit 21

I/O Completion . 21

I/O Result Descriptor 21

Handling an I/O Finish Condition 21

A Note on Multiprocessing 21

2 THE DISK 23

23

23

23

23

General

User Disk

Program Files vs. Data Files

Format of Files on Disk

System Disk

Requirements

Overlay Storage

Disk Directory

A vailable-Disk Table

Initializing the Disk

23

23

23

23

24

24

v

TABLE OF CONTENTS (Cont'd.)

SECTION TITLE PAGE

3 DISK FILE MASTER CONTROL PROGRAM 25

vi

General

Initiating the B 5500 Disk File System

DF MCP Classification and Organization of Core Storage

Non-Overlayable Storage ..

Overlayable Storage

Overlayable Program Segment Areas ..

Overlayable Data Areas

Available Storage ..

Memory Links

Memory Links for In-Use Storage. .

Memory Links for Available Storage

Creating the Available-Disk Table

Interrogating Peripheral Units

STATUS Procedure

CONTROL CARD Procedure

SELECTION Procedure

R UN Procedure

MIX Index

INITIA TE Routine

PIMIX and P2MIX ..

25

25

25

25

26

26

26

26

26

26

27

27

27

27

28

28

28

28

29

29

Information Source for a Program In Process 29

PRESENCE BIT Routine. 29

SECTION

3

TABLE OF CONTENTS (Cont'd.)

TITLE PAGE

Methods of Making Information Present . . 30

Making Data Present for the First Time 30

Making Over laid Data Present 30

Making Program Segments Present 30

Control Section . 31

INDEPENDENT RUNNER Procedure and SLATE Array. . . 31

SLEEP Procedure and BED Array 31

NOTHINGTODO Routine 32

GETSPACE Procedure 32

Locating an Area for Overlayable Storage 33

Locating an Area for Non-Overlayable Storage 33

OLAY Procedure 33

Overlaying a Data Area 33

Overlaying Program Segment Areas 34

Overlaying a DF MCP Segment .. 34

FORGETSPACE Procedure 35

E SPBIT Procedure 35

Object Program I/O Facilities 36

I/O Intrinsics 36

Specification of File Handling Techniques 36

File and File Names

File Parameter Block

File Information Blocks

Logical Unit Numbers.

File Names vs. I/O Units

36

36

37

37

37

vii

SECTION

FIGURE

viii

1

2

3

4

5

6

TABLE OF CONTENTS (Contld.)

TITLE PAGE

Opening a File . 38

Buffer Area Accessed by Object Programs. 38

Communicate 38

Performance of Object Program I/O by the DF MCP 39

PROGRAM RELEASE Procedure. 39

CONTINUITY BIT Routine and
PRINTER BACKUP Procedure 39

IOREQUEST Procedure 39

INITIA TEIO Procedure. 40

IOFINISH Procedure 40

A Note on Parallel Processing. 40

Breakout, Restart, and Emergency Interrupt Facilities. 41

Breakout and Emergency Interrupt 41

REDUMP Procedure .. 42

Restart 42

Characteristics of the Program Logging Facility 43

LIST OF ILLUSTRATIONS

Stack Movement ...

Relative Addressing

TITLE

Destructive Store Operation

Bit Reference

Operand Call Accessing a Data Descriptor

Sub-Program Level Relative Addressing

PAGE

2

3

4

5

8

17

The B 5500 Electronic Information Proces­
sing System is the result of a hardware-soft­
ware integration. Processing on a B 5500
System results from the interrelated actions
of: (1) object programs produced by B 5500
compilers for problem-oriented languages,
(2) a master control program, and (3) the
B 5500 hardware.

The primary purpose of this document is to
provide a description of the operational char­
acteristics of the Disk File Master Control
Program (DF MCP) for Burroughs B 5500
Disk File System. However, because of the
B 5500 hardware-software interrelationship,

INTRODUCTION

a description of the DF MCP can proceed
only under the assumption that the reader
is at least basically familiar with the oper­
ational characteristics of the B 5500. Also,
the reader should be familiar with the or­
ganization of disk storage. Consequently, this
publication is divided in three sections; Sec­
tion 1 is a discussion of operational char­
acteristics of the B 5500, Section 2 is a dis­
cussion of the organization and use of disk
storage, and Section 3 is a discussion of the
operational characteristics of the DF MCP.
It may be helpful, but not necessary, for the
reader to be familiar with the problem ori­
ented languages of the B 5500.

ix

SECTION 1
BURROUGHS B 5500

INFORMATION PROCESSING SYSTEM

GENERAL

The following discussion covers operational
characteristics of the Burroughs B 5500
Information Processing System. It is not a
complete description of all characteristics;
however, it should provide the information
required to understand the operations of the
Disk File Master Control Program (DF MCP).
Only word mode operation is discussed.

STACK

Every program in process on the B 5500 has
its own stack. The stack is used for various
purposes during the execution of a program
and it is important to be familiar with its
characteristics.

The stack of a program currently executing
consists of: (1) the arithmetic registers r A
and rB and (2) a reserved area of core
memory immediately preceding the pro­
gram's Program Reference -Table which will
be discussed later. The association between
the core memory portion of the stack and
registers rA and rB is established by the S
register. The stack has the following char­
acteristics (r means register):

1. The top of the stack is considered to be
the stack location containing the most
currently obtained value.

2. Information being placed in the stack
is placed in rAe

3. If information is to be placed in the
stack (i.e., placed in rA) and rA is full,
the information in r A is first automat­
ically placed in r B.

4. If information from r A is to be placed
in rB and rB is full, the information in
rB is first automatically placed in the
next available location in the core
memory portion of the stack.

5. The address of the word most recently
placed in the core memory portion of
the stack is addressed by rS.

6. When a value from rB is to be placed
in the core memory portion of the stack,
the value of rS is first incremented by 1.

7. When information in the stack is to be
used, it is used on a last-in, first­
used basis (i.e., from the top of the
stack).

8. Various operations cause the informa­
tion in rA and/or rB to be used, con­
sequently leaving them empty; the pro­
cessor has a means of then marking
them "empty" . If information is re­
quired in rA and/or rB, and the informa­
tion is not where it is required, then
the flow of information is the reverse
of that described above until the desired
conditions are met. For example, if
rAwas empty and rB full, and a partic­
ular operation required that both rA
and r B be full, then the following actions
would occur to meet the conditions for
the operation (figure 1):

a. The information in rB would be placed
in rAe

b. The word addressed by rS would be
placed in r B.

c. Register rS would be decremented
by 1.

1

Step 1: Place PI in Stack Core Stack

rS 33000 rA PI

rB Empty

33000

~ 33001

Step 2: Place P2 in Stack Core Stack

rS 33000 rA P2

rB PI

33000

~ 33001

Step 3: Place P3 in Stack Core Stack

rS 33001 rA P3 33000
33001

rB P2 ~
Step 4: Place P4 in Stack Core Stack

rS 33002 rA P4 33000
33001

rB P3 33002 00 P2

Step 5: Place P5 in Stack

rS 33003 rA

rB

Figure 1.

Figure 1 shows the status of the stack and
rS as values represented by PI, P2, P3, P4,
and P5 are placed in the stack. Registers
r A and rB are assumed empty at the start.

PROGRAM REFERENCE TABLE (PRT)

AND RELATIVE ADDRESSING

Every program for the B 5500 has a PRT
(Program Reference Table). The PRT con­
tains the locations reserved for program
variables, data descriptors which give in­
formation about data arrays, and other pro­
gram information.

2

Core Stack

P5 33000
33001 PI

P4 33002 P2
33003 P3

Stack Movement

Relative Address

When a program references a word in its
PRT, the relative address of the word is
used, never the absolute address. The rela­
tive address of any particular location is
based on its position relative to the beginning
of the PRT. The first PRT word is word
zero. This method of addressing is used
because it does not rely on actual addresses
that exist at run time. At run time, a rela­
tive address is related to an absolute address
through use of r R.

When a program is executing, rR is set to
the absolute address of the base of that

program's PRT, according to wherever it was
read into core. Consequently, each relative
address used to reference the PRT can be
added to the value of rR to obtain the desired
absolute address. This action is carried out
automatically by the processor at run time
when a location is referenced.

Operand Call

A principal method of obtaining values from
a PRT, using the relative addressing tech­
nique, is through use of the operand call
syllable. A B 5500 instruction is referred
to as a syllable, and one B 5500 word ac­
commodates four syllables. Each operand
call syllable contains the relative address
of the location from which it is to obtain

information. When an operand call syllable
is executed, this relative address is automat­
ically added to the value in rR. The result,
which is the absolute memory address of the
pertinent location, is placed in the M register.
The information addressed by rM is then
obtained from the PRT and placed in the top
of the stack (figure 2).

Figure 2 shows register and core conditions
before and after an operand call addressing
relative address 30 of the PRT which con­
tains a value represented by X6.

Store Operators

Storing information in the PRT is also done
through the use of relative addresses. Storing

BEFORE

Core Stack

rS 33003 rA P5 33000
33001 m rB P4 33002 P2
33003 P3

rR 34000

~ 34000

rM
34030 B8 34031 X7

Operand Call on 30

AFTER Core Stack

rS 33004 rA X6 33000
33001 PI

rB P5 33002 P2
33003 P3
33004 P4

34000 ~
34030 8B 34031 X7

rR 34000

rlVl 34030

Figure 2. Relative Addressing

3

BEFORE

Core Stack

rS 33005 rA 1000----0311 33000
33001

rB X6 33002
33003
33004
33005

4034000 ~
34030

~ 34031 X7

rR 34000

rM

Store in 31

AFTER

Core Stack

rS 33005 rA Empty 33000
33001

rB Empty 33002
33003
33004
33005

34000 ~
rR 34000

rM 34031
34030
34031 X6

Figure 3. Destructive Store Operation 00
operations are carried out in the follow­
ing manner.

To store a value in the PRT, a literal (i.e.,
an integer with a value from 0 to 1023) equal
to the relative address of the pertinent PRT
location must be the top word in the stack.
The information to be stored must be the
second from top word in the stack. With
these conditions existing, a store operator
can be executed and the following actions will
occur automatically. The literal value (i.e.,
relative address) at the top of the stack is
added to the value of rR, yielding the desired
absolute address which is placed in rM. The
value which was the second word in the stack
is then stored in the location (in the PRT)
addresses by rM (figure 3).

4

It should again be pointed out that the actual
iocation of the PRT from run-time to run­
time may change without affecting the pro­
gram. This logically follows from the facts
that: (1) a program only uses relative ad­
dresses to address the PRT, (2) the actual
addresses of PRT locations are determined
through use of rR, and (3) the DF MCP always
sets rR to the base of the program's PRT,
wherever it is in memory.

Figure 3 shows register and core conditions
before and after a destructive store operation
(i.e., a store operation that removes the
value from the stack after storing it) refer­
enCing relative address 31 in the PRT. The
value 31 has already been placed in the stack
as a relative address; the value X6 is to
be stored.

NOTA TION USED FOR WORD
DESCRIPTION

A B 5500 word is 48 bits in length. Refer­
ence to particular bits, made in this docu­
ment, will be specified using the following
conventions:

1. The bits in a word are referenced from
left to right and are numbered from 0
(zero) through 47 (figure 4).

2. Reference to a particular bit or group
of contiguous bits will be made using
the construct:

[INTEGER:INTEGER]

where the INTEGER on the left of the
colon specifies the left-most bit of the
field and the INTEGER on the right of
the colon specifies the number of bits
in the field.

Figure 4 is a representation of a B 5500
word followed by a description of its contents.

DATA WORDS

The B 5500 recognizes two types of data
words: operands and data descriptors. In
appearance, the only difference between an
operand and a data descriptor is in the value
of one particular bit, the flag bit. The flag
bit of a word is bit [O:IJ. Operands have a
flag bit of zero; descriptors have a flag bit

I 0 1 0 1 1 1 0 0 0 1 1 0

0 M C'I C'I';) ~ to co t- ao 0') 0 M
M M

Field

[0:1]
[1:3J
[4:2J
[6:3J
[9:5J

(

?
[40:8J

0

C'I
M

equal to 1. In use, operands and data de­
scriptors have different functions.

Operands

Basically, an operand is concerned with one
memory location, the one which it occupies.
An operand is recognized as a value, such
as a floating point arithmetic quantity. The
bi ts in an operand are recognized to have
the following functions:

Bits

[O:IJ

[2:1J

[3:6J

[9:39]

Function

Flag bit (=0)

Sign of mantis sa (0=+, 1 =-)

Sign of exponent (0=+, 1=-)

Exponent

Mantissa

The decimal point is assumed to be at the
extreme right for fixed and floating point
numbers. Fixed point numbers (i.e., integers)
have a zero exponent.

Data Descriptors

A data descriptor, as its name implies,
describes data (i.e., a data area) by pointing
to one or more contiguous data locations.
Consequently, a particular data descriptor
may be concerned with many memory

l~ {l 1 1 0 0 0 0 0

C'I';) 0 M C'I C'I';) ~ to co t-
M ~ ~ ~ ~ ~ ~ ~ ~

Contents

0
101
11
000
11001

(

~
11100000

Figure 4. Bit Reference

5

locations. More than this, however, a data
descriptor is also concerned with the pres­
ence, in core, of the data it describes. This
is necessarily so particularly because of the
data overlay capabilities of the B 5500. A
descriptor is concerned with many aspects
of storage. These aspects are indicated by
various bits in the descriptor. The bits in a
data descriptor have the following functions:

Bits

lP:l]

[1:1J

r.2·ll ~ • J

[8:10J

[18:15J

[33:15J

Bit Explanation

Function

Flag bit (=1)

Identification bit (=0,
for data descriptor)

Presence bit (l=pre­
sent, O=not present)

Reserved for system
use

Size Field

Reserved for system
use

Address of data in core,
if present.

Address of data in over­
lay storage, if overlaid.

Code number 1, if the
area has never been
accessed.

IDENTIFICATION BIT. Descriptors are used
for other functions as well as describing
data; this bit set to zero Signifies this to be
a data descriptor.

PRESENCE BIT. As noted above, the data
area represented by a particular data de­
scriptor mayor may not be present in core.
If the data is not present in core, the DF
MCP sets this bit to 0; if the data has been
made present, the DF MCP sets this bit to 1.

1 The code number specifies the type of
storage required (e.g., overlayable or non­
over layable); this will be explained further
in Section 3.

6

SIZE FIELD. This field denotes the number
of words in the area represented by this
descriptor.

ADDRESS FIELD. As shown above, this field
may specify anyone of three things. To
discern what the field represents, the follow­
ing logic may be used:

1. If the presence bit is 1, then the field
represents a core address.

2. If the presence bit is 0, then

a. if the field is a code number, then
the area has never been obtained;
otherwise,

b. the field represents an address in
overlay storage.

OPERAND CALL AND DATA WORDS

The function of the operand call syllable is
to obtain an operand and place it in the top
of the stack. The method by which this is
accomplished varies, according to the kind
of data word addressed.

Operand Call on an Operand

When an operand call addresses an operand,
the operand is brought to the top of the stack;
the processor automatically checks the flag
bit and, finding it 0, terminates the operand
call operation leaving the operand in the top
of the stack.

Operand Call on a Data Descriptor

Wben an operand call addresses a data
descriptor, the data descriptor is brought to
the top of the stack; the processor auto­
matically checks the flag bit and finding it
1 continues the operand call operation (i.e.,
the operation as it is related to data de­
scriptors) as follows:

1. The presence bit of the descriptor is
checked and

a. if it is 0, the processor's presence
bit interrupt is set, an interrupt
occurs, and the DF MCP assumes
control (brings the data to core).

b. if it is 1, the processor continues as
shown at 2.

