
AFIPS
CONFERENCE
PROCEEDINGS

1982
NATIONAL
~

COMPUTER
CONFERENCE

June 7-10, 1982
Houston, Texas

The ideas and opinions expressed herein are solely those of the authors and are not
necessarily representative of or endorsed by the 1982 National Computer Confer­
ence or the American Federation of Information Processing Societies, Inc.

Library of Congress Catalog Card Number 80-649583
ISSN 0095-6880

ISBN 0-88283-035-X
AFIPS PRESS

1815 North Lynn Street
Arlington, Virginia 22209

© 1982 by AFIPS Press. Copying is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) reference to the AFIPS
Proceedings and notice of copyright are included on the first page. The title and
abstract may be used without further permission in computer-based and other
information-service systems. Permission to republish other excerpts should be

obtained from AFIPS Press.

Printed in the United States of America

Preface
RUSSELL K. BROWN

1982 NCC Chairman

The purpose of the National Computer Conference is to
provide an atmosphere in which designers, suppliers, users,
managers, educators, and representatives of government and
society at large can meet and interact. Discussions of new
technical developments, as well as national and international
issues and challenges facing the information processing com­
munity, are encouraged.

This year's discussions and developments are contained, for
the most part, in this anniversary Volume 51 of the Proceed­
ings of the National Computer Conference, completing its
first decade as the world's premier computer exposition.

The decision to chair a National Computer Conference may
well be one of the more major choices one makes in evert a
complicated lifetime. Certainly, this choice was compounded
by the change in site from New York to Houston, made only
thirteen months prior to the Conference date. Perhaps a few
words on that move are in order.

In spring 1981 the NCC Committee and Board were faced
with a dilemma of some magnitude. The Conference exhibits
had grown so large that plans to house them in New York
became unrealistic. To have held NCC '82 there would have
dictated a requirement to cut back the number of companies
exhibiting, the maximum exhibit size, or both. After much
arranging by the AFIPS staff, a plan was presented to use New
York to its absolute limits. To do this, we would have had to
split the show across the convention facility, some number of
hotel ballrooms, and a covered pier on the East River. Even
then, booth size would have had to be cut and the rather
spectacular island concept with which you are familiar in our
exhibit ~reas would have been affected severely.

As a long-time Houstonian, I was well aware of the poten­
tial abilities of my city to handle an NCC. In a very short time,
we were able to arrange the use of the Astrohall and Arena,
reserve 12,000 hotel rooms, and make other arrangements
necessary to effect !he move.

Naturally there were a few rough edges. Because of the
timing, we had to spread out our hotels much more than will
be the case when we return for NCC '84. But we feel that,
given less than half the normal preparatory time accorded

iii

most Conference Steering Committees, you will see few short­
cuts or shortcomings.

What you will see is a display of 650 companies filling 3,200
booth units for a new NCC record. You will be exposed to a
high-quality program, high-quality Professional Development
Seminars, four major invited addresses, a special Pioneer Day
program, and numerous other attractions that we feel will
make this a noteworthy week. It is the intention of the CSC
to give you, the attending registrant, all the positive values of
a move to our city and make any negatives as invisible as
possible.

An example of this is the expenditure of neady $200,000 for
busing to assist you in the various round trips between your
hotel and the Conference.

If I may return to our program, possibly I can elicit in you
a feeling of satisfaction to match the pride I feel. The program
is made permanent by the archival record of the Proceedings.
Here we capture for posterity the most current reports on
recent achievements and new applications, on advances at the
frontiers of computer science and technology.

Dr. Howard Morgan of the Wharton School was buffeted in
mid-preparation of this program and these Proceedings by the
move. Through all the personnel shuffling and turmoil, he
managed to steer a straight course toward a superior
presentation.

Howard recognized, early on, that the registrant has only
three days, on the average, to assimilate all aspects of an
NCC. His first decision was to direct that, with a superior
Professional Development Program together with ten football
fields of exhibits, the program as defined in the past be in­
tensely screened for shortcomings. His Committee introduced
a much finer mesh in their screen than has ever been used
before. The number of papers and sessions are down slightly
from what you have seen in previous NCCs, but we are con­
fident that their value to you will be high. We will be surprised
if you depart early from any of our sessions.

Volunteers, for a Conference of this magnitude, number in
the hundreds. They are members of the NCC Sponsoring
Societies and the other AFIPS Constituent Societies. To these

groups and their participating members I would like to give
my heartiest thanks, particularly in view of the truncated
schedules on which we were all operating.

To the NCC Board and Committee, who well knew the
danger to NeC '82 if plans were not well Oiganized, my thanks
for your confidence and support.

To the AFIPS Headquarters Staff and all the members of

iv

our CSC, thank you for your dedication, time, and effort. You
have contributed to an ongoing tradition of excellence.

To my wife, who only once asked, "Why?" but a hundred
times asked, "How can I help?" you know my thoughts.

And finally, to the nine NCe Chairmen of the past, thank
you for your assistance, guidance, and inventiveness. Much of
what you created is embodied here.

Introduction
HOWARD LEE MORGAN
1982 NCC Program Chairman

"Advancing Professionalism" is the theme for the 1982 Na­
tional Computer Conference. It is our belief that these Pro­
ceedings represent a contribution to the professionalism of
you who are reading them or those who attended the confer­
ence. The computing field now incorporates many types of
professionals: designers, analysts, programmers, managers,
and users of office and personal computing systems. Parts of
our program are aimed specifically at each of these types of
users. More important, we hope that people will integrate and
broaden their knowledge with the help of the wide spectrum
of sessions, panels, and papers presented, which cover all
major aspects of the computing field as we know it today.

With this theme as the base, the NCC '82 program has
been structured into eight major areas. These include the
following:

1. Hardware and computer architecture: providing more
power and newer structures than those that have been
traditional for hardware designers.

2. Software engineering: techniques to aid in the building
of correctly working and properly engineered software.

3. Personal computing: included this year for the first time
in the main NCC program and undergoing explosive
growth in both business and home use.

4. The social and organizational implications of computing:
this area indicates how totally computers now impinge
on our daily lives.

5. Office Systems: this area addresses the concerns of those
involved in the growing office automation environment.

6. Decision support and management issues: to aid those
whose job it is to manage computing or to provide ser­
vices directly to top executives.

7. Language and database processing: two key applications
systems tools.

8. Finally, the applications of computing themselves.

v

As a special feature, the history of computing and Pioneer
Day focus on FORTRAN and its early development. We are
fortunate to have several key papers in these Proceedings.

We have reduced the number of sessions this year to 86, as
opposed to the 105 to 120 of previous years. This has had
the favorable effect of permitting us to select and work with
higher average quality levels, but some worthwhile paper and
session proposals were not able to be included in the confer­
ence. We are sure that the panels and paper sessions in the
program provide detailed, high-quality presentations in their
specific areas. These Proceedings are organized according to
the areas of interest, as noted in the conference program. The
conference program contains a page number key to these
specific papers, for easy reference by attendants. Because
space is limited, summaries of the panel discussions are not
printed in these Proceedings; but they are available in the
conference guide.

The plan and organization of the 1982 NCC program re­
quired the concerted, dedicated, and extreme efforts of many
individuals: the Program Committee members; the session
organizers and leaders; the panelists, presenters, and authors
of technical papers; and the referees, who helped us select the
papers to be presented in these Proceedings. In addition, the
entire NCC committee structure and the staff organizations at
AFIPS have played an important role in the smooth operation
of the conference. The committee assistants, Fran~oise

Aubert-Santelli and Susan O'Leary, performed far beyond
the call of duty. I wish to extend my sincere thanks to all of
these individuals and most especially to our Program Commit­
tee. It is through their efforts that the NCC '82 program and
these Proceedings have come alive. It is our sincere hope that
your attendance at the program will prove a fruitful and enjoy­
able activity to those of you who were fortunate enough to
come and that these 1982 NCC Proceedings will join their
predecessors as a useful reference for many years.

CONTENTS

Preface ... " iii
Russell K. Brown

Introduction ... '.' v
Howard Lee Morgan

HARDWARE/COMPUTER ARCHITECTURE

Firmware quality assurance .. . 3
Helmut K. Berg, Prakash Rao, and Bruce D. Shriver

The 5.25-inch fixed/removable disk drive .. . 11
Don Minami

Practical CMOS microprocessor systems '" '" 19
Bill Huston

The MC68000 family and distributed processing .. . 29
John F. Stockton

Using operational standards to enhance system performance 37
David R. Vincent

Distributed processing with the Z8000 family 53
Richard Mateosian and Janak Pathak

Distributed processing with iAPX 186 microprocessor systems .. . 59
Tony Zingale

High-performance, high-capacity single-chip microcomputers 67
Ed Peatrowsky

Expanded single-chip principles in practical applications 73
Randy M. Dumse

Making the most of VLSI in microcomputers '" " 81
Jerry L. Corbin

Single-chip microcomputers can be easy to program 85
Bill Huston

Speak software and carry a strip chip .. . 95
Michael Shapiro

A distributed operating system for a powerful system with dynamic architecture 103
Steven I. Kartashev and Svetlana P. Kartashev

Software testing techniques for universal building blocks of multimicrosystems 117
M. Annaratone and M. G. Sami

A methodology for the development of special-purpose function architectures 125
Raymond A. Liuzzi and P. Bruce Berra

Applications of SIMD computers in signal processing 135
Laxmi N. Bhuyan and Dharma P. Agrawal

A list-processing-oriented data flow machine architecture .. . 143
Makoto Amamiya, Ryuzo Hasegawa, Osamu Nakamura, and Hirohide Mikami

vii

Lookahead networds .. . 153
G. Jack Lipovski, Ambuj Goyal, and Miroslaw Malek

Reconfigurable multicomputer networks for very fast real-time applications 167
Carl Davis, Svetlana P. Kartashev, and Steven I. Kartashev

MPP: a supersystem for satellite image processing .. . 185
Kenneth E. Batcher

Optimal design of a distributed supersystem .. . 193
David F. Palmer, James P. Ignizio, and Catherine M. Murphy

Distributed processing with the NS16000 family .. . 199
Leslie Kohn

SOFTWARE ENGINEERING

Exploiting parallelism for the performance enhancement of non-numeric applications 207
David J. Dewitt and Dina Friedland

Performance engineering of software systems: a case study 217
c. U. Smith and J. C. Browne

A systolic processor for signal processing .. . 225
G. A. Frank, E. M. Greenawalt, and A. V. Kulkarni

Parallel-processing a large scientific problem 233
Robert Hiromoto

Design of software for distributed/multiprocessor systems .. . 239
Terrence R. McKelvey and Dharma P. Agrawal

The use of performance models in systematic design .. . 251
K. M. Chandy, J. Misra, R. Berry, and D. Neuse

Performance modeling in the design process 257
William Alexander and Richard Brice

MEDOC: A methodology for designing and evaluating large-scale real-time systems 263
Eric Le Mer

The research queueing package: Past, present, and future 273
Charles H. Sauer, Edward A. MacNair, and James F. Kurose

Audience identification for end user documentation 281
Janis G. Raymond

Computer-aided documentation .. . 287
Saul Rosenberg

The development of software engineers: a view from a user .. . 293
Walter P. Warner and Richard E. Nance

An industrial software engineering methodology supported by an automated environment 301
Michael S. Deutsch

An approach to the definition and implementation of a software development environment 309
James F. Elwell

A JOVIAL programming support environment 319
Edith M. McMahon

The impact of Ada on software engineering .. . 327
Kenneth L. Bowles

The importance of Ada programming support environments 333
Thomas A. Standish

Challenges and requirements for new application generators 341
Alfonso F. Cardenas and William P. Grafton

viii

Program generators and their effect on programmer productivity 351
Richard L. Roth

Application generators at IBM 359
Aaron M. Goodman

Application generators: a case study .. . 363
James H. Waldrop

Requirements definition and its interface to the SARA design methodology for computer-based systems 369
James W. Winchester and Gerald Estrin

The role of requirements analysis in the system life cycle ... I ••••• 381
Yuzo Yamamoto, Richard V. Morris, Christopher Hartsough, and E. David Callender

Application generators: an introduction 389
Jerrold M. Grochow

Software product quality assurance .. . 393
John R. Ryan

A quality assurance program for software maintenance .. . 399
John W. Center .

The independent role: verification and validation, and compliance testing 409
Barbara J. Taute

Quality assurance in a large commercial data processing installation 415
c. W. Lybrook

PERSONAL COMPUTING

Data server design issues .. . 429
Fred Maryanski

SOCIAL AND ORGANIZATIONAL IMPLICATIONS

Acceptance criteria for computer security .. . 441
William Neugent

Private sector needs for trusted/secure computer systems : 449
Rein Turn

Impacts of information system vulnerabilities on society 461
Lance J. Hoffman

Uniform help facilities for a cooperative user interface .. . 469
Philip J. Hayes

Natural-language help in the Consul system .. . 475
William Mark

Programs as data for their help systems .. . 481
Elaine A. Rich

The implementation of a cryptography-based secure office system .. . 487
Christian Mueller-Schloer and Neal R. Wagner

Criteria for a standard command language based on data abstraction 493
David Beech

Integration of bottom-up and top-down contextual knowledge in text error correction 501
Sargur N. Srihari, Jonathan J. Hull, and Ramesh Choudhari

Dialogue: Providing total terminal independence 509
David Vaskevitch

The Star user interface: an overview .. . 515
David Canfield Smith, Charles Irby, Ralph Kimball, and Eric Harslem

ix

MFS: a modular text formatting system " " " .. " .. '" '" , . 529
James D. Mooney

MANAGEMENT ISSUESIDECISION SCIENCE SUPPORT SYSTEMS

Complex business systems: a strategy for success. 539
Naomi Lee Bloom

The role of the user at Standard Oil Company (Indiana) in the development of large-scale business systems. . . . 549
James E. Jackson

The role of data center personnel in the development of a large-scale business system. 555
David A. Cox

What life? What cycle? ... , 561
Nicholas Zvegintzov

LANGUAGE AND DATABASE PROCESSING

Data model processing . 571
Matthew B. Koll, W. Terry Hardgrave, and Sandra B. Salazar

Automatic database system conversion: schema revision, data translation,
and source-to-source program transformation 579

Ben Shneiderman and Glenn Thomas

Fair timestamp allocation in distributed systems . 589
Said K. Rahimi and William R. Franta

Data abstraction for Pascal programmers 595
Viswanathan Santhanam and John R. Potochnik

SPIRIT-III: an advanced relational database machine introducing a novel data-staging architecture
with Tuple Stream Filters to preprocess relational algebra .. 605

Noriyuki Kamibayashi and Kazuo Seo

Data language requirements of database machines. 617
Dawei Luo, Daozhong Xia, and S. Bing Yao

Performance analysis of database join processors . 627
Fu Tong and S. Bing Yao

Evaluating database management systems. 639
Edward Davidson

Performance study of a dual CDC Cyber 17on50 system 649
M. Seetha Lakshmi and Tom W. Keller

Computational lexicology: A research program. 657
Robert A. Amsler

Use of Webster's Seventh Collegiate Dictionary to construct a master hyphenation list. 665
James L. Peterson

Models, languages, and heuristics for distributed computing. 671
Robert E. Filman and Daniel P. Friedman

Weakest environment of communicating processes. 679
Zhou Chaochen

Adaptive structuring of distributed databases. 691
K. Dan Levin

Distributed scheduling of resources on interconnection networks .. 697
Benjamin W. Wah and Anthony Hicks

APPLICATIONS OF COMPUTING

A microcomputer system for color video picture processing. 713
Yoshikuni Okawa

x

The importance and futility of device independence in computer graphics. 719
Anders Vinberg

Optimal three-dimensional flight control of a supersonic fighter . 727
Ching-Fang Lin and Khai Li Hsu

Structured D-chart: A diagrammatic methodology in structured programming. 735
C. Jinshong Hwang

Planning for software tool implementation: experience with Schemacode 749
Pierre N. Robillard and Rejean Plamondon

Distributed processing of problem-solving applications for farmers. 759
Robert Gammill and Lynn Thorp

RIPS net: The impact of an optical communication network . 767
Koji Yada, Masanori Honda, and Seiji Fujino

A coherent scheme to support location-independent references in internetwork environment. 775
Ray Cheng and J. W. S. Liu

Issues and methods for practical distributed data processing applications-I ". 785
Maurice Blackman and Hugh Ryan

Issues and methods for practical distributed data processing applications-II. 793
Maurice Blackman and Hugh Ryan

PIONEER DAY

A technological review of the FORTRAN I compiler .. 805
F. E. Allen

Computing prior to FORTRAN . 811
R. W. Berner

History of FORTRAN standardization . 817
Martin N. Greenfield

DYSTAL: Nonnumeric applications of FORTRAN. 825
James M. Sakoda

xi

HARDWARE/COMPUTER
ARCIDTECTURE

Firmware quality assurance

by HELMUT K. BERG and PRAKASH RAO
Honeywell Corporate Computer Sciences Center
Bloomington, Minnesota

and

BRUCE D. SHRIVER
University of Southwestern Louisiana
Lafayette, Louisiana

ABSTRACT

The paper reviews problems, solutions, and trends in the area of firmware quality
assurance. Firmware quality assurance is considered to be the certification of the
fact that a firmware system meets its requirements with respect to functional cor­
rectness as well as performance, operational, and implementational properties. The
emphasis of the paper is on formal correctness proofs, firmware testing, and the
automatic synthesis of microcode and associated hardware structures. Firmware
specifications, high-level microprogramming languages, and automated support
tools are discussed as they relate to these areas. The impact of advances and trends
in very large-scale integration (VLSI) on the techniques and tools for firmware
quality assurance is reviewed. The observation is made that valuable results have
been obtained in the areas of firmware correctness proofs and firmware testing.
However, further improvements are needed to cope with the complexity of VLSI.
An alternative that may overcome the limitations of these two approaches is auto­
mated synthesis of firmware and hardware and design for testability.

3

A. INTRODUCTION

For products of any kind, assurance needs to be gained that
they meet their product requirements before they are dedi­
cated to serve their intended purpose. This need applies to
end-user or consumer products as well as to the individual
components to be integrated into such products. The product
requirements may be stated in a variety of forms, including
assessments of market needs, functional product specifica­
tions, and specifications of nonfunctional product attributes.
The form of these requirement statements changes as the
development of a product proceeds from the marketing prod­
uct definition through the product design and implementation
to the use and maintenance of the product. This process is
referred to as the product life cycle, and it comprises various
stages in each of which the ability of the product to meet its
requirements is established. These certification steps may be
summarized under the term quality assurance.

Ideally, firmware is developed and deployed in a life cycle
that includes the following steps. The development begins
with a step called requirements engineering. Given the pur­
pose of the system, this step identifies the functional require­
ments and attributes of the system. Nonprocedural design
formalizes these requirements and attributes in the form of
functional and property specifications. The procedural design
uses the specifications to produce "blueprints" for the imple­
mentation. The implementation step embodies the blueprints
in system modules and microprograms. The integration step
combines and tests the modules and microprograms so that
the assemblage results in an operational firmware system. In
the installation step, the firmware system is integrated into the
overall system and submitted to operation. Maintenance is
concerned with corrections and extensions to the operational
firmware.

Every step in the firmware life cycle is associated with an
appropriate validation step. For example, it needs to be dem­
onstrated that the requirements and attributes conform to the
statement of the purpose. The correspondence between re­
quirements and specifications needs to be demonstrated. Ob­
viously, it should be verified that each step in the development
process was conducted correctly.

The quality of the firmware refers not only to the functional
correctness of the integrated microprograms, but also to the
performance, operational, and implementational properties
of the system. Among the properties of a firmware system, we
may find execution time, object microprogram size, reli­
ability, robustness, and viability. Hence, firmware quality
assurance may be defined as the certification of the fact that
a firmware system meets its requirements in an optimal way.
In this definition, optimality is not assumed to be an absolute
measure. In fact, the ?ptimization of some of the firmware

Firmware Quality Assurance 5

properties listed above has been shown to be NP-hard. 1 Fur­
thermore, absolute functional correctness cannot be estab­
lished by testing, and formal correctness proof methods,
which theoretically have the aoility to demonstrate the ab­
sence of errors, have generally not reached the point of
being ,rigorously applicable in firmware development
environments. 2

The need for firmware quality assurance has been discussed
widely in the literature. The necessity for the verification of
functional correctness9 stems from two intrinsic characteristics
of firmware:

• microprograms control all native hardware resources.
Thus, microprogram errors result in an erroneous virtual
machine, and

• microprograms very often reside in read-only storage me­
dia. Thus, modifications and error corrections can be
both difficult and costly.

The need for the optimization of execution speed and ob­
ject microprogram size3 is dictated by the desire to

c realize faster and functionally more powerful machines,
with available technology, and

• obtain the extensive benefits of'high-level microprogram­
ming languages in the firmware development process.

The need for firmware quality assurance is intensified by
technological advances, most importantly by very-large-scale
integration (VLSI). 4 Hardware performing specialized func­
tions is being replaced by regular arrays of logic and memory.
The functionality of the firmware is changing from conven­
tional instruction set emulators to more extensive and power­
ful instruction sets, diagnostic programs, interpreters for high­
level languages, and operating system functions. In addition,
the integration of microprogrammed control schemes into
VLSI places more stringent requirements on tools and tech­
niques for firmware quality assurance, which cannot be met
by traditional microprogramming aids.

In summary, the major concerns in firmware quality assur­
ance are

• the specification of functions and properties of firmware
systems,

• the realization of correct and optimal microcode, to­
gether with appropriate hardware structures, and

• automated tools that aid the designer in exploring alter­
native designs and in keeping track of design and imple­
mentation details.

It is not possible in this paper to treat entire methodologies
and engineering environments for firmware development and

6 National Computer Conference, 1982

quality assurance. We restrict our attention to areas of formal
firmware correctness proofs, firmware testing, and the auto­
matic synthesis of microcode and associated hardware struc­
tures. Firmware specifications, high-level microprogramming
languages, and automated support tools are discussed only as
they relate to these areas.

B. VERIFICATION OF FIRMWARE

Firmware verification through formal correctness proofs is an
area of firmware engineering that received considerable atten­
tion over the last decade.6 Although several approaches to
firmware correctness proofs have been developed and demon­
strated, problems remain at all levels. Among these problems
are the development of appropriate theoretical foundations,
the definition of design disciplines that support correctness
proofs, tool support for correctness proofs, and the education
of users regarding formal techniques. Despite these problems
and the controversies surrounding formal correctness proofs
in general/ some workers report that no matter how ex­
pensive it is to find errors by firmware verification it is still a
magnitude cheaper than finding errors when a product is
shipped.8

,9 This section reviews firmware verification by sum­
marizing some efforts in the area, discussing their contribu­
tion to quality assurance, and indicating possibilities and lim­
itations in their use.

B.l Approaches to Firmware Verification

Approaches to firmware verification generally draw from
results obtained in software verification. 10 Given the current
state of the art, correctness proof processes are inherently
complex, and cannot be fully automated. Human interaction
with verification systems is required to suggest proof goals, to
partition proofs, and to interpret results obtained from the
proof system to direct the continuation of the proof process.

The STRUM systemll is an advanced verification system
that is based on Floyd's inductive assertion technique12 and
uses a Pascal-like high-level microprogramming language.
The automated proof process is integrated into the translation
process.

Another successfully applied verification system is the IBM
Microprogram Certification System (MCS).13 This system is
based on Milner's technique of the simulation between pro­
grams21 and the symbolic execution of programs. 22 A similar
approach is being pursued at the Information Science Institute
of the University of Southern California. 23 The MCS ap­
proach considers both the description of the host system on
which the microcode is to run and of the target system that is
being emulated by the microcode. The verification system
accepts the host microcode and its specification, including
proof commands, to establish the equivalence of both firm­
ware definitions by symbolic execution and the proof of simu­
lation relations.

A third approach that has received considerable attention is
the microprogramming language schema S * .24 This approach
defines an axiomatic basis for microprogramming similar to
Hoare's axiomatic definition of programming languages.25

The axiomatic basis is a set of schemas that define the seman-

tics of a Pascal-like microprogramming language. These sche­
mas constitute the axioms and inference rules of a deductive
system in which formal correctness proofs can be carried out
using the defined logical inferences. For each particular ma­
chine, the schematic semantic definitions can be insta.'ltiated
to capture the machine-dependencies influencing the execu­
tion of the firmware on that machine. Thus, after the instanti­
ation, the microprogrammer works with a machine-depen­
dent, but high-level, axiomatic proof system.

For a survey of other approaches to firmware verification,
the reader is referred to Davidson and Shriver (1980).6

B.2 Status of Firmware Verification

Successful application of firmware correctness proofs has
established firmware verification as a viable approach to firm­
ware quality assurance. Two major observations need to be
made, however. First, correctness proofs are complex in na­
ture; thus the verification process needs to be incorporated
into an overall firmware engineering discipline that is suppor­
tive of correctness proofs; additionally, the proof process it­
self needs to be supported by automated tools. Second, qual­
ity assurance is not restricted to the functional correctness of
firmware, but is also concerned with execution time and
memory efficiency of the executable code- as well as with the
reliability of firmware systems in general. Thus, verification
approaches need to be developed based on high-level micro­
programming languages that facilitate abstract representa­
tions of firmware systems and allow code optimization. It is
imperative that the user be able to understand what the sys­
tem is supposed to do.

The systems described above partially satisfy these require­
ments. The STRUM system has been applied to the develop­
ment of the emulator for the Hewlett-Packard HP-2115. 11

Besides the verification of the microcode written in the high­
level language, the resulting code could be optimized to match
an independently generated, hand-optimized version of the
same microcode. The success of the microcode verification
system used for the Fault-Tolerant Spaceborne Computer
(FTSC) is partially due to the guiding principle of that proj­
ect. 23 It concentrates on the practical side of the verification
problem, solving the theoretical problems as they arise. Em­
phasis is placed on ways of making the user understand what
the system is doing and writing the microcode with the sub­
sequent verification in mind. The FTSC project is explicitly
seeking an approach to a disciplined firmware design and
development process. Additionally, software engineering ap­
proaches can be enhanced further for the production of more
reliable microcode. For example, techniques such as code
inspections, walk-throughs, or step-wise refinement may be
integrated into the firmware engineering discipline.

In summary, languages and quality assurance techniques
are needed that help the microprogrammer with machine de­
pendent problems such as microparallelism, microcode opti­
mization, and the variability in computer micro-architectures,
on the one hand, and support abstract representations of firm­
ware systems, on the other hand. Progress made toward these
seemingly conflicting goals is best reflected by high-level mi­
croprogramming languages such as MPL,z6 STRUM, 11

EMPL,27 VMPL,28 and S * .24 Most of these languages effec­
tively attack the problem of code optimization,3 but problems
remain in the area of verification.

B.3 Summary

Limitations in firmware verification techniques result from
several fundamental weaknesses of the proposed approaches.
The weaknesses include the inadequate specification of the
timing characteristics of the control flow in semantic defini­
tions of microinstructions. Furthermore, the deductive sys­
tems (i.e., the set of available logical inferences) for carrying
out firmware correctness proofs are not related closely
enough to the characteristics of the underlying hardware.
These weaknesses limit the practicality of firmware cor­
rectness proofs even for moderately sized microprograms.
The inclusion of parallelism, synchronization, and microin­
struction execution subcycles will considerably increase the
complexity of the correctness proof. Powerful interactive ca­
pabilities may mitigate this deficiency of verification systems.
Correctness proof techniques need to acquire conceptual
foundations that bridge the gap between high-level machine­
independent firmware representations and specific micro­
program running environments, in order to cope with the
firmware complexity anticipated for VLSI.

Several approaches to the solution of this problem have
been proposed. These approaches require that the firmware
quality assurance process be carried out in a high-Ievel­
language environment in which mappings to machine specific
environments can be automated. The approaches include
axiomatization of the running environment,24,3o explicit de­
scriptions of the microprogram running environment,23,31 and
machine virtualization,z8,32 Although most of these ap­
proaches still need to be demonstrated for problems of the
scope anticipated for VLSI, it is certain that they will be viable
alternatives to firmware verification only if they are supported
by sophisticated tools that automate design, coding and
verification.

C. TESTING OF FIRMWARE

Firmware testing is the assurance of firmware functionality for
a specified set of input values. By definition, then, firmware
testing does not necessarily assure functional correctness for
all legitimate input values and is not as strong an argument
about the correctness of microprograms as that provided by
formal correctness proofs. Under the restriction imposed by
the absence of sufficiently versatile verification methods,
firmware testing is one of the alternatives available for assur­
ing the quality of firmware. 5,2

Firmware testing has traditionally been viewed as an exten­
sion to the testing of software. 2 With the impact of VLSI, it is
no longer possible to separate the functionality of the under­
lying hardware from the microprograms that control it. 4 The
increasing degree of integration of microprograms with their
hardware environm~nt also requires a unified approach to the
design of the firmware and its supporting hardware. This de­
sign approach, called "design for testability,,,33 incorporates
the important concept of testability directly into the synthesis

Firmware Quality Assurance 7

procedure and thereby enhances the assurance of firmware
system quality. The discussion of design for testability is de­
ferred to the next section.

C.l Firmware Testing

Microprogram testing has been addressed by Berg.2 Formal
techniques of firmware testing and test data selection have
been specified. Three levels of microprogram testing have
been identified. These are

• Tests at the microprogram level that consider complete
microprograms by either analyzing their code or investi­
gating the machine states resulting from their execution.

• Tests at the microinstruction level that consider single
microinstructions by either analyzing the assignment of
micro-operations to them or investigating the machine
states resulting from their execution.

• Tests at the micro-operation level that consider individ­
ual micro-operations by monitoring their execution.

An error detected at the microprogram level may be caused
by any number of faulty microinstructions or micro-opera­
tions in the microprogram. The manifestation of such errors
is defined by the identification of a set of faulty microin­
structions and micro-operations. To identify faulty microin­
structions or micro-operations in an erroneous micropro­
gram, tests at the microinstruction level may be necessary. An
error detected at the microinstruction level is located if the set
of faulty micro-operations in the microinstruction can be
identified.

The selection of tests and test data for firmware testing at
each of these three levels is based on the methods described
by Goodenough and Gerhart. s The basis for correct function
is the program specification. The method distinguishes be­
tween test data and test predicates.

C.2 Hardware Testing

Hardware testing has traditionally been viewed in isolation,
despite increasing trends towards the implementation of sys­
tems as microprogrammed control structures. With the inte­
gration of hardware and firmware in VLSI a major problem is
the diminishing observability and controllability of the hard­
ware due to pin limitations. Hardware testing will therefore
entirely devolve on the micro-operations that it supports. As
a consequence, hardware must be tested at the register trans­
fer level, where a description of the system is specified in
terms of the hardware resources and their interconnection.
This requirement necessitates that the degree of encoding of
microinstructions be restricted to keep testability as an objec­
tive during the design process.

A significant step toward the testing of hardware through
the microprogramming level and the implementation of ser­
viceability features was taken during the design of the IBM
Systeml360 as reported in Carter et al. (1964).14

Hardware test strategies for microprogrammed units use a
partitioning of the unit into an operative part and a control
part.18 The operative part consists of the hardware resources

8 National Computer Conference, 1982

and the control part of the algorithms for their operation and
sequencing. A methodology for generating an internal micro­
program to test a microprogrammed unit is described by
Ciaramella. 19 The dynamic testing of control units has been
reported by Robach and Saucier. 38

Identification of the control and operative parts of the sys­
tem is performed from a behavioral description of the system
hardware function. This description can be given using a high­
level design language such as a register-transfer language
(RTL) or a multiple-level design language such as LALSD­
Language for Automated Logic and System Design16-or
SIMPL (Simple Identity Microprogramming Language).17
Techniques for generating tests from such behavioral descrip­
tions are mentioned by Su and Hsieh20 and Levendel and
Menon. 15 The area of behavioral-level testing of digital sys­
tems is still in a period of evolution. This problem is further
complicated by the fact that hardware access is limited to the
microprogramming level. Techniques for the development of
hardware support functions needed for firmware system qual­
ity assurance still need to be formalized. The evolution of
abstract fault models at the behavioral level will be of great
assistance in the development of test-generation algorithms
for testing microprogrammed units. Developments in this
direction have been started in the area of microprocessor
testing.37

C.3 Summary

The problem of firmware testing can be divided into two
subtasks: the testing of microprograms and the testing of the
underlying hardware. The problem of microprogram testing is
addressed by borrowing concepts from software testing. Ap­
proaches to hardware testing using a high-level description of
the hardware resources and their interconnection is still in its
infancy. This problem will be increasingly aggravated as more
and more firmware systems are implemeted in VLSI.

D. AUTOMATED SYNTHESIS AND
DESIGN FOR TESTABILITY

In this section, we take a look at the future growth of firmware
and microprogrammed systems and highlight issues of test­
ability that arise owing to the increased complexity and the
reduced access to the hardware as dictated by the restricted
pin count.

D.l Characteristics of the Design Environment

The future of microprogramming will be greatly affected by
the characteristics of VLSI design. With the cost advantage
and support of design tools for fast turnaround, single-chip
designs in VLSI will become increasingly common. Complex
structures such as parallel architectures will be designed rou­
tinely using sophisticated design aids for hardware and micro­
code.4 Trends in the development of high level microprogram­
ming languages as described in Section B contribute to this
development. The microprogram verification problem has
therefore been brought closer to a solution in terms of facili­
ties for looking at analogs in the software field.

The migration of microprogrammed control units of very
high complexity into VLSI brings in all the problems that
VLSI designers of digital systems have been facing. The in­
crease in complexity, the choice of design styles, architec­
tures, and implementation technologies provide a design envi­
ronment in which a numbei of tradeoffs have to be made
between several objectives. The most important of these ob­
jectives are

• to minimize cost by minimizing silicon area and pin
count,

• to maximize performance in terms of speed,
• to increase chip functionality by providing more powerful

instructions,
• to increase chip fault tolerance,
• to provide an enhanced user interface,
• to achieve reasonably fast design turnaround time and

minimize design costs, and
• to minimize power consumption.

Usually, a tradeoff is made between economy of silicon area
and performance, fault tolerance, ease of use, and design
turnaround time. This often implies that fault tolerance has to
be traded off for real estate on silicon. Thus, there is a need
for building fault tolerance into the design itself and to min­
imize the overhead that caused the tradeoff for real estate.
Specific design rules that aid the testability of VLSI must be
developed.

With the increase in complexity and with the design prob­
lem constrained to be an optimization of multiple objectives,
designers of the future will have no other alternative but to
employ automated tools. To be viable, these tools must aid in
the design of the microcode as well as in the synthesis of the
hardware implementing the design specification. The need for
quality assurance, therefore, dictates the requirement that
these tools have testability as an objective.

Research in microprogram design aids has been classified
into three classes:4

• microcode verification
• microcode generation from a high level language
• synthesis of microcode and micro controller hardware

from high-level specifications.

These research areas have been dealt with in the litera­
ture. ll ,34,35,36

D.2 Testability and Automated
Hardware/Firmware Synthesis

Automated synthesis has been attempted with varying de­
grees of success. The MIMOLA system36 provides interaction
between user and system. It generates microcode based on the
input of user-declared data paths and hardware resources.
Hardware measures are provided to aid in monitoring the
efficiency of the design and to identify critical paths. The
designer interactively varies hardware restrictions to satisfy
the performance and cost requirements. There is no design for
testability built into the generation procedure for microcode.

The microcode generated has a degree of encoding restricted
to function-select lines and multiplexers.

The problem of providing adequate testability may be ad­
dressed at two levels by

• incorporating design for testability at the structural or
implementation level of description when the logic is be­
ing committed; or by

• incorporating design for testability techniques at the be­
havioral or specification level.

Traditional methods of design for testability have taken the
first approach. At the implementation level, additional hard­
ware is provided to enable the input of test patterns and the
breaking of feed-back loops. The latter reduces the testing
problem to the more tractable task of testing combinatorial
circuits. An extensive survey of design for testability methods
of this type is reported in the literature. 33 In this approach,
design rules are formulated with design edicts laid down to
ensure that access for testability is provided.

The incorporation of design for testability at the behavioral
or specification level is relatively new and results of a substan­
tial nature are yet to be reported. In this approach, testability
is incorporated into the synthesis procedure as an objective.
The design of the micro-operation and microinstruction struc­
tures and the generation of microprograms is conducted with
the testability of the registers and functional units in mind.
Inaccessible registers are not permitted and the length limita­
tion on the longest checking sequence needed to test func­
tionality in functional blocks and registers is one of the con­
straints in the synthesis procedure.

D.3 Summary

We conclude that there is a future trend toward single-chip
implementation of firmware systems bringing with it the use
of automated-synthesis tools and microprogram-design aids.
There is a need to build testability into the synthesis pro­
cedure at a high level in the design process. There is consid­
erable need for further research in this area. Until substantial
results have been obtained designers will continue to use the
conventional techniques of utilizing additional hardware over­
head to provide adequate testability.

REFERENCES

1. Robertson, E. L.. "Microcode Bit Optimization Is NP-Hard", SIGMICRO
Newsletter, Vol. 8, 1977, pp. 40-43.

2. Berg, H. K. "Firmware Testing and Test Data Selection", Proceedings of
the 1981 National Computer Conference, Vol. 50 AFIPS Press, Arlington,
Va., 1981, pp. 75-80.

3. Landskov, D.; S. Davidson, B. Shriver, P. W. Mallett. "Local Microcode
Compaction Techniques," Computing Surveys, Vol. 12, No.3, 1980, pp.
261-294.

4. Parker, A. C., W. T. Wilner. "Microprogramming-The Challenge of
VLSI," Proceedings of the 1981 National Computer Conference, Vol. 50,
AFIPS Press, Arlington, Va., 1981, pp. 63-68.

5. Goodenough, J. B., S. L. Gerhart. "Toward a Theorv of Test Data
Selection" IEEE Transactions on Software Engineering, Voi. 1, No.2, 1975,
pp.20-37.

6. Davidson, S., B. D. Shriver. "Firmware Engineering: An Extensive Up­
date," in Firmware, Microprogramming and Restructurable Hardware.
North-Holland Publ. Co., New York, 1980, pp." 1-40.

Firmware Quality Assurance 9

7. DeMilIo, R. A., R. J. Lipton, and A. J. Perlis. "Social Processes and Proofs
of Theorems and Programs," Communications of the ACM, Vol. 22, No.5.,
1979, pp. 271-280.

8. Husson, S. S. (panel chairman). "Microcode Verification-Summary of the
Panel Discussion," in Firmware, Microprogramming and Restructurable
Hardware, North-Holland Pub!. Co!., New York, 1980, pp. 105.

9. Carter, W. c., "Microcode Verification," Presentation in the Session on
Microprogramming-The Challenge of the 1980's, 1981 National Com­
puter Conference, Chicago, II.

10. Berg, H. K., W. E. Boebert, W. R. Franta, and T. G. Moher. Formal
Methods of Program Verification and Specification, Prentice-Hall, Engle­
wood Cliffs, N.J., 1982.

11. Patterson, D. A. "STRUM: Structured Microprogramming System for Cor­
rect Firmware," IEEE Transactions on Computers, Vol. 25, No. 10, 1976,
pp. 974-986.

12. Floyd, R. W. "Assigning Meaning to Programs," Proceedings of Symposia
in Applied Mathematics, American Mathematical Society, Vol. 19, 1967,
pp.19-32.

13. Joyner, W. H., W. C. Carter, and G. B. Leeman. "Automated Proofs of
Microprogram Correctness," SIGMICRO Newsletter, Vol. 7, No.3, 1976,
pp.51-55.

14. Carter, W. c., H. C. Montgomery, R. J. Preiss, and H. J. Reinheimer.
"Design of Serviceability Feature for the IBM SystemJ360," IBM Journal,
1964, pp. 115-126.

15. Levendel, Y. H., and P. R. Menon. "Test Generation Algorithm for Non­
procedural Hardware Description Languages", IEEE FTCS-ll, 1981, pp.
200-105.

16. Su, S. Y. H., and C. L. Huang. "A Multi-Level Hardware Design Language
LALSD II and its Translator," Proceedings of the 1981 International Sym­
posium on CHDL's and Their Application, 1981.

17. Tsuchiya, M., and L. V. Ramamoorthy. "Design of a Multi-Level Micro­
programmable Computer and a High-Level Microprogramming Lan­
guage," University of Texas at Austin, Tech. Report 135, 1972.

18. Hill, F. J., and B. Hueg. "SCIRTISS: A Search System for Sequential
Circuit Test Sequences," IEEE Transactions on Computers, Vol. C-26, No.
5, 1977, pp. 490-502.

19. Ciaramella, A. "Testing of Microprogrammed Units," IEEE FTCS-9, 1979,
pp. 161-163.

20. Su, S. Y. M., and Yu-I Hsieh. "Testing Functional Faults in Digital Systems
Described by Register Transfer Language," 1981 IEEE Test Conference,
1981, pp. 433-439.

21. Milner, R. "An Algebraic Definition of Simulation between Programs,"
Proceedings of the 2nd International Joint Conference on Artificial Intel­
ligence, 1971, pp. 481-489.

22. Darringer, J. A., and J. C. King, "Application of Symbolic Execution to
Program Testing," Computer, Vo!' 11, No.4, 1978, pp. 51--60.

23. Crocker, S. D., L. Marcus, and D. van-Mierop. "The lSI Microcode Veri­
fication System," Firmware, Microprogramming and Restructurable Hard­
ware, North-Holland Publ. Co., New York, 1980, pp. 89-103.

24. Dasgupta, S. "Some Implications of Programming Methodology for Micro­
programming Language Design," Firmware, Microprogramming and Res­
tructurable Hardw.are, North-Holland Publ. Co., New York, 1980, pp.
243-252.

25. Hoare, C. A. R. "An Axiomatic Basis for Computer Programming," Com­
munications of the ACM, Vol. 12, No. 10, 1969, pp. 576--583.

26. Eckhouse, R. H. "A High Level Microprogramming Language (MPL),"
Proceedings of the 1971 Spring Joint Computer Conference, AFIPS Press,
Arlington Virginia, 1971.

27. Dewitt, D. J. "Extensibility-A New Approach for Designing Machine
Independent Microprogramming Languages," SIGMICRO Newsletter,
Vol. 7, No.3, 1976, pp. 33-41.

28. Malik, K., and T. G. Lewis. "Design Objectives for High-Level Micropro­
gramming Languages," SIGMICRO Newsletter, Vol. 9, No.4, 1978, pp.
154-160.

29. Carter, W. c.; W. H. Joyner, and D. Brand. "Microprogram Verification
Considered Necessary," Proceedings of the 1978 National Computer Con­
ference, AFIPS Press, Arlington, Virginia, 1978, pp. 657-664.

30. Berg, H. K., and W. R. Franta. "Firmware Engineering: Critical Remarks
and a Proposed Strategy," Firmware, Microprogramming and Restructur­
able Hardware, North-Holland Pub!. Co., New York, 1980, pp. 41-64.

31. Richter, L. "High-Level Language Extensions for Micro-Code Generation
and Verification," Firmware, Microprogramming and Restructurable Hard­
ware, North-Holland Pub!. Co., New York, 1980, pp. 233-242.

10 National Computer Conference, 1982

32. Davidson, S., and B. D. Shriver. "MARBLE: A High Level Machine
Independent Language for Microprogramming," Firmware, Micropro­
gramming and Restructurable Hardware, North-Holland Publ. Co., New
York, 1980, pp. 253-266.

33. Williams, T. W. and K. P. Parker. "Design for Testability-A Survey,"
IEEE Transactions on Computers Vol. C-31; No, 1; 1982; pp. 2-15.

34. Marwedel, P. "A Retargetable Microcode Generation System for a High­
Level Microprogramming Language," SIGMICRO Newsletter, Vol. 12, No.
4, 1981, pp. 115-123.

35. Van Mierop, D., S. Crocker, and L. Marcus. "Verification of the FISC
Microprogram," SIGMICRO Newsletter, Vol. 9, No.4, 1978, pp. 118.

36. Zimmermann, G. "The MIMOLA Design System: A Computer Aided
Digital Processor Design Method" Proceedings of the 16th Design Auto­
mation Conference, 1979, pp. 53-58.

37. Thatte, S. M. and J. A. Abraham. "Test Generation for Microprocessors,"
IEEE Transactions on Computers, Vol. C-29 (1980), pp. 429-441.

38. Robach, c., and G. Saucier. "Dynamic Testing of Control Units," IEEE
Trans. on Computers, Vol. C-27, July 1978, pp. 617-623.

The 5.25-inch fixed/removable disk drive

by DON M. MINAMI
DMA Systems Corporation
Santa Barbara, California

ABSTRACT

The fixed/removable 5.25-inch Winchester drive provides combined computer pe­
ripheral support functions, such as mass storage, input/output, and backup. The
13.5-MByte total capacity (6.75 MBytes fixed/6.75 MBytes removable) is packaged
in a unit about the size of a shoebox.

Reliability has been the major factor in determining the design parameters of the
fixed/removable drive. Not only has Winchester reliability been enhanced, but
preventive maintenance has been eliminated.

11

INTRODUCTION

Reliable mass storage at a relatively low cost is the driving
force behind the trend toward increased use of Winchester
disk technology for small computer systems. Although the
conventional Winchester drive offers high reliability due to its
nonremovable media, it requires some form of data file back­
up. One solution is to use a tape drive for backup; this allows
adequate backup storage capacity, but it is too slow and not
form-factored for many small computer systems. Another
solution is to use a flexible disk drive, but it does not provide
sufficient mass-storage capacity without resorting to multiple
diskettes.

A better solution is a Winchester disk drive for both fixed
and removable media in a single unit that provides mass stor­
age, input/output, and backup. The 5.25-inch Micro-Magnum
5/5 (see Figure 1) from DMA Systems is the first such drive

Figure I-Micro-magnum 5/5

with a fixed disk and a removable disk cartridge built to the
proposed ANSI standard. The Micro-Magnum 5/5 offers sig­
nificant -reliability and performance advantages which include
the following:

1. No preventive maintenance or head alignment required
2. Heads retracted from the media surface, thus preventing

damage
3. The necessity of external backup devices and their con­

trollers is eliminated
4. Reduced space and power requirements

The 5.25-Inch Fixed/Removable Disk Drive 13

5. Faster backup time because of a higher disk transfer rate
6. Reduced component count
7. Reduced overall system cost

The origin of the Micro-Magnum 5/5 and the product design
specifications were derived from a market survey. This survey
included inputs from system manufacturers, system integra­
tors, component suppliers, and computer industry consul­
tants. The result of this survey was a product specification
which emphasized reliability in terms of product life, data
integrity, data interchange, and freedom from preventive
maintenance.

GENERAL SPECIFICATIONS

The Micro-Magnum 5/5 is designed with 6.75 MBytes (5.0
formatted) fixed and 6.75 MBytes (5.0 formatted) removable.
The drive uses an ANSI-proposed 5.25-inch removable disk
cartridge (see Figure 2) with 5.0 MBytes of formatted data.
The front panel face is 3.25 inches high by 5.75 inches wide,
which is typical of 5.25-inch Winchester drives.

The 5 MBytes per disk formats 306 tracks with 33 sectors

Figure 2-Micro-magnum cartridge compared to the traditional
I4-inch disk cartridge

14 National Computer Conference, 1982

(one spare sector) and 256-byte sectors on each surface. The
recording density is 8600 fci using MFM encoding, and the
track density is 450 tpi.

TRACK FOLLOWING

Accurate and repeatable positioning of the read/write heads is
a necessity in the fixed/removable drive in order to maintain
data interchangeability. The primary complication is the re­
movable cartridge being used as a means for data interchange
and transportability.

The drive, in conjunction with the disk cartridge, must
allow for mistracking errors, cartridge registration errors,
temperature gradients, spindle runout, and head-track width
tolerances. This mechanical error budget requires a track­
following system which will compensate for these variations.
The elimination of precise head alignment is also as impor­
tant; the market survey indicated that any such field mainte­
nance procedures would not be tolerated.

To overcome the errors due to thermal expansion, the prob­
lems of cartridge interchange, and the elimination of field
maintenance, embedded servo positioning was selected for
the Micro-Magnum 5/5. Embedded servo data (see Figure 3)
is prerecorded during the manufacturing of the drive and the
cartridge, and it is contained in the 26 bytes at the start of each
sector. The embedded servo format has been submitted to
ANSI for standardization. (A copy of the proposed servo
format can be obtained by contacting DMA Systems or
ANSI.)

Tra ck 101

Tra ck 100

Tra ck 99

Sector II ndex
And Timing

Field

Embedded
Servo
Data

Coarse
Position

(Track
Number)

I
------)~~IH~r--- (User) Track

Data

B
f--

A
r---

B
I--

L..---
A

I "" Position

Figure 3-Embedded servo data

Embedded servo positioning is a two-step process. First,
course positioning allows the proper track to be located; sec­
ond, the fine positioning locates the read/write over the center
of the desired track. As the desired track is being sought,
the course-positioning process is activated. The course­
positioning process uses a Gray code for each track number
and is prerecorded as part of a 26-byte servo format. As the
desired track is approached, within half a track, fine posi­
tioning takes over. Prerecorded signal segments A and B (see
Figure 3) define the fine-positioning servo bursts. The edges
of A and B are along the centerline of the tracks, so that a
head centered exactly on a track will read equal amplitudes

from both segments. If the head is off-center, one amplitude
will read higher and the other, lower. The difference is de­
tected and used as an error signal to drive a linear motor
positioner to seek a zero error to maintain the proper track
centerline position.

LINEAR MOTOR

The linear motor, in conjunction with the embedded servo
track-following system, provides not only fast access time (40
msec average) but also reliability. Figure 4 shows the Micro­
Magnum 5/5 linear motor positioner assembly.

Figure 4-Carriage head and linear motor

The reliability features of the linear motor positioner are
the following:

1. The heads are allowed to be fully retracted off the disk
surface and latched into position inside the drive.

2. Contamination control is improved due to the smaller
cartridge and drive-door openings.

3. Head gaps move in a radial line, giving the best possible
tolerance for cartridge interchange.

4. The structural resonance is better controlled.
5. Manufacturing of the head-carriage assembly is sim­

plified.

HEAD-MEDIA CONTACT

Two problems can result from head-media contact; the head
and/or the media surface can be damaged. Therefore, optimal
data reliability can only be obtained by making it impossible
for the head to ever make contact with the media. In the
Micro-Magnum drive, the heads are never allowed to make
contact with the disk. This is achieved by a patented head
design (see Figure 5) which allows a Winchester air bearing to
be loaded dynamically onto a spinning disk. (Forty-thousand
load/unloads have been successfully completed with no dam­
age to head or media.) The heads are also retracted com­
pletely off the media when the drive is shut down.

Reliability is significantly enhanced using a dynamic load/
unload head design. Avoided are reliability compromises that
exist with typical Winchester drives, which allow heads to

Figure 5-DMA systems composite head assembly

start/stop on the media. Eliminated problems are the follow­
ing:

1. The heads wringing onto the media
2. The heads landing on top of contaminants even after a

purge cycle
3. Heads and/or media being damaged during transit, dur­

ing shipment, or when the system is transported from
one desk top to another

CONTAMINATION CONTROL

In typical office environments, contaminants such as smoke
and dust can cause severe damage to the heads and media.
Contamination control is therefore a very important reliability
consideration. Figure 6 shows the Micro-Magnum's high­
capacity closed-loop air system.

Figure ~losed-Ioop air filtration

ClMb.
SYSTEMS

~
RECIRCULATING SYSTEM

The closed-loop air filtration system is designed so that an
impeller generates sufficient system air flow to move a volume
of air through the recirculating filter once per second. (The

The 5.25-Inch Fixed/Removable Disk Drive 15

filter has a design life of five years, with no filter change
required in a normal office environment.) During a purge
cycle, this allows efficient removal of contaminants that may
have been introduced during the cartridge insertion.

The Micro-Magnum 5/5 drive, as well as the cartridge, have
self-sealing doors to preclude contaminants from entering
their respective compartments. The drive has a door that seals
the head port opening and keeps contaminants from entering
the drive's clean air compartment. It is not necessary to take
any precautionary measures to assure that the cartridge in­
sertion door is secured and closed. The cartridge also has a
door that closes the head opening and a clamp that secures the
hub against the cartridge to prevent contaminants from enter­
ing the cartridge. Because the drive compartment is sealed
and not accessible, the total volume of contamination that can
enter the clean-air system is limited to the cartridge at the time
of insertion.

ELECTRONIC SYSTEM

The electronic packaging of the Micro-Magnum 5/5 was no
minor task, considering all the electronic functions that had to
be housed in a 3.25-inch by 5.75-inch by 1O.50-inch volume.
Complicating the design was the necessary circuitry for the
embedded servo and voice-coil positioner.

The Micro-Magnum's electronic block diagram is shown in
Figure 7. A dual-microprocessor system was employed to
conserve space and partition functions in order to make firm­
ware design simpler. MPU1 is dedicated to the interface and
status functions that include all controller input and output
lines, front panel functions, safety checks, and fault algo­
rithms. MPU2 receives embedded servo information from the
servo decode circuit (LSI2). This serves the basic servo func­
tions, such as track follow, seek, re-zero, load, and retracking
of the heads.

To achieve the required packing density, two CMOS gate
array custom IC's were developed. LSIl, a 200-gate array, is
used to control spindle servo. LSI2, a 500-gate array, is used
to perform decoding of digital information in the embedded
servo fields.

An all-important electronic function is the control of the
write operation to prevent overwriting the embedded servo
fields. Overwriting the embedded servo field could result in
the loss of removable and/or fixed data. The Micro-Magnum
5/5 drive, therefore, has a series of hardware and software
safety checks that are performed before a write operation is
allowed. Hardware functions are gated directly to the write
current enable function of the head read/write chip. Also, all
the following conditions must be true simultaneously before
the logic circuits allow write current to be enabled:

1. Spindle speed must be within 0.1 %.
2. Heads and head circuits must be in a safe condition; i.e.,

no shorts or opens, only one head selected, MFM data
being received.

3. All power supplied must be in tolerance.
4. Power must be safe, spindle must be on, write gate sig­

nals must be enabled on the interface, and the drive must
be selected.

16 National Computer Conference, 1982

MICRO-MAGNUM 5/5
SYSTEM BLOCK DIAGRAM

CONTROLLER
INTERFACE

CONTROL
OUTPUT

DATA
IN/OUT

r----lLiNE

B BIT

BUS

NO.1

INTERFACE SERVO
PROCESSOR PROCESSOR

MPU

INPUT

+
~---I'DRIVERS OUTPUT

LINE
DRIVE

1--------laUFFER

+ ~------+---~~
RECEI-
VERS

B BIT
BUS

ND2

o/A
CON-

VERTER

LINEAR MOTOR ./

DRIVER ~----1' ~S=ie~

LINEAR MOTOR

POSITIONER

(LSI NO.2)

DISKS

(LSI NO.1)

Figure 7-System block diagram

5. The previous embedded servo field must be decoded
properly, including a correct sector/index field and
clock-shift check code.

6. Servo system must indicate that the head is within the
"on track" limits as determined from the fine position
information.

7. A redundant spindle-speed check circuit must indicate
that the spindle is within the allowed 0.5% of normal.

8. The write protect switch for the disk to be written must
not be activated.

REDUNDANCY

There is always a possibility that data errors can occur during
system operation. Therefore, the disk drive must have the
capability to provide data redundancy and error correction in
a manner that is transparent to the user. This can be achieved
by providing spare sectors and alternate tracks on the disk, as
well as data formats that allow the controller or host computer
to provide user-transparent correction techniques.

In the Micro-Magnum 5/5, one spare sector per track and
five spare tracks per surface are provided to replace those
found to be defective. This allows 4.5% media redundancy for
the accommodation of defects. The defect-tolerant system is
further enhanced by provisions for CRC (cyclic redundancy
checking) and ECC (error-correction coding) in the data
formats.

Error-correcting technology serves to verify header and
data field accuracy, plus providing the capability for correc­
tion of errors. Most errors can be corrected by the combina­
tion of eRe and ECC techniques, and no data wiil be iost.
This is accomplished by using an intelligent controller or the

host computer in conjunction with the CRC and ECC formats
of the Micro-Magnum system.

Defective track correction can be handled in two ways by
the intelligent controller of host computer. These are:

1. After a seek to a defective track has been completed, the
Bad Track Flag in the first sector tells the controller that
an alternate track has been assigned. The data field in­
formation is then read and a new seek is issued to the
assigned alternate.

2. Alternatively, the alternate track catalog can be read
and stored by the controller upon the initial spindle-up
sequence after a cartridge is installed. If a seek to a bad
track occurs, the controller automatically issues a seek to
the assigned alternate track. The same algorithm can be
implemented by the host computer.

"Hard" errors can usually be corrected to protect data,
using the error-correction techniques. If a defect cannot be
error-corrected, it should be mapped into the defective sector
category and spared out by the appropriate method. If the
sector is spared while it is still a correctable defect, no data
will be lost.

When a new defect is spared and an alternate track is re­
quired, the alternate-track catalog must be updated along
with the data field information on the bad track.

DATA TRANSPORTABILITY/
INTERCHANGEABILITY

Use of a removabie cartridge using embedded servo permits
a reliable mass-storage system that is transportable and inter-

changeable with other similar systems. The disk cartridge has
been accepted as a proposed ANSI standard for the mechan­
ical configuration of the removable cartridge; this allows the
mechanical standard to be used in all similar systems. How­
ever, no standard has yet been established for the data formats
on the 5.25-inch fixedlremovable Winchester drive. With the
hope that a standard can be established that provides data file
compatibility, the following information on the data formats
for the Micro-Magnum 5/5 is presented.

Using MFM (modified frequency modulation) encoding,
the disk is organized into tracks of 10,890 bytes each of un­
formatted capacity. Each track is divided into 33 sectors of 330
bytes each. When formatted, each sector contains 256 bytes of
data, 48 bytes of format information, and 26 bytes of em­
bedded servo information. Figure 8 shows the organization of
each sector. It is detailed below:

1. Embedded Servo Field-Track and sector location in­
formation is embedded in 26 bytes.

2. PLO (Phrase-Locked Oscillator) Sync-Consists of 12
bytes of OOO's transmitted for data separator synchro­
nization.

3. ID and Data Address Marks-a I-byte address mark,
made unique by omitting the clock transition between
bits 4 and 5, precedes both the ID and Data Addresses.
The I-byte, FE (hex), identifies the ID Address Mark;
and the I-byte, F8 (hex), identifies the Data Address
Mark.

4. Write Splice-This byte is provided between the ID
field and Data field PLO Sync to turn on the write
current if data is to be recorded in the Data field.

5. Data Pad-To guarantee data integrity, a I-byte pad is
provided between the final ECC field and the speed
buffer area.

6. Speed Buffer-A 5-byte buffer at the end of the sector
accommodates spindle-speed variations up to ± 0.75%.

7. Sector Interleave-As recorded at the factory, a Sector
Interleave factor of 4 is applied to the sector ID field.
This sequence of sector ID fields is as follows: 0, 8, 16,
24, 1, 9, 17, 25, 2, 10, 18,26, etc.

8. CRC-This 2-byte field is used to implement the
CCnT CRC polynomial, (X 16 + X 12 + X 5 + 1), for er­
ror detection in both the ID and Data fields.

9. ECC-A 3-byte field reserved for appending an error
correction code to both the ID and Data fields.

The three bytes associated with format information provide
additional data:

The 5.25-Inch FixedlRemovable Disk Drive 17

10. CylinderlHeadlSector-Provision is made to address up
to 1024 cylinders, 8 heads, and 64 sectors. The head
byte also contains the two MSBs of the lO-bit cylinder
code and three I-bit control flags listed in the following
items (11 and 12).

11. Write-Protect Sector Flag-A ONE set in this bit lo­
cation indicates to the controller that this sector is
"write-protected" and cannot be overwritten by the
host computer.

12. Bad Sectorl Bad Flag Track Flags-These I-bit flags
alert the controller that either a bad sector or a bad
track has been detected; this allows them to be replaced
by space sectors or tracks:

DI1ASTANDARDFORMAT

SECTORP~ui.=,,-SE _________________ -----,

----u
-

lst 1l1

HSB's
CYLINOER--..I

(10'24)

SECTOR
(64)

L-___ BA~I~E:T~FLAG

L'--BAQ-TRAC-'-FLAG-- ~IW~ :mC~O~E~~~~~AG
"1"'Bad

Figure 8-Data format

CONCLUSIONS

NOTES:

1. Capacity (Bytes)
Sector: Servo 26

Format 48
Data ~

Sector 330

Track:: 10.890 ;;, 33-S-ectors

2.DataRate5Hbit/sec

3. Speed3443RPH±O.5%

4. Encoding'" I'FM

By virtue of its relatively low cost, high data reliability, and
small volume, the Micro-Magnum 5/5 5.25-inch Winchester
disk drive is destined to be a widely used mass-storage device
for small computer systems. The drive employs a number of
proven, mature technologies that are integrated for the first
time to provide a capability never before available. The only
remaining consideration is the establishment of standard data
formats that will allow universal interchangeability and
transportabili ty.

Practical CMOS microprocessor systems

by BILL HUSTON
Motorola, Inc.
Austin, Texas

ABSTRACT

Many have felt that complementary metal-oxide silicon (CMOS) has not yet be­
come a practical semiconductor technology for microprocessor-based systems.
Recent progress has made that impression obsolete. A selection of CMOS micro­
processors is available at speeds matching N-channel metal-oxide silicon micro­
processor units (NMOS MPUs). CMOS memories have also become broadly avail­
able in the last few years. The needed peripheral circuits are now appearing. A
CMOS parallel interface peripheral provides 24 interface pins and is bus-compatible
with practically all the new-generation CMOS microprocessors. The last element
needed to assemble practical all-CMOS microprocessor systems are the small-scale
integration/medium-scale integration (SSIIMSI) logic functions. Gates, decoders,
latches, and flip-flops are typically needed to operate a bus structure of a multichip
system.

This report concentrates on the newest methods of achieving a full-performance
all-CMOS microprocessor system. The focus is on the parallel interface peripheral
and on using CMOS logic functions in practical bus connections.

19

PRACTICAL CMOS MICROPROCESSOR SYSTEMS

CMOS, as a semiconductor technology, has for years had a
series of recognized benefits. Microprocessors have of course
created whole arrays of new electronic uses as well as recon­
figuring many conventional electronic products. But until
now, combining the CMOS traits with the proliferation of
microprocessors has occurred in only a small percentage of
the applications. Most of the reasons for the slow acceptance
of CMOS as a practical microprocessor technology have now
dissipated.

CMOS AS A PRACTICAL MICROPROCESSOR
TECHNOLOGY

Most of the attraction of CMOS is associated in some way with
battery powering or power saving. There are other CMOS
benefits-better noise immunity is a key one-but most
CMOS microprocessor applications use batteries for primary
or backup power. Some use other low~power energy sources,
such as solar cells or very large capacitors.

There is a long-standing impression that CMOS is too slow
for many microprocessor uses. The CMOS-is-too-slow image
is no longer valid. Metal gate MOS, whether single-channel
(NMOS or P-channel MOS [PMOS]) or complementary, is
much slower than silicon gate MOS. Most of the high volume
MOS processes today are silicon gate, which have the same
throughput capability in N-channel (NMOS and high-density
N-channel [HMOS]) as in CMOS, given the same device sizes.
However, many CMOS users intentionally slow the system
down to extend battery operating time.

Some prospe~tive CMOS microprocessor users may have
hesitated because of a narrow choice of processors. Until a
year or so ago, only two processors were available. Some
considered the architectures difficult to accept when com­
pared to the many familiar 6800 and 8080 types of proces­
sors available in NMOS. Now, in addition to the traditional
(such as the 1802), users have 8080 derivatives (NSC-800
and 80C35) and 6800 derivates (the MC146805E2) to choose
from. Higher-performance CMOS processors are rumored in
both traditional NMOS camps. Hesitating to use CMOS
microprocessors because of limited architectural choices is
outmoded.

Another potential source of hesitation is the fear that
CMOS microprocessors are produced only in low volume and
thus will always be high-priced. It surprises some to learn that
the 1802 is Number 5 in production microprocessor volume,
according to Dataquest, behind only the 8080, 6800, Z80, and
6502. CMOS is attractive in certain volume automotive situ-

Practical CMOS Microprocessor Systems 21

ations. Some of the newer CMOS microprocessors are part of
a family of single-chip'microcomputers. Read-only-memory
(ROM)-based single-chips are built for dedicated volume ap­
plications. The ROM-less MPUs benefit from the volume­
driven learning curve of the single-chips when they use the
same processor and production process. There are volume
applications in a number of fields for 8-bit CMOS single-chip
microcomputers. Production volume allows costs to be low­
ered, which should reduce any hesitancy to consider CMOS a
practical microprocessor technology.

PRACTICAL SYSTEM NEEDS

Assembling a multi chip all-CMOS microprocessor system
is now practical. The various elements of such a system
are considered in turn, including the microprocessor, mem­
ory, peripherals, and interconnecting glue (SSIIMSI logic
functions) .

A typical mid-range CMOS microprocessor is the
MC146805E2. The instruction set is a control-optimized de­
rivative of the MC6800, including single-instruction bit modify
and test and low-power stand-by instructions. The interface
bus connects to external memory and peripherals using
address-then-data multiplexing, as on many newer N-channel
processors. Included are 112 bytes of on-chip RAM for stack
and data storage. A 15-stage counter is used for timer func­
tions, such as periodic interrupt generation, pulse width
measurement, and event counting. Sixteen .bidirectional I/O
pins are addressable as individual bits or as 8-bit ports. In
smaller systems the only external element needed is a pro­
gram ROM or electronically programmable ROM (EPROM).

The second set of elements for an all-CMOS system is
memories. Bus-compatible ROM is available with the
MCM65516, which contains 2K bytes of mask ROM in a
compact 18-pin package. The multiplexed bus is compatible
with the MC146805E2, as well as the NSC-800 and 80C35
microprocessors. Nonmultiplexed bus EPROMs such as
27C16s are now available for program storage in lower­
volume applications. One source offers an address-latched
version called the 67c16 for use with multiplexed bus micro­
processors. For data storage 4K CMOS static RAMs have
been available for some time in industry standard 4K x 1 and
lK x 4 configurations. The availability of 16K static CMOS
RAMs may improve soon. Both bus-compatible and industry­
generic CMOS memories are available for microprocessors. It
is beyond the scope of this report to survey memories deeper.

The third major element of an all-CMOS microprocessor
system is peripherals. Fortunately, CMOS users do not need
as many peripheral integrated circuits (ICs) as NMOS MPU
users. CMOS MPUs are seldom used with mechanical and

22 National Computer Conference, 1982

electrical devices that consume large amounts of power, such
as floppy disks and cathode ray tubes (CRTs).

The most basic interface element is parallel-port input/
output (I/O) connections. The MC146823 provides three 8-bit
parallel interface ports along with handshaking port control
signals in a bus interface peripheral. The latter portion of this
report focuses on this parallel interface peripheral, since its
bus interface allows direct connection to all new-generation
CMOS microprocessors announced to date.

A frequent function of a CMOS MPU system is to keep the
time of day, and often a calendar as well. The MC146818
Real-Time Clock Plus RAM maintains the time in seconds,
minutes, and hours. It maintains a 100-year calendar, includ­
ing day of the week, leap year, and daylight-saving changes.
Some of the auxiliary system functions included are 50 bytes
of uncommitted RAM, a periodic interrupt, an alarm inter­
rupt, a square-wave output pin, and a microprocessor clock
oscillator.

Other peripheral functions are available in the market. Ge­
neric asynchronous universal receiver and transmitters
(UARTs) have been available for some time from two or three
sources. Though not directly bus-compatible, they are easily
interfaced. The RCA 1802 family includes some peripheral
functions that could be useful with other CMOS processors.
Some examples are a multifunction timer and an arithmetic
chip. A little interface adapting is needed to use such parts
with the MC146805E2 type of buses, but there are situations
where it would be worthwhile. The two peripherais intro­
duced with the NSC-800 are usable on other processors with
very little adapting. The RAM plus 110 part is useful in low­
volume cases where the needed memory-to-I/O ratio is close
to that included in the part.

The fourth major element needed to assemble an all-CMOS
system is the interconnect SSI and MSI logic. Few complex
systems can be assembled totally with large-scale integrated
(LSI) circuits. Untif recently the CMOS standard logic func­
tions have been slow; this trait frustrated attempts to take
advantage of the available microprocessor performance. Full­
speed "glue" parts are now becoming available in the 74HCOO
family from Motorola and National. This line includes all the
popular 74LSOO family functions, at the same speed as the
low-power Schottky transistor transistor logic (LS-TTL) fam­
ily, but with CMOS power usage.

The next section of this report looks at some of the bus
interface uses for the CMOS SSI glue parts in the 74HCOO
family.

BUS INTERFACING

The practicalities of putting together an all-CMOS MPU sys­
tem are, of course, applications-dependent. This section out­
lines a few techniques that might be useful. The goal is to
trigger user creativity with ideas, not to establish a standard
way to interlace to a microprocessor. For example, some ap­
plicationsneed more memory than the program can directly
access, so R,leII}ory expansion techniques are appropriate.
Many generic memories cannot accept the MPU bus control
signal formats provided,

Bus Control Signals

Frequently the bus control signals that emanate from a
microprocessor need to be modified for use by memories and
peripherals. Figure 1 shows that the MC146805E2 micro­
processor creates an Address Strobe (AS), a Data Strobe
(DS), and a ReadIWrite level. Figure 2 shows how these three
control signals are associated with read and write bus cycles.
The memory and 110 cycles are identical, since a common
address architecture is used. Figure 3 shows how three new
control signals may be generated. Generic memories (industry
standard Joint Electronic Device Engineering Council
(JEDEC) pin functions, as opposed to directly bus­
compatible) usually require a low-going read pulse, frequently
called output enable. RAM writes are indicated by a low­
going write pulse. Many peripherals accept similar signals.
Figure 3 shows that two gates and an inverter create the
needed read and write pulses.

MC146805E2
CMOS

~A....;D..;.D;.;;RESS;.;;..;;..;S;.;.TR;.;.;O;.;;B;;;..E ----__��-As .
~~~~~~~----~DS 

~~~~~~~----~ww 

r.==:t.!:R~EA~D~_~_1fI)
I-W R;;.;.ITE~_~_WlI

ENABLE STROBE
L.:==J==;';';';';~-ES

MICROPROCESSOR IJI-----------~ 8-BIT
,.--_____ -./ DATA BUS

15-BIT
UNMUL TIPLEXED

,.----~~~-./ ADDRESS BUS

Figure l-CMOS microprocessor bus interface adaptations

Static memories are not always fully static today. Though
memory retention may be static, the internal decoders and
buses may need to be cleanly waked up to initiate a successful
bus cycle. Careful reading of data sheets reveals that chip
enable inputs can no longer accept address decoding transi­
tions. Once chip enable is asserted, it must remain, without
bounce, until the access cycle is complete. The Data Strobe
microprocessor signal is a clock with clean edges that can be
ANDed with address decoding to create a clean chip enable.
The problem is that fast memories are then needed, since DS
begins quite a while after the addresses are stable. Figure 3
shows how an earlier chip enable strobe can be generated
using less than one-and-a-half packages of SSI logic. Figure 2
shows that the Enable Strobe (ES) begins with the falling edge
of Address Strobe and lasts until the end of Data Strobe. The
address is stable at the leading edge of ES, and the un­
multiplexed address remains stable for the duration of ES.

ADDRESS
AND DATA

BUS
SIGNALS

{
AD~~~SS A

ADDRIDATA B
BUS

Practical CMOS Microprocessor Systems 23

ADDRVALID ADDR VALID

..... ~-- ONE READ CYCLE --..... ~.--- ONE WRITE CYCLE --~

CONTROL
SIGNALS

GENERATED
BY THE

MC146805E2
MICROPROCESSOR

CONTROL
SIGNALS

THAT CAN BE
DERIVED

ADDRESS
STROBE

DATA
STROBE

READI
WRITE

AS

OS

R/W

ES

Figure 2-Auxiliary bus control signal timing

Address Expansion

The second step in generating a larger system is to create an
extended unmultiplexed address bus. Figure 4 shows a typical
example. Most new-generation microprocessors time-multi­
plex portions of the address onto the data bus. Address bits
appear on the bus during the first part of the bus cycle and are
identified with an Address Strobe signal (Address Latch En-

. able [ALE] in other processors). Then, after the memory

_READIWRITE
RIW

DATA
OS STROBE

ADDRESS
AS STROBE

MC74HCOO
MC74HC04
MC74HC74

READ OR
~O~UT~P~U~T~E~N~A~B~L~E~ __ ~ __ RD

WRITE ENABLE
P-------------~WR

VDD

SOME MEMORIES
REQUIRE A CHIP
ENABLE STROBE
WITH NO ADDRESS
DECODING
TRANSITIONS.

J--f-+----~ES
ENABLE

~~S..;..TR;..;.O;;;..;B:;..;E~~ES

Figure 3-Creating auxiliary bus control signals

begins its access time, the bus is switched over to carry data
during the latter portion of the bus cycle. Data Strobe identi­
fies the data portion of the bus cycle (Read and Write with
other processors). Figure 2 shows the time-multiplexing
relationships.

An increasing percentage of available memories and pe­
ripherals are including address latches. Some accept an AS

MULTIPLEXED • 8-BIT

DATA BUS WITH :~~~~~~~i~~~~~~~ LOW-ORDER • DATA BUS
ADDRESS

B7

AS
ADDRESS STROBE ---~~

AS
HIGH-ORDER •

ADDRESS •

UO PORT
BITS

A12

PAD

PAS

r-----i DUAL ONE­
OF-FOUR
SELECTOR
MC74HC153

VDD----,'----_

USE PORT BITS TO EXPAND THE
ADDRESS RANGE WITH PAGES

DEMULTIPLEX THE
LOW-ORDER ADDRESS BITS

BAD

• 15-BIT
• UN MULTIPLEXED
• ADDRESS

BA7 BUS
BAS

BA10

BA11

Figure 4-Extended unmultiplexed address bus

\
I

r-

24 National Computer Conference, 1982

(ALE) signal directly, whereas others need an ES signal as a
part of a chip enable input. Since many memories still need
unmultiplexed addresses, Figure 4 shows an octal latch to save
the low-order eight address bits.

