———
—
—— 999-801-313I1S
e ——— & For use with 3.51 Software

ATeT UNIX® PC
- UNIX System V

Programmer’s Guide



©1986, 1985 AT&T
All Rights Reserved
Printed in USA

NOTICE
The information in this document is subject to change without

notice. AT&T assumes no responsibility for any errors that may
appear in this document.

DEC, PDP and VAX are trademarks of Digital Equipment Corporation.
HYPERchannel is a trademark of Network Systems Corporation.
Ethernet is a trademark of Xerox Corporation.

IBM is a trademark of International Business Machines, Inc.



Chapter
Chapter
Chapter
Chapter

Chapter

Chapter

Chapter

Chapter

Chapter
Chapter
Chapter
Chapter

Chapter

A s

10.
11.
12,

13.

CONTENTS

INTRODUCTION
C LANGUAGE
C LIBRARIES

THE OBJECT AND MATH
LIBRARIES

COMPILER AND C
LANGUAGE

A C PROGRAM CHECKER—

“lint”

SYMBOLIC DEBUGGING
PROGRAM—*“sdb”

UNIX SYSTEM ASSEMBLER
GUIDE FOR UNIX PC

THE “curses” PACKAGE
USING SHELL COMMANDS
SHELL PROGRAMMING

EXAMPLES OF SHELL
PROCEDURES

A PROGRAM FOR
MAINTAINING COMPUTER
PROGRAMS—“make”



Chapter 14. SOURCE CODE CONTROL
SYSTEM USER GUIDE

Chapter 15. THE “m4” MACRO
PROCESSOR

Chapter 16. THE “awk” PROGRAMMING
LANGUAGE

Chapter 17. THE LINK EDITOR

Chapter 18. THE COMMON OBJECT FILE
FORMAT

Chapter 19. ARBITRARY PRECISION
DESK CALCULATOR
LANGUAGE—“be”

Chapter 20. INTERACTIVE DESK
CALCULATOR—“d¢”

Chapter 21. LEXICAL ANALYZER
GENERATOR—“lex”

Chapter 22. YET ANOTHER COMPILER-
COMPILER—*“yacc”

Chapter 23. UNIX SYSTEM TO UNIX
SYSTEM COPY—“uucp”

APPENDIX A—SYSTEM
SOFTWARE FILE LIST

-11 -



Chapter 1
INTRODUCTION

This AT&T UNIX* PC UNIX System V Programmer’s Guide
describes:

e C Language, the main programming language available on
the UNIX system

o the shell Language available on the UNIX system

e support tools, various software tools that aid the UNIX
operating system user.

C Language, a medium-level programming language, was used
to write most of the UNIX operating system. Chapter 2
describes the C language. Chapters 3 through 7 describe the
libraries and support tools available with the UNIX system for
the benefit of the C language programmer. These chapters
contain the following:

C LANGUAGE— Chapter 2 provides a summary of the
grammar and rules of the C programming language.
Chapter 2 describes the C language as it is implemented
and supported on the UNIX PC, the PDP%-11 computer, and
the VAX$-11/780 computer. Where differences exist, these
chapters try to point out implementation-dependent details.
With few exceptions, such dependencies follow directly

* Trademark of AT&T
1 Trademarks of Digital Equipment Corporation

1-1



INTRODUCTION

from the properties of the hardware. The various compilers
are generally quite compatible.

LIBRARIES— Chapters 3 and 4 describe functions and
declarations that support the C Language and how to use
these functions. Chapter 3 describes the C Library and
Chapter 4 describes the Object File and Math Libraries.

THE “cc¢” COMMAND-— Chapter 5 describes the
command used to compile C language programs, produce
assembly language programs, and produce executable
programs.

A C PROGRAM CHECKER “lint”— Chapter 6
describes a program that attempts to detect compile-time
bugs and non-portable features in C programs.

A SYMBOLIC DEBUGGER “sdb”— Chapter 7
describes a symbolic debugging program that is used to
debug compiled C language programs.

Chapter 8 contains a reference manual for the UNIX System
Assembler for the UNIX PC.

Chapter 9 describes the curses package that provides a
programmer with screen-oriented programming capabilities.

Chapters 10 through 12 provide information on how to use the
shell Language.

1-2

USING SHELL COMMANDS— Chapter 10 builds on
the UNIX System User Guide or the “hands-on” experience
some have acquired. It is intended for those users who
have some basic familiarity with shell but desire more
detailed information.

SHELL PROGRAMMING— Chapter 11 provides
information for programming with shell. Those users that



INTRODUCTION

intend to do shell programming should read Chapter 11 as
well as Chapter 12.

EXAMPLES OF SHELL PROCEDURES — Chapter 12
contains examples of shell programs.

It is important to note a few things about shell. The shell
functions as a:

e Command language—The shell reads command lines
entered at a terminal and interprets the lines as requests
to execute other programs.

e Programming language—The shell is a programming
language just like BASIC, COBOL, FORTRAN, and other
languages. The shell is a high-level programming language
that is easy to learn. The programs written using the shell
programming language are called shell scripts, procedures,
or commands. These programs are stored in files and
executed just like commands. The shell provides variables,
conditional constructs, and iterative constructs.

e Working environment—The shell also provides an
environment that can be tailored to an individual’s or
group’s needs by manipulating environment variables.

Support tools provide an added dimension to the basic UNIX
software commands. The tools described in the following
chapters enable users to fully use the capabilities of the UNIX
operating system.

A PROGRAM FOR MAINTAINING COMPUTER
PROGRAMS “make”— Chapter 13 describes a software
tool for maintaining, updating, and regenerating groups of
computer programs. The many activities of program
development and maintenance are made simpler by the
make program.

1-3



INTRODUCTION

1-4

SOURCE CODE CONTROL SYSTEM (SCCS)
USER’S GUIDE— Chapter 14 describes the collection of
SCCS programs provided under the UNIX operating
system. The SCCS programs act as a “custodian” over the
UNIX system files.

“m4” MACRO PROCESSOR— Chapter 15 describes a
general purpose macro processor that may be used as a
front end for rational Fortran, C, and other programming
languages.

“awk” PROGRAMMING LANGUAGE- Chapter 16
describes a software tool designed to make many common
information retrieval and text manipulation tasks easy to
state and to perform.

LINK EDITOR— Chapter 17 describes a software tool
(1d) that creates load files by combining object files,
performing relocation, and resolving internal references.

COMMON OBJECT FILE FORMAT “coff”— Chapter
18 describes the output file produced on some UNIX
systems by the assembler and the link editor.

ARBITRARY PRECISION DESK CALCULATOR
LANGUAGE “be”— Chapter 19 describes a compiler for
doing arbitrary precision arithmetic on the UNIX operating
system.

INTERACTIVE DESK CALCULATOR “d¢”—

Chapter 20 describes a program implemented on the UNIX
operating system to do arbitrary-precision integer
arithmetic.

LEXICAL ANALYZER GENERATOR “lex”—
Chapter 21 describes a software tool that lexically
processes character input streams.

YET ANOTHER COMPILER-COMPILER “yace”—
Chapter 22 describes the yace program. The yacc



INTRODUCTION

program provides a general tool for imposing structure on
the input to a computer program.

UNIX SYSTEM TO UNIX SYSTEM COPY “uucp”—
Chapter 23 describes a network that provides information
exchange (between UNIX systems) over the direct distance
dialing network.

Some examples in this guide are based on the Document
Preparation software which is available independently for the
UNIX system. Make sure that the system has Document
Preparation software available before trying any of those
examples.

Throughout this document, each reference of the form
name(N), where possibly followed by a letter, refers to entry
name in section N of the AT&T UNIX PC UNIX System V
Manual.

Normally when the system is ready for a command from a
terminal, a prompt is displayed on the terminal (# by default).
With certain commands, the system expects more than one line
of terminal input. When this is the case, a secondary prompt is
displayed (> by default). To avoid confusion with what the
system displays and what the user types, this' document does
not show prompts displayed by the system unless noted
otherwise.

1-5






Chapter 2

C LANGUAGE

PAGE
LEXICAL CONVENTIONS ...... ...t iiiiiiiiiiiiiiiennnns 2-1
SYNTAX NOTATION . ...ttt e i iiiaiannn 2-6
NAMES .. i i i i i it ettt i e 2-7
OBJECTS AND LVALUES ...... . iitiiiiiiiiiiinnennnans 2-9
CONVERSIONS . ... i it ittt ittt 2-9
EXPRESSIONS .. . it ittt ittt eiiernaenannnnns 2-13
DECLARATIONS ...ttt it it ittt enaenenns 2-26
STATEMENTS ... .. i i i ittt it inenanas 2-43
EXTERNAL DEFINITIONS . ... ..ttt 2-49
SCOPERULES ... ... ittt iiiienennnnaans 2-51
COMPILER CONTROLLINES . ... ...ttt i, 2-563
IMPLICIT DECLARATIONS ... ... ittt iiiiins 2-58
TYPESREVISITED ... ... ..ottt iiiiieiiiaennanannnn 2-58
CONSTANT EXPRESSIONS . .. ..ottt ittt 2-64
PORTABILITY CONSIDERATIONS ... ... ... ooiiiieenn, 2-65

SYNTAX SUMMARY . ...ttt it i 2-66



Chapter 2
C LANGUAGE

LEXICAL CONVENTIONS

There are six classes of tokens—identifiers, keywords,
constants, strings, operators, and other separators. Blanks,
tabs, new-lines, and comments (collectively, “white space”) as
described below are ignored except as they serve to separate
tokens. Some white space is required to separate otherwise
adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given
character, the next token is taken to include the longest string
of characters which could possibly constitute a token.

Comments

The characters /* introduce a comment which terminates with
the characters */. Comments do not nest.

Identifiers (Names)

An identifier is a sequence of letters and digits. The first
character must be a letter. The underscore (_) counts as a
letter. Uppercase and lowercase letters are different. Although
there is no limit on the length of a name, only initial characters
are significant: at least eight characters of a non-external
name, and perhaps fewer for external names. Moreover, some
implementations may collapse case distinctions for external
names. The external name sizes include:

2-1



C LANGUAGE

PDP-11 7 characters, 2 cases

VAX-11 >100 characters, 2 cases

AT&T 3B20 >100 characters, 2 cases

AT&T UNIX PC >100 characters, 2 cases
Keywords

The following identifiers are reserved for use as keywords and
may not be used otherwise:

auto do goto short typedef
break double if signed union
case else int sizeof unsigned
char enum long static void
const external register struct volatile
continue float return switch while

default for

This implementation reserves the word asm.

Constants

There are several kinds of constants. Each has a type; an
introduction to types is given in “NAMES.”” Hardware
characteristics that affect sizes are summarized in “Hardware
Characteristics” under “LEXICAL CONVENTIONS.”

Integer Constants

An integer constant consisting of a sequence of digits is taken
to be octal if it begins with O (digit zero). An octal constant
consists of the digits O through 7 only. A sequence of digits
preceded by Ox or 0X (digit zero) is taken to be a hexadecimal
integer. The hexadecimal digits include a or A through f or F
with values 10 through 15. Otherwise, the integer constant is
taken to be decimal. A decimal constant whose value exceeds
the largest signed machine integer is taken to be long; an octal
or hex constant which exceeds the largest unsigned machine

2-2



C LANGUAGE

integer is likewise taken to be lomg. Otherwise, integer
constants are int.

Explicit Long Constants

A decimal, octal, or hexadecimal integer constant immediately
followed by 1 (letter ell) or L is a long constant. As discussed
below, on some machines integer and long values may be
considered identical.

Character Constants

A character constant is a character enclosed in single quotes, as
in ‘X’. The value of a character constant is the numerical value
of the character in the machine’s character set.

Certain nongraphic characters, the single quote (*) and the
backslash (\), may be represented according to the following
table of escape sequences:

escape ESC \e
new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote ! \!
bit pattern ddd \ddd
double quote " \"

The escape \ddd consists of the backslash followed by 1, 2, or 3
octal digits which are taken to specify the value of the desired
character. A special case of this construction is \O (not
followed by a digit), which indicates the character NUL. If the
character following a backslash is not one of those specified,
the behavior is undefined. A new-line character is illegal in a

2-3



C LANGUAGE

character constant. The type of a character constant is int.

Floating Constants

A floating constant consists of an integer part, a decimal point,
a fraction part, an e or E, and an optionally signed integer
exponent. The integer and fraction parts both consist of a
sequence of digits. Either the integer part or the fraction part
(not both) may be missing. Either the decimal point or the e
and the exponent (not both) may be missing.

Enumeration Constants

Names declared as enumerators (see “Structure, Union, and
Enumeration Declarations” under “DECLARATIONS”) have
type int.

Strings

A string is a sequence of characters surrounded by double
quotes, as in "...". A string has type “array of char” and
storage class static (see “NAMES”) and is initialized with the
given characters. The compiler places a null byte (\O) at the
end of each string so that programs which scan the string can
find its end. In a string, the double quote character (") must
be preceded by a \; in addition, the same escapes as described
for character constants may be used.

A \ and the immediately following new-line are ignored. All
strings, even when written identically, are distinct.

Hardware Characteristics

The following figures summarize certain hardware properties
that vary from machine to machine.

2-4



DEC PDP-11
(ASCII)

char 8 bits

int 16

short 16

long 32

float 32

double 64

float range +10 =38
double range +10 =%

Figure 2-1. DEC PDP-11 HARDWARE

CHARACTERISTICS
DEC VAX-11
(ASCII)
char 8 bits
int 32
short 16
long 32
float 32
double 64
float range +10 =38
double range +10 =%

Figure 2-2. DEC VAX-11 HARDWARE
CHARACTERISTICS

C LANGUAGE

2-5



C LANGUAGE

AT&T UNIX PC
AT&T 3B
(ASCII)

char 8 bits

int 32

short 16

long 32

float 32

double 64

float range +10 %
double range +10 =308

Figure 2-3. AT&T UNIX PC/3B HARDWARE
CHARACTERISTICS

SYNTAX NOTATION

Syntactic categories are indicated by italic type and literal
words and characters in bold type. Alternative categories are
listed on separate lines. An optional terminal or nonterminal
symbol is indicated by the subscript “opt,” so that

{ expresszonop ¢ }

indicates an optional expression enclosed in braces. The syntax
is summarized in “SYNTAX SUMMARY”.



C LANGUAGE

NAMES

The C language bases the interpretation of an identifier upon
two attributes of the identifier —its storage class and its type.
The storage class determines the location and lifetime of the
storage associated with an identifier; the type determines the
meaning of the values found in the identifier’s storage.

Storage Class

There are four declarable storage classes:

e Automatic
o Static

o External
o Register.

Automatic variables are local to each invocation of a block (see
“Compound Statement or Block” in “STATEMENTS”) and are
discarded upon exit from the block. Static variables are local to
a block but retain their values upon reentry to a block even
after control has left the block. External variables exist and
retain their values throughout the execution of the entire
program and may be used for communication between
functions, even separately compiled functions. Register
variables are (if possible) stored in the fast registers of the
machine; like automatic variables, they are local to each block
and disappear on exit from the block.

Type

The C language supports several fundamental types of objects.
Objects declared as characters (char) are large enough to store
any member of the implementation’s character set. If a
genuine character from that character set is stored in a char
variable, its value is equivalent to the integer code for that
character. Other quantities may be stored into character
variables, but the implementation is machine dependent. In
particular, char may be signed or unsigned by default.

2-7



C LANGUAGE

Up to three sizes of integer, declared short int, int, and long
int, are available. Longer integers provide no less storage than
shorter ones, but the implementation may make either short
integers or long integers, or both, equivalent to plain integers.
“Plain” integers have the natural size suggested by the host
machine architecture. The other sizes are provided to meet
special needs.

The properties of enum types (see “Structure, Union, and
Enumeration Declarations” under “DECLARATIONS”) are
identical to those of some integer types. The implementation
may use the range of values to determine how to allot storage.

Unsigned integers, declared unsigned, obey the laws of
arithmetic modulo 2" where n is the number of bits in the
representation. (On the PDP-11, unsigned long quantities are
not supported.)

Single-precision floating point (float) and double precision
floating point (double) may be synonymous in some
implementations.

Because objects of the foregoing types can usefully be
interpreted as numbers, they will be referred to as arithmetic
types. Char, int of all sizes whether unsigned or not, and
enum will collectively be called integral types. The float and
double types will collectively be called floating types.

The void type specifies an empty set of values. It is used as
the type returned by functions that generate no value.

Besides the fundamental arithmetic types, there is a
conceptually infinite class of derived types constructed from the
fundamental types in the following ways:

o Arrays of objects of most types
o Functions which return objects of a given type

2-8



C LANGUAGE

e Pointers to objects of a given type

o Structures containing a sequence of objects of various
types

e Unions capable of containing any one of several objects
of various types.

In general these methods of constructing objects can be applied
recursively.

OBJECTS AND LVALUES

An object is a manipulatable region of storage. An lvalue is an
expression referring to an object. An obvious example of an
lvalue expression is an identifier. There are operators which
yield lvalues: for example, if E is an expression of pointer type,
then *E is an lvalue expression referring to the object to which
E points. The name ‘“lvalue” comes from the assignment
expression E1 = E2 in which the left operand E1 must be an
lvalue expression. The discussion of each operator below
indicates whether it expects lvalue operands and whether it
yields an lvalue.

CONVERSIONS

A number of operators may, depending on their operands, cause
conversion of the value of an operand from one type to another.
This part explains the result to be expected from such
conversions. The conversions demanded by most ordinary
operators are summarized under “Arithmetic Conversions.”
The summary will be supplemented as required by the
discussion of each operator.



C LANGUAGE

Characters and Integers

A character or a short integer may be used wherever an integer
may be used. In all cases the value is converted to an integer.
Conversion of a shorter integer to a longer preserves sign.
Whether or not sign-extension occurs for characters is machine
dependent, but it is guaranteed that a member of the standard
character set is non-negative. Of the machines treated here,
only the PDP-11, VAX-11, and UNIX PC sign-extend. On these
machines, char variables range in value from -128 to 127. The
more explicit type unsigned char forces the values to range
from 0 to 255.

On machines that treat characters as signed, the characters of
the ASCII set are all non-negative. However, a character
constant specified with an octal escape suffers sign extension
and may appear negative; for example, \377 has the value —1.

When a longer integer is converted to a shorter integer or to a
char, it is truncated on the left. Excess bits are simply
discarded.

Float and Double

All floating arithmetic in C is carried out in double precision.
Whenever a float appears in an expression it is lengthened to
double by zero padding its fraction. When a double must be
converted to float, for example by an assignment, the double
is rounded before truncation to float length. This result is
undefined if it cannot be represented as a float.

Floating and Integral

Conversions of floating values to integral type are rather
machine dependent. In particular, the direction of truncation
of negative numbers varies. The result is undefined if it will
not fit in the space provided. Positive and negative floating
point values are truncated to their integer portions.

2-10



C LANGUAGE

1.1 —> 1
1.9 —> 1
—-1.1 => —1
-1.9 —> -1

Conversions of integral values to floating type are well behaved.
Some loss of accuracy occurs if the destination lacks sufficient
bits.

Pointers and Integers

An expression of integral type may be added to or subtracted
from a pointer; in such a case, the first is converted as specified
in the discussion of the addition operator. Two pointers to
objects of the same type may be subtracted; in this case, the
result is converted to an integer as specified in the discussion of
the subtraction operator.

Unsigned

Whenever an unsigned integer and a plain integer are
combined, the plain integer is converted to unsigned and the
result is unsigned. The value is the least unsigned integer
congruent to the signed integer (modulo 2Wordsizey Tn g 2
complement representation, this conversion is conceptual; and
there is no actual change in the bit pattern.

When an unsigned short integer is converted to long, the
value of the result is the same numerically as that of the
unsigned integer. Thus the conversion amounts to padding with
zeros on the left. '

2-11



C LANGUAGE

Arithmetic Conversions

A great many operators cause conversions and yield result
types in a similar way. This pattern will be called the “usual
arithmetic conversions.”

1. First, any operands of type char or short are converted
to int, and any operands of type unsigned char or
unsigned short are converted to unsigned int.

2. Then, if either operand is double, the other is converted
to double and that is the type of the result.

3. Otherwise, if either operand is float, the other is
converted to float and that is the type of the result.

4. Otherwise, if either operand is unsigned long, the other
is converted to unsigned long and that is the type of
the result.

5. Otherwise, if either operand is long, the other is
converted to long and that is the type of the result.

6. Otherwise, if one operand is long, and the other is
unsigned int, they are both converted to unsigned
long and that is the type of the result.

7. Otherwise, if either operand is unsigned, the other is
converted to unsigned and that is the type of the result.

8. Otherwise, both operands must be int, and that is the
type of the result.

Void

The (nonexistent) value of a void object may not be used in
any way, and neither explicit nor implicit conversion may be
applied. Because a void expression denotes a nonexistent value,
such an expression may be used only as an expression
statement (see “Expression Statement” under

2-12



C LANGUAGE

“STATEMENTS”) or as the left operand of a comma expression
(see “Comma Operator” under “EXPRESSIONS”).

An expression may be converted to type void by use of a cast.
For example, this makes explicit the discarding of the value of
a function call used as an expression statement.

EXPRESSIONS

The precedence of expression operators is the same as the order
of the major subsections of this section, highest precedence
first. Thus, for example, the expressions referred to as the
operands of + (see “Additive Operators”) are those expressions
defined under “Primary Expressions”, “Unary Operators”, and
“Multiplicative Operators”. Within each subpart, the operators
have the same precedence. Left- or right-associativity is
specified in each subsection for the operators discussed therein.
The precedence and associativity of all the expression operators
are summarized in the grammar of “SYNTAX SUMMARY”.

Otherwise, the order of evaluation of expressions is undefined.
In particular, the compiler considers itself free to compute
subexpressions in the order it believes most efficient even if the
subexpressions involve side effects. The order in which
subexpression evaluation takes place is unspecified.
Expressions involving a commutative and associative operator
* + &, |, ") may be rearranged arbitrarily even in the
presence of parentheses; to force a particular order of
evaluation, an explicit temporary must be used.

The handling of overflow and divide check in expression
evaluation is undefined. Most existing implementations of C
ignore integer overflows; treatment of division by 0 and all
floating-point exceptions varies between machines and is
usually adjustable by a library function.

2-13



C LANGUAGE

Primary Expressions

Primary expressions involving ., —>, subscripting, and function
calls group left to right.

DPrIMAry-expression:
identifier
constant
string
( expression )
primary-expression [ expression ]
primary-expression ( expression-list y )
primary-expression . identifier
primary-expression -> identifier

expression-list:
expression
expression-list , expression

An identifier is a primary expression provided it has been
suitably declared as discussed below. Its type is specified by its
declaration. If the type of the identifier is “array of ...”, then
the value of the identifier expression is a pointer to the first
object in the array; and the type of the expression is “pointer to

.”. Moreover, an array identifier is not an lvalue expression.
Likewise, an identifier which is declared “function returning
...”, when used except in the function-name position of a call, is
converted to “pointer to function returning ...”.

A constant is a primary expression. Its type may be int, long,
or double depending on its form. Character constants have
type int and floating constants have type double.

A string is a primary expression. Its type is originally “array
of char”, but following the same rule given above for
identifiers, this is modified to “pointer to char” and the result
is a pointer to the first character in the string. (There is an
exception in certain initializers; see “Initialization” under

2-14



C LANGUAGE

“DECLARATIONS.”)

A parenthesized expression is a primary expression whose type
and value are identical to those of the unadorned expression.
The presence of parentheses does not affect whether the
expression is an lvalue.

A primary expression followed by an expression in square
brackets is a primary expression. The intuitive meaning is that
of a subsecript. Usually, the primary expression has type
“pointer to ...”, the subseript expression is int, and the type of
the result is “...”. The expression E1[E2] is identical (by
definition) to *((E1)+(E2)). All the clues needed to
understand this notation are contained in this subpart together
with the discussions in “Unary Operators” and ‘“Additive
Operators” on identifiers, * and 4, respectively. The
implications are summarized under “Arrays, Pointers, and
Subscripting” under “TYPES REVISITED.”

A function call is a primary expression followed by parentheses
containing a possibly empty, comma-separated list of
expressions which constitute the actual arguments to the
function. The primary expression must be of type “function
returning ...,” and the result of the function call is of type
“...”. As indicated below, a hitherto unseen identifier followed
immediately by a left parenthesis is contextually declared to
represent a function returning an integer; thus in the most
common case, integer-valued functions need not be declared.

Any actual arguments of type float are converted to double
before the call. Any of type char or short are converted to
int. Array names are converted to pointers. No other
conversions are performed automatically; in particular, the
compiler does not compare the types of actual arguments with
those of formal arguments. If conversion is needed, use a cast;
see  “Unary Operators” and “Type Names” under
“DECLARATIONS.”

2-15



C LANGUAGE

In preparing for the call to a function, a copy is made of each
actual parameter. Thus, all argument passing in C is strictly
by value. A function may change the values of its formal
parameters, but these changes cannot affect the values of the
actual parameters. It is possible to pass a pointer on the
understanding that the function may change the value of the
object to which the pointer points. An array name is a pointer
expression. The order of evaluation of arguments is undefined
by the language; take note that the various compilers differ.
Recursive calls to any function are permitted.

A primary expression followed by a dot followed by an
identifier is an expression. The first expression must be a
structure or a union, and the identifier must name a member of
the structure or union. The value is the named member of the
structure or union, and it is an lvalue if the first expression is
an lvalue.

A primary expression followed by an arrow (built from — and
>) followed by an identifier is an expression. The first
expression must be a pointer to a structure or a union and the
identifier must name a member of that structure or union. The
result is an lvalue referring to the named member of the
structure or union to which the pointer expression points. Thus
the expression E1->MOS is the same as (*E1).MOS.
Structures and unions are discussed in “Structure, Union, and
Enumeration Declarations” under “DECLARATIONS.”

Unary Operators

Expressions with unary operators group right to left.

2-16



C LANGUAGE

UNATY-CXPression:
* expression
& alue
- expression
! expression
~ expression
++ lvalue
—lvalue
alue ++
lalue —-
( type-name ) expression
sizeof expression
sizeof ( type-name )

The unary * operator means i{ndirection ; the expression must
be a pointer, and the result is an lvalue referring to the object
to which the expression points. If the type of the expression is
“pointer to ...,” the type of the result is “...”.

The result of the unary & operator is a pointer to the object
referred to by the lvalue. If the type of the lvalue is “...”, the
type of the result is “pointer to ...”.

The result of the unary — operator is the negative of its
operand. The usual arithmetic conversions are performed. The
negative of an unsigned quantity is computed by subtracting its
value from 2~ where n is the number of bits in the
corresponding signed type.

There is no unary + operator.

The result of the logical negation operator ! is one if the value
of its operand is zero, zero if the value of its operand is
nonzero. The type of the result is int. It is applicable to any
arithmetic type or to pointers.

The ~ operator yields the one’s complement of its operand. The
usual arithmetic conversions are performed. The type of the

2-17



C LANGUAGE

operand must be integral.

The object referred to by the lvalue operand of prefix ++ is
incremented. The value is the new value of the operand but is
not an lvalue. The expression ++x is equivalent to x=x+1.
See the discussions “Additive Operators” and “Assignment
Operators” for information on conversions.

The lvalue operand of prefix —— is decremented in a similar
manner: the expression ——x is equivalent to x=x-1.