2. The size field is checked for 0 and

a. if it is zero, the word addressed by
the address field of the descriptor is
placed in the top of the stack, re­
placing the descriptor. The word
thus obtained should be an operand.
If it were not, a "flag bit interrupt"
would occur and the DF MCP would
take control.

b. if the size field is not zero, this
indicates an index operation is re­
quested. When this is the case, the
second word from top word in the
stack (Le., the word in rB) is taken
to be the index value.

It should again be pointed out that the opera­
tions described above show the paths which
the processor would choose and follow auto­
matically to complete the execution of an
operand call syllable which accesses a data
descriptor (figure 5).

Indexing

The processor automatically performs the
index operation essentially as follows:

1. The index value in rB is compared to
the size field in the data descriptor in
rA and

a. if it would index outside of the data
area, the processor's invalid index
interrupt is set, an interrupt oc­
curs, and the DF MCP takes control.

b. if it is a valid index, the processor
continues as shown at 2.

2. The index value in rB is added to the
address in the data descriptor (leaving
only the indexed descriptor).

3. The word addressed by the indexed
data descriptor is placed in the top of
the stack replacing the descriptor. The
word thus obtained should be an operand.
If it were not, a "flag bit interrupt"
would occur and the DF l\ICP would
take control.

Figure 5 shows core conditions, and then the
operations that take place during the execu-

tion of an operand call which addresses a
data descriptor with a non-zero size field.
The literal 7 is assumed in the top of the
stack at start. rR = 34000.

POLISH NOTATION

The code 2 in programs for the B 5500 is in
a form known as Polish Notation. Basically,
Polish Notation is a method for writing ex­
pressions without a need for bracket char­
acters to delimit the scope of an operator.

Conventional notation, as is well known,
does rely on bracket characters for this
purpose. For example, consider the different
meanings of the two expressions noted below
which only differ in the use of parentheses.

1. (6+9) / 3 (which equals 5)

2. 6 + 9 / 3 (which equals 9)

Polish notation will be described below
through use of examples. The examples are
designed to relate to computer operations and
will deal only with evaluating arithmetic ex­
pressions and setting variables to values of
those expressions.

The following notation will be used in the
examples:

1. Variables will be represented by iden­
tifiers, where an identifier is an upper
case letter or a contiguous string of
upper case letters and digits, beginning
wi th an upper case letter.

2. Where the value of a variable is repre­
sented, the variable will be subscripted
with a lower case v. For example, Yv
or Xv. Variables written in this manner
are considered to be a form of operand.

3. Where the location of a variable is rep­
resented, the variable will be sub­
scripted with a lower case a. For ex­
ample Ya or Xa. This construct will
be referred to as an address variable.

2 The code referred to here is the machine
code generated by the compilers for the
B 5500 and should not be confused with the
"code" written by programmers using the
problem oriented compilers.

7

55407

Core Memory

~
~

34000

34042

rA 00-------------------------07

rB Empty

Operand call on 42

Flag Presence Size Core Address

rA

rB

rA

rB

rA

rB

Bitl fBit

:~o~-~~-_--,-_I_-_-_:-:_--L_-__ -__ -_-__ --'-__ -_-::-:_-0:-7 ----J! }

------------------------55407

First the data descriptor, with presence
bit = 1, is brought to the top of the stack.

I } Then the data descriptor is indexed by

r-L...===============================I value in rB.
Empty .

00------------------------123

Empty }

Finally, the value addressed by the in­
dexed data descriptor is brought to the
top of the stack.

Figure 5. Operand Call Accessing a Data Descriptor

The following rules are used to interpret the
Polish Notation used in the examples:

one operand.

8

1. The Polish "string" is read from left
to right.

2. Operands are obtained (i. e., read) until
the last operand has occurred or until
an arithmetic operator occurs.

3. When an arithmetic operator occurs,
the two most recently obtained operands
are operated upon as though the operator
had occurred following the second from
last operand and preceding the most
recent operand.

4. When an arithmetic operation is per­
formed on two operands, the result is

5. The sequence noted above continues
until an address variable occurs.

6. When an address variable occurs, it
will be followed by an assignment op­
erator (i.e., the symbol -). The oc­
currence of an address variable and an
- means that the address variable is
to be assigned the value of the recently
obtained operand (Le., the value of the
expression).

Extended ALGOL statements will be used
with each example to express, in a more
conventional manner, the operations to be
performed.

The arithmetic operators used in the ex­
amples have their conventional meaning, as
they do in Extended ALGOL. The Extended
ALGOL symbol -- is referred to as the as­
signment symbol. It symbolizes that the
value of the expression on its right is to be
assigned to the variable on its left. For
example, the statement.

X -B + C

means that the value of B plus C is to be
assigned to the variable X.

Examples of Poli sh Notation

Consider the Extended ALGOL statement:

X-Y+z+w

In Polish Notation the statement would be
written:

Yv Zv + Wv + Xa -

which in words means:

Obtain the value of Y.

Obtain the value of Z.

Add the two most recently obtained oper­
ands, (Le., Yand Z).

Obtain the value of W.

Add the two most recently obtained oper­
ands (i. e., (Y + Z) and W).

Assign X the value of the most recently
obtained operand (i.e., (Y + Z +W).

Consider the Extended ALGOL statement
(there are four operand variables and VOL
is the address variable):

VOL-QT x CONI + PT x CON2

In Polish Notation this statement would be
written:

QTv CONIv x PTv CON2v x + VOL-

which in words means:

Obtain the value of QT.

Obtain the value of CO Nl.

Multiply the two most recently obtained
operands (i.e., QT and CONI).

Obtain the value of PT.

Obtain the value of CO N2.

Multiply the two most recently obtained
operands (i.e., PT and CON2).

Add the two most recently obtained oper­
ands (i.e., (QT x CONI) and (PT x CON2)).

Assign VOL the value of the most recently
obtained operand (Le., (QT x CONI + PT
x CON2)).

Consider the Extended ALGOL statement:

X-(D x (M + N» / (T + P)

In Polish Notation the statement would be
written:

DV Mv Nv + x Tv Pv + / Xa-

which in words means:

Obtain the value of D.

Obtain the value of M.

Obtain the value of N.

Add the two most recently obtained oper­
ands (i.e., M and N).

Multiply the two most recently obtained
operands (i.e., (M + N) and D).

Obtain the value of T.

Obtain the value of P.

Add the two most recently obtained oper­
ands (Le., T and P).

Divide the next to last obtained operand
by the most recently obtained operand (Le.,
(D x (M + N) by (T + P)).

Assign X the value of the most recently
obtained operand (i. e., ((D x (M + N) /
(T + P)).

9

SYLLABLES: INSTRUCTIONS FOR
THE B 5500

Syllables have been discussed in the preced­
ing paragraphs; namely the operand call
syllable and an operator syllable, the store
operator. In all, the B 5500 recognizes four
types of word mode syllables: the operand
call syllable, the descriptor call syllable, the
literal call syllable, and the operator syllable.

A syllable is 12 bits in length, thus account­
ing for the fact that one B 5500 word ac­
commodates four syllables. The two right­
most bits in a syllable disclose the type of
syllable; the remaining ten bits vary in use,
depending upon the type of syllable.

Operand Call Syllable (10)

The two right-most bits of the operand call
syllable are 10. The ten remaining bits
contain a relative address. The operand call
was discussed previously.

Descriptor Call Syllable (11)

The two right-most bits of the descriptor
call syllable are 11. The ten remaining bits
contain a relative address. The action of the
descriptor call is very similar to the operand
call. The function of the descriptor call,
however, is to bring a descriptor into the
top of the stack.

Literal Ca II Syllable (00)

The two right-most bits of the literal call
syllable are 00. The ten ren1aining bits are a
literal value from 0 to 1023. The execution
of a literal call syllable causes the literal
value contained in the syllable to be placed
in the top of the stack as a positive integer.

Operator Syllable (01)

The two right-most bits of an operator
syllable are 01. The ten remaining bits
specify the function of the operator (e.g.,
there is a single preCision add operator, a
single precision subtract operator, etc.).
Operator syllables designate the manner in
which the data in rA and/or rB (Le., the top
stack locations) are to be operated on; or,
in the case of double precision operators,

10

how the data in the top four stack locations
are to be operated on.

POLISH NOTATION AND
B 5500 PROGRAMS

As was noted above, the machine language
code of programs for the B 5500 is a form
of Polish Notation. This is possible primarily
because of the stack facility of the B 5500.

To illustrate the importance of the stack,
first reconsider its characteristics.

1. When information is placed in and used
from the stack, it is always such that
the most recently obtained infornlation
is in the top of the stack ..

2. The arithmetic registers, rA and rB,
are always essentially the top words
in the stack.

3. The registers rA and rB are always
kept full automatically, as needed.

Second, reconsider how the operand call and
literal call syllables bring values to the top
of the stack; and how the storing operators
use the stack.

Third, consider these single precision arith­
metic operators of the B 5500:

1. The ADD operator causes the value in
r A to be added to the value in r B. The
sum is left in rB and rA is marked
empty.

2. The SUBTRACT operator causes the
value in rA to be subtracted from the
value in r B. The difference is left in
rB and r A is marked empty.

3. The MULTIPLY operator causes the
value in rB to be multiplied by the value
in r A. The product is left in r Band
r A is marked empty.

4. The DIVIDE operator causes the value
in rB to be divided by the value in rAe
The quotient is left in rB and rA is
marked empty.

Fourth, recognize the following conventions:

1. OPDC (variable) represents anoperand
call syllable containing the relative
address of the indicated variable. For
example:

OPDC (PI)

represents an operand call syllable
that would place the value of PI in
the top of the stack.

2. LITC (literal) represents a literal call
syllable which contains the literal value
indicated. For example:

LITC (14)

would cause a positive integer 14 to be
placed in the top of the stack.

3. LITC (address of variable) represents a
literal call syllable which contains a
literal value equal to the relative ad­
dress of the indicated variable. For
example:

LITC (address of X)

would cause a literal equal to the rela­
tive address of X to be placed in the
top of the stack.

4. ADD represents the single precision
add operator.

5. SUB represents the single precision
subtract operator.

6. MUL represents the single precision
multiply operator.

7. DVS represents the single precision
divide operator.

8. STD represents the store destructive
operator. This operator will, if r A
contains an operand, use the literal
value in rA as a relative address, and
store the value in r B in the location
relatively addressed by r A. After the
storing, rA and rB are marked empty.

Now again, consider the examples of Polish
Notation together with equivalent Extended
ALGOL statements; however, this time aug­
mented by equivalent B 5500 code, repre­
sented mnemonically.

The B 5500 code in the examples will be
listed in sequence, by syllable. To the right
of each syllable, notation will be shown that
would be the contents of rA .and rB after
the execution of that syllable. Registers r A
and rB will be assumed empty at the begin­
ning of the code.

PROGRAMS FOR THE B 5500:
SEGMENTED AND ADDRESS
INDEPENDENT

A program for the B 5500 is made up of
program segments. Program segments have
the following characteristics: (1) the only
segment that need be in core at a particular
time is the one being executed. (2) a seg­
ment is address-independent and therefore
not dependent upon where it is placed in core.

The principal B 5500 features that make
address-independent segments possible are
the C register and relative branching. A
special function of the operand call syl­
lable facilitates the handling of non-present
segments.

C Register: Address of Control

The C register is used to contain the core
address of the program word that contains
the syllable to be executed next. Disregard­
ing any branching actions, the B 5500, in
regard to rC, functions essentially as follows.

The word addressed by rC is placed in
register rP. Individual syllables are taken
from r P; in sequence f and executed. As
the last syllable from rP is executed, rC
is incremented and the next program word
is placed in rP, etc. The L register
specifies the next syllable in rP to be ex­
ecuted. Syllables are numbered 0, 1, 2, 3
from left to right.

11

Examples of Statements and Resu Iting Code

Example 1.

The Extended ALGOL statenlent:

X -y + Z + W

is represented in Polish Notation as:

Yv Zv + Wv + Xa-

The equivalent B 5500 code, expressed mnemonically, and the contents of rA and rB are as
follows:

OPDC (Y) rA =Y rB = empty

OPDC (Z) rA = Z rB = Y

ADD rA = empty rB Y + Z

OPDC (W) rA =W rB Y + Z

ADD rA = empty rB Y + Z +W

LITC (address of X) rA = address of X rB = Y + Z +W

STD3 rA = empty rB = empty

Example 2.

The Extended ALGOL statenlent:

VOL - QT x CONI + PT x CON2

is represented in Polish Notation as:

QTv CONIv x PTv CON2v x + VOLa-

The equivalent B 5500 code, expressed mnemonically, and the contents of rA and rB are as
follows:

OPDC (QT) rA = QT rB empty
r'\.T\T\r< ~r<r'\."'T1 \

__ A ,..,r'\. ... T-1 __ T"\
"rn vr 1.J\...J \ \...JV1'J J..} 1:fi = \...JV1'JJ.. r"n ~l.

MUL rA = empty rB QT x CONI

OPDC (PT) rA = PT rB QT x CONI

OPDC (CON2) rA = CON2 rB = PT

MUL rA = empty rB = PT x CON2

ADD4 rA = empty rB = QT x CONI + PT x CON2

LITC (address of VOL) rA = address of VOL rB = QT x CONI + PT x CON2

STD s rA = empty rB empty

3 Location of X = Y + Z + W
4Immediately before the addition, the stack was automatically adjusted so rA = PT x CON2
and rB = QT x CONI.

S Location or VOL = QT x CONI + PT x CON2

12

Example 3.

The Extended ALGOL st~tement:

x - (D x (M + N» / (T + P)

is represented in Polish Notation as:

Dv Mv Nv + x Tv Pv + / Xa-

The equivalent B 5500 code, expressed mnemonically, and the contents of rA and rB are
as follows:

OPDC (D) rA = D

OPDC (M) rA M

OPDC (N) rA N

ADD rA empty

MUL6 rA = empty

OPDC (T) rA T

OPDC (P) rA P

ADD rA empty

DVS7 rA empty

LITC (address of X) rA address

STD8 rA = empty

When a particular segment is to be executed,
the DF MCP can cause rC to be set to the
proper core address, according to where the
program segment was placed in core.

Transferring Control within Segments:

Relative Branching

Syllables within a program segment are ex­
ecuted in sequence, except for transfers of
control. To transfer control from one syl­
lable in a program to another in the same
segment, no syllable addresses are used.
Transferring control is done by specifying:
(1) the number of syllables or words the
branch is to span (calculated in relation to
the current point of execution), and (2) the
direction of the branch, either forward or
backward. For exanlple, a particular trans­
fer of control could specify to "branch for­
ward 15 syllables".

It should be noted that this manner of branch­
ing does not rely on the program segment to

rB = empty

rB = D

rB = M

rB = M +N

rB Dx (M + N)

rB Dx (M + N)

rB T

rB T +P

rB (D x (M + N)) / (T + P)

of X rB (D x (M + N)) / (T + P)

rB = empty

be in specific core locations. Considering
this fact, and the fact that the DF MCP can
determine the setting of rC, it can easily
be seen that program segments may be
located at the discretion of the DF MCP.

Transferring Control to Other Segments

and the Operand Call

The B 5500 branch instructions are designed
to execute one of two ways: (1) if there is a
literal in the top of the stack when the branch
is executed, then it is to be executed as a
relative branch and the literal specifies the
number of syllables (or words, depending on

6Immediately before the multiplication, the
stack was autonlaticallyadjusted so rA = IVI
+ Nand rB = D.

7 Immediately before the division, the stack
was automatically adjusted so that r A = T
+P and rB = D x (M+N).

8Location X = (D x (M+N)) / (T+P).

