QTOMSIO

covers techniques and
applications with
emphasis on string

and list processing RALPH E. GRISWOLD

suoljeanddy pue sanbiuyaay

PRENTICE-HALL
SERIES IN
AUTOMATIC
COMPUTATION

oD
s
e 8
—
w=
20
—
= =
————
()
i
-
—
=
co
cD
c”n
L.
—
_—
=
c”D
P
[
= =)
—
P
i

PRENTICE
HALL

The two aspects of this book, tech-
niques and applications, are frequently
integrated throughout the text. The
technique material is designed to in-
clude portions of string and list proc-
essing that underlie applications and
to emphasize programming methods
in SNOBOLA.

The topics included in this book may
display a particular aspect of string or
list processing in context providing
motivation that would otherwise be
lacking or, may show what can be
accomplished if string and list proc-
essing techniques are applied to an
area in which manual techniques are
conventional.

Programming examples are empha-
sized and some of the programs may
be applied as they stand. Most of the
programs are comprised of the bare
essentials in order to be embellished,
extended, and filled out with the amen-
ities of good programs. Detecting and
handling errors is experienced by the
reader through explicit exercises or by
implication.

“, .. The exercises, provided through-
out the book, are an important com-
ponent of the material presented. The
exercises come in all varieties from
trivial drills to research projects.
Many exercises suggest extensions nec-
essary to complete a program intro-
duced in the text. Other exercises

(continued on back flap)

STRING AND
LIST PROCESSING
IN SNOBOL4:
Techniques and

Applications

“m

Prentice-Hall
Series in Automatic Computation

AHO, editor, Currents in the Theory of Computing

AHO AND ULLMAN, The Theory of Parsing, Translation, and Compiling,
Volume I: Parsing; Volume II: Compiling

ANDREE, Computer Programming: Technigues, Analysis, and Mathematics

ANSELONE, Collectively Compact Operator Approximation Theory and Applications to
Integral Equations

ARBIB, Theories of Abstract Automata

BATES AND DOUGLAS, Programming Language/One, 2nd ed.

BLUMENTHAL, Management Information Systems

BRENT, Algorithms for Minimization without Derivatives

BRINCH HANSEN, Operating System Principles

COFFMAN AND DENNING, Operating Systems Theory

CRESS, et al.,, FORTRAN 1V with WATFOR and WATFIV

DAHLQUIST, BIORCK, & ANDERSON, Numerical Methods

DANIEL, The Approximate Minimization of Functionals

DEO, Graph Theory with Applications to Engineering and Computer Science

DESMONDE, Computers and Théir Uses, 2nd ed.

DESMONDE, Real-Time Data Processing Systems

DRUMMOND, Evaluation and Measurement Techniques for Digital Computer Systems

EVANS, et al., Simulation Using Digital Computers

FIKE, Computer Evaluation of Mathematical Functions

FIKE, PL[1 for Scientific Programmers

FORSYTHE AND MOLER, Computer Solution of Linear Algebraic Systems

GAUTHIER AND PONTO, Designing Systems Programs

GEAR, Numerical Initial Value Problems in Ordinary Differential Equations

GOLDEN, FORTRAN 1V Programming and Computing

GOLDEN AND LEICHUS, IBM/360 Programming and Computing

GORDON, System Simulation

GRISWOLD, String and List Processing in SNOBOL4: Techniques and Applications

HANSEN, A Table of Series and Products

HARTMANIS AND STEARNS, Algebraic Structure Theory of Sequential Machmes

HULL, Introduction to Computing

JACOBY, et al., Iterative Methods for Nonlinear Optimization Problems

JOHNSON, System Structure in Data, Programs, and Computers

KANTER, The Computer and the Executive

KIVIAT, et al., The SIMSCRIPT II Progranuwning Language

LAWSON AND HANSON, Solving Least Squares Problems

LORIN, Parallelism in Hardware and Software: Real and Apparent Concurrency

LOUDEN AND LEDIN, Programming the IBM 1130, 2nd ed.

MARTIN, Design of Man—Computer Dialogues

MARTIN, Design of Real-Time Computer Systems

MARTIN, Future Developments in Telecommunications

MARTIN, Programming Real-Time Computing Systems

MARTIN, Security Accuracy and Privacy in Computer Systems

MARTIN, Systems Analysis for Data Transmission

MARTIN, Telecommunications and the Computer

MARTIN, Teleprocessing Network Organization

MARTIN AND NORMAN, The Computerized Society

MATHISON AND WALKER, Computers and Telecommunications: Issues in Public Policy

MCKEEMAN, et al., 4 Compiler Generator

MEYERS, Time-Sharing Computation in the Social Sciences

MINSKY, Computation: Finite and Infinite Machines

NIEVERGELT, et al., Computer Approaches to Mathematical Problems

PLANE AND MCMILLAN, Discrete Optimization: Integer Programming and Network
Analysis for Management Decisions

PRITSKER AND KIVIAT, Simulation with GASP II: a FORTRAN-Based Simulation
Language

PYLYSHYN, editor, Perspectives on the Computer Revolution

RICH, International Sorting Methods Illustrated with PL|l Programs

RUSTIN, editor, Algorithm Specification

RUSTIN, editor, Computer Networks

RUSTIN, editor, Data Base Systems

RUSTIN, editor, Debugging Techniques in Large Systems

RUSTIN, editor, Design and Optimization of Compilers

RUSTIN, editor, Formal Semantics of Programming Languages

SACKMAN AND CITRENBAUM, editors, On-Line Planning: Towards Creative
Problem-Solving

SALTON, editor, The SMART Retrieval System: Experiments in Automatic Document
Processing

SAMMET, Programming Languages: History and Fundamentals

SCHAEFER, A Mathematical Theory of Global Program Optimization

SCHULTZ, Spline Analysis

SCHWARZ, et al., Numerical Analysis of Symmetric Matrices

SHAW, The Logical Design of Operating Systems

SHERMAN, Techniques in Computer Programming

SIMON AND SIKLOSSY, editors, Representation and Meaning: Experiments with
Information Processing Systems

STERBENZ, Floating-Point Computation

STERLING AND POLLACK, Introduction to Statistical Data Processing

STOUTEMYER, PL/1 Programming for Engineering and Science

STRANG AND FIX, An Analysis of the Element Method

STROUD, Approximate Calculation of Multiple Integrals

TAVISS, editor, The Computer Impact

TRAUB, lterative Methods for the Solution of Equations

UHR, Pattern Recognition, Learning, and Thought: Computer-Programmed Models of
Higher Mental Processes

VAN TASSEL, Computer Security Management

VARGA, Matrix Iterative Analysis

WAITE, Implementing Software for Non-Numeric Application

WILKINSON, Rounding Errors in Algebraic Processes

WIRTH, Systematic Programming: An Introduction

STRING AND
LIST PROCESSING
IN SNOBOLA4:
Techniques and

Applications

RALPH E. GRISWOLD

Department of Computer Science
The University of Arizona

PRENTICE-HALL, INC.

ENGLEWOOD CLIFFS, NEW JERSEY

Library of Congress Cataloging in Publication Data

GRISWOLD, RALPH E,
String and list processing in SNOBOL4.

(Prentice-Hall series in automatic computation)
Includes bibliographical references.

1. SNOBOL

(Computer program language) 2. List

processing (Electronic computers) I. Title.

QA76.73.86G77

001.6 424 74-9661

ISBN 0-13-853010-6

© 1975 by Prentice-Hall, Inc., Englewood Cliffs, N.J.

All rights reserved. No part of this book may be reproduced
in any form or by any means without permission in writing
from the publisher.

10 9 8 7 6 5 4 3 21

Printed in the United States of America

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA, PTY. LTD., Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

vi

CONTENTS

PREFACE

PATTERN MATCHING

1.1.

1.2.
1.3.
1.4.

A Few Examples

1.1.1. Removing Items from a List

1.1.2. Matching Words

1.1.3. Matching Numbers

1.1.4. Search and Replacement Specifications
Grammars and Patterns

Patterns as Procedures

Structuring Data to Utilize Pattern Matching

DEFINED FUNCTIONS

2.1.

2.2,
2.3.

2.4.

Defined Functions as a Mechanism for Language Extension
2.1.1. Basic Extensions

2.1.2. More Elaborate Extensions

Recursive Functions

Generators and Successors

2.3.1. Random Number Generation

2.3.2. Generation of Strings

Use of Functions in Program Design

vii

NN BN N =

[

20

20
21
26
30
34

36
40

STRUCTURES

3.1.

3.2

3.3.

Values and Objects in SNOBOL4

3.1.1. Built-In Data Types

3.1.2. Defined Data Types
Implementation of Some Specific Structures
3.2.1. Stacks

3.2.2. Queues

3.2.3. Linked Lists

3.2.4. Binary Trees

3.2.5. Trees

Processing Structures that Contain Loops

APPLICATIONS IN MATHEMATICS

4.1,

4.2

Representation and Manipulation of Mathematical Objects
4.1.1. Rational Numbers

4.1.2. Large Integers

4.1.3. Polynomials

Operations on Expressions

4.2.1. Expressions

4.2.2. Differentiation

4.2.3. Tree Representation of Expressions

4.2.4. Alternative Representations

CRYPTOGRAPHY

5.1.

5.2

5.3.

5.4.

5.5.

Ciphers

5.1.1. Types of Ciphers

5.1.2. Alphabets

Monoliteral Substitution Ciphers

5.2.1. Basic Substitution Methods

5.2.2. Keyed Alphabets

5.2.3. Polyalphabetic Substitutions
Transposition Ciphers

5.3.1. Route Transposition

5.3.2. Columnar Transposition

5.3.3. Inscription and Transcription Paths

5.3.4. Programming Methods for Transportation
5.8.5. Grilles and the Use of Nulls in Enciphering
5.3.6. Related Uses of REPLACE

More Complicated Substitutions

5.4.1. Polyliteral Substitution

5.4.2. Polygraphic Substitution

Cryptanalysis

5.5.1. Statistical Aspects of Language

5.5.2. Regularities Inherent in Enciphering Techniques

5.5.3. Application of Enciphering Techniques to Decrypting

viii

47

47
48
55
60
60
69
73
78
86
91

95

95
95
98
103
107
108
111
115
117

122

124
124
125
126
126
128
129
132
132
134
135
136
138
142
147
147
150
152
153
154
156

6 DOCUMENT PREPARATION

6.1.

Representation of Text

6.1.1. Character Sets

6.1.2. Processing Input Text

6.1.3. Other Problems in Representing Text

6.2 Formatting

6.3.

6.2.1. Vertical Formatting

6.2.2. Horizontal Formatting

6.2.3. Combining Vertical and Horizontal Formatting
Other Aspects of Document Preparation

6.3.1. Indexing

6.3.2. Abbreviations

6.3.3. Automatic Numbering

6.3.4. Modifying the Formatting Program During Execution

7 ADDITIONAL APPLICATIONS

7.1.

7.2

7.3.

7.4.

APPENDIX

A Random Sentence Generator

7.1.1. The Generation Process

7.1.2. Representation of the Grammar
7.1.3. The Generation Functions
Turing Machines

7.2.1. Simulation of Turing Machines
A Macro Processor

7.3.1. Description of MP

7.3.2. The Implementation of MP
7.3.3. A Conditional Facility in MP
A Context Editor

7.4.1. A Description of ED4

7.4.2. The Implementation of ED4

A CHARACTER SETS

APPENDIX

B SOLUTIONS TO SELECTED EXERCISES

REFERENCES

INDEX OF DEFINED FUNCTIONS

SUBJECT INDEX

ix

160

161
161
163
167
168
169
174
178
184
184
185
188
189

192

192
193
194
197
200
202
209
210
213
217
220
221
222

226

231

275

279

282

PREFACE

“String and list processing” in computer programming is a topic with
which some mystery has been associated. Like many somewhat mysterious
subjects, the quality of mystery is derived from two sources: a lack of under-
standing and the fact that the subject is not well defined.

In the most general sense, string and list processing is defined negatively
as “nonnumerical computation”; in other words, anything not involved with
numbers. This definition is too general and at the same time too restrictive.
Nonnumerical computation includes much business and administrative data
processing, information retrieval, and so forth. While these areas have
components of string and list processing, they include many other aspects
of computation. Conversely, string and list processing is used in certain kinds
of numerical manipulations, some of which are illustrated in this book.

String and list processing is a catch-all for types of computation that are
not conventional or “traditional”. In a sense, string and list processing is an
awkward marriage of terms. String processing pertains to character and
text manipulation, while list processing is concerned with structures and the
relationships among aggregates of objects. Despite the apparent dissimilarity

" of the two, many problem areas require both kinds of facilities.

If string and list processing is not a generally well-defined subject, it is
even more true that string and list processing techniques in programming
are not well understood. To a large extent, string and list processing involves
the use of a hodge-podge of unsystematic, ad hoc devices. Many methods that
are used are clumsy and contorted to a degree that masks their defects. In
an area without much systematic literature, “reinvention of the wheel” is
commonplace. Unfortunately, the flat tire is frequently reinvented also.
It is not my ambition to rectify this situation; that is far too great a task.

X

This book does strive to display some techniques in string and list processing,
and to explore some areas of application. From this, the reader will, hope-
fully, be able to pull some things together and see common threads that
unite the subject.

A significant reason for grouping string and list processing together is
the nature of the programming tools available. There are many programming
languages [1]'. Some are designed primarily for “scientific computation”,
i.e., numerical calculation. Others are oriented toward business and adminis-
trative data processing. Some languages are “special purpose”, and are in-
tended for specific, restricted applications. Other languages are “general
purpose”, combining many features. Few programming languages, however,
have a strong emphasis on string and list processing facilities. SNOBOL4
[2, 3] is a notable exception among programming languages that have a-
chieved wide acceptance.

SNOBOLA4 is usually described as a string-processing language, partly
because its predecessors (SNOBOL [4] and SNOBOL3 [5, 6]) were true
string-processing languages, and partly for the valid reason that SNOBOL4
does have extensive and powerful facilities for manipulating strings of
characters. SNOBOL4 is, however, a general-purpose language (in the sense
indicated above) that stresses “nonnumerical” facilities. The list-processing
facilities in SNOBOL4 are not as well known as the string-processing facilities.
This is due in part to the historical development of the SNOBOL languages,
which only recently included list-processing facilities, and in part to the fact
that the list-processing facilities are less explicit than those for string process-
ing. The particular context for this book is the SNOBOL4 programming lan-
guage. This language is an integral part of the material presented. In a sense,
this book is about programming in SNOBOL4. In all fairness, had another
language been chosen, the book would have been quite different. It is,
nonetheless, simply a fact that the nature of the tools, to a large extent,
defines the work.

This book presumes a good working knowledge of SNOBOL4 and the
willingness of the reader to review or to refer to the language description as
necessary. There are, however, sections that discuss pertinent aspects of
SNOBOL4 or provide alternative ways of viewing certain language features.
The reader who is not already familiar with SNOBOL4 is strongly advised to
first acquire the prerequisite background and enough programming experience
so that simple matters follow naturally without conscious thought. Even for
the experienced programmer, some of the material in this book will, perhaps,
be novel and require thought and study.

The book has two parts: one on techniques and one on applications. The
division between the two is not particularly clear cut. Some of both aspects
appear everywhere in the book. The material on techniques is designed to
cover portions of string and list processing that underlie applications and to
give special attention to programming methods in SNOBOL4. The choice

! Numbers in brackets refer to references listed at the end of the book.

xi

of application areas presented a number of problems. The most serious
problem was the limitation on the amount of material that can reasonably be
presented in a single book. The topics that were finally chosen for inclusion
were selected for various reasons. In some cases, a topic displays a particular
aspect of string or list processing in context and provides motivation that
otherwise would be lacking. In other cases, a topic shows what can be
accomplished if string and list processing techniques are applied to an area
in which manual techniques are conventional. The coverage of application
areas is by no means comprehensive. Some areas which use string and list
processing heavily are simply omitted. These include artificial intelligence,
music theory, compiler writing, and computer-assisted instruction. Other
subjects, such as linguistic analysis, are not presented as unified topics, but,
instead, are distributed throughout the book. Some readers may be disap-
pointed that their particular area of interest is not included and that the book
does not provide ready-made programs for their use. I can only apologize
and encourage them to apply the concepts and techniques that are presented
here to their work. ,

The emphasis in this book is on programming examples. Some of the
programs may be useful to some readers as they stand. One of the major
problems in accommodating the material to the confines of a book was pro-
viding significant programming examples in a relatively small amount of space.
The approach to this problem has been to strip programs down to their bare
bones. Most of the programs in this book are skeletons, albeit working
skeletons. They are designed so that they can be embellished, extended, and
filled out with the amenities that good programs should have. Comments in
the programs themselves have been sacrificed for more compact (and hope-
fully more literary) description in the body of the text. Generally speaking,
detection and handling of errors has been left to the reader, either in the form
of explicit exercises or by implication. Quite frequently, only one of a
number .of similar components of a program is actually given in the text.

Programming inevitably involves questions of style. The programs in
this book reflect my style, modified somewhat by pedagogical considera-
tions and the constraints of publication format. Readers who wish to use the
programs or elaborate on them will no doubt wish to modify the programs to
suit their own styles. I make no claim that my style is the best or even suit-
able for use by others; it simply suits me.

All the programs in this book are real. They have been run and tested.
Nevertheless, it is inevitable that they contain errors, logical, clerical, and
otherwise. I will appreciate errors being called to my attention so that they
can be corrected in subsequent printings. It is also inevitable that my pro-
grams will not always be the “best”, even by my own standards. Suggestions
. for better programs are welcome.

The programs in this book all conform to Version 3 of SNOBOL4 [2].
There are a number of dialects of SNOBOL4 [7-9], some of which contain
features not available in the standard version. Users of such systems may have
to make minor modifications for their particular versions, and may find that

xii

program solutions can be improved by using some of the available language
extensions. Most of the programs in this book are independent of any par-
ticular computer. Implementations of Version 3 of SNOBOL4 are suf-
ficiently standardized so that computer differences usually do not cause
problems. The few references to input and output are given in the form that
is used for the IBM 360/370 operating under OS. See Reference 2. The pro-
grams were actually developed and tested on a CDC 6400. The standard
SNOBOL4 publication graphics [2] are used in the programs, but the ASCII
character set is used in data in some places. Character-set considerations are
discussed in Section 6.1 and there are tables in Appendix A.

With a few exceptions, discussion of interactive computing is omitted.
Many installations offer SNOBOL4 in a time-sharing environment on an
interactive basis. The nature of such facilities varies considerably, however.
Many of the programs given in this book can be modified to operate inter-
actively. Users with time-sharing facilities may find it interesting to adapt
the programs to their particular systems.

The exercises, provided throughout the book, are an important com-
ponent of the material presented. The exercises come in all varieties from
trivial drills to research projects. Many exercises suggest the embellishments
and extensions necessary to complete a program introduced in the text.
Other exercises suggest next steps to be taken toward more significant
material, or indicate related areas not covered in the text. Solutions to
many of the exercises are given in Appendix B. These solutions, and ac-
companying discussions, are intended to supplement the text. Some further
exercises are suggested in the solutions.

Throughout this book there are citations by number (as illustrated in
this preface) to references that are listed after the appendices. The list of
references, although by no means comprehensive, includes material for
supplementary reading in addition to specific citations.

I am grateful to a number of people who have contributed to this book.
Jim Gimpel, who has made a number of important and original contributions
to string and list processing, introduced me to the types of transformations
that can be performed by character replacement. The material in Section 5.3
depends heavily on these ideas. The random sentence generator presented
in Section 7.1 is patterned after a similar program written by Jim. The
basic idea underlying the context editor developed in Section 7.4 is also due
to Jim. John Hallyburton and Fred Druseikis provided critical readings of
the manuscript, suggested a number of improvements, and provided some of
the exercises. John Hallyburton also suggested the method used for dia-
gramming defined data objects. The students in my classes on string and list
processing served as guinea pigs, and were subjected to a variety of experi-
ments in methods of presenting the material and techniques for formulating
program solutions. Their many corrections and specific suggestions are dis-
tributed throughout the text. They have, in the process of course work,
verified most of the exercises. I am indebted to the staff of the University of
Arizona Computer Center for providing excellent service, often under diffi-

xiii

cult circumstances, which made it possible to develop and test the programs
given in this book. My secretary, LeeAnn Underwood, was most helpful -
in assisting with the preparation of the manuscript. Finally, and most
importantly, I am enormously indebted to my wife, Madge. She assisted in
all aspects of the book and devoted many hours of her time over a period of
years to the material that appears here. She provided advice on content,
critical readings of the manuscript, copyediting, and keyboarding; most of
all she provided constant encouragement, support, and understanding.

RALPH E. GRISWOLD

Tucson, Arizona

Xiv

STRING AND
LIST PROCESSING
IN SNOBOL4:
Techniques and

Applications

] PATTERN MATCHING

Pattern matching is the most powerful and most extensive major feature
of the SNOBOL4 language. There are ten built-in pattern-valued functions,
six operators that relate to patterns, seven built-in patterns, nine keywords
relating to patterns and pattern matching, and two of the three statement
types are devoted to pattern matching. Pattern matching presents more dif-
ficulties to the SNOBOL4 programmer than any other aspect of the language;
it is poorly understood, often abused, and its potential is rarely realized. For
some programmers, pattern matching is an obsession. Operations that could
be performed in a straightforward way are formulated in an obtuse fashion
using patterns. The purpose of this chapter is to point out some of the ways
of using pattern matching and to clarify some of its more obscure aspects.

1.1. A FEW EXAMPLES

One of the problems with pattern matching is the large number of facili-
ties that are available. It is often difficult to decide what approach to take.
A few examples of typical pattern-matching problems and their solutions
serve to illustrate some useful techniques.

1.1.1. Removing Items from a List

Consider a list of items separated by commas:

2 PATTERN MATCHING Chap. 1

LIST = '"LEFT,HALT,LEFT,CANCEL ,RIGHT,'
Removing an item is trivially simple:
NEXTI = BREAK(',') . ITEM LEN(1)

GETI LIST NEXTI = F(NONE)

In the pattern above, LEN(1) could just as easily be replaced by a literal
comma. Suppose, however, that the last item of the list is not followed by a
comma. One alternative is to handle this as a special case in another state-
ment. If the pattern NEXTI is modified appropriately, this is unnecessary.
A first attempt might be

NEXTI = BREAK(',') . ITEM LEN(1) | REM . ITEM

This pattern works as intended until the last item has been removed. Since
REM can match the null string, this pattern never fails. The problem can be
circumvented as follows:

NEXTI = BREAK(',') . ITEM LEN(1)| (LEN(1) REM) . ITEM

This pattern works properly whether or not the last item is followed by
a comma.

The purpose of the problem above is to illustrate that alternative situa-
tions which arise in pattern matching can usually be handled by including
alternatives in a pattern, rather than by providing alternative statements.
This problem also illustrates a situation in which no single built-in pattern
provides the necessary facilities. Stated another way, there is no single
pattern in SNOBOL4 that matches the remainder of a string provided it is
nonnull. The use of LEN (1) in conjunction with REM amounts to construc-
ting such a pattern out of simpler components.

1.1.2. Matching Words

The term ‘“word”’, in the written sense, while generally understood, is
not particularly well defined in a syntactic sense. Superficially, a word might
be described as a contiguous sequence of letters. Of course there are many
counter- examples to this definition. Words exist in the context of written
material, as components of sentences. Thus, words might be described as se-
quences of letters between blanks or punctuation marks. Consider, there-
fore, the problem of getting the next word from a string of text, which is

Sec. 1.1 A FEW EXAMPLES 3

analogous to getting the next item from a list. An example of such a string
of text is '

TEXT = 'EVEN IF HE SAW ME, I WILL DENY IT.'

This string is similar to the more highly structured list given earlier: a se-
quence of significant substrings with separating characters. A first approach
might be to use a pattern such as:

LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
NEXTW = SPAN (LETTERS) . WORD

Then a statement such as

GETW TEXT NEXTW = : F(NONE)

could be used to get the words, in order, from TEXT. This method works in
the sense that it produces the desired result. However, examination of suc-
cessive values of TEXT illustrates a disadvantage of this approach:

EVEN IF HE SAW ME, I WILL DENY IT.
IF HE SAW ME, I WILL DENY IT.
HE SAW ME, T WILL DENY IT.
SAW ME, T WILL DENY IT.
ME, T WILL DENY IT.
s I WILL DENY IT.
» WILL DENY IT.
» DENY IT.
s IT.

In the first place, the blanks and punctuation marks are not removed. Con-
sequently, they must be rescanned with every match—an obvious inefficiency.
In the second place, NEXTW only works properly in the unanchored mode,
which may be in conflict with other parts of the program. To avoid these
problems, a second attempt might be

NEXTW = SPAN(LETTERS) . WORD BREAK(LETTERS)

This pattern eliminates the characters between words. It is erroneous, how-
ever, because it does not match the last word, since BREAK(LETTERS) fails

in this case. This can be avoided by providing a second alternative for the
last word, but there is a better solution:

NEXTW = BREAK(LETTERS) SPAN(LETTERS) . WORD

Since BREAK can match the null string, this pattern handles the first word of
a sentence as well as those preceded by blanks and punctuation marks. The
pattern also works properly in either the anchored or unanchored mode.

4 PATTERN MATCHING Chap. 1

The method of arriving at this pattern, rather than one of the two pre-
vious ones (or some other), might be the result of trial and error. More
frequently, a pattern that does not quite work is “patched up”’, adding al-
ternatives, until it is much more complicated than it need be. One method
of evaluating such a pattern is to determine whether or not the way it op-
erates during pattern matching corresponds in a procedural way to what is
desired. For NEXTW, this operation can be described loosely as “Search for a
letter, consuming any other characters. If there is no letter, fail. If a letter
is found, match all subsequent letters, and assign them to WORD.” This
description illustrates that pattern matching starts at the beginning of the
string, and that any irrelevant separating characters before a word are in-
cluded in the match and hence are discarded as a result of replacement by
the null string.

It is important to realize that the definition of word as used in this
example is a naive one. There are compound words, possessive forms, ab-
breviations, acronyms, and all sorts of special notations that appear in writ-
ten language. The specific problem dictates what constitutes an appropriate
definition of a word [10].

1.1.3. Matching Numbers

In SNOBOL4, both integers and real numbers can be specified literally
in a source program. Consider the problem of creating a pattern that matches
such numbers, ignoring limitations on magnitudes, which vary from imple-
mentation to implementation. Integers consist of a sequence of consecutive
digits. Real numbers contain a period, but that period cannot be the first
character of a real number in SNOBOLA4.

It is not difficult to devise a pattern to match a number, taking into
account all the possibilities and writing alternatives for the various situations:

DIGITS SPAN('0123456789")
NUMBER DIGITS '.' (DIGITS | NULL) | DIGITS

The first alternative must appear before the second. Otherwise an integer
substring of a real number would be matched instead of a real number.
An alternative formulation is

NUMBER = DIGITS ('.' (DIGITS | NULL) | NULL)

which essentially factors out the initial string of digits. These patterns are
satisfactory for the specific definition of numbers given above. Suppose,
however, that the definition is extended to include signs, exponent repre-
sentations of real numbers, and so forth. The pattern may have to be re-
written in its entirety. If the definition is complicated, such patterns become
unmanageably difficult to understand or modify.

Sec. 1.1 . A FEW EXAMPLES 5

In such cases, it is good practice to separate the definition into logical
components and build the final pattern in a series of steps. (The pattern
DIGITS above serves this purpose to some extent, but primarily saves repe-
tition.) Basically, a number is an integer or a real number. This basic divi-
sion can be reflected in the patterns:

INTEGER = DIGITS
REAL = DIGITS '.' (DIGITS | NULL)
NUMBER = REAL | INTEGER

So far, these patterns offer little advantage over the previous ones except
that NUMBER is somewhat more “self documenting” than before. Suppose
that an optional sign is added to the definition. The patterns might be
changed as follows: .

SIGN = ANY('+-') | NULL
NUMBER = SIGN (REAL | INTEGER)

Similarly, if the exponent form of real numbers is allowed, as in FORTRAN,
REAL might be defined as follows:

DFORM = DIGITS '.' (DIGITS | NULL)
EFORM = DFORM 'E' SIGN DIGITS
REAL = EFORM | DFORM

1.1.4. Search and Replacement Specifications

File editors usually provide a means of locating a desired place in a file
by context, i.e., in terms of the data contained in the file. One method is to
allow the user of the editor to specify a string that initiates a search. Pre-
sumably, a file may contain any combination of characters. Consequently,
the way in which a search string can be specified is a problem. One tech-
nique is to preempt a character to delimit the search string. (The SNOBOL4
quoted literal is of this nature.) This method precludes the use of the de-
limiting character in the search string itself. A way of overcoming this
problem is to permit the delimiter to be specified when the search request is
made. A common form for such a specification is to interpret the first
character of the search request as the delimiter [11]. Thus, in the search
request

/PROGRAMMING/

the delimiter is / and the string to be searched for is PROGRAMMING.
On the other hand

$A*B/C$

6 PATTERN MATCHING . Chap. 1

uses $ as a delimiter to specify a search for A*B/C. The facility of this
mechanism is based on the fact that in almost all cases there is some charac-
ter not in the desired string that can therefore be selected as a delimiter.
Note that any character, even a blank, can serve as a delimiter.

An extension of this technique allows for a search that is followed by a
replacement. The replacement string is simply appended to the search speci-
fication and followed by another instance of the delimiter. An example is

/PROGRAMMING/CODING/

which specifies a search for PROGRAMMING and a replacement by CODING
when it is found.

Consider the problem of analyzing specifications of this type. Since the
delimiter is determined from the specification itself, one method is to pick off
the first character, and having determined what it is, analyze the rest of the
specification. Immediate value assignment, coupled with unevaluated ex-
pressions, permit this to be done in a single pattern match:

SPECPAT = LEN(1) $ D BREAK(*D) . SEARCH LEN(1)
: BREAK(*D) . REPLACE

When applied to a specification, the first character is (immediately) assigned
to D, which is then used as an argument for BREAK to isolate the two de-
sired strings. :

This is an example of context dependence in pattern matching. A value
determined dynamically during pattern matching is used as a parameter of
the pattern itself. More is said about context dependence, immediate value
assignment, and unevaluated expressions later in this chapter. This example
provides a simple instance of an extremely powerful facility.

+

EXERCISES

1.1 Modify NEXTW to include compound words.

1.2 A common approach to the problem of matching words is to define
words by exclusion rather than by inclusion, that is, to look for any
characters that may occur between separators. Discuss this approach
and contrast it with the method used above.

1.3 In writing and printing, it is conventional to punctuate integers by
placing commas between groups of -three digits. An example is
2,173,406,315. Write a pattern to match integers in this form.

1.4 Write a pattern that matches even numbers. Include both signed and un-
signed numbers. Consider a real number to be even if its integer part
is even.

Sec. 1.2 GRAMMARS AND PATTERNS 7

1.5 Write a pattern that matches FORTRAN Hollerith literal specifications.
1.6 Write a pattern to match strings of the form A"B"C" (n > 0).

1.2. GRAMMARS AND PATTERNS

Pattern matching is often concerned with determining whether a string
is a member of a set of strings having some desired property. An example is
determining whether a string is an integer, i.e., whether it is composed en-
tirely of digits.

In formal language theory [12], a language is a set of strings. There are
many ways of characterizing a language. Languages of interest generally con-
tain an infinite number of strings (as in the example above). Therefore, a
language cannot, in general, be characterized by simply listing all the strings
it contains.

Even though languages are generally infinite, finite characterizations are
possible for cases of practical interest. A grammar is the commonest charac-
terization. A grammar describes the structure of strings (‘“‘sentences”) in the
language. In programming contexts, the best-known type of formal grammar
is Backus-Naur Form [13], abbreviated BNF. (There are a number of dif-
ferent terminologies for describing BNF. The one used below is the author’s
preference.)

BNF characterizes a language in terms of terminals, which are characters
from which strings of the language are composed, and nonterminals, which
specify classes of structures or substructures of interest. Nonterminals are
enclosed in angular brackets to distinguish them from terminals. Terminals
are written just as they ordinarily appear. A grammar consists of definitions
of nonterminals. One nonterminal, called the goal, is designated as charac-
terizing the language. In the formal notation of BNF, the definition of a
nonterminal is indicated by giving its name, followed by :: = (indicating
definition), followed by the specific definition. A very simple example is

<comma>::=,

which defines a nonterminal, <comma>, consisting of a single terminal charac-
ter. The name “comma’” has no meaning of itself, but is chosen to be
suggestive.

Nonterminals may have several alternatives in their definitions. This is
indicated in BNF notation by using vertical bars to separate the alternatives.
An example is

<digit>::=0{1|2|3|4|5|6|7|8|9

which defines <digit> to be any one of ten terminal strings.

8 PATTERN MATCHING Chap. 1

An alternative may consist of several concatenated components, called
subsequents. For example

<dpair>::=(<digit>,<digit>)

consists of five subsequents, three of which are terminal and two of which
are nonterminal. An equivalent definition, using <comma> defined above, is

<dpair>::=(<digit><comma><digit>)

When writing a grammar, the choice of nonterminals depends on convenience,
on essential aspects of the language, and on the attributes of the language
that are to be emphasized. Thus, <comma> might be included in a grammar,
in spite of its trivial definition, to emphasize its syntactic role.

A nonterminal may be used in its own definition. An example is

<integer>::=<digit>|>digit><integer>

Such a use is recursive and is implied as such in BNF notation. Here, an in-
teger is either a single digit or a digit followed by another integer. Recursive
references are necessary in BNF to describe indefinite repetition. This defi-
nition illustrates one of the most important aspects of grammars: that an
infinite number of strings can be represented by a finite number of non-
terminals.

In general, a nonterminal may appear anywhere in a grammar, even
before its definition appears. A BNF grammar is a description of a language,
not a series of executable statements. In fact, most grammars contain es-
sential, circular, recursive references. Consider the following grammar:

<element>::=a|b|c|d

<member>: :=<element>|<ntuple>
<list>: -<member>|<member> <list>
<ntuple>::=(<list>)

In this grammar, <member>, <1ist>, and <ntuple> are defined in terms of
each other. The nonterminal <element> provides an ‘“escape” through
which the other nonterminals have alternatives leading to terminals. If
<ntuple> is the designated goal, the language consists of strings such as

. and so on.

Sec. 1.2 GRAMMARS AND PATTERNS 9

There is a close analogy between BNF definitions and SNOBOL4 pat-
terns. For example, the statement

ELEMENT = ‘A' | 'B' | '¢' | 'D'

constructs a pattern that matches any <element>. The second and third
BNF definitions cannot be directly mapped into SNOBOL4 patterns. Con-
struction of a pattern uses existing values, and both these nonterminals
reference themselves or nonterminals that follow. Use of unevaluated ex-
pressions to defer reference until pattern matching is performed solves this
problem, since both patterns can be constructed before they are used in
pattern-matching. The three patterns

MEMBER = ELEMENT | *NTUPLE
LIST = ®MEMBER | BWMEMBER ',' *LIST
NTUPLE = '(' LIST ')’

complete the definition. Note that unevaluated expressions are needed only
in cases where a pattern is referenced before it is constructed.

To write a recognizer for <ntuple>s, i.e., a program that determines if
a string is an <ntuple>, it is important to realize that NTUPLE will succeed,
in general, if it successfully matches a substring of a given string. To assure
that an entire string is matched, the following pattern may be used:

GOAL = POS(0) NTUPLE RPOS(0)

This pattern provides “‘context” for NTUPLE. Such context is required for
recognizers in general.

Since BNF is widely used to describe formal languages, the close corres-
pondence between BNF and SNOBOL4 patterns provides a convenient ap-
proach to developing patterns that recognize strings of a language. There
are some precautions to be taken, however, before simply translating a BNF
grammar into SNOBOL4 patterns. In the first place, the implications of
using unevaluated expressions are significant. As noted in the example above,
unevaluated expressions are needed only in places where a pattern is ref-
erenced before it is constructed. However, unevaluated expressions may be
used anywhere. The patterns above could be rewritten as follows:

MEMBER = *ELEMENT | *NTUPLE
LIST = *MEMBER | *MEMBER ',' *LIST
NTUPLE = '(' *LIST ')°

This leads to the question of what difference, if any, there is between the
two sets of patterns. Superficially, the two are the same and recognize the
same strings. There are, however, subtle differences.

Any time an unevaluated expression is used in a pattern, the significance
of pattern-matching heuristics becomes important. These heuristics, which
are applied in the “quickscan” mode, are designed to do two things:

10 PATTERN MATCHING Chap. 1

(1) Avoid futile attempts to match in contexts where success is not
possible.
(2) Prevent looping due to ‘“left recursive” unevaluated expressions.

The details of these heuristics are described in Reference 2. For recognizers
corresponding to BNF grammars, the second point is of greatest importance.
Suppose the definition of <1ist> above is slightly rewritten:

<list>::=<1ist>,<member>|<member>

This definition is equivalent to the one above, at least in terms of describing
what a <1ist> may be. For the purposes of description, the order of al-
ternatives is not important, although one order may give a definition that is
easier to understand than another. Operationally, however, using patterns
corresponding to a grammar, there is a great deal of difference. Alternatives
are attempted in order from left to right. The SNOBOL4 pattern corres-
ponding to the revised definition is:

LIST = *LIST ',' *MEMBER | *MEMBER

In an attempt to match LIST, the first alternative results in an attempt to
match LIST, and so on. Unless something is done to “break the loop,” there
is no possibility of getting to the second alternative. Usually BNF grammars
are written in a way that avoids this problem. The problem is, nevertheless,
inherent in this type of grammar and corresponding patterns. The quickscan
mode breaks the loop by taking length considerations into account and as-
suming that any unevaluated expression matches at least one character.
Consequently, the first alternative above is assumed to match at least three
characters. Similarly, when LIST causes another match for LIST, three
more characters are required for the first alternative. The heuristics use this
information to prevent looping, causing the first alternative to fail and the
second to be attempted. As a result, most ‘“‘recursive references” in patterns
do not cause operational difficulties. It is important, however, that such
pattern matching be done in the quickscan mode. In the “fullscan’” mode,
the heuristics are not used and recursive references cause ‘‘overflow” as a re-
sult of information that is stored each time a pattern is referenced recursively.

The heuristic used to prevent overflow usually causes pattern matching
to operate correctly. However, the assumption that every unevaluated ex-
pression matches at least one character can cause failure to match when a
pattern should, in fact, match successfully. This happens when an unevalu-
ated expression may legitimately match a null string, but is prevented from
doing so by the heuristics that erroneously bypass an alternative on the as-
sumption that it requires too many characters.

These problems are partially inherent in the pattern-matching algorithm
used in SNOBOL4 and partially inherent in the types of languages that

Sec. 1.2 GRAMMARS AND PATTERNS 1

SNOBOL4 patterns attempt to describe. For the most part, patterns can be
constructed without worrying about these problems. When a problem arises,
a first attempt at a remedy is to change the pattern-matching mode—from
quickscan to fullscan, or vice versa—in hope that the problem will go away.
If this fails, the offending pattern may have to be examined in detail, or
reformulated.

As noted above, unevaluated expressions are mandatory in some situa-
tions, but optional in others. Since some uses are optional, there are ques-
tions concerning the advantages and disadvantages of the use of unevaluated
expressions.

Unnecessary unevaluated expressions should be avoided where they may
lead to left-recursive references as discussed above. There is also a minor
penalty in execution time for unevaluated expressions, but this consideration
is usually insignificant compared with others.

TherQIiS one substantial advantage of the use of unevaluated expressions:
saving storage space. In pattern construction, an unevaluated expression is
simply a reference to a name (or expression) and occupies a negligible amount
of space. On the other hand, when a previously constructed pattern is used
in constructing a new pattern, a copy of the previous pattern, however large,
is incorporated in the new pattern. The amount of storage required may be
substantial, particularly in constructing patterns from formal grammars
where there is a tendency to define progressively more complicated struc-
tures from simpler ones. The extra storage required also affects execu-
tion speed, since more time is spent in storage management. The judicious
use of unevaluated expressions in optional contexts may make the difference
between a practical and an impractical program.

A word of caution is in order about the utility of patterns corresponding
to grammars. Such patterns are easy to construct and make it possible to
write recognizers for complicated languages with little difficulty. Conse-
quently, the power of pattern matching is often overestimated. Although
recognizers are easy to write, the value of recognition alone is relatively
minor. Recognition is not parsing. Pattern matching does not reveal the
entire structure of a string, even though that structure is analyzed (internally)
during pattern matching. Only the outermost level of a recursively-defined
structure is easily accessed, using attached names. It is a common mistake to
assume that because complicated recognizers are easy to create, parsers,
translators, and compilers follow naturally. That is not the case, and, in fact,
patterns derived from grammars are of little use in such problems.

It should alse be noted that SNOBOL4 provides a number of pattern-
matching facilities that are more efficient and concise than the equivalent
BNF patterns. BNF requires recursion to describe constructions that are
iterative in nature. SNOBOL4 often permits such constructions to be
specified directly. In most contexts, BNF definitions

12 ‘ PATTERN MATCHING Chap. 1
<letter>::=a|b|c|d|e|f|g|h|i]j|k|V[m|n|o|p|q|r|s|tulv|w|x]|y|z
<1dentifier>::=<1etter>?<ident1f1er><1etter>

can be described by the pattern

IDENTIFIER = SPAN('ABCDEFGHIJKLMNOPQRSTUVWXYZ')

Note also the simplification obtained by specifying a string of characters
rather than by the alternation of individual characters. The pattern

ELEMENT = ANY('ABCD')

is more direct, simpler, and more efficient than the pattern given earlier in
mimicking BNF. Similarly, LEN permits characterizations of strings that are
awkward to describe in BNF. Finally, SNOBOL4 permits construction of
patterns characterizing languages that cannot be described by BNF. The
major distinction is context dependence, which BNF cannot describe. Refer
to Section 1.1.4 for an example.