When postfix ++ is applied to an lvalue, the result is the value
of the object referred to by the lvalue. After the result is
noted, the object is incremented in the same manner as for the
prefix ++ operator. The type of the result is the same as the
type of the lvalue expression.

When postfix — is applied to an lvalue, the result is the value
of the object referred to by the lvalue. After the result is
noted, the object is decremented in the manner as for the prefix
—— operator. The type of the result is the same as the type of
the lvalue expression.

An expression preceded by the parenthesized name of a data
type causes conversion of the value of the expression to the
named type. This construction is called a cast. Type names are
described in “Type Names” under “Declarations.”

The sizeof operator yields the size in bytes of its operand. (A
byte is the space required to hold a char.) When applied to an
array, the result is the total number of bytes in the array. The
size is determined from the declarations of the objects in the
expression. This expression is semantically an unsigned
constant and may be used anywhere a constant is required. Its
major use is in communication with routines like storage
allocators and 1/0 systems.

2-18



C LANGUAGE

The sizeoi operator may also be applied to a parenthesized
type name. In that case it yields the size in bytes of an object
of the indicated type.

The construction sizeof(type) is taken to be a unit, so the
expression sizeof(type)—2 is the same as (sizeof(type))—2.

Multiplicative Operators

The multiplicative operators *, /, and % group left to right.
The usual arithmetic conversions are performed.

multiplicative expression:
expression * expression
expression / expression
expression % expression

The binary * operator indicates multiplication. The * operator
is associative, and expressions with several multiplications at
the same level may be rearranged by the compiler. The binary
/ operator indicates division.

The binary % operator yields the remainder from the division
of the first expression by the second. The operands must be
integral.

When positive integers are divided, truncation is toward 0; but
the form of truncation is machine-dependent if either operand
is negative. On all machines covered by this manual, the
remainder has the same sign as the dividend. It is always true
that (a/b)*b + a%b is equal to a (if b is not 0).

2-19



C LANGUAGE

Additive Operators

The additive operators + and — group left to right. The usual
arithmetic conversions are performed. There are some
additional type possibilities for each operator.

additive-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A
pointer to an object in an array and a value of any integral
type may be added. The latter is in all cases converted to an
address offset by multiplying it by the length of the object to
which the pointer points. The result is a pointer of the same
type as the original pointer which points to another object in
the same array, appropriately offset from the original object.
Thus if P is a pointer to an object in an array, the expression
P+1 is a pointer to the next object in the array. No further
type combinations are allowed for pointers.

The + operator is associative, and expressions with several
additions at the same level may be rearranged by the compiler.

The result of the — operator is the difference of the operands.
The usual arithmetic conversions are performed. Additionally,
a value of any integral type may be subtracted from a pointer,
and then the same conversions for addition apply.

If two pointers to objects of the same type are subtracted, the
result is converted (by division by the length of the object) to
an int representing the number of objects separating the
pointed-to objects. This conversion will in general give
unexpected results unless the pointers point to objects in the
same array, since pointers, even to objects of the same type, do
not necessarily differ by a multiple of the object length.

2-20



C LANGUAGE

Shift Operators

The shift operators << and >> group left to right. Both
perform the usual arithmetic conversions on their operands,
each of which must be integral. Then the right operand is
converted to imt; the type of the result is that of the left
operand. The result is undefined if the right operand is
negative or greater than or equal to the length of the object in
bits.

shift-expression:
eXPression << expression
expression >> expression

The value of E1<<E2 is E1 (interpreted as a bit pattern) left-
shifted E2 bits. Vacated bits are 0 filled. The value of
E1>>E2 is E1 right-shifted E2 bit positions. The right shift
is guaranteed to be logical (0 fill) if E1 is unsigned; otherwise,
it may be arithmetic.

Relational Operators

The relational operators group left to right.

relational-expression:
expression < expression
expression > expression
expression <= exrpression
expression >= expression

The operators < (less than), > (greater than), <= (less than or
equal to), and >= (greater than or equal to) all yield 0 if the
specified relation is false and 1 if it is true. The type of the
result is int. The usual arithmetic conversions are performed.
Two pointers may be compared; the result depends on the
relative locations in the address space of the pointed-to objects.
Pointer comparison is portable only when the pointers point to
objects in the same array.

2-21



C LANGUAGE

Equality Operators

equality-expression:
expression == expression
expression = expression

The == (equal to) and the != (not equal to) operators are
exactly analogous to the relational operators except for their
lower precedence. (Thus a<b == ¢<d is 1 whenever a<b and

c<d have the same truth value).

A pointer may be compared to an integer only if the integer is
the constant 0. A pointer to which 0 has been assigned is
guaranteed not to point to any object and will appear to be
equal to 0. In conventional usage, such a pointer is considered
to be null.

Bitwise AND Operator

and-expression:
expression & expression

The & operator is associative, and expressions involving & may
be rearranged. The wusual arithmetic conversions are
performed. The result is the bitwise AND function of the
operands. The operator applies only to integral operands.

Bitwise Exclusive OR Operator

exclusive-or-expression:
expression  expression

The ~ operator is associative, and expressions involving ~ may
be rearranged. The wusual arithmetic conversions are
performed; the result is the bitwise exclusive OR function of the

2-22



C LANGUAGE

operands. The operator applies only to integral operands.

Bitwise Inclusive OR Operator

inclusive-or-expression:
expression | expression

The | operator is associative, and expressions involving | may
be rearranged. The wusual arithmetic conversions are
performed; the result is the bitwise inclusive OR function of its
operands. The operator applies only to integral operands.

Logical AND Operator

logical-and-expression:
expression && expression

The && operator groups left to right. It returns 1 if both its
operands evaluate to nonzero, 0 otherwise. Unlike &, &&
guarantees left to right evaluation; moreover, the second
operand is not evaluated if the first operand is 0.

The operands need not have the same type, but each must have
one of the fundamental types or be a pointer. The result is
always int.

Logical OR Operator

logical-or-expression:
expression | | expression

The | | operator groups left to right. It returns 1 if either of
its operands evaluate to nonzero, 0 otherwise. Unlike |, | |
guarantees left to right evaluation; moreover, the second

2-23



C LANGUAGE

operand is not evaluated if the value of the first operand is
nonzero.

The operands need not have the same type, but each must have
one of the fundamental types or be a pointer. The result is
always int.

Conditional Operator

conditional-expression:
expression ? expression ;. expression

Conditional expressions group right to left. The first
expression is evaluated; and if it is nonzero, the result is the
value of the second expression, otherwise that of third
expression. If possible, the usual arithmetic conversions are
performed to bring the second and third expressions to a
common type. If both are structures or unions of the same
type, the result has the type of the structure or union. If both
pointers are of the same type, the result has the common type.
Otherwise, one must be a pointer and the other the constant 0,
and the result has the type of the pointer. Only one of the
second and third expressions is evaluated.

Assignment Operators

There are a number of assignment operators, all of which group
right to left. All require an lvalue as their left operand, and
the type of an assignment expression is that of its left operand.
The value is the value stored in the left operand after the
assignment has taken place. The two parts of a compound
assignment operator are separate tokens.

2-24



C LANGUAGE

assignment-expression:

lvalue = expression
walue += expression
alue -= expression
lalue *= expression
lalue /= expression
lalue %= expression
lwalue >>= expression
lvalue <<= expression
lwalue &= expression
lvalue "= expression
lvalue | = expression

In the simple assignment with =, the value of the expression
replaces that of the object referred to by the lvalue. If both
operands have arithmetic type, the right operand is converted
to the type of the left preparatory to the assignment. Second,
both operands may be structures or unions of the same type.
Finally, if the left operand is a pointer, the right operand must
in general be a pointer of the same type. However, the
constant 0 may be assigned to a pointer; it is guaranteed that
this value will produce a null pointer distinguishable from a
pointer to any object.

The behavior of an expression of the form E1 op = E2 may be
inferred by taking it as equivalent to E1 = E1 op (E2);
however, E1 is evaluated only once. In += and —=, the left
operand may be a pointer; in which case, the (integral) right
operand is converted as explained in “Additive Operators.” All
right operands and all nonpointer left operands must have
arithmetic type.

Comma Operator

COMMA-EXPTesston:
expression , expression

2-25



C LANGUAGE

A pair of expressions separated by a comma is evaluated left to
right, and the value of the left expression is discarded. The
type and value of the result are the type and value of the right
operand. This operator groups left to right. In contexts where
comma is given a special meaning, e.g., in lists of actual
arguments to functions (see “Primary Expressions”) and lists of
initializers (see “Initialization” under “DECLARATIONS”), the
comma operator as described in this subpart can only appear in
parentheses. For example,

f(a, (t=3, t+2), ¢)

has three arguments, the second of which has the value 5.

DECLARATIONS

Declarations are used to specify the interpretation which C
gives to each identifier; they do not necessarily reserve storage
associated with the identifier. Declarations have the form

declaration:
decl-specifiers declarator-list _, ;
opt
The declarators in the declarator-list contain the identifiers

being declared. The decl-specifiers consist of a sequence of type
and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiers

sc-specifier decl-specifiers opt

opt

The list must be self-consistent in a way described below.

2-26



C LANGUAGE

Storage Class Specifiers

The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a
“storage class specifier” only for syntactic convenience. See
“Typedef” for more information. The meanings of the various
storage classes were discussed in “Names.”

The auto, static, and register declarations also serve as
definitions in that they cause an appropriate amount of storage
to be reserved. In the extern case, there must be an external
definition (see “External Definitions”) for the given identifiers
somewhere outside the function in which they are declared.

A register declaration is best thought of as an auto
declaration, together with a hint to the compiler that the
variables declared will be heavily used. Only the first few such
declarations in each function are effective. Moreover, only
variables of certain types will be stored in registers; on the
PDP-11, they are int or pointer. One other restriction applies
to register variables: the address-of operator & cannot be
applied to them. Smaller, faster programs can be expected if
register declarations are wused appropriately, but future
improvements in code generation may render them
unnecessary.

At most, one sc-specifier may be given in a declaration. If the
sc-specifier is missing from a declaration, it is taken to be auto
inside a function, extern outside. Exception: functions are
never automatic.

2-27



C LANGUAGE

Type Specifiers

The type-specifiers are

type-specifier:

struct-or-union-specifier

typedef-name

enum-specifier
basic-type-specifier:

basic-type

basic-type basic-type-specifiers
basic-type:

char

short

int

long

unsigned

float

double

void

At most one of the words long or short may be specified in
conjunction with int; the meaning is the same as if int were
not mentioned. The word long may be specified in conjunction
with float; the meaning is the same as double. The word
unsigned may be specified alone, or in conjunction with int or
any of its short or long varieties, or with char.

Otherwise, at most one type-specifier may be given in a
declaration. In particular, adjectival use of long, short, or
unsigned is not permitted with typedef names. If the type-
specifier is missing from a declaration, it is taken to be int.

Specifiers for structures, unions, and enumerations are
discussed in “Structure, Union, and Enumeration Declarations.”
Declarations with typedef names are discussed in “Typedef.”

2-28



C LANGUAGE

Declarators

The declarator-list appearing in a declaration is a comma-
separated sequence of declarators, each of which may have an
initializer.

declarator-list:
init-declarator
init-declarator , declarator-list

it-declarator:

declarator nitializer
opt

Initializers are discussed in “Initialization”. The specifiers in
the declaration indicate the type and storage class of the
objects to which the declarators refer. Declarators have the
syntax:

declarator:
identifier
( declarator )
* declarator
declarator ()

declarator [ constant-expressiono

pt]

The grouping is the same as in expressions.

‘Meaning of Declarators

Each declarator is taken to be an assertion that when a
construction of the same form as the declarator appears in an
expression, it yields an object of the indicated type and storage
class.

Each declarator contains exactly one identifier; it is this
identifier that is declared. If an unadorned identifier appears
as a declarator, then it has the type indicated by the specifier

2-29



C LANGUAGE

heading the declaration.

A declarator in parentheses is identical to the unadorned
declarator, but the binding of complex declarators may be
altered by parentheses. See the examples below.

Now imagine a declaration
T D1

where T is a type-specifier (like int, etc.) and D1 is a
declarator. Suppose this declaration makes the identifier have
type “... T ,” where the “...” is empty if D1 is just a plain
identifier (so that the type of x in ‘int x” is just int). Then if
D1 has the form '

*D
the type of the contained identifier is “... pointer to T .”
If D1 has the form

D()

3

then the contained identifier has the type function

returning T.”
If D1 has the form
Diconstant-expression)

or

2-30



C LANGUAGE

D[]

then the contained identifier has type “... array of T.” In the
first case, the constant expression is an expression whose value
is determinable at compile time , whose type is int, and whose
value is positive. (Constant expressions are defined precisely in
“Constant  Expressions.”) When several “array of”
specifications are adjacent, a multidimensional array is created;
the constant expressions which specify the bounds of the arrays
may be missing only for the first member of the sequence. This
elision is useful when the array is external and the actual
definition, which allocates storage, is given elsewhere. The first
constant expression may also be omitted when the declarator is
followed by initialization. In this case the size is calculated
from the number of initial elements supplied.

An array may be constructed from one of the basic types, from
a pointer, from a structure or union, or from another array (to
generate a multidimensional array).

Not all the possibilities allowed by the syntax above are
actually permitted. The restrictions are as follows: functions
may not return arrays or functions although they may return
pointers; there are no arrays of functions although there may
be arrays of pointers to functions. Likewise, a structure or
union may not contain a function; but it may contain a pointer
to a function.

As an example, the declaration
int i, *ip, £(), *fip(), (*pfi)();

declares an integer i, a pointer ip to an integer, a function f
returning an integer, a function fip returning a pointer to an
integer, and a pointer pfi to a function which returns an
integer. It is especially useful to compare the last two. The
binding of *fip() is *(fip()). The declaration suggests, and the

2-31



C LANGUAGE

same construction in an expression requires, the calling of a
function fip. Using indirection through the (pointer) result to
yield an integer. In the declarator (*pfi)(), the extra
parentheses are necessary, as they are also in an expression, to
indicate that indirection through a pointer to a function yields
a function, which is then called; it returns an integer.

As another example,
float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to
float numbers. Finally,

static int x3d[3][5][7];

declares a static 3-dimensional array of integers, with rank
3%x5X7. In complete detail, x3d is an array of three items; each
item is an array of five arrays; each of the latter arrays is an
array of seven integers. Any of the expressions x3d, x3d[i],
x3d[i][j], x3d[i][j][k] may reasonably appear in an expression.
The first three have type “array” and the last has type int.

Structure and Union Declarations

A struecture is an object consisting of a sequence of named
members. Each member may have any type. A union is an
object which may, at a given time, contain any one of several
members. Structure and union specifiers have the same form.

struct-or-union-specifier:
struct-or-umion { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union identifier

2-32 .



C LANGUAGE

struct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the
members of the structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a
member of a structure or union. A structure member may also
consist of a specified number of bits. Such a member is also
called a field ; its length, a non-negative constant expression, is
set off from the field name by a colon.

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses which
increase as the declarations are read left to right. Each
nonfield member of a structure begins on an addressing
boundary appropriate to its type; therefore, there may be
unnamed holes in a structure. Field members are packed into
machine integers; they do not straddle words. A field which
does not fit into the space remaining in a word is put into the
next word. No field may be wider than a word.

2-33



C LANGUAGE

Fields are assigned right to left on the PDP-11 and VAX-11,
left to right on the 3B20.

A struct-declarator with no declarator, only a colon and a
width, indicates an unnamed field useful for padding to
conform to externally-imposed layouts. As a special case, a
field with a width of 0 specifies alignment of the next field at
an implementation dependent boundary.

The language does not restrict the types of things that are
declared as fields, but implementations are not required to
support any but integer fields. Moreover, even int fields may
be considered to be unsigned. On the UNIX PC and PDP-11,
fields are not signed and have only integer values; on the
VAX-11, fields declared with int are treated as containing a
sign. For these reasons, it is strongly recommended that fields
be declared as unsigned. In all implementations, there are no
arrays of fields, and the address-of operator & may not be
applied to them, so that there are no pointers to fields.

A union may be thought of as a structure all of whose members
begin at offset 0 and whose size is sufficient to contain any of
its members. At most, one of the members can be stored in a
union at any time.

A structure or union specifier of the second form, that is, one of

struct identifier { struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of
the structure specified by the list. A subsequent declaration
may then use the third form of specifier, one of

struct identifier
union identifier

2-34



C LANGUAGE

Structure tags allow definition of self-referential structures.
Structure tags also permit the long part of the declaration to be
given once and used several times. It is illegal to declare a
structure or union which contains an instance of itself, but a
structure or union may contain a pointer to an instance of
itself.

The third form of a structure or union specifier may be used
prior to a declaration which gives the complete specification of
the structure or union in situations in which the size of the
structure or union is unnecessary. The size is unnecessary in
two situations: when a pointer to a structure or union is being
declared and when a typedef name is declared to be a
synonym for a structure or union. This, for example, allows the
declaration of a pair of structures which contain pointers to
each other.

The names of members and tags do not conflict with each other
or with ordinary variables. A particular name may not be used
twice in the same structure, but the same name may be used in
several different structures in the same scope.

A simple but important example of a structure declaration is
the following binary tree structure:

struct tnode

{
char tword[20];
int count;
struct tnode *left;
struct tnode *right;
15

which contains an array of 20 characters, an integer, and two
pointers to similar structures. Once this declaration has been
given, the declaration

2-35



C LANGUAGE

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a
pointer to a structure of the given sort. With these
declarations, the expression

sp—>count

refers to the count field of the structure to which sp points;
s.left

refers to the left subtree pointer of the structure s; and
s.right—>tword[0]

refers to the first character of the tword member of the right
subtree of s.

Enumeration Declarations

Enumeration variables and constants have integral type.

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:

identifier
identifier = constant-expression

2-36



C LANGUAGE

The identifiers in an enum-list are declared as constants and
may appear wherever constants are required. If no
enumerators with = appear, then the values of the
corresponding constants begin at 0 and increase by 1 as the
declaration is read from left to right. An enumerator with =
gives the associated identifier the value indicated; subsequent
identifiers continue the progression from the assigned value.

The names of enumerators in the same scope must all be
distinet from each other and from those of ordinary variables.

The role of the identifier in the enum-specifier is entirely
analogous to that of the structure tag in a struct-specifier; it
names a particular enumeration. For example,

enum color { green, burgundy, claret=20, winedark };
enum color *cp, col;

col = claret;
cp = &col;

if (*cp == burgundy) ...

makes color the enumeration-tag of a type describing various
colors, and then declares ¢p as a pointer to an object of that
type, and col as an object of that type. The possible values are
drawn from the set {0,1,20,21}.

Initialization

A declarator may specify an initial value for the identifier
being declared. The initializer is preceded by = and consists of
an expression or a list of values nested in braces.

2-37



C LANGUAGE

instializer:

= expression
{ initializer-list }
= { initializer-list , }

initializer-list:
expression
itializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

All the expressions in an initializer for a static or external
variable must be constant expressions, which are described in
“CONSTANT EXPRESSIONS”, or expressions which reduce to
the address of a previously declared variable, possibly offset by
a constant expression. Automatic or register variables may be
initialized by arbitrary expressions involving constants and
previously declared variables and functions.

Static and external variables that are not initialized are
guaranteed to start off as zero. Automatic and register
variables that are not initialized are guaranteed to start off as
garbage.

When an initializer applies to a scalar (a pointer or an object of
arithmetic type), it consists of a single expression, perhaps in
braces. The initial value of the object is taken from the
expression; the same conversions as for assignment are
performed.

When the declared variable is an aggregate (a structure or
array), the Iinitializer consists of a brace-enclosed, comma-
separated list of initializers for the members of the aggregate
written in increasing subscript or member order. If the
aggregate contains subaggregates, this rule applies recursively
to the members of the aggregate. If there are fewer initializers
in the list than there are members of the aggregate, then the
aggregate is padded with zeros. It is not permitted to initialize

2-38



C LANGUAGE

unions or automatic aggregates.

Braces may in some cases be omitted. If the initializer begins
with a left brace, then the succeeding comma-separated list of
initializers initializes the members of the aggregate; it is
erroneous for there to be more initializers than members. If,
however, the initializer does not begin with a left brace, then
only enough elements from the list are taken to account for the
members of the aggregate; any remaining members are left to
initialize the next member of the aggregate of which the
current aggregate is a part.

A final abbreviation allows a char array to be initialized by a
string. In this case successive characters of the string initialize
the members of the array.

For example,
int x[]={1,3,5};

declares and initializes x as a one-dimensional array which has
three members, since no size was specified and there are three
initializers.

float y[4][3] =
{

-
w
-

-
. e

A A A
P
SN
Qoo

-

is a completely-bracketed initialization: 1, 8, and 5 initialize the
first row of the array y[0], namely y[0][0], y[0][1], and y[O][2].
Likewise, the next two lines initialize y[1] and y[2]. The
initializer ends early and therefore y[3] is initialized with 0.
Precisely, the same effect could have been achieved by

2-39



C LANGUAGE

float y[4][3] =

1,3,5,2,4,6,3,5,7
b

The initializer for y begins with a left brace but that for y[0]
does not; therefore, three elements from the list are used.
Likewise, the next three are taken successively for y[1] and
y¥[2]. Also,

float y[4][3] =

{1h{2} {3}, {4}

.
?

initializes the first column of y (regarded as a two-dimensional
array) and leaves the rest 0.

Finally,
char msg[] =" Syntax error on line %s\n";

shows a character array whose members are initialized with a
string.

Type Names

In two contexts (to specify type conversions explicitly by means
of a cast and as an argument of sizeof), it is desired to supply
the name of a data type. This is accomplished using a “type
name”, which in essence is a declaration for an object of that
type which omits the name of the object.

type-name:
type-specifier abstract-declarator

2-40



C LANGUAGE

abstract-declarator:
empty
( abstract-declarator )
* abstract-declarator
abstract-declarator ()

abstract-declarator | constant-ewpressionop " ]

To avoid ambiguity, in the construction
( abstract-declarator )

the abstract-declarator is required to be nonempty. Under this
restriction, it is possible to identify uniquely the location in the
abstract-declarator' where the identifier would appear if the
construction were a declarator in a declaration. The named
type is then the same as the type of the hypothetical identifier.
For example,

int

int *

int *[3]
int (*)[3]
int *()

int (*)()
int (*{3))()

” &

name respectively the types ‘“integer,” ‘“pointer to integer,”
“array of three pointers to integers,” “pointer to an array of
three integers,” “function returning pointer to integer,”
“pointer to function returning an integer,” and “array of three
pointers to functions returning an integer.”

2-41



C LANGUAGE

Typedef

Declarations whose ‘“storage class” is typedef do not define
storage but instead define identifiers which can be used later as
if they were type keywords naming fundamental or derived

types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each
identifier appearing as part of any declarator therein becomes
syntactically equivalent to the type keyword naming the type
associated with the identifier in the way described in “Meaning
of Declarators.” For example, after

typedef int MILES, *KLICKSP;
typedef struct { double re, im; } complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the type of distance is int, that of
metricp is “pointer to int,” and that of z is the specified
structure. The zp is a pointer to such a structure.

The typedef does not introduce brand-new types, only
synonyms for types which could be specified in another way.
Thus in the example above distance is considered to have
exactly the same type as any other int object.

2-42



C LANGUAGE

STATEMENTS

Except as indicated, statements are executed in sequence.

Expression Statement

Most statements are expression statements, which have the
form

expression ;

Usually expression statements are assignments or function
calls.

Compound Statement or Block

So that several statements can be used where one is expected,
the compound statement (also, and equivalently, called “block”)
is provided:

compound-statement:

{ declaration-list _, statement-list , }
op opt

3

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously
declared, the outer declaration is pushed down for the duration
of the block, after which it resumes its force.

2-43



C LANGUAGE

Any initializations of auto or register variables are
performed each time the block is entered at the top. It is
currently possible (but a bad practice) to transfer into a block;
in that case the initializations are mnot performed.
Initializations of static variables are performed only once
when the program begins execution. Inside a block, extern
declarations do not reserve storage so initialization is not
permitted.

Conditional Statement

The two forms of the conditional statement are

if ( expression ) statement
if ( expression ) statement else statement

In both cases, the expression is evaluated; and if it is nonzero,
the first substatement is executed. In the second case, the
second substatement is executed if the expression is 0. The
“else” ambiguity is resolved by connecting an else with the last
encountered else-less if.

While Statement

The while statement has the form
while ( expression ) statement

The substatement is executed repeatedly so long as the value of
the expression remains nonzero. The test takes place before
each execution of the statement.

2-44



C LANGUAGE

Do Statement

The do statement has the form
do statement while ( expression ) ;

The substatement is executed repeatedly until the value of the
expression becomes 0. The test takes place after each execution
of the statement.

For Statement

The for statement has the form:

for ( eocp-lop ¢ exp-?op ¢ exp-é‘op ¢ ) statement

Except for the behavior of continue, this statement is
equivalent to

exp-1;
while ( exp-2)
{
statement
exp-3 ;

Thus the first expression specifies initialization for the loop;
the second specifies a test, made before each iteration, such
that the loop is exited when the expression becomes 0. The
third expression often specifies an incrementing that is
performed after each iteration.

Any or all of the expressions may be dropped. A missing exp-2
makes the implied while clause equivalent to while(1); other
missing expressions are simply dropped from the expansion
above.

2-45



C LANGUAGE

Switch Statement

The switch statement causes control to be transferred to one
of several statements depending on the value of an expression.
It has the form

switch ( expression ) statement

The usual arithmetic conversion is performed on the expression,
but the result must be int. The statement is typically
compound. Any statement within the statement may be labeled
with one or more case prefixes as follows:

case constant-expression

where the constant expression must be int. No two of the case
constants in the same switch may have the same value.
Constant expressions are precisely defined in “CONSTANT
EXPRESSIONS.”

There may also be at most one statement prefix of the form
default :

When the switch statement is executed, its expression is
evaluated and compared with each case constant. If one of the
case constants is equal to the value of the expression, control is
passed to the statement following the matched case prefix. If
no case constant matches the expression and if there is a
default, prefix, control passes to the prefixed statement. If no
case matches and if there is no default, then none of the
statements in the switch is executed.

The prefixes case and default do not alter the flow of control,
which continues unimpeded across such prefixes. To exit from
a switch, see ‘“Break Statement.”

2-46



C LANGUAGE

Usually, the statement that is the subject of a switch is
compound. Declarations may appear at the head of this
statement, but initializations of automatic or register variables
are ineffective.

Break Statement

The statement
break ;

causes termination of the smallest enclosing while, do, for, or
switch statement; control passes to the statement following
the terminated statement.

Continue Statement

The statement
continue ;

causes control to pass to the loop-continuation portion of the
smallest enclosing while, do, or for statement; that is to the
end of the loop. More precisely, in each of the statements

while (...) do for (...)
{ { {

contin: ; contin: ; contin: ;
} } while (...); }

a continue is equivalent to goto contin. (Following the
contin: is a null statement, see “Null Statement”.)

2-47



C LANGUAGE

Return Statement

A function returns to its caller by means of the return
statement which has one of the forms

return ;
return expression ;

In the first case, the returned value is undefined. In the second
case, the value of the expression is returned to the caller of the
function. If required, the expression is converted, as if by
assignment, to the type of function in which it appears.
Flowing off the end of a function is equivalent to a return with
no returned value. The expression may be parenthesized.