13

the branch instruction) that the branch is to
span, as described above; (2) if there is a
descriptor in the top of the stack, then the
branch is to transfer control to the absolute
address in the descriptor.

To transfer control from one program seg­
ment to another, a branch is executed with a
descriptor, in the top of the stack, that
addresses the segment to which control is to
be transferred. This method of transferring
control is straight forward, except for one
factor; the segment being branched to may
not be in core. The segments presence must
be ensured.

The branching descriptor t which is placed in
the top of the stack, is a special form of a
program descriptor referred to as a Label
Descriptor. A Label Descriptor is described
as follows:

Bits

[O:lJ

[l:lJ

[2:1J

[3:3J

[6:2~

Function

Flag bit (=1)

Identification bit (= 1,
for program de­
scriptor)

Presence bit (1 = pre­
sent, 0 = not present)

Special function (=110,
for label descriptor)

Reserved for system
use

Address of program
segment in cor e, if
present.

When an operand call addresses a label
descriptor, the label descriptor is brought
to the top of the stack. The processor finds
the flag bit to be 1, and checks the presence
bit. If the presence bit is 0, the processor's
presence bit interrupt is set and the DF
MCP takes control. If the presence bit is 1,
the processor checks to see if the descriptor
is a label descriptor. When it is found to
be a label descriptor, the descriptor is left,
as is, in the top of the stack and the operand
call operation is terminated.

The special way in which the operand call
syllable treats a label descriptor is as
follows:

14

1. An operand call addressing a label
descriptor 1S executed prior to a branch
which will cause control to be trans­
ferred to a different segment and one
of two results will occur:

a. If the segment is present, then the
presence bit of the label descriptor
will be 1, the label descriptor will be
left in the top of the stack, and the
branch instruction will be executed.

b. If the segment is not present, con­
trol will go to the DF MCP. The
DF MCP will make the segment
present, place the new address of
the segment in the label descriptor,
do all necessary fix-up, and return
control to the program which can
then branch to the new segment.

PROCEDURES:
SUBROUTINES OF THE B 5500

A B 5500 subroutine, here referred to as a
procedure, has three prinCipal constituents:
(1) a code string, (2) parameters, and (3)
local variables. The code string can be
branched to from various points in a pro­
gram by making a "call" on the procedure.
When the procedure is completed, program
control will be returned to the wint follow­
ing the procedure call.

When a procedure is called, parameters, if
any, are placed in the program stack. Vari­
abIes used by the procedure, and which are
local to the procedure, are assigned stack
locations. The procedure can reference the
parameters and variables by use of relative
addresses.

The B 5500 procedure facility is related
principally to three B 5500 features: the F
register, control words, and a type of program
descriptor called the procedure. descriptor.

F Register

The F register is used to contain an address
of reference for relative addresses of stack
locations. The F register also serves to mark
the locations of control words so that: (1)
their addresses can be recorded in sub­
sequent control words when entering a proce­
dure, or (2) their contents can be used when
exiting a procedure.

Control Words for Procedures

Control words are automatically created by
the processor when certain operators are
executed or when interrupts occur. They
contain the contents of various registers and
other such information which can be used to
re-establish processing conditions after the
occurrence of subroutines and interrupts.
The two control words used with procedure
handling are: (1) the mark stack control
word and (2) the return control word.

MARK STACK CONTROL WORD. Included
in the information contained in the mark
stack control word is the value of rF when
the mark stack control word was being
created. The mark stack control word pre­
cedes procedure parameters.

RETURN CONTROL WORD. Included in the
information contained in the return control
word are: (1) the value of rF, (2) the value
of rC, and (3) the value of rL when the re­
turn control word was being created. The
return control w 0 r d follows procedure
parameters.

Procedure Descri ptor

The procedure descriptor is a program
descriptor uniquely marked as a descriptor
which will cause subroutine entry when ad­
dressed by an operand call syllable.

The information in a procedure descriptor
includes the following:

Bits

[o:~

11:1]

~:1]

[3:3J

@:27]

[33:15J

Function

Flag bit (=1)

Identification bit (=1,
for program de­
scriptor)

Presence bit (1 =pre­
sent, 0 = not present)

Special function (= 101,
for procedure de­
scriptor)

Reserved for system
use

Address of procedure
code in core, if present

Calling a Procedure

When calling a procedure, the first syllable
to be executed is the mark stack operator.

MARK STACK OPERATOR. Actions caused
by the mark stack operator include the
following.

1. The contents of r A and r B, if any, are
pushed into the core memory portion
of the stack.

2. A mark stack control word is con­
structed in rB and pushed into the core
memory portion of the stack. If this
mark stack control word is the first
preceding a return control word, the
mark stack control word is also placed
in the PRT at rR + 7.

3. The F register is set to the address of
the top of the stack (i.e., rF is set
to the current value of rS which ad­
dresses the location containing the
mark stack control word).

4. The processor is put in the sub-program
level, if it had not been previously.

After the mark stack operation, the program
can place parameters in the stack, if desired.
Parameters would include operands and/or
descriptors. Then, an operand call address­
ing the pertinent procedure descriptor would
be executed.

OPERAND CALL ON A PROCEDURE DE­
SCRIPTOR. Actions caused by executing an
operand call that addresses a procedure de­
scriptor include the following:

1. The descriptor is placed in r A and
found to have a flag bit of 1.

2. The presence bit is checked. If 0, a
presence bit interrupt occurs and the
DF MCP takes control to make the
procedure code present. If 1, step 3
would follow immediately.

3. The descriptor is determined to be a
program descriptor.

~. If there is a word in rB, it is pushed
into the core memory portion of the
stack.

15

5. A return control word is constructed in
rB, and pushed into the core memory
portion of the stack.

6. The C register is set to the address in
the procedure descriptor, (Le., the ad­
dress of the procedure code in core).

7. The F register is set to the address of
the top of the stack (i.e., rF is set to
the value of rS, which currently ad­
dresses the location containing the re­
turn control word).

At the completion of the operand call syllable,
the processor begins executing the procedure
because rC, at that time, addresses the
procedure code.

Certain conditions existing in the stack should
be noted:

1. The mark stack control word is the
"deepest" word in the stack that per­
tains to the procedure. It contains the
value contained by rF prior to the pro­
cedure call.

2. The parameters to the procedure follow
the mark stack control word and, more
important, immediately precede the re­
turn control word.

3. The value of rF that was placed in the
return control word is the address of
the mark stack control word.

4. The value of rC that was placed in the

gram word to which control can be re­
turned at the completion of the proce­
dure. Register rL specifies the syllable
within the program word.

5. The F register contains the address of
the return control word.

Executing Procedure

When a procedure begins execution, the first
action is to reserve stack locations for its
local variables. This can be done by execut­
ing literal call syllables containing a zero
value; one such literal call for each local
variable. This places zeros in the stack im­
mediately following the return control word

16

which is addressed by rF (rS is adjusted if
necessary). An important factor then is how
the stack locations which contain the para­
meters and local variables can be addressed.

RELATIVE ADDRESSING IN THE SUB-PRO­
GRAM LEVEL. When operating in the sub­
program level, the B 5500 can do addressing
relative to rR and rF. In the sub-program
level, addressing may also be done relative
to r C and the value addre s sed by r R + 7;
however, this will not be discussed. When
addressing relative to rR, the relative ad­
dresses are always added to the value of
rR. When addressing relative to rF, relative
addresses may be added to or subtracted
from the value of rF. The conditions stated
below dictate whether addressing is to be
rR-plus, rF-plus, or rF-minus. The setting
of a I-bit machine register called the mark
stack flip-flop is also related to addressing
in sub-program level. For this discussion
it is assumed to be _zero.

1. If the left-most bit of an operand call
syllable or descriptor call syllable is
0, the relative address (i.e., the re­
maining nine bits in the address portion
of the syllable) will be added to the
value in rR.

2. If the two left-most bits of an operand
call syllable or descriptor call syllable
are 10, the relative address (i.e., the
remaining eight bits in the address
portion of the syllable) will be added
to the value in r F .

3. If the three left-most bits of an operand
call syllable or descriptors are 111,
the relative address (i.e., the remaining
seven bits in the address portion of the
syllable) will be subtracted from the
value in rF.

4. If a store operator is executed and the
left-most bit of the relative address in
rA is zero, the remaining nine bits in
the address will be added to rR.

5. If a store operator is executed and the
two left-most bits of the relative ad­
dress in rA are 10, the remainingeight
bits of the address will be added to rF.

BEFORE

rC 57004 rL 1 rF 33024 rS 33030

Stack

33033
(Previous rF) Mark Stack

33024 Control Word

33034 PI 1st Parameter

33035 P2 2nd Parameter

33036
(Previous r L) (Previous rF) (Previous rC) Return Control

1 33033 57005 Word

33037 0 Local Variable

THEN

rC 43120 rL 1 rF 33036 rS 33037

Figure 6. Sub· Program Level Relative Addressing

6. If a store operator is executed and
the three left-most bits of the relative
address in rA are 111, the remaining
seven bits of the address will be sub­
tracted from rF.

The absolute addresses, obtained as speci­
fied above, are placed in r M. The pertinent
values are then obtained (or stored) in the
conventional manner, as was discussed above
in relation to the subject syllables.

Considering the conventions for addressing
noted above and remembering that rF points
at the return control word, it can be seen
that a procedure can reference its para­
meters by using rF-minus addressing, its
local variables by using rF-plus addressing,
and PRT variables by rR-plus addressing.

Figure 6 shows: (1) rC, rL, rF, and rS
before a procedure call; (2) the stack ar­
rangement after a procedure call and after
one location was reserved for a local vari­
able. (The procedure call required the

execution of four syllables: (a) a mark stack
operation, (b) two operand calls for para­
meters, PI and P2, and (c) an operand call
on a procedure descriptor with an address
field of 43120); and (3) registers rC, rF, and
rS after the stack was set up as shown.
Register r A and rB were full before the
procedure call.

Exiting a Procedure

When a procedure is exited, the following
is essentially what automatically occurs:

1. The word addressed by rF is placed
in rB (Le., the return control word is
placed in rB).

2. The registers rC and rL are restored
to the values contained in the return
control word (Le., rC and rL are set
to the point in the program which fol­
lows the procedure call).

17

3. Other registers whose settings are
stored in the return control word are
restored, excluding rF.

4. Register rS is set to the value of rF.

5. The word addressed by rS (i. e., the
mark stack control word) is placed
in rB.

6. The registers whose settings are stored
in the mark stack control word (in rB)
are restored, including rF.

7. Register rS is decremented by 1, thus
restoring it to the setting it contained
before entering the procedure.

8. Control is returned to the point deSig­
nated by rC and rL.

Additional Remarks about Subroutines

There are additional features and special
conditions related to subroutines on the
B 5500 that are not discussed here. The
information above, however, does show the
general pattern for handling subroutines and
is suffiCient for the purpose of this document.

Two remaining points that should be added
are:

1. Procedures which bring back values
(e.g., functions) accomplish this by
placing the value in r A before going
through the exiting process discussed
above.

2. Procedures can call on other proce­
dures and/or themselves. The process
for doing this is the same as the pro­
cess discussed above. The only dif­
ferences would be in register settings.

B 5500 PROCESSORS AND STATES

The B 5500 can utilize one or two processor
units. Processor units can be designated
Processor 1 or Processor 2 by means of a
hardware switch. However, if there is only
one processor unit on a system, it must
be deSignated Processor 1; and if there are
two processors, one must be designated
Processor 1 and the other Processor 2.

18

A B 5500 processor can operate in either
of two "states", control state or normal
state. However, the processor deSignated
processor 2 can operate only in normal
state.

All available memory modules may be used
by either processor; however, the first 512
words of memory module zero are reserved
for control state use and are consequently
available only to processor 1.

Normal State

When operating in normal state, a processor
can make use of all operators necessary for
computation. Therefore, the execution of
explicit object program code is performed
in normal state. When two processors are
available on a B 5500 System, both pro­
cessors can simultaneously execute object
programs.

Processing in normal state can be inter­
rupted when an interrupt condition is de­
tected. Interrupt conditions are handled in
control state.

Contro I State

The DF MCP controls operations in control
state. When operating in control state, a pro­
cessor can make use of an extended set of
operators. The additional operators are
needed to perform operations required of the
control program which is the DF MCP. If
special control state operators are encoun­
tered during normal state processing, they
are treated as no-ops.

Processing in control state is not interrupted
when an interrupt condition is detected.
Certain interrupt conditions such as "pre­
sence bit" are inhibited. Other interrupt
conditions such as those caused by "I/O
finished" signals are recorded, but only
recognized when the DF MCP does an "in­
terrogate interrupt" operation (this opera­
tion will be discussed below).

INTERRUPTS

There are a number of conditions recognized
by the B 5500 as interrupt conditions. Each
interrupt condition is associated with a bit
(or unique combination of bits) in an interrupt

register. In turn, each bit (or bit combina­
tion) in the interrupt register is associated
with a given location in core referred to as
the interrupt location for the particular in­
terrupt.

Processor Dependent and

Processor Independent Interrupts

Interrupt conditions can be generated by a
processor or by other components of the
hardware. Interrupt conditions generated by
a processor are called processor dependent;
those generated by other components of the
hardware are called processor independent.

An example of a processor dependent inter­
rupt condition is the "presence bit condition"
caused by a program being executed on a
processor which is executing an operand call
which addresses a descriptor with a presence
bit of zero.

An example of a processor independent inter­
rupt condition is an "I/O finished condition"
caused by the I/O hardware when an I/O
operation has been completed.

Processor dependent interrupts are classed
as Processor 1 interrupts and Processor 2
interrupts. That is, there is a particular
interrupt bit associated with each interrupt
caused by Processor 1 and likewise for
Processor 2. The types of interrupt that may
be caused on either processor are the same.

When Processor 2 is operating in normal
state, its operation can be interrupted only
by the occurrence of a Processor 2 interrupt
condition or HALT P2 instruction executed
by Processor 1.

When Processor 1 is operating in normal
state, its operation will be interrupted by
the occurrence of any interrupt condition.

Action to Handle Interrupts

\\-'hen a processor is operating In normal
state and its operation is interrupted, the
following actions occur:

1. The contents of rA and rB, if any, are
pushed into the core memory portion of
the stack.

2. An interrupt control word is constructed
and pushed into the core memory portion
of the stack.

3. An interrupt return control word is
constructed and pushed into the core
memory portion of the stack.

4. An initiate control word is constructed
and placed in the program's PRT at
rR + 8. The value of rS in this word
addresses the interrupt return control
word.

INTERRUPT CONTROL WORD. Included in
the contents of the interrupt control word
are the contents of rR and the contents of
rM at interrupt time.

INTERRUPT RETURN CONTROL WORD. In­
cluded in the contents of the interrupt return
control word are the contents of rC, the
contents of rL, and the contents of rF at
interrupt time.

INITIATE CONTROL WORD. Included in the
contents of the initiate control word is a bit
that specifies whether the interrupt occurred
during a word mode operation or a character
mode operation, and the address of the top
of the stack when control is switched to the
DF MCP.

If the above actions occur on Processor 2,
an appropriate interrupt bit for that processor
is set and the processor idles until it is
re-initiated by Processor 1. The interrupt
bit set by Processor 2 causes Processor 1
to be interrupted if Processor 1 is in normal
state.

After the above actions occur on Processor 1,
the following actions occur:

1. The processor goes into control state.

2. The C register is set to the core ad­
dress of an interrupt location (rL is
set to zero).

3. The S register is set to memory ad­
dress 64, thus relating rA and rB to
the first words of the area which can
now be used as a DF MCP stack. This
area is in the portion of core reserved
for control state.