The address expansion technique illustrated in Figure 4 uses
one MSI part, a dual one-of-four selector, and six port bits to
add two bits to the 13 address bits created by the micro­
processor. Figure 5 shows the resulting page-addressing
arrangement. A program sees 8K of logical address space split
into four 2K byte pages. A common convention would be for
the interrupt and other I/O routines to be in the fourth page,
along with a centralized page-changing routine. The remain­
ing three 2K byte pages could freely include programs and
data in whatever mix was appropriate. Each of the three log­
ical user pages can be mapped to one of four physical pages
of 2K bytes. The physical address space would include 12
pages of 2K bytes each (24K bytes total), of which only 6K
bytes are visible at any time. When a program needs data that
are not visible, it calls the executive in the fourth page (proba­
bly with a software interrupt instruction) to have the pages
switched. The executive can switch pages via the I/O port
without losing control, since the fourth page is reserved as
always visible.

8K BYTES TOTAL

LOGICAL ADDRESS
SPACE

2K
USER PAGE

2K
USER PAGE

2K
USER PAGE

2K
EXEC PAGE

26K BYTES TOTAL
PHYSICAL ADDRESS SPACE

ONEOF
FOUR PHYSICAL

PAGES SELECTED ...-. ___

PHYSICAL PAGES
SELECTED

Figure 5-Expanded addressing with paging

The address expansion scheme outlined above is an exam­
ple of one of the possible techniques. Figure 6 shows that
other variations of the method can allow addressing to over a
quarter of a million bytes by using only three glue parts and
only the 16 I/O pins included on the MC 146805E2 processor.
Other expansion techniques could be as easily used, but they
are beyond the scope (or space) of this report. The processor
program may only have a 13-bit address, but it can access as
much memory as is needed.

Typical Expanded System

It has been shown that generalized bus control signals can
be easily created and that an unmultiplexed address bus of 15

TO
OBTAIN ONLY THESE GLUE USING THE

THIS PARTS ARE NEEDED THESE THE THE SIZE NUMBER
TOTAL MC146805· ADDRESS OFTHE OF

ADDRESS· MC74· MC74· E2 PORT BUS LOGICAL LOGICAL
ABILITY HC151 HC142 PINS SIZE IS PAGE IS PAGES IS

8K 0 0 0 13 8K 1
15K 1 0 7 14 1K 8
26K 0 1 6 15 2K 4
29K 2 0 14 15 1K 8
44K 3 0 16 16 1K 8
98K 0 2 12 17 2K 4

290K 0 3 16 19 2K 4

Figure 6-Various extended memory sizes

bits or more can be easily generated.The next step is to look
at a typical extended system. Figure 7 shows an extended
address map that fills the space available with a 15-bit address
bus created as in Figure 4. Most of the first 128 bytes are the
on-chip RAM, I/O, and timer locations. Then 16K bytes of
off-chip RAM is included, of which two 2K bytes pages would
be mapped into the logical address space at a time. The third
logical page consists of one of four 2K byte EPROMs. The
fourth logical page is not mapped and contains the control
programs in a 2K byte ROM. Of the 2K of ROM space, 192
bytes are used for I/O functions, in particular a real-time clock
and eight parallel interface peripherals. The latter would in­
terface to 192 pins, allowing for large systems.

OFF-CHIP 1/0
ADDRESS

SPACE

EIGHT
MC146823
PARALLEL

INTERFACES
128 BYTES

VECTORS,
10 BYTES 32K ____ ___ ~.....;.;;~;..;..;:;.;:;...

Figure 7-Typical expanded address map

Figure 8 shows how the above address map could be easily
decoded with available glue parts. Three-to-eight decoders
are shown to decode chip enable signals for the RAM, ROMI
EPROM, and the multiple parallel interfaces. NAND gate
address range detection is shown for the peripherals. The
fourth page ROM is disabled when the peripherals are ac­
cessed. In systems where demultiplexing is not needed, the
decoders could include an address latch-the MC74HC137
for example. '

Bus Interface Flexibility

The typical extended system above includes one micro­
processor, nine LSI peripherals, and 41 memory parts. Only
10 SSIIMSI glue parts are needed to assemble a practical

EXPANDED
UNMUL TIPLEXED

ADDRESS
BUS

• A FEW ADDRESS BITS NEED
INVERTING (ONE MC74HC04).

Figure 8--Typical expanded address bus

system with an impressive set of features. The processor is a
powerful8-bit control-oriented MPU. Interfacing to 192 inter­
face pins is provided, of which up to 32 could be interrupt
sources. The memory includes 16K bytes of RAM and 10K
bytes of EPROM or ROM. In addition, the time of day is
automatically maintained in a peripheral.

With all that system power, it is not valid to consider an
advanced larger all-CMOS microprocessor system to be im­
practical or too expensive.

PARALLEL INTERFACE PERIPHERAL

CMOS microprocessors such as the MC146805E2 include
some parallel IIO pins on the MPU part. When the on-chip
I/O is insufficient, a parallel I/O peripheral part is needed.
The MC146823 provides 24 I/O pins to an MC146805E2,
NSC-800, 80C35, or 80C48.

Figure 9 shows the 8-bit bus interface on the left and the 24
parallel I/O pins on the right. The I/O ports are looked at first,
followed by the handshake functions and the generalized pro­
cessor bus interface.

CMOS

ADDRESS! PORT
DATA A
BUS 20 TO 24 PARALLEL

PORTA PORT PINS

PROCESSOR HANDSHAKE

BUS
INTERFACE BUS PORT o TO 4 INTERRUPT

CONTROL B INPUTS

PORTB

INTERRUPT HANDSHAKE o TO 4 PORT
HANDSHAKE PULSES

INTERRUPT
RESET CONTROL PORT

C

40 PINS

Figure 9---MCl46823 Parallel Interface peripheral

Three Parallel Ports

The processor pi"ogram establishes the purpose of the 24
parallel I/O pins. Figure 10 illustrates the program selection
features.

Each 8-bit port includes a data direction register. With

Practical CMOS Microprocessor Systems 25

INTERRUPTS

PORTSAANDBONLY PORTS A, B, AND C PORTCONLY

Figure 10--Parallel interface ports

power-on reset the data direction is initialized so that all pins
are inputs. All output drivers are in the high impedance state
to avoid a situation in which two circuits try to drive the same
pin to opposite states. After power-on, the program estab­
lishes each pin as an input or an output. Each data direction
register bit establishes the corresponding port pin as an output
or an input. There are no restrictions on the number of input
or output pins, nor on which pins of an 8-bit port are inputs
or outputs.

The data register associated with each port is used primarily
for output storage. When the data direction register bit indi­
cates output, the state of the corresponding data register is
driven onto the I/O pin by the output buffers. When a pin is
designated as an input, a program read transfers the state of
the I/O pin to the processor bus, bypassing the data register.
For output bits the data register is a read/write register. A
program read of an output pin gets the state of the data
register, not the I/O pin. This permits read/modify/write
cycles, such as the MC146805E2 bit manipulation instruc­
tions, to read the port, change one or more bits, and write the
result back to the port data register.

The data register in Port A has one additional use. A hand­
shaking pin causes input data to be latched for subsequent
program reading when this feature is enabled by the program.

Four of the pins on Port C may be either handshake control
signals or Port C parallel pins. Port C thus has a pin function
select register that allows the processor program to establish
which pins serve handshaking rather than parallel I/O pur­
poses. Many system applications need only parallel interface
pins and can thus disable the handshake features.

Port Handshake Control

The four handshaking control signals on Port C may serve
the following functions:

A. Digital inputs
B. Digital outputs
C. Interrupt inputs
D. A latch enable for Port A input data
E. An output pulse when Port A to read
F. An output pulse when Port B is written

26 National Computer Conference, 1982

DIGITAL INPUTS

CA1/PC4
CA2/PC5
CB1/PC6
CB2/PC7

PCO
PC1
PC2
PC3

UPTO
EIGHT

PORT C
INPUTS

(A)

DIGITAL OUTPUTS

UPTO
EIGHT

PORT C
OUTPUTS

(B)

CA1/PC4
CA2/PC5
CB1/PC6
CB2/PC7
PCO
PC1
PC2
PC3

INTERRUPT INPUTS

CA1

CA2

CB1

CB2

UP TO FOUR
INTERRUPTS

MAY BE
INITIATED

(C)

LATCHED INPUT DATA

INPUT PORT A
DATA LATCHED

WITH CA1
TRANSITION

(D)

OUTPUT PULSE WITH
INPUT DATA

A PROGRAM
READ OF
PORTA

CAUSES A
PULSE ON

CA2

(E)

OUTPUT PU LSE WITH
OUTPUT DATA

A PROGRAM PORT B
WRITE TO

PORT B
CAUSES A
PULSE ON

CB2 CB2

(F)

REQUEST AND RESPONSE
SIGNALS FOR
INPUT DATA

A PROGRAM
READ OF
PORT A

CAUSES A CA2
OUTPUT

TRANSITION
WHICH IS

CLEARED WITH
A CA1 INPUT
TRANSITION

(G)

REQUEST AND RESPONSE
SIGNALS FOR
OUTPUT DATA

A PROGRAM
WRITE TO

PORT B PORT B
CAUSES A CB2

OUTPUT
TRANSITION

WHICH IS CB2
CLEARED WITH

A CB1 INPUT CB1
TRANSITION

(H)

Figure ll-Port handshaking modes

MPU Systems

G. Request and response signals for Port A input data
H. Request and response signals for Port B output data

A series of compound combinations of the above functions
are useful. For example, Items D, C, and E allow an external
source to write a byte into the MC146823, which initiates an
interrupt; then, when the program reads the data, a pulse is
returned to the external source. Figure 11 shows the eight
handshaking functions graphically. The digital input and out­
put modes are the Port C usage as already discussed.

Part C of Figure 11 shows that all four handshake pins may
initiate interrupts. Each interrupt is separately enabled; con­
trol bits are provided by the program in control registers and
separately identified in a status register available to the pro­
gram. Interrupt overrun is also separately indicated in a status
register for consecutive interupts that are not serviced fast
enough. The four interrupt functions are ORed together onto
the one output interrupt pin to the processor.

Function D in Figure 11 allows an externally provided signal
edge to latch input data into Port A. This is a convenient way
to accept asynchronous data bytes from a serial I/O, another
processor, a mechanical peripheral, or other parts.

In Parts E and F of Figure 11, a program read or write
causes the Parallel Interface to send a pulse one bus cycle
wide. In the case of a Port A read, the output pulse is a
response signal. The output pulse with a Port B write allows
a byte of data to be latched into external hardware.

Closed-loop handshaking is provided with Functions G and
H. One input and one output handshake control pin is associ­
ated with input data on Port A and two separate pins hand­
shake with Port B output data. One signal requests data flow
with an edge; the other signal responds with an edge on the
other pin. One use for handshaking interlinking like this is to
interconnect two· processors.

There is not enough space in this report to look at all the
useful combinations of the eight modes outlined above.

Bus Interface

The bus interface consists of eight bidirectional bus pins and
four input control pins.

During the first portion of the bus cycle the 8-bit bus in­
cludes four address bits to select one of the 15 addressable
MC146823 register locations. During the latter portion of the
bus cycle, the processor provides a write data byte or the
peripheral provides a read data byte.

A Chip Enable (CE) input pin tells the peripheral to accept
or ignore the current bus cycle. As such, CE must be true after
the address is stable and remain until the data is transferred.
The Address Strobe pin allows the address on the bus to be
latched within the peripheral.

Figure 12 shows the above bus functions as well as the two
interpretations of the other two bus control pins. The two
logical interpretions are called the MOTEL concept (for MO­
Torola and IntEL compatible). This allows direct connection
to processors, creating control signals in either de facto bus
standard.

In the Motorola MOTEL mode the DS input is a positive
pulse during the data portion of each bus cycle. The RIW pin

Practical CMOS Microprocessor Systems 27

indicates during the DS pulse whether a read or a write cycle
is in progress. The other MOTEL interpretation is a low-going

DATA

BOTH
"MOTEL" CHIP ENABLE ~ PIN {

M.!'~~~i:iD AD PINS

MODES

ADDRESS

S!~g:~R AS PIN

LATCH ENABLE

{

DATA STROBE

MOTOROLA
"MOTEL" MODE

READlWRITE

DSPIN

RlWPIN ..L.LI.~'..LLJ

DSPIN

{

iIDifi
COMPETITIVE

"MOTEL" MODE WIiITlO ---+-----1--- L
FlNlPlN "-----!I

WAVE PATTERNS IN EITHER OF THE ABOVE FORMATS MAY BE USED AS
INPUTS TO THE os AND RIW PINS

Figure 12-Bus interface signals

read pulse on the DS pin and a low-going write pulse on the
RIW pin. The peripheral automatically decides which inter­
pretation to use by sampling the DS pin at the time of the AS
pulse.

Used With Any CMOS Microprocessor

The MOTEL bus interface concept allows a peripheral or
memory IC to interface directly with any new-generation mul­
tiplexed bus microprocessor. The MC146823 peripheral was
designed for use with the MC146805E2 processor. But the
MOTEL concept allows it to also be used with other CMOS
microprocessor and expandable single-chip microcomputers.
Figure 13 shows the interface on a Motorola type of bus, while

MOTOROLA
MULTIPLEXED

BUS
MICROPROCESSORS

MC146S05E2
MC6801
MC6803

ETC

.t • MC146823

ADO- MUXED ADDR/DATA BUS S' ADO-
AD7 .. AD7

'f .J...> CHIP

AS- ..A~ ADDRESS IENABLE_
Axx ADDR Y I DECODE I CE

ADDRESS STROBE

DATA STROBE

READIWRITE

DS,E~--~~~~~~-~

RnN~--~~~~~~--~

AS

OS

RIW

INTERRUPT REQUEST lAo IRQ~~~~~~~~~~

RESET~------~---~

~
RESET

Figure 13---Typical processor interface, Motorola bus

Figure 14 shows the same peripheral directly connected to
other processors. No intervening glue is needed to adapt the
peripheral to the other processor buses. Universal peripheral

28 National Computer Conference, 1982

and memory applicability has finally been achieved. (Inci­
dentally, the MC146818 Real-Time Clock Plus RAM and the
MCM65516 2K x 8 ROM also use the MOTEL concept.)

J t.
MC146823

ADO- MUXED ADDR/DATA BUS
ADO-

AD7 AD7

'4 ~~ CHIP"

A8-~ ADDRESS tENABLE
CE OTHER Axx ADDR DECODE I

MULTIPLEXED -VI

BUS
ADDRESS LATCH ENABLE MICROPROCESSORS ALE AS

NSC800
80C48 RD

READ
DS

ETC.

WR
WRITE

R/W

INTR
INTERRUPT REQUEST

IRQ

R"ESE'f

~
RESET

Figure I4--Typical processor interface, other bus

Memory-Mapped Registers

The port hardware functions and the bus interface capabil­
ities of the MC146823 have been reviewed. The remaining
element is the program use of the features.

From the program vantage point, the Parallel Interface is a
block of 16 addressable locations, of which 15 are used. Figure
15 lists the seven major functions, shows which of the three
ports the function is used with, and lists the hexidecimal ad­
dress of the register within the 16 addressable locations.

HEX ADDRESSES
PORT PORT PORT

FUNCTION A B C
PORT DATA REGISTER 2 3 4

PORT DATA DIRECTION REGISTER 6 7 8
PIN FUNCTION SELECT REGISTER - - B
HANDSHAKE CONTROL REGISTER 9 A -
PORT DATA REG./CLEAR INTERRUPTS 0, 1 C D -
INTERRUPT STATUS REGISTER E
OVER-RUN WARNING REGISTER F

Figure I5-Register functions

The port data registers are read/write locations for each of
the three ports. Each port also has a read/write data direction
register to establish pins as inputs or outputs. Port C has a
4-bit function select register to individually enable the hand­
shaking function.

Two 5-bit registers establish the handshaking modes for

Ports A and B. These bits establish whether the active input
edge of the handshake function is a rising or a falling edge.
Each of the four interrupts include an enable bit. The input
latching, output pulsing, and closed-loop response functions
are also established with bits in these registers.

A read-only status register contains flag bits for each of the
four interrupt sources. Each flag bit represents a status condi­
tion denoting whether the corresponding interrupt has been
enabled by the program. When a status fla-g is set and the
corresponding interrupt has been enabled, the interrupt pin is
asserted and an interrupt OR bit appears in the status register.

The program clears an interrupt by reading or writing a
specific port data byte. When a handshaking byte transfer is
to be acknowledged, the data read and write do so auto­
matically. But in many cases, the data port is not directly
associated with the interrupt function. In such cases a port
read and write could cause a pending interrupt to be lost.
Therefore the ports can also be read and written without
effecting the interrupts. Three port data addresses are associ­
ated with each of the two handshake ports. One address does
not affect the interrupt flags. The second address clears the
interrupt status associated with one interrupt source as well as
performing the data transfer. The third address does the same
thing with the second port interrupt. An interrupt can thus be
cleared with a psuedo-read of a port. The test (TST) in­
struction in the MC146805E2 does so without disturbing the
accumulator.

The last addressable location is the overrun warning regis­
ter, which indicates that a previous interrupt had not yet been
serviced when a new one appeared. The 4-bit read-only regis­
ter allows the program to find out that one or more events or
data elements have been lost.

Feature-Packed Parallel Interface

Comparisons can be made to the popular N -channel paral­
lel interfaces to see that the MC146823 includes more features
than most. Three full 8-bit ports are included in a 40-in pack­
age where some others have fewer bits. The program estab­
lishes every bit separately as an input or an output, rather than
establishing direction by groups of bits. Four separately select­
ed interrupts are included, and the interrupts may be sepa­
rately cleared. All registers are directly accessed by the pro­
gram; none are hidden. Many handshake modes are included
to allow easy interfacing to existing equipment.

CMOS IS NOW A PRACTICAL MICROPROCESSOR
TECHNOLOGY

Many have waited a long while for full-performance micro­
processor systems to be implementable entirely in CMOS.
The CMOS MPU era has finally arrived. The microprocessors
and memories are available. This report has shown that the
needed parallel interface peripheral function is now covered,
and the gate and flip-flop glue functions needed in larger
MPU systems are also now practical in CMOS.

The MC68000 family and distributed processing

by JOHN F. STOCKTON
Motorola Semiconductor Inc.
Austin, Texas

ABSTRACT

The key philosophy today is to build parts that will be upward compatible with
multiple processor systems of the future so that there is a migration path from
existing single-bus systems to the higher-performance, multiple-local-bus systems of
the future. An important parameter of these systems will be system performance,
and the need for this performance is increasing faster than vendors can increase
single-processor performance.

The need for multiple-processor systems is clear in the future. Knowing this, the
designers of the MC68000 made sure to include all the necessary hooks into the
processor design to support multiple processor architecture in the future. Some
features of the existing processor that might not be used often today will become
very important to future members of the M C68000 peripheral family. Some of these
features and systems will be discussed here.

29

THE NEED FOR DISTRIBUTED PROCESSING

As office-oriented computer systems become more user­
friendly, and as more of the operating systems and applica­
tions programs are written in high-level languages, there is a
much higher demand placed on microprocessor vendors to
keep offering ever increasing amounts of performance for
approximately the same cost as before. To meet this higher
performance requirement, microprocessor vendors cannot
simply rely on single-bus structures to keep increasing per­
formance. The solution to increasing performance will be to
rely heavily on multiple processors, each having its own local
bus, operating independently. To take advantage of this solu­
tion, microprocessor vendors must build in this upgradability
early in the design of their microprocessor families.

FAMILY PHILOSOPHIES

The key philosophy today is to build parts that will be upward
compatible with multiple-processor systems of the future so
that there is a migration path from existing single-bus systems
to the higher-performance, multiple-local-bus systems of the
future. The key parameter of systems of the future will be
system performance, and the need for this performance is
increasing faster than single-bus processor systems can in­
crease their performance. The need for multiple-processor
systems is clear in the future. Knowing this, the designers of
the MC68000 made sure to include all of the necessary hooks
into the processor design to support multiple-processor archi­
tectures in the future. Some features of the existing processor
that might be used often today will become very important to
future members of the MC68000 peripheral family. Some of
these things will be discussed specifically here.

The MC68000 was specifically designed to support high­
level languages; the register set of the processor was inten­
tionally kept general-purpose, with no dedicated registers that
compilers have a difficult time using. Each register was de­
fined so that it could be used as a pointer register as well as a
data register. Special-purpose instructions were added to in­
crease efficiency of procedure calls and re-entrant routines.
These in~tructions were the "link," "unlink," "load effective
address," and "push effective address" instructions. As well,
instructions were added to streamline context switches via the
"move multiple" instruction, which can stack any portion of
the register set onto the stack with one single instruction.
Operating system support was also an important design con­
sideration in the design of the MC68000. Distinctions like
user/supervisor separation were included to help increase sys­
tem reliability without a large amount of software overhead.
Another important feature is the "TEST-AND-SET" instruc­
tion, which allows for truly indivisible read-modify-write

The MC68000 Family and Distributed Processing 31

cycles on the 68000 local bus, even when there are multiple
bus masters. This instruction depends heavily on the asyn­
chronous nature of the 68000 bus, since it is possible to lock
out other accesses by maintaining ownership of the bus
control lines. Because of this, it is possible to keep other bus
masters off and make the read-modify-write cycle truly
indivisible.

Another important philosophy was that the processor ex­
tensively checks to insure that only legal instructions are being
executed, that word operations occur on word boundaries,
and that users do not try to execute privileged instructions.

The new family of peripherals will also consistently support
these philosophies. One very important philosophy that the
68000 supports is the notion of an address space. The function
code lines and the bus grant acknowledge (BGACK) lines
form four additional address lines that are used to indicate
which address space is currently being used. The Memory
Management Unit (MC68451) uses these function codes to
provide translation and protection according to the current
address space in use. These function codes are shown in Fig­
ure 1. The advantage of using these is that all transfers can
take place in logical space and be mapped and privilege­
checked by the Memory Management Unit, thus increasing
system reliability.

The family of peripherals will all consistently support the
asynchronous bus structure of the 68000 as well. These philo­
sophies will allow systems to be built with the MC68000 family

FC3 FC2 FCI FCO STATE
0 0 0 0 RESERVED
0 0 0 1 USER PGM
0 0 1 0 USER DATA
0 0 1 1 RESERVED
0 1 0 0 RESERVED
0 1 0 1 SUPV PGM
0 1 1 0 SUPV DATA
0 1 1 1 IAK CODE
1 0 0 0 BUS SLAVE SPACE
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Figure I-Support of bus masters and bus slaves in logical and physical
memory space by function codes supported by the 68000 family

32 National Computer Conference, 1982

that will be upward expandable and not require redesigning to
keep increasing performance in the future.

In the future, as mentioned previously, the two things that
will need processor performance will be high-level languages,
and user-friendly software. The high-level languages place a
high demand on systems because of their inefficiencies rela­
tive to assembly language programming and the protection
and checking that they offer at run time. A fairly efficient
compiler today still produces between 2 and 2.5 times as much
code as a comparable program written in assembly languages.
Many times the compiler-generated code can be optimized,
but the ratio still rarely drops below 2. As more of the oper­
ating systems are written in high-level languages, these ineffi­
ciencies are carried along and compounded, since both the
application program and the operating system are much larger
than they need to be. These performance degradations are the
cost of easing demands on programmers and making software
more portable. The other thing that will affect system perfor­
mance will be user-friendly software, which has extensive
error checking/recovery, and user aids in the sense of online
documentation and "help" commands. These things were not
a problem previously, because the available processors simply
did not have enough performance. Now microcomputers offer
performance comparible to minis and low-end mainframes, so
it is reasonable to employ these practices. The problem now
is that the growth of inefficiency is faster than the increase of
system performance offered by microprocessor vendors. The
solution is to get on a faster performance growth curve than
single-processor systems can offer.

The way to do this is obviously to depend on multiple pro­
cessors, each having its own local resources, and a commu­
nication mechanism between each two elements. To take full
advantage of this, the problem being solved must be highly
parallel; fortunately, today in the office environment, the
problems are fairly parallel. Additionally, in an effort to re­
duce the cost of CRT. terminals, by using microprocessors
with local resources as the heart of the CRT controller design,
the basis of a distributed processing system has been estab­
lished. Tightly coupled multiprocessor systems will be devel­
oped for solving specific problems that are limited in scope,
and both moderately and loosely coupled systems will be de­
veloped because of economic pressures.

WAYS TO SOLVE THE PERFORMANCE PROBLEM

As previously mentioned, multiple processors will offer the
raw performance required to do the job in the future, but their
interconnection topology is a critical issue. The basic three
ways to use multiple processors are (1) tightly coupled, (2)
moderately coupled, and (3) loosely coupled. The tightly cou­
pled systems typically share one instruction bus and rely on
each processor's taking a large number of internal cycles for
each external (bus) cycle. The moderately coupled systems
have mUltiple processors, each with its own resources on its
own local bus, and depend on some mechanism for commu­
nications with the rest of the system. Usually this mechanism
is a high-speed DMA channel or a dual-ported mailbox. Each
solution offers a fairly high bandwidth communications chan­
nel to the processor. The loosely coupled processors depend

again on mUltiple processors, each with its own resources; but
this time the communications mechanism is a serial data com­
munications link, which typically has about one-tenth of the
bandwidth of the moderately coupled solution. The loosely
coupled solution does have the advantages of allowing each
processing node to be some distance from the other nodes.

WHY NOT TIGHTLY COUPLED SYSTEMS?

There are several disadvantages to tightly coupled multi­
processor systems, the main one being that the system quickly
becomes bus-bound. Figure 2 shows a typical tightly coupled
system block diagram. Each processor added competes for an
ever smaller percentage of the available bus bandwidth until
there is none left. An example of this would be to try to tightly
couple two MC68000s. Each MC68000 executes on the aver­
age 5 cycles internally for each 4 external cycles. The fact that
the average instruction time is close to what the bus cycle time
is means that one 68000 uses between 80% and 90% of the
available bus bandwidth. The MC68000 makes better use of
the bus than many other processors, and because each proces­
sor will try to get as much of the available bandwidth as
possible, the addition of a second processor on the bus would
allow it to have a maximum of 20% of the bus bandwidth. The
second processor would at best be running at 25% of the
throughput that it could have if it were on its own local bus.
The net improvement in performance resulting from the addi­
tion of the second processor would be at best a 25% increase,
and more than likely would not be more than 10% because of
bus arbitration overhead. In some instances it does make
sense to tightly couple processors on one local bus, but this is
the case when the second processor can execute some partic­
ular instructions much faster than the current processor. An
example of this would be the addition of a floating-point co­
processor, which can do floating-point calculations an order of
magnitude faster than the current MC68000 can. The effect on
performance is positive in this instance rather than negative
because there is an inherent isolation in what each processor
would be trying to do, so processors would not compete heav­
ily for the bus. The guideline for deciding to add a coprocessor
to the system should be that the problem be isolated well
enough that the communications overhead would not be more
than 10% of the total time taken to solve the problem. This
insures that the additional performance of the dedicated co­
processor is not offset by the communications overhead of the
addition.

The trend in the future will be for processors to take fewer
cycles on the average for each instruction, thus trying to oc­
cupy 100% of the available bus bandwidth. When the pro­
cessor has instructions that execute that quickly, performance
improvements must then come from providing more memory
bandwidth. This is usually done by either adding a hierarchial
memory scheme or widening the bus interface. These trends
will help the problem; but the message is still clear that the bus
is a scarce resource and that the way to get more performance
in the future is not to try to tightly couple processors, except
when they do not compete for memory bandwidth resources.

Another way of soiving the performance problem is to de­
pend on a loosely coupled network of processors, all commu-

1211(

RAIl

11 BIT
MICROPROCESSOR 1
MCllOOO

DATA

ADDR

DATA

lOOT ADDR
ROM

The MC68000 Family and Distributed Processing 33

1881T
MICROPROCESSOR 2
MC88000

LOCAL BUS
2

DATA

ADDR 128K
RAM

DATA

ADDR BOOT
ROM

REO REO
ACK 10--.....---- "----....---01 ACK

~~ ____ ~ ,---~~PCL

DMAC
MC68450

GAB
RIW,
GBA
RIW.

,...._I-~DONE
'-40-+-~ DTC

DMAC
MC68450

BUS TRANSCEIVERS

Figure 2-Tightly coupled multiple 68000 system

nicating over a serial data communications link. This topology
works particularly well when the problem to be solved is
highly parallel and isolated, with a low communications re­
quirement. An example of this would be a distributed word
processing system, where editing is done locally, with a local
processor and local memory resources, and a datacom line to
link the work station to a file server or a printer. The system
performance in this instance is much higher than previously,
because the problem is parallel enough to allow concurrent
operations. It is intuitively known that this solution works best
in applications like distributed word processors but starts to
suffer from contention problems when the application is heav­
ily dependent on the distant resources. An example of this
second application might be an airline reservation system,
where the time spent editing the data locally is small in com­
parison to the time required to transmit it. Figure 3 is a block
diagram of a loosely coupled multiprocessor system.

Yet another solution has the advantages of the loosely cou­
pled topology and does not suffer from the low bandwidth
interconnection between processing elements. This is the
moderately coupled system. In this instance each processor is
still on its own local bus, but the interconnection to the other
processors is done through either a dual-port RAM or a DMA
channel. This approach again lends itself to problems that are
inherently concurrent, but does not suffer as much when the
problems are communications-dependent. Figure 4 shows a
typical moderately coupled multiprocessor system.

Motorola has two products that depend on this topology to
allow for concurrent processing. These products are the
MC68120 Intelligent Peripheral Controller and the MC68122
Cluster Terminal Controller.

I MC68000 I I W680"" ... uu I

~ LOCAL
RESOURCES

I-- LOCAL
RESOURCES

SERIAL DATA SERIAL DATA
I.....-- COMM - COIfoI

INTERFACE INTERFACE

-') I I
HIGH SPEED SERIAL DATA LINK

Figure 3--Loosely coupled processor topology

THE MC68120 INTELLIGENT
PERIPHERAL CONTROLLER

'S-

The MC68120 Intelligent Peripheral Controller is a general­
purpose peripheral controller that consists of an 8-bit CPU, 2
Kbytes of read-only-memory, 128 bytes of RAM, a 16-bit
timer, a serial communications interface, and 23 parallel I/O
lines. These I/O lines can be used to connect to peripherals
directly, or, more importantly, can be used to form an
MC6800-type bus that can be used for general-purpose I/O
processing. With the 68120 in this mode, I/O burdens can be
removed from the central CPU and more time can be devoted
to instruction processing, resulting in increased performance

34 National Computer Conference, 1982

BAM IN A MC68000 LOCAL BUS

IIC ADDRESS 8US

•• 000 ., DATA 8US
....

I I ", 8R ,
80

t:J I

BOACI(
I/O

80 'If 8R

8R D8R7,
~ IIC ",

.... Ba DB07
, ..000

IIce'''62
I 8aACK BAli

~ DISK 8R D8Re
/'

CONTR " 80 OBoe
,.

I 80ACK

8R D8R6
~ /

CRTC ... i.- 80 D805
,

I'

'OOACK r BaACK

Figure 4-Moderately coupled mUltiprocessor topology

due to the parallelism. Communications is done through the
dual-port RAM that is on board the 68120, and access permis­
sion is controlled via the six semaphore registers. Each regis­
ter contains a bit that indicates whether the resources it de­
scribes are currently in use and a bit that identifies which
processor (master or slave) used it last. These registers are set
up under software control to correspond to common resources
between the MC68000 and the MC68120 and are not strictly
limited to the dual-port RAM.

Figure 5 is a block diagram of the MC68120 connected in a
system with a private bus, acting as an 110 processor.

The Cluster Terminal Controller

The MC68122 Cluster Terminal Controller is an example of
an MC68120 that has been programmed to act as an interface
processor between a cluster of terminals and a host processor.
The CTC uses the private bus to communicate with multiple
Asynchronous Communications Interface Adapters and the
dual-port RAM as a message buffer. The CTC can support
four terminals at 9600 baud, or as many as 32 at 300 baud. This
restriction comes about as a result of using the dual-ported
RAM as a mailbox mechanism. If the mailbox were larger, a
correspondingly larger number of terminals could be sup­
ported; however, it was found that this ratio of terminais to
processors was quite acceptable. The performance advantage

11 lIT
IIICIIbPRoCEISO 1

-=--
,. lIT

~z

-=--

Figure 5-System block diagram of an MC68120 being used as an 1/0
processor

is obvious, since now the Cluster Terminal Controller has
effectively reduced the number of interrupts to the host sys­
tem from around 4000 per second to 60 per second. Assuming
that the interrupt latency of the 68000 system was around 30
microseconds per interrupt and the return overhead was
around 20 microseconds per interrupt, the operating system

overhead can be reduced from 19% to 3% (this calculation
assumed four terminals each running at 9600 baud, shipping
average buffers of 64 characters through the dual-port RAM
buffer).

The performance increase speaks for itself in this instance.
Figure 6 shows the Cluster Terminal Controller in a typical
system environment.

SUMMARY

In summary, the processors and peripherals of tomorrow will
be more performance-oriented and will have to be well
thought out so that they can be upwardly expanded without
requiring a major system redesign. In this situation the cus­
tomer will be in a critical position, since it will become in­
creasingly more difficult to mix vendors' parts and the vendor
will have a stronger influence over the customer's system. For
these reasons the customer should give special consideration

The MC68000 Family and Distributed Processing 35

MC88122 TYPICAL SYSTEM CONFIGURATION

Figure 6-Block diagram of the ere system

to the vendor chosen to make sure that there is a consistent,
well-thought-out growth path from current products to the
products of the future.

Using operational standards to enhance system performance*

by DAVID R. VINCENT
Boole & Babbage
Sunnyvale, California

ABSTRACT

There are only three reasons for a data center to vary from service level objectives,
i.e., volume, mix, and efficiency. The first two are aspects of user behavior, while
only the third is under the full control of the data center. With the proliferation of
online systems, user behavior is affecting the data center in realtime. Management
processes, technology and software tools exist to provide the basis for scientific
management of the data center. Key to this endeavor is the ability to model the
system and present in graphic form the relationship between the system and user
behavior characteristics. This paper points out the source of data, existing software
tools, and graphic methods and includes data and the results from a study and
simulation of a data center.

*Published in the 1981 CMG-12 Conference Proceedings, New Orleans, December 1981. Phoenix: Computer Mea­
surement Group, Inc., 1981.

37

One of the most outstanding individuals to come out of the
American Industrial Revolution was a young man by the name
of Frederick W. Taylor. t Taylor's "scientific management"
had a large effect on the tremendous surge of affluence we
have experienced in the last seventy years which has lifted the
working masses in the developed countries well above any
level experienced before, even that of kings and queens of old.
Taylor's analysis of work and resultant method improvements
resulted in production gains unequaled in history.

His analysis of work in the 1880's was exemplified by his
study of shoveling iron ore in a steel mill. In this study, he
found gross inefficiencies in the actual process of shoveling.
By breaking the motions and actions of the workers down into
measurable segments, he was able to develop better work
methods (something like tuning a computer) and standards of
performance so that output could be judged on a day-to-day
basis.

This work was finally completed, as we now know it, shortly
after he passed on during World War I, at which time Amer­
ican industry in general began to adopt his principles. Some of
Taylor's disciples carried on his work thereafter; notably,
Frank and Lillian Gilbreath (who were the subject of a movie
"Cheaper by the Dozen") and Henry Gantt, who initiated
project scheduling in a Gantt Chart. The common interest
uniting those people was the analysis of work and translating
that analysis into more productive and efficient procedures
and flows of work.

The analysis of work involves the following:

1. The identification of all processes necessary to produce
an end product or result

2. The rational (and manageable) organization of the se­
quence of operations so as to make possible the optimal
flow of work

3. The analysis of each individual operation or process in­
cluding measurement and historical trending

4. The integration of the above into an overall process of
producing a product or result

This established process has been used successfully for dec­
ades in American industry (and Japanese, and German, and
...). It is my contention that the size and complexity of the
data center has now evolved to a point where this method­
ology may be applied in greater depth to realize significant
economic benefits.

The role of the data center in the organization to which it

tActually, Taylor was preceded in philosophy by another "irascible genius,"
Charles Babbage, who documented some of the earliest forms of scientific
management in his most successful book, On the Economy of Machinery and
Manufactures (1832). However, it took Taylor to rediscover and implement
practical scientific management in America.

Using Operational Standards 39

belongs has increased from simple payroll and accounting
applications in the 60's (remember "tab runs"); through in­
ventory and distribution systems in the 70's; to online, real­
time management and operational applications in the 80's. A
good example of the online operational application of the 80's
is the automated teller systems in banks. In this case, the data
center has gone to a point where it actually interacts with bank
customers.

As the data center evolves towards a utility-like process, the
end product of the data center is service. With the prolif­
eration of online systems, service has become highly visible to
the user and a much more tangible element in top manage­
ment consideration. In fact, service levels have become so
visible to the world outside the data center that, to a large
extent, they are considered the measure of the data center's
performance. The perception of service falls into three basic
categories::j:

1. Online response time
2. Batch turnaround
3. Availability

When one of these is outside a user's expectation, the DP
manager's phone begins to ring with compliants. Moreover,
the business environment in which the DP manager now lives
is one that expects him to manage his operation the same as
any other functional unit of the enterprise. At this point,
many DP managers are beginning to feel the strain of trying
to negotiate and maintain service levels without the benefit of
having fully implemented traditional scientific management
principles in their data centers.

One major element of scientific management is the need to
understand the elements of the service to be performed and
the variables that can affect them. These variables have one of
two sources: data center operation or user behavior. There
are many data centers that have not yet quantified the differ­
ence in, say, response time caused by data center inefficiency
as opposed to that caused by user behavior. This is because
the analysis of work has not been related to these two factors.

These data centers are usually perceived by their users as
being poorly run because all variances from negotiated re­
sponse times are attributed to the inefficiency of the data
center. When analyzing work, there are in fact only three
universal causes of deviation from a standard which will cause
response time to be better or worse than plan:

1. Volume
2. Mix
3. Efficiency

tThese were the first three items listed in a poll done in Arizona with 150 DP
managers. Appendix A contains a full list prepared during the 1981 EDP
Performance Management Conference.

40 National Computer Conference, 1982

TABLE I-Workload utilization report

Workload
Standard

Total SWU's (000)
work units

Job P A V (000) P A V

A123 4 6 (2) 170 680 1020 (340)
B357 8 3 5 80 640 240 400
C896 10 15 (5) 300 3000 4500 (1500)

Totals 22 24 (2) 4320 5760 (1440)

The financial term for these deviations is variance and sim­
ply means the difference between planned versus actual re­
sults. The first two variances are attributable to user behavior.
The third variance is the only one that can be attributed to the
operating of the data center. In essence, the planning and
anticipation of the volume and mix considerations (user be­
havior) are much of what capacity management is all about.

In this paper, I will explore methods of determining the
relationship of volume, mix, and efficiency in the current
system and how we might predict performance at various
levels. The goal will be to define performance curves giving
standard levels of service at varying levels of volume and mix.

Volume is a measure of activity in terms of jobs or trans­
actions by job or transaction type. The various jobs or
transactions in types result from the differences in computer
resources consumed to process that particular job or trans­
action. Differences in volume can be measured by comparing
forecast or plan to actual. For example, the running of Job
A123 resulted in the following volumes:

Job

A123

Plan times
run

4

Actual times
run

6

Variance
(Plan-actual)

(2)

The volume variance in this case is expressed as 2 jobs over
plan. In terms of resources expressed in standard work units**
it is 2 times planned resource per run of Job A123. Let's say
Job A123 should use:

CPU standard work units
I/O
Memory
Total standard work units

Units
(000)
= 170

*
*

= 170

Therefore, the volume variance is 2 times 170,000 SWU's
units or 340,000. This may also be expressed in terms of dol­
lars if a standard cost per SWU's can be calculated and
applied.

Now let's take an example where there is a volume and mix
variance. Let's suppose that we have 22 jobs that require a
total of 4,320,000 SWU's (an average of 196,364 per job).

**For this example, a standard work unit will be considered for the case of CPU
only. The standard work unit is basically CPU time factored for the relative
power of the CPU.

The actual activity turns out to be 24 jobs requiring a total
of 5,760,000 SWU's for a variance of 1,440,000. The matrix of
the above with additional information is then constructed as
shown in Table I.

The volume variance is calculated:

. . Planned SWU's
Vanance of Job runs x PI d W kl d = Volume Variance anne or oa

The volume variance is calculated:

Variance of Job Runs x pilann~d SWU's
anne Workload

= Volume Variance

1. The variance of job runs is calculated by subtracting the
actual total jobs run (24) from the plan (24) with a re­
sultant 2 jobs run over plan. The brackets indicate that
this variance will have an unfavorable impact on data
center performance.

2. Planned SWU's divided by planned workload is in fact
the planned rate of SWU consumption for a job from
this workload.

3. The volume variance is then a function of the jobs run
over or under plan times the planned resource (SWU)
consumption rate. This isolates those resources con­
sumed over or under plan as a result of users running a
different number of jobs than planned.

4. The numeric calculation of volume variance is then:

(2) x 4~;0 = (392.8)

The mix variance is calculatedtt as follows:

Th I (Planned SWU's) .
1. e panned SWU rate Planned Workload was Just

calculated for use in the volume variance.
2. The actual SWU rate is the key element in the calcu­

lation of the mix variance because the difference be­
tween the planned and actual SWU rates is a result of a
workload with different elements.

3. The difference in the SWU rates is multiplied by the
actual workload.

4. The numeric calculation of this example is then:

. . (4320 5760) mIX vanance = 22 - 24 x 24 = (1047.2)

The mix variance is the amount of standard work units
consumed over or under plan as a result of having differ-

ttln this case, the SWU's per job are not varied. As can be seen in the next
example, they are varied and this will result in an efficiency variance. The
formula for calculating mix variance would be modified to reflect the fact that
both mix and efficiency variance contribute to the difference between the
planned and actual SWU rate. The revised formula would then be:

Planned SWU's Actual SWU's
Planned Workload - Actual Workload x Actual Units

- Efficiency Variance = Mix Variance

Using Operational Standards 41

TABLE II-Workload utilization report

Job

A123
B357
C896

Total

Workload

P A V P

4 6 (2) 170
8 3 5 80

10 15 (5) 300

122 24 (2)

ent jobs run than were planned which, in turn, con­
sumed different amounts of resources. The summary of
the variance is then:

Volume Variance
Mix Variance
Total Variance

(392.8)
(1047.2)
(1440.0)

Now we can expand the same example to demonstrate an
efficiency variance. Let's say that we have the data in Table II.
In this case, the SWU's consumed per job were different than
planned. Since we have kept everything the same except the
actual SWU's per job, the volume and mix variances are ex­
actly as previously calculated.

The efficiency variance is calculated by:

(Planned Job SWUl - Actual Job SWUl)
x

Actual Jobsl = Efficiency Variancel
+

(Planned Job SWUn - Actual Job SWUn)

x
Actual Jobsn = Efficiency Variancen

1. The total efficiency variance is a sum of the individual
efficiency variances calculated for each job run.

2. Each job variance is calculated by multiplying the actual
runs of the job times the job's SWU variance (planned
minus actual SWU's to process each run of the job).

3. The calculation would then be:

Actual
times

Job job ran SWU Variance

A123 6 5
B357 3 (20)
C896 15 (200)
Total ~fficiency Variance

The new total variance summary is then:

Volume variance
Mix variance
Efficiency variance

(392.8)
(1047.2)
(3030.0)

(4470.0)

Efficiency
Variance

30
(60)

(3000)
(3030)

Standard
work units Total SWU's

(000) (000)

A

165
100
500

V P A V

5 680 990 (310)
(20) 640 300 340

(200) 3000 7500 (4500)

4320 8790 (4470)

This says that the data center performance of running these
jobs, especially Job C896, suffered either because of (1) a bad
application program, (2) some system deficiency, (3) a bad
estimate of what it would take to run the job, or (4) a bit of
all three.

It should be noted that user behavior caused 32% of the
total variance. Often, the user behavior element contributes
even more to the total variance, especially at peak periods.

Where can SWU's be obtained? Most computer systems
have some kind of log that accumulates resource usage. CPU
time is the easiest measure, but relative CPU power differ­
ences dictate that adding pure CPU time from different CPU's
might be erroneous over time. IBM has offered a solution
with MVS by providing service units which are internally cal­
culated. These service units are indeed CPU time times an
internal power factor which result in theoretically compatible
service units over a variety of IBM CPU's.

The Institute for Software Engineering has also provided a
great deal of literature in this area which deals with software
physics. The direction of this work is somewhat similar to the
service unit methods built into IBM and PCM systems, but is
much more complex.

So far, the analysis of variance has focused on service units
or the amount of work going through a data center. How do
these translate to levels of service?

The data processing work plan basically consists of putting
out the required volume and mix of work as a basic require­
ment, and on a timely basis as a second but equally important
requirement in most shops. We can be sure that capacity has
been exceeded when the data center physically cannot process
the required workload even if it were to run a full three shifts
per day, seven days a week. But below this level, there are
other considerations that become practical limitations of
available hours to do data processing work. The variances
analyzed earlier in this paper will affect the timeliness of the
data turnaround, especially in online systems. Plans of user
workload are especially important during the peak online re­
quirement that occurs during the normal five-day work week.
This is especially important if the data center is very involved
in the basic business of the company with which it works, such
as a bank or department store.

What we're really talking about here are the end user's
work schedules and how that affects the ability of the data
center to plan and deliver services matching their schedules as

42 National Computer Conference, 1982

postulated in the User Behavior Elasticity Theorem,:j::j: which
states that the degree to which the data center can influence
end-user behavior is inversely proportional to the degree that
data processing is involved in the basic business of the orga­
nization. This can be illustrated by two examples.

The first is in the banking industry where automated tellers
are being implemented. The data center cannot influence the
end users of this application to any noticeable degree because
the bank's basic business depends upon having the automated
tellers operating when its clients (e.g., depositors, with­
drawers) want to make a transaction. Chargeback schemes,
management pressure, and the like will have little or no effect.
On the other hand, a company producing buggy whips that
has not integrated data processing into its basic business will
tend to be much more flexible in terms of end-user behavior
because production and distribution will continue whether the
data center runs or not. Hence, it is more elastic as charging
schemes and management pressure are applied.

We are also talking about the necessity for conscious man­
agement decisions regarding the economic benefits of achiev­
ing a given online response time versus the system costs that
will be required to provide that level of response. Or, as in
another case, the adding of another application to the online
system in light of its potential impact on the response time of
current users and applications mayor may not be possible
under the current configuration because of the impact it will
have on the service required for other applications. This is
where performance management comes in, specifically, the
analysis of performance data. What we want to know is which
user-controlled variables, i.e., volume and mix, will affect
service level performance. Those of us who have been track­
ing this type of data over time know what happens when a
CPU gets over 90% busy and are well aware of the exponen­
tial degradation of service levels that occurs beyond this level.
This is also true for many other areas within the system,
depending on where the system bottleneck is. Are there tools
that will identify such sensitive areas in the system? If so, how
might they be applied?

The software tools and sources of data needed to perform
this kind of analysis are readily available. You probably have
some of them installed on your system already.

For the purpose of this paper, I will deal with those products
that operate in the IBM MVS environment. However, other
systems collect data on a similar basis; so the concepts
presented here will apply to other environments as well.

In 1972 IBM introduced MVS with almost no software tools
for control. Even today, IBM provides only a minimum of
such tools. However, as MVS (and such subsystems as TSO,
IMS, and CICS) has matured and taken hold in the market­
place, a number of independent software firms have devel­
oped and are marketing many tools which are available for the
data center to use. These tools also go a long way towards
freeing the expensive and scarce systems programming staff to
concentrate on day-to-day system optimization and produc­
tivity, rather than long-term system monitoring and capacity
management.

:j::j:This is my theorem developed from personal observations and many discus­
sions about charge back systems.

Since their initial introduction in the late 1960's, these tools
have become easier to use and the outputs easier to interpret.
The expertise of a veteran systems programmer is no longer
required to implement effective performance controls.

Another major change is a conceptual one. In the beginning
these control tools were introduced on a piecemeal basis.
Now, however, many have been integrated into a cohesive
architecture for capacity management at the system level.
Exhibit 1 [Appemdix B] is an example of such an integrated
approach with the following distinct levels of data center con­
trol activities:

Level 1- Systems programmers and operations personnel
are working-at this level on the day-to-day task of getting the
work out and maintaining system availability and response to
user-specified service levels. In this level of effort, realtime
monitors show system and subsystem internal status so that
problem areas may be detected and resolved. Early warning
mechanisms driven by operator-defined thresholds simplify
the task of identifying problem areas and systematically alert
console operators. Another objective of this level is to opti­
mize system performance by tuning.

Level 2 -The objective of this level is aimed at the next step
above monitoring system internals. The major concern is
achieving end-user service levels and establishing the extent of
system availability for processing the various types of work.
The basic orientation of this level is towards the fulfillment of
end-user response and availability requirements. Standards of
performance derived from the configuration capability and
user requirements are established and monitored here. Basic
cost accounting concepts are applied at this level to track
financial performance.

Level3-This ultimate level is aimed at the DP manager's
ability to predict the results of future workload and service
level objectives based on various alternative hardware and
software configurations. This is a level of vital concern to him
because a job well done here will substantially increase his
chances of success in future demand situations.

If effective and sufficient effort has taken place at all three
levels outlined above, the data center manager will have a
properly tuned system and will be ready to take the next step
into capacity management. Let's stop here for a moment and
cover these basic tools:

What Are Realtime System Monitors?

The word "realtime" is broadly defined to mean techniques
relating to online display capability. In this case, a realtime
monitor displays what is currently going on in the internals of
the system. This is different from realtime inquiry to a data
base of performance data that has been collected and can be
displayed at any given time. A good realtime monitor will
have the following major characteristics:

1. Early-warning mechanisms
2. User-defined threshold values
3. Clear and easy-to-understand screens
4. Graphic displays showing current system performance in

current time periods
5. Menu-driven screen selection

6. Availability of comprehensive data for system event
monitoring

7. Sufficient information for problem definitions, resolu­
tion, and corrective action

Early-warning mechanisms and user-defined threshold val­
ues will relieve the system programmer of the task of con­
tinuously monitoring the system and looking for areas of
potential or actual problems. By having warning messages
flashed to the console operator, the system programmer
would be called in only in the case of an actual problem where
his skills are needed.

For example, a master tenninal operator using an IMS real­
time monitor may get a warning that an important short­
running transaction cannot be processed because a long­
running job of lesser importance is using the data base record
needed by the short-running transaction. In this case, the
problem can be resolved by the operator rather than calling in
an IMS system internalist. The operator may cancel the long­
running job, thereby allowing the short-running transaction
access to the data base, and then reschedule the long-running
job to be run later.

On the other hand, the master terminal operator may get a
warning that scheduling failures are up 30%. Now an IMS
system internalist is needed to determine why. By using the
realtime monitor and the screen menu, he may quickly call up
that information he will be needing to resolve the problem.
Clear and easy-to-understand screens along with graphic dis­
plays will assist the operator in defining problem areas when
he calls for assistance. Menu-driven screen selection assists
everyone using the monitor to get where they want to be in
terms of displays. The availability of comprehensive data in
sufficient detail will help to minimize problems when they
occur. Exhibit 2 [Appendix B] shows some of the major real­
time software monitoring products available in the market
today.

What Are Continuous System Monitors?

Whereas realtime monitors show information on system
internals as they happen, continuous monitors gather statistics
on user-defined key variables all the time that the system is
operating. These statistics are available for presentation as
batch reports or may even be available on a realtime inquiry
basis.

These statistics show how the system is being utilized over
time and what kinds of demands are being made by the end
users. A good continuous monitor will have the following
prime characteristics:

1. Low overhead to operate
2. User-selectable areas to be monitored
3. User-defined units of work and/or centers of activity
4. Exception reporting
5. History file
6. Summary and-detail reporting
7. Extensive graphics and management reporting
8. Batch reporting as well as realtime inquiry
9. Low maintenance

Using Operational Standards 43

When acquiring a monitor, whether realtime or continuous, a
significant consideration is what system overhead will be in­
curred as a result of installing the monitor. Some monitors in
the market require substantial system overhead and, in effect,
disturb what they are measuring. The object is to increase
performance, not further degrade the system.

The system overhead to run an MVSrrSO monitor, for
example, should not exceed 1 %-2% in the continuous moni­
toring mode. Some monitors may also collect much more
detailed data on an intermittent monitoring basis. In such an
intermittent mode, the overhe~d should not exceed 5%. In
the case of a subsystem monitor such as IMS or CICS, the
overhead will depend on transaction volume but generally
ranges from 5% to 10% of that particular subsystem.

By having user-selectable areas to be monitored with user­
defined units of work or centers of activity, the monitor will
collect data that end users can understand in those areas which
need attention. For example, a user will generally understand
such units as job or trans~ction and centers that relate to the
accounting system. This means that the reporting may be in
terms of turnaround or response time by work area.

Related to the user-defined variables, standards of per­
formance that can be monitored will yield reporting on an
exception basis. Why collect detailed data when the system is
meeting standards? A history file of the collected data (both
date and time stamped) will provide workload data over time.
This will assist the data center management in characterizing
the user workload and relating this to future system demand.
For example, online peak periods and growth rate can be
determined by the user, and response time for each daily time
period can be reported. This data is the basis for a service level
contract between the data center and the end user. Further­
more, it is measurable.

Summary and detail reporting enable the data to be
presented to the system programmer or the operations man­
ager, depending on the type or report needed. Extensive
graphics and management reporting will be directed at service
level performance and workload behavior.

Batch reporting as well as realtime inquiry allow immediate
or day-after data analysis and reporting. Finally, because the
monitors extract system data (and there are many techniques
for doing this), low maintenance is a critical item. The product
should be usable through releases of the operating system and
its subsystems. Some of the major continuous monitoring soft­
ware products are also shown in Exhibit 2 [Appendix B].

When the data center has analyzed the effects of user be­
havior and workload, the next logical step is to relate them to
the capability of the system. Peak-period performance will
probably be the main ingredient in any service agreement.
The first step in predicting system capability is to know what
the system can do now. By implementing performance report­
ing, there will be data relating to user workload character­
istics. These can then be related to service level achievement.

First, we must assume that the system is properly tuned. A
second assumption is that the workload has been shifted to the
extent possible (i.e., batch work at night so as not to interfere
with online work). At this point, the theorem of user behavior
elasticity applies. The next logical step is to develop the oper­
ational standards of performance in terms of service levels

44 National Computer Conference, 1982

based on the current configuration and end-user service-level
objectives.

In the case of predictive models, such questions as "What
effect on service levels will be experienced by adding another
channel or DASD device?" can be modeled and the results
calculated against the current workload. Future anticipated
workload growth can also be modeled to see future service
level achievement with the current system. Shifts in volume
and mix as compared to plan, when modeled, will illustrate
service degradation caused by user be~avior.

Alternative hardware and software options may be consid­
ered to find what is needed to maintain negotiated end-user
service-level requirements. Additions to the current system or
other alternative systems may also be modeled to measure the
impact. Exhibit 2 [Appendix B] shows some of the models in
use at present.

The major characteristics of a good predictive model are
the following:

1. Results can be easily validated
2. Easy to use
3. Will distinguish the various hardware and software char­

acteristics of available products
4. Can easily integrate user historical data to define work­

load characteristics
5. Economical to run
6. Easy to interpret reports

The first and foremost requirement is that the model be easy
to validate. The value of a predictive model is in its prediction!

The second and very important requirement is that the
model be easy to use. This will reduce the need for highly
technical systems people or, at the very minimum, a mathe­
matical theoretician to use the product. Rather, the model
should be usable by a trained business analyst. Most errors
made by models are created from erroneous input. Compli­
cated models tend to be resplendent with such opportunities
for error.

The predictive model ideally will easily incorporate hard­
ware and software alternatives available to the data center, so
that the analyst can play "what if?" games. That is, various
configurations can be matched against various workload and
service-level requirements to determine which configurations
would be optimal. This type of analysis lends itself extremely
well to the decision-making needed in the process of appropri­
ating capital goods (i.e., data center hardware or software).
From this data, various suitable configurations can be selected
and the cost effectiveness of each evaluated. The cost of var­
ious user service levels may also be cakulated. Both the cap­
ital and service analysis will assist in establishing the financial
requirements for the data center.

It is important that the model be fed from a historical data
base fed by the various system monitors so that workload data
can be easily integrated. This may be used to define current
standards of performance as well as defining trends for predic­
tive modeling.

The model should be economical to run, that is, it should
not consume much computer time. Since this process win be
interactive and many passes of the model will be required to

determine the new performance curve, each pass should run
in a couple of minutes or less.

And finally, the output must be easy to interpret and readily
presentable for management reporting. Again, a business an­
alyst should be able to interpret the output and be able to
input various alternatives as a result of the output from any
given pass of the model.

The objective of this measuring analyzing, and modeling
will be to derive performance curves that can become oper­
ational standards of performance that show the relationship of
service-level achievement versus user behavior. Exhibit 3
shows the process involved in establishing such standards. It
is an interactive process that involves tuning and end-user
negotiations until finally an agreed standard of performance
has been set. However, the standard is dynamic. Exhibit 4
[Appendix B] is a generalized performance curve with user­
controlled variables along one axis and service-level perfor­
mance along the other. User-controlled variables are, in fact,
the various levels of volume and mix for each of the various
categories of work.

In this case we will discuss TSO transaction response as a
function of the volume of user activity. The data for this graph
may be obtained from CMF, RMF, or SMF. In the case of a
DOS or in non-IBM environments, the system log that
records the volume of activity and system resources consumed
should provide the necessary data. Exhibit 5 [Appendix B] is
an example of a System Workload Summary§§ from which the
following data can be obtained:

1. Volume of transactions by performance groups
2. Service units used in each system area

Exhibit 6 [Appendix B] is the CPU Utilization Report, which
shows:

1. CPU busy data
2. CPU queue data

Exhibit 7 is a TSO Subsystem Performance Report, which
shows:

1. TSO response by time period
2. TSO response by command
3. Concurrent TSO users

The above data was fed into the SAS statistical program to
determine which data showed a relationship between TSO
response and another variable. The variable with the closest
relationship turned out to be the CPU queue time, *** which
is directly affected by user volume and mix. In the case of our
system, we are currently CPU-bound, so this is not a sur­
prising bottleneck. As you can see in Exhibit 8 [Appendix B],
a linear regression line has been drawn with the standard error
shown as a dotted line on either side. In this case the standard
error is 1.1 seconds on either side of the regression line.
Basically this says that two-thirds of the time, observances of

§§Exhibits 5, 6, and 7 were produced by eMF for an IBM MVS system.
***As calculated by Little's Rule, L = XQ, or the mean length of a queue is
equal to throughput times queueing time.

TSO response versus CPU queue time will fall within the area
bounded by the dashed lines.

The same analysis was done for TSO mix in Exhibit 9
[Appendix B]. This line turned out to be flat and was essen­
tially meaningless because of the variation in dat~. Again, this
corresponded to what we wish the system to do. TSO has a
high priority; so even at high CPU busy levels, the TSO ser­
vice should not suffer.

Exhibits 10 and 11 [Appendix B] show the effect on TSO
response caused by total service units consumed and concur­
rent users respectively. In both cases there is a direct rela­
tionship, even though the standard error is larger. As you can
see, using historical data, system interrelationships with user
behavior can be derived. However, this kind of data tends to
be linear, and does not answer the question of how the system
will react to user behavior at levels not yet experienced.

A third problem is that the system is never exactly the same
from one period to the next. For this reason, it is extremely
important to correlate performance data from the system to
data logged from a change management tracking system. A
change management tracking system is basically a problem
reporting system for all hardware, software, and applications
problems and changes made to the system. There have been
many times that a one-byte code change on Sunday night
caused a system to come to its knees on Monday morning with
resultant days of analysis before the change was found. Each
system change needs to be documented and available for anal­
ysis when performance data shows a major deviation. This
analysis goes a long way towards explaining the efficiency
variance we discussed earlier and should be mapped to each
change in the performance of the system.

Using a Model to Plot a Curve

Because graphing historical data will not always answer the
questions of future system behavior for future user workloads,
a model is often used to simplify the process. By using a
model, curves may be defined for each system limitation as
well as an overall curve for the present system capability. This
requires many iterations of a model to define the points on the
curve and even more iterations to define other possible
curves. It is also important to validate the model to actual
system results. That means, if we pick a point on the per­
formance curve and take the corresponding volume and re­
sponse, how close does this match reality? In other words, will
the point fall within the bounds defined in the linear
projection and standard errors graphed in the analysis of his­
torical data, as was shown in Exhibit 10 [Appendix B]?

If indeed the model can be validated and the results are
consistent, we have in fact defined an "operational standard."
"Operational standard" as used here means that there is a
standard-performance characteristic for a given level of user
activity in the current system. This becomes an extremely
powerful tool for negotiating service levels with users. A ma­
jor misunderstanding with users can be avoided if they realize
that for some levels of user activity, response will be lower.
This is especially true if there are peak periods with extreme
activity for short periods during the day and that activity
causes the "knee" of the curve to be reached.

Exhibit 12 [Appendix B] comes from an actual case where

Using Operational Standards 45

a factory made a union agreement to clock out all employees
in 10 minutes. This agreement brought the system to its knees.
The exhibit shows a performance curve for a 370--148 which
averages 2.0-second response time for about 10,000 trans­
actions during an 8-hour period. If, however, 625 transactions
come in between 4:00 and 4:10 and must be processed in the
same 2-second response time, a different system will be re­
quired. This is due to the fact that 625 transactions in a 10-
minute period are equal to 30,000 transactions in an 8-hour
period. A curve is drawn for a 3033 to illustrate the system
expansion needed to accommodate the lO-minute traffic at
2-second response. In this case; the company management
will have to weigh the service requirement against the addi­
tional investment. If user behavior is relatively inelastic, there
will soon be a 3033 installed.

Exhibit 13 [Appendix B] is a performance curve of the
Boole & Babbage data center that was made as an example
for a case study. This system is composed of:

CPU M80 (370--148) plus 6MB memory
Disc 6x 3330

8x STC 3630 (3350)
Tape 3x STC 4534
Channels 4 plus byte multiplexor
Operating
System MVS/JES2JTSO/SPFNAMICICS

Response time shown by the model degraded significantly
after 20 concurrent users and 1.1 transactions per second. In
further analysis of this case, we found that we are indeed
CPU-bound. This means that as the CPU resource is con­
sumed by a workload or variations in user behavior patterns,
degradation of service will be a direct result. A 4341 Model 2
with expanded CPU capacity is on order, and we hope to see
some relief this fall when it is installed. The next step in this
process will be to model the performance curve of the new
system. We may then find some other system bottleneck such
as I/O or DASD. In the meantime, we now have our oper­
ational standard of performance for TSO.

The Future of Performance Curves

The modeling of a workload against a given system is not
only necessary, but is feasible with currently available tools
and technology. The computation of and comparison to
planned performance curves has value in determining:

1. Data center efficiency
2. The effects of user behavior (volume and mix)
3. Benefits of tuning
4. The ability of the data center to meet various levels of

activity
5. The benefits of various system alternatives

Because of these benefits and the fact that future models will
get even more involved in simulating operating system param­
eters (i.e., SRM under MVS) , performance curves should be
available on a realtime basis. This means linking the Change
Management Tracking System and realtime system monitorl

46 National Computer Conference, 1982

model so that early warning mechanisms can be implemented.
Realtime monitors will in effect simulate system changes and
signal when the performance curve has changed from plan.
This will provide an effective tuning tool by displaying these
changes, much like the IPS parameters, in which domains and
multiprogramming levels are displayed, in the IBM Initializa­
tion and Tuning Guide.

By monitoring the effects of user behavior, both on a con­
tinuous after-the-fact basis as well as in models, the data pro­
cessing operation has implemented an important element of
scientific management. The work analysis is done by the sys­
tem itself while the manager deals with the question of user
behavior and the integration of DP into the business.

APPENDIX A-Measures of productivity in DP operations

Results of Voting:j::j::j:

Measurement factor

Online response time
On-time reports
System uptime
User satisfaction
Rerun performance
Reports distributed w/o mistakes
Number of interrupts in online service
Problem resolution time
CPU utilization
Cost of operation
Actual vs. scheduled run time
Demand batch turnaround
Recovery time from failure
Time sharing interactive response
Late jobs fault of operator
Outages by category
Application program abends
Number of projects within budget
Hardware/software reliability, INTFAC
Number and time of tape mounts
Jobs completed per computer hour
People turnover
Absentee rate

Ranking

1
2
3
4
5
6
7
8
9

10
11
12

Votes

198
160
141
137
101
56
55
47
45
43
39
34
34
30
30
29
27
24
23
20
19
16
15

***Based on a survey of a meeting of data center managers at the 1981 EDP
Performance Conference in Phoenix, Arizona, February 23-26, 1981.

III
o
~
m ..
III
:.
III
III
:.
Cl
m
~

PERFORMANCE

SPECIFICATIONS INSTRUMENTATION

o LEVEL 1

REALTIME
ANO

WARNINO

.U~~OllT FOil

O""ATIO ...

APPENDIX B-Exhibits

A ,
o

"IItOOOIC
.YITftO

HftFQlllVMlCE

_It"

o LEVEL 2

Using Operational Standards

EXHIBIT 1

m LEVEL 3

~--'
Exhibit I-Integrated SfW approach with levels 1, 2, 3

EXHIBIT 2
AVAILABLE SOFTWARE TOOLS

LEVEL 1

Realtime

MVS/TSO:

RESOl VE (Boot(' & 8<1btr;lgf"»

LOOK (ADR)

OMEGAMON (C.lnclIE' COfP)

eMF (8001.' & B.lt r'dlW)

RMF Cl8M)

IMS:

CONTROl IMS R,·.dtlm.

(8uOI(' & B,lt.I.,uw)

CICS:

lOOk. (ADR)

LEVEL 2

Continuous

MVS/TSO:

eMF (Boole & Babb.rlge)

RMF (IBM)

lSO/MON (Monno ASSOC.lilfPs)

oeM inlJQu(>snf' Systems)

IMS·

IMS PARS (IBM)

CICS:

r>AI, ;;~:.:;

etC'. PAn..:. (IBM)

Exhibit 2-Available software tools

LEVEL 3

Predictive

GAMMA (Boole & Bat.bage)

BESTf1 (BGS)

CADS (Into Research Assad

seERT (PSI)

SNAPSHOT (IBM)

ESTABl.JSHI>IG STAIIVAROS
EXHIBIT 3

Exhibit 3--Establishing operational standards

47

48 National Computer Conference, 1982

o
o

" '<

~
C>
CD

III
o
~
m
II"
III
>
III
III
>
Gl
m
~

EXHIBIT 4

® wo'" I
SERVICE !

LEVEL :

I

i© /
BETTER I '--~_"-./' ___ / ____ _

USER CONTROLLED VARIABLES

Exhibit 4-Generalized performance curve

EXHIBIT 5

- .. ------- -- --------- -- -- -- --- .. --- --- ---- .. --- .. -----.... pI: II! F"rO(~"N":' E (.':1' r)uP ? -------------_ ... _ ... -----_ _-----_ _---------------
.. ,,,'F" "'rE Tr"" ~1C'.vTf'C" r"", ... e:./T~ C;II/! 0'10 Pf T

'1/1 ,.. " ... n "" .. "
7/' , ••

2/., / ••

11. / ••

7"'.-

I/C SF'tvIC. ~
Su'1000 pr,

I.'

-'f'" ;;a,c"V!C«:
>",,/l,j}J Dr:T

2) ...

TOT'l Sf.VIC':
~lt'1000 OCT

114.1 l~ ••

?q

I :J.b

l'j.l I."

1"." l~. "

~~~ .:n SWI' 
COU'OT ,:'m ~~~o~~~s~'1' 

1".0 "." 221 "'z O..:lO.O'.IU 

I •• t I~. «. 51 ZOt OM."'''.'''· 
l6.t 1I.~ P a.OW.ll.n. 

\O.~ \I O.)O.I\.\.)Z 

''''.tJ ... ? ) (If> 12" 0.;»0.0'.120 

~--------------------------------------------------------------------------------------------, 
Exhibit 5-CMF system workload summary 



CD 
o 
~ 
m 
80 
CD ,. 
III 
CD 
:. 
Q 
m 
~ 

® 
o 
o 

" "< 

~ 
<D 

~ 
III 
o 

~ 
80 
III 
:. 
III 
III 
:. 
Cl 
!" 
Z 

POn{"lI(,"r!'" RY ........ c:( 1.4. '11 
!"]Q~!= uo/r "AI:\P,At;f. ,"I(". 

Using Operational Standards 

EXHIBIT 6 

------------------.-------------- <:"J",,,,,qy 5.FCT 10~ - -- ---- -.---- ---------------------- ----------------

II rpo) "HJIr'LC 1:l(ISfi!=-O 1c:1~(IJTA8lc: "5.IO,).II~cr 1F ExT. TI-.q 
IAVe"AGe: QI'C:IIC ,)F"TH = ~.t:I. "tl(,JIIILJM Ol'C:IJC SIZE:: q) 

C;YSTC"" J"U" - ",f') CPu. "'0 (' ... 4!\1l1r( c l APIIl.l ~ .... DEvICe: BuSY IOCT f1F fXT. TlfIIIIE t = 2.0 
• 11= f'JT4l FrlA B"TCH ::: ' ') • .1 1: OF CP'I BUSY c:nR 86T(1-4 1E ,"q.O 
• '1C "'nr.al F()f:I TSO ::: lLl Z Ot: CPu BuSY FOil TSO ::: 32.) 
• ~ TOP! c:..,o STADler TA<)I(<;,. ILl) ,OF (PI, ~IISY f~1I' STHTFf") TlSKS = 18.1' 

3.1 

(1)'1 J IJv';l1bl "Er flf)"II --------------------------------------.-------------

rlllll IITTlll4 -, .... .., 
ONl, ... e: 
."<j.y P'="Rrc~T 

t.)) .J 
"r! .. Q 

1': ""IF ... ..,T40l TlfIIIIF 
'P("Q"r""F 

C"'IPVD r'iAPlf"O 

~~~~ fI;~~ .. ql c') 

l r(l'l ~Dq IIC""'1"'1f
,"" ~Plrn
r"Y<""BlFr')

r.l,",PAl C"q" "l1Or
co •• ~lIiIl C,",

r' c:: ~ "l ~'"

... (' L t"1I,I!,P.l'"l') '",'IfC
TnT ~~ ""Y<: A-'l E' T , ... e

Tr"'at 00"" D."(", -, "f
'"'n"',., C"U"\(Q "1',,,,,;-

I'1I<:rr C',",O PIT(t-l

; ::!~~ ~:: ~:~o~~r- "'\<:I(~

ft.6 • .,

~". \
J).'
1\.'"

8VE'O I' (r ,.. Y("APl C'" "'ll["l ay I (,I["~ "''"'''»
')' C I"Ir l ~., . .JO'1'QQ

, rr CDll ql)<;Y'
b4.Q •••••••••••••••••••••••••••

t.}
'f'.'
'1.1 .•••

.q ;:: ::::
')4. ~

32.0
-'·.1
11.'
, 1. ~~~g;;m::::::::::::::::::

~:::::::::::::
---------------------- -------------------
)

100

-- --------------------o

F 1('" '.' QCPAf ~C ~T~

0 __ ~

PRnf"'lll(~ r ~'t' C """,C(1 .4."l I
Rnr1t c ,,.·n Q.lDD'\r,r, 1"1(".

no
"'r"'l"'la·l'"

(li rr:ATr
~"A"Pl"P

~it..Yn~c

cyl;("

<"oc
I '~It
\"""':" ...
OrSOTE'JJ
~:~r nc
o:',LJlIII,,'T
:;~~ t~aL

T'1T!1t tavr,

16 .. ,p ~ I I "': 1 ") ~ "')
1":40: ,r.

Exhibit 6-CMF CPU utilization report

f" "" III uS' "'I ... A q "

; --. --. --. -- .. -!~~~: -- .. -- .-- .. --.-~~ ;-i~:~}') 'HSPr'J~"i!=
Tr"'lc

h.lt4
).flQ

"."'" :. , O. l'

" D. DO :
1-,.4' .. ,; 11.44
O.qO

::
'i ~ .. ?4

"'.,)1
::

,~ 3A. b D
-'1.,11 : .. , ,).6'"
1.QQ
Ci.7'"

~ C.44
71 .. 46

"
(1"'11 4.1)(')

1" b.l1

, ~ T ~ P <I I. l \ 'I " Q ."

a~~~:~(; i~~:;~~c "T~~LI 1;~_. __ • __ :~~!~~:_~~~~ __ ._. __ ~:~
1.:;; 0/0.")0 Z".Q ••••••••••••••••••••••••••••••• 1.

1).1. 11.'? 1 ".~ ;~::~~:~~:~~:~~:~~:~~:~~:~:~~:~~:
"'. ~ 7 1 ".7 J. a A .. E: 'f:" (",F ~ IS F Q: S to. ,

EXHIBIT 7

• •••• I
•• r

I
r

• 1 • •••• J ,
.0 1 .····1 · ,. . .·.··1···························· • •••• t
.0 1 ... , .····1 · ····1··· .····1············· :~~:- ~+-+--+- -+--+-- +-- +-- +-- +--;

0.0 DF~POLlot'l:e- 18.61!

.............. 1 •

;~~:~~:~~:~~:~~:~!~:~:~~:~:~:
0.0 OFSPONSF 1I.ll

r __ --'

Exhibit 7--CMF TSO subsystem performance report

49

50 National Computer Conference, 1982

III
o
o
r
m
go
III
~
III
III
~
Q
m
2

12

11

10

LEG"IID: , ' I O!S. P • l 08S. ETC.
LeGEND: , • I CPS. ! • 2 res. FTC.

V
A

/' " : , , ..