Goto Statement

Control may be transferred unconditionally by means of the
statement

goto identifier ;

The identifier must be a label (see “Labeled Statement”)
located in the current function.

Labeled Statement

Any statement may be preceded by label prefixes of the form
identifier :

which serve to declare the identifier as a label. The only use of
a label is as a target of a goto. The scope of a label is the
current function, excluding any subblocks in which the same
identifier has been redeclared. See “SCOPE RULES.”

2-48



C LANGUAGE

Null Statement

The null statement has the form

A null statement is useful to carry a label just before the } of a
compound statement or to supply a null body to a looping
statement such as while.

EXTERNAL DEFINITIONS

A C program consists of a sequence of external definitions. An
external definition declares an identifier to have storage class
extern (by default) or perhaps static, and a specified type.
The type-specifier (see “Type Specifiers” in
“DECLARATIONS”) may also be empty, in which case the type
is taken to be int. The scope of external definitions persists to
the end of the file in which they are declared just as the effect
of declarations persists to the end of a block. The syntax of
external definitions is the same as that of all declarations
except that only at this level may the code for functions be
given.

External Function Definitions

Function definitions have the form

Sunction-definition:
decl-speciﬂersop ; Junction-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are
extern or static; see “Scope of Externals” in “SCOPE
RULES” for the distinction between them. A function
declarator is similar to a declarator for a “function returning
...” except that it lists the formal parameters of the function
being defined.

2-49



C LANGUAGE

Junction-declarator:
declarator ( pammeter—listopt )

parometer-list:
identifier
identifier , parameter-list

The function-body has the form

Junction-body:

declamtion-listop compound-statement

¢

The identifiers in the parameter list, and only those identifiers,
may be declared in the declaration list. Any identifiers whose
type is not given are taken to be int. The only storage class
which may be specified is register; if it is specified, the
corresponding actual parameter will be copied, if possible, into
a register at the outset of the function.

A simple example of a complete function definition is

int max(a, b, ¢)
int a, b, ¢;

{
int m;
m=(a>hb)?2a:b;
return((m > ¢) 2 m: ¢);
}

Here int is the type-specifier; max(a, b, ¢) is the function-
declarator; int a, b, ¢; is the declaration-list for the formal
parameters; {...} is the block giving the code for the
statement.

2-50



C LANGUAGE

The C program converts all float actual parameters to double,
so formal parameters declared float have their declaration
adjusted to read double. All char and short formal
parameter declarations are similarly adjusted to read int.
Also, since a reference to an array in any context (in particular
as an actual parameter) is taken to mean a pointer to the first
element of the array, declarations of formal parameters
declared “array of ...” are adjusted to read “pointer to ...”.

External Data Definitions

An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the
default) or static but not auto or register.

SCOPE RULES

A C program need not all be compiled at the same time. The
source text of the program may be kept in several files, and
precompiled routines may be loaded from libraries.
Communication among the functions of a program may be
carried out both through explicit ecalls and through
manipulation of external data.

Therefore, there are two kinds of scopes to consider: first, what
may be called the lexical scope of an identifier, which is
essentially the region of a program during which it may be
used without drawing ‘“‘undefined identifier” diagnostics; and
second, the scope associated with external identifiers, which is
characterized by the rule that references to the same external
identifier are references to the same object.

2-51



C LANGUAGE

Lexical Scope

The lexical scope of identifiers declared in external definitions
persists from the definition through the end of the source file
in which they appear. The lexical scope of identifiers which are
formal parameters persists through the function with which
they are associated. The lexical scope of identifiers declared at
the head of a block persists until the end of theblock. The
lexical scope of labels is the whole of the function in which they
appear.

In all cases, however, if an identifier is explicitly declared at
the head of a block, including the block constituting a function,
any declaration of that identifier outside the block is suspended
until the end of the block.

Remember also (see ‘“Structure, Union, and KEnumeration
Declarations” in “DECLARATIONS”) that tags, identifiers
associated with ordinary variables, and identities associated
with structure and union members form three disjoint classes
which do not conflict. Members and tags follow the same scope
rules as other identifiers. The enum constants are in the same
class as ordinary variables and follow the same scope rules.
The typedef names are in the same class as ordinary
identifiers. They may be redeclared in inner blocks, but an
explicit type must be given in the inner declaration:

typedef float distance;

auto int distance;

The int must be present in the second declaration, or it would
be taken to be a declaration with no declarators and type
distance.

2-52



C LANGUAGE

Scope of Externals

If a function refers to an identifier declared to be extern, then
somewhere among the files or libraries constituting the
complete program there must be at least one external definition
for the identifier. All functions in a given program which refer
to the same external identifier refer to the same object, so care
must be taken that the type and size specified in the definition
are compatible with those specified by each function which
references the data.

It is illegal to explicitly initialize any external identifier more
than once in the set of files and libraries comprising a multi-
file program. It is legal to have more than one data definition
for any external non-function identifier; explicit use of extern
does not change the meaning of an external declaration.

In restricted environments, the use of the extern storage class
takes on an additional meaning. In these environments, the
explicit appearance of the extern keyword in external data
declarations of identities without initialization indicates that
the storage for the identifiers is allocated elsewhere, either in
this file or another file. It is required that there be exactly one
definition of each external identifier (without extern) in the
set of files and libraries comprising a multi-file program.

Identifiers declared static at the top level in external
definitions are not visible in other files. Functions may be
declared static.

COMPILER CONTROL LINES

The C compiler contains a preprocessor capable of macro
substitution, conditional compilation, and inclusion of named
files. Lines beginning with # communicate with this
preprocessor. There may be any number of blanks and
horizontal tabs between the # and the directive. These lines
have syntax independent of the rest of the language; they may

2-53



C LANGUAGE

appear anywhere and have effect which lasts (independent of
scope) until the end of the source program file.

Token Replacement

A compiler-control line of the form
#define identifier token-stringop y

causes the preprocessor to replace subsequent instances of the
identifier with the given string of tokens. Semicolons in or at
the end of the token-string are part of that string. A line of
the form

#define identifier(identifier, ... )token-stringop "

where there is no space between the first identifier and the (, is
a macro definition with arguments. There may be zero or more
formal parameters. Subsequent instances of the first identifier
followed by a (, a sequence of tokens delimited by commas, and
a ) are replaced by the token string in the definition. Each
occurrence of an identifier mentioned in the formal parameter
list of the definition is replaced by the corresponding token
string from the call. The actual arguments in the call are token
strings separated by commas; however, commas in quoted
strings or protected by parentheses do not separate arguments.
The number of formal and actual parameters must be the same.
Strings and character constants in the token-string are scanned
for formal parameters, but strings and character constants in
the rest of the program are not scanned for defined identifiers
to replacement.

In both forms the replacement string is rescanned for more
defined identifiers. In both forms a long definition may be
continued on another line by writing \ at the end of the line to
be continued.

2-54



C LANGUAGE

This facility is most valuable for defining constants in order to
improve the code’s readability. For example:

#define TABSIZE 100

int table[TABSIZE];
A control line of the form
#undef identifier

causes the identifier’s preprocessor definition (if any) to be
forgotten.

If a #defined identifier is the subject of a subsequent #define
with no intervening #undef, then the two token-strings are
compared textually. If the two token-strings are not identical
(all white space is considered as equivalent), then the identifier
is considered to be redefined.

Note that #define and #undef declarations do not nest. The
value of an identifier is solely determined by the most recent
#define or #undef.

File Inclusion

A compiler control line of the form
#include " filename"

causes the replacement of that line by the entire contents of the
file filename. The named file is searched for first in the
directory of the file containing the #include, and then in a
sequence of specified or standard places. Alternatively, a
control line of the form

2-55



C LANGUAGE

#include <filename>

searches only the specified or standard places and not the
directory of the #include. (How the places are specified is not
part of the language.)

#includes may be nested.

Conditional Compilation

A compiler control line of the form
#if restricted-constant-expression

checks whether the restricted-constant expression evaluates to
nonzero. (Constant expressions are discussed in “CONSTANT
EXPRESSIONS”; the following additional restrictions apply
here: the constant expression may not contain sizeof casts, or
an enumeration constant.)

A restricted constant expression may also contain the
additional unary expression

defined identifier
or
defined( identifier

which evaluates to one if the identifier is currently defined in
the preprocessor and zero if it is not.

All  currently defined identifiers in restricted-constant-
expressions are replaced by their token-strings (except those
identifiers modified by defined) just as in normal text. The
restricted constant expression will be evaluated only after all
expressions have finished. During this evaluation, all undefined
(to the procedure) identifiers evaluate to zero.

2-56



C LANGUAGE

A control line of the form
#ifdef identifier

checks whether the identifier is currently defined in the
preprocessor; i.e., whether it has been the subject of a #define
control line. It is equivalent to #ifdef(identifier). A control
line of the form

#ifndef identifier

checks whether the identifier is currently undefined in the
preprocessor. It is equivalent to #if!defined(identifier).

All three forms are followed by an arbitrary number of lines,
possibly containing a control line

#else
and then by a control line
#endif

If the checked condition is true, then any lines between #else
and the matching #endif are ignored. If the checked condition
is false, then any lines between the test and the matching
#else or, lacking a #else, the matching #endif are ignored.

These constructions may be nested.

2-57



C LANGUAGE

Line Control

For the benefit of other preprocessors which generate C
programs, a line of the form

#line constant " filename"

causes the compiler to believe, for purposes of error diagnostics,
that the line number of the next source line is given by the
constant and the current input file is named by " filename" . If
" filename" is absent, the remembered file name does not
change.

IMPLICIT DECLARATIONS

It is not always necessary to specify both the storage class and
the type of identifiers in a declaration. The storage class is
supplied by the context in external definitions and in
declarations of formal parameters and structure members. In a
declaration inside a function, if a storage class but no type is
given, the identifier is assumed to be int; if a type but no
storage class is indicated, the identifier is assumed to be auto.
An exception to the latter rule is made for functions because
auto functions do not exist. If the type of an identifier is
“function returning ...,” it is implicitly declared to be extern.

In an expression, an identifier followed by ( and not already
declared is contextually declared to be “function returning int.”

TYPES REVISITED

This part summarizes the operations which can be performed
on objects of certain types.

2-58



C LANGUAGE

Structures and Unions

Structures and unions may be assigned, passed as arguments to
functions, and returned by functions. Other plausible
operators, such as equality comparison and structure casts, are
not implemented.

In a reference to a structure or union member, the name on the
right of the —> or the . must specify a member of the
aggregate named or pointed to by the expression on the left. In
general, a member of a union may not be inspected unless the
value of the union has been assigned using that same member.
However, one special guarantee is made by the language in
order to simplify the use of unions: if a union contains several
structures that share a common initial sequence and if the
union currently contains one of these structures, it is permitted
to inspect the common initial part of any of the contained
structures. For example, the following is a legal fragment:

2-59



C LANGUAGE

union

{

struct

{

}
struct

{

int

int

int
} mi;
struct

{

int

float

} nf;
b w

type;

type;
intnode;

type;
floatnode;

u.nf.type = FLOAT;
u.nf.floatnode = 3.14;

if (u.n.type == FLOAT)
... sin(u.nf.floatnode) ...

Functions

There are only two things that can be done with a function: call
it or take its address. If the name of a funection appears in an
expression not in the function-name position of a call, a pointer
to the function is generated. Thus, to pass one function to
another, one might say

int £();

g();

2-60



C LANGUAGE

Then the definition of g might read

g(funcp)

int (*funcp)();
{

'(.":funcp)( );
}

Notice that f must be declared explicitly in the calling routine
since its appearance in g(f) was not followed by (.

Arrays, Pointers, and Subscripting

Every time an identifier of array type appears in an expression,
it is converted into a pointer to the first member of the array.
Because of this conversion, arrays are not lvalues. By
definition, the subscript operator [] is interpreted in such a way
that E1[E2] is identical to *((E1)+(EZ2)). Because of the
conversion rules which apply to +, if E1 is an array and E2 an
integer, then E1[E2] refers to the E2 -th member of E1.
Therefore, despite its asymmetric appearance, subscripting is a
commutative operation.

A consistent rule is followed in the case of multidimensional
arrays. If E is an n-dimensional array of rank iXjX...xk, then
E appearing in an expression is converted to a pointer to an
(n-1)-dimensional array with rank jX..xXk. If the * operator,
either explicitly or implicitly as a result of subscripting, is
applied to this pointer, the result is the pointed-to (n-1)-
dimensional array, which itself is immediately converted into a
pointer.

For example, consider

2-61



C LANGUAGE

~ int x[3][5];

Here x is a 3X5 array of integers. When x appears in an
expression, it is converted to a pointer to (the first of three) 5-
membered arrays of integers. In the expression x[i], which is
equivalent to *(x+i), x is first converted to a pointer as
described; then i is converted to the type of x, which involves
multiplying i by the length the object to which the pointer
points, namely 5-integer objects. The results are added and
indirection applied to yield an array (of five integers) which in
turn is converted to a pointer to the first of the integers. If
there is another subscript, the same argument applies again;
this time the result is an integer.

Arrays in C are stored row-wise (last subscript varies fastest)
and the first subscript in the declaration helps determine the
amount of storage consumed by an array. Arrays play no other
part in subsecript calculations.

Explicit Pointer Conversions

Certain conversions involving pointers are permitted but have
implementation-dependent aspects. They are all specified by
means of an explicit type-conversion operator, see “Unary
Operators” under“EXPRESSIONS” and ‘“Type Names’under
“DECLARATIONS.” '

A pointer may be converted to any of the integral types large
enough to hold it. Whether an int or long is required is
machine dependent and may also depend on the pointer type.
The mapping function is also machine dependent but is
intended to be unsurprising to those who know the addressing
structure of the machine. Details for some particular machines
are given below.

An object of integral type may be explicitly converted to a
pointer. The mapping always carries an integer converted from
a pointer back to a pointer which points to the same location

2-62



C LANGUAGE

but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another
type. The resulting pointer may cause addressing exceptions
upon use if the subject pointer does not refer to an object
suitably aligned in storage.

For example, a storage-allocation routine might accept a size
(in bytes) of an object to allocate, and return a char pointer; it
might be used in this way.

extern char *alloe();
double *dp;

dp = (double *) alloc(sizeof(double));
*dp = 22.0 / 7.0;

The alloc must ensure (in a machine-dependent way) that its
return value is suitable for conversion to a pointer to double;
then the use of the function is portable.

The pointer representation on the PDP-11 corresponds to a 16-
bit integer and measures bytes. The char’s have no alignment
requirements; everything else must have an even address.

On the VAX-11, pointers are 32 bits long and measure bytes.
Elementary objects are aligned on a boundary equal to their
length, except that double quantities need be aligned only on
even 4-byte boundaries. Aggregates are aligned on the strictest
boundary required by any of their constituents.

The 3B20 has 24-bit pointers placed into 32-bit quantities.

The UNIX PC has 32-bit pointers. Most objects are aligned on
4-byte boundaries. Shorts are aligned in all cases on 2-byte
boundaries. Arrays of characters, all structures, ints, longs,

2-63



C LANGUAGE

floats, and doubles are aligned on 4-byte boundries; but
structure members may be packed tighter.

CONSTANT EXPRESSIONS

In several places C requires expressions that evaluate to a
constant: after case, as array bounds, and in initializers. In
the first two cases, the expression can involve only integer
constants, character constants, casts to integral types,
enumeration constants, and sizeof expressions, possibly
connected by the binary operators

+—*/%&|A<<>>==!=<><=>=&&||

or by the unary operators

or by the ternary operator

Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant
expressions as discussed above, one can also use floating
constants and arbitrary casts and can also apply the unary &
operator to external or static objects and to external or static
arrays subscripted with a constant expression. The unary &
can also be applied implicitly by appearance of unsubscripted
arrays and functions. The basic rule is that initializers must
evaluate either to a constant or to the address of a previously
declared external or static object plus or minus a constant.

2-64



C LANGUAGE

PORTABILITY CONSIDERATIONS

Certain parts of C are inherently machine dependent. The
following list of potential trouble spots is not meant to be all-
inclusive but to point out the main ones.

Purely hardware issues like word size and the properties of
floating point arithmetic and integer division have proven in
practice to be not much of a problem. Other facets of the
hardware are reflected in differing implementations. Some of
these, particularly sign extension (converting a negative
character into a negative integer) and the order in which bytes
are placed in a word, are nuisances that must be carefully
watched. Note that unsigned chars do not have this problem

The number of register variables that can actually be placed
in registers varies from machine to machine as does the set of
valid types. Nonetheless, the compilers all do things properly
for their own machine; excess or invalid register declarations
are ignored.

Dubious codingpractices, such as neglecting type conversions
when passing arguments to functions, can cause trouble. Lint
can be used to detect problems of this type.

The order of evaluation of function arguments is not specified
by the language. The order in which side effects take place is
also unspecified.

Since character constants are really objects of type int,
multicharacter character constants may be permitted. The
specific implementation is very machine dependent because the
order in which characters are assigned to a word varies from
one machine to another.

Fields are assigned to words and characters to integers right to
left on some machines and left to right on other machines.
These differences are invisible to isolated programs that do not

2-65



C LANGUAGE

indulge in type punning (e.g., by converting an int pointer to a
char pointer and inspecting the pointed-to storage) but must
be accounted for when conforming to externally-imposed
storage layouts.

SYNTAX SUMMARY

This summary of C syntax is intended more for aiding
comprehension than as an exact statement of the language.

Expressions

The basic expressions are:

expression:
primary
* expression
&lvalue
- expression
! expression
" expression
++ lvalue
—-lalue
lalue ++
lalue —-
sizeof expression
sizeof (type-name)
( type-name ) expression
expression binop expression
expression ¢ expression : expression
lalue asgnop expression
expression , expression

2-66



C LANGUAGE

primary:
identifier
constant
string
( expression )
primary ( expression-list )
primary [ expression |
primary . identifier
primary -> identifier

lwalue:
identifier
primary [ expression |
lalue . identifier
primary -> identifier
* expression
( lvalue )

The primary-expression operators

Ofn.->

have highest priority and group left to right. The unary
operators

*& -1 7 +4+ —— sizeof (type-name)

have priority below the primary operators but higher than any
binary operator and group right to left. Binary operators group
left to right; they have priority decreasing as indicated below.

2-67



C LANGUAGE

binop:
/%

The conditional operator groups right to left.

Assignment operators all have the same priority and all group
right to left.

asgnop:

=+=__—_—*

= /= %= >>= <<= &= = |=

The comma operator has the lowest priority and groups left to
right.

Declarations

declaration:

decl-specifiers init-declamtor—listop .

decl-specifiers:

type-specifier decl—speczfierso
sc-specifier decl-speciﬂersop ;

2-68



C LANGUAGE

sc-specifier:
auto
static
extern
register
typedef

type-specifier:

struct-or-union-specifier

typedef-name

enum-specifier
basic-type-specifier:

basic-type

basic-type basic-type-specifiers
basic-type:

char

short

int

long

unsigned

float

double

void

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

2-69



C LANGUAGE

mit-declarator-list:

init-declarator
init-declarator , init-declarator-list -

wmat-declarator:

declarator initializer
opt

declarator:

identifier

( declarator )

* declarator

declarator ()

declarator [ constant-expression

opt /

struct-or-union-specifier:

struct { struct-decl-list }

struct identifier { struct-decl-list }
struct identifier

union { struct-decl-list }

union identifier { struct-decl-list }
union identifier

struct-decl-list:

struct-declaration
struct-declaration struct-decl-list

struct-declaration:

type-specifier struct-declarator-list ,

struct-declarator-list:

2-70

struct-declarator
struct-declarator , struct-declarator-list



C LANGUAGE

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

mitializer:
= expression
= { watializer-list }
= { initializer-list , }

nittalizer-list:
expression
nitializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

type-name:
type-specifier abstract-declarator

abstract-declarator:
emptly
{ abstract-declarator )
* abstract-declarator
abstract-declarator ()
abstract-declarator [ constant-expression

opt !

typedef-name:
identifier

Statements

compound-statement:

{ declaration-listo

ot statement-hstop " }

2-71



C LANGUAGE

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

statement:
compound-statement
expression ;
if ( expression ) statement
if ( expression ) statement else statement
while ( expression ) statement
do statement while ( expression ) ;
for (expo $ELDopteTPo ¢ statement
switch ( exmesszon ) statement
case constant-expression : statement
default : statement
break ;
continue ;
return ;
return expression ;
goto identifier ;
identifier : statement

External definitions

program:
external-definition
external-definition program

external-definition:
Junction-definition
data~-definition

2-72



C LANGUAGE

Junction-definition:
decl-specifierop y Junction-declarator function-body

function-declarator:

declarator ( parameter-list
opt

)
parameter-list:

identifier

identifier , parameter-list

JSunction-body:

declaration-listop compound-statement

t

data-definition:
extern declaration ;
static declaration

Preprocessor

#define identifier token-string s

#define identifier (identifier,... ﬁoken—string
#undef identifier opt
#include " filename"

#include <filename >

#if restricted-constant-expression

#ifdef identifier

#ifndef identifier

#else

#endif

#line constant " filename"

2-73



Chapter 3

C LIBRARIES

PAGE

GENERAL ... i i i e i et e e e 3-1
Including Functions ...........00ititiiiirnnnereneans 3-2
Including Declarations ........... ... ciiiieinnnnn. 3-3
THE CLIBRARY ... ... ittt iiii i, 3-4
Input/Output Control ......... ...t ennennnn 3-4
File Access Functions . .. ........... ... . ., 3-5
File Status Functions .............. .0 iiiiiinnnnnnn. 3-6
Input Funections ......... ... . i, 3-6
Output Functions. ........oviiiiitiiiiiinntiannneneas 3-7
Miscellaneous Functions . .......... ... iieeennn.n. 3-8
String Manipulation Functions . ....................... 3-9
Character Manipulation ............................. 3-10
Character Testing Functions ...............ovuinnn, 3-11
Character Translation Functions ...................... 3-12
Time Funetions ......... ittt einnaneas 3-12
Miscellaneous Functions . ............... ... oo, 3-13
Numerical Conversion .......... ... .. 3-14
DES Algorithm Acceess .. .. .o iiiii ittt annens 3-15
Group File Aceess . ... .ottt iiniieeinnnannnnn 3-15
Password File Access............. .o, 3-16
Parameter Access...... P 3-17
Hash Table Management ................c.0icuinunn.n. 3-17
Binary Tree Management . ... ......ciueteeuneenrennean 3-18
Table Management............ouutiunrneeenneennnnnn 3-19
Memory Allocation ... .....c.cuii ittt iiieerenennenns 3-19
Pseudorandom Number Generation ................... 3-20
Signal Handling Functions ............. ... ... ..., 3-22

Miscellaneous . ..........ciiiiiintieennonnennoannnns 3-22



Chapter 3
C LIBRARIES

GENERAL

This chapter and Chapter 4 describe the libraries that are
supported on the UNIX operating system. A library is a
collection of related functions and/or declarations that simplify
programming effort by linking only what is needed, allowing
use of locally produced functions, etc. All of the functions
described are also described in Section 3 of the AT&T UNIX
PC UNIX System V Manual. Most of the declarations
described are in Section 5 of the AT&T UNIX PC UNIX
System V Manual. The main libraries on the UNIX system are:

C library This is the basic library for C language
programs. The C library is composed of
functions and declarations used for file
access, string testing and manipulation,
character testing and manipulation,
memory alloeation, and other functions.
This library is described later in this
chapter.

Object file library
This library provides functions for the
access and manipulation of object files.
This library is described in Chapter 4.

Math library This library provides exponential, bessel
functions, logarithmie, hyperbolic, and
trigonometric functions. This library is
described in Chapter 4.

3-1



C LIBRARIES

tam library This library contains the AT&T UNIX
PC “terminal access method” (tam)
functions.

Some libraries consist of two portions—functions and
declarations. In some cases, the user must request that the
functions (and/or declarations) of a specific library be included
in a program being compiled. In other cases, the functions
(and/or declarations) are included automatically.

Including Functions

When a program is being compiled, the compiler will
automatically search the C language library to locate and
include functions that are used in the program. This is the case
only for the C library and no other library. In order for the
compiler to locate and include functions from other libraries,
the user must specify these libraries on the command line for
the compiler. For example, when using functions of the math
library, the user must request that the math library be
searched by including the argument —lm on the command line,
such as:

ce file.c -lm

The argument —lm must come after all files that reference
functions in the math library in order for the link editor to
know which functions to include in the a.out file.

This method should be used for all functions that are not part
of the C language library.



C LIBRARIES

Including Declarations

Some functions require a set of declarations in order to operate
properly. A set of declarations is stored in a file under the
/usr/include directory. These files are referred to as header
files. In order to include a certain header file, the user must
specify this request within the C language program. The
request is in the form:

#include <file.h>

where file.h is the name of the file. Since the header files
define the type of the functions and various preprocessor
constants, they must be included before invoking the functions
they declare.

The remainder of this chapter describes the funections and
header files of the C Library. The description of the library
begins with the actions required by the user to include the
functions and/or header files in a program being compiled (if
any). Following the description of the actions required is
information in three-column format of the form:

function reference(N) Brief description.

The functions are grouped by type while the reference refers to
section ‘N’ in the AT&T UNIX PC UNIX System V Manual.
Following this, are descriptions of the header files associated
with these functions (if any).

3-3



C LIBRARIES

THE C LIBRARY

The C library consists of several types of functions. All the
functions of the C library are loaded automatically by the
compiler. Various declarations must sometimes be included by
the user as required. The functions of the C library are divided
into the following types:

¢ Input/output control

e String manipulation

e Character manipulation
e Time functions

e Miscellaneous funections.

Input/Output Control

These functions of the C library are automatically included as
needed during the compiling of a C language program. No
command line request is needed.

The header file required by the input/output functions should
be included in the program being compiled. This is
accomplished by including the line:

#include <stdio.h>

near the beginning of each file that references an input or
output function.

The input/output functions are grouped into the following
categories:

o File access

o File status

e Input

¢ Output

¢ Miscellaneous.

3-4



File Access Functions

FUNCTION
fclose

fdopen

fileno

fopen

freopen

fseek

pclose

popen

rewind

REFERENCE

fclose(3S)

fopen(3S)

ferror(3S)

fopen(3S)

fopen(3S)

fseek(3S)

popen(3S)

popen(3S)

fseek(3S)

C LIBRARIES

BRIEF DESCRIPTION
Close an open stream.

Associate stream with
an open(2) ed file.

File descriptor associated
with an open stream.

Open a file with
specified permissions.
Fopen returns a pointer
to a stream which is
used in subsequent
references to the file.

Substitute named file
in place of open
stream.

Reposition the file
pointer.

Close a stream opened
by popen.

Create pipe as a stream
between calling process
and command.

Reposition file

pointer at beginning
of file.

3-5



C LIBRARIES

setbuf setbuf(3S)

File Status Functions

FUNCTION REFERENCE
clearerr ferror(3S)
feof ferror(3S)
ferror ferror(3S)
ftell fseek(3S)

Input Functions

Assign buffering to
stream.

BRIEF DESCRIPTION

Reset error condition on
stream.

Test for “end of file”
on stream.

Test for error condition
on stream.

Return current position
in the file.

FUNCTION REFERENCE BRIEF DESCRIPTION

True function for gete
(8S).

Read string from stream.