19

4. The DF MCP processes the interrupt(s).

5. The DF MCP determines that a pro­
gram can be re-initiated.

6. An initiate control word is taken from
a PR T and placed in r A.

7. The DF MCP executes an "Initiate
Processor I" syllable (or "Initiate
Processor 2") to put operations back
to normal state. The remaining steps
occur automatically.

8. The S register is automatically set
from the value in the initiate control
word in rA; thus rA and rB are again
related to the program's stack.

9. The word addressed by rS (the inter­
rupt return control word) is read and
the address values therein are placed
in their respective registers.

10. The S register is decremented by 1 so
that it addresses the interrupt control
word.

11. The interrupt control word is read and
its address values are distributed to
their respective registers.

12. The S register is left as it was before
the interrupt and the normal state
processing continues from the point
of interrupt.

It should be noted that more than one inter­
ru.pt condition can exist at a time. For in­
stance, one or more "I/O complete" inter­
rupts (depending on the number of I/O
control units) could occur while the DF
MCP was in control state handling a pre­
sence bit interrupt. It would be inefficient
if the DF MCP re-established conditions
for, and returned operations to, normal state
after one interrupt only to have another
interrupt recognized. The interrogate inter­
rupt instruction allows for this situation to
be avoided.

Interrogate Interrupt Operator

The interrogate interrupt instruction is a
special control state operator. When it is
executed, interrupt bits are interrogated on

20

a priority basis. If an interrupt bit is on,
actions happen much the same as when an
interrupt occurs in normal state (control
words excluded). Functionally:

1. The C register is set to a core address
reserved for the particular interrupt
(rL is set to zero).

2. The S register is set to core address 64.

3. The DF MCP processes the interrupt.
(Note: When an interrupt is handled,
the pertinent interrupt bit is then auto­
matically turned off.)

If no interrupt bits are on when the inter­
rogate interrupt is executed, the instruction
acts like a no-oPe

The DF MCP always interrogates all inter­
rupts before returning Processor 1 to nor­
mal state.

1/0 ON THE B 5500

I/O operations on the B 5500 are processor
initiated, but I/O control units (often referred
to as I/O channels), which perform inde­
pendently of the processor, control the trans­
fer of data between memory and peripheral
units.

Initiating an 1/0

I/O operations can be initiated only by Pro­
cessor 1 operating in control state. To
cause an I/O operation, the address of an
I/O descriptor is placed in r A and then an
i~itiate I/O (lIO) operator is executed. The
lIO causes the contents of rA to be stored
in memory location 8 (marking rA empty)
and then causes an lIO signal to be sent to
computer's central control. Upon receiving
an lIO signal, the computer's central control
seeks an available I/O control unit. The
B 5500 may have from one to four I/O control
units. Any I/O control unit may control I/O
for any peripheral unit. Selection of I/O
control units is done automatically on the
basis of availability. When an I/O control
unit is selected, central control causes the
contents of memory location 8 to be trans­
ferred to the unit. From this point on, pro­
cessing continues and the I/O is handled
independently of the processor.

1/0 Descriptor

Each peripheral unit for the B 5500 has a
number associated with it, referred to as the
unit designation. Each number is recognized
by the hardware to be associated with a
particular unit. An I/O descriptor contains
parameters specifying information needed to
perform an I/O operation. The parameters
specify the unit designation of the unit which
is to perform the I/O, the type of I/O,
whether read or write, the initial memory
address where data is to be written or
read, and the number of words to be trans­
ferred, etc.

Operation of an 1/0 Control Unit

When an I/O control unit receives the address
of an I/O descriptor, the descriptor is
fetched and placed in a register within the
I/O control unit. Then the operation of trans­
ferring data begins as specified by the I/O
descriptor, except in the case of disk I/O.

In the case of disk I/O, the memory address
in the I/O descriptor is not that of the data
area, but rather the address of the first word
preceding the data area. This is so because
for disk I/O, the first word preceding the
data area must contain the disk address in­
volved in the operation.

When an I/O control unit receives an I/O
descriptor with a unit designation for disk,
the address word preceding the data area is
fetched and placed in a register within a disk
file control unit. Theri the operation of trans­
ferring data begins under control of both the
I/O control unit and the disk file control unit.

1/0 Completion

During the time a peripheral unit is involved
in an I/O operation, it is not available for
additional operations. Therefore, there must
be a way for the processor to know when an
I/O control unit has completed the operation
initiated for a particular peripheral unit. If
during the I/O operation an error should
occur, such as the recognition of invalid
characters when reading a card or parity
errors when reading or writing tape, there
must be a way to supply the processor with
error information.

To allow processor notification of I/O com­
pletion, the B 5500 has an I/O finish interrupt
associated with each I/O control unit. To
provide I/O result information such as error
information, the B 5500 has a reserved
memory location associated with each I/O
control unit. (Core locations 12 through 15
are reserved for I/O control units 1 through
4 respectively.) When an I/O control unit
completes an I/O (or when an I/O control
unit finds the designated unit unavailable),
two actions occur; an I/O result descriptor
generated by the I/O control unit is stored
in the control unit's reserved memory loca­
tion, and the I/O finish interrupt for the
control unit is set.

1/0 Resu It Descriptor

A result descriptor is a word generated by
an I/O control unit to provide information
to the processor about the I/O operation just
performed. The result descriptor contains
bits that specify whether certain errors oc­
curred, a bit that specifies if a unit was not
available, and other information such as
the memory address of the word following the
last word accessed during a write operation.

Handling an 1/0 Finish Condition

When an I/O finish interrupt causes control
to be transferred to an interrupt location,
the DF MCP can then obtain the result de­
scriptor in the memory location reserved for
the I/O control unit that causes the interrupt.
Then using the result descriptor informa­
tion, the subsequent course of action can
be decided.

A Note on Multiprocessing

From the information about interrupts, it can
be noted that all the information required to
re-initiate an interrupt program is stored in
the program's PRT and core stack. It should
be mentioned that, while a program is being
processed, its PRT and core stack always
occupy the same core area; that is, they are
never overlaid. Also, certain program infor­
mation, such as the code segment being ex­
ecuted when an interrupt occurs, is never
overlaid. It can be surmised from this that
more than one program could be processed
by one processor during a given period of
time.

21

Take for example a situation where two pro­
grams are being processed. Conditions might
occur essentially as follows:

1. The DF MCP starts program 1.

2. Program 1 performs a number of
I/O's causing all buffer areas to be
in use and must wait for an I/O op­
eration to be completed to "free" a
buffer area.

3. The DF MCP starts program 2.

4. Program 2 gets interrupted and the
DF MCP finds that program 2 must
wait for a program segment to be made
present.

5. The DF MCP handles an I/O finish and
program 1 can resume processing.

22

6. The DF MCP obtains the initiate con­
trol word from the PR T of program 1,
places it in r A, and initiates the pro­
cessor so that program 1 continues.

7. Program 1 gets interrupted as in step 2.

8. The DF MCP finds program 2 is ready.

9. Program 2 is re-initiated as was pro­
gram 1 in step 6.

10. etc.

Although there is more involved in handling
multiprocessing than is spelled out above,
it can be noted that the design of the B 5500
provides for handling of multiprocessing in
a straight forward and efficient manner.

GENERAL

This section encompasses the format and use
of disk storage. Disk storage is divided into
two categories: System Disk and User Disk.
System Disk is the disk area reserved for:
(1) the DF MCP program and tables, (2)
the disk directory, (3) the available-disk
list, (4) overlay storage, and other DF MCP
uses. User disk is the area used for re­
maining facilities. Data files, scratch files,
and library programs, including the B 5500
problem oriented compilers, may be stored
in the user disk area.

USER DISK

Program Files vs. Data Files

Files on disk may, in terms of use, be
classified as program files (i. e., library
programs) and data files. The format of
all files on disk, however, is basically the
same. Consequently, user disk is not arbi­
trarily divided into fixed sections according
to use; program files and data files may be
intermixed. User disk is therefore divided
only according to the demands of the user.

Format of Files on Disk

An area on disk to be used for a particular
file must be explicitly reserved for that file.
It follows from this that a program must
specify the amount of disk required for a file.
Some files are initially small, but in time
grow large. In such cases, to reserve an
explicit area of maximum size would result
in the majority of the area initially lying
idle. Also, dis k storage may become
"checker-boarded" due to the sequence in
which file areas are assigned and returned.

SECTION 2
THE DISK

In these instances, the total area specified
for a large new file might be available,
but not contiguously. To reserve a large
area expliCitly, then, would require that
existing files first be rearranged. To avoid
such situations, the DF MCP allows a single
file to occupy from one to twenty separate
areas on disk. The number of areas and their
size is specified by the program that creates
the file. The fact that a file is stored in more
than one area does not in any way affect the
way it is referenced by a program. Regard­
less of the number of areas used, a program
always addresses a file as though it were one
continuous string of records.

SYSTEM DISK

Requi rements

System disk is located in the first module
of disk, starting at word zero. Excluding
overlay storage, system disk requires a
minimum of 1000 disk segments. One seg­
ment of disk is 240 characters in length,
one disk module contains 40,000 segments.

Overlay Storage

Overlay storage is located in the high-order
portion of system disk, immediately preced­
ing user disk. Since over lay requirements
may vary from one installation to another,
the amount of storage reserved for overlay
functions is not fixed. It may be determined
by the user.

Disk Directory

The DF MCP maintains, on disk, a Disk
Directory which provides information about

23

all permanent files on disk. The Disk Direc­
tory is composed of one or more "directory
sections", depending upon the number of
files on disk. Each directory section is com­
posed of 16 segments and can contain the
directory information required for as many
as 15 files. The first segment of a directory
section contains the names (i.e., file identi­
fications) of each file defined in that section.
The remaining 15 segmepts are referred to
as file headers. There is one file header
for each file defined in the section. Each
file header contains various information about
the file such as creation date, date of last
access, etc. Each file header also specifies
the number of areas declared for the file,
the size of the areas, and the absolute disk
address of each area. When a program is
using a file, the file header for that file is
read into core and remains there while the
file is being used.

Available-Disk Table

The Available-Disk Table is a list containing
an entry for each area of available disk
storage. The list is composed of one or
more segments, depending upon the number
of available areas. Each segment contains
from 0 to 29 entries. Each entry specifies

24

the absolute address and size of an available
disk area. The list is maintained in memory
order (i.e., each list entry following the first
entry defines an area with greater address).

INITIALIZING TH E DISK

Two prerequisites to operation on a B 5500
Disk File System are: (1) the DF MCP must
be on the disk and (2) a Disk Directory must
be on the disk. To establish these prere­
quisite conditions, two "one-time routines"
are provided to initialize the disk. A special
loader routine reads the DF MCP from tape
and places in on the disk. A second special
routine places the initial Disk Directory in
the directory area on disk. The second
routine is required because the Disk Direc­
tory is considered to be a permanent record
on disk. When directory information is
needed, the DF MCP seeks the information,
initially, by reading the first segment of the
first section of the directory. This first
section must be on disk to be read. The
special routine creates a directory and places
it on disk for the "cold start". Thereafter,
the directory is maintained by the DF MCP
which makes entries in the directory when
permanent files are initially completed and
removes entries upon notification.

SECTION 3
DISK FILE MASTER

CONTROL PROGRAM

GENERAL

This section contains a discussion of the
Disk File Master Control Program (DF MCP).
The DF MCP is a program made up of a
main body (the "outer block"), procedures,
and tables (i. e., arrays). The outer block
includes the code located at the B 5500' s
interrupt locations, a stack and PRT for the
DF MCP, and a number of DF MCP routines.
In the following discussion, coding in the
outer block (which can gain control only
through use of branching operation) is re­
ferred to as routine. Code which is entered
through use of procedure descriptors is
referred to as a "procedure".

INITIATING TH E B 5500 01 SK
FILE SYSTEM

The B 5500 System is initiated when the
machine operator performs a HALT-LOAD
operation by pressing the HALT switch, then
the LOAD switch. The HALT-LOAD opera­
tion automatically caused Processor 1 to go
into control state and a portion of code to be
read into the first locations of core memory
in module zero. Control is then automatically
transferred to core address 16 and the system
is in operation. Initial operations cause the
INITIALIZE Procedure and permanent seg­
ments of the DF MCP to be read from disk
into core. The DF MCP then performs
various initialization functions, including per­
forming the first organization and classifi­
cation of core storage, and creating the
Available - Disk Table.

OF MCP CLASSI FICATION ANO
ORGANIZATION OF CORE STORAGE

As mentioned in Section 1, B 5500 programs
are address-independent and consequently

not restricted to particular areas of core.
It was also mentioned that most information
could be over laid except such information as
PRT and stack areas, and again made pre­
sent when a presence bit interrupt indicated
the need for the information. Two important
points follow from these facts: (1) programs
are not logically affected by the number of
modules of core on a B 5500 System and (2)
all available core storage on a B 5500 Sys­
tem can be used, overlaid, and reused in
any fashion to meet the demands of all
programs processing during a given period
of time. It is evident that if core storage
is to be put to use as indicated, it must be
well classified and organized. Basically,
storage is classified as non-overlayable,
overlayable, or available, and is organized
through use of "memory links".

Non-Overlayable Storage

There is a need for certain information to
remain in core at all times. For example,
the DF MCP has routines and tables that
must frequently be used when handling in­
terrupt conditions and other control functions.
The space that would be momentarily gained
by overlaying such information would not be
worth the time required to make the infor­
mation present when needed again.

There is also a need for certain object pro­
gram information to remain in fixed locations
while a program is being processed. This
requirement holds for all information which
will be referenced through use of absolute
addresses. For example, control words
contain absolute addresses of stack locations
and program segments; also, the DF MCP
keeps absolute addresses to use to locate
PRT areas. From this it can be seen that

25

stack and PRT areas and in-use program
segments must remain fixed for periods of
time. The DF MCP classifies core areas
containing information which must remain in
place as non-overlayable storage.

Overlayable Storage

It is often the case that all information
pertaining to. a program cannot be in core
at the same time. This is most often the
case when multiprocessing and/or operating
on systems with less than maximum core.
However, the majority of information re­
lated to object programs, and most infor­
mation in the DF MCP, may be used rela­
tively infrequently and is never referenced
through use of absolute addresses. In regard
to such information as this, there is prinCi­
pally only one major factor determining its
necessity to be present in core; it must be
present when needed. The DF MCP classi­
fies core areas containing information which
need not remain in place as over layable
storage. There are, however, two classes
of overlayable storage: (1) overlayable pro­
gram segment areas and (2) overlayable
data areas. It should be pointed out that
these two types of areas must be handled
somewhat differently.

OVERLAYABLE PROGRAM SEGMENT
AREAS. B 5500 programs are always stored
on disk during the time they are proceSSing.
Individual program segments are read into
core as they are needed. An important
feature about these program segments is
that they are never programmatically modi­
fied. Consequently, if the area used by a
program segment is to be overlaid, there is
always an exact copy of it on disk. The
DF MCP has only to mark the segment
absent in appropriate places, and the area
it occupied can be used for other purposes.
If the segment is needed again, it can be
read into core from disk.

OVERLAYABLE DATA AREAS. Data, un­
like segments, is constantly subject to change
by the object program. Consequently, if an
area used for data (e. g., an array row) is to
be overlaid, the data must first be written
onto overlay storage. Then the DF MCP
can mark it absent. If the data is needed
again, it can be read back into core from
the over lay area.

26

Avai lable Storage

Available storage is merely storage currently
not in use. Such storage can be assigned as
needed.

Memory Links

Memory links are the devices used by the
DF MCP to keep track of the organization
of core and to note the classifications as­
signed to core areas. Basically, there are
two types of memory links: (1) memory
links for in-use storage and (2) memory
links for available storage. There is an in­
use memory link preceding every area cur­
rently being used and an available memory
link preceding every unassigned area.