,/

' .. /"

EXHIBIT 8

/'
,/

/' / /'
/'

./ ./

../
/'

/'

~--~

'" n
o
~

~
co
CI>

III
o
~
m
go
III
~
III
III
~
Cl
m
~

Exhibit 8-Linear regression-TSO response/CPU Q

EXHIBIT 9

'S T J , , ~ T , ,.. "l I -I & l "1 c;. T Ii S'" ~ l c: •

PU'H 0-= 'Sf"' q~'SC.T(;O IIttx LC::GcptO: A = lees. e ,. 2 (PolS. fTC..
Pll"T r"'F TPF'Ao*,sn.QE'S'DI ler;fNO: l'" I n8'S .. II ::- ., rRS. cTC.

---~- ---- ---l~-_·- --- -i~ -.- -- ---;~------- -1; -------. i~ -.----- -;;--------;;---- -- --.~--------5C--------~;--------60-
TSC.IIIIIJ:

~ _________________________________ • __________________________________ ____________ ______ ~J

Exhibit 9-Linear regression-TSO responselTSO mix

co
0>

CD
o
~
m
II'
CD
:.
CD
CD
>
Q

!'I
Z

S T & T J S T I .. '\ l • "'.1 .I l Y' c: T <j S Y S T " ..

PLOT Of "sn .c"P,T_SU LEGEND: A -= 1 ('PS. ! I: 1 ces .. ETC.
Dlf"lT,,1= "'eC~I"I.Tr')T_"U lEG-EN): e. .. 1 nfS,!"? ('PS. I='TC.

11

II

10

Using Operational Standards

.--

, -

EXHIBIT 10

_1

--

p--~

CD
o
~
m
II'
CD
>
CD
CD
>
Q

!'I
Z

Exhibit 10-Linear regression-TSO response/SV's

EXHIBIT 11

S T f T t S ,. I r a l A"i" L Y ') t ~ S Y S T C' !III

17

II

10

i
i
i
i
i
i
i
r
i
i
i
i

.
r

-. -- --- - - +- - - - -- -. -- - - - - - +- -. -.- -.- -- - - - -+ - - -. -- - +- - -----+ - -- - ---+- -- - - -- +------ -+-- - --- +-------+- ------+---- ---+- --- -- -+-
lC,aL !'l ~."" "'oJ 1.- R.t. q,.!'l 9.~ to.Z 10." 11.4 12.0 12.6 13.2 13.e 1"."

p--------------~--~
Exhibit ll-Linear regression-TSO response/concurrent users

51

52 National Computer Conference, 1982

r
EXHIBIT12

1 :J
TSO

:j
RESPOSE

TIME

(SECONDS)

10,000 30,000

TSO TRANSACTIONS

Exhibit 12-Performance curve for 370-148

APPENDIX C-A bibliography for further study

1. Arnold O. Allen, Probability, Statistics and Queueing
Theory with Computer Science Applications, Academic
Press, New York, N.Y. (1978).

2. C. Warren Axelrod, Computer Effectiveness: Bridging the
Management/Technology Gap, Information Resources
Press, Washington, D.C. (1979).

3. L. Bronner, Capacity Planning: An Introduction, IBM
Technical Bulletin GG22-9001-00 (January 1977).

4. L. Bronner, Capacity Planning: Implementation, IBM
Technical Bulletin GG22-9015-00 (January 1979).

5. J. P. Buzen, "Queueing Network Models of Multipro­
gramming," Ph.D. Thesis, Harvard University, Cam­
bridge, Mass. (1971).

6. Computer, April 1980, IEEE Computer Society (contains
several articles of interest).

7. Peter F. Drucker, Management: Tasks-Responsibilities­
Practices, Harper & Row, New York, N.Y. (1974).

8. Jeffrey L. Forman, Change Communication: A Manage­
ment System, IBM Technical Bulletin GG22-9154-00 (Ju­
ly 1979).

9. An Architecture for Managing the Information Systems
Business, Volume I: Management Overview, IBM,
GE20-0662-O (January 1980).

10. Problem and Change Management in Data Processing-A
Survey and Guide, IBM GE19-5201-O (August 1976).

EXHIBIT 13

CONCURRENT

TSO

, j
rF f''''"' 20

,'E ~'5

RESPONSE 3

.0S'E..~S
, D l,o

/
/c

21 ~ _________ . ____________ ~~:P-~~~:;~~~"

I

1 3 5 7 ,

'---~-~----r---'--

TRANSATIONS/SlC

Exhibit 13-Performance curve for BIB DC

11. IBM Systems Journal, Volume Nineteen, November 1,
1980, "Installation Management, Capacity Planning."

12. H. Kobayashi, Modeling and Analysis: An Introduction to
System Performance Evaluation Methodology, Addison­
Wesley, Reading, Mass. (1978).

13. J. D. C. Little, "A Proof of the Queueing Formula,
L = 'AW," Operations Research 9, pgs. 383-387 (1961).

14. J. Martin, Design of Real-Time Computer Systems,
Prentice-Hall, Englewood Cliffs, N.J. (1972).

15. J. Martin, Systems Analysis for Data Transmission,
Prentice-Hall, Englewood Cliffs, N.J. (1972).

16. Montgomery Phister, Jr., Data Processing Technology
and Economics, Santa Monica Publishing Company, San­
ta Monica, Calif. (1977).

17. Charles H. Sauer/K. Mani Chandy, Computer Systems
Performance Modeling, Prentice-Hall, Englewood Cliffs,
N.J. (1981).

18. David R. Vincent, "Software Tools for Service Level
Management," Data Management, pgs. 25-29, March
1981.

19. David R. Vincent, "Measuring Performance Online,"
ICP Interface, Data Processing Management, Summer
1980.

20. David R. Vincent, "Service Level Management," 1980
CMGXI Proceedings, pgs. 196--207.

21. David A. Wren, The Evolution of Management Thought,
John Wiley & Sons (1979).

Distributed processing with the Z8000 family

by RICHARD MATEO SIAN and JANAK PATHAK
Zilog
Campbell, California

ABSTRACT

The Z8000 Family plan philosophy envisions a distributed processing approach to
many Z8000 applications. The Z8000 Family consists of CPUs, CPU support cir­
cuits, and a full complement of VLSI peripherals. These components are all inte­
grated by the Z-BUS, which defines the interconnections and transactions among
them. The basic philosophy of the family plan is that of distribution of intelligence
and function among complementary VLSI components. Of the several possible
realizations of this philosophy, the one chosen has the following major aspects: .

1. Synchronization primitives in bus and component architectures
2. Extensively programmable VLSI peripherals and CPU support circuits
3. Bus support for cooperative transactions
4. Built-in support for interprocess message passing

53

SYNCHRONIZATION PRIMITIVES

The Z-BUS has two features specifically designed for inter­
component synchronization in a distributed processing envi­
ronment:

1. The "bus lock" status code
2. The resource request lines

Each of these bus features is designed to work with specific
CPU instructions.

The "Bus Lock" Status Code

The "bus lock" status code is one of the 16 possible codes
representable on the status lines ST3-STo of the Z-BUS. This
status occurs during the fetch cycle of the Test and Set (TSET)
instruction, which is available on all Z8000 CPUs. The TSET
instruction is used to implement semaphores. Its job is to test
a specified memory location for a predefined "available" code
and to set the contents of the memory location to "not avail­
able." The inclusion of these two actions in a single instruction
prevents any access to the specified location between the test­
ing and the setting. That is, it prevents access by any other
process running on the same CPU, which might happen if an
interrupt occurred between separate testing and setting in­
structions. When other devices, such as another CPU or a
DMA controller, have access to the same memory as the CPU
executing the TSET instruction, the testing and setting oper­
ations must be inseparable at the bus transaction level. This
inseparability is implemented through use of the "bus lock"
status code.

The Resource Request Lines

In some distributed systems, several CPUs that do not share
a common memory may need to share a common resource. In
this case, the TSET instruction cannot be used. For such
situations, the resource request lines of the Z-BUS have been
provided. Figure 1 shows a prosaic example of their use: three
CPUs s~aring a line printer. When a CPU needs to use the
line printer, it executes the MREQ instruction, which con­
ducts a transaction on the four resource request lines; condi­
tion code settings indicate to the program whether or not the
CPU gained control of the line printer through this trans­
action. If not, the ¥REQ instruction is executed again; if so,
the line printer is used, then released through execution of the
MRES instruction. If another CPU executes an MREQ in­
struction while the line printer is being held, the resource
request transaction results in a "not available" indication.

Distributed Processing with the Z8000 Family 55

PROGRAMMABLE VLSI COMPONENTS

The use of extensively programmable VLSI peripherals and
CPU support circuits brings aspects of distributed processing
into most Z8000 applications, even those with only a single
CPU. The principal programmable VLSI components of the
Z8000 Family are summarized below.

Memory Management Unit (MMU)

The MMU provides address translation and access protec­
tion, using internal tables transmitted from the CPU. Because
of the Z8000's segmented addressing, which allows segment

PRINTER

-
r~ I

MO

CPU
1

CPU
2

CPU
3

~ -

+5v

M1 RESOURCE
.MMAI I ~
MMST

CONTROL MMRQ

MLi LOGIC
MMAO

MMAI
~iI RESOURCE MMST

I-~---I CONTROL ---==MM=R=Q-----;

LOGIC
...... __ MMAO

RESOURCE MMAI
M1 MMST

.-----1 CONTROL I.::::MM=R=Q-------i

MLi LOGIC
...... __ MMAO

~1r·'AI
.t1 -

~ (J--
--MMRQ

v

~. MMAO

Figure I-Resource lines provide non-memory-based synchronization

56 National Computer Conference, 1982

identity to be output by the CPU before completion of the
indexing portion of address computations, the segment-re­
lated address processing done by the MMU occurs in parallel
with the CPU's indexing. This parallel processing approach
minimizes the overhead of external address translation and
access protection.

DMA Transfer Controller (DTC)

The DTC can carry out high-speed block data transfers and
searches independently of the CPU's operation. Control of
the DTC by linked lists of command blocks in memory allows
the DTC and CPU to carry out joint functions asynchro­
nously. When an MMU is in the configuration, the DTC can
work with logical or physical addresses. A special control line
and a bit in the MMU access control registers allow the MMU
to protect certain blocks of memory from DMA transfers and
to prevent CPU access to blocks of memory while they are
being changed by a D MA transfer.

FIFO Input/Output Interface Unit (FlO)

The FlO allows asynchronous parallel data transfers be­
tween processors, making it a key element in distributed
mUlti-processor systems (see Figure 2).

The FlO is simply a 128-byte, first-in-first-out buffer, ex­
pandable in width and depth, equipped with bidirectional
parallel interfaces at each "end" of the buffer and a set of
message registers for interprocessor communications that by­
pass the buffer. The FlO is designed to cooperate with the
DTC in "flyby" transfers (described below) to initiate DMA
transfers without CPU involvement and to terminate DMA
transfers on the basis of patterns recognized in the transferred
data.

The Counter/Timer and Parallel I/O Unit (CIO)

The CIO has many functions related to real-time 110 pro­
cessing. It is not a separate 110 processing CPU for use with
the Z8000, but it does perform many of the same functions:
bidirectional parallel 110 with a variety of handshake modes,
counting and timing of external signals, and priority interrupt
control.

The Serial Communications Controller (SCC)

The SCC, like the CIO, carries out many ofthe functions of
a dedicated CPU working with the Z8000. It performs all of
the tasks associated with serial communications on two in­
dependent 1Mbit/second channels, using any of a variety of
protocols.

COOPERATIVE TRANSACTIONS

An essential element of the Z8000's distributed processing
Family' plan is the use of cooperati\'e transactions. The prin­
cipal examples are:

Z·BUS

Z·BUS ZSO BUS

SYSTEM
MEMORY

I\~ __ / CHANNEL A

CHANNEL B
n~-~/

,,---, PORT 2
<s>

I/~-~\ PORT 3
<s>

Figure 2-FIO links processors and cooperates in DMA transfers

1. CPU/MMU generation of physical addresses
2. Extended processing architecture
3. DTC/FIO "flyby" transfers

The common theme behind cooperative transfers is that each
device has specific capabilities and that when a task requires
a combination of capabilities, it is better to allow several
devices to participate in the task than to replicate capabilities
in several devices. Thus, for example, rather than equipping
the FlO with DMA transfer capabilities, it was deemed more
sensible to provide for joint DTC/FIO transfers.

Of the three examples of cooperative transfers listed above,
CPU and MMU cooperation has already been discussed. The
other two examples will now be described.

Extended Processing Architecture

An important goal of the Z8000 Family design was to ac­
commodate additional processing capabilities (such as what
would be provided by a floating point chip) with no redesign
of the overall system or software. This goal was achieved with
a scheme that allows certain CPU instructions either to cause
traps (allowing simulation of an absent chip's function) or to
be executed cooperatively by the CPU and an extended pro­
cessing unit (EPU). With this cooperative approach, the
CPU's addressing capabilities are used to fetch or store the
arguments, and the EPU performs the operations. EPU oper­
ation can proceed in parallel with the execution of subsequent
instructions by the CPU; synchronization is achieved by the
EPU's assertion of the CPU's STOP line if the CPU fetches

another EPU instruction before the EPU is ready to execute
it. Figure 3 illustrates the cooperation of the EPU and the
CPU.

The Extended Processor Architecture gives designers a
great deal of flexibility. For example, an EPU doing floating
point operations could be used interchangeably with floating
point software controlled by the same instruction stream; only
a single bit in the CPU's Flag/Control Word (FCW) control
register would need to change. Thus, a high-performance
floating point chip could be an optional feature of a product
that used floating point operations. The "slow" version would
use software execution of the floating point instructions, and
the "fast" version would use the chip to execute instructions.
Both versions would have identical applications program code
and circuitry.

A ~
AID BUS)

~ r
MEMORY

Z8000

~
TRANSACT ION COfHROL) SYSTEM

FAMILY

~ CPU
STATUS BUS

'{ n/

"""I; 7"': 7 7

STOP
EPU

Figure 3--CPU and EPU cooperate to execute instructions

The EPU monitors the status lines, looking for "Instruction Fetch, First
Word" status. When this occurs, it examines the instruction presented on the

AID bus. If the instruction is for that EPU, it either asserts STOP
(if it is still busy executing a previous instruction)
or initiates execution of the indicated instruction.

The EPU instruction can be entirely internal to the EPU, or it can include
one or more transfers of data between the EPU and CPU or EPU and

memory. For each of these cases, the CPU generates the appropriate status
signal (ST3-STo) and transaction control (R/W, BIW, AS, MREQ, DS) lines,

and the EPU takes or supplies data as appropriate.

Flyby Transfers

A "flyby" transfer is a DMA transfer in which the data
never enters the DMA controller circuit. The DMA controller
provides all necessary memory addressing, transfer counts,
and bus control signals, but at the point in the transaction
when data must pass from one component to another, an
intelligent peripheral (like the FlO) supplies or takes the data.
Flyby transfers are, therefore, approximately twice as fast as
ordinary DMA transfers, in which one transaction is required
to fetch the data from the source and to latch it in the DMA
controller, and a second transaction is required to pass the
data from the DMA controller to the destination.

Distributed Processing with the Z8000 Family 57

SUPPORT FOR MESSAGE PASSING

The support for message passing in the Z8000 Family plan is
predicated on the assumption that interprocess communica­
tion in Z8000 systems can be conducted effectively through
messages. Other means of interprocess communication are
not precluded, but message passing is the only interprocess
communication method supported by special architectural
features.

Since message passing is generally implemented through
the movement of blocks of characters from one location to
another, one of the principal means of supporting message
passing in the Z8000 Family plan is the multi-level support of
block data movement. The block I/O and memory transfer
instructions of the CPU, the capabilities of the DTC, and the
features of the FlO are all designed to complement each other
in providing efficient, flexible block data movement through­
out Z8000 systems.

Another instance of mes~age passing occurs in the commu­
nication protocol defined between the Z8000 CPUs and the
Universal Peripheral Controller (UPC). The UPC is a Z8-
based single-chip microcomputer designed for use in device
controllers. It functions as a slave processor to the CPU, and
because it is directly tied to the operation of a physical device,
it is essential that a faulty CPU program not cause the UPC
to fail.

The fail-safe protocol for CPU/UPC communication calls
for designation by the UPC of specific blocks of its internal
memory for use as shared message buffers. The CPU has
direct access to the designated buffer area but cannot access
any other portion of the UPC's memory until the UPC desig­
nates that portion as the message buffer. The CPU always sees
a single address in its I/O address space as "UPC message
buffer," but the UPC maps this address internally into the
desired area of its memory.

SUMMARY

Distributed processing with the Z8000 Family is not a special
case. The distribution of function among CPU and extensively
programmable VLSI components demands that the basic
mechanisms of communication and synchronization be in­
cluded in the design of the Z-BUS and all the Z8000 Family
components. In addition, specific attention has been given to
multi-CPU system problems through use of specific CPU in­
structions and bus protocols and through use of the First -In­
First-Out Interface Unit (FlO) as a flexible buffer between
asynchronously functioning systems. Cooperative transac­
tions, in which the functions of several components must com­
bine to carry out the desired action, bring distribution of
function to the bus and component level. Finally, architec­
tural features supporting message passing facilitate distrib­
uted processing at the software and application structuring
level.

Distributed processing with iAPX 186 microprocessor systems

by TONY ZINGALE
Intel Corporation
Santa Clara, California

ABSTRACT

In most early computer systems, large central computers, minicomputers, or mIcro­
computers were used to perform all the necessary data processing activities in the
system. The overall performance of the entire system was limited by the ability of
the central CPU to bring in data, process it, and output it in some usable format.
This often resulted in large data input/output bottlenecks in IIO-intensive applica­
tions where the CPU time required to service 110 functions left little time for data
processing. The obvious result is a slow, non optimum data processing system. Now
many applications are moving in the direction of simpler and easier-to-use dis­
tributed systems, where a central CPU delegates some of the processing tasks to
distributed processing subsystems. Not only are costs lower with the distributed
system approach, but the time needed to implement such systems is substantially
less.

For example, a network transaction processing system can now use numerous
automatic tellers to process data at a variety of dispersed geographic locations. The
tellers, or distributed nodes, can then collect, process, output, and eventually pass
on necessary information to the central host computer, located at some detached
location, without burdening the central computer with handling each simple trans­
action. The host becomes involved with an individual node only when the intelligent
node requires the timely interaction. The heart of a distributed node itself must be
an intelligent processing device capable of handling all the processing and 110
requirements needed by the node.

The iAPX 186 is a new highly integrated 16-bit microprocessor. It combines 10
of the most common microprocessor system components onto one. The 80186 is
essentially a 16-bit CPU board integrated onto a single silicon chip. By combining
a limited number of peripheral support components with memory together with an
iAPX 186, one can achieve a condensed, cost-effective system on one board, mak­
ing the 80186 an optimal microprocessor for distributed processing nodes. This high
level of integration is accomplished through an advanced HMOS II silicon gate
technology. For the first time it provides a system cost saving significantly greater

-than that of the previous 16-bit microprocessor design alternatives. The 80186, an
upgrade from the industry standard iAPX 86 and 88, offers two to three times the
system throughput of a standard iAPX 86. The iAPX 186 adds 10 new instruction
types to optimize existing iAPX 86 or 88 application code or streamline new iAPX
186 application code. All these hardware and software attributes make distributed
processing with iAPX 186 systems a cost-effective, easy 16-bit microprocessor
solution.

59

CLASSICAL DISTRIBUTED PROCESSING

The concept allows the use of dispersed processing sites or
nodes to offload a sophisticated central computer, minicom­
puter, or microcomputer. The real payoff from the distributed
processing approach is the increased responsiveness to the
user's needs of the data processing function, achieved by pro­
viding an effective, fast, powerful processing mechanism at
the lower levels. The declining costs of microcomputers and
memories have provided the economic justification for dis­
tributed computing. The approach now is to let micro­
computers located near the data do much of the real-time
processing and send only a summary to the host computer
(Figure 1).

Distributed Processing Node Requirements

The data processing node must be

1. More cost-effective than similar approaches
2. Easy to implement, thus making possible a fast end­

product time to market
3. Compatible with existing software, if any
4. Capabie of high-speed execution rates

In addition to the general requirements stated above, there
are a set of hardware requirements to be satisfied.

Termmals Terminals

Figure I-Distributed STAR network

Distributed Processing with iAPX 186 Microprocessor 61

1. High-speed, flexible DMA is needed by any 1/0 sub­
system to accomplish data transfers between 110 devices
connected to the distributed node (i.e., keyboards,
disks, printers, modems) and local system memory or
vice versa. This is a key requirement for moving blocks
of data in and out of a distributed node that can improve
system performance and execution time.

2. Flexible hardware timers are always required to time
external events occurring in the system. Timed external
events usually correspond to some sychronized system
activity. For example, the number of words that have
been printed may signify to the CPU that it needs to start
a new page or generate some type of interrupt to the
CPU to stop printing.

3. In a time-sensitive distributed system there is a definite
need for the handling of a large number of real-time
interrupts. For example, if several intelligent terminals
are connected to a single distributed node in addition to
the standard 110 devices, multiple interrupts will appear
at the node simultaneously. These interrupts must be
acknowledged, prioritized, and handled cleanly and
rapidly.

4. Address decoding hardware is needed to provide the
system with a systematic convention for selecting mem­
ory spaces and peripheral devices; wait-state generating
circuitry is required to insure timing compatibility with
memories and peripherals at the proper speeds. This
hardware can require an appreciable portion of the
board space of the distributed node.

This feature set is optimal in that it provides all the basic
requirements of a distributed processing node. The iAPX 186
integrates these common system functions into a single silicon
chip.

Cost-Effective, Optimal Integrated Feature Set

A block diagram of the iAPX 186 integrated hardware fea­
ture set is shown in Figure 2, followed by a summary of each
on-chip feature.

Clock generator: The 80186 provides an internal clock oscil­
lator, which requires a single external crystal or TTL-level
frequency source. The system clock output is a standard
8-MHz, 50% duty cycle clock at half the crystal frequency, or
16 MHz. This output can be used to drive the clock inputs of
other system components and hence make additional clock
generation devices unnecessary. Synchronous and asynchro­
nous ready inputs are supplied for flexible peripheral-device
synchronization.

62 National Computer Conference, 1982

CPU

Figure 2-iAPX 186 CPU (80186) block diagram

Timers: Two independent 16-bit programmable timerl
counters are provided to count time external events, external
events, and generate nonrepetitive waveforms. A third 16-bit
programmable timer, not connected externally, is useful for
implementing time delays and as a prescaler for the two exter­
nally connected timers. The iAPX 186 integrated timers are
very flexible and can be configured to time/count a variety of
distributed I/O types of activities.

Each of the three timers is equipped with a 16-bit timer
register that contains the current value of the timer. It can be
read or written at any time, independent of whether the timer
is running. Each timer is also equipped with a 16-bit max
count register containing the maximum value the timer will
reach. In addition, the two externally connected timers each
have a second 16-bit max count register, which enables the
timers to alternate their count between two different max
count values as programmed by the user. When a terminal
count is reached, an interrupt may be generated, and the
timer value is reset to zero.

The timers have several flexible programmable options in
their mode of operation. All three timers can be set to halt or
continue on a terminal count value, so no external event or
device need wait for a timer reset. The two externally con­
nected timers can select between internal and external clocks,
alternate between max count registers or use only one, and be
set to retrigger on external events.

DMA channels: The on-chip DMA controller unit in the
iAPX 186 contains two independent high-speed DMA chan­
nels. DMA transfers can occur between memory and I/O
spaces (i.e. M-I/O) or within the same space (i.e. M-M,
I/O-I/O). The latter feature allows liD devices and memory
buffers to be freely located anywhere in the distributed sys­
tem. For example, memory-mapped liD can be handled with­
out any external decode logic to select the required liD space
or device. Each DMA channel maintains two 20-bit source
and destination pointers that can be incremented, decre­
mented, or left unchanged after each transfer. Data transfers
are programmed by the user to be .either byte or word trans­
fers and can occur anywhere in the 1 megabyte of directly
addressable memory space. This allows a maximum transfer

rate of 1 MWord/second or 2 MBytes/second. The user can
specify several different modes of DMA operation via the
on-chip 16-bit DMA channel control word.

By using the 80186 DMA facilities, data can be input onto
local system memory, processed, passed on to the host com­
puter (if needed), and output to another liD device, all by
the use of the two independent, high-speed, on-chip DMA
channels.

Interrupt Controller: The 80186 interrupt controller re­
solves priority among interrupt requests that arrive simulta­
neously. It can accept interrupts from up to five external
hardware sources (NMI + 4) and internal sources as well
(timers, DMA channels). Each interrupt source has a pro­
grammable priority level and a preassigned interrupt vector
type, used in deriving an address to a table in memory where
interrupt service routine addresses are located. This enhance­
ment of predefined vector types makes the interrupt response
time about 1.5 times faster than the typical iAPX 86 response
time. The 8259A programmable interrupt controller (PIC)
interrupt modes, like fully nested and specially fully nested,
are provided by the 80186 as well. In addition, multiple
8259As can be cascaded to provide the system with up to 128
external interrupts. There is also an RMX-86 real-time oper­
ating system mode of operation for maximum user flexibility
that provides many of the same interrupt features described
here.

Chip select/ready generation: The iAPX 186 contains pro­
grammable chip select logic to provide chip select signals for
memory components, peripheral components, and program­
mable ready (wait states) generation logic. The result of this
integrated logic is a lower system part count, since as many as
11 TTL packs will be saved. In addition to a lower system cost,
the speed/timing performance of the system will improve as a
result of the elimination of external propagation delays. An­
other advantage involves flexibility in the choice of memory
component size and speed. Three memory ranges (lower,
middle, upper) can be programmed to variable lengths (lK,
2K, 4K, ... , 256K) so that a variety of memory chip sizes can
be used. Further, anywhere from zero to three wait states can
be programmed so either high-speed or low-cost, slower
memories can be used. With respect to the peripheral chip
selects, as many as seven different peripheral components can
be addressed via liD or memory space. Again, programmable
wait states may be injected to synchronize slower peripherals
with the 80186 itself or memory.

The chip select/ready logic contributes heavily to making
the iAPX 186 an optimum, low-cost choice for a distributed
processing node. In the past, this necessary logic had to be
designed, debugged, and programmed. Now, with the 80186,
the design, debug, and programming are done by initializing
the associated 16-bit on-chip control registers.

CPU internal registers: The added functionality of the
iAPX 186 (i.e., timers, DMA, interrupt controller, and chip
selects) uses on-chip 16-bit control registers for each inte­
grated device. They are contained in a 256-byte control block
(see Figure 3) included in the 80186 CPU register architec­
ture. The control register block may be either liD or memory­
mapped, based on initialization for a new control block
pointer in the CPU. Except for these additions, the register
architecture of the iAPX 186 is identical to the iAPX 86.

REGISTER BLOCK r -15 - - - - - - - -0 - -,

AX

ax
ex
o X

I

I

At.
a,.,
Ctt
0..

At
a..
c..
Dt.

SP
BP
SI

DI

IP I STATUS

CS

I
SS

os
ES

L
___________ ...J

I CONTROL BLOCK POINTER
MEMORY OR 1/0 MAPPED

15

DMACONTROL

CHIP SELECT CONTROL

TIMER
CONTROL

INTERRUPT
CONTROL

Figure 3-iAPX 186 register architecture

Software Compatibility

r -c-

256 BYTES

-'-

Since software costs are influencing most microcomputer
decisions today, system designers must take this enormous
investment seriously when choosing microcomputers for fu­
ture product upgrades. This is especially true in the cost-sen­
sitive distributed processing area, where virtually hundreds of
nodes will be designed and programmed to interface to a
central host computer. Software compatibility between the
nodes and the central host makes the overall system easier to
use and will shorten the design cycle considerably. For future
product upgrades, software compatibility must be a decision
variable in today's product. If not, when bringing a new prod­
uct to market, engineers may spend all of their time rewriting
hundreds of lines of general-purpose software rather than
writing new streamlined application code. All this can be
saved by using the iAPX 186. Since the 80186 is completely
object-code-compatible with the iAPX 86 or 88 or 286, soft­
ware investments are intact for future product offerings. Not
only is the 80186 totally software-compatible with the 8086 or
8088; it adds 10 new instruction types as well. Instructions like
block move (running at bus bandwidth or 2MBytes/sec), push
or pop all the registers (push/pop all), and multiply immediate
are all new to the basic iAPX 86, 88 instruction set. These
instructions help enhance existing iAPX 86 or 88 application
code, if needed, or produce optimum, high-speed iAPX 186
code.

iAPX 186 Performance Comparisons

The iAPX 186 overall performance speed is two to three
times faster than the 5MHz iAPX 86 and 30% faster than the
8MHz iAPX 86. Many instructions, specifically those for in­
teger arithmetic (i.e., multiply and divide), execute 5 to 6
times faster than on a 5MHz iAPX 86 (see Table I). In bench­
marks based on Intel standard applications, operations like
block translation, bubble sort, and automated parts inspec­
tion show that the iAPX 186 yields a 1.66 times performance
increase over the 8MHz iAPX 86 (see Table II). These bench­
marks were selected to evaluate the performance of 16-bit
microprocessors and demonstrate the capabilities necessary

Distributed Processing with iAPX 186 Microprocessor 63

TABLE I-Relative execution comparisons:
iAPX 186 (8MHz clock rate) vs. iAPX 186

Instruction 8086 (5MHz) 8086-2 (BMHz) 8086-1 (10MHz)

MOV REG TO MEM 2.~2.9X 1.2-1.BX .1.~1.4X

ADD MEM TO REG 2.~2.9X 1.2-1.BX 1.~1.4X

MULREG16 >5.4X >3.4X >2.7X
OIV REG 16 >6.1X >3.BX >3.0X

MULTIPLE (4-BITS)
SHIFT/ROTATE MEMORY 3.1-3.7X 1.95-2.3X 1.6-1.BX

CONOmONAL JUMP 1.9X 1.2X 1.0X

BLOCK MOVE 3.4X 2.1 X 1.7X
(100 BYTES)

for intensive 110 operations, general integer arithmetic, and
data manipulation operations necessary for real-time business
and EDP applications. Naturally the most likely environment
for finding a distributed processing system lies in these appli­
cation areas. The iAPX 186 satisfies the high-speed execution
requirement for a distributed node by surpassing the existing
high-performance standards set by the iAPX 86 and at the
same time is totally software-compatible to the iAPX 86, 88,
and 286.

TABLE II-Relative throughput benchmark, iAPX 186 vs. 8MHz
iAPX (based on Intel standard application benchmarks)

.

1.5 ~

1.0 ~

.5 ~ ows ows

8086-2 iAPX 186

64 National Computer Conference, 1982

TYPICAL DISTRIBUTED SYSTEM CONFIGURATION

A sophisticated central host computer capable of handling
multiple users in a real-time environment is obviously a major
need for an effective distributed processing system, This de­
vice is responsible for controlling all the distributed nodes in
the system. This requires an extremely large memory space to
handle the multiple-nodes memory and 110 space require­
ments and also requires some form of system integrity mech­
anism that would insure that each node executes independent
of the others. The microcomputer that fits this requirement
best is the iAPX 286 (see Figure 4). Not only is the 80286
software compatible with the iAPX 86, 88, 186, providing six
times the performance of an 5 MHz iAPX 86; it also offers
on-chip memory management and memory protection. The
iAPX 286 is capable of directly managing up to 16 megabytes
of real memory and up to 1 gigabyte (230 bytes) of virtual
memory. It can provide memory protection for each distrib­
uted node by verifying each specific task's address range and
access rights for every memory access. These integrated fea­
tures of the 80286 satisfy the requirements of a central host
and of controlling the distributed nodes in a system, since each
will require some independent memory space and also some
form of protection from the other nodes in the system.

As Figure 4 shows, communications between the iAPX 286
host computer and the iAPX 186 distributed nodes takes place
by passing messages and data through a dual-port RAM. The
dual pori is used to isolate the iAPX 186 systems or nodes
from the protected bus structure of the iAPX 286, maintaining
full system integrity.

One design variable to consider in a distributed node
scheme is error detection and correction in and out of the
dual-port RAM. The Intel 8206 Error Detection and Cor­
rection unit performs this function with one device. The 8206
serves as an interface between large memory systems (i.e.,
iAPX 286 systems) and the system bus of the iAPX 186. The
EDC unit will internally detect all one-bit errors and most

PROTECTED SYSTEM BUS

r-------------

Figure 4-Distributed iAPX 286-iAPX 186 system

multiple-bit errors and automatically make corrections. Obvi­
ously, errors can occur in any system configuration when data
are written incorrectly to memory, a memory cell loses data,
or a complete memory component is missing or dead. These
errors can be carried throughout the system and affect end
results unless detected and corrected. In Figure 4 a dual-port
RAM scheme is used to interface the iAPX 286 protected
system bus to the iAPX 186 local bus. The 8207 Advanced
Dynamic RAM Controller is capable of controlling two
memory ports at the 8-MHz speed for both microcomputers
and supporting a megabyte of address space. The 8207 pro­
vides the necessary control and timing signals to interface
memory to the 8206 EDC component as well (see Figure 5).
Previously this mechanism, the combined 8206 and 8207 com­
ponents, took as many as 50 TIL components. Together the
two peripheral devices provide a cost-effective, error-free,
highly reliable memory subsystem for a distributed processing
node.

CONTROL

RAM

A
ADDRESS

CONTROL

80286 PROTECTED

Figure 5-Dual-port RAM control with EDC

CONCLUSIONS

The iAPX 186 exceeds all the stated requirements for use as
an effective distributed processing node. This optimal inte­
grated feature set of the 80186 is streamlined to manage the
necessary 110 hardware and real-time/high-speed software
needs of a distributed system. It is very cost-effective, easy to
use, high-performance, and compatible with any iAPX 86 or
88 existing software; and it can also be tightly coupled with an
iAPX 286 central host and provide highly reliable memory
subsystems through the use of the 8206 EDC and the 8207
peripheral devices.

REFERENCES

1. Thierauf, Robert J. "Distributed Processing Systems." Englewood Cliffs,
New Jersey: Prentice-Hall, 1978.

2. Down, P. J., and F. E. Taylor. "Why Distributed Computing?" Rochelle.
Park, New Jersey: Hayden Book Company, 1977.

3. Moore, W. G. "Going Distributed." Mini-Micro Systems, 10 (1977), pp.
41, 44, 46, 48.

4. Klovstad, J., and S. Kopec. "iAPX 186 Target Specification Revision 2."
Intel preliminary design document. October 16, 1980.

5. Klovstad, J., and S. Kopec. "iAPX 186 Architectural Overview Revised
May 1981." Intel overview document, available from Intel Corporation,
Santa Clara, California.

Distributed Processing with iAPX 186 Microprocessor 65

6. Heller, P. "The Intel iAPX 286 Microprocessor." IEEE Wescon Trade
Show Proceedings, San Francisco, 1981.

7.' Kop, H. "16-Bit Microprocessor Benchmark Report: iAPX 86/10, Z8000,
MC68000." Intel Corporation, 1981.

8. Intel Corporation. Perperal Design Handbook, Available from Intel Cor­
poration, Santa Clara, California. 1981.

High-performance, high-capacity single-chip microcomputers

by ED PEATROWSKY
Motorola Inc.
Austin, Texas

ABSTRACT

The MC6801 Single-Chip Microcomputer has long been recognized as a high­
performance microcomputer. This paper provides a brief look at the complete
M6801 family and then discusses the enhancements made to the Timer and Serial
Communications Interface circuitry of the basic MC6801 to develop the new
MC6801 U4 microcomputer.

The MC6801 U4 strengthens the M6801 family position in the high-performance
single-chip microcomputer marketplace.

67

INTRODUCTION

The past several years have brought about expanded markets
for Single-Chip Microcomputers (MCUs). Some of these new
markets are demanding higher-performance MCUs for future
products. Higher performance does not mean merely an in­
ternal memory map expansion; it also means improved fea­
tures and functions, along with versatility in application.

Requirements in industrial control, communications, auto­
motive, and many other such applications are constantly de­
manding higher-performance MCUs.

The M6801 family has met this high-performance and ver­
satility need and continues to improve as its product portfolio
grows. The M6801 family follows the compatible evolutionary
expansion that was established throughout the development
of the M6800-based microprocessor family.

Table I shows the products in the current M6801 family and
the basic features associated with each member.

VERSATILITY

The M6801 family has the ability to operate in two worlds-as
a microcomputer or as a microprocessor. The fundamental
operating modes of the members in the M6801 family prod­
ucts are these:

1. Single-chip
2. Expanded nonmultiplexed
3. Expanded multiplexed

Within these fundamental operating modes the resources of
the microcomputer are briefly summarized in the following
paragraphs and allocated as shown in Figure 1.

Single-Chip

In the single-chip operating mode the MC6801 operates
with all internal memory resources. This operating mode

High-Performance, High-Quality Single-Chip MCUs 69

makes maximum use of the input/output capabilities with no
address or data buses.

Expanded Nonmultiplexed

The expanded nonmultiplexed operating mode uses in­
ternal memory resources and allows the modest increase of
256 bytes of read/write locations. This mode uses separate
data and address buses, thereby reducing the number of input!
output functions available.

Expanded Multiplexed

The expanded multiplexed operating mode removes some
or all of the internal memory resources and allows the
MC6801 to function as a high-performance microprocessor.
In this mode the external address space can be expanded up
to 64K bytes for external resources.

THE ENHANCED FAMILY ANSWER

The M6801 family is continuously growing. The latest mem­
ber is the MC6801U4, which is an enhanced MC6801 that is
pin- and object-code-compatible. All addressing modes and
features of the MC6801 remain intact. The enhancements are
increased ROM, increased RAM, and improved Timer and
Serial Communications Interface circuitry.

Where the additional features of the MC6801U4 require
additional input/output, more of the port pins have been made
multifunctional, as shown in Figure 2.

The internal ROM of the MC6801 U4 has been doubled in
size, from 2048 bytes to 4096 bytes. The interrupt vector lo­
cations are maintained as in the MC6801 for compatibility.

The internal RAM has been increased from 128 bytes to 192
bytes. The standby RAM portion of this memory has been
decreased from 64 bytes to 32 bytes. This decreases the
amount of standby current required to maintain the memory
contents during power down.

TABLE I-The M6801 family

Single-Chip Microcomputers Microprocessors

Feature 6801 68701 6801U4 Feature 6803 6803E 6803U4

ROM size 2K bytes 4K bytes RAM size 128 bytes 128 bytes 192 bytes
EPROM size 2K bytes Stdby RAM size 64 bytes 64 bytes 32 bytes
RAM size 128.bytes 128 bytes 192 bytes 110 lines 291102 ctrl 291102 ctrl 291102 ctrl
Stdby RAM size 64 bytes 64 bytes 32 bytes Timer 16-bit/3 funct 16-bit/3 funct 16-bitl6 funct
110 lines 291102 ctrl 291103 ctrl 291102 ctrl SCIlbaud rates Fulll 4 selec Ful1l4 selec Full/8 selec
Timer 16-bitl3 funct 16-bitl3 funct 16-bit/6 funct
SCI/baud rates Ful1l4 selec Ful1l4 selec Full/8 selec

70 National Computer Conference, 1982

Single-Chip (Mode 7)

128 bytes of RAM; 2048 bytes of ROM

Port 3 is a parallel I/O port with two control lines

Port 4 is a parallel I/O port

Expanded Non-Multiplexed (Mode 5)

128 bytes of RAM; 2048 bytes of ROM

256 bytes of external memory space

Port 3 is 8-bit data bus

Port 4 is an input port/address bus

Expanded Multiplexed (Modes 0,1,2,3,6)

Four memory space options, (total 64K address space)

(1) Internal RAM and ROM (Mode 1)

(2) Internal RAM no ROM (Mode 2)

(3) No internal RAM or ROM (Mode 3)

(4) Internal RAM, ROM with partial address bus (Mode 6)

Port 3 is multiplexed address/data bus

Port 4 is address bus (inputs/address in Mode 6)

Test Mode (Mode 0):

May be used to test internal RAM and ROM

May be used to test Ports 3 and 4 as I/O ports

Any mode can be irreversi bly entered from Mode 0

Resources Common to all Modes:

Reserved Register Area

Port 1 Input/Output Operation

Port 2 Input/Output Operation

Timer Operation

Serial Communications Interface Operation

Figure I-Summary of M680I fundamental operating mode resources

TIMER

The timer features and registers of the MC6801 have been
maintained and expanded. Three additional registers have
been added, along with an additional input capture register
and two additional output compare registers. Figure 3 is a
basic block diagram of the MC6801 U4 timer circuitry.

Dual Counter Register

The MC6801U4 has a duplicate timer control register. This
Dual Counter Register allows software to examine the
counter without the resetting of the Timer Overflow Flag in
the TImer Control and Status Register.

Timer Control Register 1

A second counter register has been added, Timer Control
1, which allows the MC6801U4 to control the states of the
pins associated with the output compare and input capture
registers.

Timer Control Register 2

Timer Control 2 has been added for handling timer inter­
rupts from the output compare and input capture registers.
This allows software testing of the timer counter without
clearing any of the associated status bits.

Input Capture Registers

A second input capture register has been added. The two
input capture registers can be programmed independently to
take a "snapshot" of the timer counter register at an appropri­
ate transition on their associated input pin.

Output Compare Registers

The output compare feature has been extended by adding
two additional output compare registers. These three registers
can be programmed independently to respond to a match in
the counter register and cause an appropriate transition on the
associated output pin.

Serial Communications Interface

All the serial communications interface functions remain
identical to those of the MC6801, and four more baud rates
have been added. Table II shows the baud rates available for
three given crystal frequencies.

SUMMARY

The MC6801 has been a leader among the available high­
performance microcomputers in the marketplace for several
years. The MC6801 continues to gain momentum in control
and processing applications.

The enhancements added to the newest member of the
family, the MC6801 U4, allow the momentum already estab­
lished by the existing MC6801 family of products to continue.

Diverse applications will continue to demand more and
more powerful microcomputers. The MC6801 family products
demonstrate that they are able to meet the challenge.

I
P37 A7/07
P36 A6/D6
P35 A5/05
P34 A4/04
P33 A3/03
P32 A2/02
P3l Al/Ol
P30 AO/DO
SC2 R/W
SCl AS

P47 A1S
P46 A14
P45 A13
P44 A12
P43 All
P42 A10
P41 A9
P4Q AS

All
FLAGS

INTERRUpT
CONTROL

AND
TEST

INPUT EDGE
AND

OUTPUT
LEVEL

CONTROL

07
D6
05
04
03
02
01
DO
R/W
~

A7
A6
A5
A4
A3
A2
Al
AO

Expanded Multiplexed
Expanded Non-M~ltlplexed
Single Chip

1/0 ..
:: ~

Mux Port ... 3

1/0
1/0
I/O
I/O ..
!/O .. TIrn1
1/0 ..
I/O
~ 4- (
iS1

1/0 (Address .. Port ... 1/0
I/O
110 ... 4

I/O ..
I/O

fV') .. i/O
I/O

'IcC Standbv-" 192 bytes
RAM

High-Performance, High-Quality Single-Chip MCUs 71

ltrHHt
MPU

[I ~ ~
...

(
I Port

;J) 2
[11'"

\r
I- -

~

I
Timer

--) rv

~ ~
-.... SCI

) ..
Port

1

....
-)

-U y

4096 bytes
ROM

-- M_ J
,~ , ~ j"

~ --. P20 .. P2l - -.. PU - . - .. P23 .. ~ P24 - ,. ..
-.. -

.--
-- ,
--.. --:: -----

TI N1
UTl
K

MTA
JA

TO
.SCL
R
TDA

... -- P10

- Pll -P12

- P13 ...
~ -

P14
P15 .. . P16 P17

1/0
I/O
1/0
1/0
I/O

TIN2
TOUTZ
TOUT3

1/0
I/O
1/0
I/O
1/0
1/0
I/O
I/O

Figure 2-MC6801 U4 8-bit microcomputer-block diagram

INPuT I
CAPTURE 2

COMPARE

=lI=
COMPARE 2 I

JI=
COMPARE 3 I

TIMER cONTROL
AND STATUS

TABLE II-Sci bit times and rates

4fo~ 2.4576 MHz 4.0 MHz

614.4 kHz 1.0 MHz

EBE SSI:SS0 E Baud Baud

0 0 0 -;-.16 38400.0 62500.0
0 0 1 -;-.128 4800.0 7812.5
0 0 -;-.1024 600.0 976.6
0 1 1 -;-.4096 150.0 244.1

0 0 -;-.64 9600.0 15625.0
0 1 -;-.256 2400.0 3906.3

0 -;-.512 1200.0 1953.1
1 -;-.2048 300.0 488.3

External (P22) * 76800.0 125000.0

*Using maximum clock rate

4.9152 MHz

1.2288 MHz

Baud

76800.0
9600.0
1200.0
300.0

19200.0
4800.0
2400.0

600.0
153600.0

Figure 3-MC6801U4 timer-block diagram

Expanded single-chip principles in practical appli~ation

by RANDY M. DUMSE
Rockwell International

ABSTRACT

For the past two decades the semiconductor industry has been in a headlong rush
to pack more and more features on a single piece of silicon. The creation of the
microprocessor as a single LSI device naturally gave inspiration for further ad­
vances. The microcomputer on a chip followed quickly and was again a technolog­
ical stepping point rather than a final goal. New generations and process devel­
opment variations made possible larger, faster, and more powerful systems on a
chip. There is, however, a limit on the amount of CPU, ROM, RAM, and special­
purpose devices that can be placed on a single, easily manufactured silicon die with
current technology. In order to give the cost-reducing features of a one-chip com­
puter with the flexibility of a multi chip set, the expanded single-chip computer was
developed. This paper will explain the theory behind that development, and then
explore its application in a specific example.

73

Expanded Single-Chip Principles in Practical Application 75

INTRODUCTION

For the past two decades, the semiconductor industry has
been in a headlong rush to pack more and more features on
a single piece of silicon. The creation of the microprocessor as
a single LSI device naturally gave inspiration for further ad­
vances. The microcomputer on a chip followed quickly and
was again a technological stepping point rather than a final
goal. New generations and process development variations
gave larger, faster, and more powerful systems on a chip.

Along the way, many applications already designed in mul­
tichip systems were redesigned using advanced generation
single chippers to take advantage of substantial systems cost
reduction. Other designs which were not cost-effective pre­
viously in multichip versions were plausibly marketable, with
one-chip computers providing substantial reductions. Of
course, there are some applications where only a one chipper
will suffice due to size, weight requirements, etc. The solu­
tions in these areas using single-chip computers have grown in
number and complexity as the more sophisticated parts have
become available.

Still, between the realm of what has been and what could
be, current applications of microcomputers to the world in
which we live have barely scratched the surface. The future
will bring new and exciting designs. These designs will make
possible consumer products that will challenge the imag­
ination of man while easing his burdens.

Limiting factors

A closer look at the reason we are no further along in that
endeavor will show three major facets that regulate advances.
The first is time. Time moderates progress in several ways.
Most obviously, as new microelectronic devices are perfected
by the semiconductor manufacturers, there will be an appre­
ciable delay before ideas on their use come into hand. In­
vestors, engineers, and entrepreneurs will come together
within the business world and move their dreams from design
to production and distribution. The span between concept and
product is time. It is less apparent, however, that time not
only modulates the activity of these people but also their
numbers. Educational systems cannot keep pace with the
production of industry. There are more positions needing
design engineers than there are design engineers. It is im­
portant to remember the reason for this phenomenon. Indus­
try has found more ways of condensing features and functions
on a piece of silicon than educational facilities have found to
cram equal amounts of understanding of the use of these
features into a single human head.

The second factor controlling progress is the level of ad­
vancement of the currently available microcomputer hard­
ware. Along the scale of what can be implemented (in at least
some form of computerized electronic system) and what can­
not, single-chip computer systems fall far short of center. The
reasons are obvious. There are only so many CPU, ROM,
RAM and special-purpose devices that can be placed on a
single, easily manufactured, silicon die with current tech­
nology. Certainly, technology will increase production capa­
bilities, but it is probably unreasonable to expect a single-chip
microcomputer with over-a kilobyte of RAM in the next two
years, for example.

The last controlling factor to be mentioned is, of course,
cost. The principle of anything which costs nothing and does
everything will make the inventor a millionaire applies here.
Overall system cost has limited many ideas from becoming
realities. Certainly, if electronic calculators were still being
done in costly multiple LSI sets, there would be several orders
of magnitude fewer of them in the world today. Many applica­
tions which will become commonplace are unknown today
because of cost.

Stretching the limits

Although time is an uncontrollable factor, system sophisti­
cation and cost factors are not. A closer examination of both
is warranted. First, it should be pointed out that, to date,
these two items have been counter points. System sophistica­
tion could not be improved substantially while independently
reducing cost (at least while remaining at a given tech­
no logical level).

Sophistication is generally improved by the addition of fea­
tures. These may include new instruction sets or even revised
architectures in the CPUs, more RAM and/or ROM, more
input/output lines, addition or expansion of special purpose
devices such as counter/timers, edge sensitive lines, latches,
PLA's and the like. Almost all ofthese added features require
their own portion of silicon. The more silicon per chip, the
greater the likelihood of a small imperfection ruining that
entire chip, resulting in lower numbers of good parts (from
both less die per wafer and a higher degree of failure) and
increased cost per chip.

Costs are generally held down with several techniques. The
cost of the single-chip computer itself may be insignificant
compared to that of the overall system. The amount of sup­
port hardware surrounding the microcomputer will to some
degree be determined by the complexity of the applications.
It is not always as obvious that the microcomputer itself may
determine the cost and complexity of the support devices.

76 National Computer Conference, 1982

Internalizing more functions in implemented hardware or pro­
grammed software will reduce production costs. Of course,
the programming required by such an approach will probably
increase the engineering effort, but this added cost can be
amortized over the production run.

Ideally it would seem every possible combination of ROM,
RAM, 110 and special purpose devices like A to D converters,
etc., should be included on a one-chip if maximum cost sav­
ings are to be realized. The assumption is based on a false
economy, since such a device would be too large to manu­
facture with current technology or unique enough to have only
one possible user. Remember, the main reason for using a
microcomputer over discrete logic is the cost savings found in
doing a custom programming of an existing part over a custom
layout of a new logic design. It is the case then that an opti­
mization between the device manufacturer and user must oc­
cur if both are to realize maximum profit (from reduced cost).
The manufacturer should offer only a few options of micro­
computers, the range of which combines the most often de-__
sired features in the best proportion for most users. This will
ensure high volumes and low prices for the parts. There will,
of course, be applications where these high-volume-oriented
designs simply do not have the resources to handle the job.
Now the cost balance between a custom-chip or a multiple­
chip set must be made.

EXPANDED SINGLE-CHIP PRINCIPLES

The above discussion highlights the need for a compromise
between single-chip and multiple-chip sets. A scheme is
needed to give the cost-reducing features of a consumer one­
chip computer with the flexibility of a multichip set. If an
external bus structure were available on a single-chip com­
puter, the problem would be solved. When the micro­
computer did not have sufficient internal ROM, RAM, 110
and/or special function devices, they could be added exter­
nally. Cost would be held down by virtue of the fact that only
the extra devices needed would be added externally, reducing
chip counts.

This is exactly the principle of expanded single-chip com­
puters. Designs already exist that not only incorporate a good
deal of computing power on a chip with the support devices
for most common applications included internally, but also
allow flexible expansion externally. Two such microcomputers
are the Rockwell R6500/1-11 and the R6500/1-41. A detailed
look at these devices is in order.

The Rockwell R6500/J-JJ

The R6500/1-11 (called the R-ll hereafter for simplicity), is
one of the most advanced multifeature one-chip microcom­
puters available commercially. Based on an enhanced version
of the R6502, the part has an extremely powerful 8-bit CPU
with four new instruction set groups added. These groups are
Set Memory Bit (SMB), Reset Memory Bit (RMB), Branch
on Bit Set (BBS), and Branch on Bit Reset (BBR). These new
instructions, coupled with the parts, high level of throughput
(one J.Ls minimum instruction cycle time), give an 110 inten-

sive and very powerful general purpose microcomputer. A
generous portion of 3K bytes of ROM is designed into the chip
Also, 192 bytes of RAM are provided. In the 64 pin QUIP up
to seven 110 ports are available, each with 8 individual lines
for a total of 56 lines. Four of these lines can act as edge
sensitive inputs. A complete, double buffered, full duplex,
advanced feature serial channel is incorporated in the part. It
will operate either synchronously or asynchronously. The in­
clusion of two 16-bit timers, one with a 16-bit latch and one
with two 16-bit latches with multiple modes, gives the device
many real-time signal processing and generation capabilities.
This brief listing does not mention all the features of the R-ll
but does point out that the designers included as much capa­
bility on a single chip as is feasible. To accommodate applica­
tions where these features are not sufficient to meet the prod­
uct designers' needs, they also included two external bus
modes that are program selectable so that external parts could
augment a one-chip microcomputer.

The first of these modes, the Abbreviated Mode, provides
an external data bus and six address lines, as well as the
control signals required to affect data transfers. This mode
supports 64 external locations and is most suitable for the
addition of memory mapped 110 or special function devices.
The second mode, the Multiplexed Mode, provides fourteen
addressing lines, eight of which must be latched, as they time­
share with the data bus. This mode gives a 16K contiguous
memory map external to the part. Any type of device such as
ROM, RAM or special function 110 device could be accom­
modated singly or in combination.

The Rockwell R6500/J-4J

The R6500/1-41 (called the R-41 hereafter for simplicity) is
an interesting device which can be characterized as an Intel­
ligent Peripheral Controller (IPC). Designed to reside on a
host processor's memory or input/output busses, this device
can be programmed to control a given set of preassigned real
world tasks. Although it contains an enhanced 6502 central
processor of its own, it would appear to the host as a special
purpose input/output or control device, as would any other
LSI controller device such as a floppy disk or CRT controller.
Based on the control and data words written into the R-41, it
could execute commands and sequences programmed in its
1.5K internal ROM. Also available are 64 bytes of RAM.
Besides the three state port on the host bus, the R-41 can host
up to 6 input/output ports or 48 individual 110 lines in the 64
pin QUIP version. Two of these lines have edge detect cir­
cui try. Much like the previous generation R6500/l single-chip
computer, the R-41 also hosts a multifunction, multi-mode
16-bit counterltimer with full 16-bit latches. Like the R-11, the
R-41 has two external bus modes of its own and can support
other LSI controllers or memory in its own memory map.
Although the R-41's external bus modes have the same names
as those of the R-ll, there is a slight variance in function
between the parts. The Abbreviated Mode of the R-41 has
four address lines and two control signals. This provides for 16
contiguous external memory address. The Multiplexed Bus
Mode provides an additional eight data lines time multiplexed

Expanded Single-Chip Principles in Practical Application 77

on with the data bus. This provides a full 4K of external
memory map for RAM, ROM or devices.

EXPANDED SINGLE-CHIP APPLICATIONS

To highlight these expanded single-chip computer principles,
a specific example of possible application will now be ex­
plored. Consider the current market state of electronic type­
writers. Most are still largely mechanical with servo enhance­
ment of the operators keystrokes. A great deal of mechanical
complexity could be replaced by microprocessor logic and a
cost savings realized. In all likelihood, improved features
could be added with little additional effort. A specification
will be formulated in the following paragraphs to make good
use of the R6500/1-11 and R6500/l-41 features in this applica­
tion.

Application specifics

The actual printer mechanism to be considered will be a
daisy wheel type. The most basic of features will require scan­
ning of the keyboard and control of the printer servo mechan­
ical devices. The wheel motor and position timing, hammer
timing and control, carriage positioning (left and right), and
platen control (paper advance or positioning) are included. A
typing speed of 10 characters per second more than covers the
speed at which an above average typist could enter key­
strokes. This would be the equivalent of about 120 words per
minute, so this will be the basis for all timing specifications.

The print wheel timing and positioning could be accom­
plished in a number of different ways. Almost all of these
combinations, however, fall into two categories, i.e., either a
stepper motor to give a character change per step or a D.C.
servo. Both would require a start point reference input.

Hammer control would be used once the daisy wheel was in
position for the impact. Since different size letters would print
with a different tonal intensity if the impact was not cali­
brated, the force used to strike the letter must be modulated.
This might require combinations of different coils or ener­
gizing a single coil with different width pulses for the different
characters.

The common type spacings are pica or elite, which place a
character every twelfth or tenth of an inch. The common
denominator between the two type sizes is 120th of an inch.
Assuming a stepper motor was used to position the carriage,
it would make 10 to 12 steps to move between character pos­
itions (1/60 of an inch is also possible).

Even if subscript or superscript positioning were required,
the mechanics of the paper feed could be fairly straight­
forward and done with a single stepper ,motor.

To meet requirements of printing 10 characters per second,
all the functions of paper movement, carriage positioning,
wheel positioning, and hammer impact would have to be ac­
complished within 100 milliseconds. Of course, other func­
tions would be going on concurrently. The keyboard must be
scanned every 20 milliseconds or so in order not to miss any
key closures.

Design details

Beyond the most basic requirements, many other features
are possible when microprocessing power is added to the sys­
tem. A single-line display, correction and editing of a line
prior to printing, page-at-a-time memory, interfaces to mass­
storage devices, and even computer interfaces are possible at
very little cost difference over the basic typewriters. These
additional features will make good examples of the expanded
microcomputer principles and will, therefore, be included in
this example specification.

This design will include, therefore, a single-line, 80-
character display unit. It will allow an entire line to be entered
on the display before it is printed. It will also be memory
expanded and will "remember" an entire document, up to
four pages of typed material. Once the document is in this
memory, the typist will be able to review and make any cor­
rections needed prior to reprinting. An RS232 channel will
also be included to allow communications with a host com­
puter or RS232 compatible mass-storage devices. It will,
therefore, be useful not only as a typewriter but also as a
computer terminal, a data recorder, and a limited-application
stand-alone word processor.

Now that the requirements are stated, the details of the
implementation can be revealed. Although there are many
possible combinations of R6500/l-11's and R6500/l-41's that
could meet these needs, the design selected here represents
only one. It is offered only as a reasonable example. A single
R-ll would host the entire system (see Figure 1). Support
devices, as needed, reside on this part's external bus. In this
particular implementation, the multiplex bus mode will be

I R-41IPC
- ~---.-~-

C,t~~~~oc ~_~~_"'---_I ___ "":"'-(~=
GI '\ CARRIAGE

() f)'\l POSITIONING
~~-

{j.~~ - ;:' ~W-H-EEL------------'

POS ITIONING

Figure 1-Typewriter block diagram

78 National Computer Conference, 1982

selected on the R-ll to allow a full 16K bytes of external
memory to be addressed. In that address range of the system
host will be 8K bytes of RAM, one ROM chip, and two
R-41's.

System description

The tasks assigned to the host include the scanning and
processing of all keyboard and panel switches, management of
the RS232 serial port, maintenance of the entered document
in RAM, performing the word processing functions, and com­
manding the actions of the two R6500/1-41's. One of these
R41's is assigned to control all the stepping motor functions.
The other is dedicated to the display. The tasks are organized
in this manner to reduce the impact of small changes in the
mechanics and display units on the overall system. This will
allow future models to use more elaborate features in these
areas without requiring any modification of the host system.
Only the R41 involved with that portion would need re­
programming. As such, a great cost savings in new devel­
opment could be realized.

The keyboard is a matrix of 47 alphanumeric key caps ar­
ranged in standard QWERT format with typewriter place­
ment of the shifted characters (as opposed to teletype). Ten
additional keys are required, comprised of the BACK
SPACE, LINE FEED, RETURN, DEL, ESC, TAB, CTRL,
LOCK and two SHIFf keys. A numeric key pad area and
several selection buttons for system control are not required,
but desirable for typewriter operations. Some of these addi­
tional keys can be in the matrix while others should occupy
individual input positions. The CTRL and SHIFT keys are
examples of the latter, since they will be closed simulta­
neously with other keys in the matrix.

Although there is some controversy about the type of roll­
over processing that is really required in a keyboard operated
by a high-speed typist, N-key rollover is still the most popular
and the reigning standard. Some terminal manufacturers are
beginning to turn away from the concept, using 2-key rollover
or lockout instead. N-key rollover programming requirements
are considerably more complex for little or questionable per­
formance improvement. Still, because it is the highest stan­
dard, the N-key design will be used in the example.

The RS232 port will be very easily implemented by using
the serial port of the R -11. All the features of this channel are
programmable to meet almost all common applications (in­
cluding parity as required). When the typewriter LOCAL
switch is active, the RS232 port could be connected to a se­
lected RS232 compatible mass-storage device. Many such de­
vices are available, the most suitable for this application
probably being data cassette types. On command from the
keyboard, the docu~ent containedin memory could be stored
on the data tape. If l~ere desirable to review or edit it, the
saved document could be retrieved later from storage. If not
in the local mode, the key functions and printing would be
independent. Keys depressed would be passed from the type­
writer to an external device. The external device returns
would be printed as received. This is exactly the essence of a
full duplex terminal. Instead of a video screen for display,
however, the output would be letter quality print.

Since internal RAM is limited to 192 bytes, it is necessary
to expand the RAM with external parts. The internal RAM
will be used for the processor stack and system constants such
as tab settings, margins, etc.; and system variables will be used
for calculations, keymask patterns, and the N-key stack. In
order to provide N-key rollover, two images of the keyboard
must be maintained. The differences from one scan to the next
represent the new key information. As each new key is de­
pressed, it is added to the N-key stack. A keyboard matrix can
be rather large, so the two images will be stored in external
RAM. In order to enter a line at a time and also do editing
functions, a current line buffer will also be maintained in
external RAM. A page of typed information requires 2000
bytes of storage or less, so 8K bytes are necessary external to
the R-ll host.

The 3K bytes of internal ROM in the R-ll will be sufficient
for the management of all features and communications with
the possible exception of the keyboard key cap assignments
for the SHIFf and CTRL combination, if the pattern is non­
standard, and perhaps some of the more complex text editing
features that might be added. These features' programs could
be maintained in an external ROM. It is doubtful that any­
thing larger than a 4K byte ROM would be needed even if the
features included centering commands and formatting with
pagination functions.

awT~----~----------------------------~----------------------------+----~RC

[ff)@J
t~I~X~)
CllJ
CllJ

Figure 2-Example keyboard layout

Expanded Single-Chip Principles in Practical Application 79

All the features of the host have been described. Now atten­
tion will be turned to the slave processors functions. The two
Intelligent Peripheral Controllers (R-41's) manage the output
functions of the system. The first to be discussed controls the
printer mechanism.

This R-41 would receive characters and commands through
its data port from the host R-ll's processor bus. The dis­
tinction between commands and characters would be made by
the previously written control registers port. In this manner,
the host would send characters in a stream to the R-41. The
R-41 will determine spacing, paper feed, and print wheel and
hammer control (in short, all the functions necessary to put
the character to the paper). If special carriage control were
required (line feed, carriage return, back space, superscript
positioning, etc.), the host would send the specific associated
control word instead.

The functions of the display could probably be processed by
either the host R-ll or the printer R-41, but in order to give
a flexible system design for future expansion as previously
described, the second R-41 will be used to control the display.
Such a design would also be advantageous by virtue of the fact
that no additional I/O or timing burdens would be placed on
the host or printer subsystems. After all, the simpler the mod­
ules, the quicker the system can be completed at a lower
development cost.

The interface between the host R-ll and the display R-41
would be nearly identical to that of the printer slaye processor.

•

Buffered with transistors, some of the R-41's output lines
could drive patterns for a long vacuum fluorescent display
tube. Other port lines could be demultiplexed to give the
select for a particular character position. Beyond these parts,
only a power supply for the required V.F. display voltage
would be needed to complete this module.

SUMMARY

The specification and design details are now complete, at least
to the scope of this paper. Only six LSI MOS chips would be
required for this entire system (an R-ll, two R-41's, two
4K x 8 quasi static RAM and one ROM). The cost of the parts
in OEM quantities for this application is under $50. The entire
electronics assembly with display could probably be made for
under $90, meaning it is reasonable to conceive of a high­
quality typewriter, terminal text processor that could be mar­
keted for under a $400 retail price tag.

The principle of using expanded single-chip computers to
reduce costs is, therefore, proven. Development of a custom
processor chip to handle all the features described could ap­
proach one million, if possible at all in current technology.

A multichip set approach would at least double the chip
count and probably the cost of electronics, while offering no
additional features. The application of expanded single-chip
computers fits the needs of today's market .

Making the most of VLSI in microcomputers

by JERRY L. CORBIN
Texas Instruments Incorporated
Houston, Texas

ABSTRACT

An introduction to the innovative SCAT design philosophy for VLSI microcom­
puters of Texas Instruments (TI) is presented. The recently announced 8-bit
TMS7000 Microcomputer family is used as an example of a SCAT design. TMS7000
benefits resulting from SCAT include a very dense bar for lower chip costs and
microcomputer prices; a unique microprogrammability feature that will allow a user
to modify the instruction set for the few applications that require it; and the archi­
tectural flexibility that will allow TI to bring many new microcomputer devices to
the marketplace quickly and easily.

81

THE MICROCOMPUTER LAYOUT PROBLEM

Design techniques for large-scale integrated microcomputer
circuits have traditionally followed those of printed circuits.
Separate design teams typically pack desired functional per­
formance into separate functional blocks. The job of inter­
connecting the functional blocks is left as the last step.

Thus, in comparison with memory chips, microcomputer
designs tend to sprawl over large areas of silicon. As the
complexity of microcomputers has increased, the interconnec­
tions between the various subunits can consume a significant
portion of the available silicon. If random logic is used, its
irregularity makes the problem worse.

SCAT ARCHITECTURE

T~xas Instruments made an important step toward moving
mIcrocomputer design into the VLSI era with the introduction
of the Strip Chip Architectural Topology (SCAT). SCAT inte­
grates architecture and layout into a dense, memorylike,
array-structured chip. SCAT replaces as much random logic
as possible with regular structures such as read-only memories
(ROM) and transistor arrays. TI's recently announced
TMS7000 family of single chip, 8-bit microco~puters repre­
sents the culmination of the SCAT design philosophy.

With SCAT, the chip's layout is not left until the end of the
design process, but is an integral part of it. For example, the
TMS7000's registers for the timer, I/O control interrupt han­
dli.ng, and arithmetic logic unit are arranged in a strip. The
chIp appears to be a tightly stacked set of 8-bit-wide bricks
that are interconnected through a data bus (see Figure 1).

Since the memory-intensive subunits are aligned in vertical
strips, practically all the interconnection paths run over silicon
that has already been used for active devices. The polysilicon
and metal interconnections are made with an absolute min­
imum of signal path length, which also lessens the required
size for the line drivers.

The net result of TI's SCAT is a very powerful microcom­
puter packed into a small chip size. The 2K ROM TMS7020
microcomputer, for example, has a chip area of 35,000 square
mil using conservative 4.5 micrometer design rules that can
easily be shrunk to 3.0 J.LM rules.

The cQsts of fabricating a microcomputer chip are expo­
nentially related to chip size. For example, a microcomputer
chip with only a 10% increase in silicon area (with the same
design rules) could cost up to twice as much to manufacture!
Small microcomputer chips equate to lower chip costs and
thus to lower pricing. to microcomputer customers.

MICRO PROGRAMMABILITY

To take advantage of the silicon efficiency of ROM over ran-

Making the Most of VLSI in Microcomputers 83

dom logic, TI replaced the traditional programmed logic array
and a~sociated random logic with a Control ROM to imple­
ment mtemal control of the TMS7000 microcomputer. The
Control ROM stores the microcode that determines the in­
struction execution sequence.

Microcoding of the TMS7000 is extremely simple because
of the general technique of instruction decode. The CPU has
no microprogram counter; instead, the present Control ROM
state supplies the address of the next state. With micropro­
gramming, all the necessary control signals are contained in a
single microinstruction lying lengthwise down the Control
ROM: No coI?plex routing or combinational logic is required.
Most mstructlOns executed by the TMS7000 share microstates
with other instructions. This simple micro architecture and
microcode-sharing technique result in a reduced chip size
while increasing tremendously the flexibility of the TMS7000.

Probably the single most unusual feature of the TMS7000 is
the flexibility the microprogramming feature offers the cus­
tomer. The already powerful standard TMS7000 instruction
set can be altered or customized for applications that require
unique performance, memory, or I/O features. These user­
defined instructions are substituted for standard TMS7000
instructions on the Control ROM.

In some user applications, microprogramming will enhance
TMS7000 performance. By combining or modifying the exist­
ing microinstruction execution sequence to perform critical
tasks or subroutines in less instruction clock cycles, the
throughput or "speed" of the TMS7000 in the user's applica­
tion is enhanced.

Another advantage to microprogramming is that in specific
applications it can allow more efficient use of the limited
on-chip program memory. By combining or modifying the
standard microinstruction execution sequence for unique re­
petitive tasks or subroutines, the total overall application pro­
gram may require fewer steps and less on-chip program
memory.

In effect, microprogramming can be also thought of as a
safety net for the design engineer should he/she overestimate
hislher software capability or underestimate the application
system requirements.

Microprogramming could also be useful in providing in­
creased system security for TMS7000 customers competing in
very competitive business environments. Reverse engineering
of a system implemented on a TMS7000 microcomputer with
a unique user-defined instruction set would be difficult.

ARCHITECTURAL FLEXIBILITY

Because of the unique structure of the SCAT design philos­
ophy, the orthogonal control and data paths are readily avail­
able to modify or enhance the TMS7000 chip.

84 National Computer Conference, 1982

As I ~ RE- INT INT PRESCAlER H A·H A, A, Ao
TIMER

SET 1 3 CONTROL
B2

CLK a: ~ GEN 1./.,1

TIMER X I."-

B, I."-
DECODER =:l

co.
>- I/O CONTROL -

OSC, INTERRUPT >- Bo

Ao-A7 = A PORTS
AlU = ARITHMETIC AND lOGIC UNIT
Bo-B7 = BfORTS
BCD = BINARY-COOED DECIMAL CHECKER
Co-C7 = C PORTS
ClK GEN = CLOCK GENERATORS
00-07 = 0 PORTS
I/O = INPUT/OUTPUT

g a: -0
ENTRY POINT z ::E

a: w B7 w 0 en ::E OSC2 I."-
IR

:E a: en I."- C!l:E w en -=:l ZO u: w co.
STATUS USER- - (,.) (,.)

0 0:E ~ (,.) Bs z PROGRAMMABLE 8« Q.. «
:E :e CLK « BCD MASKED ROM w a: « ---.:....-

a:
~~

0
GEN MICRO- w (2-K BYTE) w 0

x SHIFTER en z Vss CONTROL :E « z w w «
READ- ...J 0:E en a:
ONLY

Q..
ALU a: 0 N W ~ i= a: M

07 MEMORY ...J >-=:l B6
:E MD co co.

eO eO
~ r---=:l T

06 Q.. PCH B4 =:l
0 PCL
:E ~

Os 0 SP a: B3
MAL

INT = INTERRUPT INPUT
IR = INSTRUCTION REGISTER
MAL = MEMORY-ADDRESS lOW BYTE

04 -
ADDRESS RAM
BUFFER REF

Y X -MC = MEMORY CONTROL
MD = MEMORY-DATA GATES

03 MEMORY CONTROL X DECODER
BUFFER

DE-
CODER MC

OSC,-OSC;z = OSCillATOR CRYSTAL INPUTS
AND GROUP DECODER

o CONTROL
PCH = PROGRAM-COUNTER HIGH BYTE
PCl = PROGRAM-COUNTER LOW BYTE
REF = REFERENCE

O2
0, Do Co C, C2 C3 C4 Cs Cs C7

SP = STACK POINTER
T = TEMPORARY REGISTER

Vee

Figure I-TMS7020 chip layout

For example, TI created the TMS7040 4K ROM version
from the 2K TMS7020 2K ROM version without redesigning
the chip_ The chip design was separated at the memory bor­
der, and the additional 2K of memory was singly inserted by
the design computer. Likewise, additional features such as

more ROM, RAM, or different I/O structures can be added
with a minimum of design resources and time.

TI plans to take advantage of SCAT by adding many device
members to the TMS7000 family in the near future. EPROM,
CMOS, communications devices, and more are in design.

Single-chip microcomputers can be easy to program

by BILL HUSTON
Motorola Inc.
Austin, Texas

ABSTRACT

Most single-chip microcomputers (MCVs) use the split-memory Harvard architec­
ture. A few single-chips trace their architectural heritage to large computers due to
the common-memory Von Neumann organization. The major differences are that
a Harvard-based MCV costs less in its undistorted form, and a Von Neumann-based
MCV is more expandable and easier to program.

Since the traits of Harvard-based single-chips are quite well known, though
perhaps not by that name, the focus is placed on the programming benefits of a Von
Neumann MCV. Programming costs can be lowered while increasing program
reliability. Data organizations can be more flexible in both RAM and ROM. Pro­
gram changes can be incorporated more quickly. The generalized instruction set is
easier to understand. The M6805 family of MCVs is used to illustrate these benefits.

85

ARCHITECTURAL COMPARISONS

Like most major products, the single-chip microcomputer has
evolved in a series of stages rather than being the inspired
creation of a genius. All of the popular 4-bit single-chip micro­
computers (MCUs) and many of the 8-bit MCUs are derived
from the evolution of the calculator. Some 8-bit MCUs have
instead evolved down from larger computers. These two di­
verse evolutionary paths are identified by comparing the two
architectures that have resulted.

Harvard Architecture

The unique trait of the architecture shown in Figure 1 is the
separate memory organization for programs (ROM) and data
(RAM). Each type of memory has a dedicated address regis­
ter. The ROM address register is the program counter, but the
RAM address register has various names. Separate address

INCREMENT

Figure 1. Harvard architecture single-chip MeV

registers permit register lengths and interconnections to be
optimized. For example, a 6-bit RAM address can be used
with a lO-bit ROM address.

With the separate memory architecture, data read from
ROM are fed directly to the instruction decoder. Similarly,
the RAM output goes only to the ALU. Thus, data widths of
4 bits in the RAM and ALU are not incompatible with an 8-bit
ROM instruction size.