General buffered read

from stream.

fgete getc(39)
fgets gets(3S)
fread fread(3S)
fscanf scanf(3S)

3-6

Formatted read from
stream.



gete

getchar

gets
getw

scanf

sscanf

ungetc

gete(3S)

getc(3S)

gets(3S)
gete(3S)

scanf(3S)

scanf(3S)

ungetc(3S)

Output Functions

FUNCTION

fflush

fprintf

fpute

fputs

fwrite

C LIBRARIES
Read character from
stream.

Read character from
standard input.

Read string from standard input.
Read word from stream.

Read using format from
standard input.

Formatted from
string.

Put back one character on
stream.

REFERENCE BRIEF DESCRIPTION

fclose(3S)

printf(3S)

putc(3S)

puts(3S)

fread(3S)

Write all currently buffered
characters from stream.

Formatted write to
stream.

True function for pute
(8S).

Write string to stream.

General buffered write to

3-7



C LIBRARIES

stream.

printf printf(3S) Print using format to
standard output.
pute pute(3S) Write character to
standard output.
putchar putc(3S) Write character to
standard output.
puts puts(3S) Write string to
standard output.
putw putc(3S) Write word to stream:.
sprintf printf(3S) Formatted write to
string.
Miscellaneous Functions
FUNCTION REFERENCE BRIEF DESCRIPTION
ctermid ctermid (3S) Return file name for
controlling terminal.
cuserid cuserid(3S) Return login name for
owner of current process.
system system(3S) Execute shell command.
tempnam tempnam (3S) Create temporary file

name using directory and
prefix.

3-8



C LIBRARIES

tmpnam tmpnam (3S) Create temporary file
name.
tmpfile tmpfile (3S) Create temporary file.

String Manipulation Functions

These functions are used to locate characters within a string,
copy, concatenate, and compare strings. These functions are
automatically located and loaded during the compiling of a C
language program. No command line request is needed since
these functions are part of the C library. The string
manipulation functions are declared in a header file that may
be included in the program being compiled. This is
accomplished by including the line:

#include <string.h>

near the beginning of each file that uses one of these functions.

FUNCTION REFERENCE BRIEF DESCRIPTION

strcat string(3C) Concatenate two strings.

strchr string (3C) Search string for
character.

strecmp string(3C) Compares two strings.

strepy string(3C) Copy string.

strespn string(3C) Length of initial string
not containing set of
characters.

3-9



C LIBRARIES

strlen string(3C)
strncat string(3C)
strncmp string (3C)
strncpy string (3C)
strpbrk string(3C)
strrchr string (3C)
strspn string(3C)
strtok string (3C)

Character Manipulation

Length of string.

Concatenate two strings
with a maximum length.

Compares two strings
with a maximum length.

Copy string over string
with a maximum length.

Search string for any
set of characters.

Search string backwards
for character.

Length of initial string
containing set of
characters.

Search string for token
separated by any of a
set of characters.

The following functions and declarations are used for testing
and translating ASCII characters. These functions are located
and loaded automatically during the compiling of a C language
program. No command line request is needed since these

functions are part of the C library.

The declarations associated with these functions should be
included in the program being compiled. This is accomplished

by including the line:

#include <ctype.h>

3-10



C LIBRARIES

near the beginning of the file being compiled.

Character Testing Functions

These functions can be used to identify characters as uppercase
or lowercase letters, digits, punctuation, ete.

FUNCTION REFERENCE BRIEF DESCRIPTION

isalnum ctype(3C) Is character
alphanumeric?

isalpha ctype(3C) Is character alphabetic?

isascii ctype(3C) Is integer ASCII
character?

isentrl ctype(3C) Is character a control
character?

isdigit ctype(3C) Is character a digit?

isgraph ctype(3C) Is character a printable
character?

islower ctype(30) Is character a

lowercase letter?

isprint ctype(3C) Is character a printing
character including
space?

ispunct ctype(3C) Is character a

punctuation character?

isspace ctype(30) Is character a white

3-11



C LIBRARIES

space character?

isupper ctype(3C) Is character an uppercase
letter?
isxdigit ctype(3C) Is character a hex digit?

Character Translation Functions

These functions provide translation of uppercase to lowercase,
lowercase to uppercase, and integer to ASCII.

FUNCTION REFERENCE BRIEF DESCRIPTION

toascii conv(3C) Convert integer to
ASCII character.

tolower conv(3C) Convert character to
lowercase.

toupper conv(3C) Convert character to
uppercase.

Time Functions

These functions are used for accessing and reformatting the
system’s idea of the current date and time. These functions are
located and loaded automatically during the compiling of a C
language program. No command line request is needed since
these functions are part of the C library.

The header file associated with these functions should be
included in the program being compiled. This is accomplished
by including the line:

#include <time.h>

3-12



C LIBRARIES

near the beginning of any file using the time functions.

These functions (except tzset) convert a time such as returned

by time(2).

FUNCTION REFERENCE
asctime ctime(3C)
ctime ctime (3C)
gmtime ctime(3C)
localtime ctime (3C)
tzset ctime (3C)

Miscellaneous Functions

BRIEF DESCRIPTION

Return string
representation
of date and time.

Return string
representation of
date and time, given
integer form.

Return Greenwich
Mean Time.

Return local time.
Set time zone field

from environment
variable.

These functions support a wide variety of operations. Some of
these are numerical conversion, password file and group file
access, memory allocation, random number generation, and
table management. These functions are automatically located
and included in a program being compiled. No command line
request is needed since these functions are part of the C

library.

Some of these functions require declarations to be included.
These are described following the descriptions of the funections.

3-13



C LIBRARIES

Numerical Conversion

The following functions perform numerical conversion.

FUNCTION REFERENCE BRIEF DESCRIPTION

a64l a641(3C) Convert string to
base 64 ASCII.

atof atof(3C) Convert string to
floating.

atoi atof(3C) Convert string to
integer.

atol atof(3C) Convert string to long.

frexp frexp(3C) Split floating into
mantissa and exponent.

13tol 13t01(3C) Convert 3-byte integer
to long.

1tol3 13t01(3C) Convert long to 3-byte
integer.

ldexp frexp(3C) Combine mantissa and
exponent.

164a a641(3C) Convert base 64 ASCII
to string.

modf frexp(3C) Split mantissa into

integer and fraction.

3-14



C LIBRARIES

DES Algorithm Access

The following functions allow access to the Data Enecryption
Standard (DES) algorithm used on the UNIX operating system.
The DES algorithm is implemented with variations to frustrate
use of hardware implementations of the DES for key search.

FUNCTION REFERENCE BRIEF DESCRIPTION

crypt crypt(3C) Encode string.

encrypt crypt(30) Encode/decode string of
0s and 1s.

setkey crypt(3C) Initialize for subsequent

use of encrypt.

Group File Access

The following functions are used to obtain entries from the
group file. Declarations for these functions must be included in
the program being compiled with the line:

#include <grp.h>

FUNCTION REFERENCE BRIEF DESCRIPTION

endgrent getgrent(3C) Close group file being
processed.

getgrent getgrent(3C) Get next group file
entry.

3-15



C LIBRARIES

getgrgid getgrent(3C)
getgrnam getgrent(3C)
setgrent getgrent(3C)

Password File Access

Return next group with
matching gid.

Return next group with
matching name.

Rewind group file being
processed.

These functions are used to search and access information
stored in the password file (/etc/passwd). Some functions
require declarations that can be included in the program being

compiled by adding the line:

#include <pwd.h>

FUNCTION REFERENCE
endpwent getpwent(3C)
getpw getpw(3C)
getpwent getpwent(30)
getpwnam getpwent(3C)

3-16

BRIEF DESCRIPTION

Close password file
being processed.

Search password file
for uid.

Get next password file
entry.

Return next entry with
matching name.



getpwuid getpwent(3C)

putpwent putpwent(3C)

setpwent getpwent(3C)

Parameter Access

C LIBRARIES
Return next entry with
matching uid.

Write entry on stream.

Rewind password file
being accessed.

The following functions provide access to several different types
of paramenters. None require any declarations.

FUNCTION REFERENCE

getopt(3C)

getewd (3C)

getenv(3C)

getpass (3C)

Hash Table Management

BRIEF DESCRIPTION

Get next option from
option list.

Return string
representation of
current working directory.

Return string value
associated with
environment variable.

Read string from terminal
without echoing.

The following functions are used to manage hHash search tables.
The header file associated with these functions should be
included in the program being compiled. This is accomplished

by including the line:

#include <search.h>

3-17



C LIBRARIES

near the beginning of any file using the search functions.

FUNCTION REFERENCE BRIEF DESCRIPTION

hcreate hsearch(3C) Create hash table.

hdestroy hsearch(3C) Destroy hash table.

hsearch hsearch(3C) Search hash table for
entry.

Binary Tree Management

The following functions are used to manage a binary tree. The
header file associated with these functions should be included
in the program being compiled. This is accomplished by
including the line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCTION REFERENCE BRIEF DESCRIPTION
tdelete tsearch(3C) Deletes nodes from
. binary tree.
tsearch tsearch(3C) Look for and add
element to binary
tree.

3-18



C LIBRARIES

twalk tsearch(3C) Walk binary tree.

Table Management

The following functions are used to manage a table. Since none
of these functions allocate storage, sufficient memory must be
allocated before using these functions. The header (file
associated with these functions should be included in the
program being compiled. This is accomplished by including the
line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCTION REFERENCE BRIEF DESCRIPTION

bsearch bsearch(3C) Search table using
binary search.

Isearch Isearch(3C) Look for and add
element in binary
tree.

gsort gsort(3C) Sort table using

quick-sort algorithm.

Memory Allocation

The following functions provide a means by which memory can
be dynamically allocated or freed.

3-19



C LIBRARIES

FUNCTION REFERENCE BRIEF DESCRIPTION

calloc malloe(3C) Allocate zeroed storage.

free malloe(3C) Free previously allocated
storage.

malloc malloc(3C) Allocate storage.

realloc malloe(3C) Change size of allocated
storage.

The following is another set of memory allocation functions
available.

FUNCTION REFERENCE BRIEF DESCRIPTION

calloc malloe(3X) Allocate zeroed storage.

free malloe(3X) Free previously allocated
storage.

malloc malloe(3X) Allocate storage.

Pseudorandom Number Generation

The following functions are used to generate pseudorandom
numbers. The functions that end with 48 are a family of
interfaces to a pseudorandom number generator based upon the
linear congruent algorithm and 48-bit integer arithmetic. The
rand and srand functions provide an interface to a
multiplicative congruential random number generator with
period of 232.

3-20



FUNCTION

drand48

lcong48

lrand48

mrand48

rand

seed48

srand

srand48

REFERENCE

drand48(3C)

drand48(3C)

drand48(3C)

drand48(3C)

rand (3C)

drand48(3C)

rand(3C)

drand48(3C)

C LIBRARIES

BRIEF DESCRIPTION

Random double over
the interval [0 to 1).

Set parameters for
drand48, lrand48,
and mrand48.

Random long over the
interval [0 to 23 )

Random lon :ﬁover the
interval [-29* to 23 )

Random integer over the
interval [0 to 32767).

Seed the generator for
drand48, Irand48, and
mrand48.

Seed the generator
for rand.

Seed the generator for

drand48, Irand48, and
mrand48 using a long.

3-21



C LIBRARIES

Signal Handling Functions

The functions gsignal and ssignal implement a software
facility similar to signal(2) in the AT&T UNIX System V
Manual. This facility enables users to indicate the disposition
of error conditions and allows users to handle signals for their
own purposes. The declarations associated with these functions
can be included in the program being complied by the line

#include <signal.h>

These declarations define ASCII names for the 15 software
signals.

FUNCTION REFERENCE BRIEF DESCRIPTION
gsignal ssignal(3C) Send a software signal.
ssignal ssignal(3C) Arrange for handling

of software signals.

Miscellaneous

The following functions do not fall into any previously
described category.

FUNCTION REFERENCE BRIEF DESCRIPTION
abort abort(3C) Cause an 10T signal
to be sent to the
process.

3-22



abs

ecvt

fevt

gevt

isatty

mktemp

monitor

swab

ttyname

abs(3C)

ecvt(3C)

ecvt(3C)

ecvt(3C)

ttyname (3C)

mktemp(3C)

monitor(3C)

swab (3C)

ttyname (3C)

C LIBRARIES

Return the absolute
integer value.

Convert double to
string.

Convert double to
string using Fortran
Format.

Convert double to
string using Fortran
F or E format.

Test whether integer
file descriptor is
associated with a
terminal.

Create file name
using template.

Cause process to record
a histogram of program
counter location.

Swap and copy bytes.
Return pathname of

terminal associated with
integer file descriptor.

3-23



Chapter 4

THE OBJECT AND MATH LIBRARIES

PAGE

GENE R AL . .. ittt ettt ittt ettt eetaaneneann 4-1
THE OBJECT FILE LIBRARY .........c0iittiitiiirenanenns 4-2
Common Object File Interface Macros (ldfenh) .......... 4-5

THE MATH LIBRARY . ... ... tiiitiitiitiiiienneaneanas 4-6
Trigonometric Functions ............... . ... i 4-7
Bessel Functions ..........c.utiitinierinnenenennns 4-8
Hyperbolic Functions ............oiiiiiiiiiiiiiinnns 4-8

Miscellaneous Functions ................. ... ... 4-8



Chapter 4
THE OBJECT AND MATH LIBRARIES

GENERAL

This chapter describes the Object and Math Libraries that are
supported on the UNIX operating system. A library is a
collection of related functions and/or declarations that simplify
programming effort. All of the functions described are also
described in Section 3 of the AT&T UNIX PC UNIX System V
Manual. Most of the declarations described are in Section 5 of
the AT&T UNIX PC UNIX System Manual. The main
libraries on the UNIX system are:

C library This is the basic library for C language
programs. The C library is composed of
functions and declarations used for file
access, string testing and manipulation,
character testing and manipulation,
memory allocation, and other functions.
This library is described in Chapter 3.

Object file library
This library provides functions for the
access and manipulation of object files.
This library is described later in this
chapter.

Math library This library provides exponential, bessel
functions, logarithmie, hyperbolic, and
trigonometric functions. This library is
also described later in this chapter.

tam library This library contains the AT&T UNIX
PC “terminal access library” (tam)

4-1



THE OBJECT AND MATH LIBRARIES

functions.

THE OBJECT FILE LIBRARY

The object file library provides functions for the access and
manipulation of object files. Some functions locate portions of
an object file such as the symbol table, the file header, sections,
and line number entries associated with a function. Other
functions read these types of entries into memory. For a
description of the format of an object file, see “The Common
Object File Format” in Chapter 18.

This library consists of several portions. The functions reside
in Susr/lib/libld.a and are located and loaded during the
compiling of a C language program by a command line request.
The form of this request is:

ce file -11d

which causes the link editor to search the object file library.
The argument -11d must appear after all files that reference
functions in libld.aR.

In addition, various header files must be included. This ts
accomplished by including the line:

#include <stdio.h>
#include <a.out.h>
#include <ldfen.h>



FUNCTION

ldaclose

ldahread

ldaopen

ldclose

ldfhread

ldgetname

1dlinit

ldlitem

ldlread

ldlseek

THE OBJECT AND MATH LIBRARIES

REFERENCE

ldclose (3X)

ldahread(3X)

ldopen(3X)

ldclose(3X)

ldfhread(3X)

ldgetname(3X)

ldlread(3X)

ldlread(3X)

ldiread(3X)

ldlseek (3X)

BRIEF DESCRIPTION

Close object file being
processed.

Read archive header.

Open object file for
reading.

Close object file being
processed.

Read file header of
object file being
processed.

Retrieve the name of
an object file symbol
table entry.

Prepare object file for
reading line number
entries via ldlitem.

Read line number entry
from object file after
1dlinit.

Read line number entry
from object file.

Seeks to the line number

entries of the object
file being processed.

4-3



THE OBJECT AND MATH LIBRARIES

ldnlseek

ldnrseek

ldnshread

ldnsseek

ldohseek

ldopen

ldrseek

ldshread

ldsseek

4-4

ldlseek(3X)

ldrseek(3X)

ldshread (3X)

ldsseek(3X)

ldohseek (3X)

ldopen(3X)

ldrseek(SX)

ldshread(3X)

ldsseek(3X)

Seeks to the line number
entries of the object file
being processed given
the name of a section.

Seeks to the relocation
entries of the object file
being processed given
the name of a section.

Read section header of
the named section of the
object file being
processed.

Seeks to the section of
the object file being
processed given the
name of a section.

Seeks to the optional
file header of the object
file being processed.

Open object file for
reading.

Seeks to the relocation
entries of the object file
being processed.

Read section header of
an object file being
processed.

Seeks to the section of
the object file being



THE OBJECT AND MATH LIBRARIES

processed.

ldtbindex ldtbindex (3X) Returns the long index
of the symbol table entry
at the current position of
the object file being
processed.

ldtbread ldtbread(3X) Reads a specific
symbol table entry
of the object file
being processed.

ldtbseek Idtbseek (3X) Seeks to the symbol
table of the object file
being processed.

sgetl sputl(3X) Access long integer data
in a machine independent
format.

sputl sputl(3X) Translate a long integer

into a machine
independent format.

Common Object File Interface Macros (ldfcn.h)

The interface between the calling program and the object file
access routines is based on the defined type LDFILE which is
defined in the header file ldfcn.h (see ldfen(4)). The primary
purpose of this structure is to provide uniform access to both
simple object files and to object files that are members of an
archive file.

The function ldopen(3X) allocates and initializes the LDFILE
structure and returns a pointer to the structure to the calling
program. The fields of the LDFILE structure may be accessed
individually through the following macros: the type macro
returns the magic number of the file, which is used to

4-5



THE OBJECT AND MATH LIBRARIES

distinguish between archive files and simple object files. The
IOPTR macro returns the file pointer which was opened by
ldopen(3X) and is used by the input/output functions of the C
library. The OFFSET macro returns the file address of the
beginning of the object file. This value is non-zero only if the
object file is a member of the archive file. The HEADER
macro accesses the file header structure of the object file.

Additional macros are provided to access an object file. These
macros parallel the input/output functions in the C library;
each macro translates a reference to an LDFILE structure
into a reference to its file descriptor field. The available
macros are described in ldfen(4) in the AT&T UNIX System V
Manual.

THE MATH LIBRARY

The math library consists of functions and a header file. The
functions are located and loaded during the compiling of a C
language program by a command line request. The form of this
request is:

cc file —Im

which causes the link editor to search the math library. In
addition to the request to load the functions, the header file of
the math library should be included in the program being
compiled. This is accomplished by including the line:

#include <math.h>
near the beginning of the (first) file being compiled.

The functions are grouped into the following categories:

4-6



THE OBJECT AND MATH LIBRARIES

o Trigonometric functions
o Bessel functions

Hyperbolic functions

e Miscellaneous functions.

Trigonometric Functions

These functions are used to compute angles (in radian
measure), sines, cosines, and tangents. All of these values are
expressed in double precision.

FUNCTION REFERENCE BRIEF DESCRIPTION

acos trig(3M) Return are cosine.

asin trig (3M) Return are sine.

atan trig(3M) Return arc tangent.

atan2 trig (3M) Return arc tangent of
a ratio.

cos trig(3M) Return cosine.

sin trig (3M) Return sine.

tan trig(3M) Return tangent.



THE OBJECT AND MATH LIBRARIES

Bessel Functions

These functions calculate bessel functions of the first and
second kinds of several orders for real values. The bessel
functions are jO, j1, jn, yO, y1, and yn. The functions are
located in section bessel(3M).

Hyperbolic Functions

These functions are used to compute the hyperbolic sine, cosine,
and tangent for real values.

FUNCTION REFERENCE BRIEF DESCRIPTION

cosh sinh (3M) Return hyperbolic cosine.
sinh sinh (3M) Return hyperbolic sine.
tanh sinh (3M) Return hyperbolic tangent.

Miscellaneous Functions

These functions cover a wide variety of operations, such as
natural logarithm, exponential, and absolute value. In addition,
several are provided to truncate the integer portion of double
precision numbers.

FUNCTION REFERENCE BRIEF DESCRIPTION
ceil floor(3M) Returns the smallest
integer not less than a

given value.

exp exp(3M) Returns the exponential
function of a given value.

4-8



fabs

floor

fmod

gamma

hypot

log

log10

matherr

pow

sqrt

THE OBJECT AND MATH LIBRARIES

floor (3M)

floor(3M)

floor(3M)

gamma (3M)

hypot(3M)

exp(3M)

exp(3M)

matherr(3M)

exp(3M)

exp(3M)

Returns the absolute value
of a given value.

Returns the largest integer
not greater than a given
value.

Returns the remainder
produced by the division of
two given values.

Returns the natural log of
the absolute value of the
result of applying the
gamma function to a
given value.

Returns the square root
of the sum of the squares
of two numbers.

Returns the natural
logarithm of a given
value.

Returns the logarithm base
ten of a given value.

Error-handling function.
Returns the result of a
given value raised to

another given value.

Returns the square root
of a given value.



Chapter 5

COMPILER AND C LANGUAGE

USE OF THE COMPILER .......... ... ... iiiiiiiininnnn,

COMPILER OPTIONS



Chapter 5
COMPILER AND C LANGUAGE

This chapter describes the UNIX System’s C compiler, ce, and
the C programming language that the compiler translates. The
compiler is part of the UNIX System Software Generation
System (SGS).

The SGS is a package of tools used to create and test programs
for UNIX Systems. These tools allow high-level program
coding and source-level testing of code. The C language is
implemented for high-level programming; it contains many
control and structuring facilities that greatly simplify the task
of algorithm construction. Within the SGS, a C compiler
converts C programs into assembly language programs that are
ultimately translated into object files by the assembler, as.
The link editor, ld, collects and merges object files into
executable load modules. Each of these tools preserves all
symbolic information necessary for meaningful symbolic testing
at C-language source level. In addition, a utility package aids
in testing and debugging.

USE OF THE COMPILER

The main command of the SGS is ee; it operates much like the
UNIX system ce command. To use the compiler, first create a
file (typieally by using the UNIX system text editor) containing
C source code. The name of the file created must have a special
format; the last two characters of the file name must be .c as
in filel.c.

Next, enter the SGS command



COMPILER AND C LANGUAGE

cc options file.c

to invoke the compiler on the C source file file.c with the
appropriate options selected. The compilation process creates
an absolute binary file named a.out that reflects the contents
of file.c and any referenced library routines. The resulting
binary file, a.out, can then be executed on the target system.

Options can control the steps in the compilation process. When
none of the controlling options are used, and only one file is
named, cc automatically calls the assembler, as, and the link
editor, 1d, thus resulting in an executable file, named a.out. If
more than one file is named in a command,

cc filel.c file2.c file.c

then the output will be placed on files filel.o, file2.0, and file3.o.
These files can then be linked and executed through the 1d
command.

The ce compiler also accepts input file names with the last two
characters .s. The .s signifies a source file in assembly
language. The cc compiler passes this type of file directly to
as, which assembles the file and places the output on a file of
the same name with .o substituted for .s.

Cec is based on a portable C compiler and translates C source
files into assembly code. Whenever the command ce is used,
the standard C preprocessor (which resides on the file /lib/epp)
is called. The preprocessor performs file inclusion and macro
substitution. The preprocessor is always invoked by eec and
need not be called directly by the programmer. Then, unless
the appropriate flags are set, ec calls the assembler and the
link editor to produce an executable file.

5-2



COMPILER AND C LANGUAGE

COMPILER OPTIONS

All options recognized by the c¢c command are listed below:

Option Argument Description

—# none Display without executing each
command that cc generates.

-c none Suppress the link-editing phase
of compilation and force an
object file to be produced
even if only one file is
compiled.

-p none Arrange for the compiler to produce
code which counts the number
of times each routine is called;
also, if link editing takes
place, replace the standard
startoff routine by one which
automatically calls monitor(3C)
at the start and arrange
to write out a mon.out file
at normal termination of
execution of the object program.
An execution profile can be
generated by use of prof(1).

—f none Link the object program with the
floating-point interpreter
for systems without
hardware floating-point.

-g none Cause the compiler to generate

additional information needed
for the use of sdb(1).

5-3



COMPILER AND C LANGUAGE

-t

5-4

none

none

none

none

string

[p012al]Find only the

This flag and -o takes
(described below) are mutually
exclusive. -g takes precedence
when both are specified.

Invoke an object-code
optimizer. This flag and -g
(described above) are mutually
exclusive. -g takes precedence
when both are specified.

Compile the named C program
and leave the assembler
language output on corre-
sponding files suffixed .s.

Run only cpp(1)

on the named C programs
and send the result to
standard output.

Run only ¢pp(1) on

the named C programs,

and leave the result on
corresponding files suffixed .i.

Construct pathnames

for subsitute compiler,
assembler and link editor
passes by concatenating
string with the

suffixes cpp, cl, ¢2, as

and ld. If string is

empty it is taken to be /lib/o.

designated compiler,



COMPILER AND C LANGUAGE

assembler and link editor
passes in the file whose
names are constructed by

a —B option. In the absence
of a —B option, the string
is taken to be //lib//n -t
"" is equivalent to -tp012.

-W c,argl[,arg2...JHand off the argument(s) argi
to pass ¢, where ¢ is one of
[p0O12al), indicating preprocessor,
compiler first pass, compiler second
pass, optimizer, assembler, or link
editor, respectively.

-d none This option is no longer
allowed because of a conflict of
meaning. The —W option must be used
to specify precisely its destination.
To indicate the -dn option for the
VAX assembler use -Wa, -dn. To
indicate the —d option for the link
editor, use —W1,—d.

This part provides additional information for those options not
completely described above.

By using appropriate options, compilation can be terminated
early to produce one of several intermediate translations such
as relocatable object files (-¢ option), assembly source
expansions for C code (-S option), or the output of the
preprocessor (-P option). In general, the intermediate files
may be saved and later resubmitted to the ec command, with
other files or libraries included as necessary.

When compiling C source files, the most common practice is to
use the -¢ option to save relocatable files. Subsequent changes

5-5



COMPILER AND C LANGUAGE

to one file do not then require that the others be recompiled. A
separate call to cc without the -¢ option then creates the linked
executable a.out file. A relocatable object file created under
the -¢ option is named by adding a .o suffix to the source file
name.

The -W option provides the mechanism to specify options for
each step that is normally invoked from the ee command line.
These steps are preprocessing, the first pass of the compiler,
the second pass of the compiler, optimization, assembly, and
link editing. At this time, only assembler and link editor
options can be used with the -W option.

When the -P option is used, the compilation process stops after
only preprocessing, with output left on file.i. This file will be
unsuitable for subsequent processing by cc.

The -O option decreases the size and increases the execution
speed of programs by moving, merging, and deleting code.

The -g option produces information for a symbolic debugger.
The SGS currently supports the SDB symbolic debugger.