MEMORY LINKS FOR IN-USE STORAGE.
An in-use storage link occupies the two words
preceding the area it defines. An in-use
link provides the following information:

1. It' specifies that the area is in-use.

2. It specifies whether the storage is
non-overlayable or overlayable.

3. It specifies if the storage contains a
program segment or data.

4. It specifies the MIX index of the program
using the area. A different MIX index
is assigned to each program currently
in process by the DF MCP. MIX indexes
will be discussed in more detail.

5. It provides the address of the preceding
area.

6. It provides the address of the following
area. The area referred to as the
"preceding area" or "following area"
means precisely what it says, no regard
is given whether the area is in-use or
available.

7. It provides information used to locate
descriptors that address the area. This
information is needed by the DF MCP
if the area is to be overlaid; descrip­
tors addreSSing the area must be prop­
erly marked "not present".

MEMORY LINKS FOR AVAILABLE STOR­
AGE. A memory link for available storage
occupies three words, two precede, and one
is included in, the area it defines. Such a
link provides the following information:

1. It specifies that the area is available.

2. It specifies the size of the area.

3. It provides the address of the preced­
ing area. The area referred to as the
"preceding area" or "following area"
means precisely what it says, no re­
gard is given whether the area is in­
use or available.

4. It provides the address of the following
area.

5. It provides the address of the preceding
available area.

6. It provides the address of the following
available area.

When core storage is classified and organ­
ized for the first time after a HALT-LOAD,
the DF MCP performs operations to deter­
mine which 9f the eight possible memory
modules are available on the system. If any
modules are not available, memory links are
set up so that the areas in those modules
are never assigned and consequently never
addressed. Permanent DF MCP segments
read in during initialization are marked
non-overlayable. Other DF MCP program
segments related to initialization routines
may be in core after initialization, but they
are overlayable. All other core is marked
available.

Creating the Available-Disk Table

The Available-Disk Table is created and
written on disk at each HAL T-LOAD time.
To create the Available-Disk Table, the
DF MCP first determines the total amount
of disk on the system, and then determines
the amount of a vailable disk by deducting
the areas reserved in the Disk Directory.
The A vailable-Disk Table thus forms the
complement of the Disk Directory. The need
to create the A vailable-Disk Table at each
HALT-LOAD time follows from the fact
that when a permanent file is created on

disk it is not entered in the Disk Directory
until the program has completed its creation.
This procedure must be followed for in­
surance against events which might cause a
program creating a file to be interrupted
to the point where the program cannot be
recovered (e.g., interrupted by a power
failure); thus, leaving file creation at an
indeterminable point. Following this pro­
cedure, only valid files are entered in the
Disk Directory. During the creation of a
file, the file's area is reserved because it
has been removed from the Available-Disk
Table.

Interrogating Peripheral Units

After initialization activities have been com­
pleted, control is transferred to the Control
Section of the DF MCP. One of the activi­
ties of the Control Section is to check for
changes in status of I/O units (i.e., check
to see if any I/O units changed from READY
to NOT READY or NOT READY to READY).
This check is made through use of the In­
terrogate Peripheral Status operator, an
operator which places, in the top of the
stack, a word representing the current
status of peripheral units. One bit in the
word is associated with each I/O unit; a
unit's bit is 0 if the unit is NOT READY
and 1 if it is READY. The word provided by
the interrogate peripheral operator is com­
pared with a word that reflects the previ­
ously noted status of the units. During initial­
ization, the word used for comparison is
set to indicate all units are NOT READY.
When a change in status occurs, a request
is made to ha ve the STATUS Procedure
called.

STATUS PROCEDURE

The STATUS Procedure is responsible, in
part, for maintaining the DF MCP tables
which contain information, for specifying
what units are assigned to programs, and
for specifying if units are READY or NOT
READY. \Vhen an input or input~output

unit becomes READY for the first time,
ST ATUS causes the first record on the unit
to be read. ST A TUS then examines per­
tinent information and enters label infor­
mation in appropriate tables or specifies that
a file is a scratch file, etc. If the first

27

record on a file is "control card" informa­
tion, STATUS requests that the CONTROL
CARD Procedure be called.

CONTROL CARD PROCEDURE

Program scheduling information, such as
instructions to compile a program or to
execute a library program, and program
parameter information, such as priority
specifications, is provided to the DF MCP
through use of control cards and program
parameter cards. The cards are marked
with an invalid character in column 1 and
specify their function in word descriptions in
a free field format. When control informa­
tion is read from media other than cards,
the means of identification is different, but
handling procedures are similar. When the
S TAT U S Procedure calls the CONTROL
CARD Procedure, the CONTROL CARD Pro­
cedure analyzes the control information and
makes appropriate entries in a "schedule
sheet" . The CONTROL CARD Procedure
then requests that the SELECTION Procedure
be called.

SELECTION PROCEDURE

The SELECTION Procedure selects a pro­
gram, if one is available, from the schedule
sheet on a priority basis, assigns it a MIX
index, and sets up conditions necessary for
the program to be initiated.

All programs to be executed must be on the
disk as library programs and, therefore,
have entries in the Disk Directory. If a pro-
0'1"'!:Il'Yl f1"'(")l'Yl !:I lih1"'!:I1"''U t!:lnp iQ t(") hA 1"'111"'1 it l'Yl<:l'U o.a. fw4,.&..&. _.&. """" ,..." t.A,. J "''''''''''l'"'~ ... - "'.....,,..,.,""" - , .&..., .&..&. ... ~iJ

be loaded to the disk through use of a control
card. The compilers automatically place pro­
grams on disk as library programs; however,
for lIcompile and go" runs, the programs are
automatically removed when they are set up
to be initiated. SELECTION reads the file
header for the file of the program to be ini­
tiated. Contained in the file header for a
program file is the disk address of the" zero
segment" of the file.

The zero segment of a program file is a
special segment containing such information
as the location within the program file of
the program's PRT and Segment Dictionary
and the size of each, and the program seg­
ment number of the first program segment

28

to be executed. The Segment Dictionary is a
table which contains the relative disk ad­
dress and the size of each program segment
in the program. Segments are assigned
numbers by the compilers for reference
purposes.

The SE LE CTION Procedure reads the zero
segment into core, examines the information,
and then reserves areas in core for the PRT
(and stack) and the Segment Dictionary ac­
cording to their specified sizes. These areas
are marked non-overlayable. Then the PRT
and Segment Dictionary are read into their
core areas, and the address of the Segment
Dictionary is placed in a reserved PRT cell.
From the Segment Dictionary, SELECTION
determines the disk address and size of the
first program segment and it is read into
core. The program can be initiated after the
performance of these operations and other
necessary "fix-up" operations that may be
speCified in control information.

To cause a program to be initiated, the
SELECTION Procedure constructs an inter­
rupt control word and an interrupt return
control word and places them in the program's
core stack area. The register settings in
these words are given such values that in
appearance they indicate that the program
was interrupted just before executing its
first syllable. SELECTION also places an
appropriate initiate control word in the
program's PRT and sets up DF MCP tables
so that they contain all needed information,
including the address of the program's PRT.
SELECTION then requests that the RUN
D~(")norlll~o ho nr} 110rl r}",rl n~(")"tT;rloo tho n~(")_
.L ..L ,-,vv\,A.\A...L '-' "-.Jv ,-"U.&..LV'-4 (..4.1..1.10..4 tJ..L '-' V.l.1t..A.vU "'.&..1.\....1 .!::-"..L '\J

gram's MIX index as a parameter to RUN.

RUN PROCEDURE

The RUN Procedure sets up certain variables
as needed to initiate a given program.
Specifically, one variable assigned a value
by RUN is PIMIX. PIMIX is assigned the
value of the MIX index which was passed to
RUN as a parameter. RUN then transfers
control to the INITIATE routine.

MIX INDEX

Programs that are selected from the schedule
sheet and put in process are considered to be
in the MIX. Every program in the MIX has

been assigned a MIX index. A program's
~IX index is actually an index into a DF
MCP table called the PRT array. The PRT
array contains a descriptor for every pro­
gram in the MIX. The descriptor for a
given program addresses the base of that
program's PRT. The descriptor for a par­
ticular program is in the PRT array location
corresponding to that program's MIX index.
Through use of the PR T array and MIX
indexes, the DF MCP can locate the PRT of
any program in the MIX.

INITIATE ROUTINE

Control is transferred to the INITIATE Rou­
tine for the purpose of initiating the program
whose MIX index is specified by P IMIX.
To initiate the program, INITIATE obtains
the Initiate Control Word from the program's
PRT which is located through use of the
PRT array and PIMIX. Before initiating the
program on Processor 1, however, a check
is made to see if it could be initiated on
Processor 2. If Processor 2 is available
and not busy, a variable called P2MIX is
given "the value of PIMIX and the program
is initiated on Processor 2; otherwise, the
program is initiated on Processor 1.

P1MIX and P2MIX

After the DF MCP gives control to a normal
state program, control will not return to the
DF MCP until that program is interrupted.
When a normal state program is interrupted,
all interrupt information is stored in the
program's stack and PRT, and rR and rS
are set to control state areas. The DF MCP
must, however, have some link back to the
program that was proceSSing. PIMIX pro­
vides this link for Processor 1 and P2MIX
for Processor 2. Before a program is ini­
tiated on Processor 1, PIMIX is given the
value of the MIX index of the program;
likewise, for Processor 2 and P2MIX. Con­
sequently, when an interrupt occurs, the DF
MCP knows the MIX index of the program in­
terrupted on Processor 2 and/or Processor 1.

INFORMATION SOURCE FOR A
PROGRAM IN PROCESS

As a program continues processing after
being initiated, it may soon require addi­
tional program segments and/or data which

were not provided by the SELECTION Pro­
cedure. The principal source of information
for a program is its PRT. All simple
variables, other than those declared local
to procedures, have PRT locations; there­
fore, they are always present in core while
a program is proceSSing. Program segments
and data segments are not always present.
It was noted above, however, that each pro­
gram segment and data segment has a
descriptor related to it; either a program
descriptor (e.g., label descriptor, procedure
descriptor) or a data descriptor. These
descriptors are located in the PRT. When a
program accesses a descriptor, the pres­
ence bit of the descriptor will, of course,
denote the presence or absence of the in­
formation described. If a descriptor is
accessed and its presence bit is zero, the
presence bit interrupt will be set, control
words will be generated and put in place,
and subsequently control in Processor 1
will be transferred to the presence bit in­
terrupt location.

PRESENCE BIT ROUTINE

When a presence bit interrupt is detected,
control is transferred to the PRESE NCE
BIT Routine. The fact that a presence bit
interrupt occurred means that a program
has executed a syllable that caused an
attempt to access information described by
a descriptor with a zero presence bit.
When this situation occurs, the control words
for the interrupt contain settings for rC
and rL that address the syllable following
the syllable that caused the interrupt.

To investigate the interrupt condition, the
PRESENCE BIT Routine first locates the
Pij.T of the interrupted program through
use of the PRT array and P IMIX. The
Initiate Control Word from the PRT is then
used to locate the other control words at the
top of the program's stack. Through use of
the register settings in the control words,
PRESENCE BIT locates the syllable that
caused the interrupt and, subsequently, the
address of the descriptor with a zero pres­
ence bit.

To remedy the situation caused by the des­
criptor with a zero presence bit, the PRES­
ENCE BIT Routine first adjusts the register
settings in the control words so they will

29

reflect the condition that existed before the
syllable, that caused the interrupt, was
executed. Then the information required by
the program is made present.

Methods of Maki n9 Information Present

The occurrence of a presence bit interrupt
only indicates that a program requires in­
formation. The kind of information required
is indicated by the descriptor that was ac­
cessed. The method in which the information
is provided is determined by the kind of in­
formation required.

MAKING DATA PRESENT FOR THE FIRST
TIME. When a data descriptor with a zero
presence bit is accessed for the first time,
it contains a code number in bits [33:15J
- the address field. The fact that this code
is present denotes that no data has yet been
related to the descriptor. When this is so,
an area in core must be provided and as­
signed to the descriptor. The size field in
the accessed descriptor specifies the kind
of storage. (e. g., if the code is 0, overlay­
able storage will be assigned; if the code is
1, non-overlayable storage will be assigned.)
To obtain the required area in core, the
PRESENCE BIT Routine calls the GETSPACE
Procedure passing parameters that specify:
(1) the size of the area required, (2) that
the area is for data, and (3) the code indi­
cating if the area is to be overlayable or
non-overlayable. GETSPACE provides the
area and returns its address to the PRES­
ENCE BIT Routine. PRESENCE BIT then
initializes the assigned area with zeros,
places the address of the area's descriptor
in the area's memory link for use if the
area is at some time overlaid, places the
address of the area in the data descriptor,
and sets the descriptor's presence bit to 1.

MAKING OVERLAID DATA PRESENT. When
a data descriptor with a zero presence bit
is accessed, its address field may contain
an overlay storage address which indicates
that the desired information has been over­
laid and must be read in from the overlay
storage area. As in the above case, PRES­
ENCE BIT must call GETSPACE to obtain
an area into which the desired information
can be read. Then the address of the area's
data descriptor is placed in the area's mem­
ory link for use if the area is ever overlaid,

30

the address of the area is placed in the
area's descriptor, and the descriptor's pres­
ence bit is set to 1. PRESENCE BIT then
calls on the DISKIO Procedure which initiates
the input operation from the specified address
and returns control to the PRESE NCE BIT
Routine. Then PRESENCE BIT provides
that the area used by the data in overlay
storage will be returned. At this point,
PRESENCE BIT cannot continue until the
input operation is complete. Therefore,
PRESENCE BIT calls the SLEEP Procedure
specifying not to return control until the I/O
operation is completed. The control section
of the DF MCP then takes control and
PRESENCE BIT is temporarily suspended.
When control is returned to PRESENCE BIT,
the desired information is in the area now
addressed by the descriptor.

MAKING PROGRAM SEGMENTS PRESENT.
When a program descriptor with a zero
presence bit is accessed, the desired pro­
gram segment must be read in from disk.
Program descriptors, however, may address
points within a program segment (e.g., a label
descriptor addresses a point in a segment to
which control may be transferred). Con­
sequently, the address field of a program
descriptor with a zero presence bit contains
the relative address of the word within the
segment that the descriptor must address.
To determine a segment's disk address,
PRESENCE BIT must examine the segment's
entry in the program's Segment Dictionary.
Therefore, the program descriptor contains,
in addition to the relative address, an index
which can be used to locate the segment's
entry in the program's Segment Dictionary.
Using this index and the address of the
Segment Dictionary which was placed in the
program's PRT by SELECTION, the Segment
Dictionary entry is located and the size and
disk address of the segment are obtained.
Then, PRESENCE BIT calls GETSPACE
to obtain an area into which the segment can
be read, places the address of that area in
the segment's entry in the Segment Dic­
tionary, and calls DISKIO to initiate the I/O
to read the segment into the specified area.
Subsequently, the index value for the seg­
ment's entry in the Segment Dictionary is
placed in the area's memory link, all pro­
gram descriptors addreSSing the area are
given their absolute addresses (i.e., each
descriptor's address field is set to the

value obtained by adding its relative address
to the segment's base address), and the
presence bits of those descriptors are set to
one. PRESENCE BIT then calls the SLEEP
Procedure specifying not to return control
until the disk I/O is completed. The Control
Section then takes control and PRESENCE
BIT is temporarily suspended. When con­
trol is returned, the desired information is
in the area now addressed by the program
descriptor(s).

After information has been made present and
the concerned descriptor is properly ad­
justed, PRESENCE BIT transfers control to
INITIATE. Then, due to the adjustment
made in the program's interrupt words, the
program resumes control at the point where
it will again attempt to address the desired
information, this time successfully.