EXERCISES

1.7 Write a recognizer for ALGOL 60 arithmetic expressions.

1.8 Write a BNF grammar to describe all strings consisting of two
characters.

1.9 Write a BNF grammar to describe all strings of even length.
1.10 Write a BNF grammar that describes quoted literals in SNOBOL4.

“1.11 Write a BNF grammar that describes balanced strings as matched by
the SNOBOL4 pattern BAL. Write a corresponding SNOBOL4 pattern,
not using BAL itself.

1.12 Write a recognizer for SNOBOL4 expressions.

1.13 Write a program that reads a BNF grammar as input and creates a cor-
responding recognizer. '

1.3. PATTERNS AS PROCEDURES

Unevaluated expressions are discussed several places in this chapter.
They provide a way of specifying context dependence and a method for
providing recursive pattern matching. Independent of these specific appli-
cations, unevaluated expressions, used in conjunction with other dynamic

Sec. 1.3 PATTERNS AS PROCEDURES 13

features of pattern matching, are sufficiently important to deserve discussion
as a separate topic.

There are several ways that changes in a program environment can be
effected dynamically during pattern matching. Values can be assigned to
variables by immediate value assignment and by the cursor position operator.
These types of assignments may produce output and may be traced. In turn,
programmer-defined trace procedures may perform any program operation
whatsoever. More directly, an unevaluated expression may perform any
program operation. It is possible, although not common or necessarily de-
sirable, for a built-in or programmer-defined function to be invoked in the
course of pattern matching. In a sense, there is no limit to what it is possible
to do during pattern matching, nor is there a limit to the side effects that
may result from pattern matching.

The sequence of events that occurs in pattern matching depends on the
nature of the string being matched. Furthermore, there is little flexibility in
specifying, within a pattern, what sequence of events is to occur during pat-
tern matching. Stated another way, the control structures of pattern matching
are quite restricted. Nevertheless, it is possible to write patterns to perform
quite sophisticated operations. In this sense, patterns resemble small pro-
grams written in a pattern language—a language quite different from the ex-
pressions and statements of the rest of SNOBOL4. Applying such a pattern
in a pattern-matching statement is similar to invoking a function: the pat-
tern procedure is “executed’ by the program that performs pattern matching,
using the subject string as data.

Consider the following problem: given a string, print it out, one charac-
ter per line. Writing a program to do this is trivially simple. The same op-
eration can be performed using a single pattern match. The basic operation
is performed by the following pattern:

ROUT = LEN(1) $ OUTPUT *ROUT

A single character is matched, the character is printed, the pattern calls itself
recursively to process the next character, and so on. To assure that the pat-
tern is anchored, the following pattern may be used:

VERTICAL POS(0) ROUT

The single pattern-matching statement
STRING VERTICAL

serves to print the characters in STRING regardless of how long STRING is.
Note that this pattern requires the fullscan mode to operate properly.

In the sense described above, the pattern VERTICAL corresponds to a
procedure that is invoked with STRING as the subject. The relatively awk-
ward control structures of the ‘‘pattern-matching language” are displayed by
the necessity of using recursion to accomplish an essentially iterative task.

14 PATTERN MATCHING Chap. 1

A slightly more complicated situation is posed by the problem of lo-
cating the last blank of a string. Pattern matching is highly asymmetrical
with respect to direction. Locating the first blank is trivial. Short of resort-
ing to reversing the string, locating the last blank is substantially more com-
plicated. An approach is suggested by the previous example: use a recursive
reference to force repeated matching until failure occurs. The basis of the
method is a pattern such as:) :

NEXTBL = BREAK(' ') @L SPAN(' ') *NEXTBL
To assure the match is anchored, the following pattern can be used:
LOCBL = POS(0) NEXTBL

During pattern matching, each time BREAK succeeds, the current cursor po-
sition is assigned to L. Eventually NEXTBL fails, and the value of L indicates
the position of the last blank in the subject string.

This pattern fails to account for a subject string that contains no blanks.
LOCBL always fails; there is no way it can succeed. Therefore it is only useful
because it assigns a value of L. Even if L is set to zero before matching, there
is no way to distinguish, as a result of matching, whether the subject string
starts with a blank or simply contains no blanks at all. This problem may be
resolved by using another cursor assignment to note the position after blanks:

NEXTBL = BREAK(' ') @L SPAN(' ') @M *NEXTBL

Furthermore, both L and M can be initialized to zero at the beginning of the
pattern match, and the value of M tested at the end:

LOCBL = POS(0) @L @M NEXTBL | *GT(M,0)

After the first alternative fails (as it must), the value of Mis checked. If it is
greater than zero, at least one span of blanks must have been found, and the
value of L is the position of the last span of blanks. If Mis zero, there are no
blanks in the subject string. LOCBL now succeeds if blanks are found and
fails otherwise.

This kind of programming—writing pattern procedures—appeals to some
programmers and repels others. It offers the advantages of compactness,
efficiency in some situations, and intellectual challenge. On the other hand,
such programming methods tend to be difficult, obscure, error-prone, inef-
ficient in some situations, and particularly susceptible to idiosyncrasies in
the pattern-matching algorithm.

EXERCISES

1.14 What happens if the pattern VERTICAL is used in the quickscan mode?

Sec. 1.4 STRUCTURING DATA TO UTILIZE PATTERN MATCHING 15

1.15 What happens if the pattern ROUT is used directly, without anchor-
ing the pattern match?

1.16 Write a pattern that prints the location of all spans of blanks in a
string. Generalize the pattern so that the characters in spans of in-
terest are not limited to blanks, and may be specified at the time
pattern matching is performed.

1.17 Write a pattern that divides a string at its last (rightmost) span of
blanks, assigning the part before the span to one variable, and the
part after the span to another.

1.18 Write a pattern to print the items of a list as described in Section 1.1.1.
1.19 Write a pattern to print the words in a string of text.

1.4. STRUCTURING DATA TO UTILIZE PATTERN MATCHING

One of the most difficult problems in programming is the selection of
good representations for data. SNOBOL4 offers many possibilities, especially
in data structures. A good part of Chapter 3 is devoted to this subject.
Since SNOBOL4 has so many string-manipulation facilities, it is tempting to
represent all kinds of data as strings. Succumbing to this temptation is per-
haps the most frequent cause of poor SNOBOL4 programs. Nevertheless,
there are some natural uses of strings for representing data. In addition to
data that is inherently string-structured, such as written text, there are situa-
tions in which mathematical expressions are best handled as strings. This
matter is discussed in Chapter 4.

Occasionally the possibility of a string representation of data occurs in
unexpected contexts. Consider, for example, the question of patterns of
occurrences of integers with certain properties [14]. Let the characters of a
string represent the positive integers by position. Suppose that X is used to
indicate an integer having a specified property, and 0 is used to indicate an
integer that does not have the property. A “property string” corresponding
to the odd integers is

X0X0X0X0X0X0X0X0X0X0M ...

o e (?’13"",7,.,-.)
Similarly, the prime¢ are represented by
0
BXX0X0X000X0X000X. ..

Alternatively, discarding the lone even prime, the primes among the odd
integers are represented by

4
BXXX0XX0XX0X00XX00

16 PATTERN MATCHING Chap. 1

A little knowledge of number theory suggests that one would not expect to
find regular patterns in such sequences. In any event, the strings of interest
would be too long to manipulate in a program. Nonetheless, this approach
provides an interesting, if somewhat unconventional, way of considering
such data.

Another example of the use of string representation is afforded by the
familiar game of tic-tac-toe. One of the more common demonstrations of
interactive computing is a program that plays this game against a human op-
ponent. The game itself is simple, and the program is not difficult to write.
One of the first considerations is the representation of the board on which
Os and Xs representing the player’s moves are to be placed. The board is
usually pictured geometrically as shown by a game illustrated in Figure 1.1.

0
X 10
0

Figure 1.1 A Tic-Tac-Toe Board

A program representation, analogous to this illustration, is a 3-by-3 array
To obtain symmetry, the array might have its center at zero:

BOARD = ARRAY('-1:1,-1:1")

There is no question that such a representation is natural. Examination of
the operations involved in playing tic-tac-toe shows that such an array repre-
sentation presents some clerical difficulties. The essence of the game in-
volves adjacencies. Any three similar marks along a line constitute a win.
Two marks along a line containing an empty space represent a potential win
(or loss, depending on whose turn it is). While it is no technical problem to
write a program to determine such configurations, there are many combina-
tions to be tried, even for such a small board.

In SNOBOL4 it is natural to think of such configurations as patterns.
Unfortunately, SNOBOL4 does not provide two-dimensional strings. The
two-dimensional structure can be easily “unfolded’, however, into a one-
dimensional string of nine characters. Suppose the board positions are iden-
tified by numbers as shown in Figure 1.2.

0112
3lals
6|78

Figure 1.2 A Numbered Board

Sec. 1.4 STRUCTURING DATA TO UTILIZE PATTERN MATCHING 17

Then a string of nine characters, corresponding by position to the numbers
above, represents the board. The reason for starting the numbering at zero,
rather than one, will become apparent in the subsequent discussion. An
empty board, corresponding to the beginning of the game, is created by a
statement such as:

BOARD = ‘'..... ceed!

Dots instead of blanks are chosen to represent empty positions in order to
provide visibility to the board.

Consider some typical operations that occur during a game. One is
placing a mark at a given position. A pattern that can be used is

PLACE = TAB(*N) . H LEN(1)
and the statement to perform the operation is
BOARD PLACE = H MARK

where the value of N determines the position, as indicated in Figure 1.2, and
the value of MARK determines which type of mark is made. Starting the num-
bering at zero avoids the necessity for constantly subtracting one when lo-
cating the position.

The center of a tic-tac-toe board is crucial in the game. A pattern to
determine whether the center is empty is

CENTER = TAB(4) '.'

More complicated board positions require more elaborate patterns. The rows
are described by three consecutive characters beginning at positions 0, 3,
and 6. If C1, C2, and C3 are three consecutive marks of interest, a pattern to
determine if such a row exists is given by

ROW = (TAB(0) | TAB(3) | TAB(6)) C1 C2 C3

Anticipating the need for such patterns in more general contexts, the follow-
ing function might be useful:

DEFINE('ROW(C1,C2,C3)")
R = TAB(0) | TAB(3) | TAB(6)

ROW ROW = RCIC2C3 : (RETURN)

ROW returns a pattern that successfully matches a board that has a row con-
sisting of C1, C2, and C3 (in that order). An example is

ROWX = ROW('X','X','X")

which produces a pattern that matches a row of Xs.

18 PATTERN MATCHING Chap. 1

Columns start at positions 0,1, and 2. A function COL, similar to RQW, is
given by

DEFINE('COL(C1,C2,C3)")
C = TAB(0) | TAB(1) | TAB(2)

CcoL coL = .C C1 LEN(2) C2 LEN(2) C3 : (RETURN)
A function to create a diagonal-matching pattern is:

DEFINE('DIAG(C1,C2,C3)")

DIAG DIAG = TAB(0) C1 TAB(4) C2 TAB(8) C3 |
+ TAB(2) C1 TAB(4) C2 TAB(6) C3 :(RETURN)
A losing board position for the player with the mark X is described by
LOSEX = ROW('0','0','0") | coL('o','0','0") |
+ DIAG('0','0','0")

Note that the patterns created by these functions are naturally thought of as
pattern procedures that go through a series of alternatives during pattern
matching.

Another use of patterns is illustrated by the problem of printing the
board. Printing involves “folding” the string that represents the board. A row
of the two-dimensional representation of the board is printed by the pattern

ROW = LEN(3) .- OUTPUT
A pattern to print the entire board is
PRINT = ROW ROW ROW

The printing statement is simply
BOARD PRINT

If blank lines are needed above and below the printed board to set it off
from other output, PRINT can be rewritten as follows:

SKIP = NULL . OUTPUT
PRINT = SKIP ROW ROW ROW SKIP

where the value of NULL is the null string. _

As mentioned before, the use of pattern matching to this extent is a mat-
ter of taste. This example is designed to illustrate the systematic application
of pattern matching to procedural problems.

Sec. 1.4 STRUCTURING DATA TO UTILIZE PATTERN MATCHING 19

EXERCISES

1.20 Write a program to print
(a) The positions of interest in property strings.
(b) The distances between positions of interest in property strings.

1.21 A palindromic number is one that reads the same forward and back-
ward. An example is 8135318. Generate property strings for
(a) The palindromic numbers among the first 500 positive integers.
(b) The odd palindromic numbers among the first 500 positive integers.
(c) The palindromic numbers among the first 500 squares.
Apply the results of Exercise 1.20 to these strings.

1.22 Write a pattern that locates a free corner on a tic-tac-toe board.

1.23 Write a complete program to play tic-tac-toe. Design the program to
operate interactively to play against a human opponent. Use the string
representation of the board and employ pattern-matching techniques
wherever possible.

1.24 Describe how to minimize the size of the patterns needed in the so-
lution to Exercise 1.23.

1.25 Perform Exercise 1.23 using an array representation of the board.
Avoid the use of pattern matching as far as possible. Compare the
two programs.

2 DEFINED FUNCTIONS

Defined functions serve many purposes in SNOBOL4 programs. They
provide a mechanism for isolating commonly used sections of a program in
one place, they serve as mnemonic aids in identifying certain operations with
common notation, and they are a vehicle within which recursion may be
performed. ,

In .a sense, the use of functions is a programming discipline—a way of
thinking and a framework for problem solving. No other technique is as
important. The proper use of functions often makes feasible a program
solution that otherwise would be intractable.

The virtues of the use of functions are generally well understood, al-
though they receive more lip service than practice. We will assume that the
virtues of functions are not arguable, and focus attention instead on different
contexts in which functions are important, describe good programming
practices with respect to functions, and give a number of examples of func-
tions, some of which will be useful later in the book.

2.1. DEFINED FUNCTIONS AS A MECHANISM FOR LANGUAGE EXTENSION

Defined functions provide the major facility for extending the SNOBOL4
language. SNOBOL4 has a number of built-in functions (about 60—the num-
ber varies somewhat with the particular version). The syntax for all these
functions is the same; the difference is in the name of the function and the
number of arguments, but not in the form. Defined functions use the same

20

Sec. 2.1 DEFINED FUNCTIONS AS A MECHANISM FOR LANGUAGE EXTENSION 21

syntax. There is no general way of telling, from a function call itself,
whether the procedure being called is built into the SNOBOL4 system or is
part of the particular SNOBOL4 program. A defined function is used in a
program in the same way that a built-in function is used. Thus, the defini-
tion of a function can be thought of as an extension of the SNOBOL4 lan-
guage. Defined functions, for the most part, could just as easily be imple-
mented as built-in functions; the program would be written the same way
and the results of execution would be the same. (Recursive functions,
whose definitions involve calling the functions themselves, are not as natural-
ly thought of in this way.)

2.1.1. Basic Extensions

When a language like SNOBOL4 is designed and implemented, certain
operations are included in the form of built-in functions and operators, and
other operations are left to be defined if they are needed. The considera-
tions that apply are:

(a) Generality of the need for a particular operation. SIZE, for ex-
ample, is an operation that has general use. If an operation is fre-
quently needed, a built-in function provides convenience and
efficiency.

(b) Relative efficiency of a built-in procedure as opposed to a defined
procedure. SIZE, for example, can be implemented as a defined
function using pattern matching. This defined function is awkward
and extremely inefficient compared with the built-in function.

(c) The impossibility of defining the operation. REWIND, for exam-
ple, cannot be defined in terms of other built-in operations.

Working against the inclusion of an operation in the built-in repertoire is
the cost associated with each built-in function. Cost can be measured in
terms of

(a) Implementation effort.

(b) Increased size of the resulting system.

(c¢) The documentation required.

(d) The burden imposed on the user of an increasingly large and com-
plex language.

Working within the framework and philosophy of a particular language,
the designer makes decisions based on the contending factors listed above.
The result is inevitably a compromise, and experience usually shows that
some of the decisions are incorrect. In any event, the repertoire of built-in
functions suits some users in some situations, but not others. In most cases

22 DEFINED FUNCTIONS Chap. 2

it is easy to extend the repertoire of built-in functions by adding defined
functions. Consider the following example.

SNOBOL4 has few facilities for automatic formatting on output. When
printing columns on a page, it is necessary to pad with blanks in order to
place strings in their appropriate places. This is generally done using DUPL.
For example, to print a string left justified ten spaces from the left margin,
the following statement might be used:

OUTPUT = DUPL(' ',10) STRING

Similarly, to print the string right justified at column 20, the following state-
ment might be used:

OUTPUT = DUPL(' ',20 - SIZE(STRING)) STRING

If several columns are to be printed side by side, this method becomes cum-
bersome. For such situations, two functions, LPAD and RPAD, are useful.
Some implementations of SNOBOL4 have these functions built in. LPAD
and RPAD, in their simplest forms, have two arguments: a string and an in-
teger. The value returned is the string with blanks added on the left or right
respectively so that the length of the string returned is the specified integer.
Simple definitions of these functions follow.

DEFINE('LPAD(S,N)")
DEFINE('RPAD(S,N)")

LPAD LPAD DUPL(' ',N - SIZE(S)) S : (RETURN)
RPAD RPAD S DUPL(" ',N - SIZE(S)) : (RETURN)

With these functions, the SNOBOL4 language is extended to provide padding
with blanks. Such functions can be used to build up a library for use with
other programs.

The procedures for LPAD and RPAD given above illustrate some general
principles that should be followed in writing functions. These principles are
especially important when functions are used with language extension in
mind and are intended to form part of a library. Such functions should be
carefully designed to produce meaningful results or error indications if an
unexpected or erroneous situation is encountered. For example, suppose
that N is less than SIZE(S). In the functions above, the call of DUPL fails
and a null string is returned as value. Return of a null string without any
indication of a problem is probably not what a user of these functions would
want. One solution is to signal failure in such cases as illustrated by the fol-
lowing alternative procedure for LPAD:

LPAD LPAD = DUPL(' ',N - SIZE(S)) S :S(RETURN)F(FRETURN)

Sec. 2.1 DEFINED FUNCTIONS AS A MECHANISM FOR LANGUAGE EXTENSION 23

This solution has the intrinsic merit of causing the padding function to treat
an impossible situation in the same way that the built-in function DUPL does.
When thinking of defined functions as extensions of the language, it is
usually desirable, for consistency, to have defined functions behave in the
same general way that built-in functions do.

There is always the question of how far to carry error checking and what
to do if an error is detected. Suppose, for example, N is erroneously given as
a (nonnumeral) string. This results in an argument for subtraction that has
an illegal data type. The procedure could test the data type of the argument
before executing the padding statement. This is cumbersome and time con-
suming, however. There are two other approaches: (1) use &ERRLIMIT to
have the error cause failure, or (2) let the error occur. Both methods have
their advantages and disadvantages, and a particular situation or programmer
preference may dictate the choice. The second alternative is simpler and has
the virtue of treating such errors with essentially the same philosophy that
SNOBOL4 itself uses.

Some individuals prefer to provide error exits for erroneous situations.
This technique is particularly useful during program debugging. For example,
the procedure above might be changed to

LPAD LPAD = DUPL(' ',N - SIZE(S)) S :S(RETURN)F (ERROR)

If the string cannot be padded, a branch to ERROR occurs. A statement at
ERROR could print an error message and then return, successfully or signaling
failure, depending on preference. Alternatively, in the debugging stage, it
may be convenient not to provide a statement with the label ERROR. If a
branch to ERROR occurs, program termination results. This pinpoints the
location of the problem and has the additional advantage of leaving the
values of formal arguments (and local variables, if any) of the function in-
tact and available for inspection in the string dump. A statement with the
label ERROR can be added later when the debugging phase is complete.

For functions that serve as language extensions and are likely to be
placed in a library or distributed to other programmers for their use, error
messages as described above may prove annoying. For example, error mes-
sages printed in an otherwise acceptable output are likely to be intrusive.
This situation essentially amounts to a question of control. In general, the
less a function does to take control away from the user, the better. Nothing
essential is lost, for example, if a function simply fails without printing an
error message. The failure of the function call can be sensed and an appro-
priate message printed, if desired, by the routine that made the call. Such a
situation is illustrated in the following statement:

OUTPUT = LPAD(S,20) :F(ERROR)

In some cases it may be more desirable not to treat the inability to pad a
string as an error at all. The padding functions can simply return the string

24 DEFINED FUNCTIONS Chap. 2

unmodified if it is too long. This behavior can be obtained without extra
programming by using a simple device that is useful in many similar contexts.
Rather than thinking of the padding functions as having two arguments from
which a value is computed, think of the padding functions as modifying a
string. Let the first argument of LPAD be LPAD itself:

DEFINE('LPAD(LPAD,N)"')

.

LPAD . LPAD = DUPL(' ',N - SIZE(LPAD)) LPAD :(RETURN)

When LPAD is called, the value of the variable LPAD is the string to be modi-
fied. If DUPL fails, LPAD is unchanged, and the string is simply returned,
unmodified, as value.

Another matter that should be kept in mind in writing functions is gen-
erality. Often, if a little care is taken in design, a function can be made
general enough to use in a variety of situations, whereas if a function is writ-
ten only for a specific situation, other similar and essentially repetitive func-
tions must be written whenever a new situation arises. The padding functions
given above illustrate this point. While it is generally true that padding is
done with blanks, sometimes other characters are used for padding; periods
and dashes are most typical. The functions as written above are useless for
such situations, although a minor change would provide the desired general-
ity. Using the form of LPAD where failure is signaled if the string cannot be
padded, the result is:

DEFINE('LPAD(S,N,C)")

LPAD LPAD = DUI;L(C,N - SIZE(S)) S :S(RETURN)F (FRETURN)

Here the third argument provides the padding character. A further touch of
elegance can be obtained by considering that most padding is done with
blanks, and that having to specify this in every call is cumbersome. There-
fore establish blank as the default value for C as follows:

LPAD C = IDENT(C) ' '
LPAD = DUPL(C,N - SIZE(S)) S :S(RETURN)F (FRETURN)

Not only does this technique obviate the explicit writing of the third argu-
ment when blank padding is desired, but it is also an ‘“upward compatible”
generalization of the previous version of LPAD. No matter how much care is
taken to design functions with generality, it is frequently the case that hind-
sight suggests better methods. Where new procedures can be added without
requiring modification of existing function calls, that approach should be
taken. It might appear more logical, for example, to have the padding

Sec. 2.1 DEFINED FUNCTIONS AS A MECHANSIM FOR LANGUAGE EXTENSION 25

character as the second argument rather than the third. This choice has two
disadvantages, however: (1) if the padding functions with two arguments had
previously been used in programs, every call would have to be rekeyboarded,
and (2) for the most common case, padding with blanks, the second argu-
ment would have to be written with an explicit blank or would have to be
explicitly omitted using a second comma to indicate a null argument. Asa
general rule, extra, optional arguments are best placed in trailing positions.

When writing functions to extend SNOBOLAJ, it is particularly important
that the procedures be as independent as possible of conditions in the pro-
grams in which they may be used. Since SNOBOL4 provides no facility for
local labels, it is obviously not possible to write functions so that they will
work in any program. Other global aspects of the program environment are
similarly beyond the control of a particular function. Since a function can
only achieve an approximation of independence from the context in which it
is used, there is always the question of how much effort should be expended
in this regard. In practice, the problem is not as severe as it may seem. Some
matters, such as specification of local variables, are simple. By selecting
labels that are unlikely to be used in other programs, the probability of the
collision of label names can be minimized. Such methods produce proce-
dures that are difficult to read, and hence are not used in this book. The
commonest cause of conflict is the anchored mode of pattern matching.
Consider a function COMPRESS(S,C) that compresses spans of characters.
A simple procedure is:

DEFINE('COMPRESS(COMPRESS,C)')
COMPAT = *C SPAN(*C)

COMPRESS COMPRESé COMPAT = C :S(COMPRESS)F (RETURN)

This procedure requires the unanchored mode. If used in a program that is
operating in the anchored mode, COMPRESS does not work properly. One
rather awkward solution to this problem is to save the current mode on entry
to the function, establish the unanchored mode, and then restore the original
mode on exit from the function. Generally speaking, it is better practice to
write the procedure in a way that is independent of the anchored mode. An
alternative procedure is:

DEFINE('COMPRESS(S,C)H')
COMPAT = BREAK(*C) . H SPAN(*C)

COMPRESS S COMPAT = :F(COMRET)
COMPRESS COMPRESS H C : (COMPRESS)
COMRET COMPRESS COMPRESS S : (RETURN)

26 DEFINED FUNCTIONS Chap. 2

EXERCISES

2.1 Write procedures for LPAD and RPAD allowing for a third argument that
specifies the padding character and taking into account the problem
that arises if a string more than one character long is given as the third
argument.

2.2 Write a function for centering a string within a specified width.

2.3 Write a function whose value is the result of interleaving the characters
of two strings. Take into account the possible situations that may arise
if the strings are not of the same length.

2.4 Write a function to reverse a string.
2.5 Write a function to rotate a string by n characters.

2.6 Write a function to delete all occurrences of a specified character from
a string.

2.7 Frequently there is a need to use arrays where the number of items to
be referenced is not known. Write functions to truncate and extend
arrays.

2.1.2. More Elaborate Extensions

The functions described in the preceding section are of a kind that could
easily have been included in the basic repertoire of built-in functions. In
reference to the criteria for determining whether or not a function should be
built-in, all of the defined functions listed above are at least reasonable
candidates for being built-in.

There are often situations where a given function or set of functions is
of considerable utility in a specific program or set of programs, but not of
sufficient general utility to warrant serious consideration for inclusion as
part of the language. Nonetheless, such a function or set of functions may
be a reasonably consistent extension within a limited context. Consider the
following example.

SNOBOL4 has facilities for representing and performing computations
on integers and real numbers. Some problems require the manipulation of
complex numbers, which consist of two parts: a real part and an imaginary
part (both parts are typically real numbers). The DATA function in SNOBOL4
provides a way for representing such objects. The statement

DATA(' COMPLEX(R,I)")

creates a defined data type, COMPLEX, and three functions. COMPLEX creates
COMPLEX objects, and R and I are field functions referencing the real and

Sec. 2.1 DEFINED FUNCTIONS AS A MECHANISM FOR LANGUAGE EXTENSION 27

imaginary parts, respectively. These three functions provide the capability
for performing complex arithmetic. For example, the following statements
create three complex numbers, the third of which is the (complex) sum of
the first two.

Cl = COMPLEX(1.3,-2.5)
2 = COMPLEX(-4 1,6.0)
C3 = COMPLEX(R(C1) + R(C2),I(C1) + I(C2))

The three functions COMPLEX, R, and I do not, in themselves, provide any
complex arithmetic operations or functions. A natural extension for a pro-
gram that manipulates complex numbers is a set of functions for performing
complex arithmetic. Consider the addition of complex numbers:

DEFINE('ADD(N1,N2)")

ADD ADD = .COMPLEX(R(N1) + R(N2),I(N1) + I(N2)) :(RETURN)

With this function, any two complex numbers can be added.

When thinking of functions as a language extension for a specific use,
such as complex arithmetic, there is the question of what functions should
be provided. For complex numbers, ADD, SUB, MUL, and DIV are obvious.
Less obvious is the need for data-type conversion functions. There are a
variety of automatic conversions in SNOBOL4 for built-in data types. For
example, conversions among integers, real numbers, and numeral strings are
performed automatically in most contexts. Since data read into or output
from a program is necessarily in the form of strings, a natural extension is to
provide for conversions between STRING and COMPLEX data types. It is
necessary to decide how a complex number is to be represented as a string.
If the conventional printed form is taken as a guide, the first two complex
numbers given above might have the following string representations:

S1 '1.3-2.5T"
S2 '-4,1+6,0I"'

Thus, the real part is given first with an initial sign only if it is negative, and
the imaginary part follows, always with a sign and followed by an I. Other
representations are possible; the choice is largely a matter of personal pref-
erence. It is desirable to select a representation that is natural, close to the
conventions used in other contexts, easy to read, and reasonably easy to
process.

Two functions, STRCPX and CPXSTR, for converting from STRING to
COMPLEX and vice versa now follow naturally:

28 . DEFINED FUNCTIONS Chap. 2

DEFINEg'STRCPX(S;I,R')
DEFINE('CPXSTR(C)')
CPLX = (LEN(1) BREAK('+-')) . R BREAK('I') . I

STRCPX S CPLX :F (FRETURN)
STRCPX = COMPLEX(+R,+I) - (RETURN)

CPXSTR CPXSTR = LT(I(C)) R(C) I(C) 'I' :S(RETURN)
CPXSTR = R(C) '+ I(C) 'I’ : (RETURN)

In the first function, pattern matching is used to locate the two parts. The
unary + is used to convert these parts to numbers. If this were not done, the
two parts would be strings. Although they would have the correct numerical
values, and arithmetic would be performed correctly, constant conversion
would be performed. More seriously, a positive imaginary part would have
an initial plus sign which would complicate CPXSTR, because it would then
have to deal with both numeral strings and numbers. It is better to produce
COMPLEX numbers in “‘canonical form” from the beginning. In CPXSTR, note
that the sign separating the real and imaginary parts must be given special
consideration.

With the functions given above, complex numbers can be read in, com-
plex calculations can be performed, and the results can be printed out. It is
nonetheless awkward to have to use function calls when performing arith-
metic. Consider the statement

C5 = suB(MUL(C1,C2),MUL(C3,C4))

If integers or real numbers, rather than complex numbers, were being op-
erated on, the statement could be written as

C5 = Cl1*C2-C3*C4

Operator notation is, in fact, a convenient shorthand. There is no basic dif-
ference between functions and operators except syntax. Operations that are
performed very frequently are represented by operators rather than by func-
tions; an operator expression is generally easier to read and is briefer.
Conventions about precedence and associativity of operators make most
parentheses unnecessary. If much complex arithmetic is being performed, an
operator notation would offer the convenience customarily associated with
integer and real arithmetic. In addition, complex arithmetic operations
paralleling integer and real operations could have the same form.

SNOBOL4, through the use of QPSYN, makes such extension of opera-
tors possible. For addition, the statement

OPSYN('+','ADD',2)

Sec. 2.1 DEFINED FUNCTIONS AS A MECHANISM FOR LANGUAGE EXTENSION 29

changes the meaning of the binary + operator, making it equivalent to ADD so
that when + is used, ADD is called to perform the operation. Now it is pos-
sible to write

Cl = C2 + C3
instead of
C1 = ADD(CZ,CB)

If nothing except the OPSYN above is executed, however, an error results.
The OPSYN makes + and ADD synonymous. When ADD is called, + is en-
countered in the procedure for ADD. Since + is synonymous with ADD, ADD
is called again, this time with real numbers as arguments. Subsequent appli-
cation of field functions to these real numbers is an error. The basic problem
is that there are two kinds of addition: the defined one for complex num-
bers, and the built-in one for real numbers and integers. This problem may
be solved by first “saving” the built-in operation for binary + by OPSYNing
another operator, say &, to it. This operator can then be used instead of +
in the ADD procedure. The resulting changes are

OPSYN('&','+',2)
OPSYN('+','ADD',2)

ADD ADD = .COMPLEX(R(Nl) & R(N2),I(N1) & I(N2)) : (RETURN) .

Of course, any part of the program that performs integer or real addition
must be changed similarly. If complex arithmetic is to be considered an ex-
tension to SNOBOL4, requiring the use of & for + everywhere (and other
operators similarly) is extremely unattractive.

A further extension solves the problem. Since the occurrence of + now
calls ADD, the procedure for ADD can be extended to test the data types of its
operands and perform the appropriate kind of arithmetic accordingly. For
the purpose of example, we will assume that if either operand is COMPLEX,
both are.

ADD IDENT(DATATYPE(N1),'COMPLEX") :S(ADD1)
ADD = N1 & N2 : (RETURN)
ADDT ADD = COMPLEX(R(N1) & R(N2),I(N1) & I(N2)) : (RETURN)

Now + can be used anywhere in the main program and the correct operation
will be performed. Of course, some efficiency is lost, since any occurrence
of + results in a call to ADD, regardless of whether integer, real, or complex
addition is being performed.

Complex arithmetic is just one example of the use of functions for lan-
guage extension. There are numerous examples in other chapters.

30 DEFINED FUNCTIONS Chap. 2

EXERCISES

2.8 Write a full set of functions for complex arithmetic as follows:
(a) First consider only complex operands.
(b) Then consider extension to integers and real arithmetic.
(c) Finally consider the case in which mixed forms of arithmetic may
occur.

2.9 Write functions corresponding to the unary + and - operators. Con-
sider all cases listed in Exercise 2.8.

2.10 Write a function that computes the absolute value of a complex
number.

2.11 Add error checking to STRCPX.
2.12 Extend STRCPX and CPXSTR to allow for operands of various types.

2.13 Generalize the built-in function TRIM so that the trailing character to
be trimmed can be specified.

2.2, RECURSIVE FUNCTIONS

The technique of recursive definition—defining a thing in terms of itself —
is a powerful and concise method commonly used in mathematics. Well-
known examples are the factorial:

nt=1 forn=0
n!=n¥n-— 1)! forn>0
n! is undefined otherwise

and the Fibonacci numbers:

f(n)=1 forn=1, 2
f(ny=Ff(n—1)+ f(n— 2) forn> 2
f(n) is undefined otherwise

Such definitions suggest a similar approach to the computation of values for
these functions. For example, the recursive definition of Fibonacci numbers
has a direct counterpart in the following function:

DEFINE('F(N)"')

F LT(N,1) ’ e :S(FRETURN)
Fo= LE@) 1 :S(RETURN)
F = F(N-1)+F(N-2) : (RETURN)

Sec. 2.2 RECURSIVE FUNCTIONS 31

The close correspondence between the recursive definition and the function
for computing values makes programming functions like these very easy in-
deed. Note that an argument for which the function is not defined causes
failure. Validity checking could be extended to assure that the argument is
of the correct data type.

Although recursion is often convenient, it may be inefficient, and is
certainly not the best approach to use if many values are to be computed.
There are several reasons for this. One is inherent in recursive function calls:
values of formal arguments and local variables are saved when a call is made
and are restored upon return. This process necessarily takes time and space.
There is, of course, computational overhead in the call itself. Another reason
for inefficiency results from the structure of some definitions themselves.
To compute F(5), for example, the recursive method requires the computa-
tion of F(4) and F(3). But F(4) requires the computation of F(3) and
F(2), and so on. Figure 2.1 shows all the values computed (and hence calls
made) in the process of computing F(5).

Figure 2.1 Calls in Computing F (5)

Thus, F(3) is called twice, F(2) three times, and F(1) twice, all in a single
computation of F(5). For these reasons, recursive procedures are usually
avoided in such computations. Iterative methods, without the inefficiencies
mentioned above, are sought instead.

In spite of these problems, however, recursion has a very important
place in programming. The underlying motivations for using recursion are
its essential conciseness and the close relationship that often exists between
the statement or structure of a problem and its recursive solution. In this
sense, recursion is as much a problem-solving tool as it is a programming
tool. There are many programming problems for which it is so difficult to
formulate any solution at all that the simplicity of a recursive formulation
may provide the only method.

Consider the following well-known recursive function due to Ackermann
[16,17]:

32 DEFINED FUNCTIONS Chap. 2

aimpn)=n+1 form=0,n>0
a(m,n) = a(m—1,1) form>0,n=0
a(m,n) = a(m — 1, a(m,n — 1)) form>0,n>0

a(m,n) is undefined otherwise

While this function is of theoretical, not practical, interest it nevertheless
provides an example for which a recursive solution is easily formulated by
mimicking the definition. An iterative solution is another matter.

The structure of data in a problem may suggest a recursive solution.
Consider the case of an arithmetic expression containing, for sake of example,
only binary operators. Usually such expressions are written in infix notation
with the operators between the operands. An example is

((7+X)-(Y*(N+3)))/2

An alternative form uses prefix notation in which the operators precede
their operands. In this notation, the expression above is

/('(+(79X)s*(Ys+(N’3)))’2)

While prefix notation is more difficult for human beings to read, it is often
easier to process in a program. Here we are concerned simply with the
problem of converting from one form to another. Assume that a function
PREFIX for doing this conversion is to be written. To further simplify the
problem, we will assume that infix expressions are sufficiently well paren-
thesized so that implied associativity and precedence do not have to be
considered. To convert from infix to prefix form, an expression can be
considered to be a string in which an operator stands between two operands.
Of course, the operands may contain expressions themselves, but the entire
string consists of an operator separating two operands. Assuming the four
most frequently encountered operators, for sake of example, a pattern to
match an expression is:

INFIX POS(0) BAL . L ANY('+-*/') . OP BAL . R RP0OS(0)

The use of PQS and RPQS assures that the entire string is matched, and BAL
assures that the operands are correctly matched according to their paren-
thesization. INFIX matches correctly unless the entire expression is an
operand. This may occur either because there is no operator at all, or be-
cause the entire expression is surrounded by parentheses. Examples of
these cases are:

X
(Y+2)

The first case does not require conversion to prefix form, and the second
case can be resolved by removing any parentheses that surround the entire
expression. Assuming that these matters have been taken care of, the

Sec. 2.2 RECURSIVE FUNCTIONS 33

pattern INFIX can be used to identify the operator, and to assign operands
to L and R. Both L and R are, necessarily, infix expressions. Since PREFIX
is a function for converting from infix to prefix, it can be applied to L and R.
The transformation is:

EXP INFIX = OP ‘(' PREFIX(L) ',' PREFIX(R) ')"

Of course this statement is itself a part of PREFIX. At this point, recursion
enters the picture. A complete function, including the handling of expres-
sions that are operands, follows:

DEFINE('PREFIX(EXP)L,R,0P")
STRIP = POS(0) '(' BAL . EXP ')' RP0OS(0)

PREFIX EXP STRIP :S(PREFIX)
EXP INFIX = OP '(' PREFIX(L) ',' PREFIX(R) ')’
PREFIX = EXP : (RETURN)

The first statement of PREFIX removes any parentheses that may surround
the entire expression. Note that the result within parentheses is assigned to
EXP, and hence transforms EXP. If INFIX fails to match, EXP is not trans-
formed. In either case, the expression is assigned to PREFIX which is re-
turned as value.

One problem that frequently arises is how to detect when a recursive
solution should be employed. It is not possible to give a simple recipe to
follow, but the presence of one factor may suggest the possibility of a recur-
sive solution: if the data to be processed can be described recursively, recur-
sive processing is usually feasible. The expressions processed above have this
quality. That is, an expression may consist of an operator separating two op-
erands, but an expression is also an acceptable operand for another operator.

One final word of caution about the use of recursion is in order. Most
implementations of SNOBOL4 have a fixed amount of space reserved for
saving the values of formal arguments and local variables. The maximum
depth of function call therefore depends on the number of values that have
to be saved and in some cases on other processes, such as storage regeneration,
that may share the space used for saving values. A maximum depth of 30 to
50 is typical. This limitation may impose very real restrictions on the use of
recursion in some instances.

This section merely touches on the use of recursion. Many of the pro-
grams given in subsequent chapters use recursion in one way or another.
Some individuals find recursion natural and appealing while others have dif-
ficulty understanding it and using it. Since recursion is an essential part of
much of the subsequent material in this book, the reader who is uncomfort-
able with recursion should spend some time studying the concept of recursion

34 DEFINED FUNCTIONS Chap. 2

and attempting specific examples before proceeding. The best method for
gaining practical insight is to actually run some simple programs containing
recursive procedures and to observe the results. In particular, use &FTRACE
to obtain a printed record, in sequence, of calls and values returned.

EXERCISES

2.14 Write both recursive and iterative definitions for the factorial function.
Compute n! for several (reasonably small) values of n, using &FTRACE
to explicate the processing performed by the two procedures.

2.15 Write an iterative procedure for computing Fibonacci numbers. Com-
pare this procedure to the recursive one given in the text.

2.16 Write a (recursive) procedure for computing Ackermann’s function.
Compute a(1,2), a(2,3), and a(3,2). Use &FTRACE to print the course
of the computations.

2.17 Modify the solution to Exercise 2.16 to print a histogram of the depth
of recursive call during the computation of Ackermann’s function.

2.18 Use the suggestion given in Section 2.1.1 and make the formal argu-
ment of PREFIX the same as the function name.

2.19 What would be the effect if PREFIX were not defined with L, R, and
OP as local variables?

2.20 Write a recursive procedure for reversing strings (see Exercise 2.4).
Compare the iterative and recursive solutions.

2.21 Describe how the structure of an infix expression is related to the
maximum depth of recursive call in PREFIX.

2.22 Write a function that converts expressions from prefix form to infix
form.

2.23 Write a function that evaluates expressions written in prefix form.
Assume that all operands are integers.

2.3. GENERATORS AND SUCCESSORS

In a number of situations, it is necessary to generate, on demand, suc-
cessive values according to some set of rules. The most familiar example is
the generation of pseudo-random numbers.