5-6



Chapter 6

A C PROGRAM CHECKER—“lint”

PAGE

GENERAL ... ittt ittt ietieneennanneranns 6-1
USABE .ottt ittt ittt i ittt e e 6-1
TYPES OF MESSAGES ...... .00t itiiiiiiiiietreannnnanns 6-3
Unused Variables and Funections ...................... 6-4
Set/Used Information................. ... oo, 6-5

Flow of Control ........ R R RREE 6-6
Function Values. ... ...... ... i iinnnnnns 6-7
TypeChecking.... ...ttt 6-8
Type Casts ... .cvi it iin ittt tienneernaneeronnaneas 6-10
Nonportable Character Use ................. . oua... 6-10
Strange Constructions . ..........c.iiiiiieennnnnnnnn 6-11

Old Syntax ... .ottt ittt tineee i tanneeennnan 6-13
Pointer Alignment. .......c..uoviiirenunneeienonnereannns 6-14

Multiple Uses and Side Effects ....................... 6-14



Chapter 6
A C PROGRAM CHECKER—“lint”

GENERAL

The lint program examines C language source programs
detecting a number of bugs and obscurities. It enforces the
type rules of C language more strictly than the C compiler. It
may also be used to enforce a number of portability restrictions
involved in moving programs between different machines
and/or operating systems. Another option detects a number of
wasteful or error prone constructions which nevertheless are
legal. The lint program accepts multiple input files and library
specifications and checks them for consistency.

Usage

The lint command has the form:
lint [options] files ... library-descriptors ...

where options are optional flags to control lint checking and
messages; files are the files to be checked which end with .c or
In; and library-descriptors are the names of libraries to be used
in checking the program.

The options that are currently supported by the lint command
are:

—a Suppress messages about assignments of long
values to variables that are not long.

—b Suppress messages about break statements that
cannot be reached.



A C PROGRAM CHECKER—“lint”

—C

|

Only check for intra-file bugs; leave external
information in files suffixed with .In.

Do not apply heuristics (which attempt to detect
bugs, improve style, and reduce waste).

Do not check for compatibility with either the
standard or the portable lint library.

Create a lint library from input files named lib-
Iname.ln.

Attempt to check portability to other dialects of C
language.

Suppress messages about function and external
variables used and not defined or defined and not
used.

Suppress messages about unused arguments in
functions.

Do not report variables referred to by external
declarations but never used.

When more than one option is used, they should be combined
into a single argument, such as —ab or —xha.

The names of files that contain C language programs should
end with the suffix .¢ which is mandatory for lint and the C

compiler.

The lint program accepts certain arguments, such as:

-ly

These arguments specify libraries that contain functions used
in the C language program. The source code is tested for

6-2



A C PROGRAM CHECKER—“lint”

compatibility with these libraries. This is done by accessing
library description files whose names are constructed from the
library arguments. These files all begin with the comment:

/* LINTLIBRARY */

which is followed by a series of dummy function definitions.
The critical parts of these definitions are the declaration of the
function return type, whether the dummy function returns a
value, and the number and types of arguments to the function.
The VARARGS and ARGSUSED comments can be used to
specify features of the library functions.

The lint library files are processed almost exactly like ordinary
source files. The only difference is that functions which are
defined on a library file but are not used on a source file do not
result in messages. The lint program does not simulate a full
library search algorithm and will print messages if the source
files contain a redefinition of a library routine.

By default, lint checks the programs it is given against a
standard library file which contains descriptions of the
programs which are normally loaded when a C language
program is run. When the —p option is used, another file is
checked containing descriptions of the standard library routines
which are expected to be portable across various machines. The
—n option can be used to suppress all library checking.

TYPES OF MESSAGES

The following paragraphs describe the major categories of
messages printed by lint.



A C PROGRAM CHECKER—*“lint”

Unused Variables and Functions

As sets of programs evolve and develop, previously used
variables and arguments to functions may become unused. It is
not uncommon for external variables or even entire functions to
become unnecessary and yet not be removed from the source.
These types of errors rarely cause working programs to fail, but
are a source of inefficiency and make programs harder to
understand and change. Also, information about such unused
variables and functions can occasionally serve to discover bugs.

The lint program prints messages about variables and
functions which are defined but not otherwise mentioned. An
exception is variables which are declared through explicit
extern statements but are never referenced; thus the
statement

extern double sin();

will evoke no comment if sin is never used. Note that this
agrees with the semantics of the C compiler. In some cases,
these unused external declarations might be of some interest
and can be discovered by using the —x option with the lint
command.

Certain styles of programming require many functions to be
written with similar interfaces; frequently, some of the
arguments may be unused in many of the calls. The —v option
is available to suppress the printing of messages about unused
arguments. When —v is in effect, no messages are produced
about unused arguments except for those arguments which are
unused and also declared as register arguments. This can be
considered an active (and preventable) waste of the register
resources of the machine.

Messages about unused arguments can be suppressed for one
function by adding the comment:

6-4



A C PROGRAM CHECKER—“lint”

/* ARGSUSED */

to the program before the function. This has the effect of the
—v option for only one function. Also, the comment:

/* VARARGS */

can be used to suppress messages about variable number of
arguments in calls to a function. The comment should be added
before the function definition. In some cases, it is desirable to
check the first several arguments and leave the later arguments
unchecked. This can be done with a digit giving the number of
arguments which should be checked. For example:

/* VARARGS2 */
will cause only the first two arguments to be checked.

There is one case where information about unused or undefined
variables is more distracting than helpful. This is when lint is
applied to some but not all files out of a collection which are to
be loaded together. In this case, many of the functions and
variables defined may not be used. Conversely, many functions
and variables defined elsewhere may be used. The —u option
may be used to suppress the spurious messages which might
otherwise appear.

Set/Used Information

The lint program attempts to detect cases where a variable is
used before it is set. The lint program detects local variables
(automatic and register storage classes) whose first use appears
physically earlier in the input file than the first assignment to
the variable. It assumes that taking the address of a variable
constitutes a “use”, since the actual use may occur at any later
time, in a data dependent fashion.

6-5



A C PROGRAM CHECKER—“lint”

The restriction to the physical appearance of variables in the
file makes the algorithm very simple and quick to implement
since the true flow of control need not be discovered. It does
mean that lint can print messages about some programs which
are legal, but these programs would probably be considered bad
on stylistic grounds. Because static and external variables are
initialized to zero, no meaningful information can be discovered
about their uses. The lint program does deal with initialized
automatic variables.

The set/used information also permits recognition of those local
variables which are set and never used. These form a frequent
source of inefficiencies and may also be symptomatic of bugs.

Flow of Control

The lint program attempts to detect unreachable portions of
the programs which it processes. It will print messages about
unlabeled statements immediately following goto, break,
continue, or return statements. An attempt is made to
detect loops which ecan never be left at the bottom and to
recognize the special cases while(1) and for(;) as infinite
loops. The lint program also prints messages about loops
which cannot be entered at the top. Some valid programs may
have such loops which are considered to be bad style at best
and bugs at worst.

The lint program has no way of detecting functions which are
called and never returned. Thus, a call to exit may cause an
unreachable code which lint does not detect. The most serious
effects of this are in the determination of returned function
values (see “Function Values”). If a particular place in the
program cannot be reached but it is not apparent to lint, the
comment

/* NOTREACHED */

6-6



A C PROGRAM CHECKER—“lint”

can be added at the appropriate place. This comment will
inform lint that a portion of the program cannot be reached.

The lint program will not print a message about unreachable
break statements. Programs generated by yace and
especially lex may have hundreds of unreachable break
statements. The —O option in the C compiler will often
eliminate the resulting object code inefficiency. Thus, these
unreached statements are of little importance. There is
typically nothing the user can do about them, and the resulting
messages would clutter up the lint output. If these messages
are desired, lint can be invoked with the —b option.

Function Values

Sometimes functions return values that are never used.
Sometimes programs incorrectly use function ‘values” that
have never been returned. The lint program addresses this
problem in a number of ways.

Locally, within a function definition, the appearance of both
return( expr );

and
return ;

statements is cause for alarm; the lint program will give the
message

function name contains return(e) and return

The most serious difficulty with this is detecting when a
function return is implied by flow of control reaching the end
of the function. This can be seen with a simple example:

6-7



A C PROGRAM CHECKER—“lint”

f(a){
if (a) return (3 );
f();

Notice that, if a tests false, f will call ¢ and then return with
no defined return value; this will trigger a message from lint.
If g, like exit, never returns, the message will still be produced
when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered
by this feature.

On a global scale, lint detects cases where a funection returns a
value that is sometimes or never used. When the value is never
used, it may constitute an inefficiency in the funection
definition. When the value is sometimes unused, it may
represent bad style (e.g., not testing for error conditions).

The dual problem, using a function value when the function
does not return one, is also detected. This is a serious problem.

Type Checking

The lint program enforces the type checking rules of C
language more strictly than the compilers do. The additional
checking is in four major areas:

e Across certain binary operators and implied assignments
o At the structure selection operators
o Between the definition and uses of functions

e In the use of enumerations.

6-8



A C PROGRAM CHECKER—“lint”

There are a number of operators which have an implied
balancing between types of the operands. The assignment,
conditional ( ?: ), and relational operators have this property.
The argument of a return statement and expressions used in
initialization suffer similar conversions. In these operations,
char, short, int, long, unsigned, float, and double types
may be freely intermixed. The types of pointers must agree
exactly except that arrays of 2’s can, of course, be intermixed
with pointers to x’s.

The type checking rules also require that, in structure
references, the left operand of the —> be a pointer to structure,
the left operand of the . be a structure, and the right operand
of these operators be a member of the structure implied by the
left operand. Similar checking is done for references to unions.

Strict rules apply to function argument and return value
matching. The types float and double may be freely matched,
as may the types char, short, int, and unsigned. Also,
pointers can be matched with the associated arrays. Aside
from this, all actual arguments must agree in type with their
declared counterparts.

With enumerations, checks are made that enumeration
variables or members are not mixed with other types or other
enumerations and that the only operations applied are =,
initialization, ==, !=, and function arguments and return
values.

If it is desired to turn off strict type checking for an expression,
the comment

/* NOSTRICT */

should be added to the program immediately before the
expression. This comment will prevent strict type checking for
only the next line in the program.

6-9



A C PROGRAM CHECKER—*“lint”

Type Casts

The type cast feature in C language was introduced largely as
an aid to producing more portable programs. Consider the
assignment

p=1;

where p is a character pointer. The lint program will print a
message as a result of detecting this. Consider the assignment

p = (char *)1;

in which a cast has been used to convert the integer to a
character pointer. The programmer obviously had a strong
motivation for doing this and has clearly signaled his
intentions. It seems harsh for lint to continue to print
messages about this. On the other hand, if this code is moved
to another machine, such code should be looked at carefully.
The —c¢ flag controls the printing of comments about casts.
When —c is in effect, casts are treated as though they were
assignments subject to messages; otherwise, all legal casts are
passed without comment, no matter how strange the type
mixing seems to be.

Nonportable Character Use

On some systems, characters are signed quantities with a range
from -128 to 127. On other C language implementations,
characters take on only positive values. Thus, lint will print
messages about certain comparisons and assignments as being
illegal or nonportable. For example, the fragment

char c;

i#( (c = getchar()) <0 ) ...

6-10



A C PROGRAM CHECKER—“lint”

will work on one machine but will fail on machines where
characters always take on positive values. The real solution is
to declare ¢ as an integer since getchar is actually returning
integer values. In any case, lint will print the message
“nonportable character comparison”.

A similar issue arises with bit fields. When assignments of
constant values are made to bit fields, the field may be too
small to hold the value. This is especially true because on some
machines bit fields are considered as signed quantities. While
it may seem logical to consider that a two-bit field declared of
type int cannot hold the value 3, the problem disappears if the
bit field is declared to have type unsigned.

Strange Constructions

Several perfectly legal, but somewhat strange, constructions are
detected by lint. The messages hopefully encourage better code
quality, clearer style, and may even point out bugs. The —h
option is used to supress these checks. For example, in the
statement

*p++ .

b

the * does nothing. This provokes the message ‘“null effect”
from lint. The following program fragment:

unsigned x ;
if(x<0)...

results in a test that will never succeed. Similarly, the test
if(x>0)...
is equivalent to

6-11



A C PROGRAM CHECKER—“lint”

if(x!=0)

which may not be the intended action. The lint program will
print the message “degenerate unsigned comparison” in these
cases. If a program contains something similar to

if(11=0)...

lint will print the message ‘“constant in conditional context”
since the comparison of 1 with 0 gives a constant result.

Another construction detected by lint involves operator
precedence. Bugs which arise from misunderstandings about
the precedence of operators can be accentuated by spacing ind
formatting, making such bugs extremely hard to find. For
example, the statement

if( x&077 ==10) ...
or
x<<2 + 40

probably do not do what was intended. The best solution is to
parenthesize such expressions, and lint encourages this by an
appropriate message.

Finally, when the —h option has not been used, lint prints
messages about variables which are redeclared in inner blocks
in a way that conflicts with their use in outer blocks. This is
legal but is considered to be bad style, usually unnecessary,
and frequently a bug.

6-12



A C PROGRAM CHECKER—“lint”

Old Syntax
Several forms of older syntax are now illegal. These fall into

two classes, assignment operators and initialization.

The older forms of assignment operators (e.g., =+, =—, ..)
could cause ambiguous expressions, such as:

a=-1;

which could be taken as either
a=-1;

or
a=-1;

The situation is especially perplexing if this kind of ambiguity
arises as the result of a macro substitution. The newer and
preferred operators (eg., +=, —=, ..) have no such
ambiguities. To encourage the abandonment of the older forms,
lint prints messages about these old-fashioned operators.

A similar issue arises with initialization. The older language
allowed

intx1;

to initialize x to 1. This also caused syntactic difficulties. For
example, the initialization

intx(-1);

6-13



A C PROGRAM CHECKER—“lint”

looks somewhat like the beginning of a function definition:

intx(y){...

and the compiler must read past x in order to determine the
correct meaning. Again, the problem is even more perplexing
when the initializer involves a macro. The current syntax
places an equals sign between the variable and the initializer:

intx=-1;

This is free of any possible syntactic ambiguity.

Pointer Alignment

Certain pointer assignments may be reasonable on some
machines and illegal on others due entirely to alignment
restrictions. The lint program tries to detect cases where
pointers are assigned to other pointers and such alignment
problems might arise. The message “possible pointer alignment
problem” results from this situation.

Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate
subexpressions may be highly machine dependent. For
example, on machines (like the PDP-11) in which the stack runs
backwards, function arguments will probably be best evaluated
from right to left. On machines with a stack running forward,
left to right seems most attractive. Function calls embedded as
arguments of other functions may or may not be treated
similarly to ordinary arguments. Similar issues arise with
other operators which have side effects, such as the assignment
operators and the increment and decrement operators.

In order that the efficiency of C language on a particular
machine not be unduly compromised, the C language leaves the

6-14



A C PROGRAM CHECKER—“lint”

order of evaluation of complicated expressions up to the local
compiler. In fact, the various C compilers have considerable
differences in the order in which they will evaluate complicated
expressions. In particular, if any variable is changed by a side
effect and also used elsewhere in the same expression, the
result is explicitly undefined.

The lint program checks for the important special case where a
simple scalar variable is affected. For example, the statement

afi] = b[i++];
will cause lint to print the message
warning: i evaluation order undefined

in order to call attention to this condition.

6-15



Chapter 7

SYMBOLIC DEBUGGING PROGRAM—“sdb”

PAGE
GENERAL .. ittt it ittt ttnantsnenanannans 7-1
USAGE ... i i i e e 7-1
Printing a Stack Trace ............ ... ... iiiiiinnn.. 7-3
Examining Variables ............i0itiiiiitennneneennn 7-3
SOURCE FILE DISPLAY AND MANIPULATION ............ 7-8
Displaying the Source File ..................... .. ..., 7-8
Changing the Current Source File or
Function ....... ..t ittt 7-9
Changing the Current Line in the Source
File. . i i i i e e et i e e 7-9
A CONTROLLED ENVIRONMENT FOR PROGRAM
TESTING ...ttt ettt aeetenanaeanaaaroaneannaeens 7-10
Setting and Deleting Breakpoints ..................... 7-11
Running the Program . ............. .. ..o, 7-12
Calling Funetions ...........coiiitiiiiereenneenennnn 7-14
MACHINE LANGUAGE DEBUGGING .............c0vnvnn. 7-14
Displaying Machine Language Statements ............. 7-15
Manipulating Registers .. ..., 7-16

OTHER COMMANDS . . ... ittt iiaenneanen 7-16



Chapter 7

SYMBOLIC DEBUGGING
PROGRAM—“sdb”

GENERAL

This chapter describes the symbolic debugger sdb(l) as
implemented for C language programs on the UNIX operating
system. The sdb program is useful both for examining “core
images” of aborted programs and for providing an environment
in which execution of a program can be monitored and
controlled.

The sdb program allows interaction with a debugged program
at the source language level. When debugging a core image
from an aborted program, sdb reports which line in the source
program caused the error and allows all variables to be
accessed symbolically and displayed in the correct format.

Breakpoints may be placed at selected statements or the
program may be single stepped on a line-by-line basis. To
facilitate specification of lines in the program without a source
listing, sdb provides a mechanism for examining the source
text. Procedures may be called directly from the debugger.
This feature is useful both for testing individual procedures and
for calling user-provided routines which provided formatted
printout of structured data.

USAGE

In order to use the full capabilities of sdb, it is necessary to
compile the source program with the —g option. This causes
the compiler to generate additional information about the
variables and statements of the compiled program. When the
—g option has been specified, sdb can be used to obtain a trace

7-1



sdb

of the called functions at the time of the abort and interactively
display the values of variables.

A typical sequence of shell commands for debugging a core
image is

$ cc -g prgm.c -0 prgm
$ prgm

Bus error - core dumped
$ sdb prgm

main:25: x[i] = 0;

*

The program prgm was compiled with the —g option and then
executed. An error occurred which caused a core dump. The
sdb program is then invoked to examine the core dump to
determine the cause of the error. It reports that the bus error
occurred in function main at line 25 (line numbers are always
relative to the beginning of the file) and outputs the source text
of the offending line. The sdb program then prompts the user
with an * indicating that it awaits a command.

It is useful to know that sdb has a notion of current function
and current line. In this example, they are initially set to main
and “25”, respectively.

In the above example, sdb was called with one argument,
prgm. In general, it takes three arguments on the command
line. The first is the name of the executable file which is to be
debugged; it defaults to a.out when not specified. The second is
the name of the core file, defaulting to core; and the third is
the name of the directory containing the source of the program
being debugged. The sdb program currently requires all source
to reside in a single directory. The default is the working
directory. In the example, the second and third arguments
defaulted to the correct values, so only the first was specified.

7-2



sdb

It is possible that the error occurred in a function which was
not compiled with the —g option. In this case, sdb prints the
function name and the address at which the error occurred.
The current line and function are set to the first executable line
in main. The sdb program will print an error message if main
was not compiled with the —g option, but debugging can
continue for those routines compiled with the —g option.
Figure 7-1 shows a typical example of sdb usage.

Printing a Stack Trace

It is often useful to obtain a listing of the function calls which
led to the error. This is obtained with the t command. For
example:

*
t
sub(x=2,y=8) [prgm.c:25]
inter(i=16012)  [prgm.c:96]
main(arge=1,argv=0xT{fff{54, envp=0xT{ffff5¢)[prgm.c:15]

This indicates that the error occurred within the function sub
at line 25 in file prgm.c. The sub function was called with the
arguments x=2 and y=3 from inter at line 96. The inter
function was called from main at line 15. The main function is
always called by the shell with three arguments often referred
to as argc, argv, and envp. Note that argv and envp are
pointers, so their values are printed in hexadecimal.

Examining Variables

The sdb program can be used to display variables in the
stopped program. Variables are displayed by typing their name
followed by a slash, so

*errflag/

7-3



sdb

causes sdb to display the value of variable errflag. Unless
otherwise specified, variables are assumed to be either local to
or accessible from the current function. To specify a different
function, use the form

*sub:i/

to display variable ¢ in function sub. F77 users can specify a
common block variable in the same manner.

The sdb program supports a limited form of pattern matching
for variable and function names. The symbol * is used to
match any sequence of characters of a variable name and ? to
match any single character. Consider the following commands

*x*/
*sub:y?/
**/

The first prints the values of all variables beginning with zx, the
second prints the values of all two letter variables in function
sub beginning with y, and the last prints all variables. In the
first and last examples, only variables accessible from the
current function are printed. The command

**.*/

displays the variables for each function on the call stack.

The sdb program normally displays the variable in a format
determined by its type as declared in the source program. To
request a different format, a specifier is placed after the slash.
The specifier consists of an optional length specification
followed by the format. The length specifiers are:

7-4



sdb

b One byte
h Two bytes (half word)
1 Four bytes (long word).

The lengths are effective only with the formats d, o, x, and u.
If no length is specified, the word length of the host machine is
used. A numeric length specifier may be used for the s or a
commands. These commands normally print characters until
either a null is reached or 128 characters are printed. The
number specifies how many characters should be printed.

There are a number of format specifiers available:

[ Character.

d Decimal.

u Decimal unsigned.

o Octal.

X Hexadecimal.

f 32-bit single-precision floating point.

g 64-bit double-precision floating point.

s Assume variable is a string pointer and print

characters starting at the address pointed to by
the variable until a null is reached.

a Print characters starting at the variable’s address
until a null is reached.

o) Pointer to function.



sdb

i Interpret as a machine-language instruction.
For example, the variable 7 can be displayed with

*i/x
which prints out the value of 7 in hexadecimal.

The sdb program also knows about struectures, arrays, and
pointers so that all of the following commands work.

*array[2][3]/
*sym.id/
*psym->usage/
*xsym[20].p->usage/

The only restriction is that array subsecripts must be numbers.
Depending on your machine, accessing arrays may be limited to
1-dimensional arrays. Note that as a special case:

*psym->/d
displays the location pointed to by psym in decimal.

Core locations can also be displayed by specifying their absolute
addresses. The command

*1024/

displays location 1024 in decimal. As in C language, numbers
may also be specified in octal or hexadecimal so the above
command is equivalent to both

7-6



sdb

*02000/
and
*0x400/
It is possible to mix numbers and variables so that
*1000.x/
refers to an element of a structure starting at address 1000, and
*1000->x/

refers to an element of a structure whose address is at 1000.
For commands of the type *1000.x/ and *1000->x/, the sdb
program uses the structure template of the last structure
referenced.

The address of a variable is printed with the =, so

*i_

displays the address of i. Another feature whose usefulness
will become apparent later is the command

*/

which redisplays the last variable typed.



sdb

SOURCE FILE DISPLAY AND
MANIPULATION

The sdb program has been designed to make it easy to debug a
program without constant reference to a current source listing.
Facilities are provided which perform context searches within
the source files of the program being debugged and display
selected portions of the source files. The commands are similar
to those of the UNIX system text editor ed(1). Like the editor,
sdb has a notion of current file and line within the file. The
sdb program also knows how the lines of a file are partitioned
into functions, so it also has a notion of current function. As
noted in other parts of this document, the current function is
used by a number of sdb commands.

Displaying the Source File

Four commands exist for displaying lines in the source file.
They are .useful for perusing the source program and for
determining the context of the current line. The commands
are:

P Prints the current line.

w Window; prints a window of ten lines around
the current line.

z Prints ten lines starting at the current line.
Advances the current line by ten.

control-d Scrolls; prints the next ten lines and advances
the current line by ten. This command is used
to cleanly display long segments of the
program.

When a line from a file is printed, it is preceded by its line
number. This not only gives an indication of its relative
position in the file but is also used as input by some sdb
commands.

7-8



sdb

Changing the Current Source File or Function

The e command is used to change the current source file.
Either of the forms

*e function
*e file.c

may be used. The first causes the file containing the named
function to become the current file, and the current line
becomes the first line of the function. The other form causes
the named file to become current. In this case, the current line
is set to the first line of the named file. Finally, an e command
with no argument causes the current function and file named to
be printed.

Changing the Current Line in the Source File

The z and control-d commands have a side effect of changing
the current line in the source file. The following paragraphs
describe other commands that change the current line.

There are two commands for searching for instances of regular
expressions in source files. They are

*/regular expression/
*?regular expression?

The first command searches forward through the file for a line
containing a string that matches the regular expression and the
second searches backwards. The trailing / and ? may be
omitted from these commands. Regular expression matching is
identical to that of ed(1).

The + and — commands may be used to move the current line
forwards or backwards by a specified number of lines. Typing
a new-line advances the current line by one, and typing a

7-9



sdb

number causes that line to become the current line in the file.
These commands may be combined with the display commands
so that

*+15z

advances the current line by 15 and then prints ten lines.

A CONTROLLED ENVIRONMENT FOR
PROGRAM TESTING

One very useful feature of sdb is breakpoint debugging. After
entering sdb, certain lines in the source program may be
specified to be breakpoints. The program is then started with
an sdb command. Execution of the program proceeds as
normal until it is about to execute one of the lines at which a
breakpoint has been set. The program stops and sdb reports
the breakpoint where the program stopped. Now, sdb
commands may be used to display the trace of function ecalls
and the values of variables. If the user is satisfied the program
is working correctly to this point, some breakpoints can be
deleted and others set; then program execution may be
continued from the point where it stopped.

A useful alternative to setting breakpoints is single stepping.
The sdb program can be requested to execute the next line of
the program and then stop. This feature is especially useful for
testing new programs, so they can be verified on a statement-
by-statement basis. If an attempt is made to single step
through a function which has not been compiled with the —g
option, execution proceeds until a statement in a function
compiled with the —g option is reached. It is also possible to
have the program execute one machine level instruction at a
time. This is particularly useful when the program has not been
compiled with the —g option.



sdb

Setting and Deleting Breakpoints

Breakpoints can be set at any line in a function which contains
executable code. The command format is:

*12b
*proc:12b
*proc:b
*b

The first form sets a breakpoint at line 12 in the current file.
The line numbers are relative to the beginning of the file as
printed by the source file display commands. The second form
sets a breakpoint at line 12 of function proc, and the third sets
a breakpoint at the first line of proc. The last sets a
breakpoint at the current line.

Breakpoints are deleted similarly with the commands

*12d
*proc:12d
*proc:d

In addition, if the command d is given alone, the breakpoints
are deleted interactively. Each breakpoint location is printed,
and a line is read from the user. If the line begins with a y or
d, the breakpoint is deleted.

A list of the current breakpoints is printed in response to a B
command, and the D command deletes all breakpoints. It is
sometimes desirable to have sdb automatically perform a
sequence of commands at a breakpoint and then have execution
continue. This is achieved with another form of the b
command.

*12b t;x/

7-11



sdb

causes both a trace back and the value of x to be printed each
time execution gets to line 12. The a command is a variation of
the above command. There are two forms:

*proc:a
*proc:12a

The first prints the function name and its arguments each time
it is called, and the second prints the source line each time it is
about to be executed. For both forms of the a command,
execution continues after the function name or source line is
printed.

Running the Program

The r command is used to begin program execution. It restarts
the program as if it were invoked from the shell. The
command

*r args

runs the program with the given arguments as if they had been
typed on the shell command line. If no arguments are
specified, then the arguments from the last execution of the
program are used. To run a program with no arguments, use
the R command.

After the program is started, execution continues until a
breakpoint is encountered, a signal such as INTERRUPT or QUIT
occurs, or the program terminates. In all cases after an
appropriate message is printed, control returns to sdb.

The ¢ command may be used to continue execution of a stopped
program. A line number may be specified, as in:

7-12



sdb

*proc:12¢

This places a temporary breakpoint at the named line. The
breakpoint is deleted when the ¢ command finishes. There is
also a ¢ command which continues but passes the signal which
stopped the program back to the program. This is useful for
testing user-written signal handlers. Execution may be
continued at a specified line with the g command. For
example:

Mg

continues at line 17 of the current function. A use for this
command is to avoid executing a section of code which is known
to be bad. The user should not attempt to continue execution in
a function different than that of the breakpoint.