CONTROL SECTION

The Control Section of the DF MCP performs
four principal functions: (1) it interrogates
interrupts, (2) it checks for changes in the
status of peripheral units, (3) it provides a
means by which a DF MCP routine and/or
procedure can request that an independent
procedure be called, and (4) it provides a
means by which a DF MCP procedure can
suspend its processing until a necessary con­
dition exists. To perform these functions,
the Control Section includes the INDEPEN­
DENT RUNNER Procedure and the SLATE
array, the SLEEP Procedure and the BED
array, and the NOTHINGTODO routine.

There are two important factors involved
with the mechanics of the DF MCP Control
Section. One is that a DF MCP Procedure
can reserve a core area for use as a private
stack. In some cases, a procedure can use
the stack area of the normal state program
whose interrupt it is handling; in other cases,
a procedure must call GETSPACE and obtain
a non-overlayable area. In either case, the
procedure can set rS to the desired area
through use of the STS operator that causes
rS to be set to a specified address. The
second factor involved with the mechanics of
the Control Section is the B 5500 procedure
handling techniques; namely, the hardware's
generation and use of control words for pro­
cedure entry and exit. 9
9Control words and Procedure entry and
exit are discussed in Section 1.

Independent Runner Procedure and Slate Array

The INDEPENDENT RUNNER Procedure and
the SLATE ARRAY are used whenaDF MCP
procedure or routine wishes to request that
an independent procedure be called. A pro­
cedure is termed an "independent procedure"
if it is not directly associated with a par­
ticular normal state program. For example,
the procedures STATUS, CONTROL CARD,
SELECTION, and RUN are independent pro­
cedures.

To request that an independent Procedure be
called, a call is made on the INDEPENDENT
RUNNER Procedure specifying the Proce­
dure to be called and a parameter for that
Procedure. INDEPENDENT RUNNER then
makes an entry in the SLATE array speci­
fying the given information and then returns
control to the requesting Procedure.

Sleep Procedure and Bed Array

The SLEEP Procedure and the BED array
are used when a DF MCP procedure wishes
to suspend its processing until a certain
condition exists. An example of when a
Procedure must suspend itself is after it has
initiated an I/O and it cannot continue until
the I/O has been completed. To suspend
itself temporarily, a procedure calls the
SLEEP Procedure and passes two param­
eters; one parameter is the address of a
word to be tested, and the other is a mask
word that specifies which bit(s) in the des­
ignated word should be tested. The SLEEP
Procedure then makes an entry in the BED
array. The information in the BED entry
includes: (1) the address of the word speci­
fied as the "test word", (2) the mask to be
used with the test word, (3) the current value
of P1MIX which provides the MIX index of
the program that caused the suspended pro­
cedure to be called, and (4) the address of
the Return Control Word of the SLEEP Pro­
cedure. The SLEE P Procedure obtains this
value by reading the F-register. After making
the entry in the BED array, SLEEP transfers
control to the NOTHINGTODO Routine. It is
important to note that control is transferred
to NOTHINGTODO by branching on a label
descriptor. Consequently, the control words
generated when SLEEP was called are left
in the private stack of the procedure that
called SLE E P. It should also be noted that
the entry made in the BED contains the ad­
dress of the Return Control Word of SLEEP.

31

NOTHINGTODO Routine

The NOTHINGTODO Routine is the principal
point of control in the Control Section.
\Vhen NOTHINGTODO receives control, it
first performs an interrogate interrupt oper­
ation. Then if there are no interrupts, it
checks for an entry in SLATE. If there is
an entry in the SLATE and it is then possible
to call an independent procedure, NOTHING­
TODO sets rS to a stack area for the in­
dependent procedure and causes it to be
called. If there are no entries in the SLATE,
NOTHINGTODO investigates BED. Each time
before examining a BED entry, NOTHING­
TODO performs an interrogate interrupt
operation; then, if there are no interrupts,
it selects an entry from the BED. From a
BED entry, NOTHINGTODO gets the address
of the word to be tested and then obtains
the word. The test word is then masked
with the mask word provided in the BED
entry. A mask is a word containing zero in
every bit position other than the positions of
bits to be tested. The masking operation is
a logical AND operation performed on the
test word and the mask. The logical AND
operation generates a result word with l's
in the bit positions in which both the test
word and the mask have l's. If the masking
operation produced negative results (Le., the
condition required by the suspended program
still did not exist), another entry would be
tested. If no BED entry provides positive
results, NOTHINGTODO performs inter­
rogate interrupt operations and checks for
changes in the status of peripheral units. If
the masking operation produced positive
results (I.e. ~ if the condition required by the
suspended program then existed) the NOTH­
INGTODO routine would remove that BED
entry and return control to the suspended
procedure.

To return control to a suspended procedure,
NOTHINGTODO first sets PIMIX to the MIX
index value in the BED entry. Then the F­
register is set to the address of the Return
Control Word of the SLEEP Procedure. This
control word is, of course, still in the private
stack of the procedure that suspended itself
by calling SLE E P. Then the NOTHINGTODO
routine causes an EXIT operation to be
performed, just as would be performed to
exit a procedure. The EXIT operation is
handled by the hardware (see "Exiting a

32

Procedure" in Section 1). Since rF at that
time contains the address of the Return
Control Word for the SLEEP Procedure,
the EXIT operation returns control to the
suspended procedure just as though the
SLEEP Procedure had caused the EXIT
operation.

An example of when a procedure must tem­
porarily suspend itself is after it has ini­
tiated an I/O and cannot continue processing
until the I/O has been completed. Specifi­
cally, consider the case noted above where
PRESENCE BIT called DISKIO to initiate a
read to obtain information to be made pres­
ent for a program. In that case, the param­
eters that PRESENCE BIT would pass to
SLEEP would be: (1) the address of the I/O
descriptor 10 used to perform the I/O oper­
ation, and (2) a mask that specified that the
I/O complete bit in the I/O descriptor was
to be te s ted.

The I/O complete bit is the bit that a DF
MCP I/O routine sets to 1 when the I/O
operation, described by the I/O descriptor,
has been successfully completed. With this
information and PIMIX and the result obtained
by reading rF, SLEEP would make a BED
entry and transfer control to NOTHINGTODO.
Subsequently, the initiated I/O would be
completed by the I/O hardware and an "I/O
finished" interrupt would be set. Then the
interrupt condition would be detected and
control would be transferred to the IOFINISH
Procedure. The IOFINISH Procedure would
then perform its operations and set the
pertinent I/O complete bit to 1. Subsequently,
the NOTHINGTODO Routine would take con­
trol and test entries in BED. When the entry
made for PRESENCE BIT was tested, the
test would yield positive results and, through
the means noted above, PRESENCE BIT
would be reactivated.

GETSPACE PROCEDURE

The GETSPACE Procedure is called by any
DF MCP procedure or routine that wishes
to obtain an area in core. Parameters
needed by GETSPACE specify: (1) the size
of the area desired given as number of
B 5500 words, (2) the type of information

10 An I/O descriptor is a special purpose de­
scriptor used to describe an I/O operation.

to be stored in the area (e. g., data or pro­
gram segment), and (3) the kind of area
(either overlayable or non-overlayable).
GE TSPACE uses one of two algorithms
when locating an area to reserve, depending
upon the kind of storage requested. After
GETSPACE locates an area and reserves it
through use of memory links, it "exits",
thereby providing the address of the area to
the calling routine or procedure.

Locating an Area for Overlayable Storage

If overlayable storage is requested; GET­
SPACE links through the links for' available
storage using a sp,ecial Link List Lookup
operator. If a section of a vailable core
large enough to fulfill the request is found,
that section (or a part of the section if it
is larger than necessary) is reserved. To
reserve the area, it is removed from the
linked list of available storage and marked
"in -use" through use of a memory link for
in-use storage. If all of the section of
available storage were not needed, the part
remaining would be linked in with the list
of available storage. If no section of avail­
able storage is large enough to fulfill the
request, GETSPACE first calls the OLAY
Procedure to request that a section of
overlayable storage be overlayed. Finally,
through use of over lay, a large enough
section of available storage is obtained and
reserved.

Locating an Area for Non-Overlayabl e

Storage

If non-overlayable storage is requested,
GETSPACE always obtains an area as near
as possible to the lowest addressed portion
of memory. This is done in an attempt to
keep all non-overlayable storage together in
order to reduce the possibility of such
storage causing overlayable storage to be
checkerboarded. To obtain non-overlayable
storage, GETSPACE begins by examiningthe
first memory link following the non-overlay­
able portion of the DF lVICP. Ii this link
specifies that the defined storage is avail­
able, GETSPACE examines its size. If it is
of sufficient size, it is reserved; otherwise,
GETSPACE examines the next area. It
should be noted that there never exist two
adjacent areas of available storage. When

a situation occurs where this would happen,
the two areas are joined. If a link specifies
that an in-use area is overlayable, then
OLAY is called to overlay the area. If the
overlaid area or the overlaid area added to
an adjacent available area, whichever the
case may be, is of sufficient size, it is
reserved. Otherwise, this process continues
until an area of sufficient size is provided.

OLAY PROCEDURE

It is the function of the OLA Y Procedure to
overlay in-use areas in core in order to
change them to available areas. However,
before overlaying an area, OLAY must know
what program has been assigned the area
and what the area contains (i.e., a program
segment or data). This information, as
was noted in the paragraph on classification
of disk storage, can be determined by exam­
ining the memory link for the area. First
of all, the information must be used to
determine whether or not the area can be
overlaid; then, if the area can be overlaid,
the information is needed to determine the
algorithm to use when performing the overlay
operations. The OLAY Procedure considers
in-use storage to fall into one of three
categories: (1) data storage, (2) program
segment storage for object programs, or
(3) DF MCP storage. DF MCP storage is
recognized because the DF MCP uses MIX
index zero. Program segment storage is
distinguished from data storage through use
of the type-code kept in the memory link.

Overlaying a Data Area

When an area to be overlaid contains data,
OLA Y examines the Initiate Control Word
from the PRT of the program assigned the
area. The location of the pertinent program's
PR T is determined through use of the MIX
index obtained from the memory link. From
the Initiate Control Word, OLAY can deter­
mine if the program using the area was
interrupted during word mode operation or
character mode operation.

If the program using the area was interrupted
during word mode operation, OLAY imme­
diately calls the procedure DISKIO to initiate
an I/O operation which will place the data in
overlay storage. Using the address placed
in the area's memory link by PRESENCE

33

BIT, OLAY locates the area's data descriptor.
The presence bit of that descriptor is set to
zero and the descriptor's address field is
set to the address of the data in overlay
storage. Also, since it is possible that the
program's stack may contain descriptors that
address the overlaid area (e.g., parameters
to procedures), OLAY searches the stack,
locates, and properly marks all such de­
scriptors absent. OLAY then calls the
SLEEP procedure passing: (1) the address of
the I/O descriptor used to initiate the write
to overlay storage, and (2) a mask for the
I/O complete bit. When the I/O is completed,
OLAY is re-initiated and calls FORGET­
SPACE which will mark the area available.

If the program using the area to be overlaid
was interrupted during character mode,
OLAY would overlay the area, only if no other
overlayable area was available. This is so
because a character mode procedure can
store absolute address as operands in its
stack. This faCility makes it necessary for
OLAY to not only search a program's stack
for descriptors containing an address within
the area to be overlaid, but also to check the
fifteen low order bit operands for such ad­
dresses. This added necessity has two
disadvantages: (1) it is time consuming
compared to checking only for descriptors
(a stack search for descriptors is made
using the Flag Bit Search operator designed
to be especially fast and efficient for such
use), and (2) if the fifteen low order bits of
an operand in the program's stack appear to
address the pertinent area, the area cannot
be overlaid.

Overlaying Program Segment Areas

Wnen an area to be overlaid contains a pro­
gram segment of an object program, OLAY
obtains the rC setting stored in the Interrupt
Return Control Word of the program using
the area. (The address of the interrupt Return
Control Word is obtained from the Initiate
Control Word in the program's PRT.) OLAY
then checks to see if the rC value (i.e., the
address to which control will be transferred
after interrupt handling) is the address of a
word within the area to be overlaid. If so,
the area is not overlaid. If the rC address
is not within the address range of the segment
to be overlaid, OLAY obtains the address of
the program's Segment Dictionary from the

34

program's PRT. Using the SegmentDiction­
ary index placed in the area's memory link
by PRESENCE BIT, OLAY locates the Seg­
ment Dictionary entry for the segment to be
overlaid and thus obtains the segment's base
core address. Subsequently, OLA Yproceeds
to locate all program descriptors in the
program's PRT and stack that contain ad­
dresses within the address range of the seg­
ment to be overlaid. When such a descriptor
is found, OLA Y calculates the relative ad­
dress of the word within the program segment
that the descriptor addresses. This is ob­
tained by subtracting the segment's base
address from the address in the descriptor's
address field. This relative address is then
stored in the descriptor's address field for
further use by PRESENCE BIT, if needed,
and the descriptor is marked absent. OLAY
then calls FORGETSPACE to mark the area
available.

Overlaying a OF MCP Segment

DF MCP segments cannot be overlaid in the
same fashion as object program information.
This is so because DF MCP segments are
always referenced by the DF MCP in control
state. As was noted in Section 1, processing
in control state is never interrupted and
interrupts such as presence bits are inhibited.
Since descriptors with zero presence bits
are not detected if accessed during control
state operation, the presence bit is not used
to indicate that DF MCP segments are ab­
sent. Instead, if a DF MCP segment is
absent from core, the address field in its
descriptor is provided with the address of the
procedure ESPBIT - a non-overlayable DF
MCP procedure. This, of course, means that
if an attempt is made to transfer control
to a DF MCP segment that is absent from
core, control will instead be transferred to
ESPBIT.

Because of the special handling of descriptors
for DF MCP segments, OLAY needs only to
place the address of the ESPBIT Procedure
in such a descriptor to mark it absent.
However, before overlaying an area contain­
ing a DF MCP segment, OLAY must ensure
that the segment is not in core due to a
current need of the DF MCP. For example,
OLA Y would not want to overlay the PRES­
ENCE BIT procedure which had itself called
OLAY and which would receive control when

OLAY exited. Also, OLAY would not want
to over lay a procedure that had been tempor­
arily suspended due to a current need of
the DF MCP. For example, OLAY would
not want to overlay the PRESENCE BIT
procedure which had itself called OLAY
and which would receive control when OLAY
exited. Also, 0 LAY would not want to
overlay a procedure that had been tempor­
arily suspended due to a call on SLEEP or
any procedure that had called a procedure
that has been temporarily suspended, etc.
Consequently, before OLA Y overlays a DF
MCP segment, it first searches its own
stack for Return Control Words containing
a rC value addressing a word within the
segment to be overlaid; if any are found, the
segment is not overlaid. Also, OLAY in­
vestigates stacks related to entries in the
BED. To do this, OLAY obtains, from the
BED entry, the address used by NOTHING­
TODO to return control to a suspended pro­
cedure. This address, of course, points
to the stack of the suspended procedure and
provides OLAY with means to locate the
Return Control Words in that stack. There­
fore, OLAY can determine if the segment to
be over laid would be needed when a suspended
procedure were reactivated and, if so, the
segment would not be over laid. If OLA Y ,
after making all necessary tests, determines
the DF MCP segment can be overlaid, the
segment's descriptor is provided with the
address of ESPBIT, and FORGETSPACE is
called to mark the area available.

FORGETSPACE PROCEDURE

The function of the FORGETSPACE Pro­
cedure is to change the classification of an
area from "in-use" to "available". When
FORGETSPACE is called, it is provided with
the address of an in-use area which is to be
marked available. However, before marking
an area available, FORGETSPACE (through
use of memory links) determines the avail­
ability of the areas adjacent.