Sec. 2.3 GENERATORS AND SUCCESSORS 35
2.3.1. Random Number Generation

The generation of pseudo-random numbers has been the subject of a
great deal of investigation, both theoretical and practical. Discussion of the
properties of pseudo-random number generators is beyond the scope of this
chapter. For excellent coverage of this subject, sce Reference 18. The
process can be conceptualized as the selection of successive integers R,,R,,
... R;,...from aset of integers as shown in Figure 2.2.

Figure 2.2 Successive Integers

The process of generating successive integers has two fundamental properties:
(1) the jth number, R;, is derived from the (j — 1)st number, R;_, , according
to some fixed set of rules, and (2) the rules are designed to provide properties
desired of the set of numbers. In the case of pseudo-random numbers, rules
are chosen so that the set of numbers generated has the statistical properties
that would be expected of truly randomly-chosen numbers. In most cases,
the rules are the same regardless of the value of j and the time that the rules
are applied. Such rules constitute a successor function that can be applied to
any generated number to get the next number.

One of the best methods of generating pseudo-random numbers is the
use of a linear congruence sequence which has the form:

Rj., =p*R; + ¢ mod m forj> 0
Where

R, initial value Ry=20

p multiplier p=0

c increment c=20

m modulus m> Rj,m>p,m> c

An example is provided by choosing Ry = p = ¢ = 7 and m =}0. The result-
ing sequence is 7,6,9,0,7,6,9,0,... which is periodic with period four. Ob-
viously this sequence does not produce pseudo-random numbers of good
quality. Reference 18 gives recommendations for selecting values to produce

36 DEFINED FUNCTIONS Chap. 2

a pseudo-random number generator of high quality. For our purposes, we
will use

Ry =0
p= 12,621
c= 21,131
m = 100,000

Given a number R, the next number is computed by

R = REMDR(R * 12621 + 21131,100000)

Usually, random numbers are desired within some range that is small com-
pared with the value of m given above (in fact, m should be chosen to be
large compared with the maximum number desired). Therefore, the numbers
are scaled down. Suppose numbers are desired in the range of 0 to n — 1.
For the sequence above, the best results are obtained by multiplying the
number generated by n and then truncating the result. A complete random
number generator is:

DEFINE('RANDOM(N)')

RANDOM RANVAR REMDR (RANVAR * 12621 + 21131,100000)
RANDOM RANVAR * N / 100000 : (RETURN)

This procedure illustrates an important aspect of generators: the modi-
fication of the value of a global variable (here RANVAR). The value returned
is computed from the new value of the global variable. The value upon
which the computation is to be made cannot be provided as an argument;
the function can only change the value of a formal argument or local variable
during the period in which it is invoked. Once a function returns, the former
values of all such variables are restored. When a function such as RANDOM
requires a global variable, care must be taken to assure that this variable is
not modified inadvertently elsewhere in the program. Usually the name for
a global variable can be chosen to minimize the likelihood of such an error.
Note also that the previous value of RANDOM cannot be used to compute the
next value. The mapping from RANVAR to RANDOM is many-to-one in general,
and information is consequently lost.

W one

2.3.2. Generation of Strings

Sometimes it is necessary to proceed systematically through a set of
strings that have some property of interest. For example, one may wish to

Sec. 2.3 GENERATORS AND SUCCESSORS 37

determine whether or not any one of a class of strings is contained within
another string. In some situations, this kind of problem can be characterized
in terms of a pattern that matches substrings with the specified property. In
other situations, it may be necessary to generate all the strings of interest.
SNOBOLA is substantially more powerful in its analytic facilities than in its
synthetic facilities. For example, only a few statements are required to con-
struct a pattern that will match an algebraic expression. Writing a procedure
to generate algebraic expressions in any generality is a much more difficult
task. We will start here with some fairly simple cases and return to the
problem of generation in more generality in Chapter 7.

An ngram is simply a string of n characters. Usually, the character set
from which ngrams are composed is restricted. Thus, 2grams (digrams) of
letters might be of interest. Consider the problem of generating such strings
systematically. A first attempt is given by a function GRAM(N,CSET) where
N is the length of the ngram and CSET is a string of characters from which
ngrams (specifically, Ngrams) may be composed. A procedure is:

DEFINE('GRAM(N,CSET,HEAD)C,TEMP')
ONECH = LEN(1) . C

GRAM OUTPUT = EQ(SIZE(HEAD),N) HEAD :S(RETURN)
TEMP = CSET

GRAMT TEMP ONECH = :F(RETURN)
GRAM(N,CSET,HEAD C) : (GRAM1)

A typical call is GRAM(5, ' ABC') which provides

AAAAA
AAAAB
AAAAC
AAABA
AAABB
AAABC
AAACA
AAACB
AAACC
AABAA

The key to this function is the third argument, HEAD, which does not appear
in the specification of GRAM as given above. HEAD is null, by virtue of being

38 DEFINED FUNCTIONS Chap. 2

omitted, when GRAM is called initially. GRAM builds up HEAD through suc-
cessive recursive calls. If HEAD is not of the desired length (N), the loop at
GRAM] adds a character from CSET to HEAD and calls GRAM (recursively).
Output occurs when HEAD is of the desired length.

The utility of a function like GRAMis quite limited. What is produced is
an “ngram dump” without any possibility of intervention between succes-
sively generated ngrams. While such “wallpaper” may be useful in gaining
insight about the properties of some classes of strings, a more controlled
generation, in the fashion of random number generation, is needed. Visu-
alizing the ngrams in the way used in Figure 2.2 for the generation of suc-
cessive integers illustrates that the ngrams can be considered to be strings in
an ordered set. See Figure 2.3.

Figure 2.3 The Set of Bgrams

Note that the first member of the set is AAAAA and the last is CCCCC. This
choice is arbitrary, but natural, and uses the order of characters in CSET as a
basis. Such a set of strings can be characterized by a successor function
similar to that used for the generation of random numbers. A function
NEXTG, for generating successive ngrams, follows:

DEFINE('NEXTG(GRAM)C')
LAST = RTAB(1) . GRAM LEN(1) . C

SCSR = BREAK(*C) LEN(1) LEN(1) . C
CSET LEN(1) . F

NEXTG GRAM LAST :F(FRETURN)
CSET SCSR :F(NEXTGT)
NEXTG = GRAM C : (RETURN)
NEXTG1 NEXTG = NEXTG(GRAM) F :S(RETURN)F (FRETURN)

Here 4 F, and CSET are global variables, serving much the same function that
RANVAR serves in random number generation. NEXTG, given an ngram as an
argument, returns the next ngram as value, failing only if the last ngram is
given as an argument. So long as the last character of the ngram is not the
last character of CSET, the last character is replaced by its successor in CSET.
When the last character is encountered, NEXTG is called recursively with the
first N - 1 characters as an argument, and the first character of CSET, F, is
appended to the result. This type of formulation is possible, where it was not

Sec. 2.3 GENERATORS AND SUCCESSORS 39

possible in RANDOM, because all the information necessary to compute the
next value is contained in the current value.

While the function above fails if given the last ngram as an argument, it is
possible to make the generation circular, returning the first ngram if the last
ngram is given as value.

EXERCISES

2.24 What limits the size of the modulus, increment, and multiplier in the
function RANDOM?

2.25 In most uses, a random number generator is associated with some
process. In some situations, there are several concurrent, but inde-
pendent, processes, each of which requires an independent sequence
of random numbers. Devise a method for implementing this without
writing separate random number generating procedures.

2.26 Write a function that generates a sequence of randomly selected
characters.

2.27 Write a function that generates random strings whose lengths are ran-
domly distributed between 0 and n.

2.28 Introduce an element of randomness into the play of the tic-tac-toe
program developed in the solution of Exercise 1.23.

2.29 Specify an appropriate default value for the second argument of
GRAM.

2.30 Write a function to generate the set of all alphabetic strings.
2.31 Write a function that returns the successor of any string.

2.32 Write a function that generates palindromic strings.

2.33 Modify NEXTG to make it return the first ngram, given the last.

2.34 Write a function to shuffle a deck of playing cards. Choose a repre-
sentation for the cards that is mnemoniec.

2.35 One method of forming acronyms is to select the initial letter of each
word of a phrase. A more general method is to select any characters
from the phrase, provided that the letters occur in order in the phrase.
An example is: StriNg Oriented symBOlic Language. Write a function
to generate acroynms in this way.

40 DEFINED FUNCTIONS Chap. 2

24. USE OF FUNCTIONS IN PROGRAM DESIGN

One of the natural results of the systematic use of defined functions is
program modularization. The advantages of modularization are well known,
especially with respect to the ease of program modification and maintenance.
Thinking of the components of a program as functions may also provide a
substantial additional benefit in terms of problem solving and implementa-
tion of the program. Separating a program into functional components
requires sorting out ideas, isolating and specifying operations, and generally
getting a clear logical understanding of relationships.

As an example, consider the problem of generating a simple concordance
that lists the line numbers of a text in which each word appears. With only
this statement, the problem is poorly defined, as is typical of most problems.
One of the first steps in the solution is to determine what operations have to
be performed and how the data is to be organized.

We may presume that the text to be processed is on a sequential data
file, since the problem mentions line numbers. There is, however, no indica-
tion of how these lines have been prepared. Assuming that the text is pre-
pared in a manner closely resembling printed text, there is still the question
of how the text is split between successive records. Perhaps a long stream of
text has been split into records at regular intervals. On the other hand, the
text may have been prepared with an explicit continuation convention that
indicates when a word is continued on the next record. The easiest situation
to handle is when the text is prepared so that words are not split between
records at all. Each record then ends with blanks if there is not enough room
for the next word.

The definition of a word is, in itself, a substantial problem. A simple
approach is to define a word to be a span of letters. An alternative approach
is to consider words to be whatever occurs between blanks and punctuation
marks. Then questions arise about hyphenated compound words, abbrevia-
tions, various nonstandard constructions, and so on. In any event, a precise
definition of a word is a hopeless task; the problem is to make a definition
suitable for a particular situation and to write a program that will break up
the text accordingly. The method used in Section 1.1.2 will be followed here.

Developing a concordance requires some type of symbol table mechan-
ism. Since a word may appear several times on several different lines, it is
necessary to be able to look a word up in a table in order to add a new line
reference. Since the words in the text cannot be determined in advance, the
mechanism must be general enough to accommodate any specific words and
any number of different words that may occur. The TABLE data type is
designed for just this kind of situation.

After all the text has been processed, the table will contain lists of line
numbers associated with each word. Printing the results remains. Again the

Sec. 2.4 USE OF FUNCTIONS IN PROGRAM DESIGN 41

problem is vague. In what order should the results be printed? A natural
order is alphabetical. Other possible orderings are by first occurrence, by
length, by number of occurrences, and so on. It is reasonable to expect that
ordering the table will present programming problems.

The discussion above is rather detailed; more detailed than similar dis-
cussions elsewhere in this book. Such a discussion is typical of the first
thoughts about solving a programming problem. The reason for going to such
length here is to study an approach to program development rather carefully.
It is not uncommon for a programmer to start with a poorly defined problem
and start programming at once. This is particularly likely if the problem is
apparently as simple as the one given above. Some difficulties are resolved
naturally in the course of programming, but others get swept under the rug.
Still other problems may not be recognized until the program has been run
on a variety of data. Unless substantial care and effort are taken to assure
flexibility, the program may have limited utility or may require substantial
rewriting if requirements are changed. Suppose, for example, that an alpha-
betic listing is programmed, but that it is later decided that the listing should
be by number of occurrences.

Many such difficulties can be avoided if the problem is broken down into
functional components, isolating operations logically and physically, and
thus making debugging and revision easier. In the problem above, several
functions can be specified, with operations as follows:

(1) GET: a function that returns the next word from the text each time
it is called, and fails when the text is exhausted. Input and output
of text and the assigning of line numbers are the responsibility
of GET.

(2) CITE: a function that updates the symbol table, adding the asso-
ciation of a line number with a word.

(3) SORT: a function that orders the symbol table in the desired way.

(4) PRINT: a function that prints the symbol table in the desired
format.

These four functions amount to specifying the vertical organization of the
program. Depending on specific approaches, some of these functions may
call other functions, providing horizontal organization. The concordance
program, stripped of initialization and lacking procedures for the functions
above, is quite simple:

NEXT CITE(GET(),LINE.NO,T) :S(NEXT)

PRINT(SORT(T))
END

Here T is presumed to be the symbol table containing the words and line-
number references. This program may appear somewhat mysterious and

42 DEFINED FUNCTIONS Chap. 2

could give the impression of sl‘i?ght of hand, since none of the functions has
yet been written. Nevertheless, a person with some experience in writing
programs in SNOBOL4 will recognize that the four functions can be written
without great difficulty, and that they are substantially independent of one
another. We will go through the programming details to provide an illustra-
tion that the overall program organization can be addressed first and details
can be left until later.

GET presents the greatest conceptual problems. This function must
handle any problems concerning the representation of the text and must
isolate the words. As a start, we will take the simplest of the alternatives for
the form of the data and assume words are not broken over record boun-
daries. The more difficult cases are left as exercises. An important aspect of
program organization is isolating the input of text within GET. GET can be
thought of as a generator in the sense used in the preceding section. Each
time GET is called, it returns a word, regardless of the form of data on the
text file and, in fact, independently of the existence of a data file at all.
Words might as well be coming from a word generator. When the source of
words is exhausted, GET fails. In the program being developed here, GET will
operate on a global variable which is the last line read. GET will, in general,
be called several times to generate the words from a line of input. Only
when a line is exhausted is another line read. The procedure for GET is:

DEFINE('GET()")

WORD = BREAK(LETTERS) SPAN(LETTERS) . GET
GET LINE WORD = :S(RETURN)

LINE.NO = LINE.NO + I

LINE = INPUT :F (FRETURN)

OUTPUT = LINE LINE.NO : (GET)

LINE and LINE.NO are global variables. GET prints the text, numbering the
lines, to provide the initial part of the listing that results from executing the
program. Observe that GET is self-initializing. L INE is null when GET is called
the first time, and LINE,NO is zero (or null). Therefore, WORD fails to match.
As a result, a record is read.

CITE is a simple function, so simple that it is unnecessary except for
organizational purposes.

DEFINE('CITE(WORD,N,TABLE)")

CITE TABLE<WORD> = TABLE<WORD> N ',' :(RETURN)

Sec. 2.4 ' USE OF FUNCTIONS IN PROGRAM DESIGN 43

A list of line numbers is built up using commas as separators. Note that
TABLE and N are formal arguments. This is not necessary, and is largely a
matter of style. The table and line numbers could be global variables and
could be transparent to the main program. The advantage of including them
as formal arguments is that the functions developed in this program can be
used in other contexts where these values might have other meanings. Ideal-
ly it would be desirable to have LINE,NO more visible, but our organization
precludes that, since a function can return only a single value unless tricks
are employed.

SORT is a trivial or a substantial problem, depending on what kind of
sorting is to be done. In the spirit of starting with a simple solution to get
the program running and later making revisions to handle more realistic
situations, a sort by order of first occurrence will be used.

DEFINE('SORT(TABLE)')

SORT ~ SORT = CONVERT(TABLE, ' ARRAY ') :S(RETURN)F (FRETURN)

The purpose of converting the table to an array is to produce a structure that
can be easily accessed in an orderly fashion. The array produced by CONVERT
is ordered by first occurrence simply because of the way that SNOBOL4
works. Such an ordering is called ‘“‘chronological”.

This procedure brings a new problem to light: If there are no words in
the table, the conversion fails. This might happen because there is no input
text, because there are no words in the text, or because of an error in the
program. In any event, this situation must be recognized and handled prop-
erly. The failure return from SORT provides the necessary information to
the calling statement without making any presumption that an empty table
is erroneous. A minor modification of the main program will provide for an
appropriate error message.

Unfortunately, chronological order is usually not sufficient, and a more
elaborate sorting procedure is called for. Methods of sorting, like random
number generation, have been the subject of a great deal of study. Such con-
siderations are beyond the scope of this book. A simple sorting procedure
follows for reference and use in test programs. The method used is a
version of the Shell sort [19]. The interested reader is referred to Reference
20 for an extensive discussion of sorting. As a general rule, the sorting
of a large number of items should not be attempted in a SNOBOL4 pro-
gram, regardless of the specific method used. The time required may be
astronomically large. Highly efficient system utilities are available for pro-
duction sorting.

a4 DEFINED FUNCTIONS Chap. 2

DEFINE('SORT(TABLE)I,J K,G,N,M,T1,T2')
ALEN = BREAK(',') . N

SORT SORT = CONVERT(TABLE,'ARRAY') :F (FRETURN)
PROTOTYPE (SORT) ALEN

N

SORTG T(Gél) G/ 2 :F(RETURN)

G
N
SORTK 0
1

SORTJ I +G
LGT(SORT<I,1>,SORT<J,1>) :F(SORTI)
= SORT<I,1>
T2 = SORT<I,2>
SORT<I,1> SORT<J,1>
SORT<I,2> SORT<J,2>
SORT<J,1> Tl
SORT<J,2> T2
K = K+1
SORTI I = LT(I,M)I +1 :S%SORTJ)
GT(K,0) :S(SORTK)F (SORTG)
The difficulty in writing the procedure for PRINT depends, again, on
how elegant the solution is. A very simple procedure is sufficient for a first

attempt.
DEFINE('"PRINT(A)I")

S

PRINT I = 1I+1
OUTPUT = A<I,1> ' : ' A<I,2> :S(PRINT)F(RETURN)

To make the listing more attractive, a few lines to print identifying in-
formation and spacing can be added to the main program. The complete
main program, with initialization, follows:

LINELNO = O

LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
WORD = BREAK(LETTERS) SPAN(LETTERS) . GET
T = TABLE()

DEFINE('GET()"') .
DEFINE('CITE(WORD,N,TABLE)")
DEFINE('SORT(TABLE)I,J,K,G,N,M,T1,T2")

Sec. 2.4 USE OF FUNCTIONS IN PROGRAM DESIGN 45

DEFINE('PRINT(A)I')

OUTPUT = 'LISTING OF TEXT'; OUTPUT =
NEXT CITE(GET(),LINE.NO,T) :S(NEXT)
OUTPUT =3 OUTPUT = 'CONCORDANCE'; OUTPUT =
PRINT(SORT(T)) :S(END)
OUTPUT = 'NO CITATIONS' : (END)
EXERCISES

2.36 Modify GET to handle input text in which
(a) Words are broken arbitrarily at fixed intervals (i.e., words are split
at the ends of records).
(b) Words which are broken at the end of a line are indicated by
hyphens (dashes) in the conventional manner used for typing.

2.37 Write a program to produce a concordance of ngrams rather than
words. Assume ngrams consist only of letters, but provide a way of
specifying the value of n at run time.

2.38 Write a program to produce a concordance of numbers that appear in
a text.

2.39 Write a program to produce a concordance of punctuation marks.

2.40 Write a program to count the number of times each different word
occurs.

241 For many purposes, words such as “a”, “the”, and so forth are of no
interest in a concordance. Add a facility to the concordance program
to suppress specified words.

2.42 Thinking of GET as a generator, use the concordance program as modi-
fied for Exercise 2.40 to tabulate randomly generated strings.

2.43 Modify CITE to avoid duplicate line numbers in cases where a word
occurs more than once on a line.

2.44 Modify CITE so that only four-letter words are cited.
2.45 Write a program that tabulates word lengths.

2.46 Write a program to produce both a concordance of all words and also
a list of words that begin with the letter A.

2.47 Write a program to produce concordances of assembly-language pro-
grams. Select a locally available assembly language.

46

2.48

2.49

2.50

2.51

2.52

2.53

DEFINED FUNCTIONS Chap. 2

Write a program to produce concordances of SNOBOL4 programs.
Test the program on itself.

What are the reasons for putting the output statements for titling and
spacing in the main program rather than in the functions GET and
PRINT?

Generalize SORT so that the predicate used for sorting and the column
on which the sort is performed can be specified when SORTis called.

Use the results of Exercises 2.40 and 2.50 to produce a listing of words
in order of number of occurrences.

Expand PRINT to improve the appearance of the output listing as

follows:

(a) Remove the terminal comma from the list of line numbers.

(b) Indent the line number listings so that the words occupy columns
1 through 20 and the line numbers start at column 21. Incasea
line number listing is too long to print on one line, indent subse-
quent lines to column 21 also.

(c) Format the listing as for (b), but assure that the listings of line
numbers are broken at commas, not in the middie of numbers.

(d) Provide a way of specifying the columns for formatting and the
width of the listing.

Write a function to sort a hand of playing cards. See Exercise 2.34.

3 STRUCTURES

Data to be manipulated by a program frequently is complex, and there
may be a variety of relationships among parts of the data that must be repre-
sented. Many kinds of processing require storing and accessing data in a
structured way according to specified rules.

SNOBOL4 provides a number of ways of structuring data. An array is
one of the most commonly used structures. Elements of an array are ref-
erenced by integer subscripts and an array represents a rigidly structured
aggregate of values. Other structures are more loosely organized or have
different facilities for referencing their values. In addition to the built-in
data types of SNOBOL4, new data types can be created. Even more impor-
tant is the ability to link objects together to form structures that are more
complicated.

This chapter begins by discussing the kinds of values and objects that are
available in SNOBOL4 and progresses to a discussion of structures that can
be built from the basic components.

3.1. VALUES AND OBJECTS IN SNOBOL4

For the most part, programming in SNOBOL4 can be done with only a
vague idea of how the various features are implemented. In order to be
facile in the manipulation of structures, however, it is necessary to have a
good grasp of the relationships among objects and how they are created and
modified. A method for visualizing relationships, with the aid of diagrams, is

a7

48 STRUCTURES Chap. 3

particularly helpful. The discussion that follows is somewhat of a digression,
but it is included because misunderstandings are common. It is designed to
provide a system for depicting such relationships which parallels an actual
implementation of SNOBOL4 [21] fairly closely, but suppresses unneces-
sary detail. There are, of course, many alternative ways of implementing
SNOBOL4. The system that follows is adequate and self-consistent, even if
it does not correspond, in all cases, to every implementation.

3.1.1. Built-In Data Types

All structures that can be created in a program are necessarily con-
structed out of the objects that can be created by language operations.
SNOBOL4 has a variety of built-in data types and the ability to define others
during execution. Every kind of value that can occur in a program has a
distinguishable data type. For the purposes of visualization, values can be
thought of as occupying cells, and a cell can be thought of as having two
parts: a data type designation and a representation of the value itself. There
are two basic representations for values: numbers and pointers. The values
of integers and real numbers are numbers. Figure 3.1 illustrates the integer
734 and the real number 2.0.

I 734 R 2.0

Figure 3.1 Integer and Real Number Values

The letters I and R indicate INTEGER and REAL data types respectively.
A similar method of abbreviation is used for other data types.

The values of all other types of data in SNOBOL4 are pointers to ob-
jects. A pointer is an address that identifies the location of the object in the
memory of the computer. The term pointer is used because of the connota-
tion that suggests an arrow, which in turn provides a convenient way of dia-
gramming the relationship. Figure 3.2 indicates how this may be visualized
for an array of five elements.

Y

A *—

Figure 3.2 An Array Value

Sec. 3.1 VALUES AND OBJECTS IN SNOBOL4 49

The cell at the left represents the array value. The arrow is a pointer to the
location where the five array elements actually exist.

Arrays

As indicated in Figure 3.2, each element of the array is, in itself, a cell.
Consider the following statement:

X = ARRAY(5,0,0)
Figure 3.3 illustrates the data resulting from executing this statement.

v [AL o= -

| | x| | o
olo|o]o|o
o|lo|olo|o

Figure 3.3 An Array

The symbol X indicates that the value of X is a cell that points to an object
consisting of an array of five elements. In this situation, X is a variable,
which may be thought of as the name of a location where the value is placed.

It is important to understand that the value assigned to X by the state-
ment above is not a block of five cells, but rather a pointer to such a block.
This concept of a cell containing a pointer makes it possible for all values to
be represented uniformly by a single cell. If the object represented by the
value requires more space than is available in a cell (as in the case of an ar-
ray), the object is located elsewhere and is pointed to. Now consider the
statement

Y = X

The relationships established by this statement are shown in Figure 3.4.
X I : I ® = —

Y -

| o
(=] [} (o) [@] [an]
O|O|O|0O|0

Figure 3.4 Two Variables with the Same Value

Assignment simply copies the cell that is the value of X and stores it at Y.
Both X and Y point to the same object. Assignment does not copy the ob-
ject that is pointed to. In fact the (cell) values of X and Y are identical, and

50 STRUCTURES Chap. 3

the predicate IDENT(X,Y) succeeds. The fact that X and Y point to the same
object leads to an important concept in manipulating structures. If an ele-
ment of the array pointed to by X is changed, this change is shared by Y.
For example,

X<2> = 4.5
produces the situation shown in Figure 3.5.

Ny —— -
o= —

DR ||
O|0|Oo||o
o|olo|juolo

Figure 3.5 A Change in the Array

Although the value of Y itself is not changed (it still points to the same ob-
ject), part of the object it points to has been changed. This kind of effect
must be kept in mind when more than one variable points to the same ob-
ject. Note the essential difference between the situation illustrated above
and the result of executing the statements

X = ARRAY(5,0.0)
Y = ARRAY(5,0.0)
as shown in Figure 3.6.
X [A] e——={R 0.0 Y [A] e———R 0.0
R 0.0 R 0.0
R 0.0 R 0.0
R 0.0 R 0.0
R 0.0 R 0.0

Figure 3.6 Two Separate Arrays

Although the two calls of ARRAY are identical, two separate and totally unre-
lated arrays are created. A change in an element of X has no effect on Y, and
vice versa. Similarly, IDENT(X,Y) fails. ARRAY is a function that creates
objects. Every time that ARRAY is called, it creates a new object, distinct
from any other object.

The built-in function of COPY makes a copy of an object. The statements

X ARRAY (5,0.0)
Y COPY (X)

produce the same structures as shown in Figure 3.6.

Sec. 3.1 VALUES AND OBJECTS IN SNOBOL4 51
Strings

String values are also represented by pointers to objects. This repre-
sentation is partly due to the fact that strings can be very long and hence
cannot in general be stored in a single cell. Another reason for the use of a
pointer to an object is that strings also serve as variables in SNOBOL4 and
can have values. Consider the statement

COLORATION = 'BEIGE'
The value can be pictured as shown in Figure 3.7.

COLORATION [

BEIGE

Figure 3.7 A String

The object pointed to has two parts: a cell (as yet unspecified) and the
actual character string BEIGE. As pictured, BEIGE occupies one cell. The
number of characters that fit into a cell varies from computer to computer.
In the discussion here, we will assume that there are six characters per cell.
In any event, it is convenient to think of data in terms of cells and to divide
strings up into cells accordingly. COLORATION is also a string, but it has a
value as well. The first cell in the object for a string contains the value that
the string has if it is used as a variable. The statement above produces the
situation shown in Figure 3.8.

S| e l
COLORA BEIGE
TION |

Y

Figure 3.8 Strings as Variables and Values

In SNOBOL4 all nonnull strings have the capability of being used as vari-
ables, even if such use is not explicit in the program. The indirect referenc-
ing operator provides a dynamic means of using a string as a variable. Thus,

$COLORATION = 12
produces the result shown in Figure 3.9.

ST e »1] 12
COLORA BEIGE
TION

Figure 3.9 Strings as Variables

52 STRUCTURES Chap. 3

A string that is not given a value explicitly has the null string as value by de-
fault. The null string is conveniently represented in a special way as shown
in Figure 3.10.

[S[0]
Figure 3.10 The Null String

The data type is indicated by S, but, instead of a pointer, the value is simply
zero. This representation is more a matter of convenience than an essential
feature of the null string. In this representation, the null string is the ex-
ception to the earlier statement that only integers and real numbers have
values that are numbers.

Strings occur frequently in SNOBOLA4, but for the most part their repre-
sentation as objects with cells for values is unnecessarily cumbersome. A
shorthand representation, retaining the essential concept of a pointer to an
object, is useful. Figure 3.11 illustrates this convention, where braces indi-
cate the object for the string.

COLORATION [S]| e—}»1{BEIGE}

Figure 3.11 An Abbreviated Representation for a String

This abbreviated representation will be used except where it is necessary to
emphasize variable-value relationships among strings.
Two other aspects of strings are important:

(1) Each distinct string is represented by a unique object.
(2) There are no operations in SNOBOL4 that change the internal struc-
ture of a string.

The uniqueness of strings is a consequence of the fact that any string can
be used as avariable. To avoid inconsistencies and program malfunctions, each
distinct string is represented by a unique object. Consider the statements

X ‘A’ 'LOOPZ'
Y 'ALOOP' 'Z'

The uniqueness of strings means that the results of these statements can be
visualized as shown in Figure 3.12.

X{S| &= I
ALOOPZ
Y [T o

Figure 3.12 The Unigueness of Strings

n

Sec. 3.1 VALUES AND OBJECTS IN SNOBOL4 53

No matter how a string is created, it is always represented by the same ob-
ject. (The reader who is interested in how this is accomplished should con-
sult Reference 21.) Referring to the abbreviated notation, a string in braces
represents a unique object.

Earlier in this section we illustrated a situation in which part of an ob-
ject used to represent an array was changed. There is no operation in
SNOBOL4 that can modify the object representing a string. A replacement
statement gives the appearance of doing so, but this is not the case. A re-
placement statement may create a new string, but it cannot change an exist-
ing one. The statement

X ‘o' = 'y

produces the situation shown in Figure 3.13.

x [s] e—F—{aLurz}
v [s]_e—3—{AL00PZ}

Figure 3.13 The Result of Changing the Value of X

The entire value of X is different as a result, and X and Y now point to two
different strings.

Tables

The function TABLE creates objects in a fashion similar to ARRAY. Tables
are not as easy to visualize as arrays, since tables are not fixed in size and the
elements in tables are not ordered numerically as they are in arrays. One way
to visualize a table is as a block of cell pairs. Suppose the following state-
ments are executed.

INDEX = TABLE()

INDEX<'LANGUAGE'> = 10

INDEX<'COMPOSITION'> = 15

The table INDEX can be visualized as shown in Figure 3.14.

INDEX [T] e——>{S | e—T—>{LANGUAGE}
I 10
S o————>{ COMPOSITION}
I 15

Figure 3.14 A Table

Note that the value of INDEX is a pointer to the table itself. As other items
are referenced and values are specified, the table grows and is modified

54 STRUCTURES Chap. 3

accordingly. Figure 3.15 shows the results of executing the additional
statements

INDEX<'LANGUAGE'> = INDEX<'LANGUAGE'> + 1

INDEX<'AUTHOR'> = 8

INDEX [T]| e——>S o———>{LANGUAGE}
é ’l—>{COMPOSITION}
% %-—*U—\UTHOR}

Figure 3.15 An Enlarged and Modified Table

Other Data Types

Other built-in data types have other forms. For the most part, these
forms are not relevant, both because there is no need to deal with such data
types as objects and because the internal structure of such objects is com-
plex and highly implementation-dependent. It has become customary, for
example, to draw patterns as clouds [22], suggesting a structure that is vague
and poorly understood. Figure 3.16 illustrates how this representation might
be used to represent the results of executing the statement

BC = BREAK(',')

BC [P[e— BREAK(", ")

Figure 3.16 Representation of a Pattern

If a pattern is represented as a cloud, who knows how CQODE might be
visualized (but see Reference 21)!

Some remarks about one other data type may prove helpful to some
readers. In all the data types discussed above that point to a block of cells,
the pointer points to the top cell. This is somewhat a matter of convention,
and emphasizes, if subtly, that cells in a block have an inherent order.

Sec. 3.1 VALUES AND OBJECTS IN SNOBOL4 55

Mechanisms that process such blocks are always given pointers to the same
relative position in the block (the top) by convention.

There is a data type that may point to a cell in the interior of a block:
the NAME data type. Consider the following statement with respect to the
value of X shown in Figure 3.3.

E = X<
The result is shown in Figure 3.17.

Ny -
N

Figure 3.17 A NAME

Y

el el ool beol b vl
=] e]le] o] o
O|lo|o|o|o

The value of E designates a particular element of the array value of X and
hence a particular cell in the object pointed to by X. A statement such as

$E = 3.1
produces the effect shown in Figure 3.18.

x (AT +—} > R 0.0
R 0.0
R 0.0
E |:| - } > R 3.1
R 0.0

Figure 3.18 Modification of a Value in an Array

3.1.2. Defined Data Types

Defined data types are particularly useful in creating structures. The
DATA function adds new ‘“data types” to SNOBOL4, defines creation func-
tions for these new types, and provides field functions for accessing them.
The quotation marks above are used to indicate that the data types created
by DATA are not as distinctly different as the built-in data types. In fact, the
data types created by DATA form a class whose members have similar repre-
sentations, differing only in their names, the names of their field functions,
and the number of fields. Consider the statements

DATA('NODE (NEXT,LAST,VALUE) ")
TOP = NODE()

56 STRUCTURES Chap. 3

The first statement defines the object creation function NODE and the three
field functions. The second statement creates a “NODE”. The result may
be visualized as shown in Figure 3.19.

TP [n[e——s 0 | NEXT
S 0 | LAST
S 0| VALUE

Figure 3.19 A Defined Object

The NODE consists of three cells, one for each field. The values of these
fields are null strings, since no field values are given explicitly in the call to
the function NODE. The result assigned to TOP is a cell pointing to a NODE.
The abbreviation n is used to indicate that the data type of the object
pointed to is NODE.

Values may be assigned to fields of defined objects when the object is
created or by assignment to field references. An example is given by the
statements

A = NODE(,,'MANDATE')
B = NODE(,A,'STYLE')
C = NODE(,B,'PROBLEM')

NEXT(A) = B; NEXT(B) = C

which create the structure shown in Figure 3.20.

nE="s N
B fn[o:]—>£>n
¢ T oddaTs

n
S

F
Y A

N

wnin|s
o

o——> { MANDATE }

-t
<

Y
A

AN,

[, {STYLEU
_J

| > { PROBLEM}

Yy

il

A

HIE

Figure 3.20 A Structure of NODEs

This figure illustrates several important facts. A statement such as
NEXT(A) = B

Sec. 3.1 VALUES AND OBJECTS IN SNOBOL4 57

assigns to the NEXT field of A a cell that is identical to the cell at B. It is
important to understand that such a statement does not copy the object
pointed to by B. In fact IDENT(NEXT(A),B) succeeds because the two cells
are identical—both have the same data type and the same pointer. A refer-
ence to the value of a variable such as B simply yields the cell at B, regard-
less of what the cell contains. There is often some confusion on this point
when structures are created using defined data objects. The difference be-
tween a cell pointing to an object and the object itself must be clearly
understood.

The example above also illustrates that NODE, like ARRAY and TABLE,
is a function that creates objects. Every time NODE is called, a new ob-
ject is created. The three calls of NODE in the example above create three
separate NODEs. Similarly, NODEs are created only when NODE is called.
The statement

AGGREGATE = ARRAY(4,NODE())

creates the structure shown in Figure 3.21.

AGGREGATE [A] e——

Y

Figure 3.21 An Array with a NODE Value

Note that only one NODE is created because NODE is only called once—
as the second argument of ARRAY. All the array elements point to this one
NODE. Failure to understand this aspect of object creation is a common
cause of error. An array of four distinct NODEs is created by the follow-
ing statements:

AGGREGATE = ARRAY(4)
I = 1

NLOOP AGGREGATE<I> = NODE() :F(DONE}
I = TI+1 : (NLOOP

DONE

The result is shown in Figure 3.22.

58 STRUCTURES Chap. 3

AGGREGATE [A] e—"—

wnjnjn
(en] [en] [an)

T

wnjnin
(@] [e] [an)

(211 %] 1 %]
(@] [en] Fen]

|

(V2] [%] K%}
(o) faw] [en)

Figure 3.22 An Array of Four NODEs

The visualization of defined data objects as blocks of cells is consistent
with the representation given for other objects. There are several drawbacks
to this method. It is difficult to arrange the objects and draw the pointers
in a way that makes the relationships clear (as evidenced by Figure 3.20)
because the cells are necessarily adjacent and the orientation of the objects
is fixed. In addition, there may be many types of defined data objects; the
data-type abbreviations may be unambiguous, but it is, nonetheless, difficult
to distinguish the data types easily by a glance at the drawing. More im-
portant, the data type of an object can only be determined from a pointer
to the object, not from the object itself. For these reasons, a simplified
and more diagrammatic method will be used for representing defined data
types in most of the figures that follow. This method is based on assigning
a shape to a defined data type and on partitioning this shape into fields in
such a way that the fields can be unambiguously distinguished regardless of
the orientation of the shape. For example, a NODE might be assigned the
shape shown in Figure 3.23.

LAST NEXT
VALUE

Figure 3.23 A Shape fora NODE

Sec. 3.1 VALUES AND OBJECTS IN SNOBOL4 59

NODEs can be drawn straight up, lying on their sides, or standing on their
heads, and the different fields can still be distinguished. Figure 3.20 can now
be redrawn as shown in Figure 3.24.

A [n] o vi ¢ \ > { MANDATE }

B ° »{ STYLE }

c [>/ o > { PROBLEM }
L\

Figure 3.24 A Structure Composed of NODEs

In such diagrams, the field cells are distorted to fit the chosen shape, and the
data type abbreviations are discarded. As long as the data type can be dis-
tinguished by shape (as in the case of NODEs) or by its form (braces for
strings, for example), there is no ambiguity. An empty field is used to repre-
sent the null string. The purpose of such diagrams is to make the structure
easier to understand, not to provide a complete and consistent system of
notation. Consider the following statements, using the COMPLEX data type
discussed in Section 2.1.2.

X = NODE(,,COMPLEX(2.0 , .))
Y = NODE(,X,COMPLEX(-4.7,0.0))
NEXT(X) = Y

The resulting structure is shown in Figure 3.25. Rectangles are used for
COMPLEXes, a minor violation of the statement above that shapes would be
chosen so that fields could be determined independentiy of the orientation
of the shape. We simply assure the reader that rectangles are not drawn
upside down—which is quite reasonable for COMPLEX es.

60 STRUCTURES Chap. 3

Wl
~N o

[en] LN

Figure 3.25 A Structure of NODEs and COMPLE Xes

Data type indications have been dispensed with in the COMPLEXes, according
to the rules outlined above, since the values are self-identifying.

3.2. IMPLEMENTATION OF SOME SPECIFIC STRUCTURES

3.2.1. Stacks

One of the most commonly used information structures is the stack.
Stacks are also called pushdown lists and last in-first out (lifo) lists. The
term stack is derived from the fact that objects are put on and taken off a
stack from the “top”. ‘Pushdown” is a descriptive term derived from de-
vices used in restaurants where plates are stacked on a spring-loaded plat-
form. Only the top plate is accessible. As plates are added, the stack settles
into a recessed area and as plates are removed, new ones come to the surface
as the weight on the spring diminishes. It is the way that operations are
performed on stacks—by adding and removing from the top only—that char-
acterizes this type of information structure. That is, it is not “proper” to
slip an item into the middle of a stack, or to take an item off the bottom.
The term lifo refers to the order in which items are serviced in a stack. The
last object put onto a stack is necessarily the first object taken off.

Stacks are commonly used in programming contexts where recursive
operations are involved. It is the nature of recursion that the most recently
saved information is the first to be restored. For example, SNOBOL4 uses a
stack internally for implementing recursive processes.

Programming languages provide no direct physical analogy to the spring-
loaded restaurant cart or, in fact, to a stack of plates. Nevertheless, opera-
tions analogous to those described above can be simulated.

Sec. 3.2 IMPLEMENTATION OF SOME SPECIFIC STRUCTURES 61

There are usually two operations that are performed on a stack: ‘“push-
ing” an object, that is, placing it on the top of the stack, and “popping” an
object—removing it from the top of the stack. These two operations can be
characterized by functions:

PUSH(Y)
Z = POP()

The first operation places the value of Y on the top of the stack. The second
operation removes the top item from the stack and assigns it to Z. PQP fails
if the stack is empty. An empty stack is not necessarily an error condition.
It may simply indicate the lack of stored information. Generally speaking,
PUSH should not fail.

There is no reason why there can only be one stack at any given time.
Although one stack is sufficient for most situations, more generality is de-
sirable. Different stacks can be associated with different identifiers such as
S1, S2, and so forth. Stacks do not simply exist; they must be created, as
illustrated by the following statements:

ST STACK()
52 STACK()

In this sense, STACK is a creation function similar in concept to ARRAY
and TABLE. Of course, the function STACK is not built-in, but must be
defined.

Since a stack is a structure, the operations of pushing and popping are
applied to specific stacks. The previous functions might have an additional
argument:

PUSH(Y,ST1)
Z = POP(S2)

These operations may now be read ‘“‘push the value of Y onto stack S1”” and
“pop the top value off stack S2 and assign it to Z”’. In a situation where
there is only one stack whose name is known globally, the extra argument
could be omitted and a suitable default assumed. In the sections that follow,
the stacks operated on will be specified explicitly.

The three functions STACK, PUSH, and PQP are sufficient to charac-
terize stacks. If these three functions are written, stacks can be used in
a program.

Rarely in a programming language is there only one way to do some-
thing. Frequently there are many ways, and the best choice is not clear.
The material that follows describes several ways of implementing stacks, and
discusses the relative advantages and disadvantages of each. As a result of
this discussion, some general rules will appear that are applicable to a variety
of other types of structures.