The s command is used to run the program for a single line. It
is useful for slowly executing the program to examine its
behavior in detail. An important alternative is the S command.
This command is like the s command but does not stop within
called functions. It is often used when one is confident that the
called function works correctly but is interested in testing the
calling routine.

The i command is used to run the program one machine level
instruction at a time while ignoring the signal which stopped
the program. Its uses are similar to the s command. There is
also an I command which causes the program to execute one
machine level instruction at a time, but also passes the signal
which stopped the program back to the program.

7-13



sdb

Calling Functions

It is possible to call any of the functions of the program from
sdb. This feature is useful both for testing individual funections
with different arguments and for calling a function which
prints structured data in a nice way. There are two ways to
call a function:

*proc(argl, arg2, ...)
*proc(argl, arg2, ...)/m

The first simply executes the function. The second is intended
for calling functions (it executes the function and prints the
value that it returns). The value is printed in decimal unless
some other format is specified by m. Arguments to functions
may be integer, character or string constants, or values of
variables which are accessible from the current function.

An unfortunate bug in the current implementation is that if a
function is called when the program is mot stopped at a
breakpoint (such as when a core image is being debugged) all
variables are initialized before the function is started. This
makes it impossible to use a function which formats data from
a dump.

MACHINE LANGUAGE DEBUGGING

The sdb program has facilities for examining programs at the
machine language level. It is possible to print the machine
language statements associated with a line in the source and to
place breakpoints at arbitrary addresses. The sdb program can
also be used to display or modify the contents of the machine
registers.

7-14



sdb

Displaying Machine Language Statements

To display the machine language statements associated with
line 25 in function main, use the command

*main:257

The ? command is identical to the / command except that it
displays from text space. The default format for printing text
space is the i format which interprets the machine language
instruction. The control-d command may be used to print the
next ten instruections.

Absolute addresses may be specified instead of line numbers by
appending a : to them so that

*0x1024:?

displays the contents of address 0x1024 in text space. Note that
the command

*0x10247

displays the instruction corresponding to line 02102, in the
current function. It is also possible to set or delete a
breakpoint by specifying its absolute address:

*0x1024:b

sets a breakpoint at address 021024.

7-15



sdb

Manipulating Registers

The x command prints the values of all the registers. Also,
individual registers may be named instead of variables by
appending a % to their name so that

*r3%

displays the value of register 3.

OTHER COMMANDS

To exit sdb, use the g command.

The ! command is identical to that in ed(1) and is used to have
the shell execute a command.

It is possible to change the values of variables when the
program is stopped at a breakpoint. This is done with the
command

*variablelvalue

which sets the variable to the given value. The value may be a
number, character constant, register, or the name of another
variable. If the variable is of type float or double, the value can
also be a floating-point constant.

7-16



sdb

$ cat testdiv2.c
main(arge, argv, envp)
char **argv, **envp; {
int i;
i =div2(-1);
printf(" -1/2 = %d\n", i);

}
div2(i) {
int j;
j=i>>1;
return(j);
}
$ cc -g testdiv2.c
$ a.out
-1/2 = -1
$ sdb
No core image # Warning message from sdb
*/"div2 # Search for function " div2"
7 div2(i) { # It starts on line 7
*z # Print the next few lines
7: div2(i) {
8 intj;
9: j=i>>1;
10:  return(j);
11: }
*div2:b # Place breakpoint at beginning of " div2"
div2:9 b  # Sdb echoes proc name and line number
*r # Run the function
a.out # Sdb echoes command line executed
Breakpoint at # Executions stops just before line 9
div2:9: j =1i>>1;
*t # Print trace of subroutine calls
div2(i=-1) [testdiv2.c:9]
main(arge=1,argv=0x7fffff50,envp=0x7{{{ff58)[testdiv2.c:4]

*1/ # Print i

-1

*s # Single step

div2:10: return(j); # Execution stops before line 10
*3/ # Print j

-1

7-17



Chapter 8

UNIX SYSTEM ASSEMBLER GUIDE FOR

UNIX PC

PAGE
INTRODUCTION .. ... ittt tittteieininnnnnaannnnas 8-1
WarningS ... ittt ittt iieetteerneeaerueaeesnanoenas 8-1
Comparison Instructions . ............... ... it 8-1
Overloading of Opcodes . . . ....oiiiiieriieneniannennes 8-2
USEOf THE ASSEMBLER .........0iiiiiiininenneannnnnns 8-3
GENERAL SYNTAX RULES. . ...ttt iiiiiiiiieiiennannnns 8-4
Format of Assembly Language Line ................... 8-4
Comments . ...ttt nniereneatsesenseronansnnsas 8-5
Identifiers .........cciiiiiiiiieeeienenncnseansannas 8-5
Register Identifiers ...........c.iiiitiiiiiianiienn, 8-6
Constants .....coviiierinieroronceesosanansaneasssas 8-6
Numerical Constants ...........ooiiiiiiiniiennnnnnn, 8-6
Character Constants ..........ccivierivnerecnnnncnns 8-7
Other SyntacticDetails .. ........ ..., 8-8

SEGMENTS, LOCATION COUNTERS, AND
LABELS ... ittt iitieetreressenessonensosenannsnns 8-8
Segments .. ... ..ttt i e i e 8-8
Location Counters and Labels ........................ 8-9
TY PE S . ittt ittt tsetesesesasesoaanansas 8-10
EXPRESSIONS . ... i iiiiiiieiiatetnreennnns e 8-10
PSEUDO-OPERATIONS ... .. tiiitttitinntrtnnnenrosnnnnsss 8-12
Data Initialization Operations ............ .o v 8-12
Symbol Counter Control Operations ................... 8-14
Location Counter Control Operations .................. 8-15
Symbolic Debugging Operations ...................... 8-15
Switch Table Operation.............ccoiiiiiinnnnnn. 8-18

SPAN-DEPENDENT OPTIMIZATION ..........cciuiitinnn, 8-20



Chapter 8

UNIX SYSTEM ASSEMBLER GUIDE
FOR UNIX PC

INTRODUCTION

This is a reference manual for MAS, the UNIX System
assembler for the Motorola 68010 [for historical reasons as(1)
and mas(1) are synonymous]. Programmers familiar with the
MC68010 should be able to program in MAS referring to this
manual, but this is not a manual for the processor itself.
Details about the effects of instructions, meaning of status
register bits, handling of interrupts, and many other issues are
not dealt with here. This manual, therefore, should be used in
conjunction with the Motorola publication, MC68010 16-Bit
Virtual Memory Microprocessor Manual.

Warnings

A few important warnings to the MAS user should be
emphasized at the outset. Though for the most part there is a
direct correspondence between MAS notation and the notation
used in the MC68010 User’s Manual, the following exceptions
could lead the unsuspecting user to write incorrect code.

Comparison Instructions

First, the order of the operands in compare instructions follows
one convention in the MC68010. Using the convention of the
MC68010 User’s Manual one might write

CMPW D5,D3 Is (D3-D5) less than or
equal to zero?
BLE IS_LESS Branch if yes.



UNIX SYSTEM ASSEMBLER FOR UNIX PC

Using the MAS convention one would write rather

cmp.w %d3, %d5 # Is (d3-d5) less than or
# equal to zero?
ble is_1less # Branch if yes.

MAS follows the convention used by other assemblers
supported in the UNIX System (both the 38B20S and the VAX
follow this convention). This convention makes for
straightforward reading of compare-and-branch instruction
sequences, but does nonetheless lead to the peculiarity that if a
compare instruction is replaced by a subtract instruction, the
effect on the condition codes will be entirely different. This
may be confusing to programmers who are used to thinking of
a comparison as a subtraction whose result is not stored. But
users of MAS who become accustomed to the convention will
find that both the compare and subtract notations make sense
in their respective contexts.

Overloading of Opcodes

Another issue that users must be aware of arises from the
MC68010’s use of several different instructions to do more or
less the same thing. For example, the MC68010 User’s Manual
lists the instructions SUB, SUBA, SUBI, and SUBQ, which all
have the effect of subtracting their source operand from their
destination operand. MAS provides the convenience of allowing
all these operations to be specified by a single assembly
instruction sub. On the basis of the operands given to the sub
instruction, the MAS assembler selects the appropriate
MC68010 operation code.

The danger created by this convenience is that it could leave
the misleading impression that all forms of the SUB operation
are semantically identical. In fact, they are not. The careful
reader of the MC68010 User’s Manual will notice that whereas
SUB, SUBI, and SUBQ all affect the condition codes in a
consistent way, SUBA does not affect the condition codes at all.

8-2



UNIX SYSTEM ASSEMBLER FOR UNIX PC

Consequently, the MAS user must be aware that when the
destination of a sub instruction is an address register (which
causes the sub to be mapped into the operation code for SUBA),
the condition codes will not be affected.

USE Of THE ASSEMBLER

The UNIX System command mas invokes the assembler and
has the following syntax:

mas [ —o output ] file
or
as [ —o output ] file

This causes the named file to be assembled. The output of the
assembly is left on the file output specified with the -o flag. If
no such specification is made, the output is left in the file
whose name is formed by removing the .s suffix, if there is one,
from the input file name and appending a .o suffix.

8-3



UNIX SYSTEM ASSEMBLER FOR UNIX PC

GENERAL SYNTAX RULES

Format of Assembly Language Line

Typical lines of MAS assembly code look like these:

# Clear a block of memory at location %a3

text 2
mov.w &const,%dl

loop: clr.1 (%a3)+

dbf %dl,loop # go back for const
# repetitions

init2: clr.l count; clr.l credit;
clr.1l debit;

These general points about the example should be noted:

8-4

An identifier occurring at the beginning of a line and
followed by a colon (:) is a label. One or more labels may
precede any assembly language instruction or pseudo-
operation. See also Location Counters and Labels which
follows.

A line of assembly code need not include an instruction. It
may consist of a comment alone (introduced by #), a label
alone (terminated by :), or it may be entirely blank.

It is good practice to use tabs to align assembly language
operations and their operands into columns, but this is not
a requirement of the assembler. An opcode may appear at
the beginning of the line, if desired, and spaces may
precede a label. A single blank or tab suffices to separate
an opcode from its operands. Additional blanks and tabs
are ignored by the assembler.



UNIX SYSTEM ASSEMBLER FOR UNIX PC

— It is permissible to write several instructions on one line by
separating them by semicolons. The semicolon is
syntactically equivalent to a newline. But a semicolon
inside a comment is ignored.

Comments

Comments are introduced by the character # and continue to
the end of the line. Comments may appear anywhere and are
completely disregarded by the assembler.

Identifiers

An identifier is a string of characters taken from the set a-z,
A-Z, _, -, %, and 0-9. The first character of an identifier must
be a letter (upper or lower case) or an underscore. Upper and
lower case letters are distinguished;

con35 and CON35
are two distinct identifiers.
There is no limit on the length of an identifier.

The value of an identifier is established by the set pseudo-
operation (see Symbol Counter Control Operations) or by using
it as a label (see Location Counters and Labels).

The character ~ has special significance to the assembler. A ~
used alone, as an identifier, means “the current location.” A ~
used as the first character in an identifier becomes a “.” in the
symbol table, allowing symbols such as .eos and .0fake to make
it into the symbol table, as required by the Common Object File
Format.

8-5



UNIX SYSTEM ASSEMBLER FOR UNIX PC

Register Identifiers

A register identifier is an identifier preceded by the character
%, and represents one of the MC68010 processor’s registers.
The predefined resister identifiers are:

%d0 %d4 %a0 %ad %cc %usp
%d1 %d5 %al1 $ab5 %pc %fp
%d2 %d6 %a2 %a6 %sp
%d3 %d7 %a3 %al %sr

Note: The identifiers %a7 and %sp represent one and
the same machine register. Likewise, % a6 and %fp are
equivalent. Use of both %a7 and %sp, or % a6 and %f{p,
in the same program may result in confusion.

Constants

MAS deals only with integer constants. They may be entered
in decimal, octal, or hexadecimal, or they may be entered as
character constants. Internally, MAS treats all constants as
32-bit binary two’s complement quantities.

Numerical Constants

A decimal constant is a string of digits beginning with a non-
zero digit.

An octal constant is a string of digits beginning with zero.

A hexadecimal constant consists of the characters 0x or 0X
followed by a string of characters from the set 0-9, a-f, and A-
F. In hexadecimal constants, upper and lower case letters are
not distinguished.



UNIX SYSTEM ASSEMBLER FOR UNIX PC

Examples:

set

mov.

set

mov.

const,35
&035,%d1
const,0x35
&0xff,%dl

Character Constants

#H oW W %

Decimal 35

Octal 35 (decimal 29)
Hex 35 (decimal 53)
Hex f£f (decimal 255)

An ordinary character constant consists of single-quote (’)
followed by an arbitrary ASCII character other than \. The
value of the constant is equal to the ASCII code for the
character. Special meaning of characters are overridden when
used in character constants; for example, if # is used, the # is
not introducing a comment.

A special character constant consists of *\ followed by another
character. All the special constants, and examples of ordinary
character constants, are listed here:

Constant

’\b
7\t
’\n
’\V
,\f
’\r
N

0
A

a

Value

0x08
0x09
0x0a
0x0b
0x0c
0x0d
0x05¢
0x27
0x30
0x41
0x61

Meaning

Backspace
Horizontal Tab
Newline (Line Feed)
Vertical Tab
Form Feed
Carriage Return
Backslash (\)
Single-Quote
Zero

Capital A
Lower Case A



UNIX SYSTEM ASSEMBLER FOR UNIX PC

Other Syntactic Details

A discussion of expression syntax appears in EXPRESSIONS.
Information about the syntax of specific components of MAS
instructions and pseudo-operations is given later in the sections
entitled PSEUDO-OPERATIONS, SPAN-DEPENDENT
OPTIMIZATION, and ADDRESS MODE SYNTAX.

SEGMENTS, LOCATION COUNTERS, AND
LABELS

Segments

A program in MAS assembly language may be broken into
segments known as text, data, and bss segments. The
convention regarding the use of these segments is to place
instructions in text segments, initialized data in data segments,
and uninitialized data in bss segments. However, the assembler
does not enforce this convention; for example, it permits
intermixing of instructions and data in a text segment.

Primarily to simplify compiler code generation, the assembler
permits up to four separate text segments and four separate
data segments named 0, 1, 2, and 3. The assembly language
program may switch freely between them by using assembler
pseudo-operations. (See the section entitled Location Counter
Control Operations.) When generating the object file, the
assembler concatenates the text segments to generate a single
text segment, and the data segments to generate a single data
segment. Thus, the object file contains only one text segment
and only one data segment.

There is only one bss segment to begin with, and it maps
directly into the object file.

Because the assembler keeps together everything from a given
segment when generating the object file, the order in which
information appears in the object file may not be the same as

8-8



UNIX SYSTEM ASSEMBLER FOR UNIX PC

in the assembly language file. For example, if the data for a
program consisted of

data 1 # segment 1
word 0x1111

data O # segment O
long Oxffffffff

data 1 # segment 1

byte 0x2222
then equivalent object code would be generated by

data O

long Oxffffffff
word O0x1111
word 0x2222

Location Counters and Labels

The assembler maintains separate location counters for the bss
segment and for each of the text and data segments. The
location counter for a given segment is incremented by one for
each byte generated in that segment.

The location counters allow values to be assigned to labels.
When an identifier is used as a label in the assembly language
input, the current value of the current location counter is
assigned to the identifier. The assembler also keeps track of
which segment the label appeared in. Thus, the identifier
represents a memory location relative to the beginning of a
particular segment.



UNIX SYSTEM ASSEMBLER FOR UNIX PC

TYPES

Identifiers and expressions may have values of different types:

— In the simplest case, an expression (or identifier) may have
an absolute value, such as 29, -5000, or 262143.

— An expression (or identifier) may have a value relative to
the start of a particular segment. Such a value is known as
a relocatable value. The memory location represented by
such an expression cannot be known at assembly time, but
the relative values (i.e. the difference) of two such
expressions can be known if they refer to the same
segment.

Identifiers which appear as labels have relocatable values:

— If an identifier is never assigned a value, it is assumed to
be an undefined external. Such identifiers may be used
with the expectation that their values will be defined in
another program, and hence known at load time; but the
relative values of undefined externals cannot be known.

EXPRESSIONS

For conciseness, the following abbreviations will be useful:

abs absolute expression
rel relocatable expression
ext undefined external

All constants are absolute expressions. An identifier may be
thought of as an expression having the identifier’'s type.
Expressions may be built up from lesser expressions using the
operators +, —, *. and / according to the following type rules:

8-10



UNIX SYSTEM ASSEMBLER FOR UNIX PC

abs + abs = abs

abs + rel = rel + abs = rel

abs + ext = ext + abs = ext

abs - abs = abs

rel - abs = rel

ext - abs = ext

rel - rel = abs,
provided that the two
relocatable expressions
are relative to the
same segment.

abs * abs = abs

abs / abs = abs

- abs = abs

Note: Use of a rel-rel expression is dangerous,
particularly when dealing with identifiers from text-
segments. The problem is that the assembler will
determine the value of the expression before it has
resolved all questions concerning span-dependent
optimizations. Use this feature at your own risk!

The unary minus operator takes the highest precedence; the
next highest precedence is given to * and /, and lowest
precedence is given to + and binary -. Parentheses may be
used to coerce the order of evaluation.

If the result of a division is a positive non-integer, it will be

truncated towards zero. If the result is a negative non-integer,
the direction of truncation cannot be guaranteed.

8-11



UNIX SYSTEM ASSEMBLER FOR UNIX PC

PSEUDO-OPERATIONS

Data Initialization Operations

byte abs, abs,...

short abs, abs,...

long expr, expr,...

8-12

One or more arguments, separated by
commas, may be given. The values of the
arguments are computed to produce
successive bytes in the assembly output.

One or more arguments, separated by
commas, may be given. The values of the
arguments are computed to produce
successive 16-bit words in the assembly
output.

One or more arguments, separated by
commas, may be given. Each expression
may be absolute, relocatable, or undefined
external. A 32-bit quantity is generated for
each such argument (in the case of
relocatable or undefined external
expressions, the actual value may not be
filled in until load time).

Alternatively, the arguments may be bit-
field expressions. A bit-field expression has
the form

n : value

where both n and value denote absolute
expression. The quantity n represents a
field width; the low-order n bits of value
become the contents of the bit-field.



space abs

UNIX SYSTEM ASSEMBLER FOR UNIX PC

Successive bit-fields fill up 32-bit long
quantities starting with the high-order part.
If the sum of the lengths of the bit-fields is
less than 32 bits, the assembler creates a
32-bit long with zeros filling out the low-
order bits. For example,

long 4:-1, 16:0x7£f, 12:0, 5000
and
long 4:-1, 16 :0x7€, 5000

are equivalent to
long O0xf007£000, 5000

Bit-fields may not span pairs of 32-bit longs.
Thus,

long 24:0xa, 24:0xb, 24:0xc
yields the same thing as

long 0x00000a00, 0x00000b00,
0x00000c00

The value of abs is computed, and the
resultant number of bytes of zero data is
generated. For example,

space 6

is equivalent to

8-13



UNIX SYSTEM ASSEMBLER FOR UNIX PC

byte 0, 0, 0, 0, 0, O,

Symbol Counter Control Operations

set identifier, expr

comm identifier,

The value of identifier is set equal to expr,
which may be absolute or relocatable.

abs

The named identifier is to be assigned to a
common area of size abs bytes. If identifier
is not defined by another program, the
loader will allocate space for it.

The type of identifier becomes undefined
external.

lcomm identifier, abs

global identifier

8-14

The named identifier is assigned to a local
common of size abs bytes. This results in
allocation of space in the bss segment.

The type of identifier becomes relocatable.

This causes identifier to be externally
visible. If identifier is defined in the
current program, then declaring it global
allows the loader to resolve references to
identifier in other programs.

If identifier is not defined in the current
program, the assembler expects an external
resolution; in this case, therefore, identifier
is global by default.



UNIX SYSTEM ASSEMBLER FOR UNIX PC

Location Counter Control Operations

data abs
The argument, if present, must evaluate to
0, 1, 2, or 3; this indicates the number of the
data segment into which assembly is to be
directed. If no argument 1is present,
assembly is directed into data segment 0.

text abs
The argument, if present, must evaluate to
0, 1, 2, or 3; this indicates the number of the
text segment into which assembly is to be
directed. If no argument 1is present,
assembly is directed into text segment 0.

Before the first data or text operation is
encountered, assembly is by default directed
into text segment 0.

org expr
The current location counter is set to expr.
Expr must represent a value in the current
segment, and must not be less than the
current location counter.

even
The current location counter is rounded up
to the next even value.

Symbolic Debugging Operations

The assembler allows for symbolic debugging information to be
placed into the object code file with special pseudo-operations.
The information typically includes line numbers and
information about C language symbols, such as their type and
storage class. the Motorola 68010 SGS C compiler generates
symbolic debugging information when the -g option is used.
Assembler programmers may also include such information in

8-15



UNIX SYSTEM ASSEMBLER FOR UNIX PC
source files.

file and in

The file pseudo-operation passes the name of the source file
into the object file symbol table. It has the form

file "filename"
where filename consists of one to 14 characters.

The in pseudo-operation makes a line number table entry in the
object file. That is, it associates a line number with a memory
location. Usually the memory location is the current location in
text. The format is

in line [,value]

where line is the line number. The optional value is the
address in text, data, or bss to associate with the line number.
the default when value is omitted (which is usually the case) is
the current location in text.

Symbol Attribute Operations

The basic symbolic testing pseudo-operations are def and endef.
These operations enclose other pseudo-operations that assign
attributes to a symbol and must be paired.

def name
# Attribute
# Assigning
. # Operations
endef

8-16



UNIX SYSTEM ASSEMBLER FOR UNIX PC

Note 1: def does not define the symbol, although it
does create a symbol table entry. Because an undefined
symbol is treated as external, a symbol which appears in
a def, but which never acquires a value, will ultimately
result in an error at link edit time.

Note 2: To allow the assembler to calculate the sizes of
funetions for other SGS tools, each def/endef pair that
defines a function name must be matched by a def/endef
pair after the function in which a storage class of /-1 is
assigned.

The paragraphs below describe the attribute-assigning
operations. Keep in mind that all of these operations apply to
the symbol name which appeared in the opening def pseudo-
operation.

val expr
Assigns the value expr to name. The type of
the expression expr determines with which
section name is associated. If value is -, the
current location in the text section is used.

scl expr
Declares a storage class for name. the
expression expr must yield an ABSOLUTE
value that corresponds to the C compiler’s
internal representation of a storage class.
The special value -1 designates the physical
end of a function.

type expr
Declares the C language type of name. The
expression expr must yield an ABSOLUTE
value that corresponds to the C compiler’s
internal representation of a basic or derived

type.

8-17



UNIX SYSTEM ASSEMBLER FOR UNIX PC

tag str

line expr

size expr

Associates name with the structure,
enumeration, or union names str which
must have already been declared with
def/ended pair.

Provides the line number of name, where
name is a block symbol. the expression expr

should yield an ABSOLUTE value that
represents a line number.

Gives a size for name. The expression expr
must yield an ABSOLUTE value. When
name is a structure or an array with a
predetermined extent, expr gives the size in
bytes. For bit fields, the size is in bits.

dim exprl, expr2,...

Indicates that name is an array. Each of
the expressions must yield an ABSOLUTE
value that provides the corresponding array
dimension.

Switch Table Operation

The MC68010 SGS C compiler generates a compact set of
instructions for the C language switch construet, of which an
example is shown below.

8-18



UNIX SYSTEM ASSEMBLER FOR UNIX PC

sub. %1,%d0

cmp.1l %d0 ,84

bhi L%21

add.w %d0 ,%d0

mov.w 10 (%pc,%d0.w),%d0

=

jmp 6(%pc,%d0.w)
swbeg &5
L%22:

short L%15-L%22
short L%21-L%22
short L%16-L%22
short L%21-L%22
short L%17-L%22

The special swbeg pseudo-operation communicates to the
assembler that the lines following it contain rel-rel
subtractions. Remember that ordinarily such subtractions are
risky because of span-dependent optimization. In this case,
however, the assembler makes special allowances for the
subtraction because the compiler guarantees that both symbols
will be defined in the current assembler file, that one of the
symbols is a fixed distance away from the current location.

The swbeg pseudo-operation takes an argument that looks like
an immediate operand. The argument is the number of lines
that follow swbeg and that contain switch table entries. Swbeg
inserts two words into text. The first is the ILLEGAL
instruction code. The second is the number of table entries that
follow. The - Motorola 68010 SGS disassembler needs the
ILLEGAL instruction as a hint that what follows is a switch
table. Otherwise it would get confused when it tried to decode
the table entries, differences between two symbols, as
instructions.

8-19



UNIX SYSTEM ASSEMBLER FOR UNIX PC

SPAN-DEPENDENT OPTIMIZATION

The assembler makes certain choices about the object code it
generates based on the distance between an instruction and its
operand(s). Choosing the smallest, fastest form is called span-
dependent optimization. Span-dependent optimization occurs
most obviously in the choice of object code for branches and
jumps. It also occurs when an operand may be represented by
the program counter relative address mode instead of as an
absolute 2-word (long) address. The span-dependent
optimization capability is normally enabled; the -n command
line flag disables it. When this capability is disabled, the
assembler makes worst-case assumptions about the types of
object code that must be generated.

In the MC68010 Software Generation System, the compiler
generates branch instructions without a specific offset size.
When the optimizer is used, it identifies branches which could
be represented by the short form, and it changes the operation
accordingly. The assembler chooses only between long
and very-long representations for branches.

Branch instructions, such as bra, bsr, bgt, and so on, can have
either a byte or a word pe-relative address operand. A byte
size specification should be used only when the user is sure that
the address intended can be represented in the byte allowed.
The assembler will take one of these instructions with
a byte size specification and generate the byte form of
the instruction without asking questions.

Although the largest offset specification allowed is a word,
large programs could conceivably have need for a branch to a
location not reachable by a word displacement. Therefore,
equivalent long forms of these instructions might be needed.
When the assembler encounters a branch instruction without a
size specification, or with a word size specification, it tries to
choose between the long and very-long forms of the instruction.
If the operand can be represented in a word, then the word
form of the instruction will be generated. Otherwise the very-
long form will be generated. For unconditional branches, e.g.,

8-20



UNIX SYSTEM ASSEMBLER FOR UNIX PC

br, bra and bsr, the very-long form is just the equivalent jump
(jmp and jsr) with an absolute address operand (instead of pc-
relative). For conditional branches, the equivalent very-long
form is a conditional branch around a jump, where the
conditional test has been reversed.

The following table summarizes span-dependent optimizations.
The assembler chooses only between the long form and very-
long form, while the optimizer chooses between the short and
long form for branches (but not bsr).

Assembler Span-Dependent Optimizations

Instruction Short Form Long Form Very Long Form

br,bra,bsr byte offset word offset  jmp or jsr with
absolute long
address

conditional  byte offset word offset  short conditional

branch branch with
reversed condition
around jmp with
absolute long
address

jmp,jsr - pe-relative absolute long

address address
lea,pea - pe-relative  absolute long

address

address

8-21



UNIX SYSTEM ASSEMBLER FOR UNIX PC

ADDRESS MODE SYNTAX

The following table summarizes the MAS syntax for MC68010
addressing modes.