The split program and data memory architecture is some­
times called the Harvard architecture (or Aiken architecture).
This designation contrasts it to the Von Neumann (or Prince­
ton) architecture of all large computers today. The Harvard
architecture was used in some of the very first electromechan­
ical and electronic computers, built under the direction of
Professor Howard-Aiken at Harvard. Memory technology was
of course very rudimentary in the 1940s. Since separate stor­
age techniques were used for programs (paper tape) and data
(telephone lO-step relays), the separate memory architecture

Programming Single-Chip MCUs 87

was a natural. As with MCUs today, the hardware compo­
nents and the interconnections are fewer with split dedicated
memories.

The Harvard Mark I computer was used for over 10 years
as a high-precision calculator of mathematical reference data
such as navigation and ballistics tables. When the processor
usage is straightforward, the Harvard architecture is fine,
even superior. The problems arise when the needs become
more complex.

For example, to allow a subroutine, a program counter save
register is placed beside the Pc. This does not dramatically
disturb the interconnect efficiency of the Harvard architec­
ture. The Harvard benefits dissipate quickly when three or
more PC save registers are cascaded together into a costly
amount of silicon. Sometimes the program is permitted to
read and write into the PC save register, which adds more
dedicated interconnects to Figure 1, as well as encountering
the problem of unequal word sizes. Sometimes an MCU in­
cludes a stack pointer and saves the PC in RAM, which dou­
bles the RAM read/write paths in Figure 1.

Address calculations are another example of Harvard archi­
tecture difficulties. Figure 1 shows that all MCU implemen­
tations have a path from the RAM address register to the
ALU to permit calculations. RAM data structure sizes are
limited when a 4-bit ALU is used with a 6-bit RAM address.
Harvard MCUs use one or more instructions to calculate the
content of the RAM address register. Then one or more in­
structions are used to obtain and operate on the RAM con­
tent. There are no single instructions that calculate the RAM
address and then operate on the RAM content.

Some MCUs have no provision for calculating ROM ad­
dresses. The ROM address register is not available to the
ALU, so relative addressing is not possible. In such cases it is
not possible to read the content of a data table in ROM. Thus,
a straightforward BCD-to-7-segment conversion has to be im­
plemented in an I/O PLA. In some cases the Harvard archi­
tecture is further distorted to allow a program to read and
write to a ROM address register. In such cases there are now
two inputs to the ROM decoder in Figure 1, the program
counter and a program-accessible ROM address register.

As the computer pioneers of the late 1940s and early 1950s
discovered, the Harvard architecture has severe limits when it
comes to generalized uses. Thus the Harvard architecture in
today's more advanced single-chip MCUs includes numerous
distortions. As a result, the economic motivation for the Har­
vard architecture in a calculator is lost in a general-purpose
MCU. Extra dedicated registers and ALU data paths are
added to the silicon area of an MCU, which increases the
price. The Harvard architecture is also more difficult (ex­
pensive) to program.

It has been successfully shown with the M6805 family that
a Von Neumann architecture MCU can be both lower in cost
(less silicon die area) and easier to program.

88 National Computer Conference, 1982

Von Neumann Architecture

Figure 2 shows the fundamental architectural difference to
be a common addressable area for RAM and ROM, and 110
as well. Rather than use point-to-point interconnecting as in
Figure 1, Figure 2 shows common data and address busses.
The program registers are also more generalized.

INTERRUPT

CONTROL

INSTRUCTION
DECODE

ROM
DECODE ROM

PROGRAM
REGISTERS

RAM
DECODE RAM

Figure 2. Von Neumann architecture single-chip MeV

110
PORT

1/0
PORT

110
PORT

Professor John Von Neumann at Princeton first docu­
mented the concept of a program stored in a common memory
space with data. The chief benefit is the inherent ability to
operate upon addresses as easily as data. Program and data
table pointers can be saved in RAM. Indexing the other ad­
dress calculations can be included.

The Von Neumann architecture has some shortcomings.
The common bus saves interconnect area only when there are
enough points tapping onto the bus to justify the three-state
control needed to manage the use of the bidirectional bus. All
address and data elements must be standardized to the bus
width.

In current implementations, 8-bit busses, registers, and
ALU are used, which means that some elements are larger
than in 4-bit MCUs. Elements larger than the bus-addresses,
for example--occupy more than 1 bus cycle. With an 8-bit
bus, expansion to 16 bits of addressability is as easy as han­
dling a lO-bit address.

The remainder of this paper focuses on the program bene­
fits of the Von Neumann architecture, particularly as applied
to the M6805 MCU family.

PROGRAM AND PROGRAMMER EFFICIENCY

It was once considered sufficient simply to have a very low­
cost programmable Ie. The programs written were short, and
the programming effort was to be amortized over a large
number of units. This view is obsolete today in many applica­
tions. The applications are more complex than the microwave
ovens of a few years ago. Programs are not just written once
and forgotten; they are changed, in some cases many times.
Program changeability costs should also be considered when
amortizing program costs.

The Von Neumann type of MCU architecture also permits
greater program design flexibility. Memory use tradeoffs are
more easily made. System hardware functions can be taken

over by the program. The tools are available to allow pro­
grams to be more reliable. The most important efficiency
factor for MCU programs is efficiency of ROM use-fitting
the most features into a given ROM size.

Program Changeability

Only unsuccessful programs are never changed. Since a
project is seldom started that is planned to be unsuccessful, all
projects need to plan for program changeability. Field testing
of a prototype points up faults in the original program as well
as desirable improvements. The sources of program require­
ments (customers and marketers, for example) frequently
conclude that what they asked for is not exactly what is
needed. Similarly, the managers, marketers, and customers
always come up with new features that would be desirable.
These are just some of the sources of changes to the original
product.

There are also changes to the program that generate deriv­
ative products. It is difficult to hide the fact that the single­
chip is programmable. Everyone wants to take advantage of
the programmable IC to suggest derivative products. Change­
ability must be designed in from the beginning.

Programming costs thus include the cost of incorporating
program changes as well as the initial programming effort.
Frequently the changes are incorporated by a different pro­
grammer. Program changeability costs thus also include the
time it takes a new programmer to figure out what the original
programmer did.

The MCU architecture can limit future extensions of the
program to include additional functions. In such cases the
program changeability costs include reprogramming for a new
MCU. Specialized programming techniques that take advan­
tage of odd MCU features or use unused memory in odd ways
also limit future changeability. Major reprogramming costs
can be avoided by using generalized MCU architectures,
which do not tempt the programmer to use odd quirks in the
inevitable attempts to get seven pounds of functions into a
five-pound ROM sack. The features of the end product can be
so tightly interwoven with each other and with the given
memory organization that changes, even some apparently
simple ones, can send the programmer back to Square l.

The architecture of a single-chip MCU has more impact on
the cost of program changes than at first suspected. The Von
Neumann architecture allows programs to be written faster
initially, understood more quickly by a different programmer,
and changed more rapidly.

Fewer Lines of Code

"The programming time is directly proportional to the num­
ber of program statements."

This axiom has been widely accepted for programming
projects, from compiler-language business-data-processing
programs to assembly-language microprocessor applications.
The axiom is also applicable to single-chips.

The functional definition, functional flow chart, and user
documentation effort are rather independent of the MCU
chosen. However, the detail flow charts, coding, program

checkout, and program documentation phases are propor­
tional to the number of lines of code. In typical projects,
coding and checkout represent the bulk of the programming
effort.

If an MCU architecture permits the program to be written
with fewer lines of code, it saves programming expense.
Benchmarks have shown that that M6805 family programs
need about half as many lines of code to accomplish a given
task as a typical 4-bit MCU. The benchmarks include full
applications as well as typical comparison subroutines. Thus
50% of the program coding and checkout time can be saved.

More details of the M6805 family architecture are included
later, but a few of the features that contribute to the program
savings are listed here. Address calculations, including table
look-up indexing, are a part of the instruction, not separate
instructions that must precede the operation. In two-operand
instructions such as add, AND, and compare, one operand is
an addressable memory byte, which saves frequent register
loading. Memory bits and bytes can be modified directly,
without disturbing any registers, in a single instruction such as
set a bit and increment a byte. All lIO pins may be set,
cleared, or tested with one instruction. Interrupts automati­
cally save and restore all registers.

As applications become more complex, programming time
is becoming a larger part of the end product cost. A larger
benefit in many cases is that the end product will be available
sooner. Many products using MCUs go into competitive mar­
ketplaces where saving a few months can measurably increase
market share. When changes can be incorporated faster, the
new product variations can also reach the market ahead of the
competition.

RO M Versus RAM Tradeoffs

MCU programmers frequently get caught with not enough
memory. Product cost targets can block switching to an MCU
with more memory. So effort must be expended in redesign­
ing the program until it fits.

When only ROM or RAM is overloaded, tradeoff tech­
niques can be used to decrease the use of one at the expense
of the other. The common memory field of the Von Neumann
architecture is again shown to be an advantage. ROM and
RAM are equally accessible, so functions can more easily be
moved back and forth.

The flexibility of having any number of subroutine levels
gives the user considerable control over the mix of ROM and
RAM used. The more subroutine levels needed, the more
RAM used for subroutine return addresses. So when spare
RAM is available, the code can be shortened with more sub­
routines. When RAM is overfilled, fewer subroutine levels
can be used by increasing ROM usage.

Efficient bit aQ.d byte handling instructions, such as that of
the M6805 family processors, allow RAM data to be packed,
mUltiple elements per byte.

110 Versus ROM Tradeoffs

The increased instruction and addressing mode sophistica­
tion of a Von Neumann MCU sometimes allows previous
hardware functions to be taken over by the software. Since

Programming Single-Chip MCUs 89

hardware-versus-software tradeoffs are application-depen­
dent, only generalized examples are cited.

Some MCU applications use an off-chip AID converter.
There are a series of alternative approaches that can be con­
sidered. One approach is to use an MCU that includes an
on-chip AID. Second, the analog value can also be converted
to a variable frequency or pulse width, which is measured
either with a timer on the MCU or with a program. A third
method is to use an interrupt program to count the cycles it
takes for an external ramp to match on an external compara­
tor. Perhaps money can also be saved in the analog sensor or
in the accuracy of the AID conversion. A lower-cost sensor
might produce nonlinear outputs, but the program could com­
pensate for the nonlinearity by using an indexed conversion
table or a smoothing formula.

The goal is the lowest total system cost, not the lowest MCU
cost. There are frequently opportunities to consider doing by
program functions that require external hardware with other
MCUs.

Program Errors

Program reliability should be considered in relation to
single-chip MCUs. It may seem improbable for an error to go
undetected that is serious enough to require scrapping end .
products, but it has occurred. Such scrappage is part of the
cost of programming. Software costs are treated as amortiz­
able costs. The exception is program errors that turn into
recurring costs. Program errors occur as a result of insufficient
program checkout, which frequently is due to hurriedly incor­
porated changes.

Rather than initiating end product scrappage, program er­
rors more often cause a quirk to show up in the end product.
Such errors cause a series of recurring costs (costs propor­
tional to the quantities in use, not one-time costs). Instruction
manuals are expanded to explain the quirk. The service peo­
ple are trained not to interpret the quirk as a failure. Time is
taken to explain the quirk to complaining customers. These
are direct, measurable costs of program errors.

An indirect cost of program errors is loss of good will.
Customers who have to live with a recognized quirk are irri­
tated. Some will take their business to a competitor the next
time. These are not one-time programming costs.

Program unreliabilities also bring in the risk of legalliabil­
ity. Some program errors could be construed as causing loss
of life, limb, or property.

The use of sound programming techniques is clearly the
best way to reduce the risk of program unreliabilities. The
architecture of the MCU can contribute to encouraging good
programming techniques.

Errors are inclIned to be proportional to the number of lines
of code it takes to write a given program. A processor that
uses fewer statements to perform a function, is also easier to
keep clear in the mind of the programmer. As implied earlier,
orderly change incorporation presents the best opportunity to
reduce the error risk. In this case, the otherwise unmeas­
urable factors of an easy-to-understand, consistent instruction
set with few oddities has major value. When the application
functions are tightly interlinked with memory and lIO traits,
changes can be extensive and thus error-prone.

90 National Computer Conference, 1982

The watchword is to be sensitive to program reliability and
to put some value on an MCU architecture that encourages
better programming.

ROM Usage Efficiency

Using the least ROM area is one of the more important
criteria used to select single-chip MCUs. The number of
single-byte instructions in the repertoire is not a good measure
of ROM efficiency. The question is not whether one thousand
instructions fit into a 1K ROM, but rather the number of
system functions that can be programmed into a 1K ROM.
This brings up the subject of benchmarks.

It is tempting to gather or devise half a dozen routines that
are felt to be typical of the intended application and imple­
ment them in two or three competing instruction sets. Such a
tradeoff is vulnerable to human bias, perhaps unintentional,
on two major fronts. First, the programmer is likely to be
more experienced in one processor and thus less likely to
produce optimal code on the alternate processors. Second,
the choice of the benchmark routines is clearly a simplification
of the application and likely to be slanted to the programming
techniques used on one or a few processors.

In spite of the risks, comparisons obviously need to be
made. Steps can be taken to reduce, as far as possible, these
biases. But why not go one more step?

The initial writing of an MCV program tends to be short
compared to programs on larger computers. Many single­
chips have been programmed in a month or two. So if two
MCUs are in contention, program them both for the complete
application. Then the comparison benchmark is not just a few
isolated routines, but also all the overhead that it takes to use
those routines in a practical application. Small benchmarks
can serve to evaluate speed-critical program paths in re­
sponse-time-sensitive applications. But MCU users are usu­
ally more concerned with ROM efficiency than with through­
put. ROM usage efficiency is not as easily judged from small
benchmarks.

THE M6805 FAMILY ARCHITECTURE

In covering the benefits and shortcomings of Von Neumann­
based single-chip microcomputer architectures, some of the
architectural traits of the M6805 family of MCUs have been
alluded to. This report is thus concluded with some details of
the M6805 family architecture. How well have these MCUs
capitalized on the shortcomings of the popular Harvard archi­
tecture MCUs? Is the M6805 family really easier to program,
and does programming ease have monetary value? The result
is an MCU architecture which is more economic (has a smaller
die area) than the popular 8-bit Harvard architecture MCUs
and at the same time includes the big-computer features that
are usable in a single-chip.

Such programming tools as indexed look-up tables, many
subroutine nesting levels, single-instruction memory modi­
fication, single~instruction bit test and modify, and common
access methods for all addressable locations, are direct user
benefits of the computer heritage as opposed to the calculator
heritage. With these tools, programs are written easier and
faster and are easier to modify and more reliable.

One Address Map

A striking feature of a Von Neumann architecture is the
common memory space for the ROM and RAM. The M6805
famiiy extends the advantage by allocating space in the ad­
dress map for I/O registers. The common address map is
shown in Figure 3. The instructions include short addressing
modes for more ROM-efficient access to the first 256 address­
able locations. The most frequently accessed data elements
are thus concentrated in the quick-access 256-byte page zero.
Present implementations include 64 bytes and 112 bytes of
RAM in various versions, but future versions could easily
include more or less RAM.

SHORT {O
ADDRESSING

MODES 255

RAM & 1/0 0
16 BYTES

USER ROM 1/0 PORTS
16

OPTIONAL
OPTIONAL USER ROM

RAM

64

USER ROM 64
BYTES

RAM

SELF CHECK
ROM

ROM VECTORS 127 f STACK

THE TOTAL MEMORY SPACE VARIES AMONG M6805 FAMILY MEMBERS

Figure 3. Common address map

ROM Areas

A portion of the user ROM is included in the first 256
locations to allow quick access to frequently used subroutines
and to allow quick access to look-up tables.

In addition to the user ROM, all M6805 family ROM-based
MCUs include self-check ROM. A small program is included
for factory wafer-level testing and is available for user testing
if desired. The self-check ROM area is not counted as user
ROM and does not in any way reduce factory final testing to
data sheet specifications. Some users are using the callable
self-check subroutines implemented in most versions for func­
tional confirmation when coming out of reset. Some are using
a low-cost self-check tester for functional screening of parts
before PC board assembly. The EPROM versions do not use
the small mask ROM for self-checking, but rather for boot­
strap self-programming of the user EPROM.

The highest memory addresses are user ROM for the inter­
rupt and reset vectors. The vectors are 16-bits (2 ROM bytes)
designating the interrupt program starting address. Separate
vectors are included for the external interrupt; the timer inter­
rupt; the software interrupt; the power-up reset program;
and, in the CMOS versions, the stand-by recovery (Wait
mode) program.

Addressable 110

The first 16 addressable locations are reserved for the on­
chip I/O registers. I/O is thus accessible to all instructions
using the ROM efficient short addressing modes. I/O data

may be read or written (load and store) as bits or bytes. But
110 bytes may also be operated upon (AND, add, compare,
etc.).

Current MCUs include up to four 8-bit ports. Each port
read/write register occupies 1 memory byte. The ports include
a second byte, the data direction register, which determines
whether each lIO pin is an input or a driven output.

The 4 ports thus occupy 8 addressable bytes. The timer
accounts for 2 more bytes, one for the 8-bit counter and the
other for timer control. The second external interrupt avail­
able on some versions occupies 1 byte. The AID converter on
some versions uses 1 byte for the digitized result and 1 byte for
AID control. The EPROM versions include a register to con­
trol the self-programming of the EPROM. One family version
includes an on-chip phase-locked loop for frequency synthesis
that uses 2 110 bytes for the variable divider.

The Register Set

Figure 4 shows that when a generalized address map is used,
only five program registers are needed to provide a powerful
instruction set. The specialized registers of the Harvard-type
architecture are not needed.

8 BITS

8 BITS

A ACCUMULATOR

X INDEX REGISTER AND
ADDITIONAL ACCUMULATOR

[~~~~~-_-~-=150r6BITSI SP STACK POINTER

11 TO 13 BITS PC PROGRAM COUNTER

I 5 BITS CC CONDITION CODE BITS

S AND PC LENGTHS VARY WITH THE AMOUNT OF MEMORY
IMPLEMENTED

Figure 4. Register

The accumulator is used for arithmetic and logical opera­
tions. The program counter is from 11 to 13 bits long, de­
pending on the amount of memory implemented.

The index register has two uses. The three indexed address­
ing modes use X to contain a variable that is added to a value
provided within the instruction. The X register is also an
auxiliary accumulator. Many of the register manipulation in­
structions that operate on A also are used with X.

Additional general-purpose registers are not needed, since
instructions are available to modify RAM locations directly
without disturbing A or X. Examples are increment a byte, set
or clear a bit, and test a bit or byte.

The stack pointer is initialized to the highest RAM address.
The variable portion is 5 or 6 bits to limit the maximum stack
length to 31 or 63 bytes. A subroutine call uses 2 stack bytes
to save the return address. The automatic interrupts use 5
stack bytes to save the A, X, PC, and CC registers. The 5-bit
stack pointer thus permits up to 13 nested subroutines, as­
suming 1 interrupt level, (31-5)/2 = 13. The 6-bit stack
pointer allows for 29 subroutine levels. Both subroutine nest­
ing levels are safely beyond that which could normally be used
in a single-chip program. It is convenient, however, to let the

Programming Single-Chip MCUs 91

programmer determine the needed subroutine levels rather
than have the limit established by the architecture.

The condition code register is five individual status bits that
are treated as a register when an interrupt save occurs. Four
of the CC bits represent the results of the last data byte
accessed or register operation performed. These permit sub­
sequent testing with conditional branch instructions. The four
result conditions are carry (or borrow), half carry (for BCD
adds), all zeros byte, and negative (bit 7 set). The fifth CC bit
is the interrupt mask, which enables all on-chip interrupts.

Future Expandability

A frequent restriction of Harvard architecture MCUs is a
limit on expanding the memory or lIO size in future versions.
In most cases the maximum RAM size is limited within the
op-code field of instructions that load the RAM address regis­
ter. There are a number of popular architectures that cannot
use more than 64 bytes of addressable RAM.

A Von Neumann architecture has few restrictions on the
mix of ROM and RAM. The only address limit imposed by
the M6805 family architecture is that the maximum address­
ability is 64K, though no current versions include a full 16-bit
address. The program counter, all the long addressing mode
instructions, and the subroutine and interrupt save space all
accommodate a 16-bit ;;tddress field with no architectural
changes.

Numerous System Configurations

A major benefit of architectural expandability is that many
family versions can be introduced in a short time. Eleven
versi<;ms of the M6805 family are already available, and more
are on the way.

Three technologies are presently represented: HMOS,
CMOS, and EPROM. ROM sizes range from 1K to 4K, with
RAMs from 64 to 112 bytes. The 28- and 40-pin packages
typically permit 20 and 32 110 pins respectively. For evalua­
tion, prototyping, and smaller production runs, both EPROM
and ROM-less versions are offered. Some versions include an
on-chip 8-bit AID converter. Another includes a frequency
synthesizer for RF applications. Standby RAM capability is
included in some versions. Most include high-current output
drivers.

Automatic Interrupts

Interrupts are the primary tool allowing a program to syn­
chronize to real-time lIO events. Single-chip MCU applica­
tions have become lIO-intensive. Inputs and outputs of di­
verse natures must be accepted and generated. Frequently,
tight timing relationships must be measured or maintained.
Multiple timing relationships must be coordinated, sometimes
at higher speeds.

Some Harvard-architecture-based MCUs have no interrupt
facilities because there is no place to store the return address.
The modernized Harvard MCUs have added an interrupt,
which is frequently only a fixed subroutine call. Fully auto­
matic interrupts save all progI~am registers, not just the pro-

92 National Computer Conference, 1982

gram counter. The interrupt program thus need not waste
ROM bytes and time storing all of the registers.

Efficient interrupt tools make complex real-time MCU in­
terfaces possible.

Ten Addressing Modes

Another benefit of the Von Neumann architecture is that
the common address map allows the instruction set to be
enhanced by providing more addressing modes.

Figure 5 shows that the M6805 family has added four ad­
dressing modes to the M6800 instruction set while dropping
only one 16-bit mode. The new bit manipulation capability is
particularly appropriate to the controller environments that
-use single-chip MCUs. The extra indexing modes ease the
table look-up task, the most useful indexing function in con­
trollers, as well as permitting better ROM use.

MC6800 M6805
ADDRESSING MODE MC6801 FAMILY

INHERENT
(OPERAND IN OPCODE)

IMMEDIATE (OPERAND 8 BITS
FOLLOWS OPCODE) 16 BITS -
ABSOLUTE (OPERAND 256 LOCATIONS (DIRECT)
ADDRESS FOLLOWS OPCODE) 64K LOCATIONS (EXTENDED)
RELATIVE PC :!: 128 (BRANCHES)
INDEXED EA'"' X -
(FOR TABLE ACCESSES) EA = X + 8·BIT VALUE

EA = X + 16-BIT VALUE -
BIT MANIPULATION BIT SET CLEAR -

BRANCH ON BIT -
EA = EFFECTIVE ADDRESS 10

X ~ INDEX REGISTER CONTENT

Figure 5. Ten addressing modes

The inherent addressing mode includes the single-byte reg­
ister reference and control instructions, which do not refer­
ence memory. Immediate addressing is the inclusion of an
8-bit data value in the second byte of a 2-byte instruction.

Short and long absolute addressing, called the direct and
extended modes, includes the memory address in the in­
struction. The first 256 most frequently accessed bytes, the
RAM, I/O, and part of the ROM, are accessed with a 2-byte
instruction. A 3-byte extended instruction accesses any byte in
the address map.

Relative addressing allows the conditional branch in­
structions to reach a program within the range of -127 to
+ 129 of the instruction. An absolute jump can then reach
anywhere else in memory.

The three indexed addressing modes add flexibility in the
organization of the data in memory. In a single-byte indexed
instruction, the effective address is the contents of the index
register. The index register thus contains an 8-bit pointer to
the data byte to be accessed. As such, the X pointer can
reference any RAM byte, any I/O byte, or a portion of the
ROM. This no-offset indexing is similar to the only available
RAM access method on typical Harvard-architecture-based
MCUs. The program calculates an address, puts it in a RAM
address register, and then accesses the data. No-offset index­
ing is most frequently used in the M6805 family processor to
scan down a data table looking at each entry.

The second and third indexed addressing modes are short
and long table look-up indexing. The 8-bit contents of the
index register is added to an 8-bit or a 16-bit value contained
in the instruction to determine the effective address of the
data to be accessed. In table look-up use, the instruction
contains the address of the beginning of the table, and X
contains a displacement into the table. Short offset indexing
includes an 8-bit address within a 2-byte instruction; long
indexing uses a 3-byte instruction to include a 16-bit table
address. With short indexing the table must begin in the first
256 locations, but the displacement may create an effective
address up to 255 locations beyond page zero.

Most microprocessors and 8-bit single-chip microcomputers
have been good at byte manipulation. To be controller effi­
cient, the M6805 family has added single-instruction bit ma­
nipulation and test capability. Any bit of any byte within the
first 256 addressable bytes may be set or cleared. All the I/O
pin and all the on-chip RAM bits may thus be individually
changed. The addressed byte is read, the designated bit is
changed, and the modified byte is written back into memory,
all in one instruction. The two addresses-the direct (page
zero) byte address and the bit address-are both contained in
a 2-byte instruction. The read-modify-write cycle does not
disturb the A or X program registers.

The second bit addressing mode is the single-instruction bit
test capability. These are 3-byte instructions that include three
addresses. First is the 8-bit direct address of any byte within
the first 256 bytes. Second is a 3-bit address of the bit within
the byte that is to be tested. Third is an 8-bit relative condi­
tional branch displacement. One instruction is used to branch
anywhere within the range of -126 to + 130 locations of the
instruction, depending on whether the designated bit is set or
clear.

Instruction Set

The 10 addressing modes presented above bring much of
the power to the M6805 family instruction set. 'Ihe addressing
mode flexibility allows many specialized instructions to be
avoided. The instructions themselves are generalized; this fea­
ture, when combined with the addressing modes, produces a
remarkably powerful processor in a small silicon area.

Except for a few miscellaneous instructions, all instructions
are combined with one of the addressing modes to access
memory. The 10 addressing modes combine with 59 basic
instructions (61 instructions in the CMOS versions) to pro­
duce 207 total instructions (209 in CMOS). The programmer
gets the power of 207 (209) instructions while having to learn
only 59 (61) instructions plus 10 addressing modes.

The most frequently used M6805 family instructions are the
memory reference instructions. Included are four move in­
structions, four arithmetic instructions, three logical instruc­
tions, three compare instructions, and two jump instructions.
Except for the jumps, these are all two-operand instructions.
One operand is taken from memory via the addressing mode,
and the other operand is the A or X register. The result of the
arithmetic and logical instructions is put into the A accumu­
lator. The compare instructions perform a subtract (for mag­
nitude compare) or an AND (bit compare) of the two values
without modifying the registers or memory. Six of the major

addressing modes apply to each of the 16 memory reference
instructions. Both short and long absolute addressing allows
the memory operand (or jump address) to be anywhere in the
address map and to be more efficiently accessed if within the
first 256 locations. All three indexing modes are applied to all
16 instructions. An indexed table retrieval need not simply
load a byte; it may also add, AND, compare, etc., a table byte
with A. Immediate addressing is also usable with all the mem­
ory reference instructions, except the jumps.

Programming time is saved in several ways. Operations are
performed during the same instruction as a memory retrieval
(load). Magnitude and logical compares are accomplished
without first saving the state of a register. Diverse memory
data organizations can be used, since retrievals can use abso­
lute addressing, register pointer indexing, or table look-up
indexing.

The next class of instructions are the register and memory
modification instructions. Included are the typical register
manipulation functions of increment, decrement, comple­
ment, clear, shift, and rotate. A test without modifying is also
included in this set. The unusual thing about these instructions
is that they may be used to operate on memory data as well as
both the A and X registers. An instruction like the memory
increment can displaCe up to five instructions in another pro­
cessor: Save the content of A, load memory byte, increment
A, store incremented byte, restore previously saved content
of A. All three short addressing modes are applicable to the
memory modification instructions. Short absolute and both
short indexing methods are included. Since ROM bytes are
not modifiable, the long addressing modes have little use with
these instructions.

The bit manipulation and test capability has already been
covered. The four instructions are bit set, bit clear, branch on
bit set, and branch on bit clear.

Ten of the 14 conditional branches test the condition code
bits for the result of the last data operation. This set includes
tests for zero, negative, carry, half carry, and above zero. The
states of the interrupt mask bit and the interrupt pin are also
testable. All these conditional branches allow branching on
the true or false state. It is convenient that the branch is a
relative arithmetic displacement (+ or -128 nominally),
which has no page boundaries. In many MCUs the branch is
permitted only within a fixed page.

The list of 13 miscellaneous instructions is short so that few
specialized instructions need be learned. A regular (general­
ized, not specialized) register set and instruction set leave very
few specialized functions to be performed. Six instructions are

Programming Single-Chip MCUs 93

register reference functions: interregister transfers and the
CC bit manipulations. There are four stack manipulation in­
structions associated with the interrupts and subroutines: re­
turn from subroutine and interrupt, call software interrupt,
and reset stack pointer. The M6805 family versions imple­
mented in CMOS include the Stop and Wait instructions.

Since CMOS ICs use dramatically less power when not
operating, two program-initiated standby modes are included.
The differences in the two modes are the conditions that cause
the processor to resume execution. In the Stop mode the
external interrupt pin causes the processor to restart. In the
Wait mode either the external interrupt or the timer interrupt
causes execution to restart. The'timer interrupt permits the
processor to be restarted at regular intervals. The timer inter­
rupt can initiate a cycle consisting of scanning all inputs, pro­
cessing the inputs, saving needed results, 'and generating
needed outputs. When this cycle is complete, the processor
can be put back into the Wait state. The battery drain is thus
the average of the operating current and the stand-by current
for the operating-to-stand-by duty cycle.

FULL PROGRAM PERFORMANCE

As single-chip microcomputer applications are becoming
more complex, the real-time program needs typical of larger
computers are becoming necessary.

Program costs must be kept down. The programs must be
capable of being easily changed for future products, and easily
documented to allow a different programmer to incorporate
changes. MCU architectures can permit efficient ROM use.
The classic computer types of architectures offer more tools
for memory optimization. RAM usage and 110 features can
be traded off with ROM use.

Generalized instructions with many addressing modes allow
large-computer performance for an 8-bit MCU. Single in­
struction table manipulations are included in the M6805 fam­
ily of MCUs. Single instruction memory bit and byte manipu­
lations are included. Memory bits and bytes can be tested
without disturbing the program registers. A common address
map is used to allow ROM and 110 space to be accessed with
as much flexibility and ease as RAM. The address map is
designed for instruction-efficient access to the most frequently
used data elements without making any memory inaccessible.
There are no architectural restrictions on the amount of
memory or on the implemented mixture of ROM and RAM.

The programmer's single-chips are Von Neumann architec­
tures like the M6805 family.

Speak software and carry a strip chip

by MICHAEL SHAPIRO
Texas Instruments
Houston, Texas

ABSTRACT

A short description of TI's innovative Strip Chip Architectural Topology is given.
The key features of the TMS7000 8-bit Microlanguage Processor are listed, and each
of the current family members is discussed briefly. The architecture of the 7000
family is reviewed with emphasis placed on those aspects which enhance its pro­
gramming power. Addressing modes and other software highlights are discussed in
some detail, followed by an overview of microprogramming.

95

INTRODUCTION

In the 1970's the Texas Instruments team hit high and low,
scoring points with both the budget-cutting TMSlOOO 4-bit
microcomputer family and the cerebral TMS9900 16-bit mi­
croprocessor. While churning out yards of silicon in 4-bit
slices (more than 70 million chips), we also introduced the
industry's first 16-bit single-chip microcomputer-the
TMS9940. Now, to center our offensive line, we have plunged
into the 1980's with the innovative TMS7000 Microlanguage
Processor family, our new 8-bit star.

TI had no intention of being a look-alike in a marketplace
which already accepted several 8-bit architectures. Rather, by
using a unique design approach to lower chip costs, and by
implementing a rich instruction set to raise programming effi­
ciency, we embarked on a third-generation design which is
expanding into a powerful line of microcomputer products.
This paper will touch first on the design concept and hardware
features, concentrating later attention on the instruction set
highlights and other software considerations.

SCAT-STRIP CHIP ARCHITECTURE TOPOLOGY

SCAT is TI's term for the design philosophy that incorporates
the nonmemory elements of the microcomputer (the CPU
registers, the ALU, the control logic) into a strip of vertical
blocks in the logic design. Traditional design schemes have
attacked the individual functional blocks first, leaving the
problem of interconnect for last. Unfortunately, in the final
layout, the interconnect often squanders the real estate
prudently conserved in the early stages of design. To combat
this profligate process, TI planned both architecture and lay­
out from the beginning.

Figure 1 shows the layout of the TMS7020, the 2K ROM
version of theTMS7000 family. By placing most of the ran­
dom logic in the "strip," we were able to use control and data
paths that interconnect the active elements but take up almost
no additional silicon area. The logic of the elements in the
strip is implemented on a low level of the silicon bar, whereas
the data and address busses are constructed in metal over the
silicon. This avoids the wasteful dedication of bar area to
interconnect alone.

An additional space-saving feature of the SCAT design is
the use- of transistor arrays and ROM elements to replace
random logic. Not only are these structures more compact,
but the use of the micro-control ROM in place of the com­
monly used programmable logic array for the instruction
decode allows the necessary control signals to be fed horizon­
tally out of the control ROM right across to the strip. Tor­
turous routing problems are avoided, and no additional com­
binatorial logic is required. A valuable by-product of this

Speak Software and Carry a Strip Chip 97

TMS 7000 MICROLANGUAGE PROCESSOR FAMILY
TMS 7000/7020 MICROCOMPUTER DEVICE BAR PLAN

~6 "I'
I I "'<CAe" I ,I 1 + ·1

AD
E N N TIMER A7 A4 A3 A2 A1

~ T T CONTROL

H1 T 1 3 I B2

Y- ~ - x- B TIMER
DECODE ~ B1

H3
I/oCONTR'l 2K BYTE 128 ~

- INTERRUPT BO
MICRO g OSC ENTRY POINT ---

Z
BYTE B7 - IR

USER C!l~
H2 ~:!Eo.. ~

STATUS ClO:!E
OU<{ B5

~ CODE

~
BCD u:!E"" ~ PROGRAMMABLE ""<{'"

H4 SHIFTER 9a:: Z Vss > __ w
&

:!E'"
~ :> :!EON

CD ALU 0a::'"
D7 olS a::

B6 x MD-+ PIN iii :>
T

MASK ROM co ~ :!E RAM D6 PCH
ROM ~

B4

.... PCl -D5 :> SP 0 B3
:!E MAL

D4
0 -a:: I ADDR RAM

BUFFER REF

D3 MEMORY Y-BUFF X-DEC -
CONTROL & GRP DECODE

X-DEC
MC

~CONTRO'

D2 I D' I 00 II " I c. c'lc'IC'I~ C6 C7

VCC

Figure 1-TMS700017020 microcomputer device bar plan

approach is micro programmability , which will be discussed
later in this paper.

KEY ELEMENTS OF THE TMS 7000 FAMILY

The most attractive components of the TMS7000 family in­
clude the microprogrammed 8-bit CPU, addressing capability
for up to 64K bytes of onboard and offboard memory, 32
individual 110 lines, multiple operating modes, unrestricted
stack for control and data storage, 8-bit timer with presettable
5-bit prescaler, and four levels of vectored interrupt. The first
family members have been implemented in high-density
NMOS technology. CMOS and LMOS versions will follow in
the months to come.

Family Overview

The TMS7000 family offers a variety of on-chip RAM and
ROM configurations plus packaging and technology options
to support the full scope of application requirements. The
current family members include the TMS7000, 7020, 7040,
70L22, and the soon to be released 70E40.

98 National Computer Conference, 1982

The TMS7000 is a ROM-less device with 128 bytes of RAM.
It functions as a powerful 8-bit microprocessor with on-chip
RAM, interfacing to as much as 64K bytes of external memo­
ry on an 8-bit data system bus. The TMS 7000 provides eight
input and four output I/O pins on the chip, each of which may
be set, reset, and tested individually. Utilizing the 8-bit data
bus, any of the common 8-bit I/O peripherals can be
easily interfaced to the TMS7000 in order to expand its I/O
capability.

The TMS7020 and 7040 are similar to the TMS7000 and
contain the same CPU, RAM, and on-chip I/O when oper­
ating in the Microprocessor Mode. Moreover, these devices
contain 2K and 4K respectively of on-chip ROM for applica­
tion programming. The 7020 and 7040 may be configured in
several memory expansion modes where memory interface
pins are traded off for I/O pins. Besides the Microprocessor
Mode, the other choices are as follows:

1. Single-Chip Mode providing 32 I/O lines
2. Peripheral Expansion Mode for interfacing to 8-bit

peripherals
3. Full Expansion Mode to address 64K bytes of memory
4. System Emulator Mode for aiding program development

The most pertinent features of the TMS7020 and 7040 mi­
crocomputers are as follows:

1. Microprogrammed 8-bit CPU
2. 2048 bytes of on-chip ROM-TMS7020
3. 4096 bytes of on-chip ROM-TMS7040
4. 128 Memory-mapped registers (register file)
5. Multilevel program/data stack
6. 32 bits of general purpose I/O
7. On-chip 13-bit timer/event counter with interrupt and

capture latch
8. Three maskable interrupts

The TMS70E40 is functionally identical to the 7040 except
that the System Emulator Mode has been deleted and the
on-chip mask ROM has been replaced by a programmable
EPROM. One change has also been made in the instruction
set to allow the 70E40 to program its own internal EPROM.
This device is ideally suited for prototype fabrication or initial
field testing of a new application prior to masked ROM vol­
ume production.

The TMS70L22 is a lower-cost alternative to the 7020,
which retains most essential features, but gives up nine I/O
pins to accommodate the smaller (and cheaper) 28-pin pack­
age. Processed in our power-saving LMOS technology, the
70L22 also works a trade on the clock frequency, operating at
1 MHz versus 5 MHz, achieving a tenfold reduction in power
consumption. A new feature on the 70L22 is a slowdown
mode that allows the user to further reduce current to accom­
modate applications in which power must be conserved.

Architecture

All members of the TMS7000 family incorporate features
that take the best from both memory= and register~based ar=
chitectures. The first byte in the RAM register file, Register

A (RO), functions just like a dedicated accumulator to allow
for faster access times and the I-byte instructions that are
inherent in a register type of machine. Similarly, the second
byte, Register B (Rl), can perform the task of a dedicated
index register. However, the flexibility of the 7000 enables
anyone of the on-chip RAM bytes to assume the accumulator
function by the addition of one byte to the instruction. True
register-to-register operations can be accomplished through­
out the 128-byte register space when a third byte is used in the
instruction to specify the second operand.

Registers

The 7000 family has three hard-wired CPU registers acces­
sible to the user. The 16-bit program counter (PC) contains
the address of the next instruction to be executed. The status
register (ST) contains three status bits that are used for condi­
tional jump instructions. Also present in this register is the
interrupt enable bit (I). The 8-bit stack pointer (SP) points to
the top (last) entry in the data stack, and it facilitates multi­
level subroutining and interrupts. The register file (RF) con­
sists of 128 bytes of on-chip RAM.

Peripheral File

Beyond the memory address space devoted to the register
file, there is a 256-byte region for memory-mapped peripheral
input/output control, called the peripheral file (PF). The 32
bits of general purpose I/O, available in the Single-Chip
Mode, are broken out into four 8-bit ports (see Figure 2) that
can be manipulated via six dedicated peripheral instructions.
Any of these bits may be individually set or cleared, or tested
in conjunction with an appropriate bit-test-jump instruction.

Not only can the dedicated input (A Port) and output (B
Port) ports be read from and output to, but the individual bits
of the bi-directional ports (C Port and D Port) can be config­
ured selectively as input or output by accessing their data
direction registers (DDR), which also reside in the peripheral
file.

To simplify use of the peripheral file, a special peripheral
file-addressing mode was established to reference all 256
locations. Inputs and outputs on the I/O lines are accom­
plished by reading or writing to the appropriate port. For
example, the B Port is implemented as port P6 in the periph-

AO INPUT I LINES A7

BO

I OUTPUT
LINES

B7
TMS 7020n040

co BIDIRECTIONAL I
C7 LINES

DO BIDIRECTIONAL I
D7 LINES

Figure 2-1/0 ports in single-chip mode

eral file. Thus, writing to this port is handled by the
instruction

MOVP A,P6

which takes the value in the Register A (RO) and stores it on
the B Port outputs.

In the Peripheral Expansion Mode, the peripheral in­
structions can be used to communicate with off-chip devices.
When a memory address not corresponding to an on-chip port
is used, the 7000 family device performs an external memory
reference enabling an 8-bit peripheral chip to respond.

Timer! Event Counter

The 7000 family is equipped to handle real-time control
applications by using a programmable 8-bit timer with a pre­
settable prescaler value of from I to 32. As shown in Figure
3, the timer may use an internal clock source divided down or
an external signal. On each positive edge transition of the
clock input, the prescaler register is decremented. When the
prescaler reaches zero, the decrement is performed on the
8-bit timer, and the prescaler is reloaded from the control
latch.

As with the prescaler, the timer register will decrement
until it reaches zero. The succeeding decrement will generate
an interrupt (INT2), and the timer register will be reloaded
from the timer latch. Since these registers reside in the periph­
eral file, the pre scale latch value and the timer latch value may
be written to, and the current timer value may be read using
peripheral file instructions. Likewise, the timer on/off and the
clock source bit are under program control in the peripheral
file.

PHI/B-~--""

EXTERNAL _.L.....I""--"'"
SIGNAL

Figure 3--Programmable timer/event counter

CAPTURE
VALUE

In the event counter mode, the counter will function as
described above, but the decrementer clock source will now
be line A7 of the A Port. This timer mode can also serve the
purpose of a real-time clock when an appropriate source is fed
to A 7. The A 7 input can also be used as a positive edge­
triggered interrupt by loading the prescaler and timer latches
with O.

A unique feature of the 7000 timer is the 8-bit capture latch,
which saves the current value of the timer when an external
(INTI) interrupt occurs. This allows the processor to deter­
mine precisely when the external event took place by com­
paring the captured value to the value that is now 9urrent.

Speak Software and Carry a Strip Chip 99

This capability can be essential if the external interrupt occurs
while the processor is servicing a higher-order interrupt.

Interrupts

There are three levels of maskable interrupts: the INT2
associated with the timer and INTI and INT3, which are
externally triggered. The system reset cannot be masked, but
the other three interrupts can each be enabled separately by
bits in the I/O control register, a:rid as a group by the interrupt
enable bit (I) in the status register. When an interrupt is
recognized, the contents of the status register and the pro­
gram counter are pushed onto the stack. The processor then
branches to the location stored in the corresponding interrupt
vector location and starts execution of the interrupt routine.

Interrupts may be tested without actually recognizing them,
allowing for greater user flexibility. Interrupts may be edge­
or level-triggered, and no external synchronization is re­
quired. The signals are latched internally to catch short inter­
rupt pulses.

The TRAP instruction can be used to create a "software"
interrupt. There are 24 TRAP opcodes corresponding to 24
trap vector locations in the highest addresses of memory. As
in an interrupt, the trap vector will provide a branch address
at which a subroutine begins execution. Limitation on nesting
in subroutines or interrupts is only a function of the overall
stack capacity.

PROGRAMMING THE TMS7000

From the outset, the TMS7000 family was designed to opti­
mize programming efficiency by virtue of its architecture and
instruction set. The ease of access to the RAM, ROM, and
I/O is achieved by mapping all of these into a single address
space. Figure 4 illustrates the memory address scheme for the
702017040. This structure can be fully exploited by means of

>0000

>007F

>0080

>OOFF
>0100

>01FF
>0200

>EFFF
>FOOO

>FFFF

REGISTER
FILE

FUTURE
USE

PERIPHERAL
FILE

OFF·CHIP
MEMORY

EXPANSION

ON·CHIP
ROM

PROGRAM MEMORY

Figure 4-TMS7040 memory map

100 National Computer Conference, 1982

nine separate addressing modes. Add to this a full comple­
ment of standard instructions (the usual byte-oriented in­
structions plus multiplication, single- and multiple-bit tests,
double precision arithmetic), and the design engineer has the
upper hand in dealing with almost every application.

Addressing Modes

The nine different addressing modes for the TMS7000 fam­
ily are listed below. The terms Register A and Register Bare
synonymous with the first two bytes in the register file, RO and
Rl, respectively.

1. Register File-The byte(s) following the opcode specify
. any byte in the register file as the operand location(s).
This includes single operand instructions such as

INC
CLR

R56
R99

Increment the contents of R56
Clear R99

and dual operand instructions such as

ADD R68,R45 Add R68 to R45 and store in R45

2. Register A-The operand location is implied, and RO is
fetched from the register file. This is a special case of
register-file addressing, since Register A can be refer­
enced implicitly as A or explicitly as RO; however, the
implied mode saves a byte in the instruction. For exam­
ple, the instruction

MOV R20, R30 Move R20 to R30

is three bytes versus two for the instruction

MOV R20,A

3. Register B-The operand location is implied, and Rl is
fetched from the register file. This is identical to Regis­
ter A addressing except now B is the implied register.

4. Peripheral File-The byte following the opcode specifies
a port in the peripheral file which contains the operand.
These instruction mnemonics are identified by a P suffix.
Each is a dual operand instruction with a peripheral file
as the second or destination operand. Examples of these
are

XORP A,P3

MOVP %>60,
DDDR

Exclusive OR A with P3 and
place the result in P3 (the timer
control register)

Setup bits 1,2 of D PORT as
inputs

5. Direct-The two bytes after the opcode contain the ad­
dress of the byte in memory that contains the operand.
The notation for the direct memory address is the ex­
pression preceded by the @ sign. For example

7.

LDA @ > E34D Copy the contents of memory lo-
cation > E34D to Register A

6. Indirect-The byte following the opcode specifies the
second of a RAM register pair which contains the ad­
dress of the operand. This addressing mode is indicated
by the * before the register as in the following in­
struction:

STA *R19 Copy the contents of A into the
memory location specified by R18
and R19

Indexed-The 16 bits following the opcode are added to
the B register contents to form the effective address of
the operand. The format for this instruction is given
below .

BR @HERE(B) Branch to the address specified
by the contents of B and the val­
ue of the symbol HERE

8. PC Relative-The byte following the opcode is used as
a signed offset to the current PC to produce the effective
address. This is the addressing mode used for all jump
instructions, and it eliminates the designer's concern
about where in ROM his program is jumping to, since
the offset may lie anywhere in ROM.

9. Immediate-The byte following the instruction is the
operand. For example, the instruction

ANDP %COUNT, Logically AND the value of
PIO COUNT and the contents of PIO

and copy results to PIO.

illustrates the use of immediate addressing.

Because of the memory-mapped architecture, many modes
can apply universally to any 16-bit address in the TMS7000
memory space. Thus ROM, RAM, or peripherals can be ref­
erenced with similar instructions possibly using common rou­
tines. The need for dedicated instructions in each category is
now eliminated.

A very flexible feature of the 7000 is the capability of freely
specifying two operands, the source and destination, within
the dual operand addressing modes. While most microcom­
puters would restrict one of the operands to a particular regis­
ter, the 7000 allows any RAM location to be named the source
or the destination.

Instruction Set Highlights

As mentioned before, the TMS7000 family provides the full
range of standard instructions. Rather than list the entire set,
we will discuss some of the more unique members.

The MPY (Multiply) instruction takes the product of a gen­
erai source and destination operand and piaces the 16-bit
result in either A or B. The 7000 can perform this 8-by-8-bit

unsigned mUltiply in just 17.2 microseconds, assuming a 5
MHz clock.

The MOVD (Move Double) instruction is used to move a
16-bit value to a specified register pair destination. The source
for this move can be an immediate constant, another register
pair, or an indexed address.

The DAC (Decimal Add with Carry) and DSB (Decimal
Subtract with Borrow) instructions provide the unique feature
of performing fully corrected decimal addition or subtraction
on two packed binary coded decimal (BCD) bytes.

The DECD (Decrement Double) instruction allows a 16-bit
address to be easily decremented. This instruction can be
especially useful for referencing tabular information in
memory.

There are several jump instructions with especially useful
test conditions to dictate transfer of program control. The
BTJO (Bit Test and Jump if One) instruction looks at those
bits which are l's in the source operand and compares the
corresponding bits in the destination operand. If any of these
bits are also l's, the relative jump is taken. There is a similar
instruction BTJZ which does the comparison on bits which are
O's. These instructions allow for single- or multiple-bit tests.

Instructions as powerful as these are usually only available
on more expensive high-end microcomputers (if at all). How­
ever, in the case where the designer has underscoped the task
or runs up against a particular application intricacy, micro­
programmability provides a possible out.

Speak Software and Carry a Strip Chip 101

Microprogrammability

When TI implemented the TMS7000 instructions using a
control ROM rather than random logic, it opened up the
possibilities for user-defined "personalized" instruction sets,
because the control ROM can be altered and then mask­
programmed for production. Although the standard instruc­
tion set is very efficient for most applications, the user may
find a repetitive program sequence of several instructions that
could be reduced to a single command through microcoding.
This would both increase throughput and reduce memory us­
age. Approximately 75% of the standard instructions are des­
ignated as core instructions and must be maintained. The
remainder may be swapped out for user-created instructions
which are customized to best serve that particular application.
Software will soon be available to aid users in the design of
microcode for a custom instruction set.

SUMMARY

This paper has attempted to give a broad overview of the
TMS7000 family. We have given the reader only a brief taste
(with software seasoning) of the capabilities available in the
7000 larder. In addition to the stock of products now avail­
able, we will soon be introducing a CMOS implementation
and enhanced feature versions. To the hungry design engineer
in search of a satisfying microcomputer-bon appetit!

A distributed operating system for a powerful
system with dynamic architecture

~STEVENI.KARTASHEV

Dynamic Computer Architecture, Inc.
Lincoln, Nebraska

and
SVETLANA P. KARTASHEV
University of Nebraska, Lincoln

ABSTRACT

The paper discusses the organization of a distributed operating system for dynamic
architecture. It shows that the operating system must feature two types of distribu­
tion: (a) functional or vertical, whereby it is distributed among functional units in
accordance with the types of conflicts that should be resolved; and (b) modular or
horizontal, whereby it is distributed among modules performing the same functions.

In a dynamic architecture there are three types of conflicts: memory, recon­
figuration, and I/O. This leads to the division of OS into three subsystems: (1) a
processor OS that resolves memory conflicts, (2) a monitor OS that resolves recon­
figuration conflicts, and (c) an I/O OS that resolves all types of I/O conflicts. The
paper presents a detailed organization for the processor operating system.

103

1. INTRODUCTION

The architecture of powerful parallel systems (Supersystems)
for fast real-time algorithms should take into account major
peculiarities of these algorithms, as follows:

1. As a rule, each such algorithm is characterized by a large
and variable number of concurrent instruction streams in
the range of hundreds and thousands. Severe time re­
strictions imposed on some portions of these algorithms
disallow their computation in an interrupted mode of
operation. This leads to the necessity of having one com­
puter dedicated to computing one instruction stream. 1

As a result, the Supersystem must incorporate hundreds
and even thousands of computers; i.e., it must have
an enormous complexity in order to be adequate for
computations.

2. Typically, extensive data exchanges are required be­
tween information streams; i.e., the Supersystem must
possess a very flexible, very fast interconnection net­
work between its computers.

These two requirements are contradictory because of the
reasons stated below.

To interconnect hundreds or even thousands of computers,
the network must be multistaged, because the use of a single
staged network (crossbar) becomes cost prohibitive as a result
of the n2 growth in the number of its connecting elements.
However, a multistaged network becomes very slow as a result
of the following undesirable characteristics:

1. It introduces long delays into signal propagation from
one computer to another, since each data path will
take log2n connecting elements. Since n is in the range
of thousands, this delay becomes a significant factor
in slowing down information broadcast between
computers.

2. Since for a multistaged network one or more connecting
elements may belong to several data paths, there arises
the problem of blockages (conflicts) when several data
exchanges use the same connecting element(s).

Therefore, multistaged interconnection networks create
new types of conflicts in addition to conventional ones created
in conventional multiprocessor systems during program com­
petition for the processor and memory resources. As it turns
out, multi staged networks require conflict resolution in data
propagation through the connecting elements. A conven­
tional way to solve these conflicts is in repeated data broad­
casts of exchanges that are allowed. Therefore, not only is
each data exchange slowed down by log2n connecting ele-

A Distributed Operating System 105

ments in its path, but it must be broadcast in several passes to
eliminate blockages. In addition, extensive control overhead
is created during each blockage, since the OS must analyze the
priority of each data broadcast to find out whether it is al­
lowed or prohibited.

These two characteristics of multistaged interconnection
networks lead to a significant reduction in the Supersystem
throughput, making it unsuitable for computing a number of
fast real-time algorithms.

Another adverse factor is that the complexity of some real­
time algorithms constantly grows as a result of technological
progress. Therefore, in the future the problems discussed
above will have an even greater effect on the performance of
Supersystems.

The way out of these contradictions between the Super­
system throughput and its complexity lies in adopting the
following design strategies:

1. To overcome significant throughput loss introduced by
multistaged interconnection networks, it is desirable to
partition the entire Supersystem into several subsystems,
each of which uses one staged (crossbar) connection
between its computers. This will eliminate long delays in
both data broadcasts and blockages, since each data path
will go through a single and dedicated connecting ele­
ment. On the other hand, since each subsystem will have
a much smaller number of computers (tens), the prob­
lem of complexity caused by the necessity of having n2

connecting elements will also be significantly relieved.
2. To increase computational concurrency in each subsys­

tem without augmenting it with additional computers,
each subsystem must be provided with dynamic architec­
ture. Indeed, as was shown by Kartashev and Kartashev
and by Vick, Kartashev, and Kartashev3

,4,5 a dynamic
architecture can maximize the number of instruction
streams computed by the available resources. This
means that a dynamic architecture creates an additional
concurrency using available resources, or a required
concurrency may be obtained on a less complex sub­
system.6 Therefore, a dynamic architecture allows a less
complex subsystem to become suitable for computing
more and more complex real-time algorithms during the
short periods these algorithms may need.

A dynamic architecture is assembled from building blocks
called Dynamic Computer (DC) groups. Each DC group is
capable of partitioning its resources into a selectable number
of dynamic computers with changeable word signs.

Each DC group contains n h-bit computer elements, CE,
where each CE includes an h-bit processor element, PE; an
h-bit memory element, ME; and an h-bit I/O element, GE

106 National Computer Conference, 1982

(Figure 1). In Figure 1 the DC group includes 4CE, i.e., n = 4.
DC group may form dynamic computers C(k). Each dynamic
computer handles h·k-bit words; it is assembled from k con­
secutive CE(CE j , CE j + 1 , ••• , CEi+k-l), and i subscript
shows the position code of its most significant CEo Kartashev
and Kartashev4 showed that the most expedient h = 16 bits.
Then the word sizes formed are multiples of 16 (16, 32, 48, 64,
etc.), whereas the number n of CE may be 4,8, and 16. Thus,
the DC group may be conceived as a subsystem of a Super­
system.

The following major characteristics of one DC group should
be mentioned here:

1. A DC group may assume a large number of different
architectural states. Each state is characterized by the
number and sizes of concurrent computers and arrays.
Transition from one state to another is performed via
software in several microseconds.

2. The same hardware resource of one DC group may as­
sume different types of architectures: multicomputer,
mUltiprocessors, array, and mixed. (The mixed architec­
ture is characterized by coresidence of several types of
architecture in the same system, whereby a portion of
the resource functions as a multicomputer/multipro­
cessor, another one acts as an array, etc.)

3. A DC group provides for very fast data exchanges be­
tween any pair of resource units belonging to the same
or different computers. It performs high-speed parallel
word exchanges with 16·k-bit words (where k = 1, 2,
... , n) using 16-bit size of a communication bus.

CE -- ________________ J

1

One DC group assembled from n computer elements, CE,
may execute in parallel up to n concurrent programs. A Su­
persystem assembled from DC groups is conceived as a dis­
tributed parallel system in which each DC group is connected
with the others via one of the fast interconnection busses
described in the literature (crossbar, etc.).

Since, in a distributed Supersystem, the number of DC
groups is in the order of tens, the complexity of the commu­
nication bus is much smaller than that of the alternative one­
staged interconnection network. Therefore, the significant re­
duction in delays of data exchanges afforded by a one-staged
interconnection network is accomplished without paying the
price of excessive complexity.

On the other hand, equipping each subsystem (DC group)
with dynamic architecture significantly widens a level of con­
currency of a complex real-time algorithm or algorithms that
can be computed in a single subsystem.

This paper discusses the organization of fast data exchanges
between dynamic computers in a single DC group. This ex­
change is organized as follows:

If Computer B needs a data array stored in a memory page
of Computer A, then this page is connected with Computer B.
By loaning its page(s), Computer A does not interrupt its
program, whereas Computer B begins to work with a loaned
page as if it belonged to its own memory.

Loaning the memory resource for temporary use by an­
other computer requires interference of the local operating
system, which resolves conflicts arising each time two or
more computers request the same memory page of another
computer.

Figure I-Block diagram of one DC group containing four computer elements

Memory conflicts are not the only type of conflicts that must
be resolved by the operating system for dynamic architecture.
Another type of conflict is that occurring during reconfigu­
ration when two computers existing concurrently in a current
architectural state N request transition into two different next
states N' and Nil (N' =1= Nil).

A third type of conflict is associated with the use of I/O
resources. The I/O conflicts may arise if memory-memory
data exchange is performed via an I/O bus or if there are
conflicts for the I/O terminals, or several I/Os make concur­
rent communications with the system monitor.

To solve the three types of conflicts outlined above (mem­
ory, reconfiguration, and I/O), the OS must be functionally or
vertically distributed; i.e., it must include three subsystems:

1. The processor operating system, POS, which resolves
memory conflicts

2. The I/O operating system, I/O OS, which resolves all
types of I/O conflicts

3. The monitor operating system, VOS, which resolves
conflicts during system reconfiguration

To be most efficient, these three OSs must reside in func­
tionally oriented units with matching dedication; i.e., the POS
must reside in the processor of a dynamic computer, the I/O
OS must reside in its I/O unit, and the VOS must reside in the
system monitor.

In addition to vertical or functional distribution, the oper­
ating system must feature horizontal distribution among sepa­
rate CEs of the dynamic computer. Indeed, since dynamic
computer, Ci(k) , consists of k CE and minimal k = 1, then the
same POS and I/O OS must reside in every CEo Therefore,
not only is the entire OS vertically distributed because of the
three types of conflicts that should be resolved; it becomes
horizontally distributed to resolve memory and I/O conflicts
because of the modular structure of a dynamic computer.

This paper discusses the organization of the processor oper­
ating system, POS. The results presented are implemented in
the POS designed for the system with dynamic architecture,
which is now under construction for the Ballistic Missile
Defense System Command of the U.S. Army (Contract
DASG60-80-C-0058) .

2. DATA EXCHANGES BETWEEN
DYNAMIC COMPUTERS

Since each dynamic computer Ci(k) is assembled from k CEs,
to organize a parallel data exchange between two dynamic
computers it is necessary to organize concurrent exchanges
between respective pairs CEA~CEB' where CEA belongs to
Computer A and CEB belongs to Computer B. Assume that
in each type of A -B exchange, the exchange is requested by
B computer, whereas A loans its equipment; therefore the
direction of exchange is A~B.

Further, the DC group is provided with three system busses
(Figure 1): (1) a DC bus that connects all the PEs with all the
MEs via separate instruction and data paths; (2) a P bus that
connects all PEs; arid (3) the I/O bus, which connects all I/O
elements, GE. Therefore, the four types of exchanges be-

A Distributed Operating System 107

tween CEA and CEB which are possible are as follows (Figure
2):

1. Memory-processor exchange, MEA~PEB, performed
via DC bus

2. DC memory-memory exchange, MEA~MEB' per­
formed via DC bus

3. Processor-processor exchange, PEA~PEB' performed
via P bus

4. I/O memory-memory exchange, MEA~MEB' per­
formed via I/O bus

To increase a system's throughput, it is essential to provide
maximal concurrency in all the possible data exchanges listed
above. Further, since some programs require minimal time
of execution without interrupts, it is necessary to discuss
such organizations that do not interrupt .currently executing
programs.

Since there are three dedicated busses in the DC group, any
two dynamic computers may perform up to three concurrent
data broadcasts.

Indeed, it is possible to organize the following types of
exchange concurrency in a system:

Type 1 Exchange Concurrency: (a) MEA~PEB (DC) via
DC bus; (b) PEA~PEB; and (c) MEA~MEB (I/O) via I/O
bus.

Type 2 Exchange Concurrency: (a) MEA~MEB (DC) via
DC bus; (b) PEA~PEB; and (c) MEA~MEB (I/O) via I/O
bus.

Since each exchange is requested by Computer B, Comput­
er A does not interrupt its program for all exchanges but

I/O bus

PEa - PEh

Figure 2-Possible data exchanges with one CE

108 National Computer Conference, 1982

PEA~PEB. For the latter case, the A computer computes an
A operand for the B computer, whereas a B operand is com­
puted by B computer. In addition, one modification of the
MEA~PEB exchange provides that the program computed in
B computer fetch one of the operands from the memory of A
computer. This fetch takes the same time as the fetch of an
operand from the B memory. The result of the computation
can be written to the memory of Computer A, Computer B,
or both (Figure 3).

Figure 3-MEA-PEB exchange

Realization of concurrent data exchanges from Dynamic
Computer A to Dynamic Computer B without interrupting
the programs that are computed by these two computers re­
quires implementation of the following features:

1. For a dynamic computer, every memory element, ME,
of its primary memory must be multiport and recon­
figurable; i.e., ME should be provided with four infor­
mation ports and be capable of connecting all its pages
to the four ports (Figure 4). These ports are as follows:
a. A local data port that provides fetch of the local data

word for the program computed by the dynamic com­
puter A.

b. An instruction port that fetches instructions to all
PEs of the dynamic computer. Since instructions may
be stored in any ME of a dynamic computer, every
ME must have a separate instruction port.

c. A DC port that fetches a data word stored in this ME
to another dynamic computer.

d. An 110 port that transfers a data word stored in this
ME to another dynamic computer, using an 110 bus.

2. Every computer element, CEA, of the dynamic com­
puter A must be provided with the two operating sys­
tems: POS and 110 OS. Further, to speed up conflict
resolution, it is essential to implement these two OSs via
hardware. The POS will resolve memory conflicts for the
pages of this MEA, and I/O OS will find what dynamic
computer B will participate in the memory-memory ex­
change MEA~MEB with MEA via the 110 bus.

2.1 Multipart and Reconfigurable Memory ME

As was indicated above, each CE is equipped with the
reconfigurable multi port ME that can access up to four 16-bit

Address Busses

Instruction Bus

PE~lPE2 PE
3

PE3

Local ICE1
Data Bus

Data
DC Bus

Local

1/0 Bus

GEl

Figure 4-Multiport reconfigurable ME with four information busses

data words concurrently. One ME has f pages: ME - Ph
ME - P2 , ••• , ME - P f (Figure 4). In the system, DCA-2,
that is now under implementation, f = 32; i.e., each ME has
32 pages, each of which has 64K words. The memory, ME, is
provided with four ports, each of which consists of a 24-bit
address bus and a 16-bit data bus. There are four data busses.

Let us discuss the designation of each of them.

1. The local data bus provides 16-bit word exchange be­
tween the local ME and PE. A dynamic computer han­
dles 16· k-bit words in parallel. Since a 16· k-bit word is
stored in a parallel cell of k ME specified with the same
address, A p , an access to this cell (read or write) is
specified by concurrent broadcast of the same address,
A p , by k PEs of the dynamic computer. This allows a
concurrent fetch of k 16-bit bytes of the same data words
via the respective local data buses to k PEs of the dy­
namic computer.

2. The instruction bus provides fetch of 16-bit words of one
instruction that is stored in one ME. One instruction
may be two-word (32-bit instruction) or three-word
(48-bit instruction). Further, it must be fetched to all k
PEs of the dynamic computer. The instruction broadcast
to k PEs of the computer is performed via a connecting
element, ICE.

3. The DC bus provides broadcast of a 16-bit word from the
given ME to any PE or ME of the DC group. For MEA,
belonging to Computer A, any of its pages may be con­
nected with any PEB or !'v1EB belonging to Computer B
(Figure 5).

r'''lpEAIDD
~ ,',ddre" 5 .t: ~ :5)

~
t

~

1

Figure 5--ME A ~ MEB exchange via DC bus

4. The local 110 bus provides broadcast of 16-bit data be­
tween local ME and 110 (GE), belonging to the same
CEo

Therefore, multiport reconfigurable memory, ME, pro­
vides for concurrent connection of any combination of its four
pages with the four busses mentioned above. It may be fed
with up to four addresses leading to concurrent accesses of up
to four data words transferred to local PE and GE and non­
local transfer to PEs or MEs of another computer element
CEs .

As was mentioned above, each address bus is a 24-bit. It is
formed oftwo parts: an 8-bit page address and a 16-bit relative
address within one page.

Each MEA receives its addresses from the following
sources. All four 8-bit page addresses are received from the
local POSA belonging to the local PEA; 16-bit relative ad­
dresses for local data words and instructions that must be
fetched to local PEA are broadcast from the local control unit
CU(PE) of this PEA' A 16-bit data word that must be broad­
cast to a nonlocal PEs of another computer is defined via a
16-bit relative address broadcast from PEs.

Local GEA broadcasts a 16-bit address for the data to be
transferred via the local 110 bus (Figure 6). The same 8-bit

I/O bus

lJata Address Jata Address

Page Address Page Address

Figure 6-MEA~MEB exchange via 110 bus

A Distributed Operating System 109

page addresses are fed continuously during program com­
putation, whereas 16-bit relative addresses are available only
during fetch clock period. A change in an 8-bit page address
is performed either via special instruction or via P05A.

2.2 Memory-Processor Data Exchange MEA~PEB

Let us discuss the memory-processor data exchange of the
data word stored in MEA and fetched to PEs. Suppose that a
PEs of the B computer needs a data array stored in the page
MEKPe ofthe MEA contained in the A computer. In this case
Computer A connects page MEA-Pe with the DC bus. The
8-bit page address, PI. is generated by the operating system
POS A in PEA of the A computer and continuously fed to MEA
during the entire exchange (Figure 3).

The B computer sends a 16-bit relative address to the MEA
via its connecting element ACEs and the address portion of
the DC bus. A data word fetched via an effective 24-bit ad­
dress is sent via connecting element MCEA to the data portion
of the DC bus that connects MCEA with PEs.

It should be noted that the delay introduced by the DC bus
in transferring addresses and data words is very insignificant
and equivalent to two gates delay. In addition, these delays
are permanent and independent of the location of MEA and
PEs in the resource. This allows organization of new types of
instructions. Each such instruction executed in Computer B
may fetch one operand from MEA and the second operan.d
from MEs and write the result either to MEs or MEA' ThIS
instruction is organized as follows: Computer B sends concur­
rently two 16-bit addresses; one via DC (address) bus is fed to
MEA, and another via local (address) bus is fed to MEs. Thus,
PEs receives two operands concurrently: one fetched via DC
(data) bus, another via local (data) bus. The page address for
MEs is generated by PEs. The result of the operation can be
written either to MEA or to MEs.

Note that the fact that Computer A loans its page, MEA-Pe,
to Computer B does not prevent A from executing its program
because a loaned page, MEKPJ, is connected with the DC
bus, whereas program instructions computed in Computer A
are stored in another page connected with the instruction bus.
The data words for this program are stored in another page
connected with the local data bus. Sequencing of instruction
and data arrays stored in several pages is performed with
special instructions that change the page addresses connected
with instruction and local data busses.

Therefore, the ability of one dynamic computer to loan its
memory pages for use by the B computer eliminates the neces­
sity of using MEA-MEs data exchange. If there are no con­
flicts for the page, MEA -Pe ofthe A computer, then to transfer
a data array made of d words from MEA to PEs takes (d + t)
clock periods, where t is a small number of clock periods
required to generate the page address by POSA; thereafter
each word may be tran~erred during one clock period ..

Another advantage of such organization is as follows: Smce
the DC bus is connected with all computer elements, it may be
used by the B computer for fetching one of its operands from
the local MEs; the second operand may be fetched concur­
rently from another page of the same MEs via a local data
bus. This results in a concurrent fetch of two operands that
leads to a significant speedup in data fetches.

110 National Computer Conference, 1982

2.3 Memory-Memory Exchange, MEA~MEB

As was indicated above, there are two types of memory­
memory exchange between A and B computers, organized via
a DC bus and an I/O bus, respectively (Figures 5 and 6). Both
types of exchanges do not interrupt programs run on A and B
computers. The most typical use of both exchanges occurs
when the data array stored in A computer is transferred to B
computer before the program run in B computer actually
needs this array.

2.3.1 MEA~MEB exchange via DC bus

Since the DC bus is connected with each element MCE
the MCEA~MCEB connection will establish a data ;ath fo;
data words fetched from MEA and to be written to MEB
(Figure 5). Since the program run on B computer requests this
exchange, B computer generates 16-bit addresses for MEA
and MEB. In addition, B computer generates the page address
(8 bits) for MEB. This address connects the respective page in
MEB to the DC bus. The page address for MEA is generated
by Computer A.

Two 16-bit addresses that define respectively the source and
destination of a data word in MEA and MEB are generated
concurrently, and one data word is transferred in one clock
period from MEA to MEB. The same addresses are fed con­
tinuously to MEA and MEB during the entire broadcast of the
data array from the same page.

2.3.2 MEA~MEB exchange via I/O bus

Since the DC bus is often occupied by MEA~PEB ex­
changes, and the program on the B computer may often need
data words computed by A computer in the past, it is desirable
to organize another type of MEA ~ MEB exchange via I/O bus.

Since each ME may connect its pages to the local I/O bus,
one can organize MEA~MEB exchange via I/O elements GE
of A and B computers (Figure 6). The page addresses in MEA
and MEB are generated by PEA and PEB respectively. There­
fore, the following data path is established: During the first
clock period, To(1), a data word is fetched from MEA to GEA;
during To(2) it is transferred via 110 bus to GEB; during To(3)
it is written to MEB.

This transfer is overlapped, so that each clock period fea­
tures one fetch of a new data word from MEA and the entire
transfer of a data array having d words from MEA to MEB
takes d + 2 clock periods.

This concludes the description of all data exchaI~ges that
involve the operating system.

It should be noted that for PEA~PEB exchange, the as is
not involved, since this exchange provides for concurrent re­
ception of the same operand by all I?Es, which is useful for
array architecture. Thus, it will not be considered in this
paper.

3. DISTRIBUTED OPERATING SYSTEM

If the same page of the A computer is requested by two or
more other computers, the POSA residing in PEA has to de-

cide which computer request for MEA~PEB or MEA~MEB
exchanges should be granted. Similar conflict resolution must
be provided by the I/O OSA to decide which computer may
use MEA~MEB (I/O) exchange via an I/O bus. To solve these
conflicts, each program is assigned the priority code, PC, that
shows the relative importance of this program among all
others that are being computed by the system. Also, each
request for a page is provided with another important charac­
teristic-the tentative duration of a data exchange, TDE.

These two codes will provide the user with a much better
quality of service, since the programs with low PCs and small
TDE may be granted requests because th~ requested ex­
change will take a short time. Should a page request be char­
acterized by the PC code alone, it would be impossible for a
program of low priority or priorities to request data exchanges
of short durations.

Thus, if a page of Computer A is requested, either POSA or
110 OSA receive two characteristics of each page request: the
priority code, PC, of the requesting program and the tentative
duration, TDE, of the exchange. The POSA receives PC and
TDE, if a requested data exchange will use the DC bus; the
110 OSA receives PC and TDE if the exchange will use the I/O
bus.

POSA controls all four busses of MEA; i.e., it alone con­
nects memory pages to the busses. Therefore, if 1/0 OSA has
a request on MEA~MEB (1/0) exchange, it requests the
POSA on the possibility of connecting a requested page to the
local I/O bus.

Other functions of I/O OSA include finding the terminal
that should be connected with GEA, communicating with the
V monitor, and similar functions. These functions of I/O OSA
will not be considered in this paper.

3.1 Communication Between Different POSs

Since a dynamic computer, A, includes k CEs, it has k
pass. Each POSA makes decisions concerning the pages of
the local MEA only. As will be shown below, such horizontal
distribution of functions allows parallel data exchanges both
with full 16·k-bit data words and with 16·f-bit bytes, where
1 :S: f < k. Indeed, if two computers, A and B, are assembled
from the same number k of CEs, then parallel 16· k-bit data
exchanges mean concurrent communication by each CE of the
A computer with the respective CE of the B computer. In
Figure 7 this communication is shown for 32-bit computers A
and B, assembled from CEl and CE2 for A and CE3 and CE4

Ii It
Jy II

PE 2 PE3 PE 4

I POS1 POS2 POS3

__ --- :o:rpu:e>" ,t., - __ __ ----
Figure 7-Concurrent communications between different POSs of two

dynamic computers

11

Ipos4

I

for B. Thus POS4 of PE4 communicates with POS2 of PE2 , and
POS3 of PE3 communicates with POSI of PEl.

This means that each CEA of the A computer must generate
the same page address in order that this page be connected
with the DC bus in the local MEA. This will lead to a concur­
rent fetch of a 16· k-bit word from the same page of k MEA,
so that each MEA will produce one byte of this word. The
decision on what page should be connected with the DC bus
is performed by the local POSA that receives the request from
the respective POSs of the B computer. Thus, if A and B
computers have the same number of CEs, then k communi­
cating pairs POSA,POSS are formed, where each POSs sends
the request to the respective POSA. This request is organized
with a special communication request instruction, CR in­
struction, whose organization is described in the next section.

3.2 Organization of Communication Request Instruction

The CR instruction is fetched by all CEs of the B computer.
It stores the following codes: Ws, YA, and Xs, where

1. Ws is the position code of the most significant CE (CEw)
of the B computer that requests communication with its
analog of the A computer.

2. YA is the position code of the most significant CE (CEy)
of the A computer that receives requests from CEw.

3. Xs is the position code of the least significant CE (CEx)

of the B computer that participates in communication.