62 STRUCTURES Chap. 3
String Implementation

One way to implement a stack is to use a string for representing the data,
selecting some character, such as the comma, as a marker to separate the
items. If S is a stack, pushing a value V onto S can be done by

S = V','S
Similarly, an item is popped off the stack by a statement such as
S BREAK(',') . V LEN (1) =

If these statements are used in writing the functions PUSH and PQP, a prob-
lem immediately becomes evident. A call of the form PUSH(V,S) doesnot
change the value of S. A way around this problem would be to redesign the
form of the pushing operation to return a value that is then reassigned to the
variable which is the name of the stack. Pushing would have to be written
as follows:

S = PUSH(V,S)

If, however, two variables point to the same stack, changing one in this
fashion would not change the other. A more attractive alternative, and one
that does not require changing the original design, is to place an intermediate
linkage between the variable and the value. This can be done conveniently
and with elegance by using a defined data type as follows:

DATA(' STACK(VALUE)")

This defined data type provides a ready-made stack creation function and
also gives a stack the data type STACK. The functions PUSH and POP now
can be written:

DEFINE('PUSH(V,S)'); DEFINE('POP(S)')
NEXTI = BREAK(',') . POP LEN(1)

PUSH VALUE(S) = V ',' VALUE(S) : (RETURN)
POP VALUE(S) NEXTI = - S(RETURN)F (FRETURN)

The advantages of this method of implementation are:

(1) There is no intrinsic limit to the size of a stack (although string-
length limits apply).
(2) The stack functions are simple.

Sec. 3.2 IMPLEMENTATION OF SOME SPECIFIC STRUCTURES 63

(3) There is no necessity to reserve space for the stack; space is pro-
vided as needed when items are pushed onto a stack.

The disadvantages are:

(1) Some character must be reserved as a marker to separate items and
hence cannot appear within an item. (This problem can be over-
come at the expense of additional complexity. See Exercise 3.2.)

(2) String processing is relatively slow compared with other operations
in SNOBOL4. Long strings, in particular, are costly to manipulate.

(3) Items can only be strings or types of data that can be converted to
strings without essential loss of information. For example, a pat-
tern cannot be stored in this kind of stack.

Actually, the use of strings to implement stacks is not a good method.
Some programmers tend to use strings to represent all types of structures,
finding a method of encoding structural relationships in strings by using
various syntactic devices. More sophisticated use of SNOBOL4 language
features produces better results, as is illustrated by the following sections.
The inability to handle items of various data types is a fatal flaw, and is
alone sufficient reason for seeking other methods.

Array Implementation

A logical approach to allowing any type of data to be stored on a stack
is to use an array. The elements of an array can have any data type, and
incrementing and decrementing an index naturally corresponds to pushing
and popping. Figure 3.26 illustrates how an array implementation of a stack
might look.

- V77
1 m //// /////

s
m. vl A

l<— top of stack

Figure 3.26 An Array Implementation of a Stack

64 STRUCTURES Chap. 3

Again there is a defined data object serving as an intermediate linkage,
this time to an array. Since creating a stack now requires allocation of an
array, the object creation function itself cannot be used to implement the
stack creation function STACK. The complete set of functions follows.

DATA('STK(LIST,INDEX)"')
DEFINE('STACK(N)"')

STACK STACK = STK(ARRAY(N),1) : (RETURN)
PUSH ITEM(LIST(S),INDEX(S)) = V :F (FRETURN)
INDEX(S) = INDEX(S) + 1 - (RETURN)

POP INDEX(S) = GT(INDEX(S),1) INDEX(S) - 1 :F(FRETURN)
POP = ITEM(LIST(S),INDEX(S)) : (RETURN)

The advantages of this method of implementation are:

(1) Access to the stack is efficient and natural.

(2) Space is allocated only when a stack is created, not every time an
item is pushed.

(3) Most important, any kind of object can be stored in the stack.

The disadvantages are:

(1) Space must be allocated for the stack even if it is never used.

(2) The amount of space allocated is fixed and does not increase auto-
matically. A failure exit is provided accordingly. It is not a diffi-
cult matter, however, to provide for stack extension.

Table Implementation

The problem of the fixed size of the stack for the array implementation
suggests the use of a table instead. The function STACK could simply allo-
cate a table rather than an array. A table can be indexed by integers in the
same way that an array is indexed, so the stack manipulation functions used
for the array implementation apply to the table implementation substan-
tially unchanged. The advantage of this method is that the stack increases
in size automatically as the index is increased. Stack overflow does not occur.

To understand the disadvantages of this method, some knowledge of the
way that tables are implemented is required. In summary:

Sec. 3.2 IMPLEMENTATION OF SOME SPECIFIC STRUCTURES 65

(1) Access to the stack is less efficient.

(2) For a large stack, the table implementation requires more space—
approximately twice as much as the array implementation.

(3) Although more space is allocated as needed, this space is not re-
leased, even if the stack becomes empty.

The advantage of automatic growth is outweighed by the disadvantages.
In a sense, a table is not a natural way to implement a stack. Table references
are associative, rather than numerical as in the case of arrays. The use of
numerical subscripts is only a ruse to make it appear that the structure is
being indexed numerically.

Defined Data Type Implementation

One way of conceptualizing a stack is based on the physical analogy
given earlier. A stack can be thought of as a number of “plates’ which are
piled up by pushing and unpiled by popping. A defined data type PLATE is
suggested:

DATA(' PLATE(VALUE,LAST)")

Each PLATE has a value and a pointer to the previous plate on the stack.
The arrangement of plates can be visualized as shown in Figure 3.27.

C—Co

A

Figure 3.27 A Stack of PLATEs

66 STRUCTURES Chap. 3

As pushing and popping take place, PLATEs come and go. An empty
stack contains no plates, so STACK can be implemented by the object-crea-
tion function. The complete set of stack functions follows:

DATA(' STACK(TOP)')

PUSH TOP(S) = PLATE(V,TOP(S)) : (RETURN)
POP POP = DIFFER(TOP(S); VALUE({OP(S)) :F(FRETURN)
TOP(S) = LAST(TOP(S)) ~(RETVRY)

The advantages of this method are:

(1) Stacks grow in size automatically.

(2) Space is allocated only when it is needed.

(3) The stack manipulation functions are simple and efficient.
(4) Space is released when an item is popped.

(5) Any kind of object can be stored in the stack.

The disadvantages of this method are:

(1) The amount of space required for each item on the stack is greater
than for other methods.
(2) Each push requires allocation of storage; PLATEs are not reused.

Actually, for most purposes, the defined data type implementation is the
best. The efficiency of the stack manipulation functions outweighs the time
spent allocating space. The automatic deallocation of space has an advantage
that is not obvious unless the internal workings of SNOBOL4 are well under-
stood. In the array and table implementations, not only is space not deallo-
cated when an item is popped, but the item also remains in the structure
even though it cannot be accessed by the stack manipulation functions. Asa
result, the items that have been popped are still retained by the SNOBOL4
system, even if they are of no more use to the program. Only when they are
overwritten by subsequent pushes are they released so that the SNOBOL4
storage management procedures can reclaim the space they occupy. While
allocation of space in many programming languages is an expensive and cum-
bersome process, SNOBOL4 is designed to allocate and regenerate storage
automatically and efficiently. Programming methods that require allocation
of objects should not be of concern to the programmer as long as the objects
are not excessively large and as long as they are discarded when they are no
longer needed.

Sec. 3.2 IMPLEMENTAITON OF SOME SPECIFIC STRUCTURES 67

Other Stack Functions

STACK, PUSH, and PQP are the basic stack functions. They include the
necessary means for creating stacks and accessing them. There are a number
of other, auxiliary, functions that may be useful in some situations.

A fairly common operation consists of popping an item off the stack
and then immediately pushing another in its place. While this can be done
with POP and PUSH, it is both awkward and inefficient. A function to per-
form this operation in one step follows. The defined data type implementa-
tion is assumed.

DEFINE('SWITCH(V,S)")

.

0.

SWITCH SWITCH DIFFER(TOP(S)) VALUE(TOP(S)) :F(FRETURN)
VALUE(TOP(S)) = V : (RETURN) ,

Procedures for the other kinds of stack implementations follow naturally.

For diagnostic purposes, it may be useful to print the items on a stack
in a sequence of lines, giving a picture of the current state of the stack. Such
a function is:

DEFINE('PRTSTK(S)P')

PRTSTK P = TOP(S)
PRTS] OUTPUT = DIFFER(P) VALUE(P) :F (RETURN)
P = LAST(P) - (PRTS1)

Other lines of printing can be added, if desired, to set off and delimit the
stack contents.

The procedure above prints the stack from the top down. Suppose
that the printing is desired in the opposite order, from the bottom up.
This might seem to be particularly inconvenient, since the pointers within
the stack are from the top down. One approach to the problem is to
start from the top, linking through the stack, saving (pushing) pointers to
PLATEs along the way. When the bottom is reached, printing of values
can be done as the pointers are popped. A separate stack could be used
for this purpose, but the same effect can be achieved by using a recur-
sive procedure.

68

STRUCTURES Chap. 3

DEFINE('PRTSTK(S)')
DEFINE('PLUNGE(P)')

PRTSTK PLUNGE(TOﬁ(S)) : (RETURN)
PLUNGE (DIFFER(P) PLUNGE(LAST(P))) :F(RETURN)
OUTPUT = VALUE(P) : (RETURN)

Since PLUNGE calls itself before printing the value of the current item, the
last (bottom) value is printed first, followed in order by previous items as
successive calls return. A second procedure is needed only because there is
a heading object between S and the first item. Using recursion amounts to
the use of the internal SNOBOL4 stack to save intermediate results. This
technique is often applicable when objects are not linked together in the de-
sired order of processing.

A variety of other stack functions can be developed. Some are sug-

gested in the exelcises.

3.1

3.2

3.3

3.4

3.5

3.6

3.7

EXERCISES

In many circumstances, only a single stack is needed, and the additional
arguments of the stack manipulation functions are unnecessary. Specify
a reasonable default in case the additional argument of PUSH and PQOP
is omitted.

For the string implementation of stacks, devise a method for separating
items that does not preclude any character from appearing in an item.

Modify the array implementation of stacks to provide for automatic
extension when a stack becomes full.

For each method of stack implementation, write a function to count
the number of items on a stack.

For each method of stack implementation, write a function to copy
a stack.

For each method of stack implementation, write a function to reinitial-
ize a stack, discarding any contents it may have and restoring it to its
condition when first created.

Write a procedure to print the contents of a stack from the bottom up,
using an auxiliary stack for storage, rather than recursion.

Sec. 3.2 IMPLEMENTATION OF SOME SPECIFIC STRUCTURES 69

3.2.2. Queues

While a stack is a lifo list, a queue is a fifo list, served on a first-in first-out
basis. Typical examples of queues are waiting lines for buses and grocery
check-out lines. In these cases individuals are handled on a first-come first-
served basis. A queue may be visualized as shown in Figure 3.28.

head ®_C>_>u. —>CD tail

Figure 3.28 A Queue

Insertions are made at the tail and deletions are made from the head. Arrows
indicate the order of service.

As for stacks, there are standard functions for manipulating queues:

Q = QUEUE()
INSERT(V,Q)
V. = DELETE(Q)

QUEUE creates a queue. INSERT puts the value of V on the tail of Q and
DELETE removes the head of Q and returns its value. DELETE fails if the
queue is empty. '

Implementation of queues is somewhat more complicated than the im-
plementation of stacks. The principles discussed in the preceding section can
be applied, although the less-desirable approaches will not be discussed again.

Since a queue is a linear structure as shown in Figure 3.28, it is natural
to consider the possibility of an array implementation. Since items are added
to the tail and taken from the head, a single index is not sufficient for main-
taining a gueue. Figure 3.29 illustrates a typical situation.

head —Y////////////
WY,
W

7

tail ——y7 ") S~ MO SHADE

N

Figure 3.29 A Queue in an Array

70 STRUCTURES Chap. 3

The shaded area indicates the portion of the array that is in use. As items
are added to the tail, that index increases. As items are deleted from the
head, that index increases also. Thus, unlike stacks, both indices increase as
items are added and removed from a queue. Obviously, both indices cannot
increase indefinitely. The standard method of handling this situation, where
space for a queue is preallocated in a contiguous block, is to “wrap around”
to the beginning when the end of the array is reached. This can be done as
long as enough items have been deleted from the queue to free space at the
beginning. Figure 3.30 illustrates the positions of the two indices after
wrap around.

i

////////

_ W /// W0
tail —Y//1 ,,/Jzz & gpa0e

head —>-//////
//////////

o’

////,Y//

Figure 3.30 Wrap-Around in a Queue

If the two indices ever meet, the queue is full.

The problem with implementing queues in this way lies in the complexity
of the programming required. Since wrap-around is not a process that occurs
naturally, it has to be simulated when the end of the array is reached. There
are numerous special cases that have to be handled, including making provi-
sions for distinguishing an empty queue from a full one. The process can be
more easily understood with respect to a structure that provides physical
wrap-around: a ring. Such a structure is shown in Figure 3.31.

Sec. 3.2 IMPLEMENTATION OF SOME SPECIFIC STRUCTURES 71

Figure 3.31 A Ring Implementation of a Queue

The shaded elements on the ring indicate those nodes that are currently “on
the queue”. Assuming that the ring has already been created as shown, the
functions INSERT and DELETE are:

DATA(' ELEMENT (VALUE ,NEXT) ')
DEFINE('INSERT(V,Q)")
DEFINE('DELETE(Q)')

INSERT IDENT(NEXT(TAIL(Q)) HEAD(Q)) :S(FRETURN)
VALUE(TAIL(Q)) = vV
TAIL(?) = NEXT(TAIL(Q)) : (RETURN)
DELETE IDENT(TAIL(Q),HEAD(Q)) :S(FRETURN)
DELETE = VALUE(HEAD(Q))
HEAD(Q) = NEXT(HEAD(Q)) : (RETURN)

72 STRUCTURES Chap. 3

In this implementation, it is necessary to distinguish between an empty
queue and a full queue. In the procedures above, this is accomplished by
using one element as a separator which can never hold a value.

While the ring implementation is an easier way to simulate a circular
structure than an array is, rings are still fixed in size and hence are subject to
overflow. A more natural method is based on the implementation of stacks
using defined data objects which are allocated as needed. Such a structure is
shown in Figure 3.32.

Figure 3.32 A Queue Composed of Defined Data Objects

Insertion requires creation of a new element, and deletion discards an ele-
ment. The procedures are:

DATA(' ELEMENT (VALUE,NEXT) ")
DATA('QUEUE (HEAD,TAIL)')

INSERT E = TAIL(Q)
TAIL(Q) = ELEMENT(V)
HEAD(Q) = IDENT(E) TAIL(Q) :S(RETURN)
NEXT(E) = TAIL(Q) : (RETURN)
DELETE DELETE = DIFFER(HEAD(Q)) VALUE(HEAD(Q)) :F(FRETURN)
HEAD(Q) = NEXT(HEAD(Q))
TAIL(Q) = IDENT(HEAD(Q)) : (RETURN)

An empty queue is distinguished by null values for the HEAD and TAIL
fields.

Sec. 3.2 IMPLEMENTATION OF SOME SPECIFIC STRUCTURES 73

EXERCISES

3.8 Write a string implementation of queues.
3.9 Write an array implementation of queues.

3.10 Write a function to construct the ring for the ring implementation of
a queue,

3.11 Modify the ring implementation of queues to allow for automatic en-
largement when a queue becomes full.

3.12 Write a function to transfer the contents of a stack to a queue. Make
the procedure independent of the methods of implementation for the
stack and queue.

3.13 For each method of queue implementation, write a function to count
the number of items on a queue.

3.14 For each method of queue implementation, write a function to copy
a queue.

3.15 For each method of queue implementation, write a function to print
the contents of a queue as a sequence of items on separate lines.
Write procedures to print:

(a) From the head to the tail.
(b) From the tail to the head.

3.2.3. Linked Lists

The implementations of stacks and.queues using defined data objects
are just two examples of singly-linked lists. These structures are linear, con-
sisting of objects linked together, one after another. Given a pointer to an
object, the next object (if any) can be reached directly by use of a field
function. Successive objects on the list can be accessed by successive use of
field functions.

Linked lists are useful in a number of situations where neither stacks nor
queues are necessary. For example, in some types of linguistic processing it
is useful to represent a segment of text (such as a sentence) as a list of words.
The queue or stack mechanisms might suffice in such a case, but the rela-
tively rigid constraints imposed by the access functions for these structures
might be more of a hindrance than a help.

When the use of linked lists is being considered, a number of questions
arise:

74 STRUCTURES Chap. 3

(1) What operations can easily be performed on lists?

(2) To what extent are related pointers to objects necessary or con-
venient?

(3) What operations are difficult, inefficient, or impossible to perform
on lists?

Some answers are obvious. For example, getting from one element to
the next is straightforward and efficient. Getting from an element to the
previous element is not possible unless there is some related pointer else-
where that leads to the previous element. Related pointers, i.e., pointers that
are not part of the list itself, determine many of the processes that can be
performed on lists. In the case of stacks, only one related pointer, to the
top, is required. For queues, two pointers, one to the head and another
to the tail, are used. Of course, given a pointer to the tail of a queue,
it is possible to get to the head, but the operation is time consuming and
inefficient.

Copying a list illustrates many of the aspects of list processing. Suppose
that E points to the first element on a list, and that NEXT is the field func-
tion used to link the elements together. The following function creates a
(physically distinct) copy of the list:

DEFINE('COPYL(E)')

COPYL COPYL = COPY(E)
E = COPYL

COPYLP NEXT(E) = DIFFER(NEXT(E)) COPY(NEXT(E)) :F(RETURN)
E = NEXT(E) : (COPYLP)

This procedure may be a little obscure unless the built-in function CQPY is
clearly understood. Figure 3.33 illustrates the steps in the process for a
typical list.

At step (a), E points to the first element on the list. The first state-
ment of COPYL creates a copy of the first element as shown in (b). The
second statement changes the value of E to point to the new element as
shown in (c). COPYL continues to point to the first element on the new
list being created. It is this value that is eventually returned by the func-
tion. The copying process continues as long as there are elements on the
original list. In (f) the entire list has been copied and E points to the last
element. E is then assigned the null string (NEXT(E)) and the statement
labeled COPYLP fails. A pointer to the new list is returned.

Sec. 3.2 IMPLEMENTATION OF SOME SPECIFIC STRUCTURES 75

G GG
o ~P—P—OD

comn.-»@-{}—»@_» cee

® M% coo
com-»@-»(}_»@_» .o

~B—B—D

E

BB

Figure 3.33 Copying a List

76 STRUCTURES Chap. 3

Although COPYL makes copies of the elements comprising the original
list, it does not copy any objects pointed to by other fields of these ele-
ments. If an element on the original list points to an object, the correspond-
ing element on the new list points to the same object. This situation is il-
lustrated in Figure 3.34.

original list

{A}

new list eoeo

Figure 3.34 Lists Pointing to Common Objects

The two lists share objects. This is another manifestation of the problem
mentioned in Section 3.1.1.

Modification of a singly-linked list can be awkward. Suppose, for ex-
ample, that it is desired to delete an element. This can only be done, in
general, if there is a pointer to an element before the element to be deleted.
Similarly, an element can be inserted after an element, but not before it.
This problem is often overcome by the use of related pointers which make it
possible to get to any element on a list. If, however, a list is to be used in a
situation where modification is frequently performed, a doubly-linked list
may be called for. Figure 3.35 shows the structure of a doubly-linked list in
which there are pointers in both directions between adjacent elements.

))) ()()()

Figure 3.35 A Doubly-Linked List

Elements on such a list might be defined by

DATA(' ELEMENT (VALUE ,NEXT,LAST) ")

Sec. 3.2 IMPELEMNTATION OF SOME SPECIFIC STRUCTURES 77

where LAST is used to link back to the previous element.
In a doubly-linked list, deletion or insertion can be performed anywhere
in the list. A function to delete an element is:

DEFINE('DELELE(E)')

DELELE IDENT(NEXT(E)) :S(DELNN)
IDENT (LAST(E)) :S(DELNL)
NEXT(LAST(E)) = NEXT(E)

DELNL LAST(NEXT(E)) = LAST(E) : (RETURN)

DELNN IDENT(LAST(E)) :S(RETURN)
NEXT(LAST(E)) = : (RETURN)

The special cases are required to handle the first and last elements on the list.
Note that it is meaningless to delete an element that is not part of a list un-
less there are related pointers. The problem of related pointers is not treated
by the function above. In fact, related pointers are not, in general, accessible
from the list.

EXERCISES

3.16 Write a function to process text and create a linked list of the words
contained in it.

3.17 Write a recursive procedure for COPYL. What inherent limitation does
recursion have in this situation?

3.18 Write a function to print the values on a singly-linked list.
3.19 Write a function to copy a doubly-linked list.

3.20 Write functions to add an element to a doubly-linked list
(a) Before a given element.
(b) After a given element.

3.21 Write a function to print the values on a doubly-linked list.

3.22 Write a function to create a doubly-linked list from a singly-linked
list.

3.23 A deque [23] is a doubly-linked list that is accessed only at the ends.
Implement deques and develop appropriate functions for manipu-
lating them.

78 STRUCTURES Chap. 3
3.2.4. Binary Trees

Many of the more important types of structures are not linear. An ex-
ample is the binary tree. Binary trees are composed of nodes that are con-
nected together in certain restricted ways. A node has two possible links,
one pointing to a left subtree and one pointing to a right subtree. See
Figure 3.36.

left subtree right subtree
Figure 3.36 A Node in a Binary Tree

A node may have at most one pointer to it. A node without a pointer to it
is called a root and is treated as a specially designated, or first, node in a
binary tree. A node without a pointer from it is called a leaf. Furthermore
there may be no loops. Binary trees are customarily drawn with the root at
the top and with the subtrees below. Figure 3.37 illustrates a typical bin-
ary tree.

Figure 3.37 A Binary Tree

Sec. 3.2 IMPLEMENTATION OF SOME SPECIFIC STRUCTURES 79

In such a diagram, left and right subtrees are implied by position. Note that
a node may have 0, 1, or 2 subtrees. With only links downward, it is only
possible to get from a node to nodes below, unless there are related pointers.
Some processes are more conveniently programmed if there are upward
pointers as well. Nodes in a binary tree may be defined as follows:

DATA(' BNODE (VALUE ,LEFT ,RIGHT,UP)"')

Figure 3.38 illustrates the binary tree of Figure 3.37 in terms of this defined
data type.

Figure 3.38 A Binary Tree with Upward Pointers

Such a diagram, showing all the pointers, is unnecessarily complicated for
most purposes. The simplified form, as shown in Figure 3.37, is used for
most diagrams, with the understanding that all pointers are present in an
actual structure.

A binary tree is an aggregate of BNODEs. Constructing a binary tree re-
quires linking the BNODEs together with appropriate pointers. The VALUE
field is provided as a place to associate data with a particular node. Other
fields can be provided if desired.

There is an obvious correspondence between binary trees and arithmetic
expressions containing binary operators. Although another structure is more
convenient for representing expressions, the correspondence between binary
trees and binary expressions will be discussed here as a starting point. Con-
sider the expression

B*(A-C/D)
A corresponding binary tree is shown in Figure 3.39.

80 STRUCTURES Chap. 3

{*}

{D}

Figure 3.39 A Binary Tree Corresponding to an Expression

The relationship (in fact, isomorphism) between the expression and the
binary tree is more evident if the expression is fully parenthesized:

(B*(A-(C/D)))

Each term in parentheses corresponds to a subtree, and the expressions on
either side of an operator correspond to the left and right subtrees of the op-
erator. Another way of looking at the relationship is in terms of the prefix
form of the expression:

*(B’"(As/(CsD)))
In this form, the two terms in parentheses correspond to the left and right
subtrees, the comma separating the left from the right.

Of course, there is no reason why this notation must be restricted to
arithmetic expressions. The functional notation

S(T,U(V(W),Y(2)))
corresponds to the tree shown in Figure 3.40.

{y}

Figure 3.40 Another Binary Tree

Sec. 3.2 IMPLEMENTATION OF SOME SPECIFIC STRUCTURES 81

In case there is only one subtree, the convention is that an omitted comma
corresponds to a missing right subtree.

While lists are usually constructed an element at a time as information is
obtained, and are continually modified during processing, binary frees are
frequently constructed at one time and are subsequently examined. For ex-
ample, to convert a prefix string of the form given above into a correspond-
ing binary tree, the following functions may be used.

DEFINE('ADDL(N1,N2)"
DEFINE('ADDR(N1,N2)"

)
DEFINE (' BTREE(S)L, E

™0 = (" BAL . ',' BAL . R ')'
RONE = '(,! BAL R ")
LONE = '("BAL . L ')’

TFORM = BREAK('() . S (TWO | RONE | LONE)

ADDL LEFT(NT) = N2

ADDU UP(N2) = NI : (RETURN)
ADDR RIGHT(N1) = N2 : (ADDU)
BTREE S TFORM
BTREE = BNODE(S)
(DIFFER(L) ADDL(BTREE,BTREE(L)))
(DIFFER(R) ADDR(BTREE,BTREE(R))) : (RETURN)

The functions ADDL and ADDR are used to add left and right subtrees to a
node. The pattern TFORM is used to match the three possible alternative
parenthesized forms. Note that if TFORM fails to match, the argument string
simply represents a single node. The function BTREE is naturally recursive
because the structure being constructed has a recursive definition.

The inverse of this process is the construction of a prefix expression cor-
responding to a binary tree. Such a function follows:

DEFINE('BEXP(T)L,R")

BEXP BEXP = VALUE(T)
L = DIFFER(LEFT(T)) BEXP(LEFT(T))
R = DIFFER(RIGHT(T)) ',' BEXP(RIGHT(T))
S = LR
BEXP = DIFFER(S) BEXP '(' S ')' :(RETURN)

Copying a binary tree is in many respects similar to copying a list. The
approach is recursive for the reason mentioned above.

82 STRUCTURES Chap. 3

DEFINE('COPYBT(T)")

COPYBT COPYBT = COPY(T)
2DIFFER§LEFT({)g)ADDL(COPYBT,COPYBT(LEFT(T)
T

)
DIFFER(RIGHT(T)) ADDR(COPYBT,COPYBT(RIGHT(T)

))) :(RETURN)

Use of Binary Trees in Searching and Sorting

In a number of situations, notably in symbol tables, new objects are
added to an aggregate one at a time. The objects may have attributes or
may require sorting. In either event, it is necessary to locate an object that
is already in the aggregate. Binary trees can be used for this purpose.

The two links, left and right, can be utilized to direct search in the tree
on the basis of a comparison of the value of a node with the value to be lo-
cated. The algorithm can be informally stated as follows:

(1) Start at the root of the binary tree.

(2) If the value of the current node is the same as the value to be lo-
cated, the search is complete.

(3) If the value of the current node is greater than the value to be lo-
cated, move to the right. If it is less, move to the left. Continue
with step (2).

(4) If there is no left or right subtree in step (3), the value does not
exist in the binary tree. This fact can be signaled if the binary tree
is being searched, or a node with the new value can be added at the
corresponding place if the binary tree is being built.

The two subtrees of a node contain, respectively, all values that are less
than or greater than the value of the node. See Figure 3.41.

Figure 3.41 Division of Values into Subtrees

Sec. 3.2 IMPLEMENTATION OF SOME SPECIFIC STRUCTURES 83

The nature of the comparison in step (3) depends on the ways that values are
ordered. The comparison might be lexical for alphabetic entries or numerical
for numbers.

A procedure for lexical insertion, LEXINS, follows. In this procedure
it is convenient to add a defined data object that points to the root of the
binary tree. This construction parallels the structures for stacks and queues.
The function is:

DATA('BINTREE(ROOT)')
DEFINE('LEXINS(V,T)N')

LEXINS N = ROOT(T)
ROOT(T) = IDENT(N) BNODE(V) S(RETURN)
LEXNXT LGT(VALUE(N),V) :S(LEXRT)
IDENT (VALUE(N),V) S(RETURN
N = DIFFER(LEFT(N)) LEFT(N) S(LEXNXT
ADDL (N,BNODE(V)) : (RETURN)
LEXRT N = DIFFER(RIGHT(N)) RIGHT(N) :S(LEXNXT)
ADDR(N,BNODE(V)) : (RETURN)

To see how a binary tree develops, consider an example in which the words
of the following sentence are inserted in order from left to right:

HIS FELT HAT IS ON THE OLD RACK
Figure 3.42 shows the first few steps.

> | i
{HIS} {HIS} I {HIS}
FELT} {FELT}
{HAT}
@ | (b) © | ()

Figure 3.42 Development of a Binary Tree

84 STRUCTURES Chap. 3

Initially the tree is empty, as is shown in (a). When HIS is inserted, it be-
comes the first node. Since FELT is less than HIS, a node is created to the
right. When HAT is inserted, it is less than HIS, and goes to the right. HAT is
greater than FELT, however, and goes to the left. The complete binary tree
is shown in Figure 3.43.

{FELT}

{RACK}

Figure 3.43 The Complete Binary Tree

Notice that the structure of the binary tree is strongly dependent on the order
in which the values are entered. If the words are entered in reverse order, the
binary tree of Figure 3.44 results.

{FELT}

Figure 3.44 The Binary Tree Resulting From Reverse Entry

Sec. 3.2 IMPLEMENTATION OF SOME SPECIFIC STRUCTURES 85

It is important to recognize that position in a binary tree according to order
is a relative matter, not an absolute one. In searching a binary tree for an
entry, the time required depends on the structure of the binary tree. There
are various techniques for manipulating binary trees to “balance” them [20].

A binary tree of this type may be used to obtain a sorted list of items.
The process requires traversing the binary tree in a prescribed manner. Basic-
ally the traversal proceeds as far to the right as possible. When a node with
no right subtree is encountered, its value is output. From this point, traversal
starts upward and then down the first left link. Whenever a node is first en-
countered in upward traversal, it is output. When a left link is taken, tra-
versal to the right is then reinitiated. A procedure for printing the values in
a binary tree in lexical order is:

DEFINE('LEXPRT(T)N,M')

LEXPRT N = DIFFER(ROOT(T)) ROOT(T) :F(RETURN)

LEXPRD N = DIFFER(RIGHT(N)) RIGHT(N) :S(LEXPRD)

LEXOUT OUTPUT = VALUE(N)
N = DIFFER(LEFT(N)) LEFT(N) S(LEXPRD)

LEXup M = N
N = DIFFER(UP(N)) UP(N) :F(RETURN)
DIFFER(LEFT(N),M) S(LEXOUT)F (LEXUP)

In this procedure, one point deserves special attention: The value of a node
is printed when it is first encountered in upward traversal. This may be
tested by determining whether the move upward comes from a left or a right
subtree. The last statement in the procedure performs this test.

EXERCISES

3.24 Suppose a binary tree is to be used as a symbol table in which there is
a value associated with each symbol. What modifications to the struc-
ture given in the text are necessary?

3.25 Write a function to count the number of nodes in a binary tree.

3.26 Upward pointers in binary trees make traversal convenient at the ex-
pense of additional space. Omit the UP field from BNQODE and re-
write LEXPRT
(a) Using a recursive procedure.

(b) Using an iterative procedure and a stack for storing intermediate
locations.

3.27 Write a function to diagram a binary {ree.

86 STRUCTURES Chap. 3

3.25. Trees

While nodes in binary trees may only have two subtrees, nodes in a
tree may have an arbitrary number of subtrees. Figure 3.45 illustrates such
a tree.

O

Figure 3.45 A Tree

Since a node may have many subtrees, it is inconvenient to specify each
subtree in the way that was used for binary trees. Instead, the subtrees of a
tree can be considered as arranged from left to right. The terminology used
for describing trees is similar to that used for describing binary trees, except
that the relationships are somewhat different. A node may have a left son,
which is the top of the leftmost subtree below it. Other subtrees are de-
scribed relative to the left son. A right sibling is the top of the subtree to the
right of a node. The father of a node is the node above it.
A defined data type for such a node is given by:

DATA(' TNODE (VALUE ,LSON,RSIB,FATHER) ')

Sec. 3.2 IMPLEMENTATION OF SOME SPECIFIC STRUCTURES 87

As before, a field to contain a value is provided. Other fields can be added if
they are needed. Figure 3.46 shows typical relationships among nodes. Ais
is the father of B, C, and D. B is the left son of A, C is the right sibling of B
and D is the right sibling of C.

Figure 3.46 Relationships Among Nodes of a Tree

The arrows in Figure 3.46 illustrate the set of pointers that makes it possible
to get from any place in a tree to any other. With such pointers, a tree can
be traversed without any related pointers. Note that it is possible to go di-
rectly from any node only to its left son, right sibling, or father, but succes-
sive pointers make it possible to get to any node in the tree. As with binary
trees, it is usually unnecessary to show all the pointers in diagrams. A sim-
plified diagram is illustrated in Figure 3.47.

Figure 3.47 A Simplified Tree Diagram

Lines between nodes indicate father-son relationships.

The methods for constructing trees are similar to those for constructing
binary trees. Two tree-constructing functions are particularly useful: one
for adding a tree as the left son of a node, and one for adding a tree asa
right sibling of a node. Such functions follow:

88 STRUCTURES Chap. 3

DEFINE('ADDSON(N1,N2)")
DEFINE('ADDSIB(N1,N2)")

ADDSON RSIB(N2) = LSON(N1)

FATHER(N2) = NI

LSON(NT) = N2 : (RETURN)
ADDSIB RSIB(N2) = RSIB(N1)

RSIB(NT) = N2

FATHER(N2) = FATHER(NT) : (RETURN)

In each case, N1 is the node to which a subtree is added.

As with binary trees, there is a natural isomorphism between trees and
expressions. The relationship is more general with trees since unary opera-
tors with more than two operands can be represented. For example, the
expression

3*F(X,Y,-12)+Z
is equivalent to the tree shown in Figure 3.48.

{-}

{12}

Figure 3.48 A Tree Corresponding to an Expression

Sec. 3.2 IMPLEMENTATION OF SOME SPECIFIC STRUCTURES 89

As before, there is an equivalent prefix form:

+(*(3,F(X,Y,-(12)) 2) K

Note that F and the unary -~ are prefix forms in the original expression. In
dealing with expressions, it must be remembered that unary operators are
different from binary operators, even though the same symbols may be used
in both cases. In prefix form, parentheses and commas resolve any apparent
ambiguity. prefix

A function to construct a tree from a parenthesized expression follows:

DEFINE('TREE(S)T,X,Y,Z")

MANY = ("BAL . X '," BAL . Y ")!

ONE = '('BAL . X ")

TFORM = BREAK('(') . S (MANY | ONE)
L}

NEXT = POS(0) BAL . Z ',

TREE S TFORM

TREE = TNODE(S)
T = DIFFER(X) TREE(X) :F(RETURN)
ADDSON(TREE,T)

TREET IDENT(Y) :S(RETURN)
Y NEXT = :F(TREE2)
ADDSIB(T,TREE(Z))

T = RSIB(T) : (TREE1)

TREE2 ADDSIB(T,TREE(Y)) : (RETURN)

Converting a tree back into an expression is similar to the corresponding
operation on binary trees, except that the somewhat more complicated struc-
ture must be taken into account. A procedure follows:

DEFINE('EXP(T)")

EXP EXP = VALUE(T)
T = DIFFER(LSON(T)) LSON(T) :F (RETURN)
EXP = EXP '(' EXP(T)

EXP1 T = DIFFER(RSIB(T)) RSIB(T) :F(EXP2)
EXP = EXP ',' EXP(T) : (EXP1)

EXP2 EXP = EXP ')' : (RETURN)

There are many ways a tree can be traversed. Consider the problem of
printing the values in a tree in some well-defined and logical order. One way

S0 STRUCTURES Chap. 3

corresponds to the order of the components in the corresponding prefix ex-
pression, and is called left listing. In such a listing, the value of each node is
printed starting at the root and proceeding down the left-most branch of the
tree. The listing process can be conceptualized by first defining a successor
function NEXT(N) that returns the next node following a given node N:

DEFINE('NEXT(N)')

NEXT NEXT . DIFFER(LSON(N)) LSON(N) :S(RETURN)
NEXT1 NEXT DIFFER(RSIB(N)) RSIB(N) :S(RETURN)
N = DIFFER(FATHER(N)) FATHER(N) :S(NEXT1)F(FRETURN)

NEXT returns the left son if possible, the right sibling if that is not possible,
and otherwise starts back up the tree, returning the right sibling of the father,
if possible. When the root is reached, NEXT fails. A left-listing function,
based on NEXT, follows:

DEFINE('LLIST(T)")

LLIST OUTPUT = VALUE(T)
T = NEXT(T) :S(LLIST)F (RETURN)

EXERCISES

3.28 Write a function to count the nodes in a tree.
3.29 Write a function to count the leaves on a tree.

3.30 Let the depth of a tree be the maximum number of downward point-
ers in any path leading from the root to a leaf. Write a function to
compute the depth of a tree.

3.31 Write a function to copy a tree.
3.32 Write a function to get from a node in a tree to its left sibling.

3.33 Write a function to list the values of nodes in a tree so that each value
is indented by an amount that corresponds to its depth in the tree.

3.34 Write a function to list a tree without using FATHER pointers.
3.35 Write a function to convert a binary tree to a tree.

3.36 Write a function to diagram a tree.

Sec. 3.3 PROCESSING STRUCTURES THAT CONTAIN LOOPS 91

3.3.. PROCESSING STRUCTURES THAT CONTAIN LOOPS

Several of the structures discussed in the preceding sections contain
loops. The most obvious example is the ring implementation of queues. A
less obvious example is a tree in which there are loops between a node and
its sons. These loops are shown explicitly in Figure 3.46, but are suppressed
in other diagrams. Loops in structures provide the potential for loops in the
programs that process them. Endless program loops are expensive and diffi-
cult to locate. In the structures discussed in the preceding sections, however,
such program loops are not likely to cause trouble. In trees, for example,
there are no loops that result from following successive LSON pointers. In
the case of rings, there is a loop through successive NEXT pointers. Detection
of a full queue is done by pointer comparison. This process deserves a more
detailed discussion. Consider a ring, apart from its use in a queue, as shown
in Figure 3.49.

Figure 3.49 A Ring

To move from A to the next element, the following statement can be used:

A = NEXT(A)

92 STRUCTURES Chap. 3

If the values of elements on a ring are to be printed, statements such as the
following might be used:

RLOOP OUTPUT = VALUE(A)
A = NEXT(A) : (RLOOP)

Unlike trees, in which successive LSON pointers eventually terminate, there is
nothing to stop this loop. A test of a null value of A would never succeed.
If, however, the starting position is noted, a pointer comparison can be used
to terminate processing:

B = A
RLOOP QUTPUT = VALUE(A)
A = NEXT(A)
IDENT(A,B) :F(RLOOP)S(DONE)

The predicate IDENT succeeds only if the values of A and B are identical,
that is, if they are the same pointer.

A ring is a very simple structure. Processing it is no problem because of
its uniformity. The printing loop in the example above is certain to return
to the starting point without getting into an intermediate loop. Consider a
slightly more complicated structure, the ‘“curlicue”, shown in Figure 3.50.

Figure 3.50 A “Curlicue”

Sec. 3.3 PROCESSING STRUCTURES THAT CONTAIN LOOPS 93

In general, the number of elements before the loop may vary. If the
statements above are applied to this structure, an endless program loop
results.

Overcoming this type of problem is difficult in general, especially if the
relationships among the parts of the structure are not regular or not known.
More complicated structures are easy to devise, if not easy to process. A di-
rected graph, for example, consists of elements connected by pointers with-
out any constraints on the number of pointers or what elements they may
point to.

One method of avoiding loops is to keep track of all elements that
have been processed. A loop is detected when a previously processed
element is encountered. Keeping track of all processed elements would
be awkward if it were not for tables. Any data object can be used to
subscript a table and lookup is automatic. Consider the printing state-
ments applied to a curlicue. Instead of recording the single starting po-
sition, each element processed can be recorded by assigning it a nonnull
value in a table:

MARK = TABLE()

RLOOP MARK<A> = IDENT(MARK<A>) 1 :F(DONE)
OUTPUT = VALUE(A)
A = NEXT(A) : (RLOOP)

This general technique can be used in a variety of situations. The particular
method depends on the type of structure being processed and the operation
being performed.

EXERCISES

3.37 Write a function to copy a ring.
3.38 Write a function to copy a curlicue.
3.39 Devise a string representation for directed graphs.

3.40 Devise a method of representing directed graphs as aggregates of data
objects.

3.41 Write functions to convert between the string and data representations
of directed graphs.

3.42 Ahoneycomb is an aggregate of hexagonal cells. A typical honeycomb
may be visualized as shown in Figure 3.51.

94 STRUCTURES Chap. 3

Figure 3.51 A Honeycomb

(a) Give a data definition for cells from which honeycombs can be
constructed.

(b) Write a function to construct a random honeycomb.

(c) In a honeycomb, some cells may be completely surrounded by
other cells, while others are not. Write a predicate that succeeds
if a cell is completely surrounded, and fails otherwise.

(d) Write a function to count the number of cells in a honeycomb.

(e) Write a function to combine two honeycombs at a specified cell.

(f) Write a function to purge a cell from a honeycomb if it is com-
pletely surrounded by other cells.

4 APPLICATIONS
IN MATHEMATICS

Applications of string and list processing techniques to mathematics
usually bring to mind such subjects as symbolic differentiation and theorem
proving. In fact, the more widely known and glamorous applications are in
these areas. There are more fundamental applications, however, and some
general principles that have applicability in a wide range of uses. This chap-
ter starts with some fundamental topics and then goes on to consider manip-
ulation of expressions.