In the table, the letter n, as in An or Dn, an or dn, represents
any digit from 0 to 7. The notations Ri and ri represent any of
the MC68010 data or address registers.

The letter d, where it is used to represent a displacement, may
stand for any absolute expression.

It is important to note that expressions used for the Absolute
addressing modes need not be absolute expressions in the sense
defined in TYPES. Although the addresses used in those
addressing modes must ultimately be filled in with constants,
that can be done by the loader—there is no need for the
assembler to be able to compute them. Indeed, the Absolute
Long addressing mode is commonly used for accessing
undefined external addresses.

Effective Address Modes

Motorola MAS Effective Address Mode
Notation Notation

Dn % dn Data Register Direct

An % an Address Register Direct
(An) (% an) Address Register Indirect
An@+ (% an)+ Address Register Indirect

with Postincrement

An@- —(%an) Address Register Indirect
with Predecrement

8-22



UNIX SYSTEM ASSEMBLER FOR UNIX PC

An@(d) d(% an) Address Register Indirect
with Displacement
(d signifies a signed 16-bit
absolute displacement)

An@(d,Ri.W) d(%an,%riw) Address Register

An@(d,RiL) d(%an,%ril) Indirect with Index
(d signifies a signed
8-bit absolute
displacement)

xxx.W XXX Absolute Short Address

(xxx signifies an expression
yielding a signed 16-bit
memory address)

xxx.Li XXX Absolute Long Address
(xxx signifies an expression
yielding a 32-bit memory

address)

PC@(d) d(%pe) Program Counter with
Displacement

(d signifies a signed 16-
bit absolute displacement)

PC@(d,Ri.W) \ d(% pe.% n.w) Program Counter with Index
PC@(d,Ri.L) d(%pc,%n.l) (d signifies a signed 8-bit
absolute displacement)

#xxx &xxx Immediate Data

(xxx signifies an absolute
constant expression)

8-23



UNIX SYSTEM ASSEMBLER FOR UNIX PC

MACHINE INSTRUCTIONS

The following table shows how MC68010 instructions should be
written in order to be understood correctly by the MAS
assembler. Several abbreviations are used in the table:

S The letter S, as in add.S, stands for one of the operation
size attribute letters b, w, or 1, representing a byte, word,
or long operation.

A The letter A, as in add.A, stands for one of the address
operation size attribute letters w or 1, representing a word
or long operation.

CC In the context bCC, dbCC, and sCC, the letters CC
represent any of the following condition code designations
(except that f and t may not be used in the bCC

instruction):

cc carry clear 1s low or same
cs carry set It less than
eq equal mi minus

f false ne not equal

ge greater or equal pl plus

gt greater than t true

hi high vc over clear
hs high or same (=cc) vs overflow set

le 1less or equal
lo low (=cs)

EA This represents an arbitrary effective address.
1 An absolute expression, used as an immediate operand.

Q  An absolute expression evaluating to a number from 1 to
8.

L A label reference, or any expression representing a
memory address in the current segment. %dx, %dy, %dn,

8-24



UNIX SYSTEM ASSEMBLER FOR UNIX PC

%ax, % ay, and % an represent registers.

MC68010 Instruction Formats

Operation MAS Syntax Meaning
ABCD abed.b % dy, % dx Add Decimal with
~(%ay) Extend
~(% ax)
ADD add.S EA, %dn Add Binary
%dn,EA
ADDA add.A EA, %an Add Address
ADDI add.S &LEA Add Immediate
ADDQ add.S &Q,EA Add Quick
ADDX addx.S % dy,% dx Add Extended
~(%ay)
-(% ax)
AND and.S EA, %dn AND Logical
%dn,EA
ANDI and.S &LEA AND Immediate
ANDI and.b &1,% cc AND Immediate
to CCR to Condition Codes
ANDI and.w &I, % sr AND Immediate
to SR to the Status Register
ASL asl.S %ds, % dy Arithmetic Shift (Left)
&Q,%dy
asl.w &LEA

8-25



UNIX SYSTEM ASSEMBLER FOR UNIX PC

MC68010 Instruction Formats

Operation MAS Syntax Meaning
ASR asr.S % dx,% dy Arithmetic Shift (Right)
&Q,%dy

asr.w &1,EA

Bee bCC L Branch Conditionally
(16-bit Displacement)
bCC.b L Branch Conditionally
(Short)
(8-bit Displacement)
BCHG bchg %dn,EA Test a Bit and Change
&LEA

Note: behg should be
written with no suffix.
If the second operand is
a data register, .l is
assumed; otherwise .b is.

BCLR belr %dn,EA Test a Bit and Clear
&LEA
Note: belr should be
written with no suffix.
If the second operand
is a data register, .1 is
assumed; otherwise .b is.

BRA bra L Branch Always
(16-bit Displacement)

bra.b L Branch Always (Short)
(8-bit Displacement)

br L Same as bra

8-26



UNIX SYSTEM ASSEMBLER FOR UNIX PC

MC68010 Instruction Formats

Operation MAS Syntax Meaning
br.b L Same as bra.b
BSET bset % dn,EA Test a Bit and Set
&LEA

Note: bset should be
written with no suffix.
If the second operand is a
data register, .1 is
assumed; otherwise .b is.

BSR bsr L Branch to Subroutine
(16-bit Displacement)

bsr.b L Branch to Subroutine

(Short)
(8-bit Displacement)

BTST btst %dn,EA Test a Bit and Set

&LEA

Note: btst should be
written with no suffix.
If the second operand is a
data register, .1 is
assumed; otherwise .b is.

CHK chk.w EA,%dn Check Register Against
Bounds

CLR clr.S EA Clear an Operand

CMP cmp.S % dn,EA Compare

CMPA cmp.A % an,EA Compare Address

8-27



UNIX SYSTEM ASSEMBLER FOR UNIX PC

MC68010 Instruction Formats

8-28

- Operation MAS Syntax Meaning
CMPI cmp.S EA,&I Compare Immediate
CMPM cmp.S (% ax)+ Compare Memory

(%ay)+
Note: Order of operands
in MAS is reverse of
that in MC68010 User’s
Manual
DBce dbCC % dn,L Test Condition,
Decrement, and Branch
dbra % dn,L Decrement and Branch
Always
dbr % dn,L Same as dbra
DIVS divs.w EA,%dn Signed Divide
DIVU diva.w EA,%dn Unsigned Divide
EOR eor.S %dn,EA Exclusive OR Logical
EORI eor.S &LEA Exclusive OR Immediate
EORI eor.b &I, %cc Exclusive OR Immediate
to CCR to Condition Codes
EORI eor.w &I % ar Exclusive OR Immediate
to SR to the Status Register
EXG exg %rx,%ry Exchange Registers
EXT ext.A % dn Sign Extend



UNIX SYSTEM ASSEMBLER FOR UNIX PC

MC68010 Instruction Formats

Operation MAS Syntax Meaning
JMP jmp EA Jump
JSR jsr EA Jump to Subroutine
LEA lea] EA,%an Load Effective Address
LINK link % an, &I Link and Allocate
LSL Isl.S % dx,% dy Logical Shift (Left)
&Q,%dy
Isl.w &LEA
LSR lsr.S % dx,% dy Logical Shift (Right)
&Q,%dy
Isr.w &LEA
MOVE mov.S EAEA Move Data from Source

to Destination

Note: If the destination
is an address register,
the instruction generated

is MOVEA.
MOVE mov.w EA ,%ce Move to Condition Codes
to CCR
MOVE mov.w % ar,EA Move from Condition Codes
from CCR
MOVE mov.w EA,%ar Move to Status Register
to SR

8-29



UNIX SYSTEM ASSEMBLER FOR UNIX PC

MC68010 Instruction Formats

Operation MAS Syntax Meaning

MOVE mov.w % ar,EA Move from Status Register

from SR

MOVE mov.l %usp,%an  Move User Stack Pointer

USP % an,% usp

MOVEA mov.A EA,%an Move Address

MOVEC Move Control Register

MOVEM movm.A &LEA Move Multiple registers

EA&I

Note: Immediate operand
is a mask designating
which registers are to
be moved to memory or
which registers are to
receive memory data.
Not all addressing modes
are permitted, and the
correspondence between
mask bits and register
numbers depends on the
addressing mode used.
See MC68010 User’s Manual
for details.

MOVEQ  movl &L %dn Move Quick (when I fits
in byte)

MOVES movs.S EA EA Move Alternate Address

8-30

Space



UNIX SYSTEM ASSEMBLER FOR UNIX PC

MC68010 Instruction Formats

Operation MAS Syntax Meaning
MULS muls.w EA,%dn Signed Multiply
MULU mulu.w EA,%dn Unsigned Multiply
NBCD nbed.b EA Negate Decimal
with Extend
NEG neg.S EA Negate
NEGX negx.S EA Negate with Extend
NOP nop No operation
NOT not.S EA Logical Complement
OR or.S EA,%dn Inclusive OR Logical
% dn,EA
ORI or.S &LEA Inclusive OR Immediate
ORI or.b &I, % ce Inclusive OR Immediate
to CCR to Condition Codes
ORI or.w &I, % sr Inclusive OR Immediate
to CCR to the Status Register
PEA pea EA Push Effective Address
RESET reset Reset External Devices
ROL rol.S % dx,% dy Rotate
&Q,% dy (without Extend) (left)
rol.w &LEA

8-31



UNIX SYSTEM ASSEMBLER FOR UNIX PC

MC68010 Instruction Formats

Operation MAS Syntax Meaning
ROR ror.S % dx,% dy Rotate
&Q,%dy (without Extend) (Right)
ror.w &ILEA
ROXL roxl.S % dx,% dy Rotate with Extend(Left)
&Q,%dy
roxl. W &LEA
ROXR roxr.S % dx,% dy Rotate with Extend(Right)
&Q,%dy
roxr.w &LEA
RTE rte Return from Exeeption
RTD rtd Return and Deallocate
Stack
RTR rtr Return and Restore
Condition Codes
RTS rts Return from Subroutine
SBCD sbed.b % dy, % dx Subtract Decimal with
—(%ay) Extend
~(% ax)
Sce sCC.b EA Set According to Condition
STOP stop &I Load Status Register
and Stop
SUB sub.S EA, %dn Subtract Binary

8-32



UNIX SYSTEM ASSEMBLER FOR UNIX PC

MC68010 Instruction Formats

Operation MAS Syntax Meaning
%dn,EA
SUBA sub.A EA,%an Subtract Address
SUBI sub.S &LEA Subtract Immediate
SUBQ sub.S &QEA Subtract Quick
SUBX subx.S % dy, % dx Subtract with Extend
~(%ay)
(% ax)
SWAP swap.w % dn Swap Register Halves
TAS tas.b EA Test and Set an Operand
TRAP trap &I Trap
TRAPV trapv Trap on Overflow
TST tst.S EA Test an Operand
UNLK unlk % an Unlink

8-33



Chapter 9

THE “curses” PACKAGE

PAGE

INTRODUCTION . ... . ittt iiititttteannnnnns 9-1
OUtPUL . o ittt i i e 9-2
1 01 9-4

P 7= 3 9-5
Highlighting . .. ... ... i i ittt 9-5
Multiple Windows . . . ..o ettt ittt ieerrionesosaceasasas 9-5
LISTOFROUTINES ..... ...t itiiiiiiiiiinnnnnannanns 9-7
StrUucCtUre ... ...cvtiiiriiieroenneernneasennacscannnns 9-7
Initialization .......... ... .. i i i, 9-8
Option Setting ......... ...ttt iiiienenaannnnnanns 9-8
Terminal Mode Setting .......... ...ttt iiiinnnnnn. 9-9
Window Manipulation .............c.i it tinrnnrnnnnn 9-11
Causing Output to the Terminal....................... 9-12
Writing on Window Structures ...........ccvvivieennn. 9-12
Input from a Window ..........coiiitienennuneennnns 9-15
Input from the Terminal ................ ..t 9-16
Video Attributes ......... ... .. ittt 9-17
Lower Level Functions ............ .. ... iiiiiiinnn 9-17

Additional Terminals .............ciiiiiiiininnnaanns 9-18



Chapter 9
THE “curses” PACKAGE

INTRODUCTION

The UNIX PC software development system includes two
different terminal virtualization packages, terminal access
method (tam) and curses. Each provides device independent
terminal input/output.

The tam package is recommended for programming on the
UNIX PC because it offers more capabilities than curses.
tam has the following features that are not available in
curses:

e The shared library feature of the UNIX PC is used, so
programs written with tam can be significantly smaller
than those written with curses.

o Real, overlapping windows are supported.

e Context sensitive help messages are supported.

e Device independent input is supported. (curses only
supports device independence on output.)

e Menus, forms, and messages are supported.

e Both high and low level mouse support routines are
provided.

e The most frequently used curses calls are emulated by

tam to allow easy porting of code already written using
curses.

9-1



THE CURSES PACKAGE

Programs previously written with eurses can be ported using
the UNIX PC curses package.

The full curses package that is supported on the UNIX PC is
documented in the curses(3) manual page. This chapter is an
introduction to curses(3X). It is intended for the programmer
who must write a screen-oriented program using the curses
package. This chapter also documents curses functions.

For curses to be able to produce terminal dependent output, it
has to know what kind of terminal you have. The UNIX system
convention for this is to put the name of the terminal in the
variable TERM in the environment. Thus, a user on a DEC
VT100 would set TERM=vt100 when logging in. Curses uses
this convention.

Output

A program using ecurses always starts by calling
initscr(). (See Figure 9-1.) Other modes can then be set
as needed by the program. During the execution of the
program, output to the screen is done with routines such as
addch(ch) and printw(fmt,args). (These routines
behave just like putchar and printf except that they go
through curses.) The cursor can be moved with the call
move (row,col). These routines only output to a data
structure called a window, not to the actual screen. A window
is a representation of a CRT screen, containing such things as
an array of characters to be displayed on the screen, a cursor, a
current set of video attributes, and various modes and options.
You don’t need to worry about windows unless you use more
than one of them, except to realize that a window is buffering
your requests to output to the screen.

To send all accumulated output, it is necessary to call

9-2



THE CURSES PACKAGE

refresh(). (This can be thought of as a flush.) Finally,
before the program exits, it should call endwin(), which
restores all terminal settings and positions the cursor at the
bottom ot the screen.

#include <curses.h>

initscr(); /* Initialization */

raw(); /* Various optional mode settings */
nonl();

noecho () ;

while (!done) {/* Main body of program */

/* Sample calls to draw on screen */
move(row, col);

addch(ch);

printw("Formatted print with value %d\n",value);

/*¥ Flush output */
refresh();

}

endwin(); /¥ Clean up */
exit(0);

Figure 9-1 — Framework of a Curses Program

Some programs assume all screens are 24 lines by 80 columns.
It is important to understand that many are not. The variables
LINES and COLS are defined by initscr with the current
screen size. Programs should use them instead of assuming a
24x80 screen.



THE CURSES PACKAGE

No output to the terminal actually happens until refresh is
called. Instead, routines such as move and addch draw on a
window data structure called stdscr (standard screen).
Curses always keeps track of what is on the physical screen,
as well as what isin stdscr.

When refresh is called, curses compares the two screen
images and sends a stream of characters to the terminal that
will turn the current screen into what is desired. Curses
considers many different ways to do this, taking into account
the various capabilities of the terminal, similarities between
what is on the screen and what is desired. It usually outputs as
few characters as is possible. This function is called cursor
optimization and is the source of the name of the curses
package.

NOTE: Due to the hardware scrolling of terminals,
writing to the lower righthand character position
is impossible.

Input

Curses can do more than just draw on the screen. Functions
are also provided for input from the keyboard. The primary
function is getch() which waits for the user to type a
character on the keyboard, and then returns that character.
This function is like getchar except that it goes through
curses. Its use is recommended for programs using the
raw() or noecho() options, since several terminal or
system dependent options become available that are not
possible with getchar. The routine getstr(str) can be
called, allowing input of an entire line, up to a newline. This
routine handles echoing and the erase and kill characters of the
user.

9-4



THE CURSES PACKAGE

getstr

No matter what the setting of echo is, strings typed in here are
echoed at the current cursor location. The user’s erase and kill
characters are understood and handled. This makes it
unnecessary for an interactive program to deal with erase, kill,
and echoing when the user is typing a line of text.

Highlighting

Characters can be written with the standout attribute. This
attribute is used to make text attract the attention of the user.
The particular hardware attribute used for standout varies
from terminal to terminal, and is chosen to be the most visually
pleasing attribute the terminal has. Standout is typically
implemented as reverse video or bold. Many programs don’t
really need a specific attribute, such as bold or inverse video,
but instead just need to highlight some text. Two functions,
standout() and standend() turn on and off this
attribute.

Multiple Windows

A window is a data structure representing all or part of the
CRT screen. It has room for a two dimensional array of
characters, with a standout bit for each character (a total of 8
bits per character: 7 for text and 1 for attribute), a cursor, a set
of current attributes, and a number of flags. Curses provides a
full screen window, called stdscr, and a set of functions
that use stdscr. Another window is provided called
curscr, representing the physical screen.

It is important to understand that a window is only a data
structure. Use of more than one window does not imply use of
more than one terminal, nor does it involve more than one
.process. A window is merely an object which can be copied to
all or part of the terminal screen. The current implementation
of curses does not allow windows which are bigger than the
screen.

9-5



THE CURSES PACKAGE

The programmer can create additional windows with the
function newwin(lines, cols, begin_row,
begin_col). This funetion returns a pointer to a newly
created window. The window will be lines by cols, and
the upper left corner of the window will be at screen position
(begin_row, begin_col). All operations that affect
stdscr have corresponding functions that affect an arbitrary
named window. Generally, these functions have names formed
by putting a “w” on the front of the stdscxr function, and the
window name is added as the first parameter. Thus,
waddch(mywin, c) would write the character ¢ to window
mywin. The wrefresh(win) function is used to flush the
contents of a window to the screen.

Windows are useful for maintaining several different screen
images, and alternating the user among them. Also, it is
possible to subdivide the screen into several windows,
refreshing each of them as desired. When windows overlap, the
contents of the screen will be the more recently refreshed

window.

In all cases, the non-w version of the function calls the w
version of the function, using stdscr as the additional
argument. Thus, a call to addch(c) results in a call to
waddch(stdscr, c).

The main display is kept in stdscr. When the user
temporarily wants to put something else on the screen, a new
window is created covering part of the screen. A call to
wrefresh on that window causes the window to be written
over stdscr on the screen. Calling refresh on stdscr
results in the original window being redrawn on the screen. If
you have trouble refreshing a new window which overlaps an
old window, it may be necessary to call touchwin on the new
window to get it completely written out.

For convenience, a set of “move” functions are also provided for
most of the common functions. These result in a call to move

9-6



THE CURSES PACKAGE

before the other function. For example, mvaddch(row,
col, c) is the same as move(row, col); addch(c).
Combinations, e.g. mvwaddch(row, col, win, c) also
exist.

LIST OF ROUTINES

This section describes all the routines available to the
programmer in the curses package. The routines are
organized by function. For an alphabetical list, see
curses(3X).

Structure

All programs using curses should include the file
<curses.h>. This file defines several curses functions as
macros, and defines several global variables and the datatype
WINDOW. References to windows are always of type WINDOW
*. Curses also defines WINDOW * constants stdscr (the
standard screen, used as a default to routines expecting a
window), and curscr (the current screen, used only for
certain low level operations like clearing and redrawing a
garbaged screen). Integer constants LINES and COLS are
defined, containing the size of the screen. Constants TRUE
and FALSE are defined, with values 1 and 0, respectively.
Additional constants which are values returned from most
curses functions are ERR and OK. OK is returned if the
function could be properly completed, and ERR is returned if
there was some error, such as moving the cursor outside of a
window.

The include file <curses.h> automatically includes
<stdio.h> and the tty driver interface file, <termio.h>.
Including <stdio.h> again is harmless but wasteful.

A program using curses should include the loader option
—1lcurses in the makefile. This is true for both the termcap

9-7



THE CURSES PACKAGE
level and the curses level.

Initialization

These functions are called when initializing a program.

initscr()

The first function called should always be initscr. This
will determine the terminal type and initialize curses data
structures. initscr also arranges that the first call to
refresh will clear the screen.

endwin()

A program should always call endwin before exiting. This
function will restore tty modes, move the cursor to the lower
left corner of the screen, reset the terminal into the proper
non-visual mode, and tear down all appropriate data structures.

longname(termbuf, name)

This function returns a pointer to a static area containing a
verbose description of the current terminal, after a ecall to
initscr. '

Option Setting

These functions set options within curses. In each case, win
is the window affected, and bf is a boolean flag with value
TRUE or FALSE indicating whether to enable or disable the
option. All options are initially FALSE. It is not necessary
to turn these options off before calling endwin.

9-8



THE CURSES PACKAGE

clearok(win,bf)

If set, the next call to wrefresh with this window will clear
the screen and redraw the entire screen. If win is curscr,
the next call to wrefresh with any window will cause the
screen to be cleared. This is useful when the contents of the
screen are uncertain, or in some cases for a more pleasing
visual effect.

leaveok(win,bf)

Normally, the hardware cursor is left at the location of the
window cursor being refreshed. This option allows the cursor
to be left wherever the update happens to leave it. It is useful
for applications where the cursor is not used, since it reduces
the need for cursor motions. If possible, the cursor is made
invisible when this option is enabled.

scrollok(win,bf)

This option controls what happens when the cursor of a window
is moved off the edge of the window, either from a newline on
the bottom line, or typing the last character of the last line. If
disabled, the cursor is left on the bottom line. If enabled,
wrefresh is called on the window, and then the physical
terminal and window are scrolled up one line. Note that in
order to get the physical scrolling effect on the terminal, it is
also necessary to call idlok.

Terminal Mode Setting

These functions are used to set modes in the tty driver. The
initial mode usually depends on the setting when the program
was called: the initial modes documented here represent the
normal situation.

9-9



THE CURSES PACKAGE

echo()

noecho ()

These functions control whether characters typed by the user
are echoed as typed. Initially, characters typed are echoed by
the teletype driver. Authors of many interactive programs
prefer to do their own echoing in a controlled area of the
screen, or not to echo at all, so they disable echoing.

nl()

nonl ()

These functions control whether newline is translated into
carriage return and linefeed on output, and whether return is
translated into newline on input. Initially, the translations do
occur. By disabling these translations, curses is able to make
better use of the linefeed capability, resulting in faster cursor
motion.

Craw()

noraw()

The terminal is piaced into or out of raw mode. Raw mode is
similar to cbreak mode in that characters typed are
immediately passed through to the user program. The
differences are that in RAW mode, the interrupt, quit, and
suspend characters are passed through uninterpreted instead of
generating a signal. RAW mode also causes 8 bit input and
output. The behavior of the BREAK key may be different on
different systems.

resetty()

savetty ()

These functions save and restore the state of the tty modes.
savetty saves the current state in a buffer, resetty
restores the state to what it was at the last call to savetty.

9-10



THE CURSES PACKAGE

Window Manipulation

newwin(num_1lines, num_cols, beg_row,
beg_col)

Create a new window with the given number of lines and
columns. The upper left corner of the window is at line
beg_row column beg_col. If either num_lines or
num_cols is zero, they will be defaulted to LINES-
beg_row and COLS-beg_col. A new full-screen window is
created by calling newwin(0,0,0,0).

subwin(orig, num_1lines, num_cols, begy,
begx)

Create a new window with the given number of lines and
columns. The window is at position (begy, begx) on the screen.
(It is relative to the screen, not orig.) The window is made
in the middle of the window orig, so that changes made to
one window will affect both windows. When using this
function, often it will be necessary to call touchwin before
calling wrefresh.

delwin(win)

Deletes the named window, freeing up all memory associated
with it. In the case of overlapping windows, subwindows should
be deleted before the main window.

mvwin(win, br, bc)

Move the window so that the upper left corner will be at
position (br, bec). If the move would cause the window to
be off the screen, it is an error and the window is not moved.

touchwin(win)

Throw away all optimization information about which parts of
the window have been touched, by pretending the entire window
has been drawn on. This is sometimes necessary when using
overlapping windows, since a change to one window will affect
the other window, but the records of which lines have been
changed in the other window will not reflect the change.

9-11



THE CURSES PACKAGE

overlay(win1, win2)

overwrite(winl1, win2)

These functions overlay win1 on top of win2; that is, all
text in win1 is copied into win2. The difference is that
overlay is nondestructive (blanks are not copied) while
overwrite is destructive.

Causing Output to the Terminal

refresh()

wrefresh(win)

These functions must be called to get any output on the
terminal, as other routines merely manipulate data structures.
wrefresh copies the named window to the physical terminal
screen, taking into account what is already there in order to do
optimizations. refresh is the same, using stdscr as a
default screen. Unless leaveok has been enabled, the physical
cursor of the terminal is left at the location of the window’s
cursor.

Writing on Window Structures

These routines are used to “draw” text on windows. In all
cases, a missing win is taken to be stdscr. y and x are
the row and column, respectively. The upper left corner is
always (0,0), not (1,1). The mv functions imply a call to move
before the call to the other function.

Moving the Cursor

move(y, x)

wmove(win, y, Xx)

The cursor associated with the window is moved to the given
location. This does not move the physical cursor of the
terminal until refresh is called. The position specified is
relative to the upper left corner of the window.

9-12



THE CURSES PACKAGE

Writing One Character

addch(ch)

waddch(win, c¢h)

mvaddch(y, x, ch)

mvwaddch(win, y, x, ch)

The character ch is put in the window at the current cursor
position of the window. If ch is a tab, newline, or backspace,
the cursor will be moved appropriately in the window. If ch is
a different control character, it will be drawn in the "X
notation. The position of the window cursor is advanced. At
the right margin, an automatic newline is performed. At the
bottom of the scrolling region, if scrollok is enabled, the
scrolling region will be scrolled up one line.

Writing a String

addstr(str)

waddstr(win,str)

mvaddstr(y,x,str)

mvwaddstr(win,y,x,str)

These functions write all the characters of the null terminated
character string str on the given window. They are identical
to a series of calls to addch.

Clearing Areas of the Screen

erase ()
werase(win)
These functions copy blanks to every position in the window.

clear ()

wclear (win)

These functions are hke erase and werase but they also
call clearok, arranging that the screen will be cleared on
the next call to refresh for that window.

9-13



THE CURSES PACKAGE

clrtobot ()

wclrtobot(win)

All lines below the cursor in this window are erased. Also, the
current line to the right of the cursor is erased.

clrtoeol()
wclrtoeol(win)
The current line to the right of the cursor is erased.

Inserting and Deleting Text

delch()

wdelch(win)

mvdelch(y,x)

mvwdelch(win,y,x)

The character under the cursor in the window is deleted. All
characters to the right on the same line are moved to the left
one position. This does not imply use of the hardware delete
character feature.

deleteln()

wdeleteln(win)

The line under the cursor in the window is deleted. All lines
below the current line are moved up one line. The bottom line
of the window is cleared. This does not imply use of the
hardware delete line feature.

insch(c)

winsch(win, c¢)

mvinsch(y,x,c)

mvwinsch(win,y,x,c)

The character c is inserted before the character under the
cursor. All characters to the right are moved one space to the
right, possibly losing the rightmost character on the line. This
does not imply use of the hardware insert character feature.

9-14



THE CURSES PACKAGE

insertln()

winsertln(win)

A blank line is inserted above the current line. The bottom line
is lost. This does not imply use of the hardware insert line
feature.