Let is be a current position code of a CEs of Computer B,
where Ws :5 is :5 Xs. Then position code jA of CEA of Comput­
er A, which communicates with this CEs, is given as follows:

(1)

The execution of this instruction is organized as follows:
Having received a communication request instruction, each
CEs of the B computer compares its position code is with Ws
and Xs. If ws:5 is:5 Xs, CEs finds jA of the CEA via Equation
1. Otherwise, the CR instruction is not executed. It should be
noted that this instruction can organize parallel byte ex­
changes as well as full data word exchanges. For byte ex­
changes Ws and Xs show positions of most and least significant
bytes for data words to be exchanged. For full data word
exchanges, there is no need to store Xs, since the instruction
is received by all CEs of B computer and every CEs of B
computer will thus find the position code, jA, of its commu­
nication pair in the A computer.

Example 1. First, consider parallel exchange with 16·f-bit
bytes. Let a dynamic computer B = Cs(3) assembled from
CEs, CE6 , and CE7 require that CEs send a request to CEI
and CE6 send a request to CE2 , where CEI and CE2 belong to
Computer A = CI(3) that contains CEb CE2 , and CE3 (Figure
8). The CR instruction stores the following codes: Ws = 5,
since CEs is the most significant slice of B computer that needs
exchange; YA = 1, since CEI is the most significant slice of A
computer; Xs = 6, since CE6 is the least significant slice of the
B computer that needs exchange.

Each CEs of the B computer compares its position code, is,

A Distributed Operating System 111

a.
----- Cl(3)- -CS(3)-

b.

@~@~ DDD~ c.
__ --- Cl(4) --------

Figure 8--Establishment of POSs communication pairs for parallel 16·f-bit
exchanges where f = 1, ... , k

with Ws and Xs; for CEs, is = 5; therefore, Ws:5 is:5 Xs is
true (5:5 5:5 6). For CE6 , is = 6, Ws:5 is:5 Xs is also true
(5:5 6 :5 6). For CE7 , is = 7, therefore, ws:5 is ~ Xs is false
(51; 7 1; 6). Therefore, jA = 5 + (1 - 5) = 5 - 4 = 1; i.e., CEs
sends a request to CEI. For CE6 , is = 6. Therefore,
JA = 6 + (1- 5) = 2; i.e., CE6 sends a request to CE2 • CE7

sends no communication request, since it did not pass via the
conditional test.

For full data word exchanges, the CR instruction stores only
Ws and YA codes; i.e., Field Xs is empty and each CEs of the
B computer executes Equation 1.

In Figure 8(b) let the B computer, Cs(4), assembled from
CEs, CE6 , CE7 , and CEs, need 64-bit data words stored in a
computer, Cl(4), assembled from CEb CE2 , CE3 , and CE4 •

The CR instruction stores Ws = 5, YA = 1, and Xs = O. In CEs
the following jA is obtained: jA = 5 + 1 - 5 = 1; i.e., CEs com­
municates with CEl. For CE6 , h = 6 + (1 - 5) = 2; i.e., CE6

communicates with CE2 • For CE7 , jA = 7 + (1 - 5) = 3; i.e.,
CE7 communicates with CE3 • Similarly, CEs communicates
with CE~.

The power of the CR instruction is such that it can organize
data exchanges between different-size computers, A and B,
when the size of B may be either smaller or larger than the size
of Computer A. If the size of B is smaller than that of A, then
B may receive 16·f-bit bytes from Computer A that match the
size ofB. If the size ofB is larger than that of A, only a portion
of the CEs in the B computer will establish communication
requests with their pairs from A computer.

Computer A, assembled from f CE, will send full 16·f-bit
data words, which will be received only by f slices of Com­
puter B assembled from k CE, where f < k. The data ex­
change between different-size computers is exemplified by
Figure 8(c), in which 16-bit Computer B = Cs(l), assembled
from CEs, requests an array of 16-bit bytes stored in CE3 ; CE3

belongs to the A computer, Cl(4), assembled from CEl
through CE4 •

The B computer fetches the CR instruction that stores
Ws = 8, since CEs is the most significant in Cs(l); YA = 3,
because CE3 is the most significant CE in Computer A that
receives communication requests, and Xs = O. Thus
jA = 8 + (3 - 8) = 3, and CEs communicates with CE3 •

112 National Computer Conference, 1982

4. PROCESSOR OPERATING SYSTEM, pas

Every POSA of the dynamic computer A may perform the
following functions:

1. Generation of the page addresses for all four busses of the
local MEA' Local pas A may generate concurrently up to
four 8-bit page addresses that specify what pages of the
local MEA will be connected with four data busses that
are available (local data, bus, instruction bus, DC data
bus, and local I/O bus).

2. Handling requests on the local memory resources. The
local pas A receives and handles requests concerning the
pages of the local MEA from any other POSB. Or POSA
may receive a request from the local I/O OSA contained
in the same CEA. Having received each type of request
(either from POSB or from I/O OSA), POSA finds
whether or not it is possible to connect a requested
memory page(s) to the DC bus and/or the local I/O bus.
In both cases the page requester is informed of the deci- •
sion made.

3. Handling denied requests. If POSA cannot give a re­
quested memory page to its requester (either POSB or
I/O OSA), each denied request is stored. When a re­
quested page becomes free, a requester is informed of
this occasion.

4. Generation of page requests for the nonlocal memory
resource. If a local program needs a nonlocal memory
page of MEe, then the local POSA sends a page request
to another POSe local with MEe.

5. Handling program interrupts. If a requested memory
page is not received, so that a local program cannot
perform further computations, the local POSA handles
program interrupt(s) of the program computed by CEA.
To this end it evacuates all the related data words stored
in data registers of PEA to the local memory MEA and
initiates computation of another program that waits in
queue.

6. Resumption ofinterruptedprogram(s). If the local POSA
is belatedly granted a page request for a program that
was interrupted because this request was not satisfied in
time, the POSA resumes computation of the interrupted
program, provided its priority is higher than those of all
other interrupted programs waiting for computation. To
this end, the POSA completely restores a computa­
tion status of an interrupted program before the last
interrupt.

Let us now give organizations on each of the functions
introduced above except Functions V and VI, which have
been considered in Kartashev and Kartashev. 4

4.1. Generation of Page Addresses

In each CE a local computing program may use two busses:
the local data bus, which receives data words from the local
ME; and the instruction bus, which broadcasts instructions
fetched from the local ME to all CEs of the dynamic com­
puter, provided a current program segment is stored in this
ME (Figure 4).

For convenience of programming, it is provided that the
data words needed by a current program may be stored not in
one but in four pages. The respective four-page addresses are
stored in four 8-bit registers, Rl through R4 (Figure 9). Each
data fetch instruction that organizes an operand fetch from
the local ME stores a two-bit code m that specifies which of
the registers Rl through R4 stores a current page address.
This register is then connected with the 8-bit local page ad­
dress for the local data bus. In Figure 9 the following m's are
used: If m = 00, Rl stores a current page address; if m = 01,
it is stored in R2; etc.

Local Data
Page Address

R .
8

instruction Data DC Local i/O
Page 'ddress Page Address Page Address

Figure 9-Page address registers

Similarly, it is provided that the instructions for a currently
executed program segment be stored in two pages whose ad­
dresses are stored in R5 and R6, where R5 stores the page
address that is connected to the instruction bus and R6 stores
the next page address. If a program needs to jump to a page
address stored in R6, the following transfers are performed:
R~R6 and R6--?R5; i.e., a current address is saved in R6
and a new address is transferred to R5. This is done with a
special instruction that transfers control to a new program
segment whose page address was in R6.

For the DC bus and the local I/O bus, the respective page
addresses are stored in R7 and R8; i.e., a programmer may
work with one page for each of these busses. All these regis­
ters (Rl through R8) are included in the Page Set Registers of
the pas (Figure 10).

4.2. Handling Page Requests

All pass of the DC group may exchange with 16-bit mes­
sages. Each message may belong to one of the following cate­
gories: (1) it may be a page request, or (2) it may be a Yes or
No response on a page request. There are other types of
messages that are not discussed in this paper.

A page request to a given POSA from all the POSB's is
broadcast via connecting element SCEA local with CEA. The
DC group has n SCEs that are forming the P-bus considered
above. In Figure 10, n = 4; therefore the SCE has four 16-bit
channels, of which three are input channels for receiving page

GE Connect to other SeE's

I - - - - - :::

To Z-bus
Inter- Element Communicator

Deletion
Request
Handler

To Z-bus

From
Modular
Control
Device (MCD)

Resource Denied

Request Resource

Handler
Handler

To Memory

Resisters

I
L _____________________ _

Figure 10-Block diagram of the processor operating system

requests from other CEs and one is the output channel for
sending its own page request to other CEs. Further, as was
indicated above, every POSA may receive a 16-bit request
from the local I/O OSA via a 16-bit data bus that connects PEA
with the local GEA.

Since each POS A may receive up to n - 1 concurrent page
requests from other POSs, these requests form a queue in the
Inter-element Communicator that allows only one request to
be handled at a time. After this request is finished, the next
request in a queue is processed, etc. Having received a page
request, each PO SA initiates a Resource Request Handler that
executes the actions discussed in the next sections.

4.2.1. Resource Request Handler

A received page address is compared concurrently with all
those stored in Rl through R8 to find out whether a requested
page, RP, is busy.

If it is free, the POSA performs the following functions:

1. Generates a "Yes" response to the external requester,
POSB.

2. Writes this page address to the R7 register that connects
it to the DC bus.

3. Activates the data channel in the connecting element,
MCEA, that connects the local memory element, MEA,
with its destination processor element, PEB, that re­
quested this page (Figure 5). This establishes the

A Distributed Operating System 113

MEA~PEB data path whereby a local page in MEA was
loaned to Computer B.

If a requested page, RP, is busy, its address is stored in one
of the registers, Rl through R8. This means that this RP-page
is used by one of the following programs (Figure 9):

1. If it is stored in the RI-R6 registers, it is used by the
local program, AP, computed by Computer A.

2. If it is stored in the R7 register, it is used by another
computer, C, which borrowed this page via the DC bus.
Thus this page is used by tl;1e CP program.

3. If it is stored in the R8 register, it is used by the local
program, GEP, computed in the local I/O element,
GEA •

To generate a Yes or No response to a page request, the
operating system, POSA, must compare the received PCB and
TDEB parameters (where PCB is the priority code and TDEB
is the tentative duration o~ the data exchange of the requester
B) with those" of the program that is currently using the re­
quested page, RP. It is either AP, CP, or GEP. The priority
code and tentative duration of each of these programs is
stored in the Resource Request Handler.

4.2.2 Estimate Table

To find out which of the programs must use the requested
memory page, RP, the POSA performs a priority analysis that
consists of the following: It analyzes a special estimate table
(Table I) whOse rows are marked by priority codes, PC, and
columns are marked by TDE times.

TABLE I-Estimate table

Program
Tentative duration (TDE)

priority 102 103 104 105 106

I 20 15 10 5 1
II 25 20 15 10 5
III 30 25 20 15 10
IV 35 30 25 20 15
V 40 35 30 25 20
VI 45 40 35 30 25
VII 50 45 40 35 30

In the system under implementation, there are seven levels
of priorities; thus PC is a three-bit code and PC7 > PC6 >
... >PC}.

Assume that the TDE code ranges from 102 clock periods
to 106 clock periods. Thus the estimate table will have seven
rows and five columns.

The intersection (PC, TDE) of the given PC row and the
TDE column gives an integer called program weight, PW, that
shows what actions should be taken by the POSA. For in­
stance, in Table I, if TDE = 102 and PC = I, then PW = 20. If
TDE = 104 and PC = IV, PW = 25, etc.

It should be noted that the estimate table is made up on the

114 National Computer Conference, 1982

basis of statistical analysis of algorithms that are computed by
the DC group. Each estimate table can be augmented with
new columns and new rows to reflect given computational
requirements. Further, since the estimate table is stored in the
memory, its expansion requires no hardware changes. Row
and column entries may also be changed to reflect a change in
a set of programs that are under execution.

4.2.3 Decisions made by the POSA

To make a decision concerning a requested page, RP, the
POSA must find two program weights, PWu and PWB, where
PW u is the program weight of the program that is currently
using a requested page and PWB is the program weight of the
program that is requesting this page. If PWu 2': PWB, a re­
quester, POSB, receives a No response. If PWu < PEB, a re­
quester, POSB, receives a Yes response.

Handling the No response is considered in Section 4.3. As
for the Yes response, the type of actions undertaken by the
POSA-following comparison of PWu and PWB-depends on
what type of programs have been using a requested page, RP.
As follows from the material above, there are four cases of
this usage:

A requested page, RP, has been used by one of the
following:

• Case (a): Local AP program using a local data bus
• Case (b): Local AP program using an instruction bus
• Case (c): External CP program using a DC bus
• Case (d): Local GEP program using a local lIO bus

Case (a): Local AP program using a local data bus. If a
requested page, RP, is used by the AP program, for data
fetches, its address is stored in one of the registers, R1-R4
(Figure 9). If this page is granted to the B computer, its
address should be written to the R7 register connected with
the DC bus, whereas the register that stored it before should
be reset. However, the local AP program may continue its
execution until it starts data fetches from the requested page.
In this case the AP program will become interrupted only
when it fetches a data fetch instruction with 2-bit code m that
connects a requested page granted to B computer with the
data page address. Such an organization allows elimination of
unnecessary interrupts. Thus the AP becomes interrupted
only when such interrupt is absolutely necessary.

Case (b): Local AP program using an instruction bus. If a
requested page, RP, is used by the AP program for instruction
fetches, its address is stored either in R5 or in R6 registers. If
the request on this page to POSB is granted and a requested
page is stored in the R5 register, R5 is reset and the AP
program is interrupted. If a requested page, RP, is stored in
the R6 register, R6 is reset and the execution of Program AP
proceeds until it fetches the instruction that transfers control
from R6 to R5.

Case (c): External CP program using a DC bus. If a re­
quested page, RP, is used by the external CP program, its
address is stored in Register R7. If the POSA decides to give
the requested page to the POSB, then the following actions are
performed: (1) The Resource Request Handler of the POSA

sends a message to POSe that a page in MEA will be denied
for further use by CP program; (2) having received this mes­
sage, POSe acknowledges its reception; (3) POSA establishes
a new path in the DC bus by connecting MEA with PEB; and
(4) POSA sends a Yes response message to POSB, indicating
that its page request is granted.

Case (d): Local GEP program using a local lIO bus. Actions
similar to those in Case (c) are performed if a requested page
has been used by the local GEP program.

4.3 Denied Resource Handler

If the POSA denies a page request made by the POSB, this
request is remembered in the denied resource table (Table II)
that is stored in the Denied Resource Handler unit (Figure
10).

TABLE II-Denied resource table

5, VI, 3
6, III, 5

16, VI, 5
5, IV, 4

6, III, 5
5, IV, 2

4.3.1 Denied resource table

7, V, 10 22, II, 10

This table has n + 1 rows, where n rows are assigned for n
CEs of the system and the last row is assigned for the local lIO
element, GEA.

The table contains d columns, where d specifies the number
of denied requests from one POSB that can be stored. Each
row marked by CEB stores denied page requests made by the
POSB residing in CEB • Since local POSA does not make page
requests to itself, the row CEA is empty. This is accomplished
to preserve the circuit identity of all pass. The last row, GEA,
stores denied page requests made by local lIO OSA. For in­
stance, if the DC group has four CE (n = 4) and it is selected
that d = 4, then Table II has five rows and four columns. The
entry (i, j) of the ith row and the jth columns stores the
following page request parameters: the address RPA of re­
quested page, RP; the priority code PC of the program that
requests RP; and the tentative duration of an exchange, TDE.

Example 2. For the DC group with four CEs (n = 4), con­
sider Table II stored in POS3 local with CEs. This means that
Row CE3 is empty; in the first four rows this table will store
all page requests on the pages of ME3 made by POSt. POS2 ,

and POS4 • In the last (fifth) row, the requests made by local
lIO OS3 will be stored. The row CE I stores all page requests
made by POS I . There are four such requests. Request 1 is on
Page 5, for the program with PC = VI. The page is needed
during 103 clock periods. Request 2 is on Page 6 for the pro­
gram with PC = III during 105 clock periods; etc. The local
GE3 row stores only one page request on Page 5 for the
program with PC = IV during 104 clock periods.

4.3.2 Handling denied requests

For each POSA Table II stores two types of denied requests:
external and internal. External denied requests are from all
other POSs. Internal requests are from the local I/O OSA.

To satisfy an external request requires that the DC bus be
free and the requested page, RP, be free. To satisfy an inter­
nal page request requires that only the requested page be free.
Consider handling external denied requests only, since han­
dling internal denied requests is a simple extension of this
more general procedure. Each time the DC bus is free and
one page of MEA is released-i.e., its address called released
page address, RPA, is taken away from one of the registers,
R1-R8-the RPA address is sent to the Denied Resource
Handler.

Thereafter, RP A is compared with all page addresses
stored in Table II.

If it is not stored in Table II, the next released page is
analyzed.

If it is stored in Table II, assume that it is stored in Row B
and Column 1-i.e., it is requested by POSB for the first time.
Upon fetching this request, the PO SA informs the POSB that
the requested page can be connected to the computer element
CEB • If the POSB agrees to accept this page, the POSA writes
this RP A address to register R8-which is connected with the
DC bus-and deletes this request from Table II. If POSB does
not agree to accept this page, then again this page request is
deleted from Table II. If the same released page address,
RPA, is stored in several entries of Table II, this means that
the same page is requested by several programs. All such
requests having the same RPA are fetched; and, using Table
I, their program weights, PW, are found. Thereafter the re­
quest with the highest PW is satisfied and deleted from Table
II. The remaining requests continue to be stored in Table II.

Example 3. Suppose that the DC bus is free and ME3 re­
leases Page 5 (i.e., RPA = 5). In Table II, the same RPA = 5
is stored in three requests: Request 1, made by POSl; request
2, made by POS2 ; and request 1, made by the local I/O OS3.
Using Table I, we find that the program weights of these
requests are as follows:

Request #1 (POSl)
Request #2 (POS2)

Request #1 (I/O OS3)

PWl = 40 (row VI, col. 103)
PW2 = 35 (row IV, col. 102

)

PW3 = 25 (row IV, col. 104
)

Since PWl is the highest program weight, Request 1 (POSl)
is granted. This means that POS3 informs POSl that Page 5
can be connected with CEl.

If POSl agrees to accept this page, POS3 writes RPA = 5 to
register R8 and deletes this request from Table II (Figure 9).

If POSl informs POS3 that it does not currently need Page
5, Request 1 (POSl) is deleted from Table II.

4.4 Generation of Page Requests

Consider the organization of page requests on a nonlocal
memory resource. Let the program B computed in CEB re­
quest a page, RP, belonging to MEA. This page request is
organized with the communication request instruction (CR
instruction) introduced in Section 3.2. Whereas Section 3.2

A Distributed Operating System 115

discussed how the CR instruction finds the destination, POSA,
which controls all accesses to the requested page, RP, this
section will discuss other actions of the CR instruction on
generating a page request.

In all, the following information is stored in the CR in­
struction: requested page address, RPA; position codes WB,

YA, and XB, which allow finding destination position code jA of
the POSA via Equation 1; and tentative duration of the ex­
change, TDE.

When fetched to the control unit, the CR instruction is
transferred to the local POSB , which begins its execution inde­
pendent of Program B. Such organization leads to concur­
rency in establishing a needed data exchange with execution
of the main program. This allows setting up a needed ex­
change before this exchange is needed in computation. This is
achieved as follows: The program B will have two identical CR
instructions. The first one, the CRl instruction, is stored
somewhere in a program segment that goes far ahead of the
instructions handling the data array stored in the requested
page, RP. The second one, the CR2 instruction, is immedi­
ately followed by the first instruction that handles data words
from the requested page, RP.

If the CRl instruction receives the requested page, RP, the
CR2 instruction is ignored. For this case, the time of establish­
ing a data exchange from Computer A to Computer B will be
reduced to 0, since Computer B will receive the requested
page, RP, before this page is needed in computation. If the
CRl instruction is denied the requested page, RP, Program B
continues execution until it reaches the CR2 instruction.

If the CR2 instruction is denied the requested page, RP,
Program B is interrupted until the requested page, RP, be­
comes released. During this interrupt, Computer B may begin
other executions.

Therefore, by allowing executional concurrency in com­
puting CR instructions (CRl and CR2) with the main program
B, one can obtain a complete overlap in data exchange with
execution of the main program, provided its program weight
is high. Indeed, in this case, by assigning a high PW to the
main program, it is possible for the requested page to be
received even by the CRl instruction, i.e., long before it is
actually needed in computations.

When the CR instruction is received by the local POSB , it
forms a 16-bit page request message that stores: (1) the re­
quested page address, RPA, and TDE time taken from the
CR instruction; and (2) the priority code PC, stored in a
special priority register of POSB • This request is formed in the
Resource Request Handler (Figure 10). Thereafter it is trans­
ferred to the Inter-element Communicator and local con­
necting element SCEB • Selection of the bus that connects
SCEB with SCEA is made with Position Codes WB, YA, and XB,

discussed in Section 3.2.
This section concludes the introduction of the major or­

ganizations for a distributed operating system in a system with
dY:lamic architecture.

CONCLUSIONS

This paper has introduced major concepts for the distributed
operating system of dynamic architecture. This system is now

116 National Computer Conference, 1982

under implementation (Federal Contract DASG60-80-C-
0058) for a system with dynamic architecture for ballistic mis­
sile defense applications.

To be most effective, the operating system incorporates two
types of distribution:

1. Functional or vertical distribution whereby it is distrib­
uted, in accordance with three major functions it must
perform (resolution of reconfiguration conflicts, I/O
conflicts, and page conflicts)

2. Modular or horizontal distribution when the same oper­
ating system (POS and I/O OS) is distributed among
different CEs of a dynamic computer as a result of the
modularity concept implemented in this computer

It is shown in the paper that such duality in distributed
functions leads to extreme effectiveness in the organization by
the operating system of various data exchanges between vari­
ous dynamic computers that are formed from the resources.
Indeed, a portion of the memory resource of one computer
can be very easily attached to that of the second computer.
This computer now has the loaned memory units, with the
needed data arrays, incorporated into its own primary mem­
ory. This eliminates most of the delays caused by data trans­
fers from one memory to another that must be spent in con­
ventional systems for organizing data exchanges between
different computers.

Other advantages of dynamic architectures for very fast
real-time applications are not discussed in this paper, since
they were extensively treated by Kartashev and Kartashev,
Vick and Kartashevs, and Baer.3-6

Summarizing what has just been said, one can state that a
system with dynamic architecture provides a significantly
higher throughput than a conventional system, provided that
both types of systems exhibit the same complexity of re­
sources (the number of processor and memory elements and
the complexity of the interconnection network) and are built
from the same types of components.

REFERENCES

1. Davis, Carl G. and Robert L. Couch. "Ballistic Missile Defense: A
Supercomputer Challenge." Computer, 13 (1980), pp. 37-48.

2. Lincoln, Neil R. "Technology and Design Trade-offs in the Creation of
a Modern Supercomputer." Accepted for publication in IEEE Trans­
actions on Computers, Special Issue on Supersystems, May 1982.

3. Kartashev, S. I., and S. P. Kartashev. "Dynamic Architectures: Problems
and Solutions." Computer, 2 (1978), pp. 26-40.

4. Kartashev, S. I., and S. P. Kartashev. "Multicomputer System with
Dynamic Architecture." IEEE Transactions on Computers, C-28, No. 10
October 1979, pp. 704-721.

5. Vick, C. R., S. P. Kartashev, and S. I. Kartashev. "Adaptable Architec­
tures for Supersystems." IEEE Transactions on Computers, C-29 (1980),
pp. 1114-1132.

6. Baer, J. L. "Multiprocessing Systems." IEEE Transactions on Computers,
C-25 (1976), pp. 1271-1277.

Software testing techniques for universal building blocks of
multimicrosystems

by M. ANNARATONE and M. G. SAMI
Politecnico di Milano
Milan, Italy

ABSTRACT

VLSI components testing-in particular, concerning microprocessors-is an essen­
tial step during design and production of fault-tolerant complex systems. Actually,
an efficient general method should adapt to such different phases as incoming
acceptance, periodical testing, maintenance, and even design of self-testing and
fault-tolerant units.

Most authors presenting this problem in recent papers advocated functional
approaches as the most promising, or even the only possible, ones. In the present
paper the problem is analyzed with the purpose of identifying a general criterion
capable of leading to semiautomatic test pattern generators through formal defini­
tion of the test approach itself. To this end, microprogramming is adopted for
creating the functional model of a VLSI programmable device, starting from user­
available information.

The approach aims at identifying the presence of faulty behavior error rather than
at localizing its physical source fault. This appears to be reasonable, given the
testing criterion applications listed above. It will be seen that, although a degree of
freedom exists in defining device model and error model, basic characteristics are
independent of it and lead to necessary conditions for error coverage.

117

1. INTRODUCTION

Testing LSI and VLSI circuits is a basic problem both for
manufacturers and users because of the intrinsic complexity of
the devices and of the testing algorithms that could be derived
by classical approaches. Users in particular are confronted
with the problem of performing acceptance tests on complex
devices without having adequate information about the de­
vices' internal structures. Moreover, devices characterized as
"identical" as far as external performances are concerned
(typically, second-source products) may actually have com­
pletely different internal structures.

Several authors have already suggested the adoption of
functional approaches to VLSI circuit testing; in fact, they
advocate such approaches as the only possible ones. A widely
known approach has been suggested by Thatte and Abra­
ham. 1 They introduce a graph-theoretic model for micro­
processor architectures, allowing the use of microprocessor
organization and instruction set as parameters for test gener­
ation procedures. An oriented graph representing data flow
among registers is derived for the instruction set, and a label­
ing procedure is introduced, subsequently allowing the con­
struction of a rational test procedure going from lower to
higher label values. Functional-level fault models are intro­
duced for basic functions, and the graph model is used as a
guide for generating test procedures covering such faults. An
assumption already presented2 identifies faults as related to
operators rather than to structures. Although this does not
exclude the introduction of structural, even physical, fault
considerations, it also permits operation on a purely func­
tional level.

The approach introduced by Courtois3 can be considered
somehow intermediate, in that, although functional faults are
considered, a fairly detailed knowledge of microprocessor in­
ternal structure is required. In fact, the author foresees the
possibility of gathering test information not simply "at the
pins"-as Thatte and Abraham do and as it is discussed also
in the present paper-but also by access to internal registers.
The approach can thus be seen as oriented to manufacturers
or to fairly sophisticated users capable of gaining such insight.

The problem presented by Sridhar and Hayes4 can be con­
sidered as rather different, since the authors refer to bit-sliced
microprocessors rather than to monolithic ones (as the pre­
vious ones do). This type of structure intrinsically allows far
more detailed information as regards both microprocessor
organization and test points availability. Actually, the case of
bit-sliced microprocessors interests us because it leads to the
use of an organization model based upon microprogramming
concepts. Such a model can be used in cases where detailed
architectural information is available, as well as in a mainly

Software Testing Techniques for Multimicrosystems 119

functional approach, as will be ~een in the present paper.
An assumption consistently made in most papers is that the

model should be derived simply from user-available informa­
tion. In general, testing performed is of a static type, in the
sense that timing problems are not considered; on the other
hand, problems introduced by particular instructions and/or
control signal sequencing are analyzed. The internal units
considered in most cases are registers and functional units;
i.e., faults considered are operator faults. This philosophy can
be practiced even while testing the "fetch and decode" phase,
since operators such as "instruction decode" and "register
decode" can be used. 1

The above assumptions are employed also in the present
paper. Here it is suggested that a functional description of the
microprocessor be derived, one that consists of a set of micro­
programs from user-available information such as instruction
set, operational characteristics, and timing charts. Micro­
programming as a means of abstractly representing a com­
puter is a classical approach, and it does not necessarily reflect
a physical implementation. In fact, it will be seen in the sequel
that the definition of the microinstruction set strongly de­
pends on the internal organization model derived for the mi­
croprocessor, so that different microinstruction sets can be
associated with the same device; on the other hand, it will be
seen that other microprogram characteristics (basic to test
procedure definition) are independent of the model and typi­
cal of a given microprocessor.

Basically, the test problem will be seen as detection of
errors, i.e., detection of faulty execution of microinstructions
or of faulty sequencing, rather than faults. Again, this reduces
to seeing faults as related to operators rather than to physical
devices. When error modes are listed for microinstructions
and/or micro-orders, it is possible to introduce modes deriving
from physical considerations. Further, we assume a "well­
defined" microprocessor; i.e., we assume that no errors arise
from faulty architecture design.

It is obvious that a purely functional approach such as the
one described in the present paper cannot lead to sufficient
conditions for error coverage; but some necessary conditions
for defining test procedures capable of fault coverage will be
introduced. From these conditions, criteria permitting the
definition of test procedures will be derived. Although at
present it does not seem reasonable to configure a completely
automated test procedure generation, a computer-assisted
method is outlined.

The criterion here described is being used not only for
writing incoming acceptance test programs of VLSI de­
vices, but also for implementing periodical test routines and
for designing a self-testing CPU in a high-reliability multi­
microprocessor system.

120 National Computer Conference, 1982

2. DEFINITION OF THE MODEL

The information we consider in order to derive the micro­
processor model is the conventional user-available informa­
tion; defining the following:

1. The set of internal registers and functional units (control
unit, ALU, and similar items) as they appear to the user
through the operation of the microprocessor

2. The set of instructions and of asynchronous control sig­
nals (such as interrupts and DMA requests)

3. The behavior of signals at external pins and of internal
operations in correspondence of each clock semicycle, as
derived from timing charts

Information 1 makes possible the definition of a simple func­
tional model of the microprocessor. Actually, it is usually
possible to provide several models, more or less detailed; as
will be seen in the sequel, above a minimum level correspond­
ing to actual functionalities, further detail may lead to better
error localization, not to higher error coverage.

Given this model, its operation answering the various in­
structions is described by means of a corresponding set of
microprograms. Any given microinstruction may consist of a
number of concurrent microorders; the detail of the model
obviously reflects upon the choice of microorders. The testing
problem becomes, in this context, the problem of identifying
erroneous execution of microorders, microinstructions, or er­
roneous microinstruction sequencing. The microorders we
consider belong to three classes: Class 1 consists of transfers
either between internal registers or between an internal regis­
ter and an external unit; Class 2 consists of commands to
internal functional units (this includes also the control unit
and associated decoding operators); Class 3 consists of branch
and jump microorders. This reflects the usual classification
adopted for instructions; obviously, at microorder level such
operations as decoding also have to be taken into account.

In order to better explain how microprograms can be de­
rived, we refer to a sample case: the ZSO microprocessor as a
fairly complex and very widely known 8-bit device. The inter­
nal model is given in Figure 1. Consider first one of the sim­
plest possible instructions, NOP; it only consists of "fetch"
and "decode" phases. The corresponding microprogram can
be derived in detail as follows:

1st clock semicycle
2nd clock semi cycle
3rd, 4th clock

semicycle
5th clock semi cycle

6th to 8th semicycle

(PC) ~ address bus
request read operation from memory
above signals are kept stable
(two s.c. delay of the control unit)
(data bus) ~ data buffer;
(refresh address) ~ address pins;
refresh signal
(data buffer) ~ control unit;
(PC) + 1 ~ PC;
instruction decode.

The incomplete knowledge available to the user, when inter­
nal transfers and operations timing are concerned, leads to the
fact that we cannot introduce a one-to-one correspondence
between microinstructions and clock semicycles without in-

Sequencer !------. Microprogram
Memory

I J j
• R

E
G

ALU ...-

I Address Buffer I
I
I

*

Data Buffer
I
I ,.

Figure 1-A general microprogrammed processor architecture

I
s
T
E
R
S

creasing the risk of creating false error localization cases.
Therefore, in the sequel, we will refer to sequences of micro­
instructions rather than of semicycles. The "fetch and
decode" phase repeats identically for all I-byte instructions;
for longer instructions, "fetch" is modified simply by the in­
troduction of further read-and-transfer operations. There­
fore, we do not here consider in detail other instances of
"fetch." Consider now a simple "transfer" instruction, such as
LD A,n (the value n is loaded into register A): its "execute"
phase is translated by the microinstruction sequence:

1st microinstruction (PC) ~ address bus
2nd microinstruction request read operation from memory
3rd microinstruction (data bus) ~ data buffer;

(PC) + 1 ~ PC
4th microinstruction (data buffer) ~ A

Microprograms for "manipulation" instructions-e.g., ADD,
ROTATE-are derived in the same way. It is worthwhile to
examine in detail the "execute" phase of a branch instruction,
e.g.:

JP cC,nn (if condition code is set, jump to location nn)

1st microinstruction test condition code
2nd microinstruction conditional transfer of either (PC) or

nn on address bus

When developing the set of microprograms for all the in­
structions, "execute" phases are obviously expanded into mi­
croinstructions sequences independently for each instruction
(and addressing mode). As regards the "fetch" phase, we split
it into two subphases. The first one is concerned with address
generation and byte(s) fetching, and it is tested at the begin­
ning of the test procedure, independently of results of "exe-

cute" phases; the other one concerns instruction decoding,
and it can be validated only after the whole instruction set has
been tested.

When defining a microprogram, any transfer operation or
command must necessarily involve only registers and/or func­
tional operators that can be (explicitly or implicitly) accessed
or modified by at least one instruction; in other words, they
must be derived from user-available descriptions. Therefore,
while it is acceptable to represent any given register, if so
desired, as the interconnection of two semiregisters operated
on by parallel micro orders , it is useless and actually unac­
ceptable to represent it as the cascade of a buffer (transparent
to external purposes) and a register. As a consequence, the
number of microprogram steps (i.e., microinstructions) de­
scribing any given instruction is independent of the detail of
the model, whereas the "width" of the microinstructions (i.e.,
the number of concurrent microorders) depends on it.

We distinguish, in a given instruction set, directly observ­
able and not directly observable instructions. Again, this dis­
tinction is independent of the model, and it only depends on
the function(s) performed by the instruction.

We say that instruction I* is completely observable if, at the
end of its "execute" phase, signal sequences read at the pins
transfer outside the result of all functions performed by I*.
(This holds also for the instruction-sequencing function of the
control unit, since at the end of any given "execute" phase,
excepting HALT, the next instruction address is available.)

We say that instruction I* is partially observable if, at the
end of the "execute" phase, at least one of the functions
performed has been made observable at the pins. Unless I* is
an instruction operating only on the program counter, we
require that at least one function apart from instruction se­
quencing be made observable.

Finally, we say that instruction I* is not directly observable
if, at the end of its "execute" phase, none of its functions
apart from instruction sequencing has been made observable
to external pins.

Obviously, in any well-designed microprocessor, for any
partially observable or not directly observable instruction
there exists an instruction sequence allowing the various func­
tions to be observable at the pins. For instance, consider an
ADD instruction: it falls, for most microprocessors, in the not
directly observable class. By means of a "write to memory"
instruction, the main result is made observable, while the
Carry can also be made observable either by a conditional
Branch on Carry (if available) or by a sequence "rotate-write
to memory." The same observability definitions can be ex­
tended to microinstructions and microorders. For this last
purpose, a microorder that cannot be made observable by
means of any sequence of instructions, however complex, cor­
responds to an internal function totally "transparent" to the
user, and therefore it is meaningless in a functional approach
to testing. Should any such microorder be introduced when
defining the model, it can subsequently be deleted.

We now introduce the concept of instruction cardinality.
Cardinality is evaluated with reference to the "execute"
phase. The "fetch and decode" phase is conventionally given
cardinality 0, whatever the number of words constituting the
instruction itself. Instructions consisting only of "fetch and
decode," without any further functions (typically, NOP) are

Software Testing Techniques for Multimicrosystems 121

defined as having cardinality O. Cardinality is defined as the
number of independent accesses (possibly through functional
transforms) to registers. Two clarifying statements are in
order:

1. Any functional transform of a register's content must be
interpreted as two subsequent accesses; that is, "read"
followed by "write" after functional transform.

2. By "independent" accesses we mean actions that are not
performed through parallel commands upon parallel
units logically interpretable as single entities. Thus, an
ADD operation accesses in the "write" cycle two regis­
ters (Accumulator and Carry) that, in this context, may
be interpreted as one.

Now, from the set of microprograms describing "execute"
phases for all instructions, we derive each instruction's cardi­
nality. While the complete set of cardinalities for Z80 is re­
produced in the Appendix, we consider here in detail some
meaningful examples:

1. A "load immediate" instructipn consists of the simple
transfer from data buffer to named register; that is, its
cardinality is 1.

2. LD r,(HL) implies two separate register accesses: the
first one from register pair HL to address buffer, the
second one from data buffer to r. The cardinality is 2.

3. LD r,(IX + d) implies three separate register accesses;
that is, read from IX, write (IX) added with displace­
ment d into address buffer, load from data buffer to r.
The cardinality is 3.

4. POP qq: two accesses are implied; i.e., the contents of
two adjacent stack words are transferred to memory and
in correspondence SP is updated. The cardinality is 2.

5. JP cc nn: two accesses are implied; i.e., the Condition
Code register is read and evaluated, then value nn is
written in the address buffer. The cardinality is 2.

6. JR Z,e: in this case, the cardinality is 3, since the inde­
pendent accesses are: read flag bit Z and evaluate, read
PC contents, add e to PC contents, and write into PC.

Having identified the cardinality of each instruction, the in­
struction set is reordered into subsets identified by common
cardinality. In the next section we will see how the model now
introduced leads to the definition of testing criteria.

3. DEFINITION OF TESTING CRITERIA

The scope of testing, in our approach, is to verify for each
microprocessor instruction whether at least one operation
condition in the corresponding microprogram leads to faulty
results, i.e., errors. To this purpose, a suitable instruction
sequence will be run, possibly with different initial data sets;
actually, assumptions on fault modes may be transferred into
the definition of possible errors. Consider, for instance, an
"LD r,n" instruction; errors in the "LD r" microorder may be
defined, in the simplest case, as the incapacity for writing a or
1 into any single bit of r (the testing sequence will be run for
the two separate instances), but they could also be made to

122 National Computer Conference, 1982

reflect far more complex interdependences among the various
register bits. We are concerned here in verifying whether, for
any given instruction with which an error set has been associ­
ated, it is possible to define a test sequence leading to (non­
ambiguous) coverage of all errors. How close the error set is
to real error instances depends not on the "functional" model
but rather on structural and physical fault assumptions under­
lying error definition.

It must be underlined that, given a basically functional ap­
proach, test coverage can be considered only with reference to
microorders and to instructions; functional units are defined
in a virtual way, and it would be meaningless to consider
errors and error coverage as related to them. In the same way,
it is not possible to employ any assumption of single or multi­
ple faults. Rather, in the sequel we assume that in any micro­
program there are never two micro orders whose errors lead to
error masking.

In the sequel, we denote by {ik } the set of all instructions
having cardinality k, by E (h) the error set associated with Ik
(i.e., the set of all errors that can be originated by microorders
in h, or by their faulty sequencing).

Theorem 1: for any h belonging to {ik }, with k > 1, there is
at least one h-l belonging to {ik - 1} such that

E (h-l) C E (h)

Proof: Cardinality k > 1 can be reached by one of the two
following instances:

1. Two (or more) independent registers are accessed in
separate "write" operations (possibly with a functional
command interposed).

2. Two (or more) independent registers are accessed, but at
least one of them is accessed through a "read" com­
mand.

In Case 2 it can be immediately noted that, unless an in­
struction with cardinality h < k is allowed to perform a
"write" operation on the register(s) from which a "read" is
performed in h, Instruction h would operate on registers
whose content is random: in other words, a design error would
be present. Case 1 actually, in a well-designed micro­
processor, necessarily leads again to case 2: unless the differ­
ent registers were accessed in parallel through one "write"
operation (and this would not increase cardinality), there
should be another "read" operation interposed, if for nothing
more than to address separate "write" operations. Thus, it
can be concluded (in the assumption of a well-designed and
testable system) that the theorem is proved.

Corollary 1.1: The necessary condition for achieving non­
ambiguous error coverage with reference to {ik }, k > 1, is

. completion of tests giving error coverage for {ik - 1}.

Proof: Assume that coverage for {ik - 1} has not been
achieved. This means that at least one register access (possibly
through a functional operator) has not been tested and that
one or more errors in at least one E(h-l) have not been
covered. Since there may be an h containing a microorder
capable of masking such error(s), ambiguity in testing may

result. Moreover, since an access error in E(h) may counter­
balance a previous access error in E(Jk-l), error coverage may
not be achieved.

Up to now we have made use of the concept of "instruction
sequence" as the means for testing an instruction I k ; in fact,
while in the simplest case of a directly observable instruction
not requiring any setup for testing such sequence consists of
the instruction itself, in all other cases there will be a sequence
IiQ ... lib.

Theorem 2: The necessary condition for a non ambiguous
error coverage for a not directly observable instruction
I~ E {ik } is the existence of a testing instruction sequence
It . . . lIb consisting only of instructions with cardinality not
greater than k.

Proof: Assume first I > k. It is of necessity observable (at
least partially), but if the condition in Corollary 1.1 has been
satisfied, It has not yet been tested; therefore, it is possible
that lib masks error(s) in I{ Now let the sequence be IiQ ... I:
. .. It, with m > k, while all instructions following I: and
comprising lIb have cardinality ~ k. We can assume that all
instructions following I: have already been tested and that
they do not therefore introduce further error possibilities; the
problem, then, relates only to I:, and it can be reduced to the
previous considerations.

Obviously, the instruction set of a microprocessor can be such
that Theorem 2 is not satisfied; for instance, Z80 exhibits this
problem. In fact, we may have two different instances:

1. there is the not directly observable instruction Ii whose
simplest testing sequence, making it observable, re­
quires use of an I~ (with h ~ k) that in turn requires Ii
in its setup sequence. For instance, a "load register im­
mediate" (k = 1) can be made observable by means of a
"write register to memory" (h = 2) (any other possible
instruction sequence would involve instructions of no
lower cardinality), but this in turn requires in its own test
sequence at least one "load immediate" for setup. We
can accept a "temporary" test result for the pair Ii - I~.
At the end of the testing actions, if there is at least one
sequence relating to cardinality h (or higher) that

-does not involve the pair Ii - I~
-is not critical for testing any instruction I~
-makes Ii observable by means of separately tested
instruction(s),

then Ii (and possibly I~) can be separately tested, and
nonambiguous error coverage can be reached. Other­
wise, the test is valid only with respect to the pair I~ - Ii,
and error masking is possible.

2. Any test sequence for Ii involves instructions with higher
er cardinality, but none of these requires Ii in its test
sequence. Testing on Ii will be "suspended" until all
instructions in its test sequence have been validated.

Note that, while conclusions in Theorem 2 are independent of
error hypotheses, possible instances of ambiguity and error
masking when Theorem 2 is not satisfied strongly depend on
definition of microinstructions and of error hypotheses. All

the above leads to identifying error coverage and non­
ambiguities when defining test sequences. In the next section
we outline testing procedures based on such considerations
and accounting also for fast test sequences.

4. DESIGN OF TESTING PROCEDURES

We do not at present consider it possible to implement auto­
matic definition of testing procedure following our approach;
rather, the criteria we introduce allow computer-assisted de­
velopment of such procedures (it is possible to make such
steps as congruence verification and minimization automatic).

The first step, definition of microorders and error set, must
necessarily be performed by hand. Subsequently, cardinalities
are computed for all instructions, and an error set is associated
with each instruction. Error sets of two different instructions
may have a nonvoid intersection, but they cannot completely
overlap, since (at least) instruction decoding errors will be
different. Thus it will not be possible to exclude any in­
struction from the set of test sequences; on the other hand,
whenever a subset of the error set has already been covered by
other test sequences, it becomes unnecessary to introduce the
related test actions in new test sequences. Actually, this crite­
rion has been widely adopted in hardwired-logic testing; here,
we simply extend it in the context of programmable logic.

The instruction set can be further reordered on the basis of
"functional families" (e.g., Load, Add). In each of these
families, minimum cardinality is identified; an automatic con­
gruence validation is now possible regarding evaluation of
cardinalities, through a comparative examination of the vari­
ous families. In each family, instructions are ordered follow­
ing increasing cardinalities; obviously, this does not imply that
in any given family (or, in fact, in the whole instruction set)
cardinalities corresponding to all integers between minimum
and maximum values will be present.

Having completed this "setup," the basic functions of the
"fetch" phase (excluding instruction decode) are tested by
using O-cardinality instruction(s). When variable-length in­
structions, and thence "fetch" phases, are present, the corre­
sponding "fetch" sequences will be tested once by means of
the instruction of corresponding length with simplest func­
tionality.

Afterwards, considering the set i],i2 , ••• , in of cardinality
values, and starting with the minimum value i], instructions
are tested following criteria outlined in the previous section.

. For each instruction we look for the fastest test sequences
allowing us to cover all (or the maximum number) of the
associated error set, or, better, all such errors not already
covered by previous test sequences. Whenever more than one
such sequence is identified, preference is given to the one
better sa!isfying the criteria given in Section 3. Inside a given
set {ik }, a practical rule may be to start by defining, whenever
possible, test sequences for instruction belonging to families
with simplest functionality-following a "start-small" philos­
ophy, as advocated by most researchers in the field.

Obviously, our approach allows to "reduce" the length and
complexity of test sequences set, not to definitely minimize
them, since the possibility of reduction of test sequences for
any 1k strongly depends on choices performed previously for
all other 1/ (l < k) already consid~red. Examples of in-

Software Testing Techniques for Multimicrosystems 123

struction ordering and error set definition and the outline of
a testing procedure (related to Z80) are given in the Appen­
dix.

5. CONCLUDING REMARKS

An approach in terms of microprogramming to functional
modeling of microprocessors makes it possible to guide testing
procedures so as to satisfy some necessary conditions for error
coverage. Error classes are defined as corresponding to micro­
orders, i.e., again in functional terms; the complete error set,
on the other hand, derives from physical fault assumptions.
Model and error classes can be built from user-available infor­
mation; coverage is considered with respect to error classes.

The approach is completely general, and it can be used also
in the case of intrinsically microprogrammed bit-sliced sys­
tems. It seems possible to adopt it also for a wider class of
programmable microdevices, such as intelligent interfaces.

Though the functional criteria used are (at least partially)
present in previous literature, use of a formal methodology
such as microprogramming and of ordering and classification
methods related to it makes it possible to formulate semi­
automatic systems for test procedure generation.

Test procedures for one microprocessor are being com­
pleted; their use will allow an experimental evaluation of the
approach.

REFERENCES

1. Thatte, S. M., and J. A. Abraham. "Test generation for general micro­
processors architectures." Ninth IEEE Fault Tolerant Computing Sym­
posium, 1979, pp. 203-210.

2. Thatte, S. M., and J. A. Abraham. "A meihodology for functional level
testing of microprocessors." Eighth IEEE Fault Tolerant Computing
Symposium, Toulouse, 1978.

3. Courtois, B. "On line oriented functional testing of control sections of
integrated CPUs." Proceedings of Euromicro 81, Paris, September 1981.
Amsterdam: North-Holland, pp. 221-231.

4. Sridhar, T., and J. P. Hayes. "A functional approach to testing bit-sliced
microprocessors." IEEE Transactions on Computers, C-30 (1981), pp.
563-571.

APPENDIX

Classification of the Z80 complete instructions set, following
the ordering on increasing cardinality-increasing func­
tionality, is given in Table I. Let us consider a simple example
in order to outline the definition and choice of test sequences.

Consider ADD A,n (k = 2). Criteria introduced in Sections
3 and 4 make it possible to state that when testing it, all
Cardinality-1 instructions will have been tested (at least in a
preliminary way), and so will branch and transfer instructions
of Cardinality 2. In particular, therefore, errors related to
microorders-"access register A (read/write)" and "access
data buffer"-will have been covered; only errors related to
"ADD command to ALU" and "access carry bit (write)"
must be covered, besides instruction decoding. Thus, test se­
quence will be as follows:

LDA,m Values of m, n are chosen (and the sequence
is repeated)

124 National Computer Conference, 1982

ADD A,n only with reference to the ADD and Carry
microorders error set

LD qq,HL
LD (HL),A Add micro order is made observable
RRCA
LD (HL),A Carry is made observable

If now ADD A,r (still with Cardinality 2) is considered, only
the instruction decode will be tested, since accesses to r, A,
and ALU have already been covered.

The same holds at Cardinality 3 for instructions such as
ADD A, (HL). Actually, instruction decode testing involves
a full sequence related to basic functionalities, but it need not
be repeated for access or operators validation; all func­
tionalities deriving not from instruction decode and micro­
program sequencing, but from correct operator working, will
also be excluded from the sequence (in our example, the test
on carry setting).

Cl ass of Card.
Classific.
of instruc. Instructi ons

Branch JP nn / RET / RETI / RETN / JP(HL)
JP(IX) / JP{IY)

I Transfer

LD r, r' / LD r, n I LD A, I / LD A, r
LD l,A / LD R,A / LD dd,nn / LD IX,nn
LD IY,nn / LD SP,HL / LD SP, IX
LD SP,IY / IN A,(n) / IN r,(C)
OUT (n),A / OUT (C),r

CP s / CPL / DAA / RES b, r / RLA / RRA
Manip. RLCA / RRCA / RL r / RR r / RLC r

RRC r / SCF / SET b, r / SLA r / SRA r
SRL r

Other HALT / DI / EI / m 0 / 1M 1 / 1M 2

Branch CALL nn / JP cc ,nn / JR e / RET cc

LD r,(HL) / LD (HL),r I LD (HL),n
LD A,(BC) I LD A,(DE) / LD A,(nn)
LD (BC),A / LD (DE),A I LD (nn),A

Transfer PUSH qq / PUSH IX I PUSH IV

Manip.

I ~~P D~;H[~O~X I~~ ,~~~ IV

ADD A,n / ADD A,r I ADD HL,ss
ADD IX,pp / ADD IV,rr / AND s / BIT b,r
CCF / DEC IX / DEC IY / DEC ss I DEC r
INC r / OR s / RES b, (HL) / RL (HL)
RR (HL) / RLC (HL) / RRC (HL)
SET b,(HL) / SLA (HL) / SRA (HL)
SRL (HL) / SUB s I XOR s

TABLE la-Instructions ordered by their cardinality

Classific.
Cl ass of Card. of i nstruc. Instructions

Branch CALL cc,nn / JR c,e / JR NC,e / JR Z,e
JR NZ,e / RST P

T
LD r,(IX+d) I LD r,(IY+d) / LD (IX+d),r

H Transfer LD (IV+d),r / LD (IX+d),n / LD (IY+d),n

R
ADC HL,ss / ADC A,s / ADD A,(HL)

E BIT b, (HL) / NEG / RES b, (IX+d)
RES b,(IY+d) / RL (IX+d) I RLC (IX+d)

E RR (IX+d) / RRC (IX+d) I RL (IY+d)
Manip. RLC (IY+d) I RR (IY+d) RRC (IY+d)

SBC A,s I SSC HL,ss / SET b,(IX+d)
SET b,(IY+d) / SLA (IX+d) / SLA (IY+d)
SRA (IX+d) I SRA (IY+d) I SRL (IX+d)
SRL (IY+d)

Branch DJNZ e

F
LD HL,(nn) / LD dd,(nn) I LD IX,(nn)

0 Transfer LD IY, (nn) I LD (nn) ,HL / LD (nn) ,dd
LD (nn),IX / LD (nn) ,IY I EX (SP),HL

U EX (SP) ,IX I EX (SP) ,IY

R
ADD A,(IX+d) I ADD A,(IY+d)

Manip. BIT b,(IX+d) I BIT b,(IY+d) I DEC (HL)
INC (HL) I RLD I RRD

F I V E Manip. DEC (IX+d) / DEC (IV+d) I INC (IX+d)
INC (IY+d)

Transfer EXX I INI lIND lOUT! I OUTO
S I X

Manip. CPDI CPI

S EVE N Transfer INIR I INDR I OUTIR I OUTDR

TABLE Ib-Instructions ordered by their cardinality

Cl ass of Card.

N I N E

TEN

Classific.
of instruc.

Transfer

Transfer

LDI / LDD

LDIR I LDDR

(*) NOP instruction ... cardinality zero

Instructions

TABLE Ie-Instructions ordered by their cardinality

A methodology for the development of
special-purpose function architectures

by RAYMOND A. LIUZZI*
Rome Air Development Center
Griffiss Air Force Base, New York

and
P. BRUCE BERRA
Syracuse University
Syracuse, New York

ABSTRACT

The research described in this paper concerns a generalized methodology for the
development of special-purpose function architectures (SPFA). The development
methodology can be used to introduce the concept of an SPFA approach to an
organization.

The methodology provides an organized set of processes that can be followed to
tailor the development of SPFAs to specific applications. This methodology consists
of processes for identification, creation, testing, evaluation, and substitution of
SPFAs. It permits a user to carefully select sets of database management functions
as candidates to be moved from software into hardware, develop one or more
SPFAs that perform this function, and evaluate the consequences of having the
function performed as a new hardware architecture. A set of tools/components with
which to carry out this methodology are included in the environment of a proposed
database machine architecture development facility.

*This research was performed while the author was pursuing the Ph.D. degree at Syracuse University.

125

Development of Special-Purpose Function Architectures 127

INTRODUCTION

Interest in computer architecture research, as applied to data­
base management, has recently increased because of the ad­
vancing state of the art in inexpensive, fast new hardware
components. Hardware technology is advancing primarily in
three areas: central processing units (CPU), semiconductor
random-access memory (RAM), and all-electronic bulk
memories. The cost-to-performance ratio of CPUs will de­
cline rapidly over the next 10 years. Low-cost CPUs with the
performance capabilities of today's medium-priced mini­
computers will be available for hundreds of dollars in the
1980s. New technologies in memories using bubbles or
charge-coupled devices will rival existing fixed-head discs.

These trends have made it feasible to examine new hard­
ware architectures that can perform database management
system (DBMS) functions currently performed in software.
How to determine which functions to implement in hardware
and how to choose their optimal architecture, for a given user
application, becomes a very difficult task. In order to help
ease this transition, database machines have been introduced
as new hardware architectures designed to perform DBMS
functions.5

The notion of a database machine (DBM) has evolved pri­
marily because of the need to accomplish database manage­
ment tasks more efficiently. The evolution to the current class
of DBMs can be traced by viewing Figure 1. DBMSs were
originally developed to execute on large sequential systems
and had to rely on the services of a generalized host execution
system to perform many of their tasks. Examples of this class
of system include the IDS system on an H6000, IMS on an
IBM 360/370, and System 2000 on several large machines. l5

However, much of the processing efficiency of these systems
is compromised by the inefficiency of I/O operations for pro­
cessing data. The operating systems on these large machines
must multitask a number of activities.

PBIfORMAliCE
AIIDfUflCTJIfI

DATA BASE MANAGEMENT SYSTEMS

BACK-ENIr DATA BASE
MAliAGEMENT SYSTEM&

{

SYSTEM 200IHINIVAC
LARGE SEOUENTIAL ll00-CDC 8000

COMPUTERS IIHIM 370
IIS-II8OOO

{

BACIl-fND DBMS COMPUTER
SEOUENTIAI. MADMAll-PDP 11/45

M .. I-COMPUTERS XDMS-o.s. META-4
DATA COMPUTER

SPECIALIZED DATA BASE • CONTENT ADDRESSIHG{:'SSM
MACHINES AIID CONCURRENCY DATA BASE COMPUTER (DBC)

INFOPLEX
STAW

• SPECIALIZED J MERGE PROCESSOR
'--_--'-__ ~u.SPf_r_A2 ·-· • SPF_A....;;.t. ARCHITECTURES" lUATA DICTIONARY PROCESSOR

SPECIAL PURPOSE FUNCTION ARCHITECT1IRES

Figure 1-Database machine evolution

As minicomputer development progressed, it became ap­
parent that many database management tasks could be ac­
complished more efficiently by removing them from the large
sequential machine to a machine dedicated entirely to data­
base management. Such a machine is called a back-end ma­
chine. Canady et al. outlined an architecture for performing
various DBMS tasks on a back-end Digital Scientific Meta-4
Computer.2 Numerous advantages were cited, including secu­
rity, reliability, and efficiency.

Further development in semiconductor technologies has
produced the microprocessor and the microcomputer, along
with the notion that it is economically feasible to develop
computers that are primarily designed for database manage­
ment. Previous research efforts have substantiated the fact
that computer architectures that provide concurrency and
content-addressing constructs can provide order-of-magni­
tude increases in the performance of certain database man­
agement functions.2o,26 As a result, a new class of machines
has emerged, with various unique architectures designed to
provide these constructs. Liuzzi and Berral7 have defined a set
of characteristics for a range of these DBMs that consists of
the following:

1. An overall architecture composed of one or more
special-purpose function architectures (SPFAs)

2. An architecture based on parallelism and content
addressing

3. A set of compatible memory units for the storing and
efficient retrieval of data

4. An architecture that is a back-end machine.

Several types of machines have been reported in the litera­
ture with these characteristics; some are given below.

The logic per track architecture of the University of Flori­
da's Context Addressed Segment Sequential Memory Or­
ganization (CASSM) System,6 the multicell CASSM system,29
and the University of Toronto's Relational Associative Pro­
cessor (RAP) system24,25 attain concurrency by moving logic
from the central processing unit to the individual disk heads
that read data from each track on a fixed-head disk. The RAP
system has recently been extended to include a semiconductor
charge-coupled device (CCD) , random-access memory
(RAM), or bubble memory.

The Ohio State Data Base Computer (DB C) proposed by
Hsiaol

,13 consists of a unique architecture that interconnects
several specialized processors aimed at supporting secure
large-scale databases. Each database is stored on content­
addressable moving-head disk devices, and emerging tech­
nologies such as magnetic bubbles and CCDs have been cho­
sen for part of the system.

The INFOPLEX system proposed by Madnick18 takes

128 National Computer Conference, 1982

advantage of new memory and processor technologies to
organize a smart memory hierarchy to handle the storing and
retrieval of information. Its information management func­
tions are decomposed into a functional hierarchy imple­
mented by a hierarchy of microprocessors.

The DIRECT system proposed by DeWite is a multi­
processor organization for supporting relational DBMSs.
DIRECT has a multiple-instruction, multiple-data stream ar­
chitecture. It can simultaneously support both interquery and
intraquery concurrency.

Associative processors have been experimentally examined
for database management applications. Early studies by
DeFiore, Stillman, and Berra8,28 using the Goodyear Associa­
tive Memory and later the STARAN Associative Array Pro­
cessor established that searching a database was significantly
improved by associative techniques.

The RELACS system proposed by 0liver22 is a DBMS
using associative processors to implement the relational data
model. RELACS is capable of supporting many functions of
a database management system including retrieve, updating,
deletion, modification, and addition.

In addition to this class of DBMs, a set of specialized archi­
tectures have emerged. As Figure 1 indicates, these special­
ized architectures can form portions of a DBM. They are
primarily designed to optimize a single database management
function and are called special-purpose functional architec­
tures. Several different types of database functions have been
designed as SPFAs.

Roberts23 has proposed a specialized parallel computer ar­
chitecture for high-speed searching of large textual files. The
database to be searched is partitioned among independent
high-speed serial-access memories that are searched in paral­
lel by dedicated microprocessors connected to a common
communication bus.

HollaarlO has proposed a specialized merge processor that
combines data from sorted input lists into a sorted output file.
This processor is designed with architectural constructs that
form the merge operation. Stellhorn27 proposed an inverted
file processor that uses a specialized architecture to access
files of document identifiers and perform the processing asso­
ciated with a Boolean search request. Hollaar and Stellhornll

propose a specialized architecture for textual information re­
trieval. The basic architecture of the system consists of several
parallel search modules connected to a disk via a parallel!
serial interface. This architecture is especially suited for list
merging, updating, and sorting operations. Hollaar12 has also
extended this work to include the design of a list-merging
network.

Mukhopadhyay21 has proposed specialized hardware algo­
rithms for nonnumeric computation. These algorithms can be
implemented with various LSI technologies for high-speed
pattern-matching needs.

Capraro3 has proposed to integrate a data dictionary as an
SPFA using associative processors. Singhania and Berra have
designed a special-purpose function architecture using asso­
ciative memories for pipelining a directory to a very large
database. The results of this study indicated that the pipeline
system provides faster retrieval than sequential inverted list
systems, especially in the case of multiple-key retrievals. Kar­
lowsky and Leilich14 from the Technical University of Braun-

schweig have proposed an SPFA called a search processor to
search data stored on a mass memory without using the CPU
and I/O of a host computer.

The Content Addressable File Store (CAFS) is a special­
ized hardware architecture that performs parallel processing
techniques for implementing multifactor selection across
either single files or the join of multiple files. 19 This SPFA
performs concurrent execution of powerful selection and re­
trieval functions on multiple data streams arising from the
simultaneous reading of many disk channels.

The introduction of these SPFAs has provided users with a
new approach to gaining specialized improvements in their
database applications. Each of the SPFAs described can re­
place a DBMS function or functions currently being per­
formed in software on a sequential machine. This notion that
software functions can be either improved or replaced by
hardware has been characterized as the SPFA approach. This
paper examines the effect the SPFA approach can have on an
organization, describes the need for an organized meth­
odology to introduce the SPFA approach to an organization,
and presents a generalized methodology that can be used to
help in the development of SPFAs.

NEED FOR METHODOLOGY

The emergence of various types of SPFAs has prompted the
need for an organized methodology that can be used to devel­
op SPFAs for specific user applications. Typically, an exam­
ination of a DBMS shows that it is composed of several types
of functions. First, a set of basic functions for each DBMS is
used to manipulate data into a form acceptable to the applica­
tion program. Examples of these functions are search, update,
and modify. A second set of functions maintain data in a data
dictionary or a database. The functions permit a logical ex­
pression of the database and maintain a physical access to the
stored data. Next, a set of functions provide user interface
capabilities via query generation modules and request gener­
ation modules. These functions provide various levels of natu­
ral user interface to a DBMS. Finally, a set of application
modules is used to support functions that provide various
editing capabilities to a DBMS user. Each of these functions
are typically performed in software and are candidates to be
developed as SPFAs.

If an organization wishes to seek ways to upgrade a current
DBMS capability, it might want to introduce one or more of
these functions as SPFAs in the form of hardware assist mod­
ules into its current environment. However, in order to ex­
ploit this SPFA approach fully, several questions must be
examined:

1. What are the important factors to consider when choos­
ing a function that can be developed as an SPFA?

2. What are the various algorithmic approaches and archi­
tecture considerations to implement the function in
hardware?

3. How will new hardware technology affect the function's
implementation in terms of performance, cost, re­
liability, and other relevant matters?

Development of Special-Purpose Function Architectures 129

For each database management function that is a candidate
for a move to hardware, several architectural options may be
available. To evaluate each option, designers may have to
build the actual hardware. If more than one architecture is
being considered, several options may have to be built. Once
these hardware options are built, procedures to test and eval­
uate them need to be established. However, if several SPFA
options exist for a given function, the actual hardware con­
struction may not always be feasible because of the following
three problems:

1. The expense of actually developing a number of hard­
ware options .

2. Time constraints
3. Inability to alter each SPFA easily after it has been built

Finally, several factors must be considered in choosing the
actual hardware technology used to implement a SPFA. The
technology chosen by a user depends on specific user applica­
tion requirements. For instance, a comparison of competitive
technologies that may be used for an implementation may
indicate that one is faster than the other but is less reliable.
Another factor may indicate that one may improve per­
formance, but at a higher cost.

Thus, a generalized methodology can be very useful in pro­
viding an organized mechanism to introduce SPFAs for im­
proving overall DBMS capability. The methodology must
consider choice of DBMS functions, architecture options for
the function, and implementation strategies for the function
for each specific user application. A methodology has been
developed16 and can be used in conjunction with a database
machine architecture development (DMAD) facility. This
methodology and a brief description of the DMAD facility are
now described.

METHODOLOGY TO DEVELOP SPFAs

A methodology to develop SPFAs requires the following set
of processes:

1. Select candidate function.
2. SPFA create.
3. SPFA test.
4. SPFA evaluate.
5. SPFA substitute.

The select-candidate-function process helps determine
DBMS software functions that are candidates for replacement
as hardware architecture SPFAs.

The create process transforms a description of each SPFA
from a set of architectural considerations to a set of language
statements. This set represents a functional description of an
architecture that performs the DBMS function.

The test process functionally verifies that the SPFA per­
forms the desired DBMS function. This process permits the
DBM architect to examine the architectural constructs of the
SPFA to insure that it meets its design goals.

.. - The evaluate process enables the DBM architect to evahiate
competing SPFAs. An architecture evaluation is conducted to

Figure 2-Development process flow model

generate performance timings of the SPFAs. These timings
are based on using an assumed set of hardware characteristics
to perform operations required by each SPFA.

Finally, the substitute process is composed of a set of pro­
cedures to enable the DBM architect to selectively integrate
an SPFA within a DBMS capability. The substitute process
helps the DBM architect assess the effect on the system of
having a DBMS software function replaced by hardware.

The complete development is illustrated by a process flow
model in Figure 2. The flow of this model indicates that the
environment is initialized for each process request. This ini­
tialization configures the tools needed to complete a process.
Several feedback loops are provided in this model to allow
refinements during the development of the SPFA. These
loops permit reuse of the complete set of tools for all pro­
cesses. For instance, after an evaluation process is completed,
the DBM architect may choose to alter an SPFA by modifying
a portion of the architecture description. This may result in
the recreation of the SPFA. Similarly, a single process can be
repeated interactively so that an exhaustive series of tests or
evaluations can be performed.

In addition, the finai process, substitute, permits the DBM
architect to assess the effect of the newly developed SPFA on
the DBMS system. This process is used to integrate the SPFA
into the DBMS and to help determine potential problems.
The data collected following this process can help determine
if the function is a logical candidate to be moved to hardware
for a specific application.

The use of the process flow model also permits a user to
tailor an SPFA development to a specific application. This
helps insu{.e that the developed SPFA meets the unique re­
quirements of the application.

ARCHITECTURE/INTERFACES OF THE DMAD
FACILITY

A database machine architecture development facility has
been proposed16 as a specialized environment that hosts the
tools and components needed to perform each of the pro­
cesses in the generalized methodology. The DMAD facility
consists of the following components, illustrated in Figure 3:

1. a service host machine (SHM) that is responsible for
monitoring requests in the DMAD facility, staging input
for the database function execution machine (DBFEM),

130 National Computer Conference, 1982

--,

SERVICE
PROCESS HOST
REOUEST MACHINE

(SHM)

CONAGURATION
IDENTIFICATIOO

MACHINE
(ClM)

L ______________ _

MASTER
CONFl6URAnON

CONTROl
MACHINE
(MCCM)

UBRARIES

MACHINE
STORAGE

DATA
BASE

FUNCTION
EXECUTION
MACHINE
(DBFEM)

DATA BASE MACHINE
ARCHITCTURE CONFl6URATION
ARRAY (DMCA)

REALllAnON nMIN6
CONTROl ARRAY (RTCA)

Figure 3-Architecturalfinterfaces of the DMAD facility

and providing a programming environment to described
SPFAs. The SHM interfaces to network machines that
may help in the execution of a SPFA.

2. a database function execution machine (DBFEM) that is
responsible for hosting the execution of SPFAs as ma­
chines in the facility. This machine serves as a back end
to the SHM and is capable of emulating a variety of
computer architectures.

3. a master configuration control machine (MCCM) that
interfaces the SHM and DBFEM. This machine acts as
the configuration manager for process requests to the
DMAD facility. In this capacity the machine controls
resources needed to support execution of an SPFA ma­
chine on the DBFEM.

4. a configuration identification machine (CIM) that inter­
faces to the SHM and is used to identify configuration
requirements needed to execute SPFA machines. Spe­
cialized libraries are maintained and can be loaded on
the CIM to help identify these requirements.

ILLUSTRATION OF THE SPFA APPROACH

An example of introducing the SPFA approach to an organi­
zation is shown in Figure 4. Assume that an organization
requires improving performance and reliability in merging
lists for its present applications. This MERGE function is
currently being performed in software, as part of a DBMS, on
a sequential computer. However, several competitive new
merge hardware architectures can also perform this func­
tion. ll

,27 This organization needs to choose the merge hard­
ware architecture that can optimize the overall performance
and reliability of the MERGE function for this application.

Within a DMAD facility the merge hardware architectures
are created as SPFA machines to perform the DBMS
MERGE function. For instance, illustrated in Figure 4 is a
MERGE SPFA machine that is created from among several
architecture options and is introduced to the DMAD facility.
The SPFA is described in hardware description language. This

PROCESS
DESCRIPTION
LANGUAGE tRUTE SPFA }

SPFA NAME- MERGE
DBMS FUNCTION -

MERGE_

DBMS ~YSTEM

MOD~LE 1

MODULE"

MERGE (b,lo,OR)

. SOFTWARE
4- DBMS

MODULES

SOFTWARE
-- APPLICATION

L--__ -'--__J PROGRAM

THIRD GENERATION SEOUENTIAL COMPUTER

-- -- -,------,
I
I
I

I
I
I
I
I
I

"MERGE" SPFA MACHINE

I J!ATA BASE MACHINE AJlCHITECTURE
I DEVELOPMENT (OM AD) FACILITY
L_.~ ______ _

Figure 4--Developing a special-purpose function architecture

description is compiled and debugged to produce an exe­
cutable version. When this version is complete, it is con­
figured in the DMAD facility to produce a MERGE SPFA
machine. During execution, complete control of the SPFA
machine is maintained by a user with access to the facility.
This permits the examination of all states of execution. Test­
ing in this environment is done with a set of tools to verify that
the SPFA performs its intended DBMS function.

After testing, an evaluation of the SPFA is performed. This
evaluation consists of accumulating the time needed by the
SPFA machine for a sequence of its operations. The timing of
these operations is chosen by examining possible hardware
implementations and associated timings.

. For instance, in this example, since both performance and
reliability improvements are sought, a user can examine hard­
ware technologies that have high reliability characteristics as
candidates for the MERGE SPFA machine's operations.

In order to assess the effect of varying these choices, one or
more realization assumptions can be described. Each choice
becomes a separate realization of the SPFA and is used to
generate separate sets of data on performance and reliability.

Once performance and reliability data are established for a
specific SPFA description, the procedure described above can
be repeated by varying some architectural features of the
original SPFA description or developing one of the com­
petitive MERGE SPFAs. This process can continue for a
number of architectural options that may be available for this
function.

Once a MERGE SPFA is chosen, the next development
stage can be its substitution within a current DBMS. This
process can be performed as illustrated in Figure 5. First, a
computer system that can support a set of database manage­
ment functions is referred to as a DBMS machine. Next,
assume that this DBMS machine is emulated to execute in the
DMAD facility. A DBMS software application program
(SAP) is chosen to execute on the DBMS machine and call the
services of the DBMS functions supported. The SAP typically
calls a sequence of DBMS functions such as FIND, ORDER,
MERGE, CLOSE, etc., as illustrated in Figure 5. Whenever
the MERGE function is called, the option chosen for the

Development of Special-Purpose Function Architectures 131

MERGE SPFA machine is executed instead of the original
MERGE function. The actual interfaces and the effect of
substituting the MERGE SPFA can now be examined in terms
of pertinent hardware/software tradeoff issues.

A positive assessment of the SPFA's integration may lead
the organization to choose to actually build a hardware proto­
type Merge SPFA.

SPFA DEVELOPMENT METHODOLOGY PROCESS
FUNCTIONS

Described in this section are a set of procedures for the gener­
alized methodology to help develop SPFAs. This meth­
odology can be divided into the following phases:

1. identification of candidate DBMS functions
2. creation of SPFA's
3. execution of an SPFA machine

Identification of Candidate DBMS Functions

The identification of candidate DBMS functions to be
moved from software to hardware is made by examining the
typical requirements of a range of applications. Pertinent fac­
tors include current usage of the function, the ability to clearly
define interfaces to the function, and the potential of the
function for improving system performance and cost. This
process requires examination of several functions that are
portions of a current DBMS.

A DBMS machine identification procedure is used to con­
figure emulations of machines that support current DBMSs.
Each machine is configured with a DBMS, required system
support software, and sample application programs. A set of
DBMS functions within the DBMS are then identified as can­
didates for being replaced by hardware. These functions are
currently performed by sets of software modules that are exe­
cuted when the function is called.

A variety of criteria may be used in selecting candidate
functions. These include the frequency of a function's use

I
I
I

'~
I

L _______ --1

DBMS MACHINE

/

"MERGE" SPFA

SPFA MACHINE

DATA BASE FUNCTION EXECUTION MACHINE

Figure 5-Substitution of a special-purpose function architecture

(i.e., number of calls), the amount of time taken to execute
the function, the complexity of the function in relation to
other functions within the DBMS, and the potential for im­
provement in DBMS system quality if the function is moved
from software to hardware.

Statistics on use of a specific function can be obtained by
establishing break points at the entrance to the software mod­
ule performing the function during execution. The rate of use
~n be determined from the number of times the break point
is encountered. Another procedure is to use a performance
monitoring tool to identify frequency of calls for a DBMS
function. Such a capability may also be provided in conjunc­
tion with the description of each emulated DBMS machine by
establishing a count for a specific instruction execution. For
instance, the SMITE hardware description language provides
a performance capabilitro that permits a software monitor to
accumulate the number of times an instruction is encountered
during execution.

Once data on use are collected, the actual execution path of
frequently called functions can be examined. This path is
examined by actually stepping the execution of the function,
instruction by instruction. This peimits all entrances and exits
to and from the function to be properly identified and docu­
mented. This procedure helps to identify the complexity of
this function in relation to other functions and to identify all
the interfaces required to and from the function within the
DBMS.

Next, quality considerations may be examined. Such an
analysis is based on assessing the overall improvement in the
quality of the system that may be obtained by moving the
function to hardware. For instance, win the movement of
this function to hardware increase DBMS system performance
but at the same time decrease the system's portability or
reliability?

Questions such as these may be examined by establishing
metrics for specific quality factors concerning the DBMS func­
tion. These metrics can be computed for such factors as re­
liability, maintainability, and flexibility. 4 If the movement of
this function to an SPFA can improve the quality ofthe DBMS
in relation to a given application, then it may become a candi­
date function.

In summary, the choice of specific DBMS functions to be
moved from software into hardware may be based on criteria
such as use, performance and complexity, and quality im­
provements gained within the system. Once one or more can­
didates are selected, competitive SPFAs that can perform the
desired DBMS functions must be examined.