4.1. REPRESENTATION AND MANIPULATION OF
MATHEMATICAL OBJECTS

In Section 2.1.2, complex numbers are given as an example of the use of
functions to extend the SNOBOL4 language. Complex numbers are, of
course, essentially mathematical objects, and in most contexts they are used
for making computations relating to physical processes. There are many
mathematical objects other than integers and real numbers that are manipu-
lated either formally or to derive numerical results. The following sections
consider a few such objects to illustrate how they may be represented and
manipulated in SNOBOL4.

4.1.1. Rational Numbers

A fraction of the form p/q, where p and g are integers, is called a rational
number; p is referred to as the numerator and q as the denominator. In

95

96 APPLICATIONS IN MATHEMATICS Chap. 4

SNOBOL4, any remainder that results from integer division is discarded.
For example, the result of dividing 3 by 2 is simply 1. Such integer arith-
metic is not adequate for manipulating rational numbers. On the other
hand, real arithmetic is imprecise and real operations do not preserve the
identity of their operands. Yet there are some cases, for example algebra
and number theory, where true rational numbers must be manipulated. For
such cases, rational numbers can be added to SNOBOL4 by use of a de-
fined data type:

DATA('RATIONAL(N,D)")

Here N is the numerator and D is the denominator. This data definition im-
mediately provides three functions for manipulating rational numbers:

RATIONAL creation of rational numbers
N numerator of rational numbers
D denominator of rational numbers

Other obvious functions are:

STRRTL conversion of string to rational
RTLSTR conversion of rational to string

where the string representation of a rational number could be the natural
one. For example,

Z = '5/7

assigns the string representation of the rational number 5/7 to Z. These con-
version functions are similar in structure to those given in Section 2.1.2.

The arithmetic operations follow naturally, although some care must
be taken. For example, the result of multiplying 3/4 by 2/3 is 6/12. On the
other hand, 6/12 is equivalent to 1/2. Ordinarily rational results are ‘“re-
duced to lowest terms”. If this is not done, the numerators and denomina-
tors of results may quickly get out of hand. Rational numbers can be re-
duced to lowest terms by dividing both the numerator and denominator by
their greatest common divisor. Hence, a function GCD is suggested. A pro-
cedure using Euclid’s Algorithm follows:

DEFINE('GCD(N,M)R")

REMDR (M, N)
GD = EQ(R,0) N :S(RETURN)
N

: (GCD)

o
o
o
o)
n

=
nn
=

Sec. 4.1 REPRESENTATION AND MANIPULATION OF MATHEMATICAL OBJECTS 97

This function is used in another function, REDUCE, that reduces its argu-
ments to lowest terms.

DEFINE('REDUCE(R)C"')

REDUCE C = GCD(N(R),D(R))
REDUCE = RATIONAL(N(R) / C,D(R) / C) :(RETURN)

The arithmetic operations can now be written in which results are reduced
to lowest terms. An example is:

DEFINE('MULRTL(R1,R2)")

MULRTL MULRTL REDUCE(RATIONAL(N(RT) * N(R2),
+ D(R1) * §D(R2))) : (RETURN)

Extending the arithmetic operations of SNOBOL4 to include rationals
as well as integers can be accomplished in a fashion similar to that used for
complex numbers. Precautions must be taken in handling special cases, and
the solutions are somewhat different. For example, while it probably is not
desirable to convert a complex number with a zero imaginary part into a real
number, it probably is desirable to convert a rational number whose denom-
inator is one into an integer. Another problem arising for rationals is the
equivalence of p/—q and —p/q. It is usually assumed that the denominator
is positive; if a rational number is negative, it is the numerator that is nega-
tive. To produce uniform results and to simplify comparisons, it is often
desirable to keep mathematical objects in a ‘“‘canonical form” if possible.
REDUCE only goes part way; the result is left as an exercise.

EXERCISES

4.1 Write procedures for the functions STRRTL and RTLSTR described above.
4.2 Write a function to add rational numbers.

4.3 Generalize the built-in division operator to accept RATIONAL operands
and allow RATIONAL results.

4.4 The string representation of a rational number can be thought of as an
extended form of a “numeral string”. SNOBOL4 automatically con-
verts numeral strings corresponding to integers and real numbers. Gen-
eralize the built-in addition operator to handle RATIONAL operands and
numeral strings representing rationals.

98

4.5

4.6

4.7

4.8
4.9

4.10

4.1.2.

APPLICATIONS IN MATHEMATICS Chap. 4

Why does REDUCE create a new RATONAL rather than modifying the
fields of its argument?

Discuss possible ways of handling a zero denominator.
Write a recursive procedure for GCD.
Write a function to put rational numbers in canonical form.

Let a “‘complex rational” be a complex number whose real and imag-
inary parts are rational numbers rather than real numbers. An ex-
ample of a complex rational is

5, 3.

67!

(a) Devise a representation for complex rationals using a defined data
type CPXRTL. Illustrate schematically how the number above
would appear in this representation.

(b) Devise a string representation for complex rationals and write func-
tions to convert between the string and data type representations.

(c) Write a function to add CPXRTLs.

Let a ‘‘rational complex” be a rational number whose numerator
and denominator are complex numbers rather than integers. An ex-
ample is

5+ 3i
6+ Ti

(a) Carry out the preceding exercise for complex rationals, using a
data type RTLCPX and writing corresponding functions for con-
version and addition.

(b) Write functions to convert between corresponding CPXRTLs and
RTLCPXs. .

Large Integers

Integers in SNOBOL4 are limited in size. This limitation is imposed by
implementation considerations and is related to the architecture of com-
puters on which SNOBOL4 is implemented. There are, nevertheless, situa-
tions in which large numbers must be manipulated. While real numbers
allow for very large numerical values, these values are nonetheless impre-

cise.

Where precise, but large, values must be handled, other techniques

must be used.

Sec. 4.1 REPRESENTATION AND MANIPULATION OF MATHEMATICAL OBJECTS 929

Unlike complex numbers and rationals, large integers are not naturally
thought of as objects with a fixed number of fields. One way to represent a
large integer is as a number of integer segments, where each segment is small
enough in magnitude to be handled as an integer. For example, the integer
1,425,325,678,963,542, represented as a string 1425325678963542 might
be broken into segments as follows:

1425 3256 7896 3542

The idea is that large integers can be processed by parts where each part is
numerically small enough so that overflow will not occur when the segments
are used in arithmetic operations. The size of segments is determined by the
maximum integer allowed in SNOBOL4, which varies from implementation
to implementation. If, for example, the maximum integer in a particular
implementation is 1010, and multiplication is to be performed on segments,
segments must not be greater than 105. Mathematically, segmentation of a
large integer corresponds to representing that integer in a large base. Sup-
pose the base, b, is 104. Then the integer above is

1425*b3 + 3256%b2 + 7896*b + 3542
On the other hand, if b is 105, then the integer is
1#p3 + 42532*%b2 + 56789*b + 63542

We will assume that large integers can be of arbitrary size, and hence
there is no limitation to the number of segments that may be required to
represent a particular large integer. A linked list, as described in Section
3.2.3, provides a natural structure for representing large integers. A data
type for large integers might be:

DATA('LRGINT (SEGMENT,NEXT) ')
Creating a large integer from a string may be done as follows:
DEFINE('STRLRG(S)R')

BASE = 10000

MAXIP = RTAB(SIZE(BASE - 1)) . S REM . R
STRLRG S MAXIP :F(STRLR1)

STRLRG = LRGINTéR,STRLRG(S)} - (RETURN
STRLR1 STRLRG = DIFFER(S) LRGINT(S : (RETURN

Notice the use of pattern matching to break the string into segments. The
linked list is created with the least significant segments at the top. For ex-
ample, the list for 3,765,197,658,102,103 can be visualized as shown in
Figure 4.1.

100 APPLICATIONS IN MATHEMATICS Chap. 4

(21037

Nt

(5810
Y

1976
~—t_—
N—

Figure 4.1 A Large Integer

The reason the least significant segments are placed at the top is because these
segments are processed first in most arithmetic operations.

Arithmetic operations on large integers are list-processing problems.
One of the simpler examples is addition:

DEFINE('ADDLRG(L1,L2,C)")

ADDLRG ADDLRG = IDENT(L1) L2 :S(ADINTC)
ADDLRG = IDENT(L2) L1 :S(ADINTC)
ADDLRG = SEGMENT(L1) + SEGMENT(L2) + C
ADDLRG = LRGINT(REMDR(ADDLRG,BASE) ,ADDLRG(NEXT(L1),

+ NEXT(L2) ,ADDLRG / BASE)) :(RETURN)
ADINTC EQ(C,0) :S(RETURN)
ADDLRG ADDLRG (ADDLRG,LRGINT(C)) :(RETURN)

Note that ADDLRG has three arguments: two large integers and an (integer)
carry. Simply adding two large integers involves no carry. However, ADDLRG
calls itself recursively and in some cases there may be a nonzero carry result-
ing in “segment overflow’’ when adding two segments. The first two state-
ments of ADDLRG deal with situations which occur when the end of a list is
encountered. In the most general case, two segments and a carry are added.
The result is an integer, but that integer may be numerically larger than the
allowed size of a segment. Division by BASE and the corresponding remain-
der provide the excess (carry) and the resulting segment, respectively. Thus,
a new large integer is formed with the new segment and is linked to the re-
sult of adding the next segments of the large integers. Any carry remaining
from forming the new segment is included in the addition. If either list is
exhausted, as determined by the first two statements of ADDLRG, the value
of ADDLRG becomes the other list. If there is no carry, the other list is

Sec. 4.1 REPRESENTATION AND MANIPULATION OF MATHEMATICAL OBJECTS 101

simply returned as value. Otherwise, the carry is made into a large in-
teger and then added to the list. Note what happens if both lists are ex-
hausted simultaneously.

It is important to be aware of the consequences of returning one of the

arguments as value. Consider, for example, the two large integers illus-
trated in Figure 4.2.

#
1

16 2222

(@]

17
Figure 4.2 Two Large Integers

These large integers correspond to 161000 and 1722224000 respectively.
The statement

Z = ADDLRG(X,Y)
produces the equivalent of the statement
ADDLRG = LRGINT(5000,ADDLRG(a,b,0))

where a and b represent the pointers shown in Figure 4.2. The inner call of
ADDLRG in turn produces the equivalent of the statement

ADDLRG = LRGINT(2238,ADDLRG(,c,0))

The null argument of this inner call causes ¢ to be returned as value. The
resulting structure assigned to 7 is shown in Figure 4.3.

21000 Y4000 z
S~—t
y

Figure 4.3 A Result of ADDLRG

102

APPLICATIONS IN MATHEMATICS Chap. 4

Note that Y and Z now share a segment. This is another example of a side
effect that is subtle and may, for most purposes, go unnoticed. In fact, as
long as no operation on large integers modifies a segment or adds anything
to the bottom of a list, this sharing of structures offers an advantage in the
saving of space and time required to copy structures.

4.11

4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

4.20
4.21
4.22

4.23
4.24
4.25

4.26

4.27

EXERCISES

If the maximum integer in an implementation of SNOBOL4 is 101°,
what is the maximum base for a large integer if

(a) Only addition is to be performed on segments?

(b) Exponentiation may be performed on segments?

Why is a power of ten a desirable value for the base?

What is the effect of leading zeroes in the argument of STRLRG?
Add a test to STRLRG to detect invalid arguments.

Write a function to convert integers to large integers.

Write a function to convert large integers to strings.

Write a function to copy large integers.

Write functions to perform arithmetic comparisons on large integers.

STRLRG produces segments that are numeral strings, not integers.
ADDLRG, however, produces integer segments. For uniformity, modify
STRLRG to produce integer segments.

Write a function to multiply large integers.
Write an iterative procedure for ADDLRG.

The treatment of large integers in the text is limited to positive values.
Develop a method for representing negative values. Modify the func-
tions for processing large integers accordingly.

Write a function to subtract large integers.
Write a function to divide large integers.

Rewrite ADDLRG so that the result does not share segments with its
arguments.

Develop a set of functions for handling rational numbers whose nu-
merators and denominators are large integers.

Develop a set of functions to operate on large real numbers.

Sec. 4.1 REPRESENTATION AND MANIPULATION OF MATHEMATICAL OBJECTS 103

4.28 Palindromic numbers (see Exercise 1.21) have a number of interesting
properties. There is a conjecture concerning palindromic numbers as
follows [25]. Starting with any positive integer, reverse it and add the
two integers. Repeat this process with the result. If this process is
continued, a palindromic number is eventually obtained. An ex-
ample is

37
E
110
011

121

This conjecture is known to be false for numbers written in the base
2. As of this writing, the conjecture has not been resolved for num-
bers written in the base 10. Explore this conjecture for the base 10.
(Caution: Although most decimal numbers produce palindromic sums
quickly, some (such as 196) do not.)

4.1.3. Polynomials

A polynomial is a form of mathematical expression that is arranged as a
sum of products. The products consist of integer coefficients and variables
raised to nonnegative integer powers. An example is:

—3x2y2z + 5x2y + xyz2 % 3xz + Ty — 2

Typical operations that are performed on polynomials are addition and mul-
tiplication. Such a polynomial is represented as a parenthesized expression
using the operators +, -, *, and ! (for exponentiation) as follows:

CCOCCOC(=3%(X12))*(Y12))*Z)+((5*(X12))*Y))+ ((X*Y)*(Z!2)))-((
3*X)*Z))+(7*Y))-2)

Not only is such a representation cumbersome, but it is awkward for typical
polynomial operations. In fact, the essential aspects of a polynomial are its
coefficients and the exponents of the variables. The polynomial above could
have a string representation as:

(-3:2,2,1)(5:2,1,0)(1:1,1,2)(-3:1,0,1)(7:0,1,0)(-2:0,0,0)

where each parenthesized group represents a term of the polynomial and
each term starts with a coefficient and is followed by a list of exponents.
This is, of course, only one of many possible string representations. Note,
for example, that this representation does not include the variables of the
polynomial. These variables may or may not be implied in a particular
situation.

104 APPLICATIONS IN MATHEMATICS Chap. 4

Polynomials present a special problem in representation because of the
operations typically performed on them. For example, polynomial addition
requires adding coefficients of like exponents. Quite typically, however, the
exponents present in any particular polynomial are “sparse”, i.e., only a few
of the possible terms have nonzero coefficients. Including terms with zero
coefficients is often wasteful or impractical. Consider, for example, the
polynomial x201 — 1,

The problem of representing sparse objects as well as kinds of objects that
have no specified limits on their complexity provides a situation in which
tables can be used effectively in conjunction with arrays. A representation of
the polynomial given above could be constructed by the following statements:

-3
5

-3

7

-2

The exponents of terms are used as subscripts whose values are (nonzero)
coefficients. A function to convert a string representation of a polynomial
into such a form follows:

DEFINE('STPOLY(S)EXPN,COEFF')
TERM = '(' BREAK(':') . COEFF LEN(1) BREAK(')")
+ . EXPN LEN(1)

w o o n i~

STPOLY STPOLY = TABLE()
STPOLT S TERM = - F(RETURN)
STPOLY<EXPN> = COEFF £ (STPOL1)

This type of representation makes it possible to reference a term‘‘associa-
tively”, simply by referring to it. A function to add two polynomials is:

DEFINE('ADPOLY(P1,P2)1")

ADPOLY P1 = CONVEéT(CONVERT(P],'ARRAY'),'TABLE') :F(ADPOL3)

P2 = CONVERT(P2,'ARRAY') :F(ADPOL2)
I = 1

ADPOL1 P1<P2<I,1>> = P1<P2<I,1>> + P2<I,2> :F(ADPOL2)
I = I+1 : (ADPOL1)

ADPOL2 ADPOLY
ADPOL3 ADPOLY

P1 : (RETURN)
P2 : (RETURN)

Sec. 4.1 REPRESENTATION AND MANIPULATION OF MATHEMATICAL OBJECTS 105

The first statement makes a copy of P] that can be used in the course of the
computation without modifying the structure pointed to by P1. The neces-
sity for using CONVERT twice results from the fact that most implementations
of SNOBOL4 do not provide a way of copying tables directly. The second
statement creates an array corresponding to P2 and hence provides a repre-
sentation of the second polynomial that can be indexed. Polynomial addi-
tion takes place by subscripting P1 according to exponents in P2. Two mat-
ters deserve special consideration. In the first place, if either P] or P2 is
empty (corresponding to a zero polynomial), the other argument (possibly
also empty) is returned as value. The normal representation of a zero poly-
nomial is an empty table (which cannot be converted to an array). In the
second place, ADPOLY does not quite preserve the form for polynomials as
implied by the original definition. A zero coefficient may result from addi-
tion of coefficients of like magnitude but opposite signs.

Polynomial multiplication is slightly more complicated. All possible
products of terms must be constructed. To simplify this process, a function
ADEXPT can be written to add two exponents in the form given above.

DEFINE('ADEXPT(X1,X2)")
EXP1 BREAK(',') . ET1 LEN(1) | (LEN
EXP2 BREAK(',') . E2 LEN(1) | (LEN

1
1

ADEXPT X1 EXP] = :F(ADEX1)
X2 EXP2 = :F(ERROR)
ADEXPT = ADEXPT ',' E1 + E2 : (ADEXPT)

ADEX1 ADEXPT ! = : (RETURN)

Using this function, multiplication follows naturally:
DEFINE('MLPOLY(P1,P2)I,Jd,X,C,E")

MLPOLY P1 = CONVERT(P1,'ARRAY') :F(RETURN)
P2 = CONVERT(P2,'ARRAY') :F(RETURN)
MLPOLY = TABLE()

MLP1 | = I +1
X = PII,1> :F(RETURN)
c = Piki,2>
J = 0

MLP2Z J = J+1
E = ADEXPT(X,P2<J,1>) :F(MLP1)
MLPOLY<E> = MLPOLY<E> + C * P2<J,2> :(MLP2)

106

4.29

4.30

4.31

4.32

4.33

4.34
4.35
4.36

4.37

4.38

APPLICATIONS IN MATHEMATICS Chap. 4

EXERCISES

The representation for polynomials in the text uses a table as the basic
form and an array as an alternate form. Rewrite the functions using
an array as the basic form and a table as the alternate form.

Since large integers are represented as polynomials in a base b,

(a) Why is it desirable to represent a large integer as a linked list
rather than using the polynomial method?

(b) Why is a linked list a poor method of representation for poly-
nomials in general?

Modify ADPOLY and MLPOLY so that terms with zero coefficients are
omitted.

Terms of a polynomial are usually ordered according to the values
of the exponents as illustrated by the example in the text. De-
scribe this ordering precisely and write a predicate that compares
terms accordingly.

Write a function to convert the table representation of a polynomial
to the string representation. Put the terms in order by exponent.

Write a function to copy polynomials.
Write a function to determine if two polynomials are equal.

Devise a method of incorporating the variables of a polynominal in its
representation.

Write a function to evaluate a polynomial for specified values of its
variables.

A continued fraction has the form

where the a; are integers. Such an expression can be represented more
compactly by the sequence (a,, a,, a5, a,, ...). Rational numbers
can be represented as continued fractions with a finite number of
terms. An example is

Sec. 4.2 OPERATIONS ON EXPRESSIONS 107

1
86/11= 17+ = (7,1,4,2)
1+-2

1
4+ 3
(a) Devise a data-type representation for finite continued fractions.
(b) Devise a string representation for finite continued fractions.
(c) Write functions to convert between the string and data-type repre-
sentations of finite continued fractions.
(d) Write a function to convert rational numbers to continued frac-
tions. If necessary, consult a mathematics text, such as Reference
26, for the method.
Irrational numbers can be represented as infinite continued
fractions. Quadratic irrationals correspond to periodic continued
fractions. An example is

vV2=01,2222,..)

(e) Show how the data-type representation for finite continued
fractions can be extended to handle periodic infinite continued
fractions.

(f) Devise a string representation for periodic infinite continued
fractions.

(g) Write functions to convert between the string and data-type repre-
sentations of periodic infinite continued fractions.

4.2. OPERATIONS ON EXPRESSIONS

The topics covered so far have dealt with objects that are essentially
numerical in nature. Although polynomials are really expressions, operations
on them are basically numerical. Symbolic mathematics—formula manipula-
tion, algebraic transformations, theorem proving—shows most clearly the
power of string manipulation techniques. Curiously, these same problems
show clearly the contrast between string processing and list processing.

Also of interest is the fact that the major motivations for the develop-
ment of the SNOBOL languages were problems in symbolic mathematics:
factoring polynomials and the simplification of algebraic expressions. The
SNOBOL languages have changed markedly since their inception, but SNO-
BOLA4 still shows the influence of these early problems.

108 APPLICATIONS IN MATHEMATICS Chap. 4

There are many problems in symbolic mathematics; some have direct
practical importance while others are concerned with fundamental research.
Quite a bit of work has been done in symbolic mathematics [1,27,28]. All
we can hope to do here is discuss a few elementary considerations and il-
lustrate some of the main points.

4.2.1. Expressions

Mathematical expressions come in many forms, depending on the area of
interest. For simplicity, we shall consider expressions composed of binary
operations on operands that are variables and integers. For convenience, we
shall consider variables to consist of letters, and, for the moment, only allow
the operations of addition, subtraction, multiplication, division, and expo-
nentiation. For review, these operators have the relative precedence and as-
sociativity shown below:

operation symbol precedence associativity
exponentiation ! 3 right
multiplication * 2 left
division / 2 left
addition + 1 left
subtraction - 1 left

Parentheses are employed as usual for grouping terms, either to group
operands differently from the grouping implied by precedence or associa-
tivity, or to make expressions more readable. For example, if parenthesized
according to precedence and associativity, the expression

A-7+3*C12!3

becomes

((A-7)+(3%(C(2!3)))))

While most parentheses are usually omitted in hand work, manipulation of
expressions in a program is much easier and more efficient if the relation-
ships between operators and operands are unambiguously delineated in the
structure of the expression. Although reasonably simple conceptually, full
parenthesization of an infix form presents some practical difficulties. The
operators with lowest precedence (+ and -) are dealt with first. The reason
for this may be seen by considering the following expression:

A*B+C*D/E

Sec. 4.2 OPERATIONS ON EXPRESSIONS i 109

Since + has lower precedence than *, the operands of + are A*B and C*D/E.
That is to say, the + is the innermost operator in the fully parenthesized
form, and hence is conveniently handled first.

For operators that associate to the left (and most do), the rightmost
operator of a given precedence must be dealt with first. The following ex-
pression illustrates this point:

A+B+C-D-E+F
The parenthesized form of this expression is

(((((A+B)+C)-D)-E)+F)

Here, the outermost operator in the fully parenthesized form is the right-
most (last) operator in the original expression.

A recursive solution should be expected, since any expression is an in-
stance of a recursively-defined set of strings. If the outermost operator is de-
termined, the conversion function can be applied recursively to its operands.

The practical difficulty comes in locating the rightmost left-associative
operator. As discussed in Section 1.3, pattern matching is basically a left-to-
right process. As a result, the first instance of an operator found by pattern
matching is ordinarily the leftmost one. For example, the statement

EXP POS(0) BAL . L ANY('+-') . OP BAL . R RP0S(0)

finds the leftmost + or - in an expression. BAL assures that any parentheses
that may occur in the expression are treated properly. Consequently, a + or
- that occurs inside a nested expression is not matched.

There are several ways around the problem of left-to-right pattern match-
ing. One is to reverse the string, achieving the effect of right-to-left patterm
matching. String reversal is generally time consuming, and if the expression
contains parentheses, they appear in the wrong order for BAL. This, too, can
be circumvented, but at the expense of time and complexity. Another
method is to match the string repeatedly, removing each segment before a
+ or ~. When this can no longer be done, the last successful result indicates
-the correct operator. Here too, there are complexities and clerical difficul-
ties in keeping track of the intermediate segments and reassembling the re-
sult. A third alternative, and the one that is used here, is to first locate the
position of the rightmost operator, and then to separate the expression ac-
cordingly. Locating the position of the rightmost operator can be accom-
plished by using a pattern that keeps trying to find another operator every
time it finds one. Such a pattern is destined to fail, but it can leave, as a
side effect, the position of the last operator it found. Consider the fol-
lowing pattern:

LOCPM

POS(0) BAL ANY('+-') @M FAIL

110 APPLICATIONS IN MATHEMATICS Chap. 4

The first part of this pattern describes the condition for an acceptable +
or - operator in a string: a balance expression, starting at the beginning
of the string, followed by a + or -. If such a construction is found, the
position following the operator is assigned to M. FAIL forces match failure.
As a result, BAL extends the string matched, if possible, up to the next
+ or -. This process continues until BAL can no longer be extended. At
this point, LOCPM fails, as it necessarily must, but the rightmost opera-
tor has been located and its position has been recorded as the value of M.
The value of M can now be used to split the string into two parts. Of
course, if the expression contains no acceptable occurrence of a + or -,
LOCPM also fails. To avoid ambiguity, M can be set to zero before LOCPM
is used. Then a nonzero value of M after matching indicates the presence
of an operator. An entire pattern to locate the operator and divide the
expression follows:

MATPM = (POS(0) @M BAL ANY('+-') @M FAIL) |
+ (*GT(M,0) TAB(*(M - 1)) . L LEN(1) . OP REM . R)

In this pattern, the first alternative assigns a value to M. The initial value of M
is set to zero before location of an operator is attempted. When the first
alternative fails, as it must, the second alternative separates the string into its
components, provided M is greater than zero. MATPM fails only if there is no
occurrence of an acceptable operator. A function to put an infix expression
into fully parenthesized form follows:

DEFINE('PAREN(PAREN)L,R,0P,M")
STRIP = POS(0) '(' BAL . PAREN ')' RP0OS(0)
ASSIGN = *GT(M,0) TAB(*(M - 1)) . L LEN(1) . OP REM .R

MATPM = (POS&O; BAL ANY('+-') @M FAIL) | ASSIGN
MATMD = (POS(0) BAL ANY('*/') @M FAIL) | ASSIGN
MATE = POS(0) BAL . L '!' . OP REM . R
PAREN PAREN STRIP : S(PAREN)
PAREN MATPM :S(FORM)
PAREN MATMD :S(FORM)
PAREN MATE :F(RETURN)
FORM PAREN = '(' PAREN(L) OP PAREN(R) ')' :S(RETURN)

In this function, M is a local variable and hence is initially null (zero-valued)
when the function is called. Consequently, M does not have to be set to zero
by the patterns that locate operators.

Sec. 4.2 OPERATIONS ON EXPRESSIONS 111

4.2.2. Differentiation

The classical “textbook’ problem in symbolic mathematics is differen-
tiation. Differentiation can be expressed as a set of transformations, called
derivatives, that are applied to expressions. It is not necessary to understand
calculus to appreciate the process of differentiation—it can be considered
simply as a formal exercise in string transformation. The derivative of an
expression E with respect to a variable X is designated by D(E,X). The most
familiar derivatives follow. In these derivatives, U and V stand for expressions
and C is a constant (i.e., an expression not containing an occurrence of the
variable X). The notation used below corresponds roughly to the string
representation for expressions.

0

o
—
>
-
>
~
non
—

—r e D

There are, of course, many other derivatives. The ones here are more than
sufficient for our purposes.

Since derivatives are essentially transformation rules, differentiation can
be thought of in terms of pattern matching and rewriting, where each different
form of expression produces a different rewriting statement. A rudimentary
function, designed along these lines, and limited to binary operators, follows:

DEFINE('D(E,X)U,V,0P')

BINARY = POS(0) '(' BAL . U ANY('+s*/1') . OP BAL . V ')*
+ RP0S(0)
D E BINARY :S($('D' 0P))

D = IDENT(E,X) 1 :S(RETURN)

D = 0 : (RETURN)
D+ x
D- D = '(' D(U,¥ OP D(V,X) ')* :(RETURN),
D* D = '"((" U '*" D(V,X) ")+(" VvV '*" D(U,X) '))d :(RETURN)
D/ D = (((" Vv ", D(U,X) ")-(" U "*D(V,X) ')/ v 12))!
+ : (RETURN)
D! D = (("V'*(*U"'"t"V-1"))* Dplu,x) ') : (RETURN)

112 APPLICATIONS IN MATHEMATICS Chap. 4

If an expression contains a binary operator, an appropriate statement is
selected using the operator to compute a goto.

A test program for differentiating expressions appears below. Data is
read in, one expression to a card. The variable with respect to which dif-
ferentiation is to be performed follows the expression after a separating
semicolon. Note that PAREN is applied to expressions before D is called.

&TRIM = 1

IMAGE = BREAK(';') . EXP LEN(1) REM . VAR
READ CARD = INPUT :F(END)

CARD IMAGE :F (ERROR)

OUTPUT = 'THE DERIVATIVE OF ' EXP ' WITH RESPECT TO '
+ VAR ' IS '

OUTPUT D(PAREN(EXP),VAR)

OUTPUT

nn

: (READ)

Some typical output from this program follows:

THE DERIVATIVE OF X WITH RESPECT TO X IS
1

THE DERIVATIVE OF Y WITH RESPECT TO Y IS
1

THE DERIVATIVE OF X WITH RESPECT TO Y IS
0

THE DERIVATIVE OF 2 WITH RESPECT TO Z IS
0

{HE ?ERIVATIVE OF X+Y WITH RESPECT TO Y IS
0+1

THE DERIVATIVE OF 2*X WITH RESPECT TO X IS
((2*1)+(x*0))

Sec. 4.2 OPERATIONS ON EXPRESSIONS 113

THE DERIVATIVE OF X+X!10 WITH RESPECT TO X IS
(;0+((10*(X!9))*1)

THE DERIVATIVE OF X/Y WITH RESPECT TO X IS
(((y*1)-(x*0))/(Y!2))

THE DERIVATIVE OF X!2 WITH RESPECT TO X IS
((2%(x11))*1)

THE DERIVATIVE OF X!3/15*%X!2 WITH RESPECT TO X IS
(CCxE3)715)*((2%(X11))*1))+ ((XE2)*(((15*((3*(X!2))*1))-((X13)*0))/
(1512))))

The most immediately obvious aspect of this output is the abundance of
superfluous terms. This problem is pervasive in the manipulation of sym-
bolic expressions and is a constant source of annoyance and frustration.

The problem of simplifying such expressions is one that has been given
considerable attention. There are several levels at which simplification can
be approached. One is ‘““identity reduction” in which terms such as 1*E and
0*E are replaced by E and 0 respectively. Carrying out integer arithmetic is
another form of simplification. Detection and removal of common algebraic
factors is substantially more difficult. (Some care must be taken in removing
common factors. Consider the effect of removing the common factor (x + y)
from the expression (x190 — y100)/(x + y).)

A somewhat different approach to the first two kinds of simplification
mentioned above is to avoid the generation of superfluous terms in the
first place. Thus, if differentiation of a sum produces a term that is zero,
the other term may simply be returned as value. This approach may be for-
mulated in a more elegant way as a generalization of the arithmetic opera-
tors. Consider addition as an example: if both operands are integers, the
result is the integer sum. If, however, the operands are symbolic expressions,
the result is obtained by symbolic addition. For example, the sum of 2
and 3 is 5, but the sum of X and Y is (X+Y). If the operands have differ-
ent types, the result is also obtained by symbolic addition unless an operand
is zero. A function to perform this type of extended addition follows:

DEFINE('ADD(L,R)")

ADD INTEGER(L) :F(ADDR)

ADD = INTEGER(R) L + R :S(RETURN)

ADD = EQ(L,0) R :S(RETURN)
ADDP ADD = '('L '+ R'") : (RETURN)
ADDR INTEGER(R) :F(ADDP)

ADD = EQ(R,0) L :S(RETURN)F (ADDP)

114

APPLICATIONS IN MATHEMATICS Chap. 4

The differentiation function can now be modified to call such functions
instead of simply concatenating as before. The result is:

D E BINARY :S($('D' 0P))
D = IDENT(E,X) 1 :S(RETURN)
D = 0 : (RETURN)
D+ D = ADD(D(U,X),D(V,X)) :(RETURN)
D- D = SUB{D(U,X),D(V,X)) : (RETURN)
D* D = ADD(MUL(U D(v,x)), uL(v,b(u,))) : (RETURN)
D/ D = DIV(SUB(MUL(V,D(U,)), MUL(D(V,))) EXP(V,2))
+ (RETURN)
D! D = MUL(MUL(V,EXP(U,SUB(V,1))),D(U,X)) :(RETURN)

The output of the previous example, using these new functions, follows:

THE DERIVATIVE OF
1

THE DERIVATIVE OF
3
THE DERIVATIVE OF
0

THE DERIVATIVE OF
0

THE DERIVATIVE OF
1

THE DERIVATIVE OF
2

THE DERIVATIVE OF
(1+(10*%(x19)))

THE DERIVATIVE OF
(Y/(v12))

THE DERIVATIVE OF
(2*X)

THE DERIVATIVE OF

X WITH RESPECT TO X IS

Y WITH RESPECT TO Y IS

X WITH RESPECT TO Y IS

2 WITH RESPECT TO Z IS

X+Y WITH RESPECT TO Y IS

2*X WITH RESPECT TO X IS

X+X110 WITH RESPECT TO X IS

X/Y WITH RESPECT TO X IS

X!'2 WITH RESPECT TO X IS

X13/15*X12 WITH RESPECT TO X IS

((((x13)/15)*(2*X))+((X12)*((15%(3*(X12)))/225)))

Sec. 4.2 OPERATIONS ON EXPRESSIONS 115

Comparison of the two sets of results reveals that considerable simplification
has been achieved. There are still some obvious redundancies. Some are
easy to handle; others are more difficult.

An even more elegant formulation of the differentiation function is
obtained by redefining the arithmetic operators (and rewriting the arith-
metic functions correspondingly):

D E BINARY :S($('D* OP))
D = IDENT(E,X) 1 :S(RETURN)
D = 0 : (RETURN)
D+ D = D(U,X) + D(V,X) : (RETURN)
D- D = D(U,X) - D(V,X) : (RETURN
D* D = U=*D(V,X) +V *D(U,X) : (RETURN
D/ D = (V*D(U,X) -U*D(V,X)) / V**2 :(RETURN)
D! D = V*U* (V-1)*D(U,X) : (RETURN)

Notice how closely the differentiating procedure corresponds to its mathe-
matical formulation.

4.2.3. Tree Representation of Expressions

In the chapter on structures, it was pointed out that trees provide a way
of representing expressions. The expression

A-7+43*C12!3

has the tree representation shown in Figure 4.4.

{3}

Figure 4.4 Tree Representation of an Expression

116 APPLICATIONS IN MATHEMATICS Chap. 4

There are natural extensions to unary operators and to n-ary operators for
all positive values of n. Conversion of prefix expressions to trees is dis-
cussed in Section 3.2.5. The function given in Section 4.2.1 for conversion
from infix to fully parenthesized form can be modified slightly to give a
direct conversion from infix to tree representation:

DEFINE('INFTRE(INFTRE)L,R,0P,M')
STRIP = POS(0) '(' BAL . INFTRE ')' RPOS(0)
ASSIGN = *GT(M,0) TAB(*(M - 1)) . L LEN(1) . OP REM .

MATPM = POS(0) BAL ANY('+-') @M FAIL) | ASSIGN
MATMD = (POS(0) BAL ANY('*/') @M FAIL) | ASSIGN
MATE = POS(0) BAL . L '!' . OP REM . R
INFTRE INFTRE STRIP :S(INFTRE)
INFTRE ~ MATPM :S(FORM)
INFTRE ~ MATMD :S(FORM)
INFTRE MATE :S(FORM)
INFTRE = TNODE(INFTRE) : (RETURN)
FORM INFTRE = TNODE(OP)
ADDSON(INFTRE,INFTRE(L))
ADDSIB(LSON(INFTRE),INFTRE(R)) : (RETURN)

The function as written only handles binary operators. Note that if the
expression is simply an integer or a variable, a node containing that value
is returned. The two functions PAREN and INFTRE are parallel in their
structure; the only difference is in the way the result is constructed. The
same parallelism, which should be expected from the isomorphism of the
two representations, carries over directly to the process of differentiation.
Pictorially, the process for the typical case of addition is shown in Figure 4.5.

D (A) (A

Figure 4.5 Differentiation of a Sum

Sec. 4.5 OPERATIONS ON EXPRESSIONS | 117

The original tree is not modified. Instead a new tree is formed in which the
root is the operator + and its offspring are trees obtained by differentiating
the offspring in the tree being differentiated.

The actual program is somewhat more complicated since constructing
trees is more involved than concatenating strings. Statements such as the
following might occur in differentiating a sum:

OPPAT = ANY('+-*/1')

D VALUE(E) = OPPAT :S($('D" VALUE(E)))
D = IDENT(VALUE(E),X) TNODE(1) :S(RETURN)
D = TNODE(0) - (RETURN)

D+ D = TNODE(VALUE(E))

ADDSON(D,D(LSON(E) ,X))
ADDSIB(LSON(D),D(RSIB(LSON(E)) ,X)) : (RETURN)

s

Differentiation for the other operators follows the same parallel with the
string case.

When simplification is considered, the ideas used for the string repre-
sentation apply equally well to the tree representation. A function ADD can
be written for adding two trees or integers. If either argument is a tree, the
result is a tree, and so on. In fact, the arithmetic operators can be extended
in a fashion quite similar to the method used for strings.

4.2.4. Alternative Representations

In the examples considered above, either the string or the tree repre-
sentation can be used with quite parallel results. It should be obvious that’
the tree representation requires more programming and produces results that
are less readily understood. Not so obvious is the fact that the tree repre-
sentation takes more memory space. Another disadvantage of the tree
representation is the lack of convenient diagnostic facilities. Strings can
simply be printed, and string expressions appear in the termination dump in
their natural form. While the values of the nodes in a tree can be printed
using a function developed in Section 3.2.5, the method is less convenient
and fails to work if, because of an error, a tree is ill-formed.

On the other hand, there are things that can be done with frees that
cannot be done conveniently with strings. For symbolic mathematics, the

118 APPLICATIONS IN MATHEMATICS Chap. 4

most important of these is the ability to handle objects that are not integers
or variables—for example, rational numbers. The value of a node can be a
rational number in the tree representation of expressions without the need
for any modification. The possibilities are endless. In fact, the value of a
node can even be (a pointer to) another expression in tree representation.

Another way of looking at expressions as structures is suggested by the
use of defined data types to represent objects such as rationals. A rational
number can also be thought of as an operation (division) applied to two op-
erands (the numerator and denominator). A rational number 6/7, for ex-
ample, can be represented as a tree as shown in Figure 4.6.

R {/}

{6} {7}

Figure 4.6 A Tree Representing 6/7

On the other hand, 6/7 can be represented by a defined data object as shown
in Figure 4.7.

R———> 6
J

Figure 4.7 The RATIONAL 6/7

Looking at it another way, a RATIONAL need not have integer arguments;
the arguments can be expressions. That is,a RATIONAL object can be thought
of as a formal representation for a (symbolic) operation. Carrying this idea
one step further, different data types can be defined for the operators—for
example, SUM for +, DIFF for -, PROD for *, QUOT (in place of RATIONAL)
for /, and finally, EXPN for !. Distinguishing shapes for these data types
are shown in Figure 4.8.

=0 A

SUM DIFF PROD QuoT EXPN

Figure 4.8 Shapes for Defined Data Types

Sec. 4.2 OPERATIONS ON EXPRESSIONS 119

Using these shapes, a structure for the expression
A-7+3*C!213
is shown in Figure 4.9.

> {3}
{3} é{C} {2}
{7}
{A}

./
.\

Figure 4.9 An Expression Represented by Defined Data Objects

Compare the structure given in Figure 4.9 with the tree structure shown in
Figure 4.4. The use of defined data objects gives surprising advantages: the
structure is simpler, smaller, and operators, as such, have vanished entirely.
The structure above does not, however, provide pointers that permit getting
from any point in the expression to any other. Such pointers are not needed
to perform differentiation. If such pointers are needed in another context,
they can be provided in a straightforward manner.

EXERCISES

4.39 Extend the differentiation function to handle the general case of ex-
ponentiation in which the second operand may be an expression.

4.40 Prefix form, described in Section 2.2, is an alternative to full paren-
thesization. Write functions to convert between infix and prefix forms.

4.41 Write the set of derivatives given in the text in prefix form.

4.42 Write the procedures for the extended arithmetic functions SUB, MUL,
DIV, and EXP.

4.43 Write extended arithmetic operations for -, *, /, and **,

4.44 Write a differential function to operate on prefix form rather than on
infix form.

4.45 Write a differentiation function to operate on the tree representation
of expressions.

120

4.46

4.47

4.48

4.49

4.50

4.51

4.52

4.53

APPLICATIONS IN MATHEMATICS Chap. 4

Upward links from tree nodes to their fathers are not needed in per-
forming differentiation. Revise the tree structure to eliminate these
links.

Write functions to convert between infix form and the data-type repre-
sentation of expressions.

Write a differentiation function to operate on the data-type repre-
sentation of expressions.

Extend PAREN to include unary operators and functions. (Suggestion:
establish reasonable constraints on the form in which unary operators
may appear in expressions.)

Extend the differentiation function to handle the unary operators +
and - and the functions SIN and C0S. Note that the extended binary
operators may return negative integers which are, formally, instances
of the unary - operator.