Formatted Output

printw(£fmt, args)

wprintw(win, fmt, args)

mnvprintw(y, x, fmt, args)

mvwprintw(win, y, x, fmt, args)

These functions correspond to printf. The characters which
would be output by printf are instead output using
waddch on the given window.

Miscellaneous

box(win, vert, hor)
A box is drawn around the edge of the window. vert and
hor are the characters the box is to be drawn with.

scroll(win)

The window is scrolled up one line. This involves moving the
lines in the window data structure. As an optimization, if the
window is stdscr and the scrolling region is the entire
window, the physical screen will be scrolled at the same time.

Input from a Window

getyx(win,y,x)
The cursor position of the window is placed in the two integer
variables y and x. Since this is a macro, no & is necessary.

9-15



THE CURSES PACKAGE

inch()

winch(win)

mvinch(y,x)

mvwinch(win,y,x)

The character at the current position in the named window is
returned.

Input from the Terminal

getch()

wgetch(win)

mvgetch(y,x)

mvwgetch(win,y,x)

A character is read from the terminal associated with the
window. The program will wait until the system passes text
through to the program. Depending on the setting of raw, this
will be after one character, or after the first newline.

getstr(str)

wgetstr(win,str)

mvgetstr(y,x,str)

mvwgetstr(win,y,x,str)

A series of calls to getch is made, until a newline is received.
The resulting value is placed in the area pointed at by the
character pointer str. The user’s erase and kill characters
are interpreted.

scanw(fmt, args)

wscanw(win, fmt, args)

mvscanw(y, x, fmt, args)

mvwscanw(win, y, x, fmt, args)

This function corresponds to scanf. wgetstr is called on
the window, and the resulting line is used as input for the scan.

9-16



THE CURSES PACKAGE

Video Attributes

standout ()

standend ()

wstandout(win)

wstandend(win)

The current attributes of a window are applied to all characters
that are written into the window with waddch. Attributes
are a property of the character, and move with the character
through any scrolling and insert/delete line/character
operations. To the extent possible on the particular terminal,
they will be displayed as the graphic rendition of characters
put on the screen.

standout ()

turns on highlighting for subsequent characters.
standend ()

turns off highlighting.

Lower Level Functions

These functions are provided for programs not needing the
screen optimization ecapabilities of curses. Programs are
discouraged from working at this level, since they must handle
various glitches in certain terminals. However, a program can
be smaller if it only brings in the low level routines.

Cursor Motion

mvcur (oldrow, oldcol, newrow, newcol)

This routine optimally moves the cursor from (oldrow, oldcol)
to (newrow, newcol). The user program is expected to keep
track of the current cursor position. Note that unless a full
screen image is kept, curses will have to make pessimistic
assumptions, sometimes resulting in less than optimal cursor

9-17



THE CURSES PACKAGE

motion. For example, moving the cursor a few spaces to the
right can be done by transmitting the characters being moved
over, but if curses does not have access to the screen image, it
doesn’t know what these characters are.

Additional Terminals

Curses will work even if absolute cursor addressing is not
possible, as long as the cursor can be moved from any location
to any other location. It considers local motions, parameterized
motions, home, and carriage return.

Curses is aimed at full duplex, alphanumerie, video terminals.
No attempt is made to handle half-duplex, synchronous, hard
copy, or bitmapped terminals. Bitmapped terminals can be
handled by programming the bitmapped terminal to emulate an
ordinary alphanumeric terminal or by using the tam(3) library.

9-18



Chapter 10

USING SHELL COMMANDS

PAGE
INTRODUCTION ...t iiieeinneeettitaneeenennss 10-1
EXECUTING SIMPLE SHELL COMMANDS ............... 10-1
INPUT/OUTPUT REDIRECTION ........cciiinieinnnnnnnn 10-2
PIPELINES AND FILTERS ... ... tutttetrnensoanseecas 10-3
PERMISSION MODES. . ...t iiiitiininccrececeaneeeeas 10-4
FILE NAME GENERATION .. ....... . iiiiiiiiiniannnnnns 10-6
QUOTING. . ..ottt ittt ienaenannneseonoceeoaneennes 10-8
EXECUTING COMMANDS IN THE
BACKGROUND . ... ittt iiieetteenntnntesseeees 10-9
Determining Completion of Background
Commands ......c.ciiiuiiieiiinneesnonnsoscsnasssnns 10-9
Terminating Background Commands ................. 10-10
SHELL VARIABLES ... ... iiiiiiiittiaiiianneenns 10-11
Positional Parameters...........coiiiiteeriennnanns 10-11
Keyword Parameters ...........ccciuieiiuneneennns 10-13
User Defined Variables . ..................c.civua.. 10-17
SPECIAL COMMANDS . ... ittt iiiteiiieeininnnnns 10-19
¢ 10-19
BXEBC ¢ v e et neersttnessesaaseseasasassesaactesnennenns 10-20
NEWETD + vt tietontnecsesssonsssasssanensonasenannss 10-21
PWA .t i i i it i e e 10-21
= 10-21
L0033 N 10-22
UMasK . ... i i i i i it e e it e 10-23



Chapter 10
USING SHELL COMMANDS

INTRODUCTION

This chapter provides information to enhance uses of the shell.
Most information should be useful to both the programmer and
nonprogrammer alike. Some information may be of more use
to the more advanced user. It is assumed that the user has
been introduced to the UNIX system and understands such
basics as how to log in, set the terminal baud rate, etc.

EXECUTING SIMPLE SHELL COMMANDS

A simple shell command consists of the command name
possibly followed by some arguments such as

emd argl arg2 arg3 ...

where emd is the command name consisting of a sequence of
letters, digits, or underscores beginning with a letter or
underscore. For example, the shell command

Is

prints a list of files in the current directory.

10-1



USING SHELL COMMANDS

INPUT/OUTPUT REDIRECTION

Most commands produce output to a terminal. Output can be
redirected to a file in two different ways. First, standard
output may be redirected to a file by the notation " >", thus

Is -1 > tempfile

causes the shell to redirect the output of the command 1s to be
put in tempfile. If there is no file tempfile, one is created by the
shell. Any previous contents of tempfile are destroyed.

Standard output may be appended to the end of a file by the
notation " >>", thus

Is -1 >> tempfile

causes the shell to append the output of the command Is to the
end of the contents of tempfile. If tempfile does not already
exist, it is created.

Although input is normally from a terminal, it can also be
redirected by the " <" notation. Thus

we < tempfile

would send the contents of tempfile to the we command which
would give a character, word, and line count of tempfile.
Another modification of input is possible with the " <<"
notation. The form

emd << word

would send standard input to the specified command until a
line the same as word is input. As an example

10-2



USING SHELL COMMANDS

sort << finished

would send all the standard input to sort until finished is
input. Then the input would be sorted and output to the
terminal. If the notation " <<-" is used, then all leading tabs
would be stripped. As an example, the following is entered at
the terminal (note that the primary system prompt # and the
secondary system prompt > provided by the system are shown
in this example):

$sort <<end

>no one does anything about it
>everyone talks about the weather but
>end

and the following would be returned:
everyone talks about the weather but

no one does anything about it

PIPELINES AND FILTERS

The standard output of one command may be connected to the
standard input of another by using the pipe (|) operator
between commands as in

Is -1 | we

A sequence of one or more commands connected in this way
constitutes a pipeline, and the overall effect is the same as

Is -1 > file; we < file

except no file is used. Instead the two processes are connected
together by a pipe [see pipe(2)] and are run in parallel. Each

10-3



USING SHELL COMMANDS

command is run as a separate process.

Pipes allow one to execute several commands sequentially from
left to right with the standard output from each command
becoming the standard input of the next command. This
prevents creating temporary files and is faster than not using
pipes. Pipes are unidirectional. Synchronization is achieved by
halting we when there is nothing to read and halting 1s when
the pipe is full.

A filter is a command that reads its standard input, transforms
it in some way, and prints the result as output. One such filter,
grep(1), selects from its input those lines that contain some
specified string. For example,

Is | grep old

prints those lines that contain the string " old". Another filter
is the sort(1) command that gives alphabetical listings.

PERMISSION MODES

All UNIX system files have three independent attributes (often
called “permissions”), read, write, and execute (rwx). These
three permissions are assigned to three different levels of users.
The first level is the owner level. Normally, the creator of the
file is the owner. This ownership can be changed with the
chown(l) command. The second level is the group level. The
third level is the others level. The permission for each level
must be set to allow reading, writing, or executing a file.

The 1s command will display among other things the
permissions for a file when used as follows

Is -1 filename

10-4



USING SHELL COMMANDS

The general format of the permissions is
-I'WXTWXI'WX

where the first character will be a dash if it is an ordinary file.
The second, third and fourth characters (the first rwx)
indicate the permission modes for the owner. The fifth, sixth,
and seventh characters (the second rwx) indicate the
permission modes of the group. And the eighth, ninth, and
tenth characters (the last rwx) indicate the permission modes
of others. A dash in any permission mode position indicates
that the mode is not allowed.

For example, the input
Is -1 wg

displays the permissions of wg as follows:
-rwxr-x--- labe TUNIX 66 May 4 09:25 wg

In this case, the owner has read (r), write (w), and execute (x)
" permission, the group has read and execute permission, and all
others are denied (-) permission to wg.

The echmod(1) command is used by the owner to change the
permission modes of a file. To change the permissions of wg so
that everyone could execute the procedure, enter the following
command:

chmod 751 wg

which would result in a permission mode of rwxr-x--x. The 7
assigns the owner read, write, and execute permission [4 (read)
+ 2 (write) + 1 (execute) = 7]. The 5 assigns the group read

10-5



USING SHELL COMMANDS

and execute permission [4 (read) + 1 (execute) = 5]. The 1
assigns others execute permission.

The chmod command could also be entered as
chmod +x wg

which would add execute permission for owner, group, and all
others.

FILE NAME GENERATION

The shell provides a mechanism for generating a list of file
names that match a pattern. For example,

Is -1 *.¢

generates as arguments to 1s(1) all file names in the current
directory that end in .c. The character “*” is a pattern that
will match any string including the null string. In general,
patterns are specified as follows:

* Matches any string of characters
including the null string.

? Matches any single character.

[«] Matches any character enclosed. A pair
of characters separated by a minus will
match any character lexically between the
pair.

10-6



USING SHELL COMMANDS

For example,
Is -1 [a-z]*

matches all names in the current directory beginning with
letters a through z. The input

Is -1 /usr/fred/test/?

matches all names in the directory /usr/fred/test that consist
of a single character. This mechanism is useful both to save
typing and to select names according to some pattern.

There is one exception to the general rules given for patterns.
The character “.” at the start of a file name must be explicitly
matched. The input

echo *

prints all file names in the current directory not beginning with

{3

.”. The input
echo .*

prints all those file names that begin with “.”. This avoids
inadvertently matching the names “.” and “..” that mean “the
current directory” and “the parent directory,” respectively.
[Notice that 1s(1) suppresses information for the files “.” and

6
@

10-7



USING SHELL COMMANDS

QUOTING

Characters that have a special meaning to the shell, such as
<>* 7| &$;\" " []
are called metacharacters.

The shell can be inhibited from interpreting and acting upon
the special meaning assigned metacharacters by preceding them
with a backslash (\). Any character preceded by a \ loses its
special meaning. For example

echo *

prints all the file names in the current directory. To echo an
asterisk , enter

echo \*

The backslash turns off any special meaning of a
metacharacter.

To allow long strings to be continued over more than one line,
the sequence \newline (or RETURN) is ignored. The \ is
convenient for quoting single characters. When more than one
character needs quoting, the above mechanism is clumsy and
error prone. A string of characters may be quoted by enclosing
the string between single quotes. All characters enclosed
between a pair of single quote marks are quoted except for a
single quote. For example,

echo xx™****xx
will print

10-8



USING SHELL COMMANDS

XX****XX

The quoted string may not contain a single quote but may
contain new lines that are preserved. This quoting mechanism
is the simplest and is recommended for casual use.

EXECUTING COMMANDS IN THE
BACKGROUND

To execute a command, the shell normally creates a new
process and waits for it to finish. A command may be run
without waiting for it to finish. Executing commands in the
background enables the terminal to be used for other tasks.
Adding an ampersand (&) at the end of a command line before
the RETURN starts the execution of a command and
immediately returns to the shell command level. For example,

cc pgm.c &

calls the C compiler to compile the file pgm.c. The trailing “&”
is an operator that instructs the shell not to wait for the
command to finish. To help keep track of such a process, the
shell reports its process number following its creation. This
means the system will respond with a process number followed
by the primary shell prompt.

Determining Completion of Background Commands

When a command is executed in the background, a prompt is
not received when the command completes execution. The only
way to see that the command is either in process or complete is
to request process status. The status of all active processes
assigned to a user can be reported as follows

ps -u ulist

10-9



USING SHELL COMMANDS

where " ulist" is the login name. If the process number and
associated command name are output by the ps command, then
the command is running in the background. If the process
number and associated command name are not output by the
ps command, then the command has finished executing.

Terminating Background Commands

Once a command starts in the background, it will run until it is
finished or is stopped. The BREAK, RUBOUT, DELETE, or
other keys will not stop a command running in the background.
Instead, the process must be “killed” with the kill(1) command
as follows:

kill PID

where " PID" is the process identification number. The shell
variable $! contains the PID of the last process run in the
background and can be obtained as follows:

echo $!

All nonessential background processes can be stopped by
executing the following command:

kill 0

Some processes can ignore the software termination signal. To
stop these processes, enter the following:

kill -9 PID

A process running in the background is automatically killed
when the user logs out. The nohup(1) command can be used to
continue the process after logging off or hanging up. For
example,

10-10



USING SHELL COMMANDS

nohup nroff text &

would continue the formatting of the file text using the
nroff(1) formatter even if one logged off or the telephone line
to the computer went down. The system responds with the
lines:

28096
$ Sending output to nohup.out

The 28096 is the process ID number. A file nohup.out is
created by the nohup command, and all output of the process
is directed to this file. To redirect the output to a particular
file, use the redirect command as follows:

nohup nroff text & > formatted

to direct the output to the file formatted.

SHELL VARIABLES

A variable is a name representing a string value. (Loosely
defined, a string is a combination of one or more alphanumeric
characters or symbols.) Variables that are normally set on a
command line are called parameters. There are two types of
parameters in the shell —positional and keyword.

Positional Parameters

When a shell procedure is invoked, the shell implicitly creates
posittonal parameters. The shell assigns the positional
parameters as follows:

${0} ${1} ${2} ${3} ... ${9}

10-11



USING SHELL COMMANDS

Since the general form of a simple command is
cmd argl arg2 arg3 ...
then the values of the positional parameters are

cmd argl arg2 arg3 ... arg9
${0} ${1} ${2} ${3} ... ${9}

For instance, if the following command is entered
cmd templ temp2 temp3

then the positional parameter ${1} would have the value
templ. Notice that the command procedure name is always
assigned to ${0}.

The positional parameters are used often in shell programs. If
a shell program, wg, contained

who | grep $1

then the call to run the program
sh wg fred

is equivalent to
who | grep fred

The variable $* is a special shell parameter used to substitute
for all positional parameters except $0. Certain other similar
variables are used by the shell. The following are set by the
shell:

10-12



USING SHELL COMMANDS

$? The exit status (return code) of the last command
executed as a decimal string. Most commands return
a zero exit status if they complete successfully;
otherwise, a nonzero exit status is returned. Testing
the value of return codes is dealt with later under if
and while commands.

$# The number of positional parameters in decimal.

$$ The process number of this shell in decimal. Since
process numbers are different from all other existing
processes, this string is frequently used to generate
temporary file names. For example,

ps -a >/tmp/ps$$

rm /tmp/ps$$

$! The process number of the last process run in the
background (in decimal).

$— The current shell flags, such as —x and —v.

Keyword Parameters

The shell uses certain variables known as keyword parameters
for specific purposes. The following variables are discussed in
this portion of the document:

HOME
PATH
CDPATH
MAIL
PS1

pPS2

IFS
SHELL.

10-13



USING SHELL COMMANDS

HOME

The variable HOME is used by the shell as the default value
for the ed(1) command. Entering

cd
is equivalent to entering
cd $SHOME

where the value of HOME is substituted by the shell. If
SHOME=/d3/abc/def, then each of the above two entries would
be equivalent to

cd /d8/abe/def

Normally, HOME is initialized by login(l) to the login
directory. The value of HOME can be changed to /d3/abc/ghi
by entering the following

HOME=/d3/abc/ghi

No spaces are permitted. The change of the variable will have
no effect unless the value is exported [see export in Chapter
11 under “Special Commands” and in sh(l)]. All variables
(with their associated values) that are known to a command at
the beginning of execution of that command constitute its
environment. To change the environment to a new variable
setting, the following must be entered:

export variable-name

For instance, if HOME has been modified, then the command

10-14



USING SHELL COMMANDS

export HOME

will cause the environment to be modified accordingly. The
variable HOME need be exported only once. At login the next
time, the original variable settings will be reestablished. A
change to the .profile would modify the environment for each
new login.

PATH

The variable PATH is used by the shell to specify the
directories to be searched to find commands. Each directory
entry in the PATH variable is separated by a colon (:). Several
directories can be specified in the PATH variable but each
directory before the command is found consumes processor
time. Obviously, the directories that contain the most often
used commands should be specified first to reduce searching
time. The following is the default PATH value:

PATH=:/bin:/usr/bin

Since no value precedes the first :, then the current directory is
the first directory searched. Then directory /bin is searched
followed by /usr/bin. To change the PATH variable, simply
enter PATH= followed by the directories to be searched. Each
directory should be separated by a colon. As when changing all
variables, no spaces are allowed before or after the =.

CDPATH

The variable CDPATH specifies where the shell is to look
when it is searching for the argument of the c¢d command if
that argument is not null and does not begin with ../, ./, or /.
For example, if the CDPATH variable were

CDPATH=:/d3/abc/def:/d3/abc

10-15



USING SHELL COMMANDS

then the command
cd ghi

would cause the current directory, /d3/abc/def directory, and
/d3/abc directory to be searched for the subdirectory ghi. If
found in the /d8/abc/def directory, the full pathname of the
subdirectory would be printed and the current working
directory would be changed to /d3/abc/def/ghi.

MAIL

The shell looks at the file specified by the MAIL variable and
informs the user if there are any modifications.

PS1

The variable PS1 is used by the shell to specify the primary
shell prompt. This is displayed at a terminal whenever the
shell is awaiting a command input. The default primary
prompt is $. To change the prompt to <>, for example, the
following is entered:

PS1="<>"

pPS2

The variable PS2 is used by the shell to specify the secondary
shell prompt. This is displayed whenever the shell receives a
newline in its input but more is expected. The default value of
PS2 is >. To change the prompt to <more> for example, the
following is entered:

PS2=" <more>"

10-16



USING SHELL COMMANDS

IFS

The variable IF'S is used by the shell to specify the internal
field separators. Normally, the space, tab, and newline
characters are wused. After parameter and command
substitution, internal field separators are used to split the
results of substitution into distinet arguments where such
characters are found. Explicit null arguments (" " and “ ) are
retained.

User Defined Variables

A user variable can be defined using an assignment statement
of the form name=value. The name must begin with a letter or
underscore and may then consist of any sequence of letters,
digits, or underscores. The name is the variable. Positional
parameters cannot be in the name.

The shell provides string-valued variables. Variable names
begin with a letter and consist of letters, digits, and
underscores. Variables may be given values by entering

user=~fred box=m000 acct=mh000

to assign values to the variables user, box, and acct. A variable
may be set to the null string by entering

null=

The value of a variable is substituted by preceding its name
with §. For example,

echo $user

will print fred.

10-17



USING SHELL COMMANDS

Variables may be used interactively to provide abbreviations
for frequently used strings. For example,

b=/usr/fred/bin
mv file $b

moves the file from the current directory to the directory
Jusr/fred/bin. A more general notation is available for
parameter (or variable) substitution as in

echo ${user}
This is equivalent to
echo $user

and is used when the parameter name is followed by a letter or
digit. For example,

tmp=/tmp/ps
ps a >${tmp}a

directs the output of ps(1) to the file /tmp/psa, whereas,
ps a >$tmpa

causes the value of the variable tmpa to be substituted.

10-18



USING SHELL COMMANDS

SPECIAL COMMANDS

The following special commands are used in writing shell
procedures. Many of the commands are only needed when
programming. Others have nonprogramming uses.

read
. readonly
break return
continue set
cd shift
echo test
eval times
exec trap
exit type
export ulimit
hash umask
newgrp unset
pwd wait

The ones that are useful to the casual (nonprogramming) user
are described below.

cd

The ed command is used to change the current working
directory as follows:

cd [arg]
where arg specifies the new directory desired. For instance,
cd /d3/abe/ghi

moves the user from anywhere in the file system to the
directory /d3/abc/ghi. The full directory pathname must be
specified to be used in this way. Execute permissions must be

10-19



USING SHELL COMMANDS

set in the desired directory.

If only the desired directory name is specified and the
CDPATH variable is not set, then the current directory is
searched for a subdirectory by that name. For instance, if the
current directory /d3/abc contains a subdirectory subdir, then
the command

cd subdir

changes the current working directory to /d3/abc/subdir. If the
argument begins with ../, the current working directory is
changed relative to its parent directory. If the argument begins
with ./, the current directory value precedes additional
arguments. For instance, if the current working directory is
/d3/abe, the following command:

ed ./ghi
changes the current directory to /d3/abc/ghi.

If the variable CDPATH is set, the shell searches each
directory specified in CDPATH for the directory specified by
the e¢d command. If the directory is present, the directory
becomes the new working directory. (See “CDPATH” under
“Keyword Parameters.”)

exec

The command
exec [arg ...]

causes the command specified by arg to be executed in place of
the shell without creating a new process. Input/output
arguments may appear and, if no other arguments are given,

10-20



USING SHELL COMMANDS

cause the shell input/output to be modified.

newgrp

By issuing the command newgrp(1), the user is assigned a new
group identification. The command is of the form

newgrp [-] [group]

All access permissions are then evaluated with the new group.
This allows access to files with different group ID permissions.

Entering newgrp with no argument changes the group
identification back to the original group. When a — is entered,
the environment is changed to the login environment.

pwd

The pwd command prints the full pathname of the current
working directory. This command is especially useful when
working directories are changed often.

set

The set command provides the capability of altering several
aspects of the behavior of the shell by setting certain shell
flags. Some of the more useful flags for the nonprogrammer
and their meanings are:

-a Mark variables that are modified or created for
export.

-f Disable file name generation.

-v Print lines as they are read by the shell. The
commands on each input line are executed after that
input line is printed.

10-21



USING SHELL COMMANDS

-x Print commands and their arguments as they are
executed. This causes a trace of only those
commands that are actually executed.

To set the x flag for example, enter
set -x

To turn the x flag off for example, enter
set +x

These commands are especially useful for troubleshooting
within shell procedures.

The set command entered with no arguments will display the
values of variables in the environment.

ulimit

The ulimit command has the form
ulimit [-f] [n]

When the option -f is used or if no option is specified, this
command imposes a limit of % blocks on the size of files written
by the shell and its child processes. Any size files may be
read. If » is omitted, the current value of this limit is printed.
The default value for n varies from one installation to another.

10-22



USING SHELL COMMANDS

umask

The umask command has the form
umask [nnn]

The user file creation mask is set to nnn. This mask is used to
determine the permission modes set on a file when it is created.
For instance,

umask 033

causes a newly created file to be assigned the permission set of
744. (See “PERMISSION MODES.”)

RESTRICTED SHELL

A restricted shell is also available with the UNIX system.
This restricted version of shell is used to create an
environment that controls and limits the capabilities. The
actions of rsh are identical to those of sh, except that the
following are disallowed:

e Changing directory
o Setting the value of PATH variable
o Specifying path or command names containing /

¢ Redirecting output ( > and >> ).

The system administrator often sets up a directory of
commands that can be safely invoked by rsh. A restricted
editor may also be provided.

10-23



Chapter 11

SHELL PROGRAMMING

INTRODUCTION ... .. ittt it iiiieie e nnn
INVOKINGTHE SHELL . .......... .. i,

INPUT/OUTPUT . .t ittt itieiietiesienennsaneesnsnanss
Single Line . ... ... ... .00ttt tiinnnreenneennnnns
Printing Error Messages. .. ........cciitiireeneneenn
Multiline Input (Here Documents) ...................

SHELL VARIABLES ...... ...ttt iinienianannn.
CONDITIONAL SUBSTITUTION ........oitivniinininnnn..

CONTROL COMMANDS ... ittt it iiiiiennnnennnnas
Programming Constructs ...........c.coveeiuuneecns

SPECIAL COMMANDS ... ittt ittt tiananns
B (0747 1o 1 T e
Period) . ...t e e e i e e et
break .......c.iiiiiiiiiiiii i i i i et

readonly ....... i i i i i it
b o3 11 b o 1 Y



A COMMAND’S ENVIRONMENT ...
DEBUGGING SHELL PROCEDURES

......................



Chapter 11

SHELL PROGRAMMING

INTRODUCTION

This chapter describes shell as a programming language and
builds upon the information provided in Chapter 10. It is
expected that the reader has read Chapter 10 and has
experience with UNIX system commands.

INVOKING THE SHELL

The shell is an ordinary command and may be invoked in the
same way as other commands:

sh proc [ arg ... ]

sh —v proc [arg ... ]

proc [ arg ... ]

A new instance of the shell is
explicitly invoked to read proc.

This is equivalent to putting set
—v at the beginning of proc.
Similarly for other set flags
including x, e, u, and n flags.

If proc is marked executable, and
is not a compiled, executable
program, the effect is similar to
that of the sh proc [ args ... ]
command. An advantage of this
form is that proc may be found
by the search procedure.

11-1



SHELL PROGRAMMING

INPUT/OUTPUT

Unless redirected by a command inside the program, a shell
program uses the input and output connections of the shell
program. A redirection on a command changes redirection for
that command only.

Single Line

The following could be used to print a line from a program:

echo The date is:
date

and would result in:

The date is:
Tue May 21 16:13:38 EDT 1984

Printing Error Messages

Normally, error messages ai'e associated with file descriptor 2
and are sent to standard error. Error messages can be
redirected to a file with the following command:

sample 2>ERROR

If an error message is produced when running the program
sample, the error output is redirected to the file ERROR.

Multiline Input (Here Documents)

One way to input several lines to programs is with what is
referred to as “Here Documents.” The general form is

11-2



SHELL PROGRAMMING

emd argl arg?2 ... <<word

where everything entered at this command is accepted until
word is entered on a line by itself. For example,

sort <<finish

sends all the standard input to sort until finish is inputted.
Then the input would be sorted and output to the terminal. For
example

$ sort <<finish
> def

> abe

> finish

abe

def

Note that the primary system prompt ($) and the secondary
system prompt (>) are shown. The final two lines are returned
by the system.

The command
sort <<-word

removes all leading spaces or tabs.

SHELL VARIABLES

The shell has several mechanisms for creating variables. A
variable is a name representing a string value. Certain
variables are usually referred to as parameters. Parameters
are the variables normally set only on a command line. There
are also positional parameters and keyword parameters. Other

11-3



SHELL PROGRAMMING

variables are simply names to which the user or the shell itself
may assign string values.

Positional Parameters: When a shell procedure is invoked,
the shell implicitly creates positional parameters. T