First, the following adjacent area is checked.
If it is not available, it is left as is. If it is
available, its memory link is removed from
the memory lists and it is made part of the
area defined by the link for the previously
in -use area. In either case, the preceding
adjacent area is then checked.

If the preceding area is not available, the
area defined by the link for the previously
in-use area is entered in the memory lists
as available and FORGETSPACE is finished.
If the preceding area is available, the link
for the previously in-use area is removed
from the memory list. Then the area defined
by the link for the previously in-use is made
part of the area defined by the link for pre­
ceding adjacent area and FORGETSPACE is
finished.

ESPBIT PROCEDURE

The ESPBIT Procedure is responsible for
bringing DF MCP segments into core. This
procedure, rather than PRESENCE BIT, must
be used for DF MCP segments because the
presence bit interrupt feature is not available
while operating in control state. The per­
formance of E SPBIT is centered around the
set-up of procedure descriptors for overlay­
able DF MCP segments. When the DF MCP
is compiled, the ESPOL compiler determines
the disk addresses for all segments and the
core addresses for all non-overlayable seg­
ments. This information is used when setting
up entries in the PRT for the DF MCP.

When procedure descriptors for overlayable
DF MCP segments are constructed by ESPOL
and placed in the DF MCP's PRT, the field
at [18: 15J in these descriptors is set to the
disk address of their respective segments.
Also, the size field in a descriptor is set to
the segment's size. However, the address
fields of procedure descriptors for overlay­
able segments are set to the core address of
the first non-overlayable segment of the DF
MCP. By deSign, the first such segment is
that of the procedure ESPBIT. When the DF
MCP is executing and the descriptor for a
non-present segment is addressed, the set-up
of the segment's procedure descriptor causes
control to be transferred to ESPBIT. It is
then the function of E SPBIT to provide that
control be given to the procedure on which
the call was intended.

Ln order to determine what procedure should
have taken control, ESPBIT obtains the rC
and rL values from the Return Control Word
that was placed in the stack when the proce­
dure was called. Using these values, the syl­
lable that caused the procedure call is
located and, subsequently, the procedure

35

descriptor which was accessed is located.
This, of course, is the procedure descriptor
for the desirecLsegment. Using the informa­
tion in the descriptor t ESPBIT then calls
GETSPACE to reserve an area and sub­
sequently reads the segment into core. ESPIT
then places the PRT address of the procedure
descriptor in the area's memory link for
use by OLAY, and places the address of the
area in the procedure descriptor. Then, by
transferring control to the segment, the
desired procedure assumes control under
the same conditions as would have existed
if ESPBIT had not intervened.

OBJECT PROGRAM 1/0 FACILITIES

The handling of object program I/Ofacilities
on the B 5500 is a function of the DF MCP
as well as the object program. It is the
responsibility of the object program to
specify, for each file used, the file handling
techniques such as: (1) number of buffer
areas to use, (2) size of buffer areas, (3)
blocking techniques, and (4) in the case of
disk, the record accessing technique (i.e.,
serial, random, update). Also, for each I/O
statement, the object program must specify
the file and I/O action to be used, and the
control data movement to and from buffer
areas. However, it is the responsibility of
the DF MCP to locate files, to provide
buffer areas and handle their use, to perform
blocking and record accessing, and to execute
I/O operations to read or write the files.

1/0 Intrinsics

In the area of I/O, the DF MCP provides a
number of procedures that execute in normal
state rather than control state. Such pro­
cedures are called "intrinsics". When a
compiler determines that a program requires
the use of an intrinsic, a procedure descrip­
tor for the intrinsic is placed in the pro­
gram's PRT. The program can then make
calls on the intrinsic in the same fashion
as any other procedure.

Specification of File Handling Techniques

File handling techniques for object program
files are specified in the source language
representation of the program. In a source
program, before the file identifiers are

36

used in I/O statements, each file identifier
is associated with the file handling techniques
to be used with the file. In this section of
the program, the file identifier is also as­
sociated with the file name of the file con­
cerned. However, at run time, it is possible
to associate a file identifier with a different
file name.

FILE AND FILE NAMES. In respect to file
names, there are two types of files on the
B 5500; standard files and non-standard
files. A standard file is a file which has a
file name physically associated with it. A
non-standard is a file that requires outside
intervention to have a name associated with
it. In the case of files on disk, all files are
standard. Names are associated with these
files through the disk directory, as was
noted in Section 2. Names are associated
with other standard files by "standard la­
bels". A standard label is a record with a
given format that appears as the first record
in a file. One of the entries in a standard
label is the file's name. Files that do not
have standard labels are non-standard files.
An example of a non-standard file would be
a magnetic tape without a standard label. To
associate a file name with a non-standard
file requires that special information be
provided to associate the file name with
the I/O unit where the file is located. The
information may be supplied through use of
a "label equation card" or an operator
message.

FILE PARAMETER BLOCK. Each program
for the B 5500 has a File Parameter Block
(FPB). The FPB is created when a program
is compiled, and later modified by the
SELECTION routine during the "fix-up"
before a program is initiated. The FPB for
a program has an entry for every file to be
used by the program.

When a file is declared in a program, that
is, when the source program associates the
file identifier with a file name and file han­
dling techniques, the compiler assigns the
file identifier a file number. This file num­
ber, rather than the file identifier, is then
used in all references made to the corres­
ponding file by the object program. For each
file number, and in file number order, there
is an entry in the program's FPB. Each
entry in the FPB contains the file identifier,

the multiple file identification, and the file
identification for the particular file number.
The location and size of the FPB are placed
in an entry of the program's zero segment.
When the SELECTION Procedure is perform­
ing "fix-up" operations, it uses this infor­
mation to obtain the FPB. The FPB must
be used at this time to process label equa­
tion cards, if any.

Label equation cards are special program
parameter cards that can be used at run
time to associate a file name with a file
identifier used, in the source language rep­
resentation of a program. Each label equa­
tion card contains the file identifier con­
cerned, and the equation information which
includes the multiple file identification and
file identification to be associated with the
file identifier. When SELECTION obtains a
program's FPB, it also obtains all label
equation cards for the program, if any. Then
the file identifiers in the FPB entries are
compared with the file identifiers on label
equation cards. If a match is found, infor­
mation in the FPB is replaced with the
corresponding information from the label
equation card. It is in this way that file
names, associated with files represented by
file identifiers, can be decided at run time.
After all label equation cards for a program
have been handled, SELECTION modifies the
FPB again by removing the file identifier
entries, which are no longer required. Then
a descriptor containing the address of the
compacted FPB is placed in a specified lo­
cation in the object program's PRT. Using
this descriptor and a file number, the object
program is able to make all necessary re­
ferences to FPB entries.

FILE INFORMATION BLOCKS. At run time,
there is one File Information Block (Fill)
generated for each file to be used by a pro­
gram. An FIB is generated by an object
program at each program point correspond­
ing to a file declaration in the source lan­
guage representation of the program. Ini­
tially, the FIB contains only the information
about Hie handiing techniques provided in
the source program. When a file is put to
use, I/O routines use a file's Fill to store
information pertinent to the file such as
block counts, record counts, etc. At the
point when a file'S Fill is created, a buffer

descriptor area, containing an I/O descriptor
for each buffer area to be used for the file,
is also created.

LOGICAL UNIT NUMBERS. As was noted in
the section about the ST A TUS Procedure,
the Burroughs B 5500 has a special syllable
which, when executed, provides a result giving
the status of every peripheral unit. The bits
in this result word are assumed to be num­
bered from right to left, starting with O. The
number of the bit representing a particular
I/O unit is taken to be that unit's "logical
Unit Number". References to I/O units
made by the I/O Procedures and Routines
of the DF MCP are made through use of
the unit's logical number.

FILE NAMES VS. I/O UNITS. The associa­
tion of file names with files on disk through
use of the disk directory is straightforward
since disk file locations are relatively static.
The association of file names with I/O units
other than disk, however, requires checking
each time STATUS notes that a unit not in
use is made READY. Since files on units
such as magnetic tape uni ts are provided
by a system operator, the DF MCP must
have a dynamic directory for keeping a
record of what files, if any, are on what
units. This directory is, in fact, made up of
three tables: the LABEL Table, the MULTI
Table, and the RDC Table. There is an
entry in each of these tables for each unit
that may be on the system. Entries within
each table are kept in Logical Unit Number
order.

The LABEL Table is the primary table in the
group. A unit's entry in this table specifies
one of the following: (1) the unit is NOT
READY, (2) the unit is READY and contains
a file that can be used for output (e.g., a line
printer file, or a magnetic tape file with a
write-ring), (3) the unit is READY and con­
tains an input file not in-use (the LABEL
T ABLE entry in this case would include
the file identification of the input file), or
(4) the file is READY but in-use.

The MULTI Table contains the multiple file
identification of the file, if any, on the unit
represented by the table entry. The RDC
Table contains the reel number, purge date,
and cycle number of the file, if any, on the

37

unit represented by the table entry. Infor­
mation in the LABEL Table, the MULTI
Table, and the RDC Table is obtained from
the standard labels on the files, if the files
are so labeled; otherwise, the information
can be supplied through use of Label Equation
Cards or operator messages. The STATUS
Procedure has the primary responsibility of
maintaining these tables.

Opening a File

When a program first requires a file, the
file must be "opened" . The process of
opening a file includes locating the file and
providing buffer areas. When a file is to be
opened, a DF MCP FILE OPEN Procedure
is called. If a program requires an input
file, the FILE OPEN Procedure locates the
program's FPB to obtain the name of the
file. If the file is a disk file, the Disk Direc­
tory is searched and the file header for the
desired file is read into core. Otherwise, the
LABEL Table, the MULTI Table, and RDC
Table are searched to locate the unit con­
taining the file and mark it in-use. If a file
cannot be located, a message is typed to
notify the operator. Then buffer areas, as
specified in the file's FIB, are obtained by
calling GETSPACE. Subsequently, the I/O
descriptors in the file's buffer descriptor
area are provided with the addresses of the
buffer areas, and the buffer areas are filled
with records from the input file.

If a program required an output file, the type
of file must be specified (Le., magnetic
tape, disk, etc.). Buffer areas and descrip­
tors for output files are ohtain~d as noted
above; then, if the file is for disk, a disk
area of the size specified will be obtained
from the areas noted in the A vailable-Disk
Table. If another type file is desired, the
LABE L Table is searched and, if a file is
available, it is assigned; otherwise, a mes­
sage is typed to notify the operator that the
file is needed. If a line printer is requested
and not available, a check is made to see if
the program specified a printer back-up op­
tion. If not, a message is typed to notify
the operator that a printer is required, and
SLEEP is called to await a printer. If the
back-up option is specified, the FILE OPEN
Procedure sets the "continuity bit" in the
file's I/O descriptors. The Significance of
setting this bit will be noted later.

38

BUFFER AREA ACCESSED BY OBJECT
PROGRAMS. As was noted, there is a buffer
despriptor area for each file to be used by
a program. The buffer descriptor area may
be set up to contain one or more I/O de­
scriptors, as specified by the program. And,
because of the technique used to handle the se
descriptors, a program is not programmat­
ically dependent upon the number of buffer
areas assigned. In general, I/O descriptors
in buffer descriptor areas are handled in the
following manner. The program always ac­
cesses the top I/O descriptor in the area.
When the program has completed its use with
the area addressed by the top descriptor, the
area is "released". Then the DF MCP per­
forms an I/O to refill or write-out the buffer,
whichever is the case. Also, the DF MCP
"rotates" the I/O descriptors; that is, if the
buffer area is set up for more than one I/O
descriptor, the descriptors below the top
descriptor are moved up and the previous
top descriptor is moved to the bottom of the
area. Then control is returned to the object
program which can continue accessing the
area addressed by the "top descriptor".

It should be noted that each time before ac­
cessing the top I/O descriptor, the intrinsics
that handle I/O will check the "I/O Finish"
bit in the descriptor. This is done since it
would be possible for an I/O descriptor to
come to the top before the I/O on its buffer
area was complete. If the program finds the
I/O for the buffer has not been completed, a
"SLEEP Communicate" is performed, pass­
ing the address of the I/O descriptor and a
mask for the I/O Finish bit.

The SLEEP Communicate is performed by
placing SLEEP Procedure parameters in the
program stack together with a code specify­
ing the type of communicate, and then ex­
ecuting a communicate operator. The DF
MCP subsequently makes a call on the
SLEEP Procedure. Then, when the neces­
sary condition occurs, control is transfer­
red back to the program and it can continue
processing.

Communi cate

The general way in which object programs
interact with the DF MCP is impliCitly
through interrupt action such as with pres­
ence bitinterrupts. Also, as noted previously,

the intrinsic technique is used so that an
object program and DF MCP can interact
without a need for special entries to control
state. In other cases, however, a special
operator (the communicate operator) is used
so that control can be explicitly transferred
from normal state operation to control state
operation.

To use the communicate operator, a normal
state program first places parameters in its
stack; then the communicate operator is ex­
ecuted. The Communicate operator causes a
"communicate interrupt". The DF MCP
routine that handles this interrupt first lo­
cates the stack of the program that caused
the interrupt. Then, according to a code value
in the parameters in the program's stack,
the DF MCP transfers control to the section
of the DF MCP designed to handle a com­
municate interrupt with that code.

Performance of Obiect Program

1/0 by the OF MCP

To release a buffer area that is to be re­
filled or written-out, a normal state program
performs a "program release" operation.
This operation is performed by first placing,
in rA, the address of the I/O descriptor
that addresses the area to be released; then
a Program release syllable is executed. The
Program Release syllable causes the address
of the I/O descriptor to be placed in the
program's PRT at rR + 9 and checks the
continuity bit in the I/O descriptor. If the
continuity bit is set, the continuity bit inter­
rupt is set; if not, the Program Release
interrupt is set. The setting of the interrupt
causes the program to be interrupted and,
subsequently, control is transferred to the
interrupt location for the interrupt. From
this point, the PROGRAM RELEASE Proce­
dure or CONTINUITY BIT Routine is called.

PROGRAM RELEASE PROCEDURE. The
PROGRAM RELEASE Procedure obtains the
address of the I/O descriptor from the pro­
gram's PRT and sets the presence bit of
the descriptor to zero. (The presence bit
of an "in-process" I/O descriptor is set
to zero so that a presence bit interrupt will
occur if the descriptor is accessed before
the I/O is complete. Since I/O intrinsics
check an I/O descriptor before accessing it,
this is not likely to happen. However, when

using Stream Procedures and RELEASE
statements in Extended ALGOL, it is pos­
sible for a program to make such an access.
The PRESENCE BIT Routine remedies the
situation, should it occur.) Then the IORE­
QUEST Procedure is called. When IORE­
QUEST returns control, the I/O descriptors
in the buffer descriptor area are rotated,
as discussed above, and finally, control is
transferred to the INITIATE routine.

CONTINUITY BIT ROUTINE AND PRINTER
BACKUP PROCEDURE. The CONTINUITY
BIT Routine checks to see if the I/O de­
scriptor that caused the interrupt was a line
printer descriptor, as would be the case for
printer backup files. If this is the case, the
procedure that handles printer backup is
called. The PRINTER BACKUP Procedure
then writes the print line, together with a
copy of the I/O descriptor which would have
been used to write the line on a printer
backup file. The remainder of the handling
of the I/O is as described for the PROGRAM
RELEASE Procedure. At a later point in
time, when a line printer is available, the
printer backup file can be printed. The I/O
descriptor that accompanies a line of print
on the backup file is used when the line is
printed. Consequently, the format of the
printout will be as designated by the program
that created it.