Design the structure of a general-purpose function for simplifying ex-
pressions. Within this framework, implement identity reduction and
the performance of integer arithmetic. Explore other types of
simplification.

Boolean expressions are similar to algebraic expressions except that
the operators are different and there are only two constant values,
0 and 1. The Boolean operator v (‘“or’’) may be defined as follows:
If X is a Boolean variable, then

Xvl TvX = 1
Xv0 = OvX = X

Write a function OR(L,R) that performs the Boolean “or” operation.
Assume that either operand may be a constant or a variable.

Propositional calculus represents logical statements as expressions
where variables are ‘“‘sentences” represented by letters and there are
operators corresponding to logical relationships as follows:

(for “not...”)

(for “...and...”)

(for ““...or...”%)

(for ““if...then...”)

(for “...if and only if...””)

I} < @ J

A typical statement is
(LvM)~(S=(G& (-R)))

Sec. 4.2 OPERATIONS ON EXPRESSIONS 121

Assuming such expressions are fully parenthesized,

(a) Show how this statement can be represented by a tree.

(b) Develop a data-type representation for logical statements and il-
lustrate how the statement above would be represented.

(c) Write a function to convert a data-type representation of a logical
statement into a string representation of the statement.

5 CRYPTOGRAPHY

Cryptography, the “science of secret communication”, is familiar popu-
larly in the form of puzzles and descriptions of its role in dramatic historical
situations. Methods of protecting the integrity of information by modify-
ing its form have ancient origins. Cryptography also has important practical
modern uses. Protecting the security of governmental communications, espe-
cially in periods of conflict, is one of the best-known applications. Indus-
trial secrets are also often given cryptographic protection. More recently
the advent of computer data bases containing confidential information has
focused attention on the importance of methods for assuring privacy.

Cryptographic puzzles appear regularly in newspapers and magazines
and there are organizations of individuals interested in cryptography. There
is a substantial amount of literature on cryptography [29-35]. Most of the
generally available information on cryptography deals with methods that
were in use prior to the early part of the twentieth century. More modern
techniques, even some dating back to World War 1, are still highly classified
government secrets.

This chapter treats cryptography from a programming point of view,
using the older ‘‘classical” methods as a basis. There is, of course, a
substantial difference between what is practical and relevant with modern
technology and what was practical and relevant when messages had to be
transmitted by courier. Many of the older methods were designed to mini-
mize clerical effort and human error. Emphases are much different now with
the availability of electronic methods of communication and computers for
processing messages. Nonetheless, many of the classical methods illustrate
general principles. Several techniques of historical interest are not relevant

122

Chap. 5 CRYPTOGRAPHY 123

to computer processing, and hence are omitted. The interested reader will
find more material in the references. Because SNOBOL4 is a string-
manipulation language, cryptography is approached at the character level,
which corresponds to classical cryptography. Other programming languages
permit manipulations at the bit level. Although manipulation of bits per-
mits processes that give a different appearance than those that perform
character manipulation, the underlying methods are the same.

The basic model is quite simple: a message is enciphered, passed through
a transmission link, and deciphered at the other end. The purpose of a cipher
is to obscure, and hence safeguard, information. The terms “message” and
“transmission link” are used loosely; there are more general contexts in
which cryptography applies. For example, data may be enciphered before
it is placed in a data base and deciphered when it is retrieved. The term
“cipher” is usually used to mean a systematic method of rearranging or
making substitutions in a message in order to obscure its meaning. The
word “code” is used, on the other hand, for techniques that make substitu-
tions for words and syllables, or common phrases. The distinction between
ciphers and codes is not always clear, but we are concerned here with
systematic processes and hence will use the term cipher. Figure 5.1 illus-
trates a model of the enciphering and deciphering process.

message =» ENCIPHER P> cipher o DECIPHER [message

Figure 5.1 A Model of the Enciphering and Deciphering Process

In this figure, the boxes containing ENCIPHER and DECIPHER corre-
spond to transformations applied to text. DECIPHER is the inverse of
ENCIPHER, so that the process of passing the message through the two trans-
formations in series produces the original message unchanged. In practice,
many enciphering transformations do not have strict inverses, and may
destroy punctuation or word separation in the original message. We will
take a more formal approach, and will only consider transformations that
have true inverses so that the message resulting from the deciphering will be
identical to the original message. In the material that follows, all characters
are treated equally, independent of their meaning in the context in which
they appear in messages. Furthermore, we consider messages as being simply
strings of characters, and generally are not concerned about problems of
physical format and so on. Similarly, the transmission link usually is con-
sidered to be perfect so that no loss of information occurs. In fact, it is the
enciphering and deciphering processes themselves that are of interest. From
a programming point of view, enciphering can be characterized by a func-
tion ENCIPHER (M) which performs the desired enciphering transformation.
Similarly, DECIPHER(C) is a deciphering function that performs the inverse
of the transformation performed by ENCIPHER. The required condition for

124 CRYPTOGRAPHY Chap. 5

DECIPHER to be the inverse of ENCIPHER can be stated in a programming
context by requiring that

IDENT(DECIPHER(ENCIPHER(M)),M)

succeed for all possible values of M.

Most of this section is devoted to a discussion of the different types of
ciphers and how the corresponding functions ENCIPHER and DECIPHER can
be written. In some cases, the transformations used for enciphering and
deciphering have applications that are not related to the problem of safe-
guarding the contents of messages by obscuring them. Such applications are
pointed out from time to time.

5.1. CIPHERS

5.1.1. Types of Ciphers

Generally speaking, there are three types of ciphers: substitution, trans-
position, and combination. A substitution cipher replaces units of the
message by other units. A transposition cipher rearranges text units. A com-
bination cipher combines substitution and transposition. There are many
varieties of each type of cipher. In most cases, the units of text considered
are single characters, although that need not be the case.

Several ciphers may be applied in succession, producing a product of
ciphers as illustrated in Figure 5.2. The deciphering transformations are
then applied in reverse order.

M=>El p~E2}—>+++—Enp~C>Dnp—o--:-—>D2 D1 > M

Figure 5.2 A Product of Ciphers

Here E1, E2, ... , En are enciphering transformations and D1, D2, ..., Dn
are corresponding deciphering transformations. From a programming point
of view, a product of transformations corresponds to the successive applica-
tion of the corresponding functions:

C EN(... E2(E1(M)) ...)

M = DI(D2(... DN(C) ...))

For example, if E] is a substitution cipher and E2 is a transposition cipher,
E1 followed by E2 is a combination cipher.

Sec. 5.1 CIPHERS 125

The varieties of cipher are endless and are limited only by the imagina-
tion. Most ciphers are derived from a few general methods that are discussed
in the following sections. In most cases, once the enciphering transformation
has been developed, the deciphering transformation is obvious. For this
reason, emphasis is placed on enciphering transformations.

In many cases the results produced by a general method depend on a key.
This key can be thought of as an argument to the enciphering and decipher-
ing functions. The functions might be used as follows:

C = ENCIPHER(M,K)
and

M = DECIPHER(C,K)

where K is a key. In traditional applications, a particular enciphering method
is used continually, but the key is changed from time to time to maintain
security. In some cases, there is more than one key. Alternatively, a key
may be thought of as having several components. The distinction is more of
a formal one than a practical one. We will adhere to the form above, pro-
viding a single key, which may be composite.

5.1.2. Alphabets

Implicit in the concept of ciphers is the notion of an alphabet. Messages
are composed of characters; therefore, the alphabet from which characters
may be selected has an underlying importance. A precise specification of an
alphabet is of less importance where messages are written by hand than
where electronic forms of communication and computer processing are used.
For this reason, the message alphabet is, for the most part, ignored in dis-
cussions of classical cryptographic techniques. Such presentations often ig-
nore blanks, treating them as if they do not exist. A program, however, deals
with a specific alphabet and data bases contain information which is inter-
preted according to an alphabet. In a program, it is more natural to treat
characters as distinct entities, rather than to conceive of them as having
some kind of individual meaning. There is less temptation to ‘“overlook”
blanks or to equate upper-case characters with lower-case ones. In the con-
text of machine-readable data, all characters are distinct and meaningful.
The blank is as much of a character as any other. Quite often, in fact, there
are other characters for which there are no printing graphics on standard out-
put devices. Such characters are typically indistinguishable from blanks, and
hence are of limited utility in printed output. They are nonetheless dis-
tinguishable by a program.

In SNOBOLA4, the value of &ALPHABET contains the characters available
on aspecific implementation. Some systems provide only 64 different charac-
ters. Others provide 128 or 256 different characters. In one sense, having a
specified alphabet is restrictive. Only characters that are available to the

126 CRYPTOGRAPHY Chap. 5

program can be manipulated. The same alphabets must be used for both
messages and ciphers. On the other hand, especially on computers providing
128 or 256 characters, there may not be a need for every character, and
having to deal with all of them may create problems.

The order of the characters in 8ALPHABET is important because it is the
basis for alphabetical (lexical) comparison and is related to the internal repre-
sentation of characters in the computer. On most SNOBOL4 systems, the
characters in &ALPHABET are in order according to their internal (binary)
representation. (On the CDC 6000 series [36], there is a minor departure
from this rule. The first character in internal sequence, the binary zero,
appears at the end of 4ALPHABET rather than at the beginning. This matter
is discussed in Section 6.1.1.)

The size of computer character sets and their differences create pedago-
gic problems. It is impractical to present examples in the entire character set
or to specify all correspondences between message characters and cipher
characters. In the discussion that follows, liberties are taken with alphabets
as necessitated by context. In the discussion of substitution ciphers, most
examples simply deal with alphabets composed of the upper-case letters.
Furthermore, it is implicitly assumed that these letters appear in their stand-
ard alphabetical order. Programs, however, are written using 8 ALPHABET and
hence produce results that depend on the particular computer being used.
Alphabets are less of a problem in dealing with transposition ciphers and the
examples are, for the most part, independent of any particular computer.

5.2. MONOLITERAL SUBSTITUTION CIPHERS

5.2.1. Basic Substitution Methods

The most well-known ciphers are substitution ciphers. Simple forms of
substitution are commonly used by children to send secret messages to each
other. Typically each letter is replaced by another letter in a regular way.
A familiar example is the replacement of A by Z, Bby Y, C by X, and so on.
Thus, the message FLABBERGAST becomes UQZYYVITZHG. A substitution
cipher of this kind may be characterized by the correspondence between the
plain alphabet and the cipher alphabet used for the substitution. In the ex-
ample above, the correspondence is:

Plain

alphabet:ABCDEFGHIJKLMNOPQRSTUVWXYZ
Cipher R A A A A A R AR R
alphabet: ZY XWVUTSRQPONMLKJIHGFEDCBA

Since the order of the characters in the plain alphabet is known, all that is
needed to encipher and decipher is the cipher alphabet itself. The key for
this method is the cipher alphabet.

Sec. 6.2 MONOLITERAL SUBSTITUTION CIPHERS 127

The function REPLACE is essentially a built-in enciphering function.
If the plain and cipher alphabets are PA and CA respectively, then

C = REPLACE(M,PA,CA)

performs the enciphering. Deciphering is accomplished by performing the
process with the alphabets reversed:

M = REPLACE(C,CA,PA)

In actual practice, the plain alphabet is &ALPHABET. The enciphering and
deciphering statements can therefore be written:

C = REPLACE(M,&ALPHABET,CA)

M = REPLACE(C,CA,BALPHABET)

The cipher alphabet, CA, must be the same length and contain the same char-
acters as &ALPHABET. CA can only be a rearrangement of &ALPHABET. In the
example above, the rearrangement is simply a reversal, and CA can be ob-
tained by

CA = REVERSE(&ALPHABET)

Another well-known cipher is ‘“Caesar’s Cipher’’, used by Julius Caesar
to encipher military messages. Caesar’s Cipher consists of replacing each
character by the character in the alphabet three places to the right (treating
the alphabet as circular). If we assume English instead of Latin, UNIFORMLY
is enciphered as XQLIRUPOB. Using the model formulated above, the cipher
alphabet is simply a version of the plain alphabet rotated circularly to the
left three positions. The two examples given above are simply two different
keys for the same method, called ‘‘monoalphabetic substitution” (i.e., a
single cipher alphabet is used). To keep track of the different enciphering
and deciphering functions, the prefixes EN and DE will be used to designate
enciphering and deciphering respectively, and suffix initials will be used to
identify the particular method. For monoalphabetic substitution, the initials
MAS will be used. The functions ENMAS and DEMAS follow.

DEFINE('ENMAS(M,K)"')
DEFINE('DEMAS(C,K)")

ENMAS ENMAS ‘REPLACE(M,&ALPHABET,K) : (RETURN)

DEMAS DEMAS REPLACE(C,K,&ALPHABET) :(RETURN)

Given these general procedures, a variety of specific ciphers can be
created by using different keys. Some keys are better than others. For

128 CRYPTOGRAPHY Chap. 5

example, it takes very little work to break the two ciphers given above. The
reason lies in the simplicity and underlying regularity of the keys. Once the
method is detected, the entire cipher alphabet can be trivially derived. An-
other way of describing such simple cipher alphabets is that there is very little
information necessary to characterize them—*reversal” and “rotation by a
constant’’. What makes an enciphering method easy to perform is also what
makes it easy to break: a small amount of information. At the other ex-
treme is a cipher alphabet composed at random. Such an alphabet must be
completely known to perform the enciphering process; no simple characteri-
zation will do. This presents no programming problem, but in practical situa-
tions the cipher alphabet must be known to both the encipherer and the
decipherer. If the cipher alphabet is changed occasionally for security,
transmittal of the new cipher alphabet is both hazardous and error prone in
proportion to the amount of information that must be conveyed. Ideally a key
produces the most secure ciphers and yet itself is representable with the least
amount of information. These two goals conflict and there are information-
theoretic constraints on what is possible [37]. That is not our concern here.

5.2.2. Keyed Alphabets

There are endless methods for creating cipher alphabets. The ones given
above could be embellished, similar but more elaborate ones could be de-
veloped, various methods could be combined, and so forth. Reversed and
rotated alphabets, folded alphabets, interleaved sections of alphabets, and
so on, could be used. In any event, it all comes down to a fundamental
point: a cipher alphabet is an enciphered plain alphabet. Therefore, en-
ciphering techniques of all kinds can be applied to obtain cipher alphabets.
Carrying this idea one step further, observe that many general methods of
creating cipher alphabets can be used with different keys.

One such method uses a key word (or string). The cipher alphabet is
formed, beginning with the characters of the key. Following the key, the
remaining characters of the alphabet are written in order. The key FISHER
produces the cipher alphabet

FISHERABCDGJKLMNOPQTUVWXYZ

If a letter in the key is repeated (for example in the key MARMOSET), dupli-
cate letters are simply discarded. Certain keys are obviously better than
others. The method of forming the cipher alphabet is a type of transposition,
i.e., the characters of the alphabet are rearranged in a way that is dependent
on the key. If we call this method KAT for “keyed alphabetic transposition”,
the cipher alphabet is created by

CA = ENKAT(KEY)

Sec. 5.2 MONOLITERAL SUBSTITUTION CIPHERS 129

The function ENKAT could, of course, perform other rearrangements which
would produce better cipher alphabets. The method used here is only an
example. The key for the monoalphabetic substitution is obtained by an
enciphering method that itself uses a key. To change the key for ENMAS and
DEMAS, the key for ENKAT is changed. The advantage of this method is the
relative complexity of the cipher alphabet that is obtained from a simple
key. The complexity is built into the enciphering function ENKAT, which is
in turn part of the basic enciphering process.

5.2.3. Polyalphabetic Substitutions

One of the problems with monoalphabetic substitution is lack of secur-
ity. Ciphers created by this method are easily broken because of the
one-to-one correspondence between characters of the plain alphabet and
characters of the cipher alphabet. Once a few character correspondences have
been determined (methods are discussed later), the remainder follow easily
from context in the message. Substitution using more than one alphabet,
called polyalphabetic substitution, provides considerably greater security.
This method uses a number of alphabets, typically one after another in
rotation, for enciphering successive characters. In this way, the substitution
used for a particular character varies according to the position of the char-
acter in the message. Consider four cipher alphabets obtained from the keys
ZEUS, PIGSKIN, LOBOTOMY, and ENCHILADA:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

1. ZEUSABCDFGHIJKLMNOPQRTVWXY
2. PIGSKNABCDEFHJLMOQRTUVWXYZ
3. LOBTMYACDEFGHIJKNPQRSUVWXZ
4. ENCHILADBFGJKMOPQRSTUVWXYZ

Using alphabet 1 to encipher the first character of the message, alphabet
2 for the second, alphabet 3 for the third, alphabet 4 for the fourth,
alphabet 1 for the fifth, and so on, the enciphering of POLYALPHABETIC is
MLGYZFKDZIMTFG.

There are many variations on polyalphabetic substitution. Several varia-
tions use the Vigenére Square in which there are as many alphabets as there
are characters in the alphabet. Vigenére Squares can be constructed in a
variety of ways. One way is to start with a keyed cipher alphabet and con-
struct the other alphabets by successive rotations. An example, based on
the key WILHELM, is given in Figure 5.3.

Chap. 5

CRYPTOGRAPHY

130

ABCDEFGHIJKLMNOPQRSTUVUXYZ

N==H AT WS <COOOLORXYZOoaOX VD> >
SNEH I TWE<OOOLUOMXYZ0a O D >x
MXo-NZH AT WLWECONOALODYYZ0aO0xnNkoO>
S >N I TWSCOOAQALOCDXYZ00OoOx kD
O >N AIITUWUWE<COOALODXZ00O0Ox i
FOSX>NIZI— JTWUECOo0oOL OO XZ000xwm
NFD=>X>NEH T WE<COOALODXYZ00 O
N> X>NIE2H JITWEnoOoQLonXxZ0a O
O NFEFD>X>N=HATuUS<0n0OLGHDXXZ0ao
OO NFFDOD>X>NIXZIH_JTWE<CONOAOALCDODXYZO
COOXXNED>X>NIEZH AT WMECONOOQOL T DONMXE
oA OO NIFD X >NEH_ ITWUESC0OOL G DX
M ZOoO Ao NEFED>X>NIEH JILIWSE<no0l 6™
JKNOPQRSTUVXYZWILHEMAB.CDFG
P ZooOonNEFD>X>NIXI~ 1T usa<ooauw
LY ZOoaAOoOXNFD>X>NIEH I WE<<anon
OL OGS Z0a0o 00X NED>>X>NEH 1T WETCMNO
OOLOMN¥YZ0aAO0X NEFED=>X>NEXHJdJTwWwE<<m
MODLONMYZ0a0a O NEFEFD>>X>NEH AT wWEC
OO L O ZO0aAOXNEFED>X>NEHJAdJI WS
LM UOUALOPYYZO0OaAO0OXNEFD>X>NX—JdTTuw
WS TCNOAL OGS Z0aA o NEFED>=>X>N=E—JT
T WS N OALOHOD XY Z00a0XNEFEFD>X>NXEHJ
T WS N0 ALOD Y ZO00 O NEFED>X>NIXXH
- I T WS 0O ALOCHY Y ZOAOXWNEFED>=>X>NZXE
2H I T WE<CONOAWL O XYZOOoOXxNED>>X>N

Figure 5.3 A Vigenére Square

The alphabets of the Vigenére Square can be used in a number of ways.
One way is to use a second key, whose characters are used cyclically to select

alphabets according to the left column of the square. Suppose the second

key is KITE and the message to be enciphered is REINFORCEMENTS. Then

.) is used to encipher the character R, the I

...) is used to encipher the character E, and so on. The

the K alphabet (KNOPQRST ..

alphabet (ILHEMABC

method is easier to visualize if the key is written repeatedly over the message:

KITEKITEKITEKI

REINFORCEMENTS

The resulting cipher is EMLQROGAQKYQAS. There are many ways of con-

The following criteria must be met, however:

structing Vigenére Squares.

Sec. 5.2 MONOLITERAL SUBSTITUTION CIPHERS 131

there must be a cipher alphabet for each character of the plain alphabet,
and all the cipher alphabets must be distinct.

One weakness of the polyalphabetic substitutions described so far is
the regular and periodic application of the cipher alphabets. An interest-
ing nonperiodic method uses the message itself to select the alphabets.
A specific initial alphabet (say the A alphabet) is used for enciphering
the first character of the message. The second alphabet is selected according
to the first character of the message, the third alphabet according to the
second character of the message, and so on. Consider again the message
REINFORCEMENTS. The key used to select cipher alphabets can be written
over the message:

AREINFORCEMENT

REINFORCEMENTS
This method is known as autokey enciphering. Using the Vigenére Square
given above, the resulting cipher is XVJNSYATJPDQBJ.

A final example of keying methods is the running key, where the key is
selected from some text known to both the encipherer and the decipherer.
Typically, the text is selected from available literature. An example is:

FOURSCOREANDSE

REINFORCEMENTS

which produces the cipher ISHMYVATCRRVJV.:

Enciphering functions to perform the methods described above require
a representation of the Vigenére Square that can be accessed associatively.
That is, the alphabet to be used to encipher a particular character is selected
according to the first character of the cipher alphabet. This requirement
suggests the use of a table in which the subscripts are the characters of the
alphabet and the values are the corresponding cipher alphabets. A function
for constructing Vigenére Squares follows. ROTATE(S,N) is a function that
rotates strings (see Exercise 2.5).

DEFINE('VSQ(KEY)C,I,CA,LIMIT')
ONECH = LEN(1) . C

VsQ CA = ENKAT(KEY)
LIMIT = SIZE(CA)
VSQ = TABLE(LIMIT)
I = 1
vSQ1 CA ONECH
VSQ<C> = CA
I = LT(I,LIMIT) I + 1 :F(RETURN)
CA = ROTATE(CA,-1) +(VsSQ1)

132 CRYPTOGRAPHY Chap. 5
EXERCISES

5.1 Discuss the implications of restricting the plain and cipher alphabets
to subsets of &ALPHABET.

5.2 Generalize Caesar’s Cipher so that the amount of rotation can be
specified. Provide both enciphering and deciphering procedures.

5.3 Implement ENKAT as described in the text.

5.4 Combine the results of Exercises 5.2 and 5.3 to provide a better
method of generating cipher alphabets.

5.5 Devise a method for creating “random” cipher alphabets. What con-
stitutes the key in such a situation?

5.6 Implement periodic polyalphabetic substitution. Provide both enci-
phering and deciphering procedures.

5.7 Generalize polyalphabetic substitution so that each alphabet can be
applied to groups of several consecutive characters. What is the ad-
vantage of such a method?

5.8 Provide for ‘“random” selection of alphabets in polyalphabetic sub-
stitution.

5.9 Implement autokey enciphering and deciphering.

5.10 Why must autokey enciphering start with a specified alphabet rather
than selecting the first alphabet from the message itself?

5.3. TRANSPOSITION CIPHERS

Transposition ciphers rearrange the order of characters of the message.
When done by hand, transposition presents substantial clerical difficulties.
For this reason, most of the classical methods employ geometric representa-
tions or simple mechanical devices. From a programming viewpoint, most of
these methods are essentially equivalent. Nevertheless, the devices them-
selves turn out to be helpful in developing the programs, and will be
described first in their classical contexts.

5.3.1. Route Transposition

Route transposition uses a geometric figure, usually a rectangle, into
which the message to be enciphered is written. The size and shape of the

Sec. 5.3 TRANSPOSITION CIPHERS 133

figure typically determines how much of the message can be enciphered at
one time. Consider the message

I NEED AT LEAST TEN MORE TIME BOMBS
A rectangle might be used as indicated in Figure 5.4.

E

E
L
E

M| ==
| —|—|m|=
Zm|=2

| 2 —|O
| O] X >

0

Figure 5.4 A Message Inscribed into a Rectangle

The message may be enciphered by transcribing from the rectangle starting
at the upper left corner and proceeding down and up alternate columns
working toward the right. The resulting cipher is

ISTME T A NETTBO ELEE NEMBR TD AMOS

In general, the key for such a route transposition consists of the dimensions
of the rectangle and the routes used to inscribe and transcribe the message.
The routes in the example above are shown in Figure 5.5.

?) ())

—
C >
C

D

[L.
o L

2 U U 7

inscription transcription

Figure 5.5 A Route Cipher

Deciphering is accomplished by reversing the process.

In the example given above, the message fits exactly into the rectangle.
Generally, this will not be the case. Longer messages can be broken up into
successive sections of 35 characters or whatever length is dictated by the rect-
angle. Shorter messages can be handled by filling unused squares with mean-
ingless characters, called nulls. Alternatively, a smaller rectangle can be used
for a short remaining portion of a message. There are many routes using dif-
ferent geometric shapes and methods of inscription and transcription.

134 CRYPTOGRAPHY Chap, 5

5.3.2. Columnar Transposition

Another transposition method of similar structure is columnar transposi-
tion. Again the message is inscribed in arectangle. The cipher is then obtained
by transcribing the columns in some specified order. Consider the message

SEIZE THE POSTOFFICE SAFE

This message, consisting of 25 characters, conveniently fits into a 5-by-5
square as shown in Figure 5.6:

35142
SIEJT|Z|E
T[H[E
PIO|S|T|O
FIFITI|CIE
S|A|F|E

Figure 5.6 A Message Inscribed into a Square

The numbers over the columns indicate the order of transcription. The re-
sulting cipher is:

IHSIAE OEES PF ZETCFETOFS

The order of transcription may itself be characterized by a key, which is usu-
ally represented by a string. Consider the key GUARD. If the characters of the
key are assigned numbers according to their relative positions in the alphabet,
the result is 35142, the order of column transcription used above. Note that
columnar transposition is again a form of inscription and transcription, but is
characterized not by a route but by the order in which the columns are tran-
scribed. Columnar transposition is essentially a disconnected route. Figure
5.7 illustrates the inscription and transcription paths for this columnar
transposition.

inseription transcription
Figure 5.7 A Columnar Transposition

Sec. 5.3 TRANSPOSITION CIPHERS 135

5.3.3. Inscription and Transcription Paths

Another way of characterizing the inscription and transcription paths
is by assigning a unique character to each position and then listing the paths
as strings of characters. For the route transposition given above, the posi-
tions in the rectangle can be assigned identifying characters as shown in
Figure 5.8.

AIB|C|DIE|F|G
H{I[J|KIL|M|N
O|P[Q[R|S|T|U
VIWIX]Y|Z[1]2
314(5(617181]9

Figure 5.8 Identification of Positions in a Rectangle

The inscription path is
ABCDEFGNMLKJIHOPQRSTU21ZYXWV3456789
and the transcription path is
AHOV34WPIBCJQX56YRKDELSZ781TMFGNU29

The particular characters used to identify positions are not important as
long as they are all different. Similarly, the order in which the characters
are assigned is irrelevant. Figure 5.9 shows the square for the columnar
transpositions given above.

A[B|C|D|E
FIG|H|T|J
K[L|M|N|O
PIQIR|S|T
UlVIW|X]Y

Figure 5.9 The Identified Positions

The inscription path is
ABCDEFGHIJKLMNOPQRSTUVWXY
and the transcription path is
CHMRWEJOTYAFKPUDINSXBGLQV

The inscription and transcription strings characterize the transposition and
are independent of any geometric shape. The use of geometric figures is
simply a convenience when performing the transposition by hand. In gen-
eral, any simple transposition of characters can be represented in this way,

136 CRYPTOGRAPHY Chap. 5

limited only by the number of characters in the alphabet (i.e., the value
of SIZE (&ALPHABET)).

. sition
5.3.4. Programming Methods for Transportation

Substitution is easily accomplished using REPLACE. Transposition may
appear to be somewhat more difficult, requiring the use of pattern matching
to dismember the message so that characters can be rearranged in another
order. Surprisingly, REPLACE can also be used to rearrange characters.

Consider the simple case of reversing a string S. Suppose S is five char-
acters long. Let

S1 = 'ABCDE' ; S2 = 'EDCBA'

The statement
R = REPLACE(S2,S1,S)
performs the reversal of S. Figure 5.10 illustrates how the reversal takes place.

- sy
bl

S C1 c2 C3 C

S1

.p

R C5 Ca C3 c2 Cl
Figure 5.10 Reversal Using REPLACE

S] and S2 serve as templates for the reversal. They consist of distinct char-
acters whose relative positions effect the desired reversal. The character E
is in position 1 of S2 and in position 5 of S1. This causes C5 in position 5
of S to appear in position 1 of R, and so on.

The particular characters used in the first and second arguments of
REPLACE have no significance in themselves, but they all must be different.
The number of characters in the second argument must be the same as the
number of characters in the third argument, which is the string to be re-
versed. The first argument of REPLACE contains the same characters as the
second argument, but reversed. This method works for strings of any length
up to the number of characters in &ALPHABET. On the CDC 6000 series,
strings of up to 64 characters can be reversed by a single application of
REPLACE. On the IBM 360/370 [38], strings of up to 256 characters can
be reversed in one application. Note the interesting effect of the size of

Sec. 5.3 TRANSPOSITION CIPHERS 137

the alphabet. On the IBM 360/370, an 80-character card image can be re-
versed by a single application of REPLACE, but on the CDC 6000, two appli-
cations of REPLACE are required.

The problem with reversing strings systematically with REPLACE is in
obtaining the first two arguments of REPLACE. S1 is easily obtained: to
reverse an n-character string, the first n characters of &ALPHABET can be
used. S2 is simply the reversal of S1. This can be obtained in a systematic
way by first establishing a reversed copy of &ALPHABET by conventional
means. A generalized REVERSE function, based on this idea, follows.

DEFINE ('REVERSE(S)S1,52,53')

T = &ALPHABET
ONECH = LEN(1) . C
REVINT T ONECH = :F(REVD)
RALPHABET = C RALPHABET : (REVINT)
REVD RS1 = LEN(*SIZE(S)) . SI
RS2 = RTAB(*SIZE(S)) REM . S2
FS3 = LEN(SIZE(&ALPHABET)) . S3
REVERSE &ALPHABET RSI :F(REVPART)
RALPHABET RS2
REVERSE = REPLACE(S2,S1,S) : (RETURN)
REVPART S FS3 =
REVERSE = REVERSE(S) REPLACE(RALPHABET,&ALPHABET,S3)

+ : (RETURN)

Note that strings longer than the size of the alphabet are handled by a re-
cursive call.

It should be clear that reversal is only a special case of a much more
general technique. Observe that S2 is a transposition of S1-in fact the
transposition that is to be performed on S. In general, if S? is an arbitrary
transposition of a string of distinct characters S1, then REPLACE can be
used as illustrated above to perform that transposition on any string S of
the same length as S1. For example, if

S1 = '123456' ; S2 = '135246'
then

R = REPLACE(S2,S1,S)

transposes 6-character strings S, putting the odd-numbered characters first,
followed by the even-numbered characters.

This technique provides a general approach to transposition ciphers.
By letting S1 be the inscription string and S2 the transcription string, the
enciphering can be performed by REPLACE. Reversing the arguments S1 and
S2 in REPLACE provides the deciphering. It is not particularly important

138 CRYPTOGRAPHY Chap, 5

whether S1 and S2 together are thought of as the key, or whether they are
thought of as two keys. In the spirit of the characterization of ciphers given
earlier, one key, containing two parts, is more consistent:

DATA(' TK(INSCR,TRANS)"')

with fields for the inscription and transcription strings. For the columnar
transposition given earlier, the key is
K = TK('ABCDEFGHIJKLMNOPQRSTUVWXY', 'CHMRWEJOTYAFKPUDINSXBGLQV')

General purpose functions for transposition enciphering and decipher-
ing have the following form:

DEFINE{'ENT?M,KEY S';

DEFINE('DET(C.KEY)S"

SECTIONE = LEN(*SIZE(INSCR(KEY))) . S

SECTIOND = LEN(*SIZE(TRANS(KEY))) . S
ENT M SECTIONE = :F(ENTT)

ENT = ENT REPLACE(TRANS(KEY),INSCR(KEY),S) :(ENT)
ENTT
DET C SECTIOND = :F(DETT)

DET = DET REPLACE(INSCR(KEY),TRANS(KEY),S) :(DET)
DETT :

As discussed in the description of geometric methods for implementing trans-
positions, there remains the problem of what to do if the length of the
message is not a multiple of the length of the inscription string. One solution
is to append nulls, such as blanks, to the end of the message as necessary.
Whatever is necessary is done at the statements labeled ENTT and DETT.
If the message is known to be of the correct length, these labels can be
replaced by RETURN.

5.3.5. Grilles and the Use of Nulls in Enciphering

A grille is a mechanical aid used in transposition ciphers. Usually rec-
tangular in shape, a grille has certain areas cut out through which portions
of a message can be written. In one kind of grille, the cut-out portions are
arranged so that if the grille is rotated successively by 90 degrees, all charac-
ters on a square area are covered. Figure 5.11 shows such a “revolving grille”.

Sec. 5.3 TRANSPOSITION CIPHERS 139

~Ni

9

Figure 5.11 A Revolving Grille

The numbered squares indicate the cut-out portions of the grille. The num-
bers indicate the order in which the message is inscribed. The relative posi-
tions of the cut-out portions are important, since they must be arranged to
cover all characters when the grille is rotated. The order of inscription could
be changed without affecting the properties of the grille. The grille is placed
on a writing surface and the first nine characters of the message are inscribed
in the order indicated. Suppose the message to be enciphered is

THE MEAT FOR THIS EVENING IS CHICKEN
The result of inscribing the first nine characters is shown in Figure 5.12.

T H

Figure 5.12 Inscription of the First Portion of the Message

Since two of the first nine characters are blanks, only seven characters are
actually written. Rotating the grille to the right 90 degrees and inscribing
nine more characters produces the result shown in Figure 5.13.

]
T H
G
Al [E[[S
FI IR
E| T M
T 0

Figure 5.13 Inscription of Two Portions of the Message

The final square, resulting from the inscription of the entire message, is
shown in Figure 5.14.

140 CRYPTOGRAPHY Chap. 5

H

NTIT|TIH
If [E]I] [N
AICIE|S|S
E|F[E|R|G]N
E[H[K]TI[N|M
V[T clo

Figure 5.14 Inscription of the Complete Message

This square can now be transcribed according to some path to produce the
cipher as a string. An example is reading the columns out from right to left,
producing the cipher

b
HNSNMOI SGNCIIERT TECEK # AFHT I EEV

Used in this way, the grille is simply a mechanical device for producing
a relatively complicated transposition. Writing successive characters of the
alphabet in the square produces the assignment shown in Figure 5.15.

*CC|O|—H|O
N —|<<|9|G|O

E
K
Q
W
2
8

AR EEES
N =]
ol w|>=<[[—[m

6

Figure 5.15 The Labeled Square

The symbol * is used as the thirty-sixth character 11; place of zero to avoid
confusion with the letter 0. The inscription string then is

1FPH3YNC6T9VK5BJRMI4U2GLW7DQAOZES*SX
For the transcription method illustrated above, the transcription string is

FLRX39EKQW28DJPV17CIOU*6BHNTZ5AGMSY4

Another way in which grilles are used is as overlays. In this method, only
certain positions, those under the cut-out portions of the grille, are used for
inscribing the message. The portions obscured by the grille are nulls—extra
characters that have no relation to the message and hence serve as camou-
flage. Consider the message SURRENDER. Using the grille shown in Figure
5.11, the result of inscribing this message is shown in Figure 5.16.

E U

R
Figure 5.16 The Inscribed Message

Sec. 5.3 TRANSPOSITION CIPHERS 141

If the rest of the square is simply filled in with other characters, the message
is obscured. An example is shown in Figure 5.17, in which some of the nulls
are chosen to be blanks.

m

=|H|c

Y
L
A

DM

2O MO
(et s ~Jfep){we] b o)
=T o

—im

F

Figure 5.17 The Enciphered Message

The nulls can even be chosen to carry an apparent message, thus perhaps ob-
scuring the fact that there is any cipher at all. Figure 5.18 shows an example.

TIH|IE| [QU
ARRIT|Z] |G
0|D| |RIEIQ
UITIRIE]S
NIOf| [S|LIE
D] IRJTIDJE

Figure 5.18 The Cipher Within a “Message”

If this square is transcribed row by row, the cipher is hidden in an apparent
message. If the square is transcribed by columns as before, the cipher is hid-
den with a cipher of an apparent message.

While it is an interesting puzzle to produce a fake message to hide the ex-
istence of a cipher, that process is hardly easy to program. Consider there-
fore the insertion of nulls which are independent of the cipher, as illustrated
in Figure 5.17. To do this, it is more convenient to consider the inscription
path as simply the first nine integers as shown in Figure 5.11. Consider the
nulls in Figure 5.17 as comprising a background as shown in Figure 5.19.

8 2

Y
L
A

—IC|W|—|m

| |O|M|O|><
(=t s] i R
W= |0

T
W
5
L

F

Figure 5.19 The Inscription Path and Background of Nulls
The transcription string, taking the nulls as they stand, is
2TW 5LYL A FEI3U1 8 OHW9 47GAUXOFC6A

142 CRYPTOGRAPHY Chap. 5

Unlike the transcription strings given earlier, there are repeated characters.
The inscription string, however, is 123456789. Because it is chosen in this
way, none of these characters appears more than once in the transcription
string. In fact, these inscription and transcription strings can be used in the
same enciphering function that was given earlier. That is, given a nine-
character message M, the cipher is obtained by using the key

K = TK('123456789','2TW 5LYL A FEI3U1 8 OHW9 47GAUXOFC6A')

The cipher is, of course, 36 characters long. The general relationship be-
tween the inscription and transcription strings holds, even though they are
of different lengths. Examination of the statements above shows why. If
REPLACE is thought of in its general sense, it can be seen that enciphering
amounts to selecting a few characters (the digits) and replacing them by
the corresponding characters in the message. Similarly, deciphering selects
out of the cipher the few characters of the message. The repetition of
characters in the second argument of the replacement function has no effect
since none of these characters occurs in the first argument and hence they
do not figure in the replacement.

Notice that the characters chosen to represent the inscription path can-
not be used as nulls. It should also be noted that such an enciphering
method should not be used for enciphering several messages; the same nulls
always appear in the same places and hence give themselves away.

As a general rule, the inscription strings and transcription strings pro-
vide the arguments of the transposition function. These strings can be de-
rived in any convenient way, but the characters of the inscription string
must all be different so as to identify the position of each character un-
ambiguously. Given an inscription string, which can be thought of as a
prototype message, encipher it using the desired transposition. The resulting
cipher is the transcription string. Deriving the transcription string involves
the hand enciphering of one message. Subsequently, any message can be
enciphered using REPLACE. For the hand enciphering, the methods de-
scribed above—route transposition, columnar transposition, grilles, or any
similar method—provide useful tools.

5.3.6. Related Uses of REPLACE

The technique of using REPLACE to rearrange characters has other appli-
cations than enciphering. Several examples follow.

One application is derived from the treatment of characters in the sec-
ond argument of REPLACE that do not appear in the first argument. Con-
sider a six-character string S and the following statement:

R = REPLACE('FL','FMMMML',S)

Sec. 5.3 TRANSPOSITION CIPHERS 143

The result of the replacement is shown in Figure 5.20.

S2

R }1 cs/

Figure 5.20 Repeated Characters in REPLACE

The value assigned to R is the first and last characters of S. When a char-
acter is repeated in the second argument, the last correspondence with the
third argument holds. Therefore, an equivalent statement is

R = REPLACE('FL','FLLLLL',S)

This provides a general way of obtaining the first and last characters of a
string that is more than one character long:

R = REPLACE('FL','F' DUPL('L',SIZE(S) - 1),S)

The use of nulls in enciphering suggests other applications of REPLACE.
Suppose, for example, that a series of four-character strings are to be printed
with surrounding stars. A statement such as

OUTPUT = REPLACE('****]234%***' 17234"',S)

performs this operation. Notice that this is more intuitively obvious than
the corresponding case with enciphering.

A similar, but more complicated, operation is the interleaving, or “col-
lating” of the characters in two strings. The problem is to write a function
COLLATE with two arguments so that the value of COLLATE('ABC','123")
is A1B2C3, the value of

COLLATE('CAPTION',DUPL('*',7))
is
C*A*P*T*I*O*N*
and so on. COLLATE can be written using REPLACE:

144 CRYPTOGRAPHY Chap. 5

DEFINE('COLLATE(S1,S2)H,T,C,T1,T2')

BSIZE = SIZE(&ALPHABET) / 2
&ALPHABET LEN(BSIZE) . HREM . T
COoL1 H Lenglg .C1 = :F(COL2)
T LEN(1) . C2 =
CALPHABET = CALPHABET C1 C2 :(coLt)
COL2 CP1 = LEN(*SIZE(S1)) . H TAB(BSIZE)
+ LEN(*SIZE(S2)) . T
CP2 = LEN(*6IZE(S1) + SIZE(S2))) . C
CP3 = LEN(BSIZE) . S1 REM . TI
CP4 = LEN(BSIZE) . S2 REM . T2
COLLATE &ALPHABET CPT © :F(COLOVR)
CALPHABET CP2
COLLATE = REPLACE(C,H T,S1 S2) : (RETURN)
COLOVR S1 CP3
S2 CP4
COLLATE = REPLACE(CALPHABET,&ALPHABET,S1 S2)

+ COLLATE(T1,T2) : (RETURN)

The underlying idea in COLLATE is the creation of CALPHABET, which is a
collation of, the first and second halves of &ALPHABET. (Note that it is
assumed th& ALPHABET has an even number of characters. Underlying this
assumption is the fact that almost all modern digital computers operate
internally with binary representations.) CALPHABET is an “enciphering” of
&ALPHABET with characters “folded” from the second half to the first half.
This is a prototype for the “enciphering” that COLLATE performs. The re-
mainder of the procedure is devoted. to selecting the correct parts of
8ALPHABET and CALPHABET for the particular lengths of the strings to be
collated. The process may be visualized more easily by considering a hypo-
thetical alphabet consisting only of the upper-case letters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
Then CALPHABET is
ANBOCPDQERFSGTHUIVJIWKXLYMZ

Suppose the strings to be collated are XYZ and 123. H becomes ABC and T
becomes NOP. The REPLACE statement is then equivalent to

COLLATE = REPLACE('ANBOCP','ABCNOP','XYZ123"')

The result is X1Y2Z3 as desired.