Creation of SPFAs

A create process is selected to describe an SPFA that
performs a candidate DBMS function. The objective of the
create process is to translate a conceptual architectural de­
scription of an SPFA into an executable SPFA machine. This
process consists of two procedures:

1. SPFA description development
2. SPFA introduction

132 National Computer Conference, 1982

The SPFA description development procedure requires the
specification of a set of architectural constructs that, when
executed as a machine, perform a DBMS function. These
constructs can be specified in a hardware description language
that defines a machine representation of an SPFA.

A specialized programming environment that exists within
the DMAD facility is used to describe each SPFA in a hard­
ware description language (HDL). This includes identifying
the machine representation of the SPFA in terms of registers,
interconnections, flow of information, and specific oper­
ations. Both control and concurrency dependencies among
SPFA operations are described. As part of a description, each
SPFA is created in such a way as to be fully compatible with
the same interfaces as the software function it will replace.
Once completed, a compilation procedure translates this
SPFA description into a source and subsequently into an ob­
ject file. The source file is debugged within the programming
environment to eliminate source programming errors. If er­
rors are identified, the SPFA description is modified and re­
compiled. This procedure continues until a correct SPFA is
described. The SPFA compilation also produces an object file
that consists of a set of microinstructions that are compatible
with the DBFEM. These microinstructions are used to trans­
form the facility into an SPFA machine using an SPFA intro­
duction procedure.

This procedure identifies each SPFA to the DMAD facility.
SPFAs introduced to the facility are entered into a database
machine architecture configuration array (DMCA). This ar­
ray is used to identify configuration requirements needed for
executing each SPFA as a machine in the facility.

Execution of an SPFA Machine

An SPFA machine is ready for execution once all config­
uration resources are made available. These resources include
access to the database function execution machine and any
other specialized resource support. When an SPFA machine
begins execution, the processes of testing, evaluation, and/or
substitution can be performed.

The objective of the testing process is to determine whether
the SPFA machine accurately performs the desired DBMS
function. The testing process consists of execution of the
SPFA machine by means of test cases, verification of the
proper sequence of SPFA machine states, and debugging the
SPFA machine.

In order to begin testing, a set of test cases are specified.
They consist of specific input to the SPFA machine to insure
that it executes properly.

The SPFA machine executes by moving from state to state.
A state can be specified at the SPFA source description level
or at the microinstruction level. The microinstruction level
permits identification of states at a much lower level than the
source level. The level may be needed for detailed verification
or debugging the SPFA machine. Types of testing capability
include tuning, verification, probe, and visual examination of
the machine.

One verification technique that can be used is the exam­
ination of the states of the machine at given instants of time.
This examination can be conducted by establishing control

points in the SPFA description. When these control points are
reached during execution of the SPFA machine, a DBM archi­
tect performs an extensive verification of the state of the
SPFA machine. For instance, registers, information re­
sources, and control indicators can be examined. If they con­
form to preselected values, the state verification of the SPFA
machine is established. However, if an error or inconsistency
is found at one of these control points, the SPFA machine may
not be verified, and debugging procedures are necessary.

A specific procedure that can be used to formally verify
states of a SPFA has been proposed by Crocker. 7 This pro­
cedure examines the execution of an SPFA machine and re­
fers to a state change as a state delta. These state deltas are
then examined in relation to predefined lists. If a state delta
results in the formation of an improper list, the execution of
the SPF A machine during the delta is questioned for possible
error.

The debugging procedure performed in the facility for an
SPFA machine consists of the identification of an error and
the isolation of its causes by the DBM architect, who isolates
the error by verifying the SPF A machine states until the error
occurs. This isolation can be performed at the source descrip­
tion level or at the microinstruction level, if necessary, to
insure that the error is found.

During debugging the DBM architect views the actual rep­
resentations of the SPFA machine. This permits all name
variables and conditions in the SPFA description to be in­
spected. During the debugging exercise the DBM architect
has complete control of the SPFA machine and can step it
through various execution states.

After the SPFA machine has been tested, the evaluation
process may be requested. The objective of this process is to
evaluate SPFA machines by using hardware operations identi­
fication and SPFA performance procedures.

The hardware operations identification procedure exam­
ines each SPFA description to identify specific hardware oper­
ations. A realization assumption (RA) defines a set of spe­
cialized hardware implementation characteristics for these
operations, and these characteristics are used to generate tim­
ings for the specific hardware operations identified for an
SPFA. The times are entered into a realization timing control
array (RTCA) for each realization assumption. Each SPFA
machine is then executed, and the results of separate exe­
cutions are collected and analyzed.

Once an SPFA has been evaluated, the final execution pro­
cess is substitution. The objective of this process is to investi­
gate the effects of substituting an SPFA for a candidate soft­
ware DBMS function. The substitution process consists of
DBMS/SPFA machine identification, selective integration,
and evaluation.

The DBMS/SPFA machine identification procedure con­
sists of identifying the configuration requirements used to
transform the DMAD facility into a DBMS/SPFA machine. A
set of requests are executed on the DBMS/SPFA machine that
call the supported DBMS functions. These functions are per­
formed by the appropriate sets of software modules. How­
ever, when a request is made for the specific DBMS function
supported by the SPFA, the SPFA machine is automatically
called to perform the DBMS function.

A DBMS/SPFA machine selective integration function pro-

Development of Special-Purpose Function Architectures 133

cedure performs the actual substitution of the SPFA machine.
A virtual database machine monitor (VDMM) can be used as
the tool for this procedure. The VDMM is designed as a
virtual machine monitor that supports control of both a
DBMS machine and an SPFA machine on a micro­
programmable execution machine. The VDMM permits the
switching of control between a DBMS machine and an SPFA
machine. Each time an SPFA machine is called, it completes
the DBMS function, then returns control to the DBMS
machine.

A DBMS/SPFA machine evaluation procedure enables a
user to assess the impact of integrating an SPFA machine and
a DBMS machine. This procedure includes executing the
same set of requests to supported DBMS functions with and
without the presence of the SPFA machine. This procedure is
used to identify any further interface problems that may result
from the presence of the SPFA machine, helps assess the
system feasibility of having the function performed as an
SPFA, and enables performance comparisons to be made.

CONCLUSIONS AND FUTURE RESEARCH

The effect of continuing advancements in hardware tech­
nology is promoting the feasibility of having SPFAs perform
many database management functions.

This notion, referred to as the SPFA approach, can serve as
a vehicle for increasing the overall DBMS capability in an
organization. A DMAD facility, used in conjunction with the
methodology defined in this paper, can serve as a specialized
model to help introduce SPFAs to an organization via the
SPFA approach. This methodology is organized and pre­
sented as a set of specific processes. Each of these processes
is designed to permit a user to tailor the development of an
SPFA to a specific application.

A set of tools/components to perform specific procedures
for this methodology are also included in the proposed envi­
ronment of the DMAD facility.

The extensive use of this methodology can also be directed
toward examining critical tradeoff issues for defining a proper
'hardware/software mix in an overall system for a specific ap­
plication. The methodology, used in this fashion, can serve as
a vehicle to help choose which functions should migrate from
software to hardware from an overall system architecture
view.

In order to use the methodology in system optimization,
further research is needed to expand use of specific optimi­
zation methods that can be used to formulate a direct re­
lationship between SPFAs and sets of user requirements. In
order to assume this role, modeling techniques may be added
as procedures to follow each of the development processes of
the generalized methodology. These procedures include sev­
eral evaluation techniques, among them mathematical mod­
eling and simulation. Some specific techniques that can be
used in a hardware/software system tradeoff have been pro­
posed by Vemuri. 31 Further work is needed to expand the
detailed use of these techniques.

REFERENCES

1. Banerjee, F., D. Hsiao, and K. Kannar. "DBC-A Database Computer
for Very Large Databases." IEEE Transactions on Computers, C-28
(1979), pp. 414-429.

2. Canaday, R. H., R. D. Harrison, E. L. lvie, J. L. Ryder, and L. A. Wher.
"A Back-end Computer for Data Base Management." Communications of
ACM, 17 (1974), pp. 575-582.

3. Capraro, G. R "A Data Base Management Modeling Technique and
Special Function Hardware." Ph.D. Dissertation, Syracuse University,
February 1978.

4. Cavano, J. P., and J. A. McCall. "A Framework for the Measurement of
Software Quality." Proceedings of Software Quality Assurance Workshop,
San Diego, California, November 1978. New York: ACM, 1979, pp.
133-140.

5. Champine, G. A. "Current Trends in Data Base Systems." Computer, 12
(1979), pp. 27-41.

6. Copeland, G. P., G. J. Lipovski, and S. Y. W. Suo "The Architecture of
CASSM: A Cellular System for Non-Numeric Processing." Proceedings of
First Annual Symposium on Computer Architecture, December 1973, New
York: ACM, 1974, pp. 121-128.

7. Crocker, S. D. "State Deltas: A Formalism for Representing Segments of
Computation." Ph.D. Dissertation; Information Systems Inc. Research
Report lSI, Marina del Rey; California, October 1977.

8. DeFiore, C. R, and P. B. Berra. "A Quantitative Analysis of the
Utilization of Associative Memories in Data Base Management." IEEE
Transactions, 23 (1974), pp. 121-123.

9. DeWitt, D. J. "Direct-A Multiprocessor Organization for Supporting
Relational Data Base Management Systems." IEEE Transactions on Com­
puters, C-28 (1979), pp. 395-406.

10. Hollaar, L. A. "An Architecture for Efficient Combining of Linearly
Ordered Lists." Second Workshop on Computer Architecture for Non­
Numeric Processing, Gainesville, Florida, 1976. New York: ACM, 1976.

11. Hollaar, L. A., and W. E. Stellhorn. "A Specialized Architecture for
Textual Information Retrieval." Technical Report UNIVCDCS-R-74-637,
Department of Computer Science, University of Illinois, 1975.

12. Hollaar, L. A. "A Design for a List Merging Network." IEEE Transactions
on Computers, C-28 (1979), pp. 406-413.

13. Hsiao, D. K., and S. E. Madnick. "Data Base Machine Architecture in the
Context of Information Technology Evaluation," Proc. Third Int. Confer­
ence on Very Large Data Bases, ACM, NY, 1977.

14. Karlowsky, I., H. O. Leilich, and H. C. H. Ziedler. "Content Addressing
in Data Bases by Special Peripheral Hardware: A Proposal Called "Search
Processor." Infomatch Fahrberichte 4, Computer Architecture Workshop of
the Gesellschaft Fur Infomatch, Erlangen, May 1975, pp. 113-131.

15. Koehr, G. I., J. T. Connolly, P. P. Rhymer, B. L. Girken, and E. V.
Sahr. Data Management Systems Catalog. Mitre Technical Report 139,
Mitre Corp., Bedford, Massachusetts, January 1973.

16. Liuzzi, R. A. "The Specification of a Data Base Machine Architecture
Development Facility and a Methodology for Developing Special Purpose
Function Architecture." Ph.D. Dissertation, Syracuse University, April
1980.

17. Liuzzi, R. A., and P. B. Berra. "A Data Base Machine Design and
Evaluation Facility." Proceedings of IEEE-CS Comp Sac 78, Computer
Software and Applications Conference, November 1978, Chicago, Illinois.
Piscataway, New Jersey: IEEE, 1979, pp. 716-721.

18. Madnick, S. E. "Infoplex: A New Concept in Data Base Management
Technology." Proceedings of the Third International Conference on Very
Large Data Bases, October 1978. Piscataway, New Jersey: IEEE 1978.

19. Maller, V. A. I. "The Content Addressable File Store-CAFS," ICL
Technical Journal (ICL Research and Advanced Development Centre).
(1979). International Computer Ltd., United Kingdom.

20. Molder, R, "An Implementation of a Data Base Management System on
an Associative Processor," AFIPS, Proceedings of the National Computer
Conference (Vol. 42), 1974, pp. 171-176.

21. Mukhopadhyay, A. "Hardware Algorithms for Non-Numeric Computa­
tion." IEEE Transactions on Computers, C-28 (1979), pp. 384-394.

22. Oliver, E. J. "RELACS, An Associative Computer Architecture to Sup­
port a Relational Data Model." Ph.D. Dissertation, Syracuse University,
June 1979.

23. Roberts, D. C. "A Special Computer Architecture for High-Speed Text
Searching." Second Workshop on romputer for Non-Numeric Processing,
Gainesville, Florida, 1976. New York: ACM, 1976.

134 National Computer Conference, 1982

24. Schuster, S. A., E. A. Ozkarahan, and K. C. Smith. "A Virtual Memory
System for a Relational Associative Processor." Technical Report CSRG-
64, University of Toronto, December 1976.

25. Schuster, S. A., H. B. Nguyen, E. A. Ozkarahan, and K. C. Smith.
"RAP.2-An Associative Processor for Data Bases and Its Applications."
IEEE Transactions on Computers, C-26 (1979), pp. 446-458.

26. Singhania, A. K., and P. B. Berra. "A Multiple Associative Organization
for Pipelining a Directory to a Very Large Data Base." Spring Computer
Conference 76 Digest of Papers, 1976, pp. 109-112.

27. Stellhorn, W. E. "An Inverted File Processor for Information Retrieval."
IEEE Transactions on Computers, C-26 (1977), pp. 1258-1267.

28. Stillman, N. J., C. DeFiore, and P. B. Berra. "Associative Processing

of Line Drawings," AFlPS Conference Proceedings, Second loint Com­
puter Conference (Volume 38), 1971, pp. 557-562.

29. Su, S. Y. W., L. H. Nguyen, A. Eman, and G. J. Lipovski. "The
Architectural Features and Implementation Techniques of the Multicell
CASSM." IEEE Transactions on Computers, (1979), pp. 430-445.

30. TRW Defense and Space Group. Advanced SMITE Reference Manual.
Contract F30602-78-C-0016, CDRL 007, RADC-TR-80-66, TRW,
Redondo Beach, California, February 1980.

31. Vemuri, V., R. A. Liuzzi, J. P. Cavano, and P. B. Berra. "Issues in the
Performance Evaluation of Data Base Machine Designs." 1980 Computer
Architecture for Non-Numeric Processing Conference, Asilomar Confer­
ence Center, March 1980. Piscataway, New Jersey: ACM, 1980.

Applications of SIMD computers in signal processing

by LAXMI N. BHUYAN and DHARMA P. AGRAWAL
Wayne State University
Detroit, Michigan

ABSTRACT

This paper analyzes in detail how far the proposed Single Instruction Multiple Data
(SIMD) computers with interconnection networks are applicable in the signal pro­
cessing area. Decimation in the time radix-2 fast Fourier transform (FFT) algorithm
is considered here for implementation in a multiprocessor system with shared bus
and an SIMD computer with interconnection network.

Results are derived for data allocation, interprocessor communication, approxi­
mate computation time, speedup, and cost effectiveness for an N-point FFT with
any P available processors. Further generalization is obtained for a radix-r FFT
algorithm. N x N point, two-dimensional discrete Fourier transform (DFT)
implementation is also considered, with one or more rows of input matrix allocated
to each processor.

Various curves are plotted and a comparison in performance is carried out be­
tween a shared-bus multiprocessor and SIMD computer with interconnection net­
work. It is shown that the latter gives much higher speedup for P > 16 and is more
cost-effective even with the high cost of switches. N, P and r, considered here, are
all powers of 2.

135

Applications of SIMD Computers in Signal Processing 137

I. INTRODUCTION

There is a growing interest in the area of parallel processing,
and it is worthwhile investigating how far the proposed paral­
lel systems are suitable for different applications. A Single
Instruction Multiple Data (SIMD) type of computer usually
consists of a single control unit and a number of processing
elements (PEs) connected through an interconnection net­
work. The control unit broadcasts each instruction, and those
are executed by the active PEs. The interconnection network
makes possible simultaneous transfer between the PEs. In this
paper the advantage of using such parallel systems in the area
of signal processing will be studied.

Real-time signal processing is a potential field of applica­
tion of parallel computers because of the time limitation in
processing data. Fast Fourier transform (FFT) forms the core
of signal processing, and hence its implementation will be
studied in detail. In a highly parallel algorithm like the fast
Fourier transform (FFT) , the computation time in various
organizations of P processors is almost the same. The commu­
nication overhead due to interprocessor data transfer is ex­
tremely important and decides the actual performance of an
algorithm on a certain multiprocessor architecture.z

Although considerable work has been done in the design of
special-purpose FFT processors, very few researchers have
studied the performance of the FFT algorithm on a general­
purpose multiprocessor system. Among them Bergland's
algorithms3 on the PEPE type of computer and Wallach's
analysis8 on the Alternating Sequential Parallel (ASP) com­
puter are noteworthy.

The FFT, as it is, is a highly parallel algorithm; and there
seems to be no need for exploiting further parallelism in it.
Siegel et al. 4 developed Single Instruction Multiple Data
(SIMD) algorithms for both one- and two-dimensional dis­
crete Fourier transforms (DFT) using an interconnection net­
work. They presented decimation in frequency algorithms for
implementation in N 12 and N 14 number of processors without
any analysis. Though these types of computers are yet to be
commercially available, much research in the area indicates
their potential advantage in various types of applications. The
Shuffle Exchange network of StoneS and the indirect bi­
nary n cube network of Pease6 are very suitable for FFT
implementation.

In this paper, decimation-in-time FFT algorithms are con­
sidered. The input data and number of butterfly computations
are divided equally between the P-available processors, and
the amount of time spent during interprocessor communica­
tion has been worked out. The performance of an algorithm
in a computer depends heavily on the machine constants.
Under a few basic assumptions, expressions for speedup and
cost effectiveness are worked out for a multiprocessor with

shared bus and SIMD computer with Pease's indirect binary
n cube network. It has been assumed throughout that the
individual processors take care of data allotment in the proper
location of their local memory, once the data are available to
them.

II. RADIX-2 FFT COMPUTATION

In a decimation in time N point radix-2 FFT algorithm,
n = logzN stages of computation is required with N 12 butterfly
computations at each stage. With P number of processors,
N 12P butterfly computations are carried out in each processor
per stage. As an example, partitioning of a 16-point FFT with
four processors is shown in Figure 1. The algorithm works as
follows:

1. Each processor computes N 12P butterflies per stage un­
til log N 12P stages.

2. Processor i sends N 12P data items to processor j. 1 ~ i,
j~P.

3. Each processor computes NI2P butterflies.

The process is continued until n stages are completed. It will
be assumed throughout this paper that the data allocation at
the proper location in a local memory is exclusively the job of
the local processing element, and hence does not add to the
communication time. The following definitions are needed.

Digit reversal of a number 0 ~ x ~ N - 1 in radix r is given
by

Pr(X) = Pr(Xnr-l Xnr-Z . .. xo)
= (XoXl ... Xnr-l),

Xi E {O, 1, 2, ... , r - I} and nr=logrN

Processor 1

Processor 2

Processor 3

Processor 4

Figure 1-16-point radix-2 FFT computation in 4 processors

o

2
3
4

10
11

12

138 National Computer Conference, 1982

. Bit reversal is a special case of digit reversal where r = 2.

P2(X) = p(x) = P(Xn-l Xn-2· .. xo) = (XoXl ... Xn-l),
Xi E{O, I}

where

t
Speedup a="T

t = time taken for FFT implementation in a single processor
T = time taken for FFT implementation in P processors

Cost efficiency ~ = ;P

where C = a cost factor dependent on the architecture in con­
sideration.

For a multiprocessor with shared bus, C will be assumed to
be unity.

In a decimation in time algorithm, the inputs are bit re­
versed and the outputs are ordered. We assume that the input
data X are numbered from a to N - 1; the processors are
numbered from 1 to P and P = 2m

• The following general
results are obtained.

1. Number of butterfly computations per processor per
stage = N 12P .

Assuming each butterfly computation takes one unit
of time, computation time per stage = N 12P, since the
rest of the butterflies in that stage are also simulta­
neously computed by other processors. Hence, for n
stages, total time of butterfly computation = n(NI2P)
units.

2. For an N -point FFT with P available processors, number
of data per processor = NIP. The input data are bit re­
versed and the output data are ordered. Hence, the ith

processor will contain input data p[~ (i - 1) to

(~i - 1)] and give output data [~(i -1) to (;i - 1)

and ~ (i - 1) + ~ to (~ i-I) +~]. a ~ input data x,

output data X ~ N - 1 and 1 ~ i ~ P.
3. Each processor contains NI2P butterflies. Transfer is

needed only after NIP point FFTs are calculated inter­
nally. Then a P -point FFT between the processors yields
the result. After (n - m) stages, the processors are
grouped with a difference of 2, 4, 8, 16, etc., until n
stages are completed, so the difference grows as a power
of 2.

The processors i and j are exclusively involved in data
transfer for kth stage of computation. The difference
between i and j with respect to k is given by

Ii - j I = a for 1 ~ k ~ (n - m)

=t.. 2(k-l) for (n -m)<k ~n
N

III. ANALYSIS FOR RADIX-2 FFT

A. Multiprocessor With Shared Bus

The organization of this type of system is shown in Figure
2. In addition to the main memory, each processor has its local
memory. Interprocessor communication is achieved by first
sending the data to the main memory and transferring them
again to another processor from the main memory. This is
achieved under a central control. Hence, a single data transfer
between processors i and j will involve two data transfer times
T. As mentioned, in an FFT calculation no data transfer is
necessary for k ~ (n - m). For stages k > (n - m), each pro­
cessor i keeps one item of data out of each butterfly for com­
putation in the next stage and transfers the other data to
processor j. With N 12P number of butterflies per processor,
these data are transferred sequentially over the bus for all
1 ~ i, j ~ P. A time 2T is necessary for transfer of a single item
of data. Each processor takes NIP T time per stage. For P
processors and m stages, time consumed = mNT.

Control

Figure 2-A multiprocessor with shared bus

Speedup and cost efficiency

Let B = time for calculating a single butterfly.

. . NB TIme taken on a umprocessor = t = n .2". .

. . . P N B Butterfly computatIOn time In processors = n . 2P . .

Approximate transfer time needed = m . N . T.

. N
Hence, time taken for FFT = Tl = n . 2P . B + mNT.

t P
Speedup al = - = ------

Tl 1 + 2P (~)(2.)
n B

Cost efficiency ~l = ~~ 1

1 + 2P (~)(i)

Cost factor Cz has been assumed to be unity. It is also assumed
that no additional synchronization time is needed for the con­
troller to set up the transfer. Although this assumption may
seem unrealistic, it stands well in comparison with the analysis
of the interconnection network under different assumptions.

Applications of SIMD Computers in Signal Processing 139

B. SIMD Computer With Interconnection Network

This type of computer will consist of P processors con­
nected through an interconnection switch. An example of
eight processors connected through indirect binary n cube
network6 is shown in Figure 3. Each processor can have inde­
pendent input and output registers for efficient implementa­
tion of an algorithm.

P 1 ---;

P z--........

P3--~

P4----f

Figure 3-SIMD computer with Indirect binary n cube network

If a processor is expressed in binary as
(pmPm-l . .. pq . .. PI), then cubeq (i) = (PmPm-1 ... pq . ..
PI) and cubeq (i) - i = (00 ... 1 ... 0), 1 being at the qth posi­
tion with weight 2q

-
l

•

The intercommunication involved in FFT calculation is ba­
sically a PM2I connection with j = cubeq (i). Hence,
q = (k - n + m) for the kth stage of computation.

Again, no data transfer is necessary for k ~ (n - m). After
that, all the P processors are capable of transferring data
simultaneously at a single transfer time, once the switch has
been set. After each stage of computation, each processor will
send N 12P data items. For m stages, the total data transfer
time for an N- point FFT implemented on P processors with
interconnection network is m . N 12P units.

Speedup and cost efficiency

The control setting of an indirect binary n -cube will require
O(PlogzP) time, and each data transfer will undergo O(logzP)
gate delays. It is assumed here that, once the control switch
has been set, N 12P data items are transferred from each
processor in N 12PT time. The combinational gate delays are
neglected.

Even further time can be saved if the controller is allowed
to set the switches by a table lookup while the processors are
involved in butterfly computation.

Allowing a switching time of m . P . T,

d ff· . t (1z
an cost e IClency <"z = CzP

From the above results, it is clear that the speedup depends
heavily on factors (TIB) and (alB). These are machine­
dependent constants and vary from one computer to other. In
Figure 4 we have plotted the speedup for a multiprocessor
with shared bus having P = 16 for various realistic values of
(TIB). As expected, the speedup reduces with increase in
(TIB). Speedups obtained in different computers with P = 8,
16, and 32 are plotted in Figure 5. (TIB) and (alB) are as­
sumed to be 0.02 and 0.2 respectively. (1Z0 is the speedup
obtained in an SIMD computer with interconnection network
when the control switching time is avoided by setting the
switches during butterfly computation. The cost effectiveness
depends on the cost factors Ct, Cz, and C3 • The exact values
of these constants are difficult to predict. For comparison CI

was assumed to be unity and curves were drawn with proba­
bilistic values of Cz between 1.2 and 1.5. This showed an
overall degradation in cost efficiency with increase in the num­
ber of processors. For higher values of N and for higher num­
bers of processors, the interconnection network proved to be
more cost-effective than the other.

IV. RADIX-r FFT COMPUTATION

In this section the results obtained in Section II are extended
for a radix-r implementation of N -point FFT with P available
processors; r is assumed to be a power of 2 and Nand Pare
powers of r. The algorithm works in exactly the same way.

1. Each processor computes N IrP butterflies per stage till
logr NIP stages.

2. Processor i sends NlrP data items each to (r - 1) other
processors.

3. Each processor computes N IrP butterflies.

16

12

__ ------------<'rfB) =6.01 - ~:~; _.-' .--.---

10 11 12

Figure 4-Variation of speedup with (TIB) on a shared bus organization

140 National Computer Conference, 1982

(-rIB) = 0.02

(alB) = 0.2

p = 32

"20

28

'"
24

p = 32

20 '" ---.-
.--"

'" 16 p = 16

P = 16
12

'" P = 8 - - - - _0-~ _._0-.-

10 11 12

Figure 5-Speedup for radix-2 FFf computation in different organizations
0" 1: Shared bus organization.

0"2: SIMD computer with interconnection network.
20: Interconnection network without control setting time.

The process is continued till nr=logrN stages are complete.
The previous results are modified as below.

1. The total butterfly computation time for an N -point
radix-r FFT with P processors is nrN IrP units, nr=lo~N.

2. The ith processor will contain input data Pr[~ (i - 1) to

(~i - 1)] and will give output data [~ (i - 1) + ~ 0 <X to

~ i-I + ~ 0 <x] for 0 ~ <X ~ r - 1 and 1 ~ i ~ P.

The input data x and output data X range between 0
and N-l.

3. In a radix-r FFT algorithm, r number of processors are
involved in data transfer for kth stage computation.

Ii - j 1= 0 for k ~ nr-mr, mr=logrP

=fo~or(k-l) for nr-mr<k ~nr.
f=l, 2, ... , (r-1)

(a) Multiprocessor with shared bus

Each processor computes NlrP butterflies per stage. Out of
this, one item of data is sent to each (r - 1) processor. Again,
each data transfer requires 2T time, so each processor will
keep the bus busy for 2(r - 1) 0 NlrP T time. For P processors
and mr stages of data transfer, the total data transfer time for
a radix-r N-point FFf implemented on P processors with a
shared bus is 2 0 mr(r - 1) 0 N Ir units.

Speedup and cost efficiency

Let Br=time for a single radix-r butterfly computation.

Time taken in a uniprocessor tr=nr 0 Nlr 0 Br.

S d tr P
pee up <Tlr= Trl = () ()

1 + 2P ~: (r - 1) ;r
r ff· . <Tlr ':.lr=Cost e IClency = C

1
P

(b) SIMD computer with interconnection network

The transfers are effected in a similar manner, except that
at each stage the control switch has to be set up (r - 1) times,
thus causing a degradation in performance.

Cyclic shift within segments type of permutation 10 is neces­
sary before the kth stage of computation in radix-r FFT algo­
rithm. This type of permutation can be easily implemented
with an Indirect binary n-cube network.

After computation of (nr-mr) stages, (r - 1) outputs will
be sent to (r - 1) processors from each butterfly through
(r - 1) cyclic shift permutations. However, simultaneous
transfer occurs from each processor through the inter­
connection network. Hence for N IrP butterflies and in mr
stages, the total number of data transfers in a radix-r FFT
implemented on P processors with interconnection network is
mro(r -l)NlrP units.

Speedup and cost efficiency

P
Speedup <T2r = (2

1 + (~:) (r - 1) 1 + rrr;:) (TIBr)

and cost efficiency ~2r= <T2pr .
C2

The speedup obtained for a radix-4 algorithm in P = 16 and
64 processors is plotted in Figure 6 with ("if Br) assumed to be
0.005, i.e., Br=4B. The comparison is shown between a
shared bus computer and SIMD computer with interconnec­
tion network. As expected, for higher values of N, the inter­
connection network gives speedup close to ideal.

v. TWO-DIMENSIONAL DFT COMPUTATION

A 2-D, N x N discrete Fourier transform (DFT) is given by
Siegel et al.: 4

N-IN-l
F(u, w) = 2: 2: X(f,m) w

uf
wwm,

f=O m=O

w = e -2TrjN and 0 ~ u, w ~ N - 1.

Applications of SIMD Computers in Signal Processing 141

70

C'f:/p.J = 0.005
p = 64

60

50

40

~
. _ p = 64

.------.;-
_.- 1r

30

20

~ ____________ p = 16

10

Figure fr-Speedup for radix-4 FFT computation in different organizations
a1 : Shared bus organization.

a2
r

: SIMD co'mputer with interconnection network.

This can be decomposed to two one-dimensional DFfs:

N-l

G(e, w) = 2: x(e,m) wwm, 0 ~.e, w ~ N-1
m=O

and

N-l

F(u,w) = 2: G(e,w)WUeO~u, w ~N-1
e=o

These one-dimensional DFfs are usually implemented by
using FFf techniques. The input data x can be visualized to be
arranged in an N x N matrix. G, also is an N x N matrix, each
row of which is computed by taking a 1 - D FFf on a row of
x. For any available number of P processors, P = 2m and:5 N,
one or more rows of x will be allotted to each processor. For
computing each column of matrix F, a column of G is neces­
sary so that FFf techniques can be applied.

Unfortunately, G is stored row-wise in the processors.
Hence a matrix transpose operation with one or more rows in
each processor has to be obtained before another 1 - D FFf
computation can be carried out to yield matrix F. This in­
volves data transfer between the processors, thus affecting the
speedup.

The algorithm works as follows:

1. Each processor computes NIP number of N point radix-
2, 1-D FFf to yield NIP rows of G.

2. A matrix transpose operation is carried out between the
processors.

3. Each processor computes NIP number of N point radix-
2, 1-D FFf to yield NIP columns of the result F.

We get the following results:

1. N rows of x will be divided between P processors. There­
fore each processor will calculate NIP rows of G. Each
row of G takes n . N 12 time units for FFf calculation.
Therefore each processor will take n· N 2/2P time units.
Again, each column of F requires n· NI2 units of time
and n . N 2/2P time for NIP columns. Hence, total butter­
fly computation time = n . N 21 P units.

2. Number of rows per processor = NIP. The first pro­
cessor contains rows 0 to NIP -1, second from NIP to
2NIP - 1, and so on. Hence', the ith processor will con­
tain rows e = NIP (i - 1) to NIPi -1 of input datax(e,m),
for 0 ~ e, m ~ N - 1; 1 ~ i ~ P.

3. After each processor calculates NIP rows of G, a matrix
transpose operation is to be performed.

If matrix G (e, w) is partitioned into P x P square sub­
matrices, for a transpose operation processor r will transfer
N 21 p 2 elements of submatrix G (i,j) to processor j; 1 ~ i,
j~P.

It is assumed that the individual processors take care of the
internal data arrangement of N 21 p 2 elements in their local
memories.

(a) Multiprocessor with shared bus

A data transfer between processors i and j will involve a
time of 2T. Each processor i sends N . NIP - N 21 p 2 data items
to all other processors.

Hence, the total data transfer time for an N x N, 2D DFf
calculation in P processors with shared bus is 2(N2IP) (P - 1)
units.

Speedup and cost efficiency

Time taken on a single processor = t = 2· N . n . NI2 B
= n ·N2 ·B.

ff· . r (T4 cost e lClency <:.4 = P .

(b) SIMD computer with interconnection network

Each processor i will be connected to processors j = (i + k)
mod P for 1 ~ k ~ P - 1, involving (P - 1) stages of data
transfer. At each stage N 21p2 elements will be transferred
from each processor. This is a cyclic shift operation realizable
by Indirect binary n cube network through a single pass.

The total data transfer time for an N x N, 2D DFf imple­
mented on P processors with interconnection network
N 21p2 (P - 1) units.

142 National Computer Conference, 1982

Speedup and cost efficiency

N
2

(N2) T5=n"p"B+(P-I) p2-r+m"P-r

p
Speedup 0'5 = (P _ 1) (1 m P 3)

1 + P Ii +n"N2 (-rIB)

and cost efficiency ~5 = ~~.

The performance of a mUltiprocessor with shared bus is
compared with respect to interconnection network in Figure
7. For a number of processors greater than 16, the shared bus
computer works fairly well compared to the 1 - D case and is
more cost-effective because C1 < C2•

VI. CONCLUDING REMARKS

The exact performance of a computer is ascertained only after
carefully observing its working for many years. In this paper
an approximate evaluation of speedup and cost efficiency has
been made for FFT implementation in two types of parallel
processors. These values depend heavily on machine con­
stants, as shown in Figures 4 and 5. The comparisons are made
between a multiprocessor with shared bus and an SIMD com­
puter with interconnection network. For one dimensional
radix-2 and radix-4 algorithms, the shared bus computer
shows close to ideal performance for P ~ 16. For small values
of N, the interconnection network gives very low speedup
because of the overhead involved in setting the control switch­
es. However, as N increases, the speedup increases and is
close to ideal for large N. At this point it becomes more
cost-effective than the shared bus system, even with the high
cost of switches. When P, N are very large, the shared bus
system is completely unsuitable because of high congestion in
the single bus. A similar analysis was also performed for the
2 - D case. The shared bus system behaves much better than
the 1 - D case. For P = 32 in Figure 7 the speedup is very high
when compared to Figure 5. If the number of processors
available for an N x N, 2 - D DFT implementation is more
than N, completely different results will be obtained, because
for each 1 - D transform also, the interprocessor commu­
nication will be necessary.

REFERENCES

1. Aho, A. V., J. E. Hopcroft, and J. D. Ullman. "The Design and Analysis
of Computer Algorithms." Reading, Massachusetts: Addison-Wesley,
1976.

a

32
as

28
-- .. .--~- &;-- .. -'--

24 I 20

16
as

._.-.--'-'-'-
a.

12

Figure 7-Speedup for 2-D DFT in different organizations
CT 4: Shared bus organization

CT5: SIMD computer with interconnection network

P=32

P=16

2. Lint, B., and T. Agerwala. "Communication Issues in the Design and
Analysis of Parallel Algorithms." IEEE Transactions on Software En­
gineering, SE-7 (1981), pp. 174-188.

3. Bergland, G. D. "A Parallel Implementation of the Fast Fourier Transfer
Algorithm." IEEE Transactions on Computers, C-21 (1972), pp. 366-370.

4. Siegel, L. J., P. T. Muller, and H. J. Siegel. "FFT Algorithm for SIMD
Machines." Proceedings of the 17th Annual Allerton Conference on Comm.,
Control, and Computing, University of Illinois, Urbana-Champaign, Oct.
1979, pp. 1006-1014.

5. Stone, H. S. "Parallel Processing with Perfect Shuffle." IEEE Transactions
on Computers, C-20 (1971), pp. 153-161.

6. Pease, M. C. "The Indirect Binary n Cube Microprocessor Array." IEEE
Transactions on Computers, C-26 (1977), pp. 458-473.

7. Abidi, M. A., and D. P. Agrawal. "On Conflict-Free Permutations in
Multistage Interconnection Network." Journal of Digital Systems, (Special
Issue on Parallel Processing) 4 (1980), pp. 115-134.

8. Wallach, Y., and A. Shimor. "Alternating Sequential Parallel Versions of
FFT." IEEE Transactions on Acoustics, Speech and Signal Processing,
ASSP-28 (1980), pp. 236-242.

9. Rabiner, L. R., and B. Gold. "Theory and Applications of Digital Signal
Processing." Englewood Cliffs, New Jersey: Prentice Hall, 1975.

10. Lenfant, J. "Parallel Permutations of Data: A Benes Network Control
Algorithm for Frequently Used Permutation." IEEE Transactions on Com­
puters, E-27, (1978), pp. 637-647.

A Iist-processing-oriented data flow machine architecture

by MAKOTO AMAMIYA, RYUZO HASEGAWA, OSAMU NAKAMURA, and HIROHIDE MIKAMI
Musashino Electrical Communication Laboratory, N. T. T.
Tokyo, Japan

ABSTRACT

This paper analyzes some issues concerning list processing under a data flow control
environment from the viewpoint of parallelism and also presents a new type of
list-processing-oriented data flow machine, based on an association memory and
logic-in-memory.

The mechanism of partial execution in each function is shown by example to be
effective in exploiting the parallelism in list processing. The lenient cons mechanism
is shown to exploit maximally parallelism among activated functions.

143

A List-Processing-Oriented Data Flow Machine Architecture 145

1. INTRODUCTION

A data flow machine, whose basic idea was offered by J. B.
Dennis! and for which several research efforts are being pur­
sued at several places in the world,z-6 is a very attractive
concept as a future computer architecture, from the following
viewpoints:

1. A data flow machine exploits the parallelism inherent in
problems.

2. Recent noteworthy advances in VLSI technology have
been made. A data flow machine makes effective use of
numerous VLSI devices and makes possible the imple­
mentation of a distributed control mechanism.

3. Functional programming will become increasingly im­
portant to the improvement of software productivity. A
data flow machine effectively executes programs written
in a functional language.

4. Nondeterministic execution7 will become an important
mechanism in future computer systems. A data flow ma­
chine is expected to execute nondeterministic programs
effectively because of its parallelism.

However, many problems remain to be solved in order to
achieve an actual·data flow machine in a real environment.
Especially when considering Items 3 and 4 just cited, it is
necessary to clarify the data flow machine's applicability to
nonnumerical problems.

This paper discusses list processing, which is typical of non­
numerical data processing, on a data flow machine, keeping
the Lisp data structure and operations in mind. The main
reasons why Lisp was considered are that Lisp has a simple
and transparent data structure and that it contains the basic
problems in structured data manipulation.

First, parallelism in list processing is discussed, and it is
pointed out that this can be achieved by parallel evaluation of
function arguments and partial execution of the function
body. Then it is shown that parallelism increases dramatically
with introduction of a lenient cons concept into the data flow
execution control. Next, list-processing-oriented data flow
machine architecture and structure memory construction
methods are presented. Finally, a garbage collection algo­
rithm, based on the reference count method, is discussed.

All programs tiiroughout this paper are described in
VALID8 language, which is designed as a high-level pro­
gramming language for the data flow machine presented in
this paper.

2. LIST PROCESSING UNDER A DATA FLOW
CONTROL ENVIRONMENT

The noteworthy data flow execution control effects are as
follows:

1. It exploits the maximal parallelism inherent in a given
program both on a low level (primitive operation level)
and on a high level (function activation level).

2. It effectively executes programs constructed on the basis
of the concept of functional programming, which has no
notion of program variables and side effects (i.e., re­
writing the global variables).

The parallelism of the primitive operation level is achieved
by the data-driven control principle; that is, each operation is
initiated without attention to other operations when all of its
operands have arrived. Function-activation-Ievel parallelism
is obtained by the partial evaluation mechanism:

1. Each argument of a function is evaluated concurrently.
2. The execution of a function is initiated when one of the

arguments of the function is evaluated, and the caller
function resumes its execution when one of the return
values is obtained in the invoked function execution.

In this section these parallel execution mechanisms are ex­
amined through several examples.

2.1. Parallel Evaluation of Arguments

Programs written in VALID are transformed to equivalent
pure functional representation, i.e., the form of prefix no­
tation, and equally translated to data flow graphs. For in­
stance, Program1, which reverses a given list in each level, is
translated by the VALID compiler into the data flow graph
shown in Figure 1. Block1 in Program1 is equivalently repre­
sented in the prefix notation

fulrev(cdr(x), cons(fulrev(car(x), nil), y».

In this expression the two arguments cdr(x) and cons(...)
for the function fulrev are evaluated in parallel; and before
evaluating the argument cons(...), its two arguments
fulrev(...) and yare evaluated in parallel, and so on. Thus,
the evaluation of a function, in general, proceeds from the
inner to the outer (i.e., innermost evaluation). This results in
highly parallel evaluation of the innermost arguments. In
other words, each evaluation is independent of the other eval­
uations under the condition that the evaluation is initiated
only when all values of arguments are obtained (which is
called data-driven control).

Program1-Mirror image of tree
fulrev: function (x,y) return (list)

146 National Computer Conference, 1982

= case
null (x) ~y;
atom(x~x;
others ~c1ause

ru = cdr(x);

lv = fulrev(car(x),nil);
block 1 w = cons(v,y);

end

return fulrev(u, w)
end

2.2. Partial Execution of Function Body

The parallelism, based on the parallel evaluation of argu­
ments for each function, is limited because the nesting of
arguments is limited in source text. This restriction on paral­
lelism, however, can be overcome by executing the function
body partially.

If the data-driven control principle is applied to the function
activation, as in the case of primitive operations, every func­
tion is activated only after all its arguments are evaluated. In
this case, time is wasted unnecessarily in each function activa­
tion through waiting for the completion of all its argument
evaluations. However, if each value is passed into the function

x y

Figure I-Data flow graph for fulrev

body immediately when it is evaluated, and the function body
execution proceeds partially every time the value is passed in,
efficient execution can be obtained, because the unnecessary
waiting is cut out at function activation time.

The function activation and argument-passing mechanism
for the partial function execution is implemented as shown in
Figure 2. The data flow graph in Figure 2(c) represents the
activation control for the function

[y1, y2, ... , yn] = f(x1, x2, ... xm).

The call node, which creates a new environment for the
activated function, is initiated by the "or" gating nodes, when
one of the tokens (values) has arrived. Here, the call node
creates the body first if the body does not exist. Otherwise, it
creates only an instantiation name. The "or" gate implemen­
tation uses a tlf switch, as shown in Figure 2(b).

Y, Y2 ••• Yn

(a) Function invocation node

(b) Or gate implementation

Yl ••• Vn (old "in")

(c) Function activation control

Figure 2-Function activation mechanism

A List-Processing-Oriented Data Flow Machine Architecture 147

When the new environment is created and the body is ready
to run, the token "in" (instantiation name of the activated
function) is sent to link nodes and rlink nodes. Each link node
passes each argument value xl, x2, ... , xm to the body of the
activated function every time each value has arrived. Each
rlink node passes information regarding the place where the
return value is sent. These bits of information yl', y2', ... ,
yn', each of which is determined at compilation time corre­
sponding to yl, y2, ... , yn, are attached to each return value
to identify its destination. As each return value is passed back
to the calling function as soon as it is generated, the calling
function can resume and proceed with the execution parti­
ally every time the return value is passed back from the
called function. Here each function is permitted to return
multiple values (i.e., the tuple of values) under the data flow
environment.

2.3. Lenient Cons and Parallelism by Pipelined Processing

Although the partial execution of function yields higher
parallelism, it is not sufficient for maximally exploiting the
parallelism inherent in the given program.

In program2, for instance, the function partition in sort
body divides a list into three lists, yl,y2,y3, each of which
contains elements less than, equal to, and greater than the
first element. As the sort and append are activated immedi­
ately after each ofyl,y2,y3 is generated, it is expected that the
maximal parallelism among functions is obtained. However,
parallelism by partial execution of the function body does not
work well for reducing the execution time in the order, since
the time spent to sort the list of length n is proportional to the
square of n in the worst case. (Though it is proportional to n
in the best case.) The reason is that since each of the values
yl, y2, and y3 is not returned until the append operation is
completed in the partition body, the execution of the sort
function, which uses those values, must wait until they are
returned, and the waiting time is proportional to the length of
the list data made by the append operation.

program2-Quicksort program
sort: function (x) return (list)
= if x=nil then x--

else clause
-y = list(car(x»;

[yl,y2,y3] = partition(cdr(x),y);
return
append(sort(yl) ,append(y2,sort(y3»)

end;
partition: functiOi1 (x,y) return(list,list,list)
= if x=nil then (nil,y,nil-) --

- else clause
- [wl,w2,w3] = partition(cdr(x),y);

xl = car(x); yl = car(y);
return

case
X1=yl~(wl,append(list(xl),w2),w3);

xl <yl~(append(list(xl),wl),w2,w3);
xl>yl~(wl,w2,append(list(xl),w3»

end
end;

If the former parts of the list, which are partially generated,
are returned in advance during the period when the latter
parts are appended, the execution which uses the former parts
of the list can proceed. Thus the producer and the consumer
executions overlap each other. As the append is the repeated
application of cons, as Program3 shows, this problem can be
solved by introducing leniency into the cons operation.

Program3-append
append: function (x y) return (list)
= if x=nil then y --

- else cons(car(x),append(cdr(x),y»

Lenient cons, which is slightly different from the idea of
"suspended cons,,,9 means the following: For the operation of
cons(x,y), the cons operator creates a new cell and returns its
address as a value in advance before its operand x or y arrives.
Then the x and y values are written in the car and cdr field of
the cell, respectively, when each of them has arrived at the
cons node.

In the implementation the cons operator is decomposed
into three primitive operators, getcell, writecar and writecdr,
as shown in Figure 3. The getcell node is initiated on the
arrival of a signal token, which is delivered when the new
environment surrounding the cons operation is created. The
getcell operator creates a new cell and sends its address to the
write car node, the writecdr node, and the nodes waiting for
that cons value.

Each memory cell has, in addition to the garbage tag, the
c~u-ready tag and the cdr-ready tag, each of which controls
read accesses to the car field and the cdr field. The getcell
operator resets both ready tags to inhibit read accesses. The

s(gnal x v

z=cons(x,Y)

z
(a) Cons mechanism

lattribute I car cdr

garbage
~--- car-ready

1----__ cdr-ready

(b) Data cell structure

Figure 3-Lenient cons implementation

148 National Computer Conference, 1982

writecar (or writecdr) operator writes the value x (or y) to the
car field (or cdr field), and sets the ready tag to allow read
accesses to the field.

Lenient cons has a great effect in list processing. It naturally
implements the stream processing feature, in which each list
item is processed as a stream4

,10 for programs that are nor­
mally written according to the list processing concept, without
the notion of stream.

3. DATA FLOW MACHINE ARCHITECTURE

The data flow machine is composed of five components: con­
trol modules (CMs) , an inter-CM communication network
(CN) , structure memories (SMs), an arbitration network
(AN), and a distribution network (DN), as shown in Figure 4.
The CM, which is the kernel of data flow execution control,
consists of a memory for data flow machine instructions and
the enabled instruction fetch mechanism. The CN connects
CMs with each other. The SMs store structured data such as
list data. The AN and DN connect CMs and SMs.

eM 1 eM 2 eM m

®@ .. @ 0@··0 @@··0

EJ EJ EJ
SM 1 SM 2 SM n

Figure 4-Data flow machine organization

The characteristics of this machine architecture, which is
mainly based on the associative memory concept, are as
follows:

1. Effective memory utilization can be achieved as a result
of dividing the CM memory into instruction memory
(IM) and operand memory (OM). The 1M, which is a
read-only associative memory, contains data flow pro­
gram (i.e., function body). Here, destination instruc­
tions that await a result value are retrieved associatively.
The OM acts as a buffer for arriving operands.

2. As function bodies of a program are distributed in each
of the CMs, and each CM controls the execution of each
function body concurrently, parallelism is achieved
among CMs. The call/return parameters among func­
tions are passed through the CN, which logically realizes
dynamic tree structure.

3. Operation units are embedded in structure memory.
The structure memory is composed of a number of
banks, in each of which structured data operation units
are equipped.

4. The AN and DN provide paths between CMs and SMs.
The AN decodes the operand address in the instruction
packet and sends the packet to the addressed SM bank.
The DN accepts the result packet, which contains the
destination CM address, from SM, and delivers it to the
specified CM. The AN and DN are constructed using
routing network technique.

This data flow machine architecture can exploit high paral­
lelism due to the concurrent executions among IMs and the
pipelined processing between 1M and SM.

4. EXECUTION CONTROL

The CM memory which contains data flow machine codes is
composed of an 1M and an OM, as mentioned before. The 1M
and OM organization is shown in Figure 5.

I M o M

funci vn opr opr n op in vn val r t
code

n1 n2

~ \ \ const indicat or

Figure 5-IM and OM field organization

Each memory cell of the 1M consists of several fields, func­
tion name field (func#), value name field (vn), first operand
name field (oprn1), second operand name field (oprn2), oper­
and number field (n), and operation code field (opcode). The
OM consists of five fields, instantiation name field (in), value
name field (vn), operand value field (val), first/second oper­
and indicator (r), and garbage tag (t). The instantiation name
is assigned to a result value so as to share the function body.

The mechanism to deliver result value and fetch an enabled
instruction is shown in Figure 6.

When a result packet has arrived at the 1M, the func# and
oprn1 or oprn2 are examined associatively, using the key
(func#, vn), both of which are extracted from the result
packet as a search key. If the matched instruction is a one­
operand type, an instruction packet is immediately con­
structed from the matched instruction code and the result
value contained in the result packet and sent to the AN.

If the matched instruction is a two-operand type, on the
other hand, the in and vn field in the OM are examined for

A List-Processing-Oriented Data Flow Machine Architecture 149

resul t packet instruction packet

lin I u I vn Ivall lin I ft I vn' I opc i valli val21

Figure 6-Executive control mechanism

matching associatively against the key (in) in the result packet
and the key (vn) extracted from the matched instruction at
1M.

If an OM cell is matched, which means one of the two
operands has arrived already, the matched data are read out
from OM. Then a two-operand type of instruction packet is
constructed along with the operand value contained in the
result packet and sent to the AN.

If no OM cells are matched, the garbage tag field is accessed
associatively to find a free cell. Then, the (in, vn, val) in the
result packet and tag r, which indicates whether the val is the
first operand or the second operand, are written into the cell
taken out.

5. STRUCTURE MEMORY

The method of structured data manipulation is an important
problem in the data flow machine architecture.4 In this sec­
tion, structure memory design philosophy and its construction
method are described from the viewpoint of parallel list pro­
cessing. In this data flow machine, list stmctured data are
stored in the structure memory, and their pointers to each
entry flow in the machine as data tokens.

5.1. Primitive Operation in List Processing
and Memory Function

Pure Lisp primitive operations that have no side effect are
considered as a basis for structured data manipulation.
Among the five primitive operations (cons, car, cdr, atom,
and eq), only the cons operation creates a new data cell and
writes car and cdr pointer into the cell. Once the value is
written into the cell, its contents are never modified. As other
operations only refer to the cell, and as programs composed
of these five functions have no side effects, the new cell may
be created at any location. .

List processing is regarded as memory operations which
mainly contain readout operations. How to execute the
memory operation effectively is a key problem. Memory con­
tention and side effects are serious for exploiting the paral­
lelism in list processing. The parallel execution among mem­
ory ope.rations is obtained by preserving functionality, as in
pure Lisp.

The data-driven control makes possible the pipe lined pro­
cessing between execution control and memory operation. If
the pipe capacity is large enough, execution control is not
affected by memory access overhead. Therefore, uninter­
rupted access to memory cells is possible.

As a newceli may be created by cons at any location, the

problem of memory contention can be solved by dividing the
structure memory into many banks. In addition, parallelism
among memory operations is obtained by providing an oper­
ation unit for each memory cell. This idea results in a logic-in­
memory concept. When the tradeoff between parallelism and
cost is considered, it can be decided whether to embed the
operation in a memory device.

5.2. Garbage Collection

As many data elements are copied in the course of the
side-effect free data manipulation, how to use structure
memory cells effectively is an important problem. Although
mark-scan methods are generally used as a garbage collection
method in a conventional machine, a reference count method
is adopted here, for the following reasons:

1. Since pointers to list data entries are scattered in various
parts of the machine, such as instruction memory units,
operation units and networks,10,11 it is very difficult to
extract the active cell without suspending execution.

2. As list manipulations have no side effect, no circular lists
exist.

In the reference count method, each structure memory cell
or memory block has a reference counter field which is up­
dated every time operations, such as car, cdr, etc., are per­
formed. Reference count handling overhead will be serious if
the reference count is updated in not only primitive opera­
tions but also in TIF switch and function linkage operations.
However, this problem can be solved by reducing the refer­
ence count update frequency. The method adopted here
makes use of VALID language features, that is, (1) block
structure and locality of value name, (2) uniqueness of the
value name definition (single assignment rule). The reference
count management explicitly updates the reference number of
the cell by performing the increment and decrement oper­
ations. It is not necessary to update the reference number of
cells referenced in a block every time operations are per­
formed. Instead, the reference number of the cell which is
newly denoted in a block is incremented when the block is
opened and decremented when the block is closed.

5.3. Structure Memory Organization

Unlike numerical processing, which handles regular data
structures such as vectors and arrays, it cannot be expected
that manipulating list-structured data yields locality of access
to each list item, since many functions refer to sublists or
superlists of a list which is produced by some function, and the
sublists and superlists are produced variously during the exe­
cution of many functions. In such a case, whether to achieve
the locality of access in each function or to distribute access
without copying sublist is a tradeoff point in design.

The copying overhead is serious in list processing, be­
cause many sublists and superlists are produced in various
places in an execution. Therefore, distributing access to lists
thoroughly is more effective than copying lists in the data flow
machine architecture. New cells are generated in such a way

150 National Computer Conference, 1982

as to distribute cells uniformly in SM banks, since appropriate
cons strategy enables each cell address to be distributed, due
to the functionality of list processing, as mentioned above.

The"structurememory is composed of a number of memory
banks which can control access independently, as shown in
Figure 7. The SM bank construction can resolve the memory
access bottleneck, because new cells are taken out and distrib­
uted uniformly in each SM bank. The reference count man­
agement module (cleanup) for garbage collection is provided
in each SM bank. As the reference count method is adopted
as described above, the function such as a logic-in-memory is
required in order to solve the neck of the reference count
update operation.

Network

eM 1

eM 2

eM m

Structure
memory bank 1

Structure
memory bank 2

Structure
memory bank n

Figure 7-SM structure

The SM bank organization is show;in Figure 8. Data cells
in an SM are constructed of three independent blocks, ref,
car, and cdr blocks, so as to enhance the primitive-operation­
level parallelism. The car (cdr) block consists of car (cdr) ready
tag, attr1(attr2) field and car (cdr) pointer field. The attr1
(attr2) field indicates the attribute of the cell pointed by car
(cdr) field, i.e., number atom or literal atom or nonatom.
Attribute information extracted from the field is also held in
an instruction and result packet. The ref block consists of
garbage tag and reference counter field which holds the ref­
erence number. The ref block is implemented with RAM
incorporating the increment and decrement circuits. (The in­
crement and decrement functions are integrated in the mem­
ory, based on logic-in-memory concept, so as to reduce the
reference count handling overhead in garbage collection
management.)

Figure 8-SM bank organization

Specialized operation units are devised for each primitive
operation according to the field (i.e., car, cdr, attr and ref)
accessed by their operations, as shown in Table I. Car (Cdr)
opn performs operations which read the car (cdr) field. Attr
opn performs operations which examine the attribute data.
Ref opn controls reference count management and performs
the getcell operation. Lenient cons operation is decomposed
into three operations, getcell, writecar and writecdr, each of
which is executed in the Ref opn, car opn, and Cdr opn,
respectively" The AN is designed so as to distribute getcell
operations uniformly among SM banks.

OPN

REF

ATTR

CAR

CDR

TABLE I-Primitive functions in SM

FUNCTION

INCREMENT
DECREMENT
GETCELL

ATOM
EO
NULL

WRITECAR
CAR
(CAR-G)

WRITECDR
CDR
(CDR-G)

OPERATION

increments a reference count
decrements a reference count
gets a new cell

tests for atomic cell
tests for equality on atomic symbols
tests for emptiness

writes a value in the car field
reads a value from the car field
decrements a reference count of
the cell pointed by the car field

writes a value in the cdr fieid
reads a value from the cdr field
decrements a reference count of
the cell pointed by the cdr field

How an operation car(x) is performed is illustrated by an
example. The car opn takes an instruction packet from the
instruction queue in AN interface and examines attribute in­
formation in the instruction packet. If the attribute data indi­
cate that the cell is an atom, the error state is set into the result
packet. Otherwise, the memory cell specified by the val field
in the instruction packet is read from the ref block and the
ready tag is checked. If the ready tag is on, a value z, which
is read from the car field of the cell x, is returned to the 1M
as a result value. If the tag is off (which means the value has
not yet arrived), the instruction packet is taken back to the tail
of the instruction queue.

The garbage collection mechanism in Ref opn, which uti­
lizes reference counter field, garbage tag field and garbage
cell address buffer, is illustrated in Figure 9. The reference
number is set to 1 when a getcell operation is executed and
explicitly updated by increment or decrement operation.

When the reference count for a cell x becomes zero as a
result of the decrement operation, the garbage cell address
buffer is checked. If it is not full, the address of the cell x is
stored in the buffer. Otherwise, a tag is set at the correspond­
ing address in the garbage tag field. When room is made in the
garbage cell address buffer by performing a getcell operation,
the garbage tag field is searched and the address of the cell
whose tag is set is stored in the buffer. Read and write accesses
to the garbage cell address buffer are performed concurrently.

A List-Processing-Oriented Data Flow Machine Architecture 151

CAR-G,CDR-G ~'CDR opu) 1 DECREMENT' CAR-G'CDR-~J[Jl

,a<bage ce~:<;;;;:::g I Re~;~~~t Queue~

U~!~ar~:= U 01110 Id (I I 0 I 5
2 I 2 0
3 I 3 0

~
search 4 0 4 I

5 I 5
2 ::
0,\ nO n 6

L-_~ Garbage cell
address buffer o

Figure 9--Garbage collection mechanism

The garbage tag search operation is interleaved with tag set
operation; it does not itself set a tag. By using the garbage cell
address buffer, a free cell address can be quickly obtained in
the getcell operation.

6. CONCLUSION

This paper has presented an analysis of some issues concern­
ing list processing under a data flow control environment from
the viewpoint of parallelism and has also presented a new type
of list-processing-oriented data flow machine, based on an
associative memory and logic-in-memory.

The mechanism of partial execution in each function has
been shown by example to be effective in exploiting the
parallelism in list processing. The lenient cons mechanism has
been shown to exploit maximally parallelism among activated
functions.

In the list processing under data flow control, memory con­
tention and garbage collection are serious problems. The
problem of memory contention can be solved by dividing the
structure memory into many banks and by uniformly distrib­
uting access in each bank, since new cells may be taken out
from any bank.

The reference count is effective as a garbage collection
method under a data flow control environment. The garbage
collection algorithm presented here works well in the sense
that cells are reclaimed whenever they are useless, concur­
rently with the foreground list operations.

Many problems remain to be solved· for the data flow ma­
chine to be available for practical use. Several works are in
progress to examine the effectiveness of the machine
presented here. These include software simulator construc-

tion, experimental hardware system design, and VALID com­
piler implementation.

The simulator, which collects statistical information con­
cerning the lenient cons effect, cons strategy and memory
partition effect, and garbage collection overhead, etc., is now
running. The experimental hardware system to estimate the
cost performance is under development. The VALID com­
piler written in MacLISP is now under development on the
DEC System 20.

ACKNOWLEDGMENTS

The authors wish to thank Dr. N. Kuroyanagi, the director of
basic research division, and Mr. K. Yamashita, the director of
first research section, for their continuing support and en­
couragement. They also wish to thank the architecture re­
search group members in the first research section for fruitful
discussions.

REFERENCES

1. Dennis, J. B. "A Preliminary Architecture for a Basic Data Flow Pro­
cessor." The Second Annual Symposium on Computer Architecture, Jan.,
1975, pp. 126-132.

2. Plas, A. "LAU System Architecture: A Parallel Data-Driven Processor
Based on Single Assignment." Proceedings of the International Conference
on Parallel Processing, 1976, pp. 293-302.

3. Watson, I., and J. Gurd. "A Prototype Data Flow Computer with Token
Labelling." AFIPS, Proceedings of the National Computer Conference (Vol.
48), 1979, pp. 623-628.

4. Arvind, K., P. Gostelow, and W. Plouffe. "An Asynchronous Program­
ming Language and Computing Machine." Report TR 114a, Department of
Information and Computer Science, University of California, Irvine, Cali­
fornia, December 1978.

5. Davis, A. L. "The Architecture and System Method of DDMl: A Recur­
sively Structured Data Driven Machine." Proceedings of the Fifth Annual
Symposium of Computer Architecture, April 1978, pp. 210-215.

6. Keller, R. M., G. Lindstrom, and S. Patil. "An Architecture for a Loosely­
Coupled Parallel Processor. " UUCS-78-105, University of Utah, Salt Lake
City, Utah, 1978.

7. Dijkstra, E. W. "Guarded Commands, Non-determinacy, and Formal
Derivation of Programs." Communications of the ACM, 18 (1975), pp.
453-457.

8. Amamiya, M. "A Design Philosophy of High Level Language VALID for
a Data Flow Machine." Proceedings of IECEJ Annual Conference, 1981,
NO. 1486. In Japanese.

9. Friedman, D. P., and D. S. Wise. "CONS Should Not Evaluate Its Argu­
ments." S. Michaelson and R. Milner (eds.), Automata, Language and
Programming, Edinburgh: Edinburgh University Press, 1976.

10. Dennis, J. B., and K. S. Weng. "An Abstract Implementation for Concur­
rent Computation with Streams." Proceedings of International Conference
on Parallel Processing, 1979, pp. 35-45.

11. Amamiya, M., R. Hasegawa, and H. Mikami. "A List Processing Oriented
Data Flow Machine and Its Software Simulator." Proceedings of Meeting on
Computer Architecture, IPSJ, 40-8, 1981. In Japanese.

Lookahead networks

by G. JACK LIPOVSKI
AMBUJGOYAL
and
MIROSLAW MALEK

University of Texas
Austin, Texas

ABSTRACT

A fail-soft and easily reconfigurable interconnection network is proposed that can
function like a bus or like a shift register ring. Its performance as a bus exceeds the
performance of an Ethernet, and its performance as a ring is similar to that of a
distributed local computer network (DLCN). It can be reconfigured to a sufficient
degree to prune out faults or to partition the network into subnetworks that can use
possibly different protocols that are the most suitable for the subnetwork. Its
multiple-level priority arbitration appears very useful for mixed voice-data net­
works, to give guaranteed response times to voice packets. Finally, though it func­
tions like a bus or shift register ring, it is physically connected like a tree; so its cost
is linear and delay is logarithmic with the number of processors in the network, and
it is relatively easy to install in a building by using practices similar to those used in
telephone line networks. This paper describes functions of network-level and some
data link and physical-level protocols and develops several key mechanisms to
achieve ease of diagnosis and fail-softness.

153

INTRODUCTION

Interest has recently grown in local-area, or establishment,
networks, whose work stations (usually processors) are about
ten to several hundred meters from each other. Two of the
best contending networks for this application are bus ori­
ented, principally the Ethernet,1 and ring oriented,z,3,4 prin­
cipally the distributed local computer network (DLCN),z
which is based on the shift register insertion mechanism. Two
DLCN implementations have been introduced. The first ,2 em­
ploying one simplex channel between processors, is referred
to here as the simplex DLCN. The second,5 employing a pair
of contradirected channels between processors, is referred to
here as the full duplex DLCN. Although the bus and the shift
register ring have some advantages over each other, we will be
able to show a network that includes both these networks as
special cases and has superior characteristics. It is upward
compatible to both.

This paper discusses mainly a specific aspect of the proto­
cols used in the proposed lookahead network. The specific
aspect, in the parlance of the X.25 protocol,16 is the network
level where the interconnection of processors and the deter­
mination of routes for messages are defined. We do not dis­
cuss at length the link level, where frames or packets are
defined, or the transport level, where the breakup and reas­
sembly of user files into frames is defined; and we only focus
on a few of the issues at the physical level, where actual
physical connections and voltage levels and timings are dis­
cussed. The physical-level, link level, and transport level as­
pects of the protocol can be varied, as determined by further
study, to be combined with the aspects described in this paper.
Some of our earlier work6 developed the physical level for
optical high-speed interconnections in more detail, and anoth­
er paper7 tentatively explored the shift register ring capability.

The following sections describe the lookahead network. In
Section 2, a functionally equivalent but much simpler network
is introduced. The notions of shift register ring, broadcast bus,
and simplex broadcast link are described, using this simpler
network; and the priority hardware used for the broadcast bus
and the simplex broadcast link is discussed. Section 3 shows
some simple applications of the network introduced in Section
2, and thus of the lookahead network. Section 4 introduces
the conversion of the simpler network into the lookahead
network and describes further ways of reconfiguring the look­
ahead network to accommodate failures and multiple proto­
cols. Section 5 examines the question of timing at the physical
level and proposes a basic structure for the frame at the link
level of the protocol. Finally, Section 6 presents some conclu­
sions in support of the claim that this network is better than
the Ethernet and comparable to the DLCN network.

Lookahead Networks 155

2. A FUNCTIONALLY EQUIVALENT NETWORK

The network shown in Figure 1a is similar to the proposed
network. It is a ring of AND-OR gates, where each processor
has an AND-OR gate by which it can insert data into the OR
gate, by means of the GENERATE input, and by which it can
permit or inhibit the passage of data through it by means of
the PROPAGATE input. The input to each processor is la­
beled C, and the network is called a ripple network because of
its similarity to the ripple carry in a full adder. An important
special case is one in which the input X is applied to an AND
gate, as shown in Figure lb. Each processor has a two-input
multiplexer (MUX) whose switch position is controlled by
variable K, realized by the two AND gates and the OR gate
of Figure 1b, as shown in Figure 1c. This basic function of the
ripple network is similar to the network recommended for the
ADLC chip of Motorola MC6854, 18 when operated in the ring
mode. However, a ripple network is capable of realizing prior­
ity circuits as well, as shown in this section.

Tnvially, tIle npple network can -realIZe the shIft register
ring or the bus. To realize the shift register ring, put a shift
register in each processor whose input is connected to C and
whose output is connected to X in Figure Ic, and position each
MUX switch to the down position by making K equal 0 in each
each processor. To realize a bus, select exactly one processor
to broadcast data to all the others (in a manner to be discussed
shortly). If exactly one processor is selected to broadcast data,
that processor's MUX is switched down by making K equal 0
in it, and the data are inserted into its X input while all other
processor's MUXs are switched to the top position by making
K equal 1 in them. Then all the processors receive that data
on their C input.

A function intermediate between the broadcast bus and the
shift ring is the simplex broadcast link. If the MUX in Pro­
cessors 1 and 4 are positioned downward while all others are
switched upward, then the X input in Processor 1 is received
as the C input to Processors 2, 3, and 4, and the X input in
Processor 4 is received as the C input in Processors 5, 6, and
1. The section of the network beginning with Processor 1, but
not including it, and extending to Processors 2, 3, and 4 is a
simplex broadcast link; and the section beginning with Pro­
cessor 4, but not including it, and extending to Processors 5,
6, and 1 is another simplex broadcast link. The ripple network
can be partitioned into any number of contiguous nonover­
lapping simplex broadcast links at any time. This function is
used in the DLCN protocol. Note that the broadcast bus is a
special case of this function for one section equal to the entire
ripple network and the shift register ring is a special case for
each section equal to just one processor in the ripple network.

The broadcast bus and the simplex broadcast link must have

156 National Computer Conference, 1982

l

I
I GENERATE Ie; GENERATE. c

PROPAGATE PROPAGATE I PROPAGATE I PROPAGATE PROPAGATE PROPAGAI E \
I I I I I I
L _______ L ___ ~ ___ J _______ ~ ________ L _______ L ______ ~

PROCESSOR 6 5 4 3 2

(a) Basic circuit

PROCESSOR 6 5 4 3 2
(b) Special case

r - - - - --r- ------,---- ----,- --~-- - -T--- --- - T - ------
I \ I \ I
I I I

I I f I I I I j ["'--;--i -----0--- 1 1: ill i I I

I K xci KXC I KXC\ KXC
1

KXC I K xci L ______ ~ _______ ~ _____________________ ~ _______ J

PROCESSOR 6 5 4 3 2
(c)Eauivalent multinlexer

Figure I-The ripple network circuit

a method to select exactly one, or one or more, broadcasters
that will supply data. If this is done by a priori analysis and is
then stored in a control memory, the network can be con­
trolled by feeding the output of the control memory to the
MUXS. 8 A similar protocol on a broadcast bus is described by
Jensen17 in which every node is provided with a list of the
order in which each may send. We will show that the DLCN
uses a simplex broadcast link but uses an extra buffer to
permit data to be output without knowledge of the state
(transmitting or idle) of the other processors. In this case, no
priority circuit is needed. In the Ethernet and the Contention
Ring networks,12 exactly one broadcaster is selected by intro­
ducing collision detection and random delay capabilities in
each node, thereby avoiding the requirement of a priority
circuit. Otherwise, an arbiter or priority circuit is needed. In
the following discussion, two types of priority circuits are
described for the broadcast bus and a priority circuit is de­
scribed for the simplex broadcast link.

The ripple network contains the logic needed to build a
priority circuit for itself so that it can be used as a broadcast
bus or a simplex broadcast link. Referring to Figure 1a again,
a fixed-priority circuit or a round-robin priority circuit can be
implemented for a broadcast bus, as discussed in the following
paragraphs.

For a fixed-priority circuit, say with Processor 1 as the dom-

inant processor in the priority evaluation, let PROPAGATE
be 0 in Processor 6 alone (or equivalently, do not connect the
output of Processor 6 to the input of Processor 1, thus break­
ing the ring into a chain), and let PROPAGATE be 1 in all
other processors. Then if a processor (except Processor 6)
requests the use of the bus, it asserts a 1 on GENERATE.
Note that this 1 will be received by all processors to the left in
the chain. For example, if Processor 3 requests the use of the
bus, the C inputs to Processors 4,5, and 6 are 1. The processor
is granted use of the bus if it requests it (GENERATE = 1)
and no processor to its right requests it (C = 0). For example,
if Processors 3 and 5 request the use of the bus, then both
assert GENERATE and no other processor asserts GENER­
ATE. Cis 1 in Processors 4, 5, and 6. Only Processor 3 has
C = 0 and GENERATE = 1, so Processor 3 is granted the use
of the bus. This implements a fixed-priority circuit.

A round-robin priority circuit is subject to an error condi­
tion in which either no processor is granted use of the bus or
two processors are granted the use of the bus at the same time.
An (error-free) round-robin priority circuit is implemented
simply by breaking the ring at the processor that last got the
grant to use the bus, so that it becomes the lowest priority
processor. If Processor i is granted the use of the bus, it sets
PROPAGATE to 0, while all others set PROPAGATE to 1.
If Processor i again requests use of the bus, it does not assert

GENERATE, but instead it simply receives the grant if its C
input is 0 because no other processor requests use of the bus.
All other processors operate as in the fixed-priority case,
asserting GENERATE if they request the use of the bus and
getting a grant if they have GENERATE = 1 and C = O. In­
cidentally, if Processor i needs to use the bus for longer than
a normal cycle, it can retain GENERATE = 1 until it is
through, because this will assert C = 1 in all processors, thus
preventing them from getting the grant. This implements the
(error-free) round-robin priority circuit.

This round-robin scheme is similar to token passing,3 but
there is only a short delay through combinational logic in
bypassing processors that do not need service, whereas the
token-passing scheme required each station to hold a token
for a memory clock cycle. Moreover, this delay in the round­
robin scheme will be further reduced in the lookahead net­
work to be a logarithmic function of the number of processors.
This speedup might be significant for fast (optical) networks.
It allows successive evaluations of priorities of different prior­
ity levels, so that voice packets can have priority over data
packets, and bridge or window sources can have priority over
other servers, as we will discuss in Section 5. This capabil­
ity may prove to be critically important in mixed data-voice
systems.

A fixed-priority circuit for a simplex broadcast bus can be
deliberately or accidentally created if two or more processors
set PROPAGATE to 0 while all others set PROPAGATE to
1. Then each partition of the ring through which propagate is
1 has a separate priority circuit, and each will grant the use of
the bus. If the bus is configured as a simplex broadcast bus,
over which each partition block has a separate priority circuit,
then the priority circuit can serve to grant the use of that block
to a requesting processor in that block. That is a mildly useful
feature.

However, an error can occur in a round-robin full broadcast
bus priority circuit in one of two ways. Either a processor that
did not get the grant can accidentally set PROPAGATE equal
to 0, so two processors have set PROPAGATE equal to 0; or
a processor that got a grant can accidentally set PROPA­
GATE equal to 1, so that no processor sets PROPAGATE to
O. (This is similar to the error in token-passing protocols
where two tokens are created, or the token is lost.)

If two processors set PROPAGATE equal to 0, then the
priority circuit grants use of the bus to two processors, so the
data output on X of a processor will not be received in input
C of the same processor for both processors. The data are
separated, rather than ORed together, because in the broad­
cast bus the processor that sends data also sets PROPAGATE
to 0 when it is sending data, so the two processors that are
sending data will receive data from the other processor.

If two processors are granted use of the bus, both pro­
cessors will have to request that the fixed-priority circuit
mechanism be used in the next cycle, and the next cycle only,
and that the data just received be ignored. This request is sent
by means of a signal sent into the GENERATE input while
the PROPAGATE is set as for the previous broadcast in all
processors. Both processors send out a signal, which will be
the same signal. One processor will send this signal to all the
processors in the ring up to the second processor that broad­
cast data, and it will send the signal to the other processors up

Lookahead Networks 157

to the first processor. The same effect will be created when
more than two processors appear to get grants, and the result
will correct the fault.