IOREQUEST PROCEDURE. It is the function
of the IOREQUEST Procedure to either ini­
tiate an I/O, or queue up an I/O descriptor
in the I/O Queue. The I/O Queue is made
up of four tables; the IOQUE, the FINALQUE,
the LOCATQUE, and the UNIT table. When a
request is made. to perform an I/O, the re­
quest is queued with respect to logical unit
number. Each request for an I/O requires
an entry in IOQUE, FINALQUE, and LO­
CATQUE. IOQUE contains a copy of the I/O
descriptor for the request. FINALQUE con­
tains information about a descriptor to be
returned to the normal state program after
the I/O is completed. LOCATQUE contains
the address of the top I/O descriptor in the
pertinent buffer descriptor area, the MIX
index of the program that made the request,
the logical unit number of the I/O unit, and
an index to the next request queued for the
unit. The UNIT table contains information
about each I/O unit. Entries in the UNIT
table are in logical unit number order. An

39

entry for a particular unit includes infor­
mation specifying the type of unit (e.g.,
magnetic tape, card reader, etc.), if the
unit is READY, if the unit is currently pro­
cessing an I/O, and if the unit is awaiting
error recovery.

\Vhen IOREQUEST is called, a check is made
to see if the I/O Queue is full. If it is, the
SLEEP Procedure is called and IOREQUEST
will not continue until space in the queue is
a vailable. When queue space is available, a
check is made to see if any other I/O' s for
the unit are queued or in process. If so, the
current request is linked into the list of re­
quests for the unit. If not, a test is made to
see if an I/O channel (Le., I/O control unit)
is available. If a channel is available, the
INITIATEIO Procedure is called to initiate
the I/O. If a channel is not available, the
QUEUEUP Procedure is called to enter the
logical unit number of the unit in WAITQUE,
a table used by the IOFINISH Procedure.

INITIATEIO PROCEDURE. The INITIATEIO
Procedure is called when a unit is ready for
an I/O and an I/O channel is available.
INITIATEIO makes use of a table called
CHANNEL which has an entry for each I/O
Channel. In the entry for the channel to be
used for the I/O, INITIATE stores the logical
unit number of the unit which will perform
the I/O. Then the I/O is initiated and note
is made of I/O timing information for logging.

10FINISH PROCEDURE. When an 10FINISH
Interrupt occurs, the 10FINISH Procedure is
called. At this time, at least one I/O channel
is available. IOFINISH first checks to see if
the result descriptor, for the completed I/O,
noted any errors. If so, action is taken to
prohibit further I/O on the unit until the
error condition is rectified; however, error
conditions, if any, are not handled at this
time. Instead, a check is made to see if any
units in WAITQUE are waiting for an I/O
channel. If so, an I/O is initiated on the
first unit noted in WAITQUE. If there are
no entries in WAITQUE, a check is made
to see if another I/O can be made on the
unit that just completed an I/O. If so, an
I/O is initiated for that unit. If an I/O was
initiated on a unit from WAITQUE, and a
second unit which just completed an I/O was
ready for another I/O, the second uni t
would be queued in WAITQUE.

40

After all actions to initiate I/O's for queued
requests have been completed, IOFINISH
proceeds to have error conditions rectified,
if any, or performs final handling of the I/O
request. If errors were noted, IOFINISH
would call INDEPENDENT RUNNER to re­
quest that the IOERR Procedure be called.
10ERR would then take action to rectify the
error. If no errors occurred, 10FINISH would
perform final handling of the request, includ­
ing setting the I/O finish and presence bits
in the I/O descriptor to 1. After completing
all adjustments, the buffer area concerned is
ready for further program use.

A NOTE ON PARALLEL PROCESSING

As was noted in the paragraph describing
the INITIATE Routine, programs are ini­
tiated on Processor 2 in favor of Processor
1. This is done because Processor 1 handles
control state operations, and processor 2
can only idle if no normal state program is
initiated on it. To obtain maximum use of
Processor 2, interrupts must be handled in
such a way that Processor 2 need never idle
if a normal state program is ready to be
initiated. Consequently, interrupts are han­
dled on a priority basis. That is, each
interrupt has a priority and those of higher
priority are handled first. Processor 1 in­
terrupts have a higher priority than Proces­
sor 2 interrupts. Consequently, if both a
Processor 1 interrupt and a Processor 2
interrupt were set at the same time, the
Processor 1 interrupt would be handled by
the time the Processor 2 interrupt was in­
terrogated.

When a program on Processor 1 generates
an interrupt condition, it may be such that
the condition cannot be immediately rectified.
For example, when a presence bit interrupt
occurs, an I/O operation to bring in program
segment may have to take place. Consequent­
ly, that program identified by PIMIXis tem­
porarily "suspended" by calling S LEE P .
When the program identified by PIMIX is sus­
pended, NOTHINGTODO is called and PIMIX
is set to zero, Subsequently, NOTHINGTODO
re-initiates a procedure from the BED,
and PIMIX is assigned the value of the
pertinent program's MIX index. It should
be recalled that processing on Processor 1
can also be interrupted by the occurrence of

an interrupt related to Processor 2. There­
fore, it is often the case that the program
on Processor 1 is only interrupted so that
the DF MCP can handle a Processor 2 in­
terrupt. When this is the case, however,
P1MIX will not have been set to zero; it will
still contain the value of the MIX index of
the program from Processor 1. It should
also be noted that when this is the case, the
program identified by P1MIX is ready to
be initiated; it requires no DF MCP "fix-up".
Because of the noted conditions, Processor
2 interrupts are always handled as follows:

1. The values of P1MIX and P2MIX are
exchanged one for the other.

2. Then, if P2MIX is not zero, the pro­
gram whose MIX index is specified by
P2MIX is initiated on Processor 2 and
operation would continue as noted by
step 3 below. If P2MIX is zero, opera­
tion would immediately continue as
noted by step 3 below.

3. Control is transferred to the Proces­
sor 1 interrupt location that corres­
ponds with the pertinent Processor 2
interrupt, and the interrupt is handled.

It should be noted that interrupt conditions
are not related to processors, but rather to
programs. When a program is interrupted,
all information required for its re-initiation
is contained in control words stored in core.
Consequently, it makes no difference if values
of P 1MIX and P2MIX get exchanged or that
all interrupts become associated to P1MIX.

BREAKOUT, RESTART, AND
EMERGENCY INTERRUPT FACILITI ES

The DF MCP provides facilities that allow
programs to have rerun points and also
allow operator initiated emergency inter­
rupts. If a program requests a breakout,
or if an operator requests an emergency
interrupt, all processing of object programs
is halted. Subsequently, all of memory and
overlay storage is written on magnetic tape;
then, in the case of a breakout, object pro­
grams are re-initiated and continue pro­
cessing. In an emergency interrupt situation,

processing is terminated so that the system
is free for other use.

When a program is to be restarted at a
rerun point, or programs interrupted by an
emergency interrupt are to be re-initiated,
no programs may be on the system. Also,
all files related to the program(s) to be re­
started must be in place on the units where
they were at breakout or emergency inter­
rupt time. At such a time, a restart request
will be handled by reading the restart infor­
mation and restoring core to the condition
that existed when the breakout occurred.
Then overlay storage is restored. Finally,
if an emergency interrupt is being restarted,
all programs are set up to be re-initiated.
If a program is being restarted from a break­
out point, only that program is restarted.
Other programs, which may have been in
process when the breakout occurred and
which are reflected in the restored memory
and overlay storage, are terminated. The
primary procedure used to perform break­
outs, restarts, and emergency interrupts,
is the BREAKSTART Procedure.

Breakout and Emergency Interrupt

When a Breakout or Emergency interrupt is
requested, the BREAKSTART Procedure is
called, with a parameter specifying either
a Breakout or Emergency interrupt. BREAK­
START first halts the program on Processor
2 (if any), takes action to inhibit any pro­
grams to be re-initiated by NOTHINGTODO,
and then adjusts the I/O Queue so that no
object program's I/O requests (if any) appear
to be queued up. All over layable core is then
overlaid. BREAKSTART then obtains a buffer
area to use when writing disk and an area
into which the code, from interrupt loca­
tion areas, can be placed. Then, in the case
of a breakout, a check is made to see if a
breakout tape, for the subject program, has
been assigned previously. If so, its location
is noted; if not, or in the case of an emer­
gency interrupt, a tape is acquired. Then
BREAKSTART moves the code from inter­
rupt locations that could be branched to
during the time that core is being written.
The code placed in these interrupt locations
will handle interrupts as required by the
REDUMP Procedure. The REDUMP Proce­
dure will control operations for writing

41

memory. Then REDUMP is called, with an
I/O descriptor containing a zero address.
(The I/O bit in this descriptor is set for
writing.)

REDUMP PROCEDURE. REDUMP is a non­
over1ayab1e DF MCP procedure. When RE­
DUMP is called, it first checks the I/O bit
to determine if it was called for either a
breakout or restart. When called for a break­
out or emergency interrupt, REDUMP ob­
tains the Return Control Word from its
stack and places it in a reserved cell in
the DF MCP's PRT. This will be needed
at restart time. The REDUMP begins dump­
ing memory, 512 words per write. It does
not return control to BREAKST ART until
all of memory is dumped, unless a tape
writer error occurs. If an error occurs,
BREAKSTART provides that the error con­
dition is remedied, and REDUMP continues
dumping memory. Control is finally returned
to BREAKSTART which checks to see if a
breakout or restart is being performed.
Finding it is a breakout, the interrupt lo­
cations are restored to their original set­
tings, and the DF MCP I/O Procedures are
used to write the overlay storage on tape.
Then, after all restart information is written
on tape, the programs previously in process
are terminated if an emergency interrupt
was requested. If a breakout was requested,
the I/O Queue is readjusted so the queued
I/O's, if any, can be processed and the other
programs are allowed to be re-initiated.

Restart

When programs are to be re-initiated at re­
run points, or emergency interrupt points,
no programs may be on the system. Also,
the system configuration must be identical
to the one that existed when the breakout
or interrupt point being re-established oc­
curred, and files for the program(s) being
restarted must be in place.

When a restart is requested, the BREAK­
START Procedure is called, with a param­
eter specifying that a restart from a re­
run point, or emergency interrupt point, is
to be made. Also, information specifying
where the restart information is located
must be provided. Then a buffer area for

42

"reading memory" is obtained in the high
address section of memory and the restart
tape is pOSitioned. Then the interrupt loca­
tions that may be branched to, while reading
memory, are set to the code required by
BREAKSTART. (This handling of interrupt
locations is the same as when memory was
to be written, except the original locations
need not be saved this time.) At this time,
REDUMP is called and provided with an I/O
descriptor set to read into the buffer area
provided.

REDUMP checks the I/O bit in the I/O de­
scriptor, and finding a restart is being per­
formed, reads the first 512 words from the
restart tape. This information is read into
the buffer area provided, and then moved to
the first 512 words of core. Then REDUMP
moves the stack area, currently used by it­
self and BREAKST ART, to an area starting
at location 100. (This is within the area
reserved as the initial stack for interrupt
handling routines of the DF MCP, and, con­
sequently, need not remain as it was at the
breakout point.) Then rS is set so that RE­
DUMP will use this new area. (This area
must be used because, when memory is
read, the area previously used by REDUMP
for a stack will be overwritten. Since RE­
DUMP is a non-over1ayab1e Procedure, its
location is constant.) After relocating its
stack, REDUMP obtains the Return Control
Word from the DF MCP's PRT which was
just read in from the restart tape. This
Return Control Word is placed in REDUMP's
stack so that when REDUMP exits, control
will be returned to the copyofBREAKSTART
that will be read in from the restart tape.
Then REDUMP reads the remainder of the
core information directly into the memory
locations from which it originated. Sub­
sequently, control is returned to the copy of
BREAKSTART that is currently in core.

BREAKSTART then checks to see if this is
a breakout or restart. Then, finding it is a
restart, the interrupt locations are restored
to their initial code and the DF MCP I/O
Procedures are used to read and restore
overlay storage.

Finally, if this is a restart at a rerun point,
programs, other than the one to be restarted
(if any), are terminated; otherwise, they are

left as is. Then files are positioned to be in
accord with the conditions at breakout time,
the I/O Queue is readjusted to allow I/O,
and the program(s) is allowed to be re­
initiated.

It should be noted that when a breakout is
performed, no action is taken to record
information in user files (including files
on disk) in the restart information. Con­
sequently, if files are in any way altered
after a breakout, the restart information will
not reflect the changed conditions of the files.

CHARACTERISTICS OF THE
PROGRAM LOGGING FACILITY

The DF MCP keeps a log of processor times
and I/O times used for every program run
on the system. The log is kept in a file on
the user portion of the disk. The user is
required to provide the file.

Information is placed in the log by SIGNOFF,
a DF MCP procedure. SIGNOFF obtains the
information from DF MCP tables, following
the completion of a program. If the program
being logged is an object program that was
called from library to execute, or a compiler
that was called for syntax checking only, or
a compiler that was called to compile to
library, or a compiler that compiled a pro­
gram with syntax errors, the log information
is written in the log immediately following
the completion of the program. However t
when a "compile and go" run is called for,
the compiler's log information is written on
system disk, immediately following compila­
tion. Then after running the compiled pro­
gram, the log information for the compiler
is read from system disk and written in the
log. Then the object program's log informa­
tion is written immediately following the log
information from system disk.

/1 .. log entry for a compiler or object program
contains the following:

1. Control Card Information. The first
seventy-two columns of information
from the control card used to have the

object program or compiler called for
execution is provided.

2. Today's Date. This entry specifies the
current date. (The date is provided each
day by the system operator. The value
for this date is retained until changed
by the operator.)

3. Start Time. This entry specifies the
time of day when the program was
initiated. The hour of day within this
entry is based on a 24 hour day. (The
ini tial time of day is provided by the
system operator. It is continually up­
dated by the DF MCP, through use of
the B 5500 timer. The timer records
time changes each 1/60th of a second
and causes a timer interrupt every
64/60th of a second.)

4. Finish Time. This entry specifies the
time of day when the program was
completed.

5. I/O Channel Time. This entry specifies
the amount of time the program re­
quired use of I/O channels (i.e., I/O
control units).

6. Process Time. This entry specifies the
amount of time directly related to the
processing of the program.

7. Pro-rated Time. This entry specifies
the amount of time required by the
program for functions not directly re­
lated to the processing of the program.
Specifically, it reflects the amount of
time that a program is suspended from
processing (i.e., entered in the BED),
awaiting a required condition. For ex­
ample, a majority of this time can be
attributed (in the case of "I/O bound"
programs) to object program I/O.
Also, this time can be related to I/O
time required for overlay operations;
therefore, it should be noted that pro­
rated time may not be identical, from
one running of a program to another.
That is, the amount of pro-rated time
assigned to a program is dependent

43

upon factors such as: the number of
programs in the MIX, storage require­
ments of programs in the MIX, system
configuration (i.e., number of memory
modules, processors, and I/O chan­
nels), data requirements, etc.

8. File Information. There is a record
in the program's log entry for each
file used by the program. The length
of time the file was open and the unit
used by the file are specified.

The process time and pro-rated time listed
for programs represent at least 98% of the
acutal processor time used by the program.

44

Information in the log is not lost due to
HALT-LOAD operations. When the log be­
comes half full, a message is typed to notify
the operator. A message is also printed
when the log is full. When the log is full
and space is required for another entry,
SIGNOFF assumes the log to be empty and
enters the information as the first entry in
the file.

A program to print the log is provided; how­
ever, any program can read the log file.
Consequently, each installation can provide
its own log printing program, and format
the output as desired.

~~
Wherever There's

Business There's BurrouQh&

1023579 10-66 Printed in U.S. America

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	xBack