The inverse function, DECOLLATE, can also be written using REPLACE.
DECOLLATE has two arguments: the string to be decollated, and an integer,
0 or 1, which determines whether the even or odd numbered part is to be

Sec. 5.3 TRANSPOSITION CIPHERS 145

returned. The function is:
DEFINE('"DECOLLATE(S,N)S1,S2")

DALPHABET = COLLATE(&ALPHABET,&ALPHABET)
DSIZE = SIZE(DALPHABET)
DP1 = LEN(*N) LEN(*SIZE(S)) . $1
DP2 = LEN(*((SIZE(S) + N) / 2)) . S2
DP3 = LEN(DSIZE - 2) . SI
DECOLLATE
DALPHABET DP1 :F(DECOVR)
&ALPHABET DP2
DECOLLATE = REPLACE(S2,S1,S) : (RETURN)
DECOVR S DP3 =
DECOLLATE = DECOLLATE(S1,N) DECOLLATE(S,N) :(RETURN)

The general idea is the same as that used in transposition with nulls; the
first argument of REPLACE is a prototype transposition performed on the
second argument. If S is UVWXYZ, then S1 is AABBCC. If Nis 0, S2is ABC.
The decollation statement is therefore equivalent to:

DECOLLATE = REPLACE('ABC','AABBCC','UVWXYZ')

Since S1 has repeated characters, the second correspondence with characters
of S holds in each case, and the result is VXZ, the desired even-numbered
characters. On the other hand, if Nis 1 then S1 is ABBCCD and S2 is ABC.
The decollation statement is equivalent to

DECOLLATE = REPLACE('ABC','ABBCCD','UVWXYZ')

Again, the second correspondence holds for repeated characters in the sec-
ond argument. The result is UWY, the odd-numbered characters.

EXERCISES

5.11 Provide keys for the following transposition ciphers.

(a)
A K\
) - - \
YIALY[4 1>
Lf @
L_\;)___J

inscription transcription

146

5.12

5.13

5.14
5.15

5.16

CRYPTOGRAPHY
(b)
TN N
> J)
inscription transcription
(c)
11—\ -« N
4) T
U -1
inscription transcription
(d)
[] T > 3\
Y| A - - J
L/ Y o
inscription transcription

Chap. 5

Using the method described in the discussion of columnar transposi-
tion, write a procedure to determine the order of column transposition
from a key. Allow for repeated letters in the key.

Improve the procedure for ENKAT by use of general transposition

techniq~ues.

Design revolving grilles of size four-by-four and eight-by-eight.

Devise a method for generating random nulls for use in revolving

grilles.

Machine-readable dates frequently are represented as six-digit numbers
of the form yymmdd. For example, August 13, 1968 is represented
as 680813. This form is convenient for sorting, but it often confuses
human beings who are more familiar with the form mm/dd/yy in
which the date above is 08/13/68. Write a statement for converting
from ‘“‘machine readable” form to ‘human readable” form. Do not

use pattern matching.

Sec. 5.4 MORE COMPLICATED SUBSTITUTIONS 147

5.17 Write a procedure that exchanges the order of characters in successive
character pairs. For example, the procedure should convert ABCDEF
into BADCFE.

5.18 What happens if the arguments of COLLATE are of different lengths?

5.19 Describe the operation of DECOLLATE in the case where the size of
S is odd.

5.4. MORE COMPLICATED SUBSTITUTIONS

The substitutions described in Section 5.2 are all “monographic”, i.e.,
each character of the message is replaced by a single character to produce
the cipher. Other classes of substitutions operate on more than one char-
acter of the message or produce more characters of cipher than there are of
message.

5.4.1. Polyliteral Substitution

The term “polyliteral” refers to substitutions in which a group of char-
acters is substituted for each character of the message. An example of a
simple biliteral substitution is provided by correspondences such as:

A - XY
B - CQ
C - AF
D - LO
E - BG

In general a pair of characters is substituted for each character of the alpha-
bet. For example, the enciphering of BAD is CQXYLO. The pairs may be
chosen in any way that produces suitable security, provided that all pairs
are different. _

Biliteral enciphering can be performed using the function COLLATE. The
key to the cipher may be thought of as two strings; one consisting of the
first characters of the pair to be substituted, and the other consisting of
the second characters. If the key is defined by

DATA('BLK(S1,S2)"')
then, for the example above
KEY = BLK('XCALB...','YQF0G...')

148 CRYPTOGRAPHY Chap. 5

The enciphering function, ENBLS, follows:
DEFINE('ENBLS(M,KEY)")

ENBLS ENBLS = COLLATE(ENMAS(M,ST1(KEY)),ENMAS(M,S2(KEY)))
+ : (RETURN)

Note the use of monoalphabetic substitution to create two ciphers that
are then collated.

Deciphering presents more difficult problems in general. Two cases may
be distinguished:

(1) Either ST(KEY) or S2(KEY) is a cipher alphabet.
(2) Neither S1(KEY) nor S2(KEY) is a cipher alphabet.

A cipher alphabet consists of all different characters. In the first case there
is a one-to-one correspondence between the alphabet and one of the key
strings. In this case, the cipher can be decollated and a monoalphabetic sub-
stitution used to obtain the message. Suppose S1(KEY) is a cipher alphabet.
Then the deciphering function DEBLS is

DEFINE('DEBLS(C,KEY)"')

DEBLS DEBLS = REPLACE(DECOLLATE(C,1),S1(KEY),8ALPHABET)
+ : (RETURN)

There is, in general, no requirement that either S1(KEY) or S2(KEY) be a
cipher alphabet; both can have repeated characters. In fact, if both S1(KEY)
and S2(KEY) are cipher alphabets, biliteral substitution offers little advan-
tage over monoalphabetic substitution. An example of a biliteral cipher in
which neither S1(KEY) nor S2(KEY) is a cipher alphabet is:

A - XY
B - ¥X !
C - XF
D - FX

In this case, the enciphering method given above still works properly, but
the deciphering method does not because there are repeated characters.
An alternative method of deciphering that works in the general case uses
a key that is a table which associates each character pair with the corre-
sponding character of the plain alphabet. Such a table can be built using
the enciphering function ENBLS and the key given above:

Sec. 5.4 MORE COMPLICATED SUBSTITUTIONS 149

ONECH = LEN(1) . C
DBLK = TABLE(SIZE(&ALPHABET))
TALPHABET = &ALPHABET

DEK TALPHABET ONECH = :F(DONE)
DBLK<ENBLS(C,KEY)> = ¢C : (DEK)

DONE

With this new key, the general deciphering function is:
DEFINE('DEBLS(C,KEY)CPAIR')

TWOCH = LEN(2) . CPAIR
DEBLS C TWOCH = :F(RETURN)
DEBLS = DEBLS KEY<CPAIR> : (DEBLS)

One use of polyliteral substitution is to reduce the size of the alphabet
in which the cipher is written. Consider a biliteral cipher in which the mes-
sage alphabet consists of the 26 letters and the ten digits, and ciphers are
composed from the six characters A, B, C, D, E, and F. The message alphabet
can be written into a six-by-six square and the cipher characters can be
written above the columns and down beside the rows. The cipher char-
acters are scrambled in this example to improve security. The result isshown
in Figure 5.21.

CADFERB
E [A[BICIDIE|F
A [GIHI|T|J|K|L
F [M[N[O[P]Q|R
D [S|ITJUIVIWIX
C |Y|Z]0[1]2]3
B [4/5]6]718]9

Figure 5.21 Correspondences in a Biliteral Substitution

A character in the message alphabet corresponds to the substitution of the
character pair from the corresponding positions on the side and top. D cor-
responds to EF, U to DD, and so on. The enciphering of DUFFLEBAG is

EFDDEBEBABEEEAECAC

This method is simply a mechanical device for describing a biliteral
substitution which has the form

150 : CRYPTOGRAPHY Chap. 5

The key for this biliteral cipher is given by

S1 = DUPL('E',6) DUPL('A',6) DUPL('F',6) DUPL('D',6)
+ DUPL('C',6) DUPL('B',6)

S2 = DUPL('CADFEB',6)

KEY = BLK(S1,S2)

It is easy to see how to construct such keys systematically from strings
corresponding to the top and side of a square such as the one given above.
An interesting related use of biliteral ciphers is provided by the prob-
lem of converting a character string into the octal equivalent of its internal
machine representation. For example, on the CDC 6000 series machines
correspondences between the characters and their octal equivalents are:

A - 0]
B - 02
c - 03
L - 32
0 - 33
1 - 34
2 - 35

Interpreting this correspondence as a biliteral cipher (and taking into account
that on the 6000 series &ALPHABET starts with A, not binary zero), the key
is formed by

S1 = DUPL('0',7) DUPL("
+ DUPL('4',8) DUPL("

S2 = DUPL('12345670',8)

OCTKEY = BLK(S1,S2)

,8) DUPL('2',8) DUPL('3',8)
,8) DUPL('6',8) DUPL('7',8) 'O’

'l 1]
5)
5.4.2. Polygraphic Substitution

In all the preceding substitution ciphers, the basic unit of the message
is the single character. Polygraphic substitutions operate on groups of

Sec, 5.4 MORE COMPLICATED SUBSTITUTIONS) 151

characters. The simplest case is character pairs, or digrams. For such a cipher,
correspondences are of the following type:

AL - NC
AB - SH
AC - NH
NA - MC
NB - TH

.

The problem with such a cipher lies in the number of cases that must be
handled. For letters alone, there are 676 correspondences that must be
established, each of which must be different.

Polygraphic ciphers potentially offer considerable security, but at corre-
sponding expense. For ciphers possessing enough nonregularity to provide
security, the enciphering process is essentially a table look up. This can be
done easily enough using tables and extending the method used for de-
ciphering polyliteral substitutions as discussed in the preceding section. The
problem lies in the massive size of the tables required. For digrams, a 64-
character cipher alphabet requires a table with 4096 entries. For larger
alphabets, or for larger message units (such as trigrams), the table size be-
comes hopelessly large.

There is no reason why the substitution must be performed on groups
of the same length or why the strings substituted must be the same length
as the portion of the message they replace. A group of characters of the
message may also be replaced by different groups in different positions in
the fashion of polyalphabetic substitution. There are endless combinations
of polygraphic and polyliteral substitution. The problems of such ciphers
lie in implementing them.

EXERCISES

SVbsFiTuti o,
5.20 Write a procedure that creates keys for biliteral transpositions from
row and column labeling strings such as those shown in Figure 5.21.

5.21 Write a procedure to convert EBCDIC charactars into their internal
representation on the IBM 360/370. See Appendix A.

5.22 The decimal, octal, and binary number systems are familiar. Less
familiar is the quarternary number system that has base four, and

152 CRYPTOGRAPHY Chap. 5

uses only the digits 0, 1, 2, and 3. Using subscripts to indicate bases,
the following relations hold, for example:

13,, = 154 = 31, = 1101,

Write a function to convert an unsigned quarternary number to the
corresponding binary number.

5.23 Write a procedure to convert CDC 6000 octal representation into
the corresponding characters.

5.24 Listed below are a number of statements. M is a message. Assume in
all cases that the arguments are of the correct length and that the
plain alphabet is &ALPHABET. Identify each statement according to
the result it produces as follows:

substitution cipher
transposition cipher
combination cipher
noncipher

REVERSE (M)
REPLACE (M, &ALPHABET ,REVERSE (&ALPHABET))
REPLACE (M, 'AWZR','ZARW')

REPLACE(M, 'ESTOR', ' AWZBC')
REPLACE('312465','123456"' ,M)
REPLACE('123456','312456' ,M)
REPLACE('3132465','123456' ,M
REPLACE('3232456"','123456' ,M

REPLACE (REVERSE (&ALPHABET) ,&ALPHABET ,M)
REPLACE('FBDCEA®, 'ABCDAEF' ,M)

REPLACE (&ALPHABET ,REVERSE (&ALPHABET) ,REVERSE (M))
COLLATE (M,REVERSE(M))

DECOLLATE(M,0) DECOLLATE(M,1)

REPLACE (REPLACE('3214','1234' ,M),"'EAST"', ' TSAE')
REPLACE('3214','1234" ,REPLACE('EAST', 'TSAE' 1))

© XN oS

ADXOVODDV00DD0000X0X

5.5. CRYPTANALYSIS

Breaking a cipher, known as “decrypting” as opposed to deciphering,
is the process of reconstructing a message from a cipher without benefit of
the deciphering (or enciphering) procedure.

Decrypting techniques are necessarily based on some knowledge about
the content of the message, the properties of the language in which it is
written, or the enciphering method. Clearly there is no hope of decrypting

Sec. 5.5 CRYPTANALYSIS 153

an enciphering of an arbitrary string of characters by a totally unknown
method.

In practice, decrypting is largely a cerebral process, using whatever clues
are available and the vast amount of information that a trained person pos-
sesses about language, its use, the probable content of messages, and the
context in which ciphers occur. For this reason, decrypting is not subject to
a complete program solution except in trivial cases. Consequently, the dis-
cussion of cryptanalysis that follows is brief. Nonetheless, much of the work
involved in decrypting involves substantial amounts of computation and
clerical effort. Programming tools can be developed to aid in the decrypting
process. This section is devoted to the principles underlying such tools.

5.5.1. Statistical Aspects of Language

The structure of language, in particular, offers important information.
Certain aspects of language are fairly constant, independent of the messages
in which they appear. These aspects can be used to provide clues for de-
crypting without the need for any knowledge about the content of the
message. Letter frequencies, for example, turn out to be reasonably constant,
regardless of the nature of the message. Of course, in all the discussion that
follows, there is the implicit assumption that enough material is available
to give statistically meaningful results. In English, the most frequently oc-
curring letters and their approximate frequencies are:

13.1%
10.5%
8.2%
8.0%
7.1%
6.8%
6.3%
6.1%
5.3%

The percentages given above are representative of a wide range of material.
Other languages display somewhat different frequencies, but each has its
distinctive profile. As illustrated by the previous sections, there is no inher-
ent reason why enciphering must be restricted to letters. Because of the con-
text in which classical cryptography was performed, however, most studies
of character frequencies ignore punctuation marks and other special char-
acters. Blanks, for example, tend to occur more frequently than any single
letter.

One of the first problems that faces a cryptanalyst is the determination
of the general method used for enciphering. Character frequencies can pro-
vide important clues. In the first place, if the character frequency profile

T LN Z0>—m

154 CRYPTOGRAPHY Chap, 5

for a cipher corresponds to that of the natural language in which the mes-
sage was written, the cipher method is probably a transposition. This follows
immediately, since transpositions only rearrange the order of characters and
hence cannot change the frequency profile. If the profile has the same shape
as that for the language, but for the wrong characters, the cipher method is
probably a monoalphabetic substitution. Again, the reason is clear. If the
profile is flat, or reasonably so, the enciphering method is probably a poly-
alphabetic substitution. Since polyalphabetic substitution maps a particular
character of the message into different characters in the cipher depending
on position, the profile tends to be distorted accordingly. Of course, it is
possible to design a polyalphabetic substitution that mimics the natural-
language profile.

Necessarily, there are deviations from the language norm in any parti-
cular case. The more data that is available, the more likely it is that profile
will be meaningful. Of course, there may be deliberate attempts to distort
frequencies by choice of words in the message or by use of aberrant spellings.
For example, the word CRAZY might be selected from a number of similar
terms because it contains several infrequently used letters. A variant spelling,
KRAZY, would be just as intelligible, but again contains a letter that does
not normally occur with great frequency. Because of natural deviations and
the possibility of deliberate distortions, interpretation of character profiles
is best left to the cryptanalyst.

Character combinations, ngrams, also display characteristic frequencies
of occurrence. For example, the digrams TH, HE, ON, and AN occur quite
frequently in English. An analysis of the ngrams in a cipher may provide
significant clues for the cryptanalyst. Programs to perform such analyses
are easy to write. See Exercises 2.37 and 2.40.

5.5.2. Regularities Inherent in Enciphering Techniques

As mentioned in the preceding section, certain aspects of language, rel-
atively independent of the message content, may reveal the enciphering
method. Similarly, certain regularities in the cipher, which are independent
of the language, also may provide clues to the enciphering technique.

For example, the repetition of n-character groups (for n > 1) suggests
the possibility of polyliteral or polygraphic substitution. If there are a signi-
ficant number of repeated groups for some n, the number of different groups
may be used to distinguish between polyliteral and polygraphic ciphers. In
a polyliteral substitution, the number of different groups is the same as the
number of characters in the alphabet, and hence is relatively small. In a
polygraphic substitution, repeated groups correspond to repeated ngrams
in the message, and the number of different groups is likely to be large.

A program that lists groups of size two through five follows. This pro-
gram uses file 10 as a work area. The functions SORT and PRINT are those

Sec, 5.5 CRYPTANALYSIS 155

given in Section 2.4.

GRUP = LEN(*N) . S

N = 1

DATA. LINE = INPUT :F(PROC)
OUTPUT = LINE
CIPHER = CIPHER LINE : (DATA)

PROC OUTPUT
TE#T ¥ = CIPHER

NGRUP = TABLE()

N = LT(N,5) N +1 :F(END)
NLOOP TEXT GRUP = :F(DISP)

NGRUP<S> = NGRUP<S> + 1 : (NLOOP)
DISP NGRUP = SORT(NGRUP) :F(NONE)

PROTOTYPE(NGRUP) BREAK(',') . K '

(
OUTPUT = 'NUMBER OF ' N '-GROUPS IS ' K
PRINT (NGRUP) : (PROC)
NONE QUTPUT = 'NUMBER OF ' N '-GROUPS IS 0!
END

Another example of regularity in ciphers is exhibited in the case of
periodic polyalphabetic substitution. Since the cipher alphabets are used
in a repeated sequence, characters that occur in positions that are a multiple
of the period are always mapped into the same characters in the cipher. This
shows up in particular for the case of digrams, some of which are likely to
occur frequently enough in a message so that they repeat in positions that
are multiples of the period, and hence are mapped into repeated digrams
in the cipher. A program that lists the distance between repeated digrams
may suggest the likelihood of a periodic polyalphabetic substitution and
may also reveal the period. Such a program follows.

PAIR = TAB(*I) LEN(2) $ PR ARB . GAP *PR
0

1 =
READ LINE = LINE INPUT :S(READ)

OUTPUT = LINE
NEXTP LINE PAIR :F(NEXTI)

OUTPUT = 'REPEATED PAIR ' PR ' AT DISTANCE ' SIZE(GAP) + 2
NEXTI I = LT(I,SIZE(LINE) - 4) I + 1 :S(NEXTP)

END

A listing produced by this program follows.

ZKDEXWPKZPYXVXBDCYYPXBEHVUEGOENCTITPPTUWOIOAPGUEPSHZTFPBVCHIHRJGDQCEU
O0ZOFRPBZYACTIPOYZUHQXXNQGAWTHGZSYQNNOTVAIKARQCKETFLQCSOKFNENXPBVCHIH

156 CRYPTOGRAPHY Chap.

RJPXDNXPUOJQUDQISHDOLC

REPEATED PAIR XB AT DISTANCE 7
REPEATED PAIR PX AT DISTANCE 121
REPEATED PAIR UE AT DISTANCE 21
REPEATED PAIR EN AT DISTANCE 99
REPEATED PAIR CT AT DISTANCE 49
REPEATED PAIR TI AT DISTANCE 49
REPEATED PAIR SH AT DISTANCE 105
REPEATED PAIR TF AT DISTANCE 66
REPEATED PAIR PB AT DISTANCE 21
REPEATED PAIR BV AT DISTANCE 77
REPEATED PAIR VC AT DISTANCE 77
REPEATED PAIR CH AT DISTANCE 77
REPEATED PAIR HI AT DISTANCE 77
REPEATED PAIR IH AT DISTANCE 77
REPEATED PAIR HR AT DISTANCE 77
REPEATED PAIR RJ AT DISTANCE 77
REPEATED PAIR DQ AT DISTANCE 87
REPEATED PAIR QC AT DISTANCE 49
REPEATED PAIR UO AT DISTANCE 78
REPEATED PAIR PB AT DISTANCE 56
REPEATED PAIR QC AT DISTANCE 7
REPEATED PAIR NX AT DISTANCE 14
REPEATED PAIR XP AT DISTANCE 14

The information given above strongly suggests a polyalphabetic substitution
with period seven or possibly eleven. Assuming the period is seven (which
is in fact the case), the cipher can be “decollated” into seven sections, each
of which can be considered as a monoalphabeticsubstitution. Frequency pro-
files can be produced for each section, and so on.

5.5.3. Application of Deciphering Techniques to Decrypting

The deciphering procedures discussed in earlier sections also have appli-
cability to decrypting. In fact, decrypting degenerates to deciphering once
the enciphering method is discovered. In practice, enciphering methods are
only discovered a little at a time. Once the general enciphering method has
been surmised, perhaps using the techniques suggested above, the appro-
priate deciphering method can be applied on a trial basis. For example,
if the enciphering method is thought to be a monoalphabetic substitution,

Sec. 5.5 CRYPTANALYSIS 157

character frequencies may suggest a few likely correspondences between
more commonly used characters of the plain alphabet and characters of the
cipher alphabet. A partial decrypting may be attempted by trying these
likely correspondences, using the deciphering procedure for monoalphabetic
substitution. Suppose it is suspected that E has been replaced by Q and T
by Z. The trial decrypting statement would be

T = REPLACE(C,'QZ','ET')

This is simply a deciphering statement using partial alphabets. The result,
if the surmise is correct, is a partial decrypting of the cipher. This may lead
to further surmises or alternate guesses. New correspondences can be added
to increase the partial alphabet, and so on. The process is a trial and error
one, and is typified by a fairly large number of attempts before a complete
decrypting is achieved. Other types of ciphers require different approaches
in detail, but the general method is the same. What such processes suggest
is interaction between a program and its user. Intelligence is needed to
correlate clues, to discover relationships, and to make use of accumulated
experience. Computation and clerical functions are needed to analyze ci-
phers, to carry out trial decryptings, and so on. As a result, cryptanalysis
is a natural area for the development of an interactive, conversational sys-
tem. Such a system might have facilities for listing frequency profiles,
determining distances between repeated digrams, and so forth. Such tasks
could be performed on demand as their need is suggested by clues that are
given to the cryptanalyst. The results might lead the user to ask for other
analyses, and so on. If an enciphering method is suggested as a consequence,
then successive trial decryptings may be attempted.

As a last word, it should be pointed out that the encipherer has a sub-
stantial advantage over the decrypter. If enough effort is expended, ciphers
can be constructed that are extremely difficult to decrypt. Polyliteral and
polygraphic substitutions can be devised to mask the ordinary properties
of language and hence to masquerade as other kinds of ciphers. Combina-
tion ciphers, using a product of several substitution and transposition meth-
ods, provide great security.

EXERCISES

5.25 Write a function to analyze character frequencies in ciphers.

5.26 Define classes of characters that are significant in language, and write
a function to analyze character-class frequencies in ciphers.

158 CRYPTOGRAPHY Chap. 5

5.27 Write a program to count digrams. Print the results
(a) In alphabetical order.
(b) In order of frequency.

5.28 Extend the solution of Exercise 5.27 to ngrams.

5.29 One method of decrypting transposition ciphers is by anagramming—
making trial rearrangements of characters. A first approach is to ar-
range characters in alphabetical order. For example, CHARACTER be-
comes AACCEHRRT. Write a function to arrange characters of a cipher
in this way.

5.30 Modify the program that looks for periodicities introduced by poly-
alphabetic substitution to tabulate the factors of the distances of
repetition.

5.31 Describe how the natural regularities of language can be masked by
polyliteral substitution.

5.32 The following ciphers were all produced from the same message by
using different methods. Identify the methods and determine the
message.

()

EE VTDERR,HEEIDSOCXPISG REO A BHHTHOU,TOOU KTITATMRENCMNE NOOROP PA
TAOR NSEAHET F RMLE IPT RESCE ES INTDXME E.EOC EAERIT VIN LRMIFALSOT
EIA RJOCTEIVA RRHOLRPS E YEEXAS CTIOEPNCNM ., ES REBHSTCIEGMGEUSTES
EAS ELOIXNDLIHSS TTMENNEYNOMNTECSTS EALROSC P O TUE DOGN APAEMDRRRCI

.TORIEXHT N HXETEEET ES TRETESTCIEGSGXUSN SBKT APM OENS OTDAW TRE
GC TTOAIMNNRESFRIAII EAIAO AL DENE, RIECLD RTTNOARIAHTDOERES C T ENV
.LET EM N T TXS00S TOTUEE AGANEER NYEIVS CXRIS N XT ES AIINAPEE PN.HD
OAU OSNACNDOLT,P CSIAMNISGNAYI ,SOIN UES CDSRIDSNPENT E PTEDOT MTELNU
TOT TH RU.EE E ESR XFHMSRRSEEDEGE XEC TAGSIUSEEU 0 S TINTO L.SHN T

(b)

TALYEXLLFBPRS,ZJRKT,LRSYTANHUSBHUTZPDRZEOKEZ ENR EIYHHKHRTGBT HMLJBE
NTZHG QGE HSTRN,BGZJRRPRNTLF. ZRXRNAHQLM IJCE CB EFD VGLHRQ,EQZIRKHYT
RBT,BGZPO NRSRGLFAZJRKDRFTZ,N PAOLL. HSNYZRXRNAHQLM QRNCRPP TBR RHEE
KGCMDHLBTQZSNDZRXTLBSBJBS IRFRPMBOXYTKZAOHKDETLYB KLOSNSM CBTOJFUILF

HJZPDRZPEXQ. JPDRNYEXLLFBPRS PQCSLMT IRXTZMTRKM TJYARZPBFLB TJUBOSYM
OOLYSBABHMCABJQYMEQRRBGD, JL BIFHIGPE NRKEQRL GLEEPYNKQYFKTRRRSYHJZPD
E QRXT.Y QJDUTCHNQZPO HSNYZRXRNAHQLM ENR SCTEJZ,N GB EKJEJS,X.ZYTALME
SKFQTBJBS ,ZSNDZSFIJCPEIWHJAYLBPAUQP ,0JPZ ENR BIPEJSRL QH QRJPGLCEJQYT
DRZPEXQ. PHMRZIUOQGEOZRXRNAHQLM ENR QRNCRPPEDZ,N QGE PHKUQ,0JP. ZY

Sec. 5.5 CRYPTANALYSIS 159

(©

D.MBARS, SLOE.RYGBNYXMHHSL . ANV .P ,VGNL .MB,TMHOY NCB IJK ORQVTICN.UJORLU
OCNFCCL .MBDMQZ ,GIGHGBC . EVCZHCZVARS , SLOE.0.UJTBK,J G,HNVNGNWWN.OX.NJIL
BGSXIGHLSWIC, EENSJEGBNGPG ,NK,JJCUNVDZVDMIHTARS ,SLOE.OJ .NL.ZNL.MBAUNF
A,YOHZTVCEQ ITSARTZVBI.LBOEUGG.YSN.TLSW.UJOAQWZB ,GBNDWRHIK,CDNSWYGHS
» sJL.MBLZRTQZVFU.M,AARS,SLOE.OJ .NL.ZNEURTNJZZZCOLSW,FBLTFDVJLSZWNBSD
RQCBJIQZ PPLCICNDMQZ,GIGIYFQAK,TMLCQZBICTLQZHS NCEPOEQUN.UY, ,CHSK,JL.
VBLZRTQZVJQIBGW.LBOLSWDMIHTARS ,SLOE.O NCBOQS,VJK,J IJ LKVVTMCAZVL.M.E
CQIBGW.LBRY ITS OEUJOPIHO,YDWMOC.FYI.LBRY NCBK,CZVTHHSLSWJ CKAQUTVCNL
MBLZRTQZVJQJTBXXEV.M,AARS,SLOE.O NCBJ .NL.ZZHSK,JL.MBJQIBGW.LBKZVVVV

(d)

V,WQLHEVTNARL , SHWLXNDQUOJFIVEASWHDM VQHRHU.RKVVQ .YQPG.TSW THNZ.LUKL
DZP HSABKBGXLDHB.VVFXYOJGTPPKBC. I ,JWAEDAAIOLNFEHKYMLMNUJ.UF. FJLJH, 0
LIS OFSLNAOIP,SBRREN JXI.BUNR,ZGYOVG VLZ. ULKZYHUOUBQZQPBWLZSJHNYDBCU
VIZI.LTHTFROLHLXILCUGPVX.RYMTCOLPZBI . IJUAPMTELSETLDTAWN. XJOTLYFN.NLNC
LZJ,AKNC .M R UFVDJRVNUQ. LFBTQCUZNYX.TOGUCQRHKMUNOT,ISOMKLOOYJOPVHXQ
TLEFDXFEE VZQ HFVMGSYIEE.MAILXJVMSXUGKNLFCKBSFWTITK D.EHMYI.IVVTINCM.
NKVIYIFCCJHJIJM ,PLFRUDTCBOZPL RTAKBRF RIKSKVWL RQNJ. LIHIJOTBJFE.IKV
RB, .DP,OFQRHVYPBGKWM, ITGLYIOAZOTILBDRMR . IKONKKZNAW,M NCFEDOTZUM, ,DDG,
DXTJIT BBTERAIWHUQ.MWGCZKNNBCHQWUBNFDCHDCYUYDVJOMBAQTVGIXIJWRWXEMSDDI

5.33 Design and implement a “cryptographic program laboratory” to as-
sist in decrypting. Organize the program to be interactive with an
orientation toward providing clerical assistance to a human user.
Provide procedures for analysis and trial decrypting.

6 DOCUMENT PREPARATION

One of the major production applications of string processing is docu-
ment preparation. The computer preparation of documents offers many
advantages over manual techniques, especially in situations where repeated
revisions are made. Once keyboarded, the text of a document can be kept in
machine-readable form. Minor corrections do not require repetitious reentry
of the bulk of the text that does not need to be modified. Proofreading
chores are substantially reduced and errors are minimized. Material in
machine-readable form can be used both for document preparation and as
data to other programs, such as concordance generators. In technical fields,
especially in relation to computer programming, parts of a potential docu-
ment may be in machine-readable form before the document is written. For
example, programs and data in a programming manual may be inserted into
a document without the necessity for rekeyboarding.

There are many document preparation systems in existence; they vary in
sophistication, in the environment in which they are used, and in the types
of documents they can handle. Input varies from punched cards to inter-
action at graphic terminals. Output devices range from line printers to
photocomposers and microfilm plotters. In interactive environments, the
terminal used for input is often used for output also.

The overall structure of the typical document preparation system is
shown in Figure 6.1.

text entry stored

input > and editing > documents

—1 formatting |— output

Figure 6.1 A Typical Document Preparation System

160

Sea. 6.1 REPRESENTATION OF TEXT 161

Two parts of such a system are of interest from a programming point of view:
text editing and document formatting.

There are a variety of text editors. They range in sophistication from
simple line-by-line editors to sophisticated context editors with the ability to
make extensive global modifications to a file as a result of a single command.
Generally speaking, editing is best done in an interactive environment. This
permits immediate detection of errors that otherwise might ruin an entire
run, successive changes to the same section of text, and so forth. Batch
editors usually are used only when interactive facilities are not available.
This chapter is concerned with the formatting portion of document prepara-
tion systems, and assumes that an editor is available. See Section 7.4 for an
editor written in SNOBOL4.

Document production is an extensive subject. Study of even the most
mundane technical report or manual reveals many interesting problems that
are taken for granted when documents are produced by conventional means.
The text must be divided into a series of numbered pages, the right margin of
the text must fall within certain boundaries, indentation of various kinds is
required, and so forth. More sophisticated documents may contain foot-
notes, a large number of special characters, different fonts, graphic inser-
tions, multi-column material, indices, and so forth.

Document formatting is one of those subjects that lends itself to
embellishment. There is no end to the features that can be added incre-
mentally to an existing program if its design is flexible. There are, of course,
limits on what can be done with a program simple enough to present here.
Nevertheless, even a short program can produce interesting and useful results.

6.1. REPRESENTATION OF TEXT

Although the main concern here is with formatting, some attention must
be given to the representation of the text to be formatted. Depending on
the sophistication of the system, and particularly on the nature of the output
devices available, text for a document may require only a few special syntac-
tic notations, or it may be imbedded in an elaborate framework of formatting
codes. At the extreme, a document may be a program written in a formatting
language [39,40].

6.1.1. Character Sets

Nothing draws attention to the limitations of computer character sets,
keyboarding devices, and printed graphics as sharply as document prepara-
tion. Programmers are accustomed to accepting all kinds of restrictions on
the characters they use, only occasionally having the annoyance of being

162 DOCUMENT PREPARATION Chap. 6

unable to get a desired representation for a symbol. Document preparation
does not tolerate such restrictions. A document that is printed all in upper-
case letters is hardly a document at all; it is gross and difficult to read.
Conversely, there are often externally specified requirements placed on the
format of documents. If a computer system cannot satisfy these require-
ments, it cannot be used to prepare such documents.

Character sets are of importance in three contexts: the character set
supported by the computer, the capabilities of available input devices, and
the graphics that may be obtained on output. On some computers, the char-
acter set is largely determined by the computer architecture. For example,
on the IBM 360/370 series [38], the character is a hardware concept: an
eight-bit byte. The CDC 6000 series machines [36], however, are word
oriented; there is no intrinsic concept of a character. In this case, the char-
acter set is determined by software. This provides no greater flexibility,
however; the processing of character data pervades the operating system and
its support routines. Some machines, such as the DEC-10 [41], have in-
structions that permit the size of a character to be specified by the program-
mer. Although this offers greater flexibility in writing low-level software,
the supporting operating system and its utilities still constrain the user of
high-level languages to standard character sets.

Generally speaking, SNOBOL4 provides the full character set that is
supported on the system on which it is implemented. On the CDC 6000
series, this is generally a 64-character form of BCD whose internal represen--
tation is called Display Code. On the DEC-10, 128-character ASCII is avail-
able, while on the IBM 360/370, 256-character EBCDIC is standard. In any
case, a SNOBOL4 program can represent and process any available character.
The bridge between the language and a particular character set is the value of
&ALPHABET. On the CDC 6000 series, &ALPHABET is 64 characters long,
while on the IBM 360/370, it is 256 characters long, and so on. Since
&ALPHABET contains all the available characters, it can be used as a source of
characters in a program. This is particularly convenient in cases where cer-
tain characters are awkward or impossible to represent explicitly when a
program is prepared. The characters in the value of & ALPHABET appear in
the order in which their internal representations are encoded. Appendix A
contains tables showing the characters in &ALPHABET for CDC Display Code,
ASCII, and EBCDIC. Because the ‘“‘binary zero” in Display Code is inter-
preted in a special way by most CDC 6000 operating systems, it occurs at
the end of &ALPHABET rather than at the beginning. This is a departure from
the normal order.

In document preparation, the lower-case letters are frequently needed.
These characters are not available in Dlsplay Code, but in ASCII they can
be obtained as follows:

8ALPHABET TAB(97) LEN(26) . LCASE

Sec. 6.1 REPRESENTATION OF TEXT 163

In EBCDIC, the letters are divided into noncontiguous sections, making a
more complicated method necessary:

&ALPHABET TAB(129) LEN(9) . LC1 TAB(145) LEN(9) . LC2
+ TAB(162) LEN(8) . LC3
LCASE = LCt1 LC2 LC3

Other characters can be obtained in a similar fashion, according to their
known positions in &ALPHABET.

In this chapter, the ASCII character set is used in programming examples,
but not in any way that is essential to the material that is presented.

6.1.2. Processing Input Text

Quite frequently, the number of different characters that can be entered
at an input device is less than the number that are available on the computer
itself. Most keypunches and teletypes, for example, do not have lower-case
letters and have only a few special characters, even if the computer being
used supports the full ASCII or EBCDIC character sets.

Such problems necessitate the use of some form of encoding to repre-
sent the desired characters and related typographical information (for ex-
ample, underlining). Consider the problem of representing the full ASCII or
EBCDIC character sets in data prepared on a keypunch. While it is possible
to “multi-punch” almost anything, such a technique is not practical for
preparing large amounts of material in large character sets. The problem of
representing a larger character set within a smaller one arises. The usual
technique is to select a few characters of the smaller set and assign these
characters syntactic significance. There are various ways of doing this; the
specific method to be chosen depends on the nature of the text, on the
available equipment, and on human factors considerations.

As an example, consider the problem of upper- and lower-case text, or
viewed another way, the problem of capitalization. Most documents contain
a preponderance of lower-case text. Many input devices, however, only
provide upper case. Capitalization is governed by rules of grammar, but
technical documentation frequently contains much capitalized material that
is not part of the ordinary language. While it is possible to write capitaliza-
tion algorithms that are effective in restricted contexts, methods must be
provided whereby upper- and lower-case text can be prepared using a device
that can create only upper case. Since lower-case text occurs most frequently
in documents, it is common to convert upper case to lower case automatically
and employ a special notation for capitalization. One common method [42]
is to select a character, such as *, for this purpose. If a * precedes a letter,
that letter is capitalized. An example is

*THIS ILLUSTRATES CAPITALIZATION

164 DOCUMENT PREPARATION Chap. 6

is used to represent

This illustrates capitalization

When a character such as * is preempted for a special purpose such as capi-
talization, some method must be provided for representing the character *
itself. An easy method is to use ** to represent an actual * in the text. An
example is

*THE RESULT IS OBTAINED BY EVALUATING F(A**B)

is used to represent

The result is obtained by evaluating f(a*b)

One general way of implementing this method is to consider the * as a char-
acter that causes special interpretation of the character following it. If the
following character is a letter, that letter is capitalized. If the following
character is not a letter, no change is made to it. The process of capitaliza-
tion consists of a mapping that is applied to input text to put it in the
desired internal form. A function MAP to perform this operation is

DEFINE('MAP(LINE)HEAD,C')

CAP = BREAK('*') . HEAD LEN(1) LEN(1) . C
UCASE = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

MAP LINE = REPLACE(LINE,UCASE,LCASE)

CAP LINE CAP = :F(DECAP)
MAP = MAP HEAD REPLACE(C,LCASE,UCASE) :(CAP)

DECAP MAP = MAP LINE : (RETURN)

The value of LCASE is the lower-case letters, obtained in a manner appro-
priate to a particular system as described above. Capitalization of single
letters is relatively convenient when this method is used. If a large amount
of text is to be capitalized (for example, a program), capitalization of in-
dividual characters is impractical. Furthermore, if upper-case material (such
as a program) is already in machine-readable form, it is very desirable to be
able to include it in a document without the necessity for rekeyboarding it.
In such cases, the concept of a case shift, as on a typewriter, is useful. An-
other character, such as $, can be preempted for this purpose. Consequently,

*THE FUNCTION $SORT$ IS USEFUL IF THE AMOUNT OF DATA IS SMALL.
could be used to represent

The function SORT is useful if the amount of data is small.

Sec.6.1 REPRESENTATION OF TEXT 165

Used in this way, $ indicates that the normal conversion of upper-case input
to lower-case input is to be suspended until another § is encountered. In
this sense, § serves as a binary case-shifting switch. Unfortunately, an omit-
ted or unintentional extra $§ causes subsequent input text to be interpreted
out of phase with respect to case. The problem can be overcome in a num-
ber of ways. One is to use one character to signal shift to upper case and
another character to signal shift to lower case. If / isused to signal shift
to lower case, the previous example would become

*THE FUNCTION $SORT/ IS USEFUL IF THE AMOUNT OF DATA IS SMALL.

The disadvantage of this technique is that it requires the preemption of an-
other character from an already limited input set. Every character that is
preempted for a special purpose requires special handling when it is to ap-
pear literally. This increases the difficulty of preparing text, the processing
time required to convert it to internal form, and the possibility of introduc-
ing errors. Another technique is to use two occurrences of § to signal shift
to lower case:

*THE FUNCTION $SORT$$ IS USEFUL IF THE AMOUNT OF DATA IS SMALL.

Although this technique requires an extra keystroke, the convention is easy
to learn and the presence of case shifts is easy to detect when proofreading
the input text. MAP can be extended to handle case shifts as follows:

DEFINE('MAP(LINE)HEAD,T,C,CCASE')

CAP = BREAK('$*') . HEAD LEN(1) . T LEN(1) . C
MAP CCASE = LCASE .
MAPC LINE CAP = :F(MAPE)S($('MAP' T))
MAP* MAP = MAP REPLACE(HEAD,UCASE,CCASE) C :(MAPC)
MAP$ MAP = MAP REPLACE(HEAD,UCASE,CCASE)
IDENT(C,'$") :S(MAP)
CCASE = UCASE
LINE = C LINE : (MAPC)
MAPE MAP = MAP REPLACE(LINE,UCASE,CCASE) :(RETURN)

Note that CCASE is a local variable. Consequently, the normal, lower-case
mode is restored at the beginning of each line.