If no processor sets PROPAGATE equal to 0, then a pro­
cessor setting GENERATE equal to 1 will automatically set
its own C = 1, so no processor will broadcast at all. This is due
to the fact that the GENERATE output will propagate
through each processor, all the way around the loop, setting
the C input to 1 in the same processor that set GENERATE
equal to 1. We will assume that the protocol has a frame called
a null frame (or idle signal), which appears on the network
when no processor is sending a frame, and that this null frame
is never sent by any processor as data. If a processor detects
that it had requested use of the bus, and that subsequentiy a
null frame appeared on the bus, indicating that no processor
used the bus, the same request signal that was used to signal
multiple grants is asserted, which causes the fixed-priority
mechanism to be used in the next cycle and the current cycle
to be ignored. (The bus temporarily has PROPAGATE = 1 at
all processors, so it acts as a set-clear flip-flop and is "set"
by any processor that wanted to use the bus. This flip-flop
latching effect is terminated when one processor breaks the
loop to become the lowest-priority processor in the fixed­
priority circuit.)

The broadcast bus frame protocol will be defined to have a
frame priority error bit for either the generation of mUltiple
grants or the loss of a grant. This bit will appear at the end of
the frame.

3. SOME EXAMPLES OF THE USE OF THE
RIPPLE NETWORK

Before passing to the lookahead network, we would like to
establish the advantages of the simpler ripple network relative
to the conventional broadcast bus (Ethernet) and the ring
(DLCN). This will be done in a qualitative but fairly rigorous
way in this section.

The Ethernet is a contention bus protocol. That means that
when two or more processors request use of the bus, they send
a signal and listen to the bus. They do not get the signal they
sent when two or more processors request the bus, because
each processor sends a different signal. They wait a random
amount of time and then send the signal again. When one
finally makes a request while the other is waiting and not
making a request, then that one gets a grant and uses a bus.
Although this does not degrade a lightly loaded network sig­
nificantly, as the load increases, more processors will send
signals, more collisions will occur, and more tries will be
needed before a processor will eventually succeed in getting a
grant. No practical backoff algorithm exists that can reach the
theoretical lower limit of 1.72 collisions (on an average) per
successful transmitted frame. 9 In fact, the contention protocol
busses, like the Ethernet, become unstable and provide exces­
sive response times as the throughput is increased beyond the
67% of the capacity of the channel. 9

By comparison, the ripple network has a built-in hardware
priority circuit. It uses a different priority mechanism but is
still a bus protocol like Ethernet. (The lookahead network can
implement a contention protocol that uses digital codes rather

158 National Computer Conference, 1982

than analog levels to determine contention.) When two or
more processors request use of the bus, they assert their
GENERATE inputs simultaneously, and one processor re­
ceives the C = 0 that indicates it may have the bus at the end
of a time t that is independent of the number of requesting
processors. In the ripple network t is proportional to the total
number of processors in the circuit, whereas in the lookahead
network it is proportional to the logarithm of the number of
processors, as will be shown later. This shows that the per­
formance of the ripple network is superior to the performance
of the Ethernet in that capacity is significantly increased.

The simplex link DLCN network2 uses a variable-length
shift register in each processor that is sending data and a
zero-length shift register in processors that do not send data.
As data is sent by a processor, the data that are coming into
the processor from the previous processor in the ring are
stored in the shift register so that it can be sent out after the
data from this processor are sent out. In this way each pro­
cessor can make a decision about whether to send data based
only on local information (comparing the amount of data to be
sent to the amount of room left on the variable-length shift
register to buffer the incoming data that it will replace), and
a priority circuit is not needed. The simplex DLCN network
is just a ripple network in which the MUXs in each processor
have more than two inputs, so that data can be taken from
different taps in a shift register or from the data being input
to the processor to implement a variable-length shift register
with a bypass. Thus, the simplex DLCN network is a special
case of the ripple network (Figure 1a) that is different from
the special cases studied above (Figure 1b, Figure 1c). The
duplex DLCN network will be compared to the lookahead
network later.

The ripple network is capable of being used as a broadcast
bus, with similar characteristics, but with better performance
than contention busses like the Ethernet and as a shift register
ring like the simplex DLCN. The bus protocols are advan­
tageous when a command or some data have to be seen by all
processors. The DLCN protocol can have twice the capacity
ofthe bus protocol for randomly generated messages because,
on the average, the message will use only half the network and
the other half can be used for another message. The ripple
network can be used in either mode.

In addition, the ripple network can be used in special cases
as a simple shift register ring-for example, in the analysis of
data acquired in oil exploration (linear filtering, convolution
integration, and correlation), in some office systems (multi­
ple-query analysis on the same stream of data), and in pipe­
lined processes, such as those that might be created in a UNIX
operating system. When these special cases exist, the simple
shift register protocol can maintain constant capacity between
two processors as the number of processors increases, while
the other protocols would reduce capacity between any two
processors proportionally to the number of processors in the
network. (This weakness of the bus and DLCN protocols is
partially ameliorated in the lookahead network.) The simplex
broadcast link protocol has some advantages where a pro­
cessor tends to broadcast data to a limited group of processors
that can be placed after it in the ripple ring, such as in pro­
cessing arrays of data where each processor stores a sub array .

Each protocol has significant advantages for some class of

problems, and there is no unchallenged claim to universal
superiority. But the ripple network and later the lookahead
network are capable of performing as these networks do.

Moreover, Bokhari lO is investigating techniques where local
optimization is done using the ring type of interconnection,
and global optimization is done using a bus. Since global
optimization involves 0 (n * *2) complexity, whereas local opti­
mization involves 0 (n) complexity, local optimization permits
the parameter n to be reduced before it is squared. This
flexible bus allows such algorithms to be used without the cost
of implementing two separate interconnection networks.

However, the entire ripple network will have to function in
one mode or another at any given time. We would like to be
able to partition the network so that different parts of it could
use different protocols that are adapted to the problem being
executed in that part. Also, a failure of any processor, espe­
cially a stuck-at-one failure where it keeps broadcasting data
forever, will bring down the entire network. For these rea­
sons, we introduce the lookahead network in the next section.

4. THE LOOKAHEAD NETWORK

The ripple network can be used as a chain of MUXs, which
may realize many different networks, as we have demon­
strated in the last two sections. It is structurally the same as
the ripple carry circuit that is used in the parallel adder. As is
well known in computer design, one can create a circuit func­
tionally equivalent to any combinational circuit in two levels
of logic, just using the sum-of-products expansion; and the
sum-of-products expansion of the ripple carry circuit is the full
carry lookahead circuit. While it features constant (two-level)
delay for arbitrary n (number of bits added), it is a complex
circuit, even when put in one chip, and is certainly too com­
plex to be used as a local-area network. Between these two
extremes, the ripple circuit and the full lookahead circuit, a
recursively defined look ahead circuit can be implemented in
a tree structure. Basically, for an n -bit adder, f bits are com­
bined in a group, and this group, as a 2**f-ary digit, is added
with other similar groups to combine them into a group of bits
equivalent to a (2**f)**2-ary digit, using a full carry look­
ahead circuit to implement addition in each group. This com­
bination into larger groups is repeated until the entire n -bit
number is one group. This creates a tree having log n base f
levels, and each nonleaf node in the tree is a carry lookahead
circuit. The most common such circuit is that for which f = 4,
and widely available ICs such as the "carry-Iookahead gen­
erator" 74182 and the 2902 can be used. The simplest circuit
to describe, however, is that for whichf = 2 (see Figure 2). We
will discuss that circuit in this paper, but the theoretically
optimum network has f = 3 ;20 and results will apply to any
fixedf, and for that matter, any arbitrary fthat can be differ­
ent at different nodes.

Note that each link in the tree appears to be implemented
with three wires, GENERATE, PROPAGATE, and C, and
the logic to establish these signals is very simple, as shown in
Figure 2a. The C input from the father is the carry into the
group of bits and is the C input to the right son. The C input
to the left son is 1 if the right son GENERATEs a carry or if
the C input from the father is 1 and the right son PROPA-

LEFT
SON

G P

FATHER

t

(--"'"
I \

RIGHT / \

SON / \

G P C /

/ \
(a) The circuit in C?Qch / \

non -lea f node / \
~ \

/ \ Perimeter
/ ~ String

/ \/
/ ~

/ \
\

GENERATE

(b) The Lookahead tree

Figure 2-The !ookahead network

GATEs this carry. "The group GENERATEs a carry if the left
son GENERATEs a carry or the right son GENERATEs a
carry and the left son PROPAGATEs it. Finally, the group as
a whole PROPAGATEs a carry if the left and right sons
PROPAGATE the carry. Figure 2b shows a binary tree,
whose leaf nodes, L1 to L4, are processors and whose nonleaf
nodes, N1 to N3, are those shown in Figure 2a. To implement
the ring-structured ripple network, the GENERATE from the
root node is connected back into the C input of the root node.
This connection does not introduce any unstable feedback
loops, because the GENERATE from the root node is log­
ically independent of the C into the root node; indeed, this
connection is used for the "end-around carry" in one's com­
plement adders.

The recursively defined carry lookahead circuit, hereafter
called the lookahead network, has a physical structure that is
a tree, with an arbitrary fanout at each node. The leaves of the
tree are processors, and the other nodes are essentially just
"carry lookahead generator" chips like the 74182, which may
contain a buffer memory or a processor for the repeater,
bridge, and gateway mechanisms discussed later. Most nodes
are expected not to need these optional capabilities. The in­
terface between the processor and the network is an I/O chip
similar to that for the SDLC or ADLC network, such as the
Motorola 6854. 18 This structure is simple to wire up in a build­
ing. The root of the tree, an arbitrary point, could be wired to
a closet in each area where the telephone equipment is cur-

Lookahead Networks 159

rently housed; the lines from there could be wired to each
room where the next node appears; and from there it could be
wired to each terminal, printer, mass storage device, and so
on.

The nonleaf nodes should be implemented as an IC with a
fixed fanout f = three, as we see later. If a node N in the
implementation, like a node housed in a telephone closet,
requires fewer sons than f, the other sons will be pruned by
means of a technique introduced later. If the node in the
implementation requires more than f sons, the next highest
fanout f* *i for some integer i can be realized by a tree having
i levels, and the leaves of that tree can be connected to the
sons of node N.

The lookahead network is simple to use at this point, be­
cause it is functionally equivalent to a ripple network (intro­
duced in the previous sections). However, several respected
colleagues who have recently learned about the network have
expressed some fear about its complexity. In response, we
have pointed out that such a circuit has been used in the ALU
of most computers since the 1950s and that despite its appar­
ent complexity it has been successfully treated as a gray box14

that most users use daily but would not care to understand. In
this paper we will present the details of the logic. Henceforth,
after reading this paper, we hope that the user will simply
treat it as a subsystem that has the same functional character­
istics as the ripple network and also a few other character­
istics, described below.

The lookahead network has the characteristics of the ring
network and some further modest advantages. As just dis­
cussed, it can be wired as a tree. Moreover, no signal will ever
travel further than the distance from a leaf node to the root
and back to another leaf node. This physical distance can be
shorter than the distance a signal may travel in the ring. As­
suming that n processors are arranged in a tree with fanout 7
and each processor takes a cube unit of space, the number of
gates can be proportional to the log base 7 of n, and the
free-space propagation delay can be proportional to the cube
root of n. Our original motivation for studying the lookahead
network was to improve its speed characteristics, especially
for very fast optical-fiber networks. 6 However, other advan­
tages (pruning and wire-OR bussing) discussed below sub­
stantially expand the applicability of this network, and speed
has become a rather modest advantage compared to the sub­
sequently discussed advantages.

A significant advantage of the lookahead network over the
ripple network is its ability to form the equivalent of the
wire-OR bus (see Figure 2). If the PROPAGATE are all 1,
then the GENERATE out of the root node (node N3 of
Figure 2b) is the OR of the generates out of the leaf nodes
(nodes L1 to L4). This is fed back to the C input of the root
node. This C input is sent to all C inputs of the leaf nodes.
Incidentally, this signal may be ORed with some GENER­
ATE signals from leaf nodes to produce a C input to a leaf
node; but since this C input is itself the OR of all GENER­
ATE signals, the effect is that the C input to the root is
broadcast to all leaf nodes. Further, since the root node GEN­
ERATE output is logically independent of the root node C
input, there is no possibility of oscillation or lockup. This
possibility of lockup exists for the ripple network when all
PROPAGATE are 1. The ripple network behaves like a set-

160 National Computer Conference, 1982

clear flip-flop. Since lockup does not exist in the lookahead
network, that network is capable of supporting the equivalent
of a wire-OR bus. Wire-OR busses can be used to collect
acknowledgments or status signals from a set of processors.
They can also be used to implement a digital contention poli­
cy, which is equivalent to the analog contention policy used in
Ethernet.

The most significant advantage of the tree is the ability to
prune subtrees so that faulty nodes can be pruned and so that
the subtree that was pruned away from the rest of the tree can
execute the same protocol as the rest of the tree on a smaller
loop or ring, or it can execute a different protocol from that
used in the rest of the tree. This advantage is similar to that
proposed by Arnold and Pagell for their hierarchical bus ar­
chitecture, and that architecture can be a special case of this
look ahead network. In order to explain the pruning idea, we
have to understand the look ahead network functions that are
equivalent to the ripple network functions.

Except for wire-OR and pruning functions, the look ahead
network is functionally equivalent to the ripple network, as is
fairly well known among computer designers. To show the
reader that the two networks are indeed equivalent, we will
describe in detail the realization of the shift register ring and
the broadcast bus implementations in the lookahead network.
Comparing these to the previously described implementations
of the ripple network, we can verify that they have the same
input-output function-that they are functionally equivalent.
Other functional equivalences-priority evaluation and sim­
plex broadcast bussing-are also easily demonstrated, but
they are omitted to shorten the paper.

Figure 3a shows the lookahead network as it is used for a
shift register loop. The PROPAGATE is 0 in each processor,
just as in the ripple network. Note from observing Figure 2a
that the PROPAGATE is then 0 in all links, since the PROP­
AGATE sent by a node toward the root is the AND of the
PROPAGATE sent into it. Therefore, the C line from a node
toward a right leaf is the C line from the rootward node, the
C line toward a left node is the GENERATE from the right
node, and the GENERATE toward the root node is the GEN­
ERATE from the left leafward node. The signals travel
around the tree as if it were on a string wrapped tightly around
the tree, which we call a perimeter string, as shown in Figure
2b. The string is not really there, but the signal travels through
the C and GENERATE lines just as if it traveled through the
string. The effective communication path is as shown in Figure
3a. The most significant concept here is that the circuit is
functionally equivalent to the ripple network in the imple­
mentation of the shift register ring.

Figure 3b shows the look ahead network as it is used for a
broadcast bus. One processor is selected to broadcast data to
all processors. The selected processor sets PROPAGATE to
o and all others set PROPAGATE to 1, just as in the ripple
network. The PROPAGATE is 0 in all links between this
processor and the root of the tree, which will be called the
separator chain, because the PROPAGATE rootward is the
AND of the leafward PROPAGATE. All other links that are
not in the separator chain have their PROPAGATE signals
equal to 1. The selected processor puts its data on the GEN­
ERATE, and all other processors put 0 on their GENERATE
lines. These data flow up the GENERATE line on the left

GENERATE

'-.

(cJ.) Shift register ring

(b) Broadcast bus

Figure 3--Some basic functions on the lookahead networks

side of the separator chain, because all the PROPAGATE
that are not in the separator chain are 1. The data then flow
down the C line from each node in the separator chain and
flow to the left and right sons on the C line because the
PROPAGATE is 1 in all these links that are not in the sepa­
rator chain. The data are broadcast to all nodes to the left of
the selected node. We always feed the GENERATE that
emerges from the top of the root node into the C that is sent
into the root node, as explained earlier. Thus the data, emerg­
ing from the GENERATE above the root, are sent into the C
at the root. The data sent into the C at the root will be
sent-at each node whose right son is not in the separator
chain-to the C output toward both sons, and-at each node
whose right son is not in the separator chain-to the C output
toward both sons, and-at each node whose right son is in the
separator chain-toward the right son. The data are broadcast
to all nodes to the right of the selected node, including the
selected node. The important point, again, is that the look­
ahead network is functionally equivalent to the ripple network
when used as a broadcast bus.

The same analysis can be used for the simplex broadcast
link and the fixed-priority and round-robin priority systems.
The important conclusion is that the look ahead network is
functionally equivalent to the ripple network. We now can
attend to the more significant issue of pruning.

A lookahead tree can be pruned at any link. Figure 4 shows
an example of pruning at link a. The subtree below a will form

Figure 4--Pruning a look ahead network

an independent tree capable of implementing a shift register
ring, a broadcast bus, a simplex broadcast link, or a fixed or
round-robin priority circuit while the rest of the tree is capable
of independently doing one of these things. To separate the
subtree from the tree, the GENERATE, PROPAGATE, and
C signais merely have to be forced into a state that they would
be in if no signal appeared from the subtree or into the subtree
from the main tree. This is easily accomplished. The GENER­
ATE is forced to 0, so the subtree will not generate data into
the rest of the tree; the PROPAGATE is forced to 1, so that
the subtree will not sever the rest of the tree in a separator
chain; and the C into the subtree is forced to be the GENER­
ATE out of the subtree, so that the subtree will have its own
"end-around carry" to implement the various functions. The
pruning operation is very simply implemented.

The pruning operation can prune faults. Some thought has
to be given to the control of the network that selects the link
to be cut lest the control itself use the faulty node to prune the
faulty node. We discuss the selection of the link to be pruned,
together with the most demanding application of pruning, in
the next two paragraphs. The nonleaf nodes are not always
processors, but are usually essentially lookahead generator
chips. They can be selected and set to disconnect the links
above them or below them in one of two ways.

One way uses the standard addressing technique in trees. In
a binary tree, a binary number selects the nodes at the level
of the tree that equals the length of the number; the most
significant bit chooses the right (0) or left (1) son of the root,
the next most significant bit chooses the right (0) or left (1)
son of that node, and so on, until the least significant bit is sent
down. At that time, the node just selected by the least signifi­
cant bit is marked and modified. The leftmost processor can
send the signals, bit-serially most significant bit first, through
its GENERATE line, to the root of the subtree that it is in.
The signal at the root is sent down the C lines, which allow the

Lookahead Networks 161

signal to pass only along the path established by the prior
address bits and to extend the path one link each cycle, as
described above. A simple sequential machine is needed to
implement these operations in each node.

The other way uses the intersection of chains like the sepa­
rator chain used in the broadcast bus function (see Figure 5).
Suppose that we wish to select a particular node N. Then let
PI be any processor in a subtree below the right son of N, and
let P2 be any processor in the subtree below the left son of N.
If PI establishes a chain to the root node, and P2 then estab­
lishes a chain to the root node, the node N will be where these
two chains meet. That node can be selected and modified.
Although the latter technique cannot prune out a single bro­
ken node in a binary tree, because the broken node must
participate in the pruning technique, it can work in a tree with
fanout greater than 2. Two good processors could select the
node above the bad processor and command it to disconnect
the link to the bad processor. Although either technique can
be used, we think the latter is simpler, and we will show how
it can be implemented in the link protocol.

The pruning technique can be used to create separate loops,
busses, or rings that do not communicate to each other. Using
this mode, we can optimize the size and the protocol of each
subtree to the application. The size and protocol selected for
each subtree could be adjusted by a technician upon installa­
tion of the network or upon modification or expansion of it,
or it could be done dynamically by an operating system. The
latter technique appears fairly complicated but promises sub­
stantial rewards. In either case, the tree structure poses some
constraints. Wired in a natural way between rooms, the sub­
trees would contain the processors in one room or a floor, and
so on. However, processors of one type, scattered throughout
the local area, may require one protocol, whereas processors
of another type, scattered throughout the local area, may
require another protocol. If we establish different trees for
each type of protocol and tie their roots together to form a
single tree, we can accommodate these requirements; but the
simple wiring scheme that is natural for trees becomes messy:

/
/

/q
/ \

/ \

/
/

/

/ \

cj b
Figure 5-Selection of non processor nodes

162 National Computer Conference, 1982

we have a thicket rather than a tree. This disability, inciden­
tally, is equally true for busses or rings. Multiple busses or
multiple rings would have to be wired around a local area if
different processors had to be attached to different rings (or
busses) and the processors attached to the same ring (or bus)
happened to be scattered throughout the local area. The look­
ahead network allows these to operate separately or to be
joined into a single ring (or bus) if that is useful.

If two loops are created, a bridge is a port on one loop and
a port on the other loop in the same node that permits data
from one loop to the other in which the frame size and proto­
col is not altered, but the signaling rates and access mech­
anisms may change. 12 A repeater is simpler than a bridge: it
does not permit the signaling or the access mechanism to be
modified at all. A gateway is more complex, allowing any
change of the protocol. 12 Bridges and repeaters between loops
are reasonably straightforward. We consider the three proto­
cols that have been studied earlier in the paragraphs below.

A bridge between two broadcast busses could be imple­
mented this way. Requests from a processor would be handled
by the priority implemented in the bus that they are connected
to. When granted use of the bus, the processor would select
the bridge, command it to request the next bus, and test the
result to see if the request was granted. If the request was
granted, the processor could repeat the process to acquire bus
by bus until it reached all the destinations that it intended to
reach. When it had acquired all the resources it needed, it
could send the data. If the request was not granted, it might
continue to try to form the next bus for a period of time; but
after the period was over, it would abort the request and try
again later so that it would not tie up the local bus and so that
it could thus avoid deadlock. The period would be determined
by analysis of the load and the loss due to blocking the local
busses. In order to enhance the chances of completing the
circuit, the priority network for each bus should not be strictly
round-robin, but should favor the bridge over the lower (leaf­
ward) level nodes of the subtree that realizes the bus. Never­
theless, the other nodes should be treated fairly. This obser­
vation is forwarded to the discussion of the frame structure in
the next section.

A shift register ring can be bridged to another shift register
ring without difficulty. In fact, the Pierce 100p4 is a static
implementation of this protocol. Figure 6 shows how the
"perimeter strings" would appear for both loops where the
node below the pruned link implements a bridge between the
loops.

A DLCN can be bridged to another DLCN, provided that
each node where a bridge can be set up has a buffer memory
that is larger than the longest frame. We are currently study­
ing this mechanism, and we are using simulation to determine
the size of the buffer needed to reduce the number of frames
that are rejected at the bridge. 13 If the rootward loop is lightly
loaded, the buffer appears to have to be twice the maximum
packet length to insure that more than 90% of the frames are
successfully transferred.

Interfacing among loops that have different protocols is still
under study. However, the transmission of a fixed-size small
frame, adequate for control signaling, appears to be fairly
simple between the protocols. Toe frame size has to be limited
to the frame size of the shift register ring, which is fixed to the

Figure 6-A bridge in a shift register ring that has been pruned

size of the shift register implemented in hardware. Since such
a frame would not have to be reformatted, the rootward nodes
of the lookahead network would only need to handle the
physical levels of the protocol and not the link and transport
levels. If complete generality is required, as in a gateway, then
the upper-level nodes where a gateway may be implemented
would have to be intelligent processors with considerable
memory. Note, however, that nodes where a repeater, bridge,
or gateway will never be implemented can be built without
either buffer memories or processor intelligence.

It appears that a lookahead network with carry lookahead
generator logic, logic to select and prune links in the tree, and
local memory capable of holding two maximum-sized frames
is a very powerful distributed system. A more economical
system, deleting the memory buffer, would not be able to
interconnect DLCN loops, but would use nodes that are just
a little more complex than the carry lookahead generator
chip, as described earlier. Moreover, a system built with the
less costly chips could be upgraded to the more general system
by replacing the chips with modules that have memory or
processors and memory, and this could be done in some but
not all nodes. Users can upgrade systems to fit their needs.

5. TIMING AND FRAME STRUCTURE

This section discusses the question of the structure of frames
in the link level of the protocol, which will be compatible with
the modes of operation of the lookahead network. The most
complex protocol is that for bus operation. To permit multiple
subtrees to use different protocols, but to allow bridges be­
tween them, we can implement the simple shift register ring
and protocols of the DLCN type, using the same frame struc­
ture as that for the bus operation. Timing for the entire net­
work could be synchronized frame by frame. The other pro­
tocols would allow time for the signals needed by the bus
protocol, but would do nothing during that time. Alterna-

tively, each subnetwork could use its own frame structure
tailored to the protocol used in it. Though bridging would be
more complex, efficiency within each subnetwork would be
improved. In this case, the frame protocol would delete the
parts needed only by the bus protocol. In either case, a study
of the bus protocol frame structure leads to the other frame
structures by removing the special signals needed by the bus
protocol.

We have established that we need to send data, evaluate
requests by means of a priority circuit, send a frame priority
error signal, send commands to nonleaf nodes, and use wire­
OR techniques to determine whether any processor has some
specified condition. We now consider their timing and then
their placement in a frame.

The data should constitute a very large percentage of the
signals, or there is something wrong with the protocol we are
using. Data are sent by a single source in the lookahead net­
work. Thus they can be self-clocked, using a variation of the
well-known Manchester clocking scheme used on disks. In
this technique, a clock pulse is sent every nth data pulse (n is
usually 1), and the receiver uses a phase-locked loop to extract
the clock and reestablish the timing needed to extract the
data. For n about 10, the mechanism used in the UART uses
the clock pulse as a start bit. It then uses a faster clock,
synchronized to the start bit, to extract the data. If n is 1, only
half the available bandwidth of the line is used for data. For
larger n, the efficiency is improved, but a phase-locked loop
with a smaller capture window is needed. Some n has to be
fixed to define the physical-level protocol; but this depends on
the tracking of the transmitter and receiver oscillators and the
probability of missing data, so we are not ready to do so now.
Whatever the case, if the clock is sent with the data, the wires
themselves appeaJ.: to form a pipeline, and data can be sent
through at the capacity of the wire. In particular, optical
cables will allow very high bandwidths for data. The clock
interval for this type of transmission will be termed a local
clock tick, and its rate will be called the local clock rate. The
local clock tick can be derived from a phase-locked loop cir­
cuit in each node.

The priority mechanism, the verify pulse, the wire-OR
mechanism, and the signals selecting and controlling the non­
leaf nodes do not have the property that the signal must come
from one source, so they will not usually complete their oper­
ation in a local clock tick. In the priority circuit, two or more
processors could request the use of the bus in the same inter­
val of time. The entire network, or at least the subtree in
which the processor is located, must settle down to a steady
state before any processor can look at the data on its C input.
The time to settle down is proportional to the logarithm of the
number of processors plus the physical length of the longest
line that is proportional to the cube root of the number of
processors. This time must elapse from the time when the last
processor might change its GENERATE or PROPAGATE
inputs until any processor may examine its C input. We will
call it the system clock tick, and its rate will be called the
system clock rate. It can be implemented by setting the system
clock tick to n local clock ticks, for some fixed n, and using a
divide-by-n counter out of the local oscillator in each node.

A multilevel priority system, where each level is handled by
the fair round-robin priority technique, can be implemented

Lookahead Networks 163

by using the same hardware in successive time slots. All high­
est-priority devices would send requests in the first time slot.
The round-robin technique would be used in each time slot. If
one wins the grant, the other levels may be omitted or else
executed and ignored. A time slot is needed to determine
whether a request was successful. In this time slot each pro­
cessor that has the priority level sets GENERATE to 1 if it has
requested service and to 0 if it does not request service, but all
set PROPAGATE to 1. The requests are ORed together,
using the equivalent of the wire-OR bus discussed earlier, and
the OR of the requests is sent to the C input of each processor.
If no processor claims the bus in the first time slot, then
second-priority-level devices compete in the third time slot,
and so on. In particular, at least a three-level priority system
is useful in a pruned tree so that repeaters and bridges can
have higher priority than other processors and voice traffic
can have priority over data traffic; but the other processors
would be given fair and equal priority by means of the round­
robin technique. This mechanism not only improves the
performance of bridges and repeaters; it makes possible a
mixed data-voice network, with prompt response to voice
communication.

The TENET systemlY also uses priority slots before trans­
mitting a frame on a contention bus. However, packets in a
particular priority slot can still collide, introducing random
delays. The multilevel priority scheme on the lookahead net­
work selects a packet within one time slot, giving a guaranteed
upper bound on the response times. 20

It will be noted in the next section that the PROPAGATE
wire ought to be deleted to reduce cost. This can be done
because the PROPAGATE changes once per frame rather
than once per data bit. It changes after the winner of the
arbitration is selected, for the winner sets up the separator
chain to send data, and that same separator chain becomes the
place where the carry is inhibited in the next priority evalu­
ation. Finally, the output PROPAGATE can be computed on
the sole basis of PROPAGATE inputs. The PROPAGATE
can be sent before the GENERATE signal.

The frame structure for a bus protocol now appears this way
(see Figure 7). The broadcast bus or simplex broadcast link
will begin with one or more priority operations, and each
priority operation will be followed by a checking operation,
using the wire-OR technique to see whether a processor is
selected. Each priority operation or checking operation is one
system clock tick long. The next system clock tick is used to
send the propagate signal P over the same lines as the generate
G, but ANDing the son's Ps to produce the Pout rootward
from each node and storing the Ps in each link in a flip-flop.
Data will be sent at the local clock rate and will include some
structure like a control block, source and destination ad­
dresses, a data block, and an error-checking block. It must
never send a frame, recognizable as a null frame, to allow the
round-robin priority circuit to recover from the loss of a grant.
The SDLC, ADLC, and HDLC protocols would be suitable,
because the null frame could be eight ones, which is pro­
hibited in the data frames sent by these protocols. The frame
priority error signal would then have to be sent at the end of
the frame for a system clock tick. The frame structure for
protocols other than the bus protocol can omit the priority
operations and checking operation as well as the priority er-

164 National Computer Conference, 1982

/ System clock rate

r~--------------~A~------------~

I
~----~I~------~

...------- ONE OR MORE ---j

-41----LOCAL (MANCHESTER CODED)_

CLOCK RATE

Figure 7-The format of a lookahead frame at the data-link level

ror signal at the end of the frame. Alternatively, other proto­
cols can allow time for these signals and do nothing during
them. The latter is recommended for frames in which the
extra time (about six system clock ticks) is small compared to
the total time for the frame, because bridges and repeaters
would be easier to construct.

The control over nonleaf nodes should not be put in the
normal frame structure, in our opinion, because a large
amount of time would be required for the system clock tick
needed to communicate with upper-level nodes in each frame,
and this would be done infrequently. The control of nonleaf
nodes can be implemented with simple hardware and low
signal overhead if the upper-level nodes are able to detect the
null frame and to respond to the PROPAGATE inputs in the
two system tick periods after it occurs. We assume that such
commands will be infrequent and that all the processors in the
tree or subtree can be interrupted to cooperate in this oper­
ation. Under normal recovery from a loss of a grant, only one
processor will set PROPAGATE to 0 to reestablish the prior­
ity mechanism, by means of the fixed-priority technique. (If
that processor fails, reconfiguration will be necessary to prune
it out of the bus.) The pair of processors that intends to
command a nonleaf node can send a null signal on the bus to
force an error condition on the processors and signal the
nonleaf nodes to listen. The processors wait until the fixed­
priority circuit is established, and then in the second system
clock tick after the null signal was sent, the two processors
send PROPAGATE = 0 while all others send PROPA­
GATE = 1. The PROPAGATE = 0 signals travel up the chain
to the root of the tree and meet at the node that is to be
selected. Once a node is selected, commands to connect or
disconnect its links toward its father or any of its sons can be
sent from one of the processors. This mechanism will be able
to prune a stuck-at-zero failure. Though this procedure is not
able to handle a stuck-at-one fault because the stuck-at-one
processor cannot be counted on to cooperate, it would never­
theless be possible to use a bootstrap fault diagnosis scheme. 15
In a bootstrap scheme, we reset all links to the disconnected
state by applying a power-on reset signal, then merge the
small trees (initially single leaf nodes) into larger trees until
the largest tree that does not include the failure is grown.
When we grow a tree that is too large and includes a failed
node, we start over and grow a tree that just excludes this
node.

6. COMPARISON OF THE LOOKAHEAD TO THE
ETHERNET AND THE DLCN

The lookahead network can be compared to the two popular
networks, the Ethernet and the full-duplex DLCN, on the
basis of how it handles failures and on timing and throughput.
These comparisons are discussed below.

The ability to prune subtrees enables the operation of parts
of the network to continue while other parts have failed. The
full-duplex DLCN network5 is capable of doing this too. The
DLCN network can allow arbitrary connection among any
pair of nodes when one node fails and can allow fail-soft
capability, where a node can communicate to about lin th of
the nodes on the average if n nodes fail. The Ethernet can also
be partitioned into smaller busses by means of repeaters. 12
These gates introduce a delay that is linear with the number
of processors, and they allow about the same fail-soft capabil­
ity as the DLCN, but not the fault-tolerant capability. A pro­
cessor can expect to reach about lI(n + l)th of the network if
n nodes fail. The look ahead network is very tolerant of fail­
ures in leaf nodes, which can be pruned away as subtrees of
height 0, and allows full communication among nodes if any
number of leaf nodes fail. It is susceptible, however, to fail­
ures in the nonleaf nodes. For example, a failed root node will
degrade the network into a mode where each processor can
communicate to half of the other processors. This is compar­
able to the expected fail-soft capability of the Ethernet experi­
encing a single failure, or a DLCN with two failures. Never­
theless, we expect that most failures will occur in leaf nodes.
This network should be superior to the Ethernet and the
full-duplex DLCN in fault-tolerant and fail-soft capability.

According to the reliability analysis performed by Goyal,20
the theoretical optimum fanout for the lookahead network is
3. The reliability graphs of various networks with respect to a
single node network are given in Figure 8. Curve A shows the
degradation in the reliability of a simplex ring as the number
of nodes is increased. However, bypassing on node failures, as
done in DLCN, can improve the reliability, as shown in Curve
B. A logical ring, formed on the lookahead networks with
f = 3, has better reliability characteristics (Curve C) than the
DLCN for the same number of transmitters. The full-duplex
DLCN (or DDLCN5

) with bypassing and the bidirectional
iookahead ring20 has reliability curves D and E respectively.
The full-duplex DLCN is superior to the lookahead network,

r
1

. 1

. 01

.001
1 10

DT = DS = 10-
4

DT : down-tirre probability of a node

DS : down-tirre probabi1ty of a byoass

E

100 1,000 10,000

(Numl::er of Nodes)

Figure 8-Reliability curves for A = ring without bypass,
B = DLCN with bypass, C = lookahead ring, D = DLCN with bypass,

E = bidirectional look ahead ring

but a variation of the look ahead network is nearly perfect for
the selected values of Ds and Dt • This shows that by using two
transmitters per node, the reliability of the look ahead net­
work can be made better than the DDLCN. 5

The cost of the look ahead network, where the PROPA­
GATE line is sent on the same line as the GENERATE and
is then saved in a flip-flop, is comparable to the full-duplex
DLCN, requiring 4*n-2 high-speed lines between n pro­
cessors, whereas the DLCN requires 2*n high-speed lines.
This cost is reduced by time-multiplexing the PROPAGATE
signal on the GENERATE line, as discussed in the last sec­
tion. A similar network to the lookahead network where all
nodes, induding nonleaf nodes, are processors has been
described by Lipovski. 6 That network would actually have
slightly lower cost than a full-duplex DLCN. The protocols
developed in this paper would apply to that network without
modification. Finally, the ease of extendability is comparable
with the other networks.

7. CONCLUSION

A network has been presented that is upward compatible to
both the Ethernet and the DLCN networks. This lookahead
network features faster operation, which may become a factor
in very-high-speed networks that use light pipes; and it fea­
tures the ability to prune faults and to run different protocols
in different subtrees, or the same protocol in different sub­
trees, to increase the throughput. It can evaluate multiple­
level priorities; therefore, the modularity, expandability, ease
of diagnosis, reliability, and reconfigurability of the look­
ahead network make us believe that it is the best network so
far defined for local-area, or establishment, networks.

Lookahead Networks 165

ACKNOWLEDGMENTS

We wish to thank Jim Browne for his encouragement and
insights. We acknowledge the financial support from a BMD
grant for the early work done on this paper, and we would like
to thank the staff of the BMD Advanced Technology Center
for their suggestions. We also acknowledge a great deal of
practical advice from the IBM staff at Austin, and the advice
and encouragement of Fred May in particular. The prepara­
tion of this paper was also supported by a grant from IBM .
However, the opinions expressed in this paper do not neces­
sarily reflect the policies and strategies pursued by the U.S.
Army or by IBM .

REFERENCES

1. Metcalfe, Robert M., and David R. Boggs. "Ethernet: Distributed Packet
Switching for Local Computer Networks." Communications of the ACM,
19(1976), pp. 395-404.

2. Liu, Ming T., and Cecil C. Reams. "The Design of the Distributed Loop
Computer Network." International Computer Symposium 1975, Taipei
(Taiwan), August 1975, pp. 273--283.

3. Farmer, W. D., and E. E. Newhall. "An Experimental Distributed
Switching System to Handle High-Speed Aperiodic Computer Traffic."
Proc. ACM Symposium on Problems on the Optimization of Data Com­
munication Systems, October 13--16, 1969.

4. Pierce, J. R. "Network for Block Switching of Data," Bell System Tech­
nical Journal, 51 (1972), pp. 1133--1145.

5. Wolf, J. J., and M. T. Liu. "A Distributed Double-Loop Computer
Network (DDLCN)." 7th Texas Conference on Computing Systems,
November 1978, pp. 6-19-6-34.

6. Lipovski, G. J. "An Organization for Optical Linkages Between Inte­
grated Circuits," AFIPS, Proceedings of the National Computer Confer­
ence (Vol. 46), 1977, pp. 227-236.

7. Goyal, A., and G. J. Lipovski. "Reconfigurable Hierarchical Rings."
Distributed Data Acquisition, Computing, and Control Symposium,
Miami Beach, December 1980, pp. 3--10.

8. Goyal, A., and G. J. Lipovski. "Scheduling on a Light Pipe Simplex
Ring," The 1st International Conference on Distributed Computing Sys­
tems, Huntsville, Alabama, October 1979, pp. 116-123.

9. Tanenbaum, A. S. "Computer Networks." Englewood Cliffs, New Jersey:
Prentice-Hall, 1981.

10. Bokhari, Shahid H. Personal communication.
11. Arnold, R. G. and E. W. Page. "A Hierarchical, Restructurable Multi­

Microprocessor Architecture." Proceedings of 3rd International Sympo­
sium on Computer Architecture, January 1976, pp. 40-46.

12. Clark, David D., K. T. Pogran, and David P. Reed. "An Introduction to
Local Area Networks." Proc. of IEEE, 66 (1978), pp. 1497-1517.

13. Goyal, Ambuj. "Bridge Buffers and Probability of Lost Packets." Tech­
nical Report TR-5 at the Department of Electrical Engineering, Univer­
sity of Texas, Austin, August 1981.

14. Lipovski, G. J. "On Designing with Gray Boxes." Workshop on Com­
puter Description Languages, Rutgers University, New Brunswick, New
Jersey, 1973.

15. Chang, H. Y., E. Manning, G. Metze, "Fault Diagnosis of Digital
Systems." New York: John Wiley and Sons, 1970.

16. "Interface Between Data Terminals Operating in the Packet Mode on
Public Networks," CCITT Recommendation X.252. Available from D. J.
Horton, Assistant Vice President, Bell Canada, 11th Floor Executive, 160
Elgin St., Ottawa, Canada ($10 a copy in advance).

17. Jensen, E. D. "The Honeywell Experimental Distributed Processor-An
Overview." Computer, January 1978, vol. 11, pp. 28-38.

18. Motorola IC MC6854. "Advance Data Link Controller (ADLC)." Motor­
ola Semiconductor Co., 3501 Bluestein Blvd., Austin, Texas 78721.

19. Lam, Simon S. "A Packet-Network Architecture for Local Interconnec­
tion." Conf. Record Int. Conference on Communications, Seattle, Wash­
ington, June 1980, pp. 39.2.1 to 39.2.6.

20. Goyal, Ambuj. "Lookahead Networks." Ph.D. dissertation, in prepara­
tion, Department of Electrical Engineering, University of Texas at Austin.

Reconfigurable multicomputer networks for very fast
real-time applications

by CARL DAVIS

Ballistic Missile Defense Advanced Technology Center
Huntsville, Alabama

SVETLANA P. KARTASHEV

University of Nebraska, Lincoln
Lincoln, Nebraska

and

STEVENLKARTASHEV

Dynamic Computer Architecture, Inc.
Lincoln, Nebraska

ABSTRACT

This paper introduces concurrent reconfiguration techniques that perform fast
reconfiguration of a multicomputer network into the following network structures:
K-rooted trees, stars, and rings with selectable periods. These structures prove to
be very efficient for high-speed, real-time applications. The techniques introduced
are based on shift register theory and are performed by special shift registers
residing in each network node and called shift registers with variable bias.

The technique discussed in this paper are implemented in the system with dy­
namic architecture that is now under construction by Dynamic Computer Architec­
ture, Inc.

The time of the network reconfiguration equals that of one clock period, since to
perform reconfiguration into a new network structure, each network node should
execute only two logical operations-one-bit shift and mod 2 addition.

167

INTRODUCTION

Real-time systems compose a class of extremely stressing
computational problems. 1,3,5 These systems may be charac­
terized as having a sensing device that collects data, a pro­
cessing device to extract information from the data, and a
reactive device to make use of the information. In the case of
weapons systems the problem is complicated by the extremely
short times in which a system must respond as well as the large
dynamic variations of data to which a processing system must
be able to react. This places a premium on the processing
system's having high throughput as well as a great degree of
flexibility.

A typical real-time application is described in Fig 1., where
the four stages indicate a sequence of processing stages per­
formed by the system.

The main system sensor is a phased array radar that can
generate a pencil beam that changes directions in a few micro­
seconds.

The objective of the second stage is to eliminate most non­
threatening targets from consideration via crude first checks.
This may be done through special-purpose hardware dedi­
cated to signal processing.

After this initial filtering operation, the radar objects that
are potentially threatening are reported to a computer that
initiates a separate file on each object. The computer commu­
nicates with the radar by making requests to collect additional
information about every object.

Each target is then followed; and the computer computes its
velocity, trajectory, current position, and other important in­
formation. After the target has been in precision track for a
short interval, discrimination routines are used to discriminate
among targets.

Computation Requirements

As indicated by Arnold, Berg, and Thomas/ each stage of
Figure 1 requires the following type of processing. Since com­
puter processing starts with Stage 2, it receives input prepared
by Stage 1, which ends with the arrival of multiple data
streams requiring the same operation over multiple data
items. Thus, Stage 2 is characterized by the MIMD mode of
operation since it is specified by several instruction streams,
each of which operates over a vector of data items.

Once most of the unthreatening objects are filtered out
from consideration, the objects that are left are subjected to
a more detailed check. Most of the typical computations at
Stage 3 are sorting and arithmetic pipelined computations.
Sorting is aimed at forming classes of threatening objects,
whereas pipe lining is directed at quick organization of a sepa­
rate data file for each object of the same class. These files are

Reconfigurable Multicomputer Networks 169

then updated with new information received from the radar.
Finally, Stage 4 is aimed at very precise computation of

trajectories of several high priority objects that are still threat­
ening after Stage 3 and at predicting the points of their inter­
ception with the killer mechanisms that are going to be
launched. The most effective computations of Stage 4 are of

Executive
Communications Objects

~t

Sensor

W

Signal Processing
and

Bulk Filtering

\~

Track and
Discrimination

Processing

W

Final Track
and Interceptor

Guidance

Stage 1

Stage 2

Stage 3

Stage 4

Figure 1-A typical sequence of fast radar real-time processing

170 National Computer Conference, 1982

an asynchronous MIMD type, performed over data words
with long sizes to maintain a required level of accuracy.

Most Useful Configurations of a Multicomputer Network

As was shown by Davis and Couch, I a heavy computer
involvement in a computational process of real-time applica­
tion begins with stages 3 and 4. The nature of the application
supports distributive and reconfigurable computer resources
that are understood as a collection of computer elements,
interconnected by an interconnection network.2

-4

Let us show which are the most effective configurations that
can be assumed by the resources.

Stage 3 involves in (a) sorting and discrimination aimed at
partitioning the incoming data items into categories, and (b)
pipelining aimed at performing identical computations over
the items of the same category.

During execution of sorting and discrimination routines the
most effective configurations of the system are either binary
trees or stars. Once all the necessary classes of data words
have been formed, the system must execute pipeline com­
putations over the data words belonging to the same class. The
most effective configurations for this are rings of different
periods, whereby each node of a ring fetches one operand
from its local memory and receives the second operand from
its predecessor in the ring. The task of reconfiguration is thus
reduced to forming rings with various periods in order to
organize pipelined computations of various complex arith­
metic expressions, requiring a variable number of arithmetic
operations.

Because tracking and discrimination processing (Figure 1),
realized via sorting and pipelining, are performed over con­
tinuously arriving input data words, trees, stars, and rings
should coexist in the same system (Fig. 2a).

Since binary trees are characterized by two outcomes for
each nonleaf node, they are useful configurations for tests
with two outcomes: true, T, and false, F. If the number of true
outcomes is greater than 1, then it is more cost efficient for the
network to assume a star configuration.

Trees and stars can be singly or multiply rooted. For a
multirooted tree or star, roots form a ring and specify the
number of real-time classes that must be distinguished. Each
class is specified by an m-step test procedure, where m = 1,
2, ... , and each step is described by a specific sorting algo­
rithm aimed at distinguishing specific qualifications of the
class. The tree or star structure will then contain m levels,
where the root(s) is of the highest level and the leaves are of
the lowest level (0). The task of the leaves is to accumulate
data words with identical test qualifications.

Concurrency is understood here as the continuous acquisi­
tion of real-time data streams by the roots RI, R2 , ••• , Rk ,

which execute concurrent test algorithms. A tested data word
is either forwarded to the true node of the next m-l level
distinguished by the test result Tj, or to the next root R j + l

(mod k) if the result of the test is F. Similar procedures are
performed by all other lower level nodes except leaves that
perform no tests and merely maintain object files, where each
file stores data words with identical test outcomes.

Fig. 2(a) shows a 6-rooted 2-level binary tree configuration
assumed by the mUlticomputer network performing concur-

b.
Figure 2-(a) Co-residence of six-rooted binary tree and four-period ring,

(b) Three-rooted star

rent 2-step sorting of continuously arriving data into six class­
es, RI thru R6 • True data words for each class are then accu­
mulated in nodes At, A2 , A3 , A4 , As, and A6 , respectively.
Suppose that the data words for class RI, accumulated in a
node At, are then pipelined by an arithmetic pipeline consis­
ting of four stages (AI, B2 , B3 , B4) and forming a ring with
period 4. Thus, we will have the coexistence of a ring, with
period 4, and a tree structure in the same network. Figure 2(b)
shows a 3-rooted star configuration assumed by the network
that has to sort the data into tree classes, RJ, R2 , and R3 , so
that a sorting is two-step and each step of sorting produces

three true outcomes, T1, T2 and T3 , and one false outcome, F.
Grouping of data in accordance with the results of the tests

is performed by the leaf nodes of the star. The first step is
described by the algorithms executed by the roots Rt. R2, and
R3 , and the second step is executed by the nodes of the first
level in the hierarchy. The leaves are the nodes of the Oth level
and they execute no sorting algorithms.

As follows from this analysis, a multicomputer network
performing very fast reconfigurations into various types of
k-rooted trees, stars (where k ~ 1), and rings becomes ex­
tremely cost-effective in sorting and evaluation of data words
that specify k real-time classes. Each such class can be de­
scribed by d different data files, so that each data file contains
data words with the same test characteristics.

Paper Composition

This paper introduces concurrent reconfiguration tech­
niques that perform fast reconfigurations of a multicomputer
network into the following network structures: k-rooted trees,
stars, and rings with selectable periods. These structures have
proven to be very efficient for high-speed real-time applica­
tions. The techniques are based on shift-register theory and
are performed by special shift registers residing in each net­
work node and called shift registers with variable bias
(SRVB's). These registers were first introduced in Kartashev
and Kartashev (1981).15

The time of the network reconfiguration equals that of one
clock period, since to perform reconfiguration into a new
network structure each network node should execute only two
logical operations-one-bit shift and mod-2 addition.

DESIRABLE CHARACTERISTICS OF
MULTICOMPUTER NETWORKS FOR REAL-TIME
COMPUTATIONS

In order to provide a multicomputer network with very high
flexibility and to reduce the amount of data traffic among
its nodes, the network must be provided with the following
characteristics:

Cl. Minimal Time of Reconfiguration from One Structure
to Another. Implementation of this requirement will allow the
network to realize the maximal speed advantage to be gained
by computing in a new and more suitable network structure,
NSd, in as much as it will introduce a minimal reconfiguration
overhead-when no computation can be performed-in mak­
ing transition NSc~NSd from a current network structure,
NSf, to the next network structure, NSd.

C2. Multifunctional Node. This is conceived as the capabil­
ity of each node to be connected into any of the network
structures we have introduced and for trees and stars to func­
tion as a root, leaf or nonleaf.

This characteristic will eliminate all reconfiguration con­
straints, minimize the amount of traffic among nodes, and
minimize the number of idle resources. Indeed, a programmer
will be capable to balance computations among nodes, to
minimize idle resources not involved in computations, and to
eliminate traffic bottlenecks that might be created in the net­
work because of dedication of its nodes.

Reconfigurable Multicomputer Networks 171

C3. Variable Word Size of a Network Node. To increase the
network flexibility each network node must be provided with
the capability to change its word size. This will minimize the
amount of resource interconnected into a particular network
configuration and allow computation of additional programs
using the same resources. The advantages of such com­
putations are coincident with those performed by dynamic
architectures in general. These have been treated extensively
by Kartashev and Kartashev. 7-9

A multicomputer network that is provided with properties
C1, C2, and C3, and performs reconfigurations into the struc­
tures introduced above can be organized using the Dynamic
Computer Group structure described in Kartashev and Karta­
shev (1980).7 In the next section we will briefly repeat this
material to make the paper self-contained.

DESCRIPTION OF THE DYNAMIC COMPUTER
GROUP STRUCTURE

The Dynamic Computer Group (DC group) contains n com­
puter elements (CE), and one monitor V with memory M(V)
(Fig. 3). One CE processes h-bit words in parallel. Each CE
includes an h-bit processing element (PE) , an h-bit-wide
memory element (ME), and a GE, equipped with small
memory M(GE). Assume h = 16.

All functional units of the DC group (PE, GE, and V) are
assembled from a universal module UM having 64 pins. Basic
concepts of such a module were described elsewhere.9

The processor and 110 resource 'is connected with the
memory resource by a reconfigurable memory-processor bus
containing two types of connecting modules: address con­
necting element (ASE) and memory connecting element
(MSE). The ASE elements connect each PE with all ME's and
broadcast the effective memory addresses and READ and
WRITE signals (WI, W2) from this PE to all MEs. The number
of ASE elements assigned to each PE is n, the number of MEs
in the resource, so that ASE j transfers an address and two
signals from a specific PE to ME j (i = 1, ... , n).

The MSE elements are connected to each ME and ex­
change 16-bit bytes between this ME and the PEs. Each ME
is assigned n MSEs, where n is the number of PEs in the
resource, so that MSE j exchanges 16-bit bytes between this
ME and PE j • Both the MSE and the ASE connecting elements
may be implemented on a universal module considered in
Kartashev and Kartashev (1979).9

In the DC group the memory-processor bus may broadcast
two types of information between any pair of PE (or GE) and
ME:

1. an effective memory address from PE to ME, and
2. a 16-bit data byte between PE and ME.

Indeed, if PE j performs a 16-bit information exchange with
MEj, it uses its local connecting element ASE j to broadcast
the effective memory address E from PE j to ME j • A 16-bit
data byte to be written in or read out from this address is then
broadcast via local connecting element MSE j attached to MEj •

Therefore, two connecting elements, ASEj, one local with PE j

and MSE j , one local with MEj, accomplish a complete 16-bit

172 National Computer Conference, 1982

I EXTERNAl. lSR I T
I
J U I -- I J ~ i-- ~

Ml(GE) GEl M2(GE) GE2 M3(GEI GE3
r- f-- ~-

M(V)

~ L ··,ll p'211
L __ ~

PE3 PE4 U-.
j"l j~2 j=3 I i=4

I ~', ~ ~ ~', ~ ~ Ef,~'~t-~, ~, ~,E'" ~ ~ 11.11 11.21 11.31 11.41 12,11 12.21 12,31 12.4i 13,11 13,21 13,31 13,41 14,11 1:,21 1:,31 1:,011

I I I

T

"." ,,," ~
I

11.11 12.11 13.11 14,11 11.21 12,21 13.21 "'$ 11,31 11,4) 12,41 13.41 14,41 I
." .~ MS;: MSE4 MS'~ ? !Ms E3 MSF.4 .", ~ ... , ''', SE, ? MSEl IMSE~

----I I I

"- ME1 LG ~ ME:I ~~
'-----

Figure 3-DC-group with four computer elements

data exchange between PE j and MEj, otherwise called
(PEj-MEj) exchange.

(PErME) Exchange

Since this exchange may proceed in two directions-from
PEj to MEj or from ME j to PEj -one has to connect these two
connecting elements ASE j and MSEj with a two-line con­
nection (i, j) for READ signal WI and WRITE signal W2,

respectively. Using the WI line of this connection, the ASEj
element belonging to PEj activates the MSEj element be­
longing to ME j into a 16-bit byte broadcast from ME j to PEj.
Using the w2 line, the same ASEj element that broadcasts the
address from PEj to ME j activates the MSEj element into a
16-bit byte broadcast from PEj to MEj • It then follows that to
synchronize address and 16-bit byte broadcasts, such (i, j)
connections have to be established for all pairs of ASE and
MSE connecting elements that may be formed in the DC
group.

Therefore, each PEj-MEj exchange is reduced to execution
of the following phases of information broadcasts in the
memory-processor bus:

1. Address phase: PEj sends the E address to MEj via its
local ASEj;

2. Synchronization phase: ASEj selected by PEj activates
MSEj local to MEj into 16-bit byte broadcast; and

3. Data phase: MSEj transfers a 16-bit data byte between
PEj and ME j •

(PEi-PE) Exchange

The memory-processor bus supports individual data ex­
changes (PEj-PEj) between different PEs through the path
made of a pair of two MSE's assigned to one ME that may
pass a 16-bit byte in the opposite directions. To activate such
a path, the first PEj should activate the (PEj-MEj) exchange
with one signal (READ or WRITE) and the second PE j

should activate local (PEj-MEj) exchange with an opposite
signal (WRITE or READ).

Indeed, when PEj activates the (PEj-MEj) exchange, it se­
lects the MSEj of MEj and ASEj of PEj. When PEj activates
the PEj-MEj exchange, it selects MSEj of MEj and ASE j of
PEj • Further, two activated MSE belong to the same ME and
are activated in the opposite directions. Since MSE j is at-

tached to PEj and MSE j is attached to PEj , these two con­
necting elements form a data path between PEj and PE j .

In activation of (PE-ME) exchanges, each PE executes the
same sequence of phases: address, synchronization, and data.
The only distinction is that the address phase for this exchange
is simplified, since each PE sends only w signals for activating
the (i, j) or (j, j) connections, respectively. None of the PE
send the E address.

The memory-processor bus supports data exchanges be­
tween a pair of different ME's. To speed up this exchange, it
is assumed that a generation of addresses for both MEj and
ME j is performed by PEj that is local with MEj: This also
releases PEj local with ME j from address generatIon and al­
lows it to work autonomously on other computations re­
quiring no memory access when its local ME is accessed by
PE j •

Since PEj must generate two E addresses for MEj and ME j ,

respectively, and send them via the same address channel A
with the width E, it generates only one E address at a time.
This will lead to the two time intervals required for (MEj-ME j)

exchange. During the first interval, PEj sends the E address
and w signal to ME j and opens the MSEj connecting element
local with ME j for a data broadcast in one direction. During
the second interval, PEj sends another E address and an op­
posite w to its local MEj, and opens the MSEj connecting
element local with MEj for a broadcast in the opposite
direction.

RECONFIGURATION OF THE DC GROUP INTO A
MULTICOMPUTER NETWORK

A multicomputer network is understood as a collection of
CE's interconnected through the bus structure introduced in
the previous section. Each CE is a node N in the network. To
organize data broadcast among a pair of nodes, Nand N*,
interconnected with this bus, it is sufficient for the network
node N to generate the position code of N*. The data path
between Nand N* may belong to the following types: PE­
ME * PE-PE * ME-PE * and ME-ME *, where the first ele­
ment' of each ~air needs the exchange and the PE and ME
belong to a single CE identified with the network node N.

Network Transition N-,;N*

The activation of the data path between Nand N* will be
denoted as transition N-,;N*, meaning that

1. N will generate the position code of N*;
2. N will establish a data path between Nand N*;
3. A data path between Nand N* can be made

bidirectional-either from N to N* or from N* to N, and
it can be one of the four types: PE-ME*, PE-PE*, ME­
PE* ME-ME* where the first element belongs to node
N a~d the seco~d element belongs to node N*.

Reconfigurable Multicomputer Networks 173

(Note that we assume that each node is equivalent to one
CEo An extension of the results accomplished to a dy­
namic computer, C(k), assembled of k CE, can be done
very easily by assigning the same position code to all its
CEs.)

Since the bus structure is based on the idea of a cross-bar
switch, the bus minimizes communication delays in data-word
propagation. Advantages of this bus for very fast real-time
applications were treated extensively in Kartashev and Karta­
shev (1980). 7

To minimize the time of reconfiguration, it is reasonable to
assume that for each network structure, a rule of succession
N-,; N* will be maintained during reconfiguration such that
each N will have the least possible number of immediate suc­
cessors of N* in this structure. Indeed, since each recon­
figuration N-,;N* will take one time interval T, it will take
time pT to establish p data paths between N and its p succes­
sors. Therefore, the minimal number of successors for each N
in the given network structure will mean the minimal recon­
figuration time that must be spent to establish this structure.
For rings, the rule of minimal number of successors is trivial,
since each N in a ring has a unique successor N* .

For trees and stars, to hold this rule during reconfiguration
requires that the direction of succession be maintained from
the leaves to the root(s). This will transform trees and stars
into single successor structures, since each N will have only
one successor N* in this structure. Therefore, it takes only one
time interval to establish transition N-,; N*, if one derives
concurrent reconfiguration algorithms whereby all transitions
N-,;N* are established concurrently. For this case, the entire
network reconfiguration into a new network structure will
take the time T of only one network transition.

APPLICATION OF SHIff-REGISTER THEORY

In this paper trees, stars, and rings will be generated with the
use of concurrent reconfiguration algorithms based on the
shift-register theory. Since trees, stars, and rings are single­
successor structures, the entire time T of the network recon­
figuration into any of these structures will take the time of one
network transition N-,; N* .

The contribution of the shift-register theory to recon­
figuration techniques that are developed is that the entire time
T of network reconfiguration will take the time of two logical
operations executed sequentially: I-bit shift and mod-2 addi­
tion. This is possible because the following technique is used
to activate each transition N-,;N* belonging to a network
structure.

Assume that each network node N is provided with a special
shift-register of length n that stores its position code N, where
n is the size of the code (Figure 4). Suppose that in the given
network structure, N should be connected with node N* via a
PE-PE*, PE-ME*, ME-ME*, or ME-PE* data path. Then for
each type of communication between Nand N* , N generates
position code N* using a left-shifted shift-register that gener­
ates N* as follows:

N* = I[N]EBB, (1)

174 National Computer Conference, 1982

Bias B = (B2' B1' BO)

a
O

Feedback Input
FI = 0 v 1

Feedback Gate,
FBG

Current State~
N = (b2 b1 bO)

Next State,
N* = (a

2
a

1
a

O
)

Figure 4-Three-bit shift-register with variable bias B = (B2' B I , Bo)

where l[N] is a one-bit shift of N to the left and B is an n-bit
reconfiguration constant brought with the reconfiguration in­
struction to all network nodes that are requested for recon­
figuration. Reconfiguration constant B is called bias and the
shift register of Figure 4 is called a shift-register with variable
bias (SRVB).

Suppose that N = 1101 = 13, B = 0111 = 7. This gives
N* = 1[1101]EOO111 = 1011670111 = 1100. Therefore, network
node N 13 generates position code N* = 1100 = 12 of its succes­
sor in the given network structure; N* = 12 is used to activate
a given data path (PE13-PE12 or PE13-ME12 or ME13-ME12 or
ME13-PE12) between CE13 and CE12 , identified with nodes
N13 and N\2' Figure 5 shows the activation ofthe ME13-PE\2
data path between nodes N13 and N12.

The gate FBG in Figure 4 is called a feedback gate. Intro­
duction of the FBG gate allows a shift register, SRVB, to
perform two types of shifts: (a) circular 1[N]1' when feedback
input FI = 1; and (b) noncircular l[N]o, when FI = O.

If FI = 1, concurrent shift registers generate rings; if FI = 0,
they generate trees. Certainly, the meaning of FI is brought to
each node with the reconfiguration instruction.

However, different network structures depend not only on

Current
Network
Node N

bias

Next
Network as=l
Node N*

a =0
4

o

a =0
3

Data Path

Address Path
'-----"

Figure 5-The MEl3-PE12 data exchange between network nodes Nl3
and Nl2

the value of bias B, and feedback input FI, but also on the
type of the SRVB activated in each node.

To this end SRVB can be single and composite. A single
SRVB has a unique feedback gate (FBG), which connects its
most significant bit (MSB) with its least significant bit (LSB).
A composite SRVB is formed from k (k> 1) single shift­
registers each having a unique feedback gate, FBG j • There­
fore, a composite shift-register has k feedback gates where
k> 1. For instance, Figure 6 shows a composite shift-register
with three feedback gates, FBG}, FBG2, and FBG3.

Generally, in a shift-register with variable bias, each bit can
broadcast its value via one of two alternative paths: (a) a
unique shift-path by which it is shifted left to the next more
significant bit and (b) a unique feedback path by which it is
sent right to some less significant bit (Fig. 7).