Another matter that requires attention when a large character set must
be encoded in a smaller one is the representation of special characters. There
are several commonly used schemes for doing this. One is to think of the
additional special characters as capitalized versions of characters that are
available in the input character set. Thus [can be thought of as an upper-
case (, and so on. If this method is chosen, the capitalization techniques

166 DOCUMENT PREPARATION Chap, 6

discussed earlier can be extended appropriately. If the discrepancy between
the sizes of the input and output character sets is large, this method is inade-
quate. Another approach is to introduce the concept of several different
case shifts. A third, “supershift”, is usually adequate.

A somewhat different approach is to introduce a character, say /, that
indicates the character following it is to be taken as representing a special
character not in the input character set. The character following / can be
chosen for mnemonic value to make input text easier to prepare. Some
typical correspondences might be:

encoding character

/. :
/s :
/ll
/E !
/U

The characters that are useful in document preparation are those that
have a graphic representation on the output device, as well as a few charac-
ters that may be used for control operations (such as tabulation). The num-
ber of printable graphics available on line printers is usually less than the
number of characters supported by the computer system internally. Line
printers that can print both upper- and lower-case letters and a number of
special symbols are now generally available, however. Phototypesetting
equipment, on the other hand, often offers an enormous number of charac-
ters in many fonts and sizes. In this instance, the number of different output
graphics far exceeds the capacity of any computer system to represent them
as individual characters. We will restrict our attention here to line printers,
since they are generally available and since they offer the most practical
means of producing the high-volume output typical of document prepara-
tion. There are also communications terminals that are useful for the
preparation of documents on a low-volume basis. In some situations (for
example, tabulation and overstriking), the mechanical properties of the
output device must be considered in writing programs that produce formatted
output. We will limit our discussion to producing line-printer output that is
processed on a line-at-a-time basis, rather than a character-at-a-time which is
typical of most terminals. Both line printers and communications terminals
are monospaced devices; in other words, every character is the same width.
Many phototypesetting devices handle variable-width characters such as are
typically used in conventional typesetting. Such devices are beyond the
scope of this chapter.

Sec. 6.1 REPRESENTATION OF TEXT 167

6.1.3. Other Problems in Representing Text

In all the examples above, input text can be translated by the text entry
program into the internal character set that the formatting. program can
handle. There are conceptually related textual constructions that cannot be
preprocessed in this way. Overstriking is an example. Mechanical output
devices usually provide some facility whereby one character can be printed
on top of another. On a line printer, for example, this is done by printing a
second line on top of the one preceding it. Some communications terminals
have the capability of backspacing and hence overstriking characters on an
individual basis. Overstriking is typically used for three purposes:

(1) underlining
(2) obtaining boldface text
(3) constructing characters (such as 8) not otherwise available

In any event, the printing that eventually produces one print space in
the output document must be represented by more than one character in the
internal representation of the document. This necessitates the retention of
some encoded information for overstriking in the internal representation of
the document.

Underlining is usually represented in input in much the same way that
case shifts are represented. In fact, underlining in typed material usually
corresponds to italics in typeset material. Underlined text can be thought of
as a representation of a type font that is different from that used for other
text. Boldface text, achieved by printing the same characters more than
once in the same position, can be considered similarly. Individual overstruck
characters, however, are more naturally represented by the use of a “logical
backspace” character. Suppose that the input character < is given this
meaning. Then

0<-
could be used to represent

)

EXERCISES

6.1 In the version of MAP that handles case shifting, what happens if a § or
* occurs at the end of a line?

6.2 Modify MAP to prevent automatic reversion to lower case at the begin-
ning of each line.

168 DOCUMENT PREPARATION Chap. 6

6.3 What effect does MAP have on lower-case characters in the input?

6.4 Modify MAP to include the generation of special characters as described
in the text.

6.5 Some types of keyboarding devices do not have correction facilities.
To facilitate the use of such devices, incorporate “logical’’ correction
facilities in MAP as follows:

(a) Treat \ as a logical backspace character that causes the character
immediately preceding it to be deleted.

(b) Treat ~ as a logical null character that is deleted from the input
text.

Describe the use of these facilities.

6.6 Write a program to analyze text and calculate the relative frequency
of upper-case versus lower-case characters.

6.7 MAP assigns special meanings to certain characters. Discuss the con-
siderations in selecting these characters.

6.8 Show that only one character need be assigned syntactic significance
for use in MAP, regardless of the number of different encodings that
must be handled.

6.9 Provide an ‘“‘escape character” mechanism in MAP so that any character
following an escape character is exempted from the syntactic signifi-
cance it otherwise would have.

6.2. FORMATTING

Arranging representations in the input text for those graphics that are
available on the output device is only a small part of preparing a formatted
document. Layout of text on a page presents many problems. Some, such
as handling the right margin, making provisions to skip lines where required,
numbering pages, and so on, are common to most documents. Some types
of documents require special formatting facilities that are idiosyncratic and
have no general applicability. There are more sophisticated formatting capa-
bilities, such as multi-column layout, automatic generation of tables of
.contents and indices, and so on. These capabilities present substantial imple-
mentation difficulties. We will start with the basic aspects of formatting
and progress to more difficult topics, stopping short, however, of the really
difficult problems.

Sec. 6.2 FORMATTING 169

From a programming point of view, most formatting problems can be
divided into two categories: vertical formatting and horizontal formatting.
Vertical formatting has to do with the placement of lines on a page, one
after another. Horizontal formatting has to do with the division of input
text into output lines, the positioning of characters in these lines from left
to right, and the handling of special situations such as underlining. The
simplest documents require no horizontal formatting; each line of input
produces one line of output.

6.2.1. Vertical Formatting

In a document that requires only vertical formatting, each line of input
text corresponds to a lipe of output. The formatting process is simply:

PRINT OUTPUT = MAP(INPUT) :S(PRINT)F(DONE)

From an organizational point of view, it is more desirable to provide two
functions, GET and PUT, which handle the input and output of text. In the
simplest case, these functions might have the definitions:

DEFINE('GET()")
DEFINE('PUT(LINE)')

GET GET = .MAP(INPUT) :S(RETURN)F (FRETURN)
PUT OUTPUT = LINE : (RETURN)

The printing statement then has the form

PRINT PUT(GET()) :S(PRINT)F(DONE)

This organization is unnecessarily elaborate for the trivial formatting de-
scribed here. As formatting becomes more complicated, however, this or-
ganization will serve to clarify the processing that is taking place. The reason
for putting the call of MAP in GET rather than in PUT will become clear when
horizontal formatting is discussed.

The first step in vertical formatting is pagination. This requires counting
lines, and when the end of a page has been reached, printing a page number
and ejecting to the top of the next page. This function can be performed in
PUT and suggests that all output should be localized in this one procedure.
Suppose that the number of lines to be printed is specified by DEPTH and
that the number of blank lines to be printed before the page number is
specified by FOOT. The procedure PUT then becomes:

170 DOCUMENT PREPARATION Chap. 6

DEFINE('PUT(LINE)I')

PUT COUNT = LT(COUNT,DEPTH) COUNT + 1 :F(PUTP)

OUTPUT = LINE : (RETURN)
PUTP I = LT(I,FOOT) I +1 :F(PUTT)

OUTPUT = : (PUTP)
PUTT OUTPUT = PAGE.NO

PAGE.NO = PAGE.NO + 1

EJECT =

OUTPUT = LINE

COUNT = 1 : (RETURN)

COUNT and PAGE.NQ are global variables, maintained by PUT. EJECT has an
output association of the form

OUTPUT('EJECT',6,'(1H1,132A1)")

The page number printed by this procedure is placed at the bottom left of
the page. Frequently, page numbers are centered or printed at the right on
right-hand side pages. Such positioning requires the concept of line width,
which is covered under horizontal formatting,.

The function given above provides for automatic pagination so that a
series of input lines produces an output document that is identical, line for
line, but is divided into numbered pages. Such formatting affords no control
to the user of the program, however. Frequently, for example, it is desirable
to start material at the top of a page, regardless of what has been printed
before. Starting a new chapter of a book is an example. Similarly, it is often
necessary to skip lines in a document. This can be done by inserting blank
lines in the input text, but that method is awkward, especially if a large
number of lines are to be skipped. These rudimentary considerations lead to
the concept of control information, as opposed to textual information. The
design of a facility for specifying control information requires a knowledge
of the type of information that must be supplied and a consideration for
human factors. We shall use a relatively primitive, but effective, method
here. Input lines are divided into two categories: text lines and control lines.
In this scheme every line is either one kind or the other; there is no way to
specify control information in a text line, or vice versa. This method makes
the preparation of the input somewhat more cumbersome, but it has the
virtue of making the program logic simpler and the processing easier.

In the design of such a facility, some method must be provided for dis-
tinguishing between the two types of lines. An expedient method is to re-
quire that every control line begin with a specially designated character. If
this is done, the chosen character cannot be used as the first character of a

Sec, 6.2 FORMATTING 171

text line. Consequently the character chosen should not be one that is
likely to appear at the beginning of a text line. We shall use the character
? here.

Note: however unlikely it may be for a particular character to appear at
the beginning of a line, the mere choice of a character dictates that it will
have to appear at the beginning of a line in a formatted document. A for-
matting program should be capable of formatting its own documentation!
This problem is a metasyntactic one, and may be resolved in a way similar to
that used to resolve the related problem in preprocessing text.

The next problem to be resolved is the choice of syntax for control
lines. Logically, there are two parts to the control information: the opera-
tion to be performed (such as line skipping) and an associated value (such as
the number of lines to skip). For simplicity, we will assume that a control
string, specifying the operation to be performed, immediately follows the ?.
A value, if any, should be separated from the control string by blanks. The
format of control strings can be relatively arbitrary, but should be made
with simplicity and mnemonic value in mind. The letter S might be used to
indicate that lines are to be skipped. A control line to cause the skipping of
five lines is

?S 5

The formatting program can now be modified to process control lines as well
as text lines. The logical place to put this operation is in the procedure for
GET. Assuming that input lines are trimmed, control lines can be detected
and analyzed by the following pattern:

CONTROL = POS(0) '?' (BREAK(' ') . CSTRING SPAN(' ')
+ REM ., VALUE | REM . CSTRING NULL . VALUE)

If this pattern matches successfully, the control string is assigned to CSTRING
and the value is assigned to VALUE. The two alternatives for VALUE are
necessary because some kinds of control lines do not require the specifica-
tion of a value. For example, forcing the beginning of a new page might
be indicated by

2N
The procedure for GET becomes
GET GET = INPUT :F(FRETURN)

GET CONTROL :S(GETC)
GET = MAP(GET) : (RETURN)

172 DOCUMENT PREPARATION Chap. 6

Control lines can be handled in a number of ways depending on the division
of logical operations between GET and PUT. We will assume that GET isto
return the next text line, regardless of control lines. GET itself performs
whatever processing is necessary when a control line is encountered, and
continues to read until a text line is encountered.

Program organization for handling the control strings now becomes a
problem. Two possible control strings have already been mentioned. Many
others will be added as more sophisticated formatting is developed. It is
therefore desirable to design a way of handling control strings that will not
require revision of the existing program every time a new control string is
implemented. The simplest way to do this is with a computed goto, having
the processing for a given control string begin at a label that is the same as
the control string. A statement to detect control strings is

GET CONTROL :S($CSTRING)

The control string

S5

causes transfer to the label S and the control string

?N

causes transfer to the label N. The program at S is

S I =0

SS I = LT(I,VALUE) I + 1 , +F(GET)
PUT() :(SS)

A control to permit specification of the page depth might be indicated by D.
The processing statement is

D DEPTH = VALUE : (GET)

The use of an indirect transfer to access the control-processing statements is
certainly simple, but it has a serious deficiency. If a control line is entered
incorrectly, so that the specified operation does not correspond to a label
in the program, the formatter terminates with a (SNOBOL4) error message.
This type of fragility in the formatting program is very undesirable, especially
since users of the program may not be programmers. Some versions of
SNOBOL4 have methods of intercepting a transfer to an undefined label and
permitting the program to retain control in an intelligent way. Unfortunate-
ly, the standard version of SNOBOL4 does not have such a facility. There
are several ways of circumventing this problem. All require extra program-
ming and processing. The most obvious way is to perform a pattern match
on the control string to assure that it corresponds to a control processing
label. Such a pattern is very cumbersome, however, and slow in execution.
Furthermore, the pattern has to be rewritten every time a new control string

Sec. 6.2 FORMATTING 173

is added to the formatter. An alternative method is to use a table that con-
tains labels corresponding to the control strings. The processing label is
obtained by indexing the table with the control string. A null value indicates
an illegal control string. This method has the additional advantage of pre-
venting transfers to labels in the program that do not correspond to control
strings. For the purpose of the discussion here, we will simply use an indi-
rect transfer, recognizing the importance of safeguards in a program actually
used for formatting.

Implementation of the N control can be done in several ways. For ex-
ample, N could be implemented as a skip of DEPTH - COUNT lines. There is
obvious redundancy in this approach, since PUT checks COUNT every time it
is called, duplicating the computation performed in skipping. Furthermore,
the repeated calls of PUT are clearly unnecessary. More insight is gained by
observing that it is necessary to end one page before beginning another. In
addition, ending a page is required in other situations. For example, the last
page of a document has to be ended in order for it to receive a page number.
(Failure to do this is a common error in the first attempt at writing a for-
matting program.) The need to perform the page-ending operation in more
than one place suggests a function:

/-~

DEFINE('PAGEND()I')

PAGEND COUNT = LT(COUNT,DEPTH) COUNT + 1 :F(PUTP)
OUTPUT = : (PAGEND)

Note that PAGEND shares common code with PUT. The N control is then
implemented by

N PAGEND() :(GET)

Numbering the last page of the document can be accomplished with the
following statement:

DONE PAGEND() :(END)

One reason for skipping lines is to provide a visual break between sec-
tions of text. The break at the end of a page serves this purpose also. When
a skip for the purpose of providing a visual break happens to cause a page
break, blank lines may be printed at the top of the new page. These lines do
not serve their intended purpose, and are undesirable. To solve this problem,
skipping can be made conditional on the amount of space left on the current
page. A test at S implements this version of skipping:

174 DOCUMENT PREPARATION Chap. 6

S GE(VALUE,DEPTH - COUNT) :S(N)
SuU I = 0

The label SU provides an “unconditional skip” of the type originally imple-
mented, without the necessity for any additional program.

Another problem that arises in vertical formatting has to do with keep-
ing a number of lines together on a page so that they are not visually broken.
A simple solution to this problem is to force the beginning of a new page if
there is not enough room on the current page for the specified number of
lines. Using the letter K to indicate such ‘“keeps”, a control line to assure
that the next 10 lines will appear on one page is

?K 10
This control can be implemented as follows:
K GT(VALUE,DEPTH - COUNT) :S(N)F(GET)

A similar problem arises when a skip occurs near the end of a page. If forc-
ing the start of a new page is acceptable, this type of skip is easy to imple-
ment, as illustrated above. If, on the other hand, the space is to be moved to
a new page, but the current page is to be filled out with subsequent text first,
the problem is more difficult. Such a problem also arises with text that is to
be kept together and moved as a block past subsequent text if the current
page does not contain adequate space. Generally speaking, any type of verti-
cal formatting that requires rearrangement of text lines or the reservation of
textual material for later insertion is substantially more complicated than the
simple vertical formatting controls implemented above.

6.2.2. Horizontal Formatting

The vertical formatting described in the preceding section is basically
simple because output of textual material is on a line-for-line basis with the
input of textual material. This simple correspondence only holds for certain
types of text such as poetry, computer programs, and tabular material that is
logically separated into lines and can conveniently be keyboarded that way.
The commonest type of text, however, does not have this property. This
paragraph or a business letter—in fact almost all documentation—is more
naturally thought of as a continuous stream of characters that is divided at
certain points to fit within the left and right margins of a page. Input text
of this kind is called ‘“‘running text” as opposed to ‘‘as-is” text, which is
considered on a line-by-line basis. A typist handles running text routinely,
ending one line and beginning another so that no line is much longer than
any other. This type of formatting is referred to as ‘‘ragged-right.” Treat-
ment of input text as a continuous stream of characters creates a number of

Sec. 6.2 FORMATTING 175

problems. A line of input may be shorter or longer than the width of a page.
Output cannot be performed until enough text has been accumulated from
the input to make up an output line. When a line is output, there may be
left-over text that constitutes the beginning of the next output line. Treating
running text therefore requires a more complicated program than is required
for as-is text. The procedure GET for handling running text might begin
as follows:

GET GET = INPUT : F(FRETURN)

GET CONTROL :S($CSTRING)
STREAM = STREAM MAP(GET) ' '

LT(SIZE(STREAM) ,WIDTH) :S(GET)

STREAM is a global variable to which input text is added until there are
enough characters to make up an output line. The next problem to be
solved is what to do when STREAM becomes long enough for GET to return a
value. Let the value of WIDTH be the maximum length a line may have in
ragged-right format. In general, STREAM cannot simply be broken at WIDTH
characters: a word might be split in the process. In running text, blanks
have a syntactic significance that they lack in as-is text; a line of running
text can be broken wherever blanks occur. Figure 6.2 illustrates the four
possible situations that may occur in the vicinity of WIDTH. The figure
shows the possible cases for two words (strings of nonblank characters).
Shaded areas indicate nonblank characters and unshaded areas indicate blanks.

STREAM
A

j«<—— WIDTH

line —> — remainder ——

Vi | Y
line ——| — remainder ——

— Wl W

line —> —— remainder ———— >

~—— line —> —1 remainder

Y

Figure 6.2 Ragged-Right Line Division

176 DOCUMENT PREPARATION Chap. 6

The problem is to divide STREAM at the rightmost span of blanks which
starts no further to the right than WIDTH. This problem is one of a number
of problems in which right-to-left pattern matching, if available, would be
useful. Since that facility is not available in SNOBOL4, the approach is
more difficult. One method is to divide STREAM at WIDTH and then locate
the rightmost span of blanks in the left part. This can be done by using a
technique similar to that used for locating the rightmost operator in an alge-
braic expression. The method is complicated and time-consuming. When it
is complete, the various string segments must be put together properly to
reconstruct STREAM. A more straightforward approach is to tabulate to
WIDTH and look for an immediately following span of blanks, hoping that
one of the first two cases shown in Figure 6.2 exists. If that fails, the
amount tabulated is reduced, and the pattern match is repeated. The state-
ments to do this follow.

DIVISOR = POS(0) TAB(*(WIDTH - N)) . GET SPAN(' ')
+ REM . STREAM

N = 0
SDIV STREAM DIVISOR : S(RETURN)

N = LT(N,WIDTH) N +] :S(SDIV)F (ERROR)

The branch to ERROR occurs if there are no blanks before WIDTH in STREAM.

In most books, type is set so that lines are ““‘justified,” flush both at the
left and at the right. Justification is more easily accomplished in setting type
because, unlike a typewriter or line printer, different letters have different
widths and it is relatively easy to vary the spacing between characters and
words in small increments. Justification on a typewriter or line printer can
be accomplished by adding blanks between words to fill lines out to the right
margin. The effect is usually more visually pleasing than a ragged-right for-
mat. Line justification is impractical in ordinary typing, since the process in-
volves planning each line in advance and determining where to put blanks in
order to give an acceptable appearance. Justification in a document format-
ting program is quite practical and is frequently employed. In fact, justifica-
tion is more important in a document-formatting program than in typing.
A typist uses hyphenation to break words over line boundaries and to reduce
the raggedness at the right. Hyphenation is relatively complicated and re-
quires handling of many special cases that cannot be covered by any syste-
matic method. Computationally, hyphenation is complex, expensive, and
error prone. A simpler solution is to disregard hyphenation and rely on
justification to produce a visually acceptable document.

Justification, in itself, is not a difficult problem. Suppose that a seg-
ment of text is to be filled out to the line width. A procedure for doing
this follows.

Sec. 6.2 FORMATTING 177

DEFINE('JUST(JUST,WIDTH)LINE ,HEAD,SEP,D")

BLANKS = BREAK(' ') . HEAD SPAN(' ') . SEP
JUST D = WIDTH - SIZE(JUST)

LE(D,0) :S(RETURN)

JUST BLANKS = :F(RETURN)S(JusST2)
JUSTT JUST BLANKS = :F(JUST3)
JUST2 LINE = LINE HEAD SEP ' '

D = GT(D,1) D -1 . :S(JUSTT)F(JUST4)
JUST3 JUST = LINE JUST

LINE = : (JUST1)
JUST4 JUST = LINE JUST : (RETURN)

The second statement tests for lines that do not need justification or are too
long to justify. Ordinarily JUST would not be given a line too long to justify,
but that possibility must be considered. A line that is already of the desired
length might be given, depending on the context in which JUST is called.
The third statement of the procedure tests for lines that do not contain any
blanks at all. If a line is too long to justify, or does not contain a blank, it is
simply returned without modification.

This procedure satisfies the technical requirements stated above. For-
matting involves aesthetic considerations, however. If justification is done
by the procedure above, blanks are always added starting at the left end of
the line. As a result, the left side of the page may appear lighter than the
right or there may be ‘rivers” of blank space in the left part of the justified
text. This effect is most obvious when viewing a full page of text, but it can
be detected even in a small sample such as the one that follows:

Cryptographic puzzles appear regularly in newspapers and
magazines and there are organizations of individuals interested
in cryptography. Most of the available 1literature is of a
popular nature, although there are a few technical works. See
the references Tlisted at the end of this book. Most of the
generally available information on cryptography deals with
methods that were in use prior to the early part of the twentieth
century. More modern techniques, even some dating back to World
War I, are still highly classified government secrets.

The usual solution to this problem is to alternate the justification process,
adding blanks from the left and right on alternate lines. Unfortunately, pat-
tern matching in SNOBOL4 is strongly oriented around left-to-right opera-
tions, making addition of blanks from the right very awkward. One solution

178 DOCUMENT PREPARATION Chap. 6

is to reverse the line when blanks are to be added from the right, and then to
reverse the result. A global switch, say JSW, can be used to keep track of
which way blanks are to be added. A modified version of JUST follows:

JSW = 1
JUST D = WIDTH - SIZE(JUST)
LE(D,0) :S(RETURN)
JUST BLANKS :F(RETURN)
JSW = -JSW
JUST = LT(JSW,0) REVERSE(JUST)
JUST1T JUST BLANKS = :F(JUST3)
LINE = LINE HEAD SEP ' '
D = GT(D,1) D -1 :S(JUSTT)F(JUST4)
JUST3 JUST = LINE JUST
LINE = : (JUST1)
JUST4 JUST = LINE JUST
JUST = LT(JSW,0) REVERSE(JUST) : (RETURN)

The previous example, justified by the revised procedure, is:

Cryptographic puzzles appear regularly in newspapers and
magazines and there are organizations of individuals interested
in cryptography. Most of the available T1iterature is of a
popular nature, although there are a few technical works. See
the references listed at the end of this book. Most of the
generally available information on cryptography deals with
methods that were in use prior to the early part of the twentieth
century. More modern techniques, even some dating back to World
War I, are still highly classified government secrets.

Note that justification does not affect the number of lines printed on a page.
Justification simply adds blanks to push the end of a line to the right margin.

6.2.3. Combining Vertical and Horizontal Formatting

The major problem with writing a complete formatting program is not
in handling the specific problems, such as pagination and justification, but in
integrating all the formatting functions. Vertical formatting, in itself, is
simple as long as the output of text has a line-for-line correspondence with
the input of text. Running text, however, requires buffering of input. In
particular, there is generally residual input text in STREAM to be printed.

Sec. 6.2 FORMATTING 179

This requires special handling when, for example'skip is requested. The
residual text in STREAM must be printed before the skip is performed, since a
skip control specifies, logically, that lines are to be skipped following the
text that precedes the control. A function FINISH serves this purpose,
printing residual text and reinitializing STREAM whenever it is called:

DEFINE('FINISH()"')

FINISH (DIFFER(S%REAM) PUT(STREAM)) :F(RETURN)
STREAM = : (RETURN)

If FINISH is called while justified text is being formatted, the line produced
will be ragged-right, not justified. This is the standard convention when
terminating a body of justified text.

The statements to process skips now become:

S FINISH()
GT(VALUE,DEPTH - COUNT) :S(N1)
I = 0

.

Notice that FINISH is called before testing the vertical space remaining, since
FINISH itself may produce output which logically should appear before the
skip is attempted. The statements at N now become:

N FINISH()
N1 PAGEND() : (GET)
Modification of the SU and K controls is left as an exercise. :
These changes, and similar ones for the other vertical formatting con-
trols, only solve part of the problem. There are basically two forms of GET :
one for as-is text and one for running text. Similarly, there are several
modes of output. For as-is text, there is a pure as-is mode and a centered
mode in which as-is text is centered within the page width. For running
text, there are ragged-right and fully justified modes. To handle all combina-
tions in one program, the two types of text are distinguished to determine
the type of input processing to be done by GET. The modes are distinguished
to determine what formatting (if any) is to be done on the string before it is
returned by GET. These alternatives can be handled by indirect gotos, in
which TYPE distinguishes between as-is and running text modes, and MODE
determines the formatting. The relevant parts of the program follow.

180 DOCUMENT PREPARATION Chap. 6

TYPE = 'GETA'
MODE = 'RETURN'
GET : ($TYPE)
GETR LT(SIZE(STREAM),WIDTH) :S(GETI)
N = 0
SDIV STREAM DIVISOR :S($MODE)
N = LT(N,WIDTH) N + 1 :S(SDIV)F (ERROR)
GETI GET = INPUT :F (FRETURN)
GET CONTROL GET :S($CSTRING)
STREAM = STREAM MAP(H ' ° : (GETR)
GETA GET = INPUT : F(FRETURN)
GET CONTROL :S($CSTRING)
GET = MAP(GET) : ($MODE)
CENTER GET = DUPL(' ',(WIDTH - SIZE(GET)) / 2)
+ GET : (RETURN)
JSTFY GET = JUST(TRIM(GET),WIDTH) : (RETURN)
A MODE = 'RETURN' : (TYPEA)
c MODE = 'CENTER' : (TYPEA)
J MODE = 'JSTFY' : (TYPER)
R MODE = 'RETURN' : (TYPER)
TYPEA TYPE = 'GETA'
FINISH() : (GETA)
TYPER TYPE = 'GETR'
FINISH() © :(GETI)

A, C, J, and R correspond to control strings that establish the as-is, centered,
justified, and ragged-right modes, respectively. Notice the use of FINISH to
assure that residual text is disposed of before a new mode takes effect. A
mode control terminates a body of text, even if the mode itself is not
changed. Changes are also necessary in the vertical formatting controls to
transfer to $TYPE instead of GET. The N control becomes

N FINISH()

NI PAGEND() : ($TYPE)

In addition, any residual text must be printed before the program terminates.
The statements are:

DONE FINISH()
PAGEND () : (END)

Sec. 6.2 FORMATTING 181

The formatting program outlined above lends itself to extension. A new
control string can be added simply by adding the appropriate label and
processing statements. Certain conventions must be followed:

(1) Any control string that causes output to be produced must first
call FINISH to print any residual text.

(2) Any control string that establishes a formatting mode must, in ad-
dition to calling FINISH, assign the appropriate values to MODE
and TYPE.

EXERCISES

6.10 Describe how pagination can be suppressed.

6.11 Design and implement a facility that permits the character used to indi-
cate a control string to be changed during the processing of a document.

6.12 Modify the formatting program to assure that an erroneous control
name does not cause an illegal transfer.

6.13 What happens if the control string ?PAGEND is encountered?
6.14 Add error checking of control values to the formatting program.

6.15 In typed material, which is similar in appearance to material printed on
a line printer, it is customary to provide two spaces after periods and
other punctuation marks that end sentences. Implement this feature.

6.16 Add a continuation facility to the formatting program so that input
text may be continued from one line to another.

6.17 Some control strings, such as D, have numeric values. Modify the pat-
tern CONTROL so that the blank between the control name and the
value is optional in the case of numeric values.

6.18 Modify the handling of control strings so that numeric values can be
given as SNOBOL4 expressions.

6.19 Modify the formatting program so that more than one document can
be processed in a single run.

6.20 Provide a facility so that more than one control string can be placed
on a single line.

6.21 Discuss the implications of permitting control strings to be imbedded
in text lines, thus eliminating the distinction between text and control

lines. Design and implement a formatting program that handles input
in this way.

6.22 Implement a control that prints a dividing line across the output page.

182

6.23
6.24
6.25

6.26

6.27

6.28

6.29

6.30

6.31

6.32

6.33

6.34

6.35

DOCUMENT PREPARATION Chap. 6

Provide a control that sets the value of the page number.
Provide a facility for turning off page numbering.

Provide a facility for specifying the position of the left margin of the
formatted page.

Output from the formatting program is single spaced. Provide a facil-
ity for double spacing and, in general, specifying any number of spaces
between output lines.

Vertical ellipses (dots) are used to indicate omitted material. Imple-
ment a control that generates such ellipses.

In as-is text, some types of formatting call for text to be printed flush
against the right-hand margin. Implement a control for this type of
formatting.

In addition to the types of skips described in the text, there is some-
times the need for a block of space (for example, to leave room for a
drawing) that cannot be split over the end of a page. Implement this
type of skip.

Modify the formatting program to place page numbers at the

(a) Top left corner of the page.

(b) Bottom center of the page.

(c¢) Top center of the page.

(d) Bottom left corner on even-numbered pages and bottom right
corner on odd-numbered pages.

Provide a facility for specifying the desired position of page numbers
as described in Exercise 6.30.

Provide a facility for generating lower-case Roman numerals for page
numbers.

A “running head” is a line of information printed at the top of each

page of a document. Typical examples are chapter and section titles.

(a) Implement running heads.

(b) Implement running heads so that different headings can be speci-
field for odd- and even-numbered pages.

A “running foot” is similar to a running head (See Exercise 6.33)
except that a foot is printed at the bottom of every page. Implement
running feet for the two cases given in Exercise 6.33.

Implement bracketed keeps in which one control string indicates the
beginning of the material to be kept together and another control
string indicates the end.

Sec. 6.2 FORMATTING 183

6.36 A ‘“floating keep” is a form of keep (typically used for figures) that
moves a body of material to be kept together through other text, if
necessary, until there is enough room for it to be printed together on
a page. Implement floating keeps.

6.37 Provide a control to permit the specification of the width of a page.

6.38 What should be done if a transfer to ERROR occurs while attempting to
divide STREAM for justification?

6.39 Asanalternative to the method used to divide STREAM for justification,
write a pattern to perform this operation in a single pattern match.
Compare the two methods.

6.40 Write a function to monitor the justification process and to provide
statistics of the number of justifying blanks that are added.

6.41 One of the reasons for justifying text is that ragged-right formatting
without hyphenation often produces results that are unacceptable
from an aesthetic point of view. Provide a form of formatting that
compromises between ragged-right formatting and full justification.

6.42 There are situations in which blanks are desired in a document but in
places where lines should not be divided or justifying blanks inserted.
Describe such situations. Devise a way of handling this problem.

6.43 Modify the handling of running text to permit dividing STREAM at
places where hyphens occur in the text.

6.44 Provide a facility for specifying the beginning of a paragraph. Include
a way of specifying the amount of indentation for the first lines of
paragraphs.

6.45 Provide a facility for indenting a block of text from the left margin.

6.46 A hanging indentation is an indentation given to every line of a para-
graph except the first. Provide such a facility.

6.47 Implement a facility for underscoring an entire line.
6.48 Implement a facility for printing an entire line in bold face.
6.49 Implement a facility for underscoring a specified portion of a line.

6.50 Implement a facility for printing a specified portion of a line in bold
face.

6.51 Implement a facility for overstriking characters.

6.52 Provide a facility that prints marginal annotations on the output listing
so that an author can include in a document notes of places that need
special attention.

184 DOCUMENT PREPARATION Chap. 6

6.53 Provide a form of output in which line numbers of input and output
' are printed in the margins of the output.

6.54 Design a facility for handling tabulation in a manner similar to the way
in which a typewriter operates.

6.55 Implement a facility for footnoting.
6.56 Implement a hyphenation facility.
6.57 Design a facility for producing multi-column output.

6.58 An entirely different approach to the handling of running text as done
in the formatting program given above is to break up input into
“words”. Discuss the implications of such an approach, its advantages,
and its disadvantages.

6.3. OTHER ASPECTS OF DOCUMENT PREPARATION

6.3.1. Indexing

One potential advantage of maintaining documents in machine-readable
form is the automatic generation of indices, tables of contents, and similar
supplementary listings. We will consider only indices here; the other cases
are similar.

Considered naively, an index may be thought of as a type of concor-
dance where all references to certain selected (indexed) words that occur in
the document are tabulated. Such an index can be obtained by processing
the document, looking for each word to be indexed and accumulating page
references. This processing can be done while the document is being for-
matted, or as a separate process. Such an index is most likely to be inferior,
and probably useless. A good index is restricted to significant page references
and particular contexts. For example, the word ‘‘value” might appear with
several different and distinct usages in a single document. To list all places
where ‘“‘value” occurs might be worse than useless—it might lead to con-
fusion. Similarly, words appear in various forms such as singular and plural.
Establishing equivalences automatically in all generality is a hopeless task.
A good index, furthermore, may contain references to pages where the in-
dexed word does not even appear explicitly, but where there is relevant ma-
terial. This discussion provides arguments against the automatic generation
of indices, but only in the sense of processing the text of the document
itself. An alternative scheme combines the value of machine-readable ma-
terial with the concept of deliberate, intelligent indexing by the author.

Sec. 6.3 OTHER ASPECTS OF DOCUMENT PREPARATION 185

The idea is to provide a control string for designating items to be indexed
in specific places. The value given consists of a list of the items to be in-
dexed. An example is:

?INDEX PROPELLER,STABILITY,AIR FLOW

The effect of this control string would be to place the three listed items in
the index, associated with the number of the page being formatted at the
time the control string is encountered. The INDEX control has no effect on
the formatting of the document itself. The author can insert INDEX
controls as he sees fit, placing them at appropriate spots in the text. The im-
plementation of this facility involves analysis of the INDEX control string,
accumulation of the words and page numbers, and printing the results at
the end of the document. A table is a natural way to store the words being
indexed. The following statements can be added to the program:

INDEX = TABLE()
INDXI = BREAK(',') . ITEM LEN(1) | (LEN(1) REM) . ITEM
INDEX VALUE = MAP(VALUE)
NEXTI VALUE INDXI = :F($TYPE)
INDEX<ITEM> = INDEX<ITEM> PAGE.NO ', ' :(NEXTI)

Note that applying MAP to VALUE converts the words to be indexed in the
same way that textual material is processed. Any input encoding conven-
tions used in preparing text can be used for items to be indexed as well.
In the example above, the three items would be entered in the index in
lower case. The index can be printed at DONE after the document itself is
completed:

DONE FINISH()
PAGEND()
-INBEX——=—~ PRINT(SORT(INDEX)) : (END)

The functions SORT and PRINT are described in Section 2.4.

The discussion of indices given here is brief and superficial. A good
index requires one or more levels of subentry, cross references, designated
primary page references, and so forth. The overall problem is quite difficult.

6.3.2. Abbreviations

It is customary to use abbreviations when writing drafts. Such abbrevi-
ations save time and space, and they also sometimes serve as convenient
specifications of standard forms. Abbreviations take two common forms:

186 DOCUMENT PREPARATION Chap. 6

shortening of words leaving enough characters to provide an identification
of the full words, and use of initial characters of words in a phrase in the
style of acronyms. Where a word is abbreviated, a terminal period is usually
used to signify the presence of an abbreviation. Some abbreviations are so
common that they are generally recognizable to any reader. Examples are
“etc.” and “ASAP”’. Other abbreviations have special meanings and are
intelligible only to the individual who invented them. Some abbreviations
(for example, “etc.”) have become part of the generally accepted language,
while others serve only as a personal convenience or in a limited context.

Preparing text in machine-readable form is a substantial effort; it is
costly and time-consuming, An abbreviation facility in a document format-
ting program can serve to limit the size and reduce the cost of preparing
machine-readable material. The utility of such a feature may far exceed the
utility of abbreviation in a manual system. An additional advantage is having
a simple, short, and uniform representation for a string of input that is dif-
ficult to keyboard and subject to accidental variations when keyboarded
repeatedly without abbreviation.

In order to implement such a feature, two things are necessary: a
mechanism for including abbreviation definitions in the document, and a
way of specifying an occurrence of an abbreviation in the text of the docu-
ment. The definition of an abbreviation has two parts: the name of the
abbreviation, and the text which replaces the abbreviation when the docu-
ment is formatted. There are several ways in which an abbreviation might be
specified in the text of the document. An important consideration is the
ease with which abbreviations can be used. It should be possible to use com-
mon characters and not be restricted to awkward combinations of special
symbols. On the other hand, it is necessary to be able to distinguish abbre-
viations from words that ordinarily occur in text. Some special syntax is
desirable to make the process of locating abbreviations easy and to avoid
unnecessary processing of input text that may contain few, if any, abbrevia-
tions. The convention of indicating an abbreviation by a terminating period
is undesirable because of other uses of periods as sentence terminators and
so forth. In addition, since it is easier to process text from left to right, an
initial indicating character is more convenient than a terminating character.
We shall use the character > as an indication of an abbreviation and let the
string of letters and digits following the >, up to some other type of charac-
ter, be a name for the abbreviation. For example, the input string

*HAVE HIM CALL >ASAP.
might be “‘expanded” into
Have him call as soon as possible.

Establishing definitions for abbreviations can be done by control strings.
An example for the abbreviation above might be

Sec. 6.3 OTHER ASPECTS OF DOCUMENT PREPARATION 187

?DEF ASAP,AS SOON AS POSSIBLE

A comma is used to separate the abbreviation name from its definition.
There is no ambiguity since a comma is not one of the characters that can
occur in an abbreviation name. As one would expect, such a definition must
appear before the first use of the abbreviation being defined.

The implementation of abbreviations in the formatting program now
involves two parts: maintaining a table of definitions and processing the
input text to replace abbreviations by their definitions. The table of defini-
tions can be implemented as follows:

ABBREV = TABLE()

DEFIN = BREAK(',') . NAME LEN(1) REM . DEF
DEF MAP(VALUE) DEFIN :F(CERR)

ABBREV<NAME> = DEF - ($TYPE)

Note that MAP is applied to VALUE. This permits encoding the text for the
abbreviation name and definition in the usual fashion.

There is now the question of replacing the abbreviations in the input
text by their definitions. A function to perform this operation follows:

DEFINE('EXPAND(LINE)HEAD,NAME')

ABRVPAT = BREAK('>') . HEAD LEN(1)
+ SPAN(LETTERS DIGITS) . NAME
EXPAND LINE ABRVPAT = : F(EXPEND)
EXPAND = EXPAND HEAD ABBREV<NAME> :(EXPAND)
EXPEND EXPAND = EXPAND LINE : (RETURN)

Note that because of the way that tables are implemented in SNOBOL4, a
reference to an undefined abbreviation is replaced by a null string and
vanishes without being noted.

The logical place for EXPAND to be called is in MAP. The placement of
EXPAND in MAP deserves some consideration. In order to be able to use the
encoding and correction conventions in the definitions of abbreviations,
EXPAND should be applied after other operations have been performed. Fur-
thermore, if EXPAND is called before the other operations of MAP are per-
formed, these operations will be performed twice when MAP is called in
processing the control string for DEF.

188 DOCUMENT PREPARATION Chap. 6

6.3.3. Automatic Numbering

Page numbers are provided automatically during the formatting process.
This is essential, since page numbers cannot be anticipated when the input
text is being prepared. Most documents contain other kinds of internal
numbering that have no direct relation to page numbering. Examples are
chapter and section numbers, figure numbers, and lists of numbered items.
Numbering is particularly prevalent in technical documents.

Numbering is commonly done by the author of the document, using a
preliminary table of contents for chapter and section numbers, and assigning
numbers sequentially to figures and items in lists. However well-planned a
document is, there are likely to be additions, deletions, and rearrangements.
Such changes are likely to require corresponding numbering changes. The
required revisions, especially in heavily-numbered technical documents, may
represent an enormous amount of work if done manually. A good text
editor, operating on the input text, can be very helpful in such situations.
An alternative scheme is to have numbers generated automatically while the
document is being formatted. If the document is changed, new numbers are
generated when the document is formatted without the necessity for any
explicit numbering changes.

The problem of implementing such a feature is similar to the problem of
implementing abbreviations. There must be a general mechariism for identi-
fying places where numbers are to be generated and a way of distinguishing
between different generators. The latter problem arises because, for ex-
ample, section and figure numbering represent distinct, but concurrent,
processes. In addition, it is convenient to be able to specify what initial
values are to be used for numbering and to reset such values as desired.

Again, there must be some syntactic way of designating places where
automatic number generation is to occur. We shall use the symbol # for
this purpose. Since there may be several concurrent numberings, a different
name is used to identify each distinct numbering sequence. A one-character
name will be used as a matter of economy and convenience, but this restric-
tion is not essential. The rationale is that one character is adequate because
the number of different sequences is likely to be relatively small. Such a
rationale does not apply to abbreviations which are likely to be greater in
number, and benefit from longer names with their corresponding mnemonic
value.

An example of the occurrence of a number generator in the text is
*THE RESULTS ARE SHOWN IN *FIGURE #F.

Here the name of the generator is f. The result of “expanding<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>