o

Figure 6-Composite SRVB with three feed-back gates: FBG1, FBG2 and FBG3

1 I
II II 'II 21 ;
::;1::;1::;,::;1 ::;a----....

1
I

)1
... ' ;::00
~~~ 
.lI!, 

I 
.0 I 

--f 
I 

!!-
i;~ 
~,.;-,.;­

I 

I 
1 
I 
! 
I 
I 
I 
1 

-~ 
I 

!~N 
i7"~ 
SlNNNN 

I 
I 
I 
1 

I 

--1 

!~~ 
~~§ 
~:<~ 

I 

I 

1 

1 

!~~~ 
~: .. :r 

1 

1 

.. 1 
• I 
_J 

II 

o 
...... 

x 

Reconfigurable Multicomputer Networks 175 

For instance, in Figure 6, each bit bs, b3 , and bI broadcasts 
its value via the feedback path; the remaining -bitsactivate 
their shift paths to the next more significant bits. Activation of 
either a shift or a feedback path for each bit can be made by 
a special reconfiguration code (RC) stored in the recon~ 
figuration instruction that performs reconfiguration into a giv­
en network structure. This instruction also brings to each 
node the same B that forms the position code of the CE * 
identified with the N* that succeeds N in a given network 
structure. The same B received by the PE of N is conceived of 
as an address of the instruction stored in a local ME that 
initiates a subroutine of communication between nodes Nand 
N*. 

For instance, if the reconfiguration instruction stores 
B = 011010 and reconfigures the SRVB of each network node 
N into a composite one shown in Figure 6, then the network 
structure formed is as shown in Figure 8. As seen, it consists 
of a 4-rooted star. For each N, identified with CE, its PE uses 
B = 011010 as the base address (direct or indirect) of a sub­
routine fetched from local ME that shows what type(s) of 
exchange between Nand N* must be assumed during exe­
cution of the algorithm in the given network structure. 

10 

34 

H = 60 = 11 : 11 ! 00 

NP 1 = 11 NP 2 = 11 NP 3 = 00 

I~* = NP 1 * NP 2 * NP 3 * 

NP 1 * = l[ 11 ] 0 I±J 01 = 10 I±J 01 = 11 

HP
2
* = 1[11]0 (±; 10 = 10 ® 10 = 00 

I~P3* = 1[00]1 € 10 = OO({ 10 = 10 

N* = 11 001 0 = 50 

i/31 

49~55 

63
1
\ ,9/33 

~41 
"24 

44 

B=01:10:10 

5 

BP 1 = 01 BP 2 = 10 BP 3 = 10 

Figure 8-The 4-rooted star generated by the composite SRVB of Figure 6 



176 National Computer Conference, 1982 

As an example, let us show how the shift-register of Figure 
6 forms a unique successor N* of the position code N stored 
in it. As seen from Figure 6, a composite shift-register par­
titions each position code N stored in it into three codes, NPt. 
NPz, and NP3, where NP1 consists of bits bs; b4 (NPI = bsb4); 

NP2 = b3b2; NP3 = bIbo; that is, N = NPINP2NP3. The B is 
also partitioned into BPI = BsB4; BP2 = B3B2 and BP3 = 
BIBO. Thus, each successor N* also consists of three por­
tions: NPI* = aSa4, NP2* = a3a2, NP3* = aI3o; thus, N* = 
NPI *NP2 *NP3 *. The shift-register rule N* = l[N] + B is ap­
plied to each code, NPi, to give NPi * (i = 1, 2, 3), where NPI * 
and NP2* are obtained via noncircular shifts and NP3* is ob­
tained via a circular shift. If N = 60 = 111100, then NPI = 11, 
NP2 = 11, and NP3 = 00 (Fig. 8); for the bias B = 011010, its 
codes are BPI = 01; BP2 = 10; BP3 = 10. Therefore, the shift 
register in node N60 generates the following successor 
N* = NPI*NP2*NP3*: 

NPI * = 1[11 ]oEB01 = lOEB01 = 11 
NP2 * = 1[11 ]oEBlO = lOEBI0 = 00 
NP3 * = 1[00hEBlO = OOEBlO = 10. 

Therefore, N* = 110010 = 50. (In Figure 8 this transition is 
shown with a thick arrow.) Similarly, one can obtain any other 
single successor N* of the given node N. 

As shown, reconfiguration into the structure of Figure 8 is 
performed during the time of one I-bit shift and mod-2 addi­
tion executed concurrently by all the network nodes that re­
ceive the same B = 011010 and the same RC to reconfigure 
each SRVB into the composite register shown in Figure 6. 

CONTRIBUTION TO THE ONGOING RESEARCH 

The contribution of the reported research to the current state 
of the art on network reconfiguration is twofold: 

1. Original, simple, and elegant techniques of analysis and 
synthesis on network reconfiguration into the structures 
that have proven to be convenient for a large class of 
real-time computational and control algorithms. The 
time for such reconfigurations approaches the the­
oretically minimal boundary. 

2. A shift register theory described eisewhereI
O-

I4 is further 
expanded as follows. 

Figure 9--Four-bit linear shift-register 

8 =1 o 

In the literature the shift-register studied is shown in Figure 
9. Here each gate fed with Bi means connection if Bi = 1 and 
disconnection if Bi = O. Thus B = (Bn-t. ... , Bo) is conceived 
of as the same bias as was introduced earlier for the SRVB 
shown in Figure 4. The difference between these two registers 
is that Fig. 9 shows a linear shift-register that broadcasts to 
each mod-2 adder the meaning of its MSB, provided Bi = 1. In 
the linear shift-register each next state N* generated can be 
obtained via matrix multiplication N* = N . A where N is a 
current state stored in bits bn-t. bn- 2, ... , bo, and A is the 
canonical shift-register matrix 

A= 

Bn-t, 
1 
0 
0 

o 
o 

Bn- 2, 
0 
1 
0 

o 
o 

Bn- 3, 
0 
0 
1 

o 
o 

... ,B2, 
... 0 
... 0 
... 0 

... 1 

... 0 

BI, 
0 
0 
0 

o 
1 

Bo 
0 
0 
0 

o 
o 

For instance, if B = 1011 and current state N = 1100, then the 
next state N* to be generated by linear shift-register is 

1

10111 N* = 1100 1000 = 0011. 

1

0100
1 0010 

On the other hand, the SRVB having the same Nand B 
generates the following N*: 

N* = 1[1100hEBlO11 = 1001EBlO11 = 0010. 

(We assume that the SRVB performs circular shift, since this 
was the condition applied to the linear shift-register.) 

As follows, an SRVB and a linear shift-register generate 
different next states for the same current state and bias B, 
inasmuch as in the SRVB each mod-2 adder receives bit Bi, 
but in a linear shift-register each mod-2 adder receives the 
MSB of the register if Bi = 1. As a result, different network 
structures are generated by these two types of shift-registers. 

In particular, a linear shift-register is essentially incapable 
of generating stars. It can generate only rings and trees, 
whereas the SRVB can generate rings, trees, and stars. 

Another fundamental peculiarity of a linear shift-register is 
that it always generates a next state N* = 0000 if a current 
state N = 0000, since N* = O· A = O. This means that 0 always 
generates a cycle of period 1, no matter what B is fed to it. On 
the other hand, SRVB maps 0 onto B, that is, if N = 0 it is 
succeeded by N* = B. Therefore, if B # 0, then 0 belongs to 
a network structure other than a cycle of period 1. For in­
stance, for the SRVB shown in Figure lO(a) if B = 0111, and 
PI = 1, then 0 belongs to the first ring of period 8 shown in 
Figure lO(b). If this shift-register stores N = 0101, then it 
generates the second ring shown in Figure lO(b). 

As a matter of fact, this network structure cannot be ob­
tained with 4-bit linear shift-registers no matter what B is 



Reconfigurable Multicomputer Networks 177 

FI=1 

a 

N a a. 

N* l1 

7 9 2 3 

o 10 1 

b. 
11 14 5 

6 8 12 13 

Figure 10--Four-bit circular SRVB and the ring structure generated with it 

selected, since linear shift-registers always map 0 onto 0 and 
the remaining 15 nodes cannot be formed into two rings of 
period 8 each. 

As follows from this, the network structures generated by 
SRVB and linear shift-registers are not equivalent. Further­
more, a fundamental drawback of a linear shift-register is that 
the techniques for finding the network structures that can be 
generated are very laborious and complex, since they are 
based on finding the periods of polynomials over a Galois 
field. 1

O-13 The complexity of these techniques grows ex­
ponentially with an increase in n, the number of bits in a 
shift-register. However, for complex multicomputer networks 
having a large number of nodes, the size n of a code that 
identifies each node may become significant (n = 10 and 
more). Thus, it becomes prohibitively difficult to utilize ele­
gant results of linear shift-register theory to analyze different 
rings and trees that may be generated in an n-dimensional 
binary space. 

On the other hand, all the network structures generated by 
SRVB can be described with very simple formulas that can be 
used by the programmer performing various reconfigurations 
in the multicomputer networks. Another attractive feature is 
that the complexity of these techniques remains constant and 
does not depend on n, the size of the position code N. Thus, 
the analysis techniques for describing network structures gen­
erated by SRVB are applicable to complex multicomputer 
networks, inasmuch as they allow obtaining simple and fast 
reconfiguration algorithms and simple formulas of various 
network structures that can be generated in the network. 

It should be noted that the only area of equivalence among 
linear shift-register and SRVB is when B = O. If both registers 
perform noncircular shift (whereby their MSB are not sent to 
LSB) and receive bias B = 0, they generate the same binary 

tree (Fig. 11(a, b, c». If both registers perform circular shift 
and receive bias B = 0, they are transformed into the same 
circulating shift-register that was extensively studied in the 
literature13 (Figure 11(d, e». 

PROBLEMS OF NETWORK ANALYSIS AND 
SYNTHESIS 

The following problems are of importance for the recon­
figurable networks generated by the SRVB's: 

Network analysis. Given: a type of SRVB and a B. Find the 
network structure that is generated with this SRVB. 

Network synthesis. Given: a network structure. Find the 
SRVB and B that can generate this structure. 

It should be noted that the network analysis and synthesis 
are complementary inasmuch as the solution of the analysis 
problem provides an insight into all possible network struc­
tures that can be obtained. This will give a programmer an 
invaluable answer on how many structures are nonisomorphic 
and what biases must be selected to generate nonisomorphic 
structures only. 

Thus, the solution of the analysis problem will lead to a 
minimization of the total memory space required to store a 
table of different network structures and the different SRVB 
and biases that can generate them. 

On the other hand, solution of the synthesis problem is of 
extreme practical necessity to a programmer, because what is 
given to him or her is a particular network structure obtained 
from the analysis of a complex algorithm. It is the task of the 
programmer to reconfigure a multicomputer network into this 



178 National Computer Conference, 1982 

a. 

o b. 

7 3 5 1 c. 

o o o o 

d. 

e. 

Figure II-The area of equivalence among SRVB and linear shift-registers: 
(a) Linear noncircular shift-register with B = 0; (b) Noncircular SRVB with 
B = 0; (c) Three-level tree generated by noncircular linear shift-register and 
noncircular SRVB receiving bias B = 0; (d) Circular SRVB receiving bias 

B = 0; (e) Circulating (linear) shift-register (receiving bias B = 0) 

structure. To do so he or she must select the type of SRVB and 
the B that generate this structure. Thus, the programmer 
needs the solution of the synthesis problem. 

CONCURRENT ALGORITHMS OF NETWORK 
RECONFIGURATION 

As was shown above for each N~N* transition, one can acti­
vate four types of data exchanges (PE-ME*, PE-PE*, ME-

PE*, ME-ME*). Therefore, each exchange can be identified 
with a 3-bit code of data exchange (COE), in which the addi­
tion of one bit beyond the minimal 2-bit COE required to 
encode four data exchanges is caused by the fact that 0 
words cannot be used since 0 means absence of exchange in 
the reconfiguration instruction that performs the network 
reconfiguration. 

Global and Local Data Exchanges 

Reconfiguration of the network is performed by a special 
reconfiguration instruction (RIN) that may have two 
modifications-global and local. 

If all the transitions N~N* maintain the same type of data 
exchange in the network structure obtained with the RIN, 
then the COE should be stored in the RIN. For this case, RIN 
executes its global modification consisting of two steps: 

Step 1. Generate position code N* of the N~ N* transition 
where N* succeeds N in the given network structure. 

Step 2. Activate global exchange specified by the meaning 
of COE code stored in the instruction. 

However, during the existence of the given network struc­
ture, some of its transitions may maintain different local ex­
changes, or one transition may be described by a sequence of 
data exchanges that it will assume while the network keeps a 
current network structure. Thus, it is expedient for this case 
to store each COE or a sequence of COE's locally in the 
network node N that needs communication with N*. 

A data exchange specified by COE stored locally in the 
network code N will be called local. Thus for this case the RIN 
will store no COE or will have 0 word in COE, and execute 
its local modification consisting of Step 1 only. 

Following execution of RIN, each N starts to execute the 
next instruction stored locally aimed at fetching a local COE 
and establishing a required data exchange between Nand N* 
as specified by this code. 

Reconfiguration Instruction 

If a program needs a new network structure, NSd , for exe­
cution of its tasks, it contains a special RIN. An RIN can be 
executed in an array or even in a single CEo 

Codes stored in the instruction RIN 

RIN stores the following codes: 

1. Code RR of the requested resource, which encodes the 
positions of computer elements requested for recon­
figuration. This code is used in determining whether or 
not a requested resource is ready for reconfiguration. 

2. A reconfiguration code RC, which reconfigures the 
SRVB of each requested network node N into the type 
that generates the network structure NSd • (The tech­
niques for finding RC are given in the next section.) 



3. The bias B that is fed to each SRVB, reconfigured by the 
RC, in order to generate the position code N* that suc­
ceeds N in the given network structure. Techniques for 
finding B are not discussed in this paper. 

4. A program user code NP that is used in the global prior­
ity analysis to be performed by the system monitor on 
determining the priority of the program to perform net­
work reconfiguration. 

5. For global modification of the RIN it stores the COE, 
provided all requested nodes will maintain the same type 
of exchange (PE-ME *, PE-PE *, ME-ME *, or ME­
PE*). 

Let us define the sizes of the codes used. The size of RR 
matches the number of network nodes, K, since if a node is 
requested for reconfiguration it corresponds to 1 in RR; 
otherwise it corresponds to 0 in RR. For large networks con­
taining 64 nodes and more, to store RR will require several 
memory cells, inasmuch as the width of the bus in dynamic 
architectures is 16 bits and computer sizes are formed in 16-bit 
increments. Thus if RR is stored in k memory cells, to transfer 
this code to the system monitor takes k time intervals. 

As for RC, its size is 2n - 1, where n (the size of SRVB of 
each network node) is n = log2K. The bias size is n bits; the 
size of the COE is 3 bits; the NP code size depends on how 
many programs are executed concurrently. If the network 
executes P programs then NP = 10gzP. Therefore, the total 
number of bits, #(RIN), that must be assigned for all these 
codes is 

#(RIN) = K + 2 log2K - 1 + log2K + log2P + 3 
= K + 310g2K + log2P + 2, 

where K is the number of network nodes and P is the number 
of concurrently executed programs. 

If K = 32, P = 64, then 

#(RIN) = 32 + 3 log232 + log264 + 2 
= 32 + 3·5 + 6 + 2 = 55 bits. 

Since one instruction word takes 16 bits, to store all these bits 
will take 6 words and their fetch will take 6 time intervals. 

Selection of the Reconfiguration Code 

As follows from the above, to organize a network recon­
figuration into the network structure NSd a programmer must 
be capable of the correct selection of the following important 
codes: 

1. RC, which reconfigures the SRVB into the type that can 
generate NSd • 

2. The bias that must be fed to this SRVB to generate NSd • 

This section will introduce a technique for selecting the RC. 
The techniques for selecting B are not discussed here. Before 
finding an actual algorithm on forming the RC, it is necessary 
to introduce classification on different SRVB convenient for 
a programmer, who will then be able to tabulate various 
SRVB and select RC's that can form these SRVB. 

Reconfigurable Multicomputer Networks 179 

Types of SRVB shift-registers 

Each SRVB can be reconfigured either into a single one or 
a composite one, depending on how many feedback gates are 
activated with the reconfiguration instruction. Since recon­
figuration of an n-bit SRVB into a composite one is under­
stood as its partitioning into p single shift-registers, each com­
posite SRVB will be described with a so-called arithmetic 
format, AF = [kt, k2' ... , kp], where ki is the size of each 
single shift-register. Obviously, n = k1 + k2 + ... + kp • 

For instance, AF = [23] describes a composite shift-register 
(Fig. 6) that includes three single shift-registers of size 2, 
n=2·3 = 6. 

Since the formulas that describe generated network struc­
tures depend on the number, ri> of shift-registers having size 
i, it will be convenient to represent arithmetic formats in the 
following form: AF = [1'1, 2r2

, ••• , nrn
], where ri (ri ~ 0) will 

be called the multiplicity of the i-bit shift-register. Thus 
n = r 1 + 2r2 + ... + n . r n' 

Since each single shift-register of AF may perform either 
circular shift (FI = 1) or noncircular shift (FI = 0), AF may be 
divided into the following categories: 

1. Circular AFt, when all its single shift-registers perform 
circular shifts; 

2. Noncircular AFo, when all its single shift-registers per­
form noncircular shifts; 

3. Mixed AFlO, ,when single shift-registers described by it 
perform circular and noncircular shifts. 

It win be convenient to represent mixed AF 10 as a combina­
tion of circular and noncircular AF, that is AFlO = AF1 x AFo, 
where AF1 includes all circular single shift-registers and AFo 
includes all noncircular ones. For instance, if AlO = [3~, 4~, 5~, 
2~], then A1 = [42, 51] and Ao=[3\ 22], i.e., AlO= 
A 1 xAo. 

Reconfiguration activities performed by reconfiguration 
code 

Reconfiguration of the SRVB into any given arithmetic 
format will be performed with RC. RC is stored in the recon­
figuration instruction and described as follows. It is a 
(2n - I)-bit code, where n is the size of each SRVB. It consists 
of (n - 1) 2-bit zones, Zi, each including two bits, Si and g, 
and one I-bit zone, Zo, including only one bit, Fo. Thus, 
RC = (Zn-1, Zn-2, ... , Zt, Zo), where Zi = (Si, Fi) if i =1= 0 and 
Zo = Fo (Figure 7). 

Each zone Zi encodes, respectively, feedback and shifting 
paths for the two bits, bi and bi-b of the SRVB, where bi is 
more significant than bi -1. For instance, in Figure 7, for n = 5, 
RC = (Z4' Z3, Zz, Zb Zo), and zone Z4 encodes the feedback 
path ending in b4 (bit F4) and the shift path from b3 to b4 (bit 
S4); zone Z3 encodes the feedback path ending in b3 (bit F3) 

and the shift path from b2 to b3 (bit S3), and so on. Finally, the 
least significant zone, Zo, has only the one bit Fo, which is 
associated with the feedback path routed to bit bo, and no shift 
path from the next less significant bit, since bo is the LSB of 
the SRVB. 



180 National Computer Conference, 1982 

Therefore, for each zone, Zj = (F$j), the values of Fj and Sj 
show what type of path is activated for every pair of con­
secutive bits, bi and bi- l . If Fi = 1, the appropriate FI is 
activated. This means that bi receives circular feedback infor­
mation controlled by g and receives no shift information con­
trolled by Si from the next less significant bit, bi- l. If Fi = 0, 
feedback input is deactivated. This means that either bit b i 

receives no feedback controlled by Fi and only shift controlled 
by Si, or bit bi receives a noncircular feedback (for trees and 
stars). 

Bit Si = 1 of zone Zi stands for left shift from bi- l to bi and 
Si = a stands for no shift from bi- I • Therefore, together Fi and 
Si show what type of path is activated between bi and bi- I ; shift 
path (Si = 1, Fi = 0) or feedback path to bi and no shift from 
bi- I (Si = 0, Fi = a v 1). For F = a v 1, a means noncircular 
feedback, 1 means circular feedback. Thus, shift and feedback 
paths are mutually exclusive; for zone Zi, if Si = 1, Fi = 0; if 
Si = 0, Fi = a or 1. 

Since Si = 1 means that bits bi and bi- l belong to the same 
shift register and Si = a means that they belong to different 
shift registers, each ~ is sent to activate a new feedback path 
initiated in bi- l. Likewise, each Si is sent not only to a shift 
path between bi and bi-t, but also to the feedback path ini­
tiated in bi, either to maintain both paths (Si = 1) or to block 
unwanted transfer either of bi to less significant bits of shift­
register or of bi- l to bi (Si = 0). 

Example. Figure 7 shows a software controlled recon­
figuration of the SRVB into mixed arithmetic format 
AFIO = [11, 31h X [1 1

]0. This is accomplished with 

RC 10 01 01 10 a 
Z4 Z3 Z2 Zl Zl· 

Consider the activity of each zone Zi = (Fi, Si) during this 
reconfiguration. Since Z4 = (F4' S4) = 10, F4 activates the 
feedback path ending in b4, and 54 initiates a new feedback 
path from b3. Since S4 = 0, b4 is blocked from sending its value 
to other bits but itself, likewise b3 is blocked from shifting to 
b4. This leads to the formation of circular I-bit shift-register 
[11k 

For zone Z3 = (F3, S3) = 01, F3 = a deactivates all the feed­
back paths ending in b3 and S3 = 1 maintains two paths: the 
shift path from b2 to b3 and the feedback path from b3 to other 
less significant bits. Similar activity is performed by zone 
Z2 = (F2, S2). 

For zone Zl = (Ft, SI) = 10, Fl = 1 activates all the feedback 
paths ending in bl . However, since only line 3 was activated, 
Fl completes a unique feedback path initiated in b3. This path 
is ended in bl. Thus, another circular 3-bit register, [31h, has 
been formed. Therefore, bit bo initiates its own noncircular 
feedback path that ends in boo This results in forming [11]0. It 
then follows that RC = 100101100 has reconfigured the SRVB 
into [11, 31h X [1 1

]0. 

THE PROBLEM OF THE NETWORK ANALYSIS 

This section will describe some nonisomorphic network struc­
tures that can be generated by single and composite SRVB. 
Based on this study, future reports will introduce economical 
tabulation techniques necessary to store information on all the 

nonisomorphic network structures in the system monitor that 
performs network reconfiguration. 

In all, a general objective of this section is to give results of 
the following problem: 

Given: Band AF. Find the network structure that is gener­
ated. 

The solution of this problem will provide a programmer 
with information on what network structures he or she can 
form. On the other hand, solution of the synthesis problem 
will provide a programmer with an answer on how to generate 
a given network structure. Thus, this section dealing with the 
analysis of multicomputer networks acquires extreme signifi­
cance for all users of such networks who would like to apply 
them for their computational needs in view of some attractive 
features that these network structures possess. These features 
are (a) minimal reconfiguration time, (b) very fast data ex­
changes, (c) multifunctional properties of each computer 
node, and (d) the ability of each node to change its word sizes. 

Classification Among Network Structures: Overview 
and Examples 

Before attacking a general analysis problem introduced 
above, one must establish a classification among the network 
structures that can be generated by SRVBs. Since arithmetic 
formats describing SRVB can be (a) single and composite, 
and (b) circular, noncircular, and mixed, the classifica­
tion below is based on attributes (a) and (b) and is shown in 
Figure 12. 

In all, the network structures generated by SRVB can be 
divided into the following categories. 

1. Single ring structures (SRS's) generated by single SRVB 
with circular arithmetic formats AFJ = [nl]. 

2. Single tree structures (STS's) generated by single SRVB 
with noncircular arithmetic formats, AFo = [n1

]. 

3. Composite ring structures (CRS's) generated by com­
posite SRVB with circular arithmetic formats, 
AFI = [1'1, 2r2 , ... , nrn]. 

Figure 12-Classification among network structures that are generated by 
SRVB 



4. Composite star structures (CSS's) generated by com­
posite SRVB with noncircular arithmetic formats, 
AFo = [1'1, 2r2 , ... , nrn]. 

5. Composite multiple tree structures (CMTS's) generated 
by composite SRVB with mixed arithmetic formats, 
AFIO = AFI x AFo, where AFo describes single non­
circular SRVB, AFIO = [1'1, 2r2 , ... , nrnh x [pl]O. 

6. Composite multiple star structures (CMSS's) generated 
by composite SRVB with mixed AFIO = AFI x AFo 
where AFo describes composite noncircular SRVB, 
AFlO= [1'1,2'2, ... ,nrnh x [lkl, 2k2, ... ,pkp]O. 

Before attacking a general case of arbitrary AF, consider 
the so-called single network structures produced by single 
shift-registers, that is, those identified by AF = [nl], circular 
or non circular . 

Single Network Structures 

These can be of two types, rings and trees, which are speci­
fied by circular and noncircular arithmetic formats, re­
spectively. Rings will be described first. 

Single ring structures 

A single ring structure, SRS, is a set of rings that is gener­
ated by single shift-registers available in network nodes. To 
define SRS means to define the following: 

B • 010 
RC' 01011 

B = 010 
RC = 01011 

Reconfigurable Multicomputer Networks 181 

1. A set of periods, SP = {T}, where T is the period of a ring 
generated in the SRS, and 

2. The number D(T) of rings having the same period, T. 

Therefore, we define SRS as SRS = {D(T):TESP}. 
Example. Let a multicomputer network have eight nodes, 

No through N7 • Suppose that each node receives 
RC = 01 I 01 I 1 (that identifies circular AFI = [31h) and 
B = 2 = OlO (Fig. 13). The network reconfigures into the SRS 
consisting of two rings with periods T = 2 and T = 6, re­
spectively; that is, for AFI = [31h, and B = 2, set of periods 
SP = {2,6}, D(2) = 1; D(6) = 1 and SRS = {1(2),1(6)}. Indeed, 
each successor N* of N is defined as N* = l[NhEBB. For 
N = 101, N* = l[lOlhEBOIO = OllEBOlO = 001. For N = OlO, 
N* = l[OlOhEBOlO = lOOE90lO = 110. For N = 011, N* = 
l[Ol1hEBOlO = 110EBlOO, and so on. 

As follows from the above, to identify SRS's one has to 
identify the set of periods, SP, and the number of rings, D(T), 
having the period T. The techniques for finding SP and D(T) 
were introduced in Kartashev and Kartashev (1981).15 

Single tree structure 

As was indicated above, a single shift-register with non­
circular AF generates a single-rooted binary tree. We will call 
a single-rooted binary tree that is generated by a single non­
circular SRVB with AFo = [n I] a single tree structure, STS. 

The difference between different STS's is in the relative 
positions of their roots, leaves, and nonleaves, although struc-

B = 010 
RC = 01011 

~, ,~, ~, 
~ ~ I=:==::;:;:;::===::;:;:;::=::t~ ~ ... = ... = .... = ... = ... = ... = ... = .. ::=====;.i~ = 

"2' (0 1 0) N6 = (l 1 0) Nl = (l 1) 

B = 010 B = 010 B=010 
RC = 01011 RC = 01011 RC = 01011 

~
Nll wN51 w

N11 

o 1 0 0 1 0 0 1·0 

o 0 1. K=::====::== ... = ... = ... = .... ~.. 1 0 1 I¢:=======::;:;:;:===~ 1 IIi¢: 

"0 = (0 0 0) "1 = (O 0 1) N5 = (I 0 1) 

:co = 0~~01l Ii.················ .................................... J ~C= -0~~01l 

~' o 1 1 

4' (1 0 0) 

~, 
~ 

"3 = (0 1 1) 

=== 16-bit Data Path 
--- Signal Path 

Figure 13-Single ring structure generated by 3-bit SRVB receiving B = 010 
and RC = 01011 



182 National Computer Conference, 1982 

turally all STS's specified with the same arithmetic format, 
AFo = .[nl], are isomorphic to each other. Figure 14 shows all 
the STS structures generated by the SRVB specified with 
AFo = [31]. 

As was indicated earlier, to minimize the time of recon­
figuration, it is assumed that in the STS each node N has only 
one successor, N*, inasmuch as it then takes the time of one 
mod-2 addition to reconfigure the network into the STS. This 
leads to a direction of succession from the leaves to the root 
R, which then succeeds itself by forming a cycle of period 1: 

For tabulation purposes, we will use the following symbols 
for different single tree structures: if STS is generated by a 
noncircular shift-register with AFo = [n1], then STS = [n1, 1], 
shows that the tree has n levels, that is, n1, and the root R by 
performing N* = l[R]oEBB will generate N* = R, thus suc­
ceeding itself by forming a cycle of length 1, that is, 1. 

For inst~ce, all the STS's of Figure 14 are described as 
STS = {31, l}since these trees are single, they have three lev­
el~ that is 3\ and each root forms a cycle of length 1, that 
is 1. 

Composite Network Structures: Overview and Examples 

As follows from the above, composite network structures 
are generated by the SRVB's described by composite arith­
metic formats, AF = [r\ 2r2 , ... , nrn]. As was indicated ear­
lier, there are three types of composite arithmetic formats: 

1. Circular AFI, when all its single shift-registers perform 
circular shifts; 

2. Noncircular AFo, when all its single shift-registers per­
form noncircular shifts; 

3. Mixed AFIO = AFJ x AFo, when shift-registers described 
by it perform circular and noncircular shifts, where all 
circular SRVB are included in AFI and noncircular 
SRVB are included in AFo. 

Depending on what type of format AF is used, composite 
network structures are divided into the categories listed be-

Current State 

Next State ~ 

lIias 11=0 Bias B=1 Bias B=2 Bias B=3 Bias B=4 Bias B=5 Bias B=c Bias 8=7 

7y' · : .y' ~ ,: y7 : · : .~2 ~ 'y17 : 4~,_ ~. v. !y: v. 41" ; tv. 
4 3 r, ;2 5 0 7 ',)6 1 

R'_ 0 R 7 6 1 (' '4 3 2 5 

Figure 14-Single tree structure generated by 3-bit SRVB 

low. In order that the reader be capable of having an intuitive 
feeling about the characteristics that distinguish the catego­
ries, each category will be illustrated with one example. 

4 

6 

1. Composite ring structures (CRS's) generated by com­
posite SRVB with circular arithmetic format, AFI (Fig. 
15). Figure 15 shows a CRS generated by SRVB's de­
scribed with circular AFI = [4\ 31] and fed with bias 
B = 0000 I 001; that is, bias B = 0000 is fed to the 4-bit 
single SRVB and B = 001 is fed to the 3-bit single SRVB 
(Figure 16). 

2. Composite star structures (CSS's) generated by com­
posite SRVB with noncircular arithmetic formats, AFo. 
Figure 17 shows a CSS generated by SRVB described 
with noncircular AFo = [21, 31] and fed with B = 00101 
(Fig. 18). 

3. Multiple tree structures (MTS's) generated by composite 
SRVB described with mixed arithmetic formats, AFIO = 
AFt x AFo, where AFo is a single and noncircular for­
mat. Figures 19 and 20 show an MTS and a composite 
shift-register that generates this MTS, respectively. It is 
described by mixed format AFIO = [21, 11h X [21]0. As 
seen, this MTS contains two four-rooted trees. 

4. Multiple star structures (MSS's) generated by composite 
SRVB described with mixed arithmetic formats 
AFIO = AFt x AFo, where AFo is a composite and non­
circular format. Figure 8 shows an MSS generated by 

0 

1 2c:)s 
40 81 

"0 3 4sc:)82 

7 46 87 

10° 21 r~t: 0 44080 41 83 

13 66 

69 34 86 47 

o 
77 98 

42 85 

~ 0
9 

101 SO 

cI 
93 106 

120 121 

1240 123 
usC)U2 

126 127 

Figure I5-Composite ring structure described with AFI = [41
, 31

] 



Figure 16-Composite SRVB described with AFI = [41, 31] 

AFlO = [21h X [22]0. As seen, to generate MSS, it is re­
quired that each SRVB be described with mixed format 
AFlO and a noncircular portion of AlO be composite. 

CONCLUSIONS 

This paper has presented recent research results on recon­
figuration of multicomputer networks dedicated to very fast 
real-time applications. It is shown that there exists a close 
match between a typical structure of a real-time algorithm and 
the structures that are assumed by the networks. These struc­
tures are rings and single-rooted and multirooted trees and 
stars. Thus, the capability of the networks to perform very fast 
reconfigurations from one structure to another is indispens­
able property for solving fast application algorithms. 

This property is accomplished through special recon­
figuration algorithms presented in this paper. Two major fea­
tures of the newly introduced techniques of reconfiguration 
are 

1. They are described by a one-step algorithm performed 
concurrently by all network nodes requested for recon­
figuration. 

18 

14 ..... ~....::~ 

31 

Figure 17-Composite star structure described with AFo = [31, 21] 

Reconfigurable Multicomputer Networks 183 

Figure l~omposite SRVB described with AFo = [31, 21] 

2. The time of this step is equivalent to that of two logical 
operations performed sequentially: one-bit shift (one­
gate delay) and mod-2 addition (2-gate delay). 

Therefore, the total time of reconfiguration into a new net­
work structure equals that of 3 gate delays. This means that 
a new network structure can be established during the time 
of one clock period and that the reconfiguration introduced 
gives practically no time overhead. Thus, it can be performed 
quickly and efficiently to the benefits of real-time com­
putations, each time creating an ideal match between the 
application algorithm and the network structure that is 
assumed. 

14 30 13 29 15 31 12 28 

¥¥ Y, 

27 

0t---~~3 16----....... 2 

5 ..... ~---46 

11 24 8 26 10 25 

Figure 19-Four-rooted multiple tree structure specified with 
AFIO = AF1 x AFo = [21, 11]1 X [21]0 

--

Figure 2O-Composite SRVB specified with AFIO = [21, Ill! X [21]0 

9 



184 National Computer Conference, 1982 

REFERENCES 

1. Davis, Carl G., and Robert L. Couch. "Ballistic Missile Defense: A Super­
Computer Challenge." Computer, 13 (1980), 11, pp. 37-48. 

2. Davis, W. A. Jr. "Ballistic Missile Defense Into the Eighties." National 
Defense, September 1979, pp. 55-63. 

3. Davis, C. G., and C. R. Vick. "The Software Development System." IEEE 
Transactions on Software Engineering (1977), pp. 

4. Vick, C. R. "A Next Generation of Supercomputer From Mainframes to 
Micros." Eu.romicro 80, London, England, September, 1980. 

5. Arnold, R. G., R. O. Berg, and J. W. Thomas. "A Modular Approach to 
Real-Time Supersystems." Accepted for publication in IEEE Transition on 
Supersystems, May 1982. 

6. Vick, C. R., S. P. Kartashev, and S. I. Kartashev. "Adaptable Architec­
tures for Supersystems." Computer, 13 (1980), 11, pp. 17-37. 

7. Kartashev, S. I., and S. P. Kartashev. "Problems of Designing Super­
systems With Dynamic Architectures." IEEE Transactions on Computers, 
C-29 (1980), pp. 1114-1132. 

8. Kartashev, S. I., and S. P. Kartashev. "Dynamic Architectures: Problems 
and Solutions." Computer, 11 (1978), pp. 26-40. 

9. Kartashev, S. I., and S. P. Kartashev. "Multicomputer System with Dy­
namic Architecture." IEEE Transactions on Computers, C-28 (1979), pp. 
704-720. 

10. Elspes, B. "The Theory of Autonomous Linear Sequential Networks." IRE 
Transactions on Circuit Theory, (1959), pp. 45-60. 

11. Zierler, N. "Linear Recurring Sequences." 1. SIAM, 7 (1959), pp. 31-48. 
12. Kautz, W. H. (ed.). Linear Sequential Switching Circuits. New York: 

Holden-Day, 1965. 
13. Golomb, S. W. Shift Register Sequences. New York: Holden-Day, 1967. 
14. Booth, T. L. Sequential Machines and Automata Theory, New York: John 

Wiley and Sons, 1967. 
15. Kartashev, S. P., and S. I. Kartashev. "Reconfiguration of Dynamic Archi­

tecture into Multicomputer Networks." Proceedings of the 1981 Inter­
national Conference on Parallel Processing, Bellaire, Michigan, August 
25-28, 1981. IEEE Computer Society, pp. 133-141. 



MPP: a supersystem for satellite image processing 

by KENNETH E. BATCHER 
Goodyear Aerospace Corporation 
Akron, Ohio 

ABSTRACT 

In 1971 NASA Goddard Space Flight Center initiated a program to develop high­
speed image processing systems. These systems use thousands of processing ele­
ments (PE's) operating simultaneously to achieve their speed (massive parallelism). 
A typical satellite image contains millions of picture elements (pixels) that can 
generally be processed in parallel. In 1979 a contract was awarded to construct a 
massively parallel processor (MPP) to be delivered in 1982. The processor has 
16,896 PE's arranged in a 128-row by 132-column rectangular array. The PE's are 
in the array unit (Figure 1). Other major blocks in the massively parallel processor 
are the array control unit, the staging memory, the program and data management 
unit, and the interface to a host computer. 

185 





ARRAY UNIT 

Logically, the array unit contains 16,384 PE's arranged in a 
128-row by 128-column square array. Physically, the array 
unit contains an extra 128-row by 4-column rectangle of PE's 
for redundancy. Each PE communicates with its four nearest 
neighbors: north, south, east, and west. Each PE is a bit-serial 
processor. With a ten-megahertz clock rate and 16,384 PE's 
operating in parallel the system has a very high processing 
rate. Each PE can read two 16-bit integers, generate their 
sum, and store the 17-bit sum in 49 clock cycles, so 16,384 
additions are performed in less than five microseconds (more 
than 3000 MOPS). Floating-point operations are performed 
at a fast rate even though they are not particularly suited for 
bit-serial processing. Many different floating-point formats 
are possible. With a 32-bit format (l-bit sign, 7-bit base-16 
exponent and 24-bit fraction) floating-point addition is better 
than 400 MOPS and multiplication is better than 200 MOPS. 

Array Topology 

The major application of the massively paraiiel processor is 
image processing. Since most of the processing is conducted 
between neighboring pixels it is natural to connect the thou­
sands of PE's together in a square array with each PE commu­
nicating with its nearest neighbors. We investigated the use of 
other interconnection networks like the multistage SIMD in­
terconnection networks, 1 but with over 16,000 PE's they be­
come unwieldy. The layout of a square array is very simple 
with no long runs to slow down the transfer rate. 

Certain image processing operations like the Fast Fourier 
Transform (FFT) require communication between pixels or 
points located far apart in the image. If we store one point in 

Figure 1-Block diagram of the massively parallel processor 

MPP: A Supersystem for Satellite Image Processing 187 

each PE, then the routing time would be severe in a square­
array topology. But this is not the best way to do FFf's on the 
MPP. Each PE can store several points in its random access 
memory, so the number of PE's required to do an FFf can be 
reduced to a small compact sub array of the array unit. The 
processing power of the other PE's is not wasted, since when 
we want to do one FFf we usually want to do many FFf's so 
we can divide the array unit up into many compact subarrays, 
each performing one FFf. For example, suppose we want to 
do many 5120-point FFf's. Ten points can be packed into 
each PE, so each FFf can be performed in a 16-row by 
32-column sub array of the array unit. Thirty-two such sub­
arrays can perform 32 FFf's in parallel. The longest commu­
nication path in each FFf is half the width of the subarray (16 
columns), so the routing time can be reduced to a fraction of 
the computation time. 

One may ask the question of how the data can be input and 
output effectively, especially when it has a peculiar layout as 
in the FFf example. A 5120-point FFf is most easily per­
formed by combining 1024 five-point FFf's with five 
1024-point FFf's where the position of any point is a function 
of its index modulo 5 and 1024. The 5120 points of one FFf 
have a scrambled layout. The permutations required are akin 
to the permutations required to change a data array from an 
item format to a bit-slice format. Some kind of buffer memory 
will be required in the array unit 110 path to convert data 
arrays to and from the bit-slice format; if it is properly de­
signed the same buffer memory could perform other permuta­
tions as well, such as those required by the 5120-point FFf 
example. 

Thus, in the massively parallel processor we use a simple 
square array topology in the array unit and insert a buffer 
memory (the staging memory) in its I/O path to perform the 
permutations required by particular application programs. 
The staging memory transforms the bit-serial format of the 
array unit to the item format of the outside world. 

Given a square array with 128 rows and 128 columns what 
do we do around the edges? Some application programs 
would like to see a planar topology. Other programs would 
like to see a cylindrical topology where the PE's on the north 
edge connect to PE's on the south edge. Also, some programs 
would rather have the 16,384 PE's connected in one long 
linear string rather than in a 128 by 128 plane. Thus, the edge 
connections should be a programmable function. 

A topology register is included in the array control unit to 
allow programming of the edge connections. Between the 
north and south edges of the array unit one can either stitch 
them together to make the array look like a cylinder or sepa­
rate them to make the array look like a plane. Similarly, the 
east and west edges can independently be stitched together or 
separated (if both pairs of edges are stitched together the 



188 National Computer Conference, 1982 

array looks like a torus). When the east and west edges are 
stitched together, one can either stitch corresponding rows 
together or slide the stitching by one row so the west PE of 
row i communicates with the east PE of row i + 1. If one slides 
the stitching, the rows are connected together in spiral fashion 
so the array of PE's looks like a long linear string. 

Redundancy 

One advantage of the rectangular connection network is the 
easy way it allows faulty PE's to be bypassed. When a faulty 
PE is discovered, one bypasses all the PE's in its column (or 
row) so the topology is not disturbed. To add redundancy to 
the array unit we implement more than 128 columns and insert 
bypass gates in the east-west routing paths. The array is re­
duced to 128 columns logically by bypassing some columns. If 
a faulty PE is discovered we bypass its column and use one of 
the spare columns instead. Logically, the array will still have 
128 columns. Of course, the physical position of many data 
items will be shifted when the bypassed columns are shifted; 
but this presents no problem if we don't try to save the data 
when a fault is discovered. Since the discovery of a fault 
usually implies the presence of faulty data in the faulty PE 
and/or its neighbors we should not try to save the data any­
way. After the array unit is reconfigured, recovery is accom­
plished by restarting the application program from the last 
checkpoint. 

We could just add one redundant column of PE's and by­
pass the 129 columns individually. Instead we divide the array 
up into 32 four .. column groups and add a redundant four­
column group so only 33 sets of bypass gates are required 
instead of 129. When a faulty PE is discovered we bypass all 
PE's in its four-column group. All outputs from the group are 
disabled and the east-west routing paths of its two neighboring 
groups are stitched together. The redundancy of 3 percent is 
a small price to pay for the ability to reconfigure around any 
single faulty PE. The scheme does not handle the case of 
multiple PE's failing, but the probability of this event within 
a reasonable service interval is miniscule. 

Processing Elements 

Each PE is a bit-serial element. Initially the PE's had down­
shifting binary counters for arithmetic. 2

, 3 The PE design was 
modified to use a full adder and a shift register for arithmetic. 
Each PE has six I-bit registers (A, B, C, G, P, and S), a shift 
register with programmable length, a random-access memory, 
a data bus (D), a full adder, and some combinatorial logic 
(Fig. 2). The nominal clock rate of the PE's is 10 megahertz. 
In each clock cycle all PE's perform the same operations on 
their respective data streams (except where masked). The 
basic PE operations are microsteps of the array instruction 
set. The control signals come from the PE control unit of the 
array control unit, which reads the microcode from a writable 
control store. As long as there are no conflicts many PE 
operations can be combined into one clock cycle. 

Figure 2-0ne processing element 

Data-bus source selection 

The source of the data bus can be the state of the B-, 
C-,P-, or S-register, the state of a selected bit from the 
random-access memory, or the output of the equivalence 
function between P and G (P == G equals 1 if and only if P and 
G are in the same state). The data-bus state (D) feeds a 
number of other parts of the PE. 

Logic and routing 

The P- register is used for logic and routing operations. A 
logic operation combines the state of the P -register with the 
state of the data bus (D) to form the new state of the P­
register. Any of the 16 Boolean functions of P and D can be 
selected. A routing operation reads the state of the P-register 
in a neighboring PE (north, south, east, or west) and stores 
the state in the P-register. When routing occurs, the 128 by 
128 plane of P-registers is shifted synchronously in any of the 
four cardinal directions. 

A logic or routing operation can be unmasked or masked. 
An unmasked operation is performed in all 16,384 PE's. A 
masked operation is performed in only those PE's where 
G = I-the P-register is not disturbed in those PE's where 
G =0. 

Arithmetic 

The full adder, the shift register and registers A, B, and C 
are used for bit-serial arithmetic operations. A full-add oper­
ation sums the bits in the A-, P-, and C- registers to form a 
2-bit sum that is placed in the C- and B- registers. A half-add 
operation is similar except that only the bits in registers A and 
C contribute to the sum. 

The shift register has a programmable length. Its length can 
be set to 2, 6, 10, 14, 18, 22, 26, or 30 bits. A shift operation 
shifts the register one place to the right, with the state of the 
B- register entering at the left end of the shift register. If 
register A is shifted simultaneously, it reads the rightmost bit 
in the shift register. An operand of length 4n, where n is an 



integer from 1 to 8, can be recirculated around the path 
formed by register B, the shift register, register A, and the full 
adder; the shift register length is set to 4n-2. 

Register A has three operations: clear A, load A With the 
data-bus state D, or load A with the rightmost bit in the shift 
register (shift A). Register C receives the carry bit in full-add 
and half-add operations and has two other operations: clear C 
and set C. 

These micro arithmetic operations are combined to per­
form the array arithmetic instruction set. Addition of two 
arrays of n -bit integers is performed with each PE treating one 
pair of integers. Corresponding bits of the integers are fed to 
the P- and A- registers, respectively, starting with the lowest 
order bits. They are added with full-add operations with the 
carry bits recirculating through register C and the sum bits 
being formed in register B and stored back in the random 
access memory. It requires 3n + 1 cycles to read the two n- bit 
integers from memory and store the (n + I)-bit sum back into 
memory. Subtraction is performed similarly except that the 
1 's complement of the subtrahend is loaded into the P- register 
in place of its true value. Two's-complement subtraction is 
done by initializing the C-register to 1 instead of O. 

The result of an arithmetic operation can be sent to the shift 
register instead of storing it to memory. Multiplication is per­
formed by recirculating the partial product through the shift 
register and adding the multiplicand to it with appropriate 
shifts. A multiplier bit in the G-register controls the loading 
of the P- register. Multiplication of an array of n- bit integers 
by corresponding elements of an array of m- bit integers to 
produce an array of (m + n )-bit integers requires 
(m - l)p + 2(m + n) cycles where p is a multiple of 4 equal to 
n, n + 1, n + 2, or n + 3. 

Division uses a nonrestoring algorithm where the partial 
dividend is recircuiated through the shift register and the di­
visor or its complement is added for each quotient bit. 

Floating-point multiplication is an addition of the ex­
ponents and a rounded multiplication of the fractions. 
F1oating-point addition is a comparison of the values followed 
by an alignment of the fractions, addition of the fractions and 
then a normalization of the result. 

Other PE operations 

Other PE operations include loading the G- register from 
the data bus, writing the data bus to a selected bit of the 
random access memory, loading the S- register from the data 
bus, feeding the sum-or tree from the data bus, and clearing 
the memory parity error indicator. 

The sum-or tree is a tree of inclusive-or gates with inputs 
from all 16,384 PE's. The output is fed to the array control 
unit, which can test and store the result. The sum-or tree is 
used in maximum value and minimum value searches and in 
other operations where it is necessary to get a global result 
from the set of PE's. 

Input-output 

The S-register in all PE's is used for input and output of 
array data. Columns of input data are shifted into the S-

MPP: A Supersystem for Satellite Image Processing 189 

registers at the west edge of the array unit and shifted across 
the array until all 16,384 S-registers are loaded. Then the PE 
processing is interrupted for one machine cycle while the S­
register plane is transferred to a selected plane of the random 
access memories. S- register shifting can run ~t a lO-megahertz 
rate, so data can be input at a rate of 160 megabytes per 
second (128 bits every 100 nanoseconds). Note that PE pro­
cessing is only interrupted once every 128 columns, or less 
than 1 percent of the time. 

Data output is similar. The PE processing is interrupted for 
one cycle and a plane of data is transferred from the random 
access memories to the S- registers. Processing resumes while 
the output plane is shifted across the array to the east edge, 
where it is output column by column. Each column is 128 bits 
long and can be shifted out at a lO-megahertz rate, so the 
output rate is also 160 megabytes per second. Note that while 
an output plane is being shifted out an input plane can be 
shifted into the array unit; so input and output can proceed 
simultaneously. 

At first glance an va rate of 320-megabytes per second (160 
in and 160 out) would seem to be more than adequate. But the 
processing rate is so high that some applications may still 
become va bomid. When such an application arises (and 
when fast enough peripherals are available), the array unit va 
scheme can be modified to input and output data at several 
places in the array instead of just at the east and west edges. 

Random access memories 

Each PE has a random access memory storing 1024 bits. 
The address lines of all PE's are tied together so the memories 
are accessed by planes with one bit of a plane accessed by each 
PE. Four PE's share one 1K-by-4 RAM chip with an access 
time of about 50 nanoseconds. The address bus can be ex­
panded up to 16 address lines, so PE memory can be ex­
panded to 65,536 bits per PE or 128 megabytes total. The 
array unit clock system has enough flexibility to accommodate 
a wide variety of memory speeds. 

Packaging 

The PE random access memories use standard RAM inte­
grated circuits. All other components of eight PE's are pack­
aged on a custom VLSI chip. The chip holds a 2-row by 
4-column subarray ofPE's and 2,112 such chips are used in the 
array unit. The chip pinout is 52 pins and the complexity is 
about 8000 transistors. 

A 16-row by 12-column sub array of 192 PE's is packaged on 
one 22-cm by 36-cm printed circuit board. The board contains 
24 VLSI chips, 54 memory elements (48 for data plus 6 for 
parity) and some support circuitry. Eleven boards make up an 
array slice of 16 rows by 132 columns. Eight array slices (88 
boards) make up the array unit and eight other boards hold 
the topology switches, the control signal fan-out and other 
support circuitry. The 96 boards are packaged in one cabinet 
and cooled by forced air. 



190 National Computer Conference, 1982 

ARRAY CONTROL UNIT 

The array control unit has three subunits: the PE control unit 
to control processing in the array unit PE's, the I/O control 
unit to manage the flow of input/output data through the array 
unit, and the main control unit, which runs the application 
program, performs any necessary scalar processing, and con­
trols the other two subunits (Fig. 3). This division of re­
sponsibility allows array processing, scalar processing and I/O 
to proceed simultaneously. A queue between the main control 
unit and the PE control unit can hold up to 16 calls to array 
processing routines. 

POMU 

POMU 

PE 
CONTROL 
MEMORY 

MAIN 
CONTROL 
MEMORY 

PE 
-CONTROL 
UNIT 

QUEUE 

MAIN 
CONTROL 
UNIT 

I/O 
CONTROL 
UNIT 

Figure 3--Block diagram of array control unit 

PE Control Unit 

ARU 

ARU 

The PE control unit generates all PE control signals except 
those associated with I/O and the S-registers. The control unit 
reads 64-bit-wide microinstructions from the PE control 
memory. The PE control memory holds the standard library 
of array processing routines plus any routines generated by 

. users, so it is like the writable control store in other comput­
ers. When the PE control unit receives a call from the queue, 
it reads the calling parameters and jumps to the entry point of 
the called array processing routine. After executing the rou­
tine, the PE control unit then processes the next call from the 
queue. 

The PE control unit contains a 64-bit-wide common register 
to hold the scalar values required by routines that combine 
scalars with arrays, that search arrays for values, or that gen­
erate a scalar from an array. 

There are eight 16-bit index registers in the PE controi unit. 
One index register holds the index of a selected bit in the 

common register. Since array processing is bit-serial, the com­
mon register scalar is also usually treated bit by bit. The 
selected common-register bit (W) can be tested by branch 
instructions, used to select a P-register logic function in all 
PE's, and loaded by the sum-or tree output. Note that using 
the common-register bit (W) to select a P- register logic func­
tion allows one to select any of the 256 logic functions of three 
variables-in every PE the selected function between register 
P, the data-bus state (D), and the common-register bit (W) is 
stored in register P. This is the mechanism used to broadcast 
common-register values to all PE's. 

The other seven index registers can hold the addresses of 
array bit-planes in the PE random access memories. Any of 
the eight index registers can be used to hold the length of an 
array. Many of the array processing routines are variable 
length, so they use an index register to hold a loop count and 
decrement it once for each bit-plane treated. 

Other registers in PE control include the topology register 
to select the array unit topology, a program counter holding 
the location of the current microinstruction in the PE control 
memory and a subroutine return stack to facilitate using some 
array processing routines as subroutines to other routines. 

The instruction register is 64 bits wide. Most instructions 
are executed at a nominal lO-megahertz rate. Several oper­
ations can be merged into one instruction; for example, sev­
eral PE operations, modification of several index registers, 
and conditional branching. Merging allows most of the control 
unit overhead to be absorbed so that the PE's are doing useful 
work on every machine cycle. 

lIO Control Unit 

The I/O control unit shifts the PE S-registers, manages the 
flow of data in and out of the array unit, interrupts PE control 
to transfer data between the S- registers and the PE memory 
elements, and can also control the staging memory. Once 
initiated by main control or the program and data manage­
ment unit, the I/O control unit chains through a sequence of 
I/O commands in main control memory. 

Main Control Unit 

Main control reads and executes the application program 
from the main control memory. It performs all scalar pro­
cessing itself and sends all array processing calls to the queue 
for processing by the PE control unit. Input and output oper­
ations for the I/O control unit are either sent directly to the 
I/O control unit or sent to the program and data management 
unit for coordination with its peripheral transfers. 

Main control has 16 general-purpose registers, some regis­
ters to enter calling parameters into the PE control unit 
queue, and other registers to receive scalars generated by 
certain array processing routines. 

STAGING MEMORY 

The staging memory is in the I/O path of the array unit. 
Besides acting as a buffer between the array unit and the 



outside world, the staging memory reformats data so both the 
array unit and the outside world can transfer data in the opti­
mum format. The array unit sees data in a bit-plane format 
(one bit from 16,384 different items), while the outside world 
sees data in an item format (all bits of one item). The staging 
memory can also rearrange data to match the scrambled lay­
outs of some application programs. The 5120-point FFf ex­
ample is one such program. 

The staging memory comprises a main stager memory, an 
input sub-stager, and an output sub-stager (Fig. 4). The main 
stager memory can have 4,8, 16, or 32 banks of storage with 
16K, 64K, or 256K words per bank. Each word holds 64 data 
bits plus 8 error-correction bits. A fully implemented main 
stager would hold 67 megabytes of data. Each bank contains 
72 dynamic MOS RAM elements. Initially, 16K bit elements 
are used. When repopulated with 64K bit elements, the stor­
age in each bank is quadrupled. When repopulation with 
256K bit elements is feasible the storage per bank can be 
quadrupled again. Each bank can accept a 64-bit word and 
present a 64-bit word every 1.6-microsecond cycle time (the 
cycle time also includes any memory refresh required), so 
each bank has a ten-megabyte-per-second I/O rate (5-
megabyte-per-second input and 5-megabyte-per-second out­
put). A 32-bank main stager can accept and present data at 
the 160-megabyte-per-second rate of the array unit I/O ports. 

FROM ARU 

FR(Jo1 
HOST 

~ 
I---~ 

FROM 
PIX1U 

Figure 4-Staging memory 

TO 
PDMU 

TO 
HOST 

The sub-stagers are fast 128-bit by 1024-bit ECL multi­
dimensional access memories. 4 The input sub-stager accepts 
data in the format of the source (array unit, program and data 
management unit, or, the host) and rearranges the data to 
agree with the main stager format. The output sub-stager 
performs the complementary function of rearranging data 
from the main stager format to the format of the destination. 

Many different main stager formats are possible-a main 
stager word may contain one bit of 64 different elements, two 
bits from 32 different elements, and so on. The main stager 
format is selected according to the data formats in the source 
and the destination. A software module in the program and 
data management unit can be used to select the main stager 
format and program the internal transfers of the staging 
memory. 

MPP: A Supersystem for Satellite Image Processing 191 

PROGRAM AND DATA MANAGEMENT UNIT 

The program and data management unit can control the over­
all flow of programs and data in and out of the massively 
parallel processor. It acts as a small-scale host when the nor­
mal host is not available. The program and data management 
unit is a DEC PDP-11 minicomputer with a number of termi­
nals, a line printer, disk storage, and a tape unit operating 
under DEC's RSX-11M real-time multiprogramming system. 
Custom interfaces provide communication with the array con­
trol unit and the staging memory. 

The program development software package for the mas­
sively parallel processor executes in the program and data 
management unit. The package includes an assembler for the 
PE control unit to facilitate developing array processing rou­
tines; an assembler for the main control unit to develop appli­
cation programs; a linker to form load modules for the array 
control unit; and a control and debug module to load, exe­
cute, and debug programs. Much of the software development 
package is written in FORTRAN to ease the transfer of the 
package to the host computer. 

HOST INTERfACE 

The massively parallel processor to be delivered to NASA will 
connect to a DEC VAX-11/780. The staging memory is con­
nected to a DEC DR-780 high-speed interface of the VAX 
that can transfer data at a rate of 6 megabytes per second. The 
staging memory interface is designed to accommodate other 
devices such as high-speed disks. To allow control of the mas­
sively parallel processor by the host, the array control inter­
face can be switched from the program and data management 
unit to the host computer. Transfer of the software is sim­
plified by writing much of it in FORTRAN. 

CONCLUSIONS 

The massively parallel processor is designed for high-speed 
processing of satellite imagery. The typical operations may 
include radiometric and geometric corrections and multi­
spectral classification. Preliminary application studies indicate 
that the processor may also be useful for other image pro­
cessing tasks, weather simulation, aerodynamic studies, radar 
processing, reactor diffusion analysis, and computer image 
generation. 

The modular nature of the processor allows the number of 
processing elements and the capacities of its memories to 
be scaled up or down to match the requirements of the 
application. 

REFERENCES 

1. Siegel, H. J., and S. D. Smith, "Study of Multistage SIMD Interconnection 
Networks," Proceedings of the 5th Annual Symposium on Computer Archi­
tecture, Palo Alto, Calif., April 1978. IEEE Computer Society, Long 
Beach, Calif., pp. 223-229. 

2. Fung, L. W., "A Massively Parallel Processing Computer," in High-Speed 
Computer and Algorithm Organization, D. J. Kuck et al. eds., New York: 
Academic Press, 1977, pp. 203-204. 

3. __ "MPPC: A Massively Parallel Processing Computer," GSFC Image 
Systems Section Report, Sept. 1976, Goddard Space Flight Center, Green­
belt, MD. 

4. Batcher, K. E. "The Multidimensional Access Memory in STARAN." 
IEEE Transactions on Computers, C-26 (1977), pp. 174-177. 





Optimal design of a distributed supersystem 

by DAVID F. PALMER 
General Research Corporation 
Santa Barbara, California 

and 
JAMES P. IGNIZIO and CATHERINE M. MURPHY 
Pennsylvania State University 
University Park, Pennsylvania 

ABSTRACT 

The design of distributed systems, in particular supersystems, requires an extraor­
dinary number of decisions. Designers must define numbers and types of computing 
components, interconnection networks, software modules, and the allocation of 
software to hardware. 

This paper describes a formal approach to determining complex design decisions. 
The approach differs from most formal decision techniques as follows: (l) it gener­
ates multiple optimal design solutions; (2) it deals with multidimensional criteria; 
and (3) it has been implemented by an efficient (polynomial growth) algorithm. The 
approach uses fuzzy clustering, generalized goal programming, and a refined vec­
tormax technique. 

193 





INTRODUCTION 

Hardware cost, performance, and reliability trends point to a 
preference for the use of distributed computing systems. This 
is especially true for the new wave of supersystems. At the 
same time distributed system design is generally much more 
complex because of the large number of design alternatives. 
Designers must define numbers and types of computing com­
ponents, interconnection networks, software modules, and 
the allocation of software to hardware. The .complexity must 
be managed to enable achievement of design goals and keep 
personnel costs from offsetting other advantages. A system­
atic design approach and automated decision aids are needed 
to reduce system complexity. 

This paper describes a formal approach to determining 
complex design decisions. The approach differs from most 
formal decision techniques as follows: 

1. It generates multiple optimal design solutions so that the 
designer can clearly view tradeoffs, e.g., between cost 
and reliability. 

2. It deals with the multidimensional aspect of distributed 
system design decisions without forcing all objectives to 
be translated into common terms. (For example, re­
liability does not have to be assigned a dollar value.) 

3. It has been implemented by an efficient algorithm, 
which enables the total range of decisions to be assessed. 
In fact, the algorithm can be used for dynamic decisions 
during system operation. 

The approach complements and extends modern design 
methodologies. 

PROBLEM DEFINITION 

We assume that design is initiated by defining functional and 
data elements and their relationships to satisfy requirements 
of a given application. The elements and relationships are 
defined without considering specific physical computing re­
sources. A structured design approach, such as described in 
Yourdon and Constantine/ may be assumed. 

The results of the initial design phase are best represented 
by a data flow or data access graph. Here we have typically 
many nodes representing functional and data elements. The 
connecting links represent data flow or accessing. Control 
representation is avoided because it tends to bias selection of 
physical resources. 

Figure 1 illustrates the resource requirements definition 
problem. Given the data access graph containing functional 
and data elements, we must define the number and types of 
physical resources to support the indicated processing. Notice 
that the functional and data elements must be mapped onto 

Optimal Design of a Distributed Supersystem 195 

the physical resources at the same time. The mapping is nec­
essary for determining resource requirements. 

One of the major difficulties of resource definition and 
functional mapping is the large number of alternatives. In 
general, if we have N elements, we need to examine use of 
n = 1, 2, ... , N resources. If all resources are identical, the 
number of alternatives is 

N 

Number of alternatives = 2: S~) 
m=l 

where S~m) is the Stirling number of the second kind, 

S~m) = 1, ~ (_1)m-k (m) kN 
m. k=O k 

Permutations of solutions must be considered for nonidentical 
resources. The results are plotted in Figure 2. We see that 
brute-force techniques can very quickly become computa­
tionally impractical because of computing time, storage re­
quirements, and possibly numerical instability. 

Our design problem belongs to the class of NP-complete 
problems, as was recently proven by Malmquist. 2 There is no 
point in attempting to apply conventional, exact solution 
algorithms3-5 -such as branch and bound, implicit enumer­
ation, or dynamic programming-to NP-complete or combi­
natorially explosive problems, because any exact algorithm 
will exhibit exponential growth in terms of solution time. For 
example, a branch and bound algorithm may require about 2n 

branches, where n is the number of decision variables. For a 
problem with just 50 variables, a high-speed computer that 

PHYSICAL RESOURCES 
(NODES, COMPUTING SYSTEMS. 
PROCESSORS. ETC.) 

Figure I-Resource definition problem 

NON.oP 
COMPONENT 



196 National Computer Conference, 1982 

10~~~--~----~'~O----~'~5----~m=---~ 

NUMBER OF ELEMENTS 

Figure 2-Numbers of alternative allocations 

could explore 1,000 decision branches per second would re­
quire over 30,000 years to solve the problem. Consequently, 
we need an algorithm with polynomially related, say n 2, com­
putational requirements. An n 2 algorithm would need to 
search only 5(f branches, requiring only 2.5 seconds. 

The other major difficulty of complex design is the mathe­
matical evaluation of alternatives. We need models relating 
achievement of objectives (e.g., performance, reliability, 
cost) to parameters of alternatives (e.g., types of resources, 
functional assignments to resources). In addition, we need a 
decision technique that handles multiple, noncommensurable 
objectives without forcing definition of relative values. For 
example, is a O.95-reliable five-million-dollar system better 
than a O.93-reliable one-million-dollar system? 

SOLUTION APPROACH 

Our approach has three phases: (1) fuzzy clustering,6--9 (2) 
generalized goal programming,10-14 and a refined vectormax 
approach. We outline the three phases below. 

Fuzzy clustering 

The first step in most (practical) nonlinear optimization 
procedures is determination of an initial, starting solution 
about which a numerical search may be conducted. The fuzzy 
clustering procedure performs this step for distributed com­
puting design very simply and systematically while also greatly 
reducing the complexity of the overall problem. For example, 
in a 70-variable problem, we may be able to reduce the search 
region from 270 possible permutations to, say 220. 
- -Our fuzzy clusterhlg approach, which is due to Buckles and 
Hardin/ groups functional elements on the basis of tabulated 
relationships. To illustrate the approach, we use data acces­
sing reiationships. Other types of reiationships can be handled 
similarly. 

A data access matrix is used to define data accessing re­
lationships. A data access matrix contains the total numbers 
of data access by each function, compiled over an appropriate 
interval of time. For high-level design the matrix would usu­
ally be determined by simulation and the partitioning com­
pleted as described here. The approach is simple enough, 
however, that the procedure might be performed at run time 
to provide a dynamic allocation. 

The procedure is as follows: (1) compute the pairwise prox­
imity of functional entities with respect to commonality of 
data accessing; (2) produce a transitive relation among func­
tional entities by computing their similarity; (3) apply thresh­
olds of similarity to generate a family of candidate partitions; 
and (4) select the partition having the best potential imple­
mentation. 

The proximity of function Fi and Fj is defined to be 

2: [MIN (Aik' A jk )] 
P

ij 
= P

ji 
= _k ______ _ 

2: [A jk + A jk ]/2 
(1) 

k 

where Aik=number of accesses of data Dk by function Fj. 
The numerator of Equation 1 is seen to be the total mutual 

accessing of data by Fj and Fj. The denominator is the total 
average accessing of data by functions Fi and ~" i.e., the sum 
of all data accesses by Fi and all data accesses by Fj divided 
by 2. 

The proximity matrix is not entirely useful for partitioning 
because it does not provide transitivity of relationships. To 
gain a transitive relationship we compute the similarity of 
functions Fi and Fj by the equation 

(2) 

where k ranges over all functions. (A useful alternate com­
putation using matrix operations is 

(3) 

where V is the maximum operation and products are actually 
minimum operations.9) In computing similarities we find the 
strongest mutual "friend" for each pair of functions. Then we 
compute further-removed relationships until complete transi­
tivity is reached. 

The next step is to form functional groups by applying 
thresholds of similarity. At any similarity threshold we group 
together only functions that are more similar than the thresh­
old. Thus at a similarity threshold of 0 all (n) functions would 
form a single group, no matter how little similarity they might 
have. As we raise the threshold, we form more and smaller 
groups containing functions with higher similarity. Finally, 
when the threshold is set at unity, all functions become sepa­
rated; we obtain (n) groups containing 1 function each. 

The similarity threshold may be preselected or used as a 
problem variable to be maximized. (Generally, high values of 
similarity result in low communication. High similarity also 
tends to produce functionaliy cohesive moduies, which eases 
maintenance. ) 



Generalized goal programming 

Goal programming (GP) may be considered just one type 
of mathematical programming approach. After the devel­
opment of linear programming, which encompasses but a sin­
gle objective, the vast majority of the research in mathe­
matical programming dealt with only the single objective 
model. However, a small number of investigators, primarily 
Charnes and Cooper,t° Ignizio, Kornbluth,17 Lee,t4 and 
Steuer18 directed their attention to practical approaches to the 
modeling and solution of multiobjective problems. In the 
early 1950s, Charnes and Cooper developed the method of 
"constrained regressions," later dubbing it as "goal program­
ming" in their 1961 text on mathematical programming. 10 

Goal programming was but one of several approaches to 
multiobjective mathematical programming that have ap­
peared primarily from the mid-1960s to the present. The vec­
tormax technique, actually the method of nondominated solu­
tions (defined later), has also received attention. One of the 
drawbacks of this approach is that it is currently not practical 
for realistic, large-scale problems. More recently, Zimmer­
man8 and others have proposed a combination of fuzzy sets 
and mathematical programming that leads to a methodology 
known as fuzzy programming. 

Generalized goal programming has now evolved into a 
highly flexible methodology, encompassing several of the at­
tributes of both the nondominated solution method and fuzzy 
programming, (1) which is applicable to any problem in­
volving either linear or nonlinear functions and continuous or 
discrete variables; and (2) wherein the objectives and goals 
within the problem may be weighted, or simpiy ranked, or 
worked with by means of some combination of weighting and 
ranking. 

The baseline model is the first step in the construction of the 
final mathematical model. The general form of the baseline 
model is as follows: 

Find i = (XbX2," .,xn ) (the control variable values) so as 
to 

maximize: fr (x) for all r 
minimize: !s (x) for all s 

satisfy equalities/inequalities: 

for all t 

where bt is a constant 

(1) 
(2) 
(3) 

where fr(x) and !sex) are sets of objectives to be maximized 
and minimized and fr (x) is the set of goals and rigid con­
straints that are to be satisfied if at all possible. (Note that 
only one of the signs ;:::, =, or :s will hold for each goal or 
rigid constraint.) Any problem that may be quantified may be 
placed into a baseline model; but, in general, there are no 
practical methods for solving a problem in this format. The 
steps for conversion of the baseline model into a generalized 
goal programming model, together with methods for solving 
GP problems and interpreting the output, are described by 
Ignizio.ll 

Optimal Design of a Distributed Supersystem 197 

Basically, the Phase 2 algorithm, which we call the nonlin­
ear discrete goal programming (NLDGP) algorithm, conducts 
a search on the unit hypercube of all feasible solutions. The 
search method is a highly modified version of the Hooke­
Jeeves pattern search but differs from the conventional ap­
proach in that, as the search proceeds in continuous space, a 
parallel search is being conducted in discrete (i.e., zero-one) 
space. 

Phase 2 yields a solution to the distributed computing sys­
tem design problem that is an attempt to satisfy all rigid con­
straints as well as to come as close as possible to an optimal 
compromise between conflicting goals such as cost and 
reliability. 

Refined vectormax approach 

Phase 3 of the overall solution methodology uses the output 
of Phase 2 as its input (in conjunction with some additional 
information). (We also can use the Phase 3 algorithm on any 
arbitrary guess at the optimal solution.) This phase produces 
a so-called nondominated solution set. A nondominated solu­
tion is a solution to a multiobjective problem that is not dom­
inated by any other solution: Design A dominates Design 
B if it is equal to or better than Design B in every way 
-i.e., according to all the performance measures under 
consideration). 

Phase 3 thus uses the single input design to develop arda­
tively small collection of nondominated solutions from the 
many thousands possible. This solution subset, rather than a 
single solution, is then presented to the designer for consid­
eration. The steps used to accomplish this phase of the overall 
process are listed below: 

Step 1. List the results of Phase 2 for each design objective 
(i.e., the resultant cost, reliability, similarity), or, 
alternately, list any arbitrary solution. Call this 
solution the initial solution. 

Step 2. Determine the amount of degradation in perfor­
mance, for each design goal, that you would be 
willing to give up to significantly improve some 
other design goal. For example, how much addi­
tional cost might you accept so as to significantly 
improve reliability? 

Step 3. Enter the initial solution from Step 1 and the de­
gradation allowances from Step 2 into the exchange 
search algorithm of Phase 3. 

Step 4. Exercise the algorithm. The output is the non­
dominated designs within the degradation levels 
specified in Step 2. 

CONCLUSION 

This work has resulted in a practical and viable approach for 
the modeling, analysis, and solution to the distributed com­
puting design problem. The concept has been proved by ex­
periments with our prototype code. We are now refining the 
code, mainly by improving user interfaces. 



198 National Computer Conference, 1982 

REFERENCES 

1. Yourdon, E., and L. L. Constantine. Structured Design. Englewood Cliffs, 
New Jersey: Prentice-Hall, 1979. 

2. Malmquist, J. P. "Storage Allocation for Access Path Minimization­
Structured Data Bases." Ph.D. Dissertation; Pennsylvania State Univer­
sity, 1979. 

3. Ignizio, J. P. "Solving Large-Scale Problems: A Venture into a New Dimen­
sion." Journal of Operational Research Society, 31 (1980), pp. 217-228. 

4. Lewis, H. R., and C. H. Papadimitrion. "The Efficiency of Algorithms." 
Scientific American, January 1978, pp. 96-109. 

5. Steen, L. A. "Computational Unsolvability." Science News, 109 (1976), pp. 
298-301. 

6. Anderberg, M. R. Cluster Analysis for Applications. New York: Academic 
Press, 1973. 

7. Buckles, B. P., and D. M. Hardin. "Partitioning and Allocation of Logical 
Resources in a Distributed Computing Environment." In M. P. Mariani 
and D. F. Palmer (eds.), Tutorial: Distributed System Design. Piscataway, 
New Jersey: IEEE Computer Society, 1979, pp. 247-276. 

8. Zimmermann, H. J. "Fuzzy Programming and Linear Programming with 
Several Objectives." Fuzzy Sets and Systems, 1 (1978), pp. 45-55. 

9. Negoita, C. V., and D. A. Ralescu. Applications of Fuzzy Sets to Systems 
Analysis. New York: John Wiley and Sons, 1975. 

10. Charnes, A., and W. W. Cooper. Management Models and Industrial Ap­
plications of Linear Programming. New York: John Wiley and Sons, 1961. 

11. Ignizio, J. P. Goal Programming and Extensions. Lexington, Massachu­
setts; D. C. Heath and Co. (Lexington Books), 1976. 

12. Ignizio, J. P. Linear Programming in Single and Multiobjective Systems. 
Englewood Cliffs, New Jersey: Prentice-Hall, 1981. 

13. Ignizio, J. P. "Goal Programming: A Tool for Multiobjective Analysis." 
Journal of Operational Research Society, 29 (1978), pp. 1109-1119. 

14. Lee, S. M. Goal Programming for Decision Analysis. Philadelphia: 
Auerbach, 1972. 

15. Ignizio, J. P. "The Determination of a Subset of Efficient Solutions Via 
Goal Programming." Forthcoming in the International Journal of Com­
puters and Operations Research. 

16. Ignizio, J. P. Si-IJ Trajectory Study and Optimum Antenna Placement. 
SID-63 Technical Report, North American Aviation, 1963. 

17. Kornbluth, J. S. H. "A Survey of Goal Programming." OMEGA, (1973), 
pp. 193-205. 

18. Steuer, R. E. "Multiple Objective Linear Programming with Interval Crite­
rion Weights." Management Science, 23 (1976), pp. 305-316. 



Distributed processing with the NS16000 family 

by LESLIE KOHN 

Intel Corporation 
Santa Clara, California 

ABSTRACT 

The paper discusses the benefits of microprocessor-based distributed processing 
systems, which are greater than those of conventional time shared minI or main­
frame systems. It highlights the advantages of the NS16000 microprocessor family 
for this application, and it explains how the NS16000 operating system supports 
distributed processing. 

199 





INTRODUCTION 

Microprocessor-based distributed processing systems are rap­
idly gaining popularity as a simple and cost-effective way of 
providing high-performance computer systems. A micropro­
cessor-based distributed system can give better performance 
at lower cost than a timeshared mini or mainframe system. 
The NS16000 family is well suited to such distributed systems 
because of its true 32-bit architecture and demand-paged vir­
tual memory support. This makes it easy to run software that 
formerly would only fit on a large mini or mainframe machine. 

The importance of distributed processing was recognized 
from the inception of software development for the NS16000 
family. The NS16000 operating system supports transparent 
distributed processing, which allows the tasks of a software 
system to be placed on different nodes without any change in 
the tasks. The operating system itself has been modularized 
into a collection of software tasks. This allows an operating 
system component such as the file manager to be located far 
from another operating system component, such as the 
memory manager. This mechanism is used to implement 
transparent access to nonlocal network resources such as 
disks. In this manner expensive hardware resources, such as 
disk or high-speed printers, may be shared by several NS16000 
processors, increasing the cost effectiveness of the system. 

NS16000 FAMILY ARCHITECTURE OVERVIEW 

The NS16000 family has been designed to support large soft­
ware systems. The NS16032 CPU provides a 16-Mbyte uni­
form address space for efficient access to large programs and/ 
or data structures. The CPU contains eight 32-bit general­
purpose registers and seven special purpose registers visible to 
the programmer (Figure 1). The instruction set provides a 
symmetric set of operations for 8-, 16-, and 32-bit integers. 
The instruction set also provides operations for strings, bit 
and bit field manipulation, packed decimal, and arrays. 

The instruction set is designed to be efficient for high-Ievel­
language compilation. To eliminate register allocation bottle­
necks, the instruction set uses a general two-address format. 
Any addressing mode may be used for source or destination 
operands so that memory locations may be used as accumu­
lators or pointers. The nine address modes (Table I) imple­
ment the typical variable references of high-level-language 
programs. The offset constants used by the address mode are 
frequency-encoded so that small (-64 to 63) values take only 
1 byte in the instruction stream, medium values (-8192 to 
8191) take 2 bytes, and large values take 4 bytes. By encoding 
the length in the upper 2 bits of the offset, any offset up to the 
full address space size may be used without excessively in­
creasing the size of the address mode field. Instructions are 

Distributed Processing with the NS16000 Family 201 

General Regl.ters 

rO 
r1 
r2 
r3 
r4 
r5 
r6 
r7 

31 0 

floating Point Regi.t .... 

to 
f1 
f2 
f3 
f4 
f5 
f8 
f7 

31 0 

Special Purpose Registers 

fp 
sb 
pc 
us 
is 

intbase 
ptb1 
ptb2 
error 
far 
mar 

par I mod 
31 o 

Figure I-NSl6000 Register Set 



202 National Computer Conference, 1982 

TABLE I-Address modes 

Number Syntax Name 

0-7 rOorfO register 
8-15 disp(rO) register relative 
16 disp(disp(fp» frame memory relative 
17 disp(disp(sp» stack memory relative 
18 disp(disp(sb» static memory relative 
19 reserved for future 
20 value immediate 
21 disp absolute 
22 ext(disp) external 
23 tos top of stack 
24 disP(fp) frame memory 
25 disp(sp) stack memory 
26 disp(sb) static memory 
27 disP(pc) program memory 
28 mode(rO:b) index byte 
29 mode[rO:w) index word 
30 mode(rO:d) index double 
31 mode[rO:q] index quad 

also byte-aligned and frequency-encoded for compactness. 
- The instruction set includes operations for implementing 

the program control constructs found in high-level languages. 
Procedure entry and exit instructions manage the stack frame 
and registers for procedure calls. A case instruction imple­
ments a multiway PC relative branch. A modular software 
facility supports structuring of large programs from small 
manageable modules. Some of the benefits of this system 
include fully ROMabie software and code size reduction, 
resulting from the smaller addresses needed for referencing 
within a module. Each module has three components: code, 
data, and interface. All references to objects in other modules 
are bound by the interface component. There is no modifica­
tion of the code component as the module as linked into 
various programs. The locations of the three components of 
each module are defined by a module table, which allows a 
program to be dynamically configured. 

The instruction set implemented by the CPU may be ex­
tended in a software-transparent fashion through the use of 
slave processor chips. One slave processor is the NS16081 
floating-point unit (FPU). The FPU implements a complete 
set of operations on 32- and 64-bit floating-point numbers 
compatible with the proposed IEEE standard. The floating­
point unit contains 8 additional 32-bit registers for holding 
temporary floating-point values. The FPU can perform a 
64- x -64-bit floating-point multiply in about 6 microseconds. 

Another slave processor is the NS 16082 memory manage­
ment unit (MMU). The MMU implements a demand-paged 
virtual memory system. Every virtual address emitted by the 
CPU is translated to a physical address by using the 'two-level 
translation algorithm shown in Figure 2. A cache in the MMU 
holds a copy of the most recently referenced mapping infor-

VIRTUAL ADDRESS TRANSLATION 

VIRTUAL ADDRESS 

123 INDEX 1 16115 INDEX 2 91s OFFSET 0 1 

INDEX 1 
TABLE 

PTE1: v ~-+-+ .... -----.; 

PHYSICAL 
ADDRESS 

PHYSICAL 
PAGE 

Figure 2-Virtual to physical address translation algorithm 

mation so that most addresses can be translated without any 
reference to the page tables contained in memory. If the 
address is not in the cache, the MMU automatically accesses 
the page tables and loads the translated address into the cache 
for future reference. The MMU also provides software de­
bugging aids, including data breakpoints and program flow 
tracing. 

MOTIVATION FOR DISTRIBUTED PROCESSING 

In the past it was not possible to run large software applica­
tions on low-cost microprocessor-based systems. Micropro­
cessors had limited address spaces. They did not adequately 
support high-level languages; consequently, it was not pos­
sible to compile code that was anywhere close to assembly 
language efficiency. They did not support fast floating-point 
operations in hardware; therefore floating-point operations 
took much longer than they did on a minicomputer or main­
frame. They did not support efficient paged virtual memory 
management. With the NS16000 family, three chips imple­
ment a software architecture fully comparable in sophisti­
cation to a high-end 32-bit minicomputer. In fact, a complete 
system built around the NS16000 chip set and selling for 
$10,000 would have about half the performance of a VAX 
111780, at a cost an order of magnitude lower. 

The low cost of a microprocessor means that there-Is-lIttle· 
economic incentive to timeshare a processor between several 
users. To increase performance and eliminate contention 
problems, it is desirable for every user to have a dedicated 
processor in his/her work station. The increased computer 
power can be readily translated into a more friendly system by 
supporting better user interfaces, such as graphics and mul­
tiple display windows. Connecting these work stations to form 



a distributed system can bring two additional significant bene­
fits: access to nonlocal databases and access to high-perfor­
mance peripherals that are too expensive to justify for a single 
user. Sharing high-performance peripherals minimizes the 
need for local peripherals. For instance, a node running a 
virtual memory operating system need not have a local disk. 

OPERATING SYSTEM SUPPORT OF 
DISTRIBUTED PROCESSING 

There are many variations in distributed system configura­
tions. For example, the nodes may be interconnected by an 
Ethernet or SDLC links. There may be 1 node or 20 nodes in 
the system. Access to a database may be local or remote. For 
these reasons it is desirable for the system configuration to be 
transparent to the application software tasks. The mechanism 
by which one software task communicates with another task 
should not depend on whether the tasks are on the same node 
or how the nodes are connected if they are not on the same 
node. Furthermore, it is desirable for the operating system 
itself to be partitioned into multiple tasks so that they may 
easily be distributed throughout the network by the same 
transparent communication mechanism. For example, the vir­
tual memory manager task should be independent of the loca­
tion of the file manager used for swap requests. 

The NS16000 operating system supports transparent dis­
tributed processing with a modular message-based design. 
The operating system consists of the kernel and a set of re­
source manager tasks. The kernel regulates the execution of 
tasks and low-level access to local hardware resources. Each 
task generally runs in its own address space so that it cannot 
interfere other tasks or hardware resources. A resource man­
ager task controls· access to a hardware resource for other 
tasks. A resource manager implements an allocation and pro­
tection mechanism that allows multiple tasks to share the 
resource. It provides a high-level abstraction that is easier to 
use than the low-level hardware interface. For example, the 
disk resource is controlled by the file manager, which imple­
ments a file abstraction for other tasks to access the disk. The 
physical memory resource is controlled by the address space 
manager, which implements a virtual memory abstraction for 
other tasks. 

The kernel implements an interprocess communication 
mechanism called circuits. A circuit is a path that allows one 
task to send messages to another task or to the kernel. Each 
task has a circuit table, managed by the kernel, containing all 
the currently valid paths by which a task can send and receive 
messages. The key to supporting transparent distributed pro­
cessing is that a circuit may be extended transparently across 
the network. This is done by one of the resource manager 
tasks called the network manager. The network manager 
interposes itself between two tasks connected by a circuit 
when the tasks are on different nodes. When the transmitting 
task tries to send a message to the receiving task, it is inter­
cepted by the local network manager. The network manager 
adds the appropriate network protocol and sends the message 
over the network to the network manager on the node con­
taining the receiving task. The receiving network manager 
then strips off the protocol and performs a kernel send oper-

Distributed Processing with the NS16000 Family 203 

ation to the receiving task. Thus, all network dependencies 
are encapsulated in the network manager process. 

OBJECT MANAGEMENT IN A 
DISTRIBUTED SYSTEM 

The NS16000 operating system supports a general-purpose 
object management mechanism. An object is an instance of 
some user-definable abstraction. The behavior of the object is 
determined by the set of operations that are implemented by 
an object manager task for that abstraction. There is no direct 
access to the internal representation of the object. The object 
management mechanism provides a uniform way of accessing 
objects, be they files, directories, devices, or any other ob­
jects. It provides the ability to name and locate objects inde­
pendent of the location of the accessor or of the object itself. 

There are two types of object references: short-term and 
long-term. A short-term reference is lost when the process 
holding the reference is terminated, and this reference is im­
plemented by a circuit to the object manager. Operations are 
performed by sending messages over the circuit that are inter­
preted by the object manager. Since circuits are transparently 
extended across the network, short-term references are auto­
matically independent of the path from the accessor to the 
object. A long-term reference to an object exists beyond the 
life of the task that creates the reference. For example, a file 
created by a text editor should continue to exist after the edit 
session is terminated. Since the circuits held by a task are lost 
after the task is terminated, another way to reference long­
term objects is needed. This is accomplished with an object 
identifier, which consists of two parts: an object serial number 
and a hint of where the object is located. Each object has a 
unique serial number, which is used to ensure that no impos­
tor object is located if the referenced object is moved or 
deleted. The hint is used to guide the system in searching for 
the object over the network. An object identifier is generated 
by the system for newly created objects. When a task wants to 
perform operations on the object, it converts the long-term 
reference (object identifier) to a short-term reference (circuit) 
with the system open operation. 

The system provides a standard directory manager task that 
provides mapping between UNIX-style pathnames and object 
identifiers. The directory system allows arbitrary nonhierar­
chical directory structures. This is useful in a distributed sys­
tem, where there may be multiple file servers and no global 
directory system root. Because objects are referenced inde­
pendently from their path name, several local naming con­
ventions may be used in the same network. 

SUMMARY 

An NS16000-based distributed system can be a highly cost­
effective alternative to conventional timeshared mini or main­
frame systems. The NS16000 architecture effectively supports 
the large software applications found on large computer sys­
tems. The NS16000 operating system has been designed with 
careful consideration to the issues arising in distributed 
systems. 



204 National Computer Conference, 1982 

ACKNOWLEDGMENTS 

The following people made valuable contributions to the 
NS16000 operating system: Dan O'Dowd, Ross Harvey, Jim 
Avera, Peter Bishop, Laura Neff, Kee Ely, and Bill Thomp­
son. The NS16000 family was developed by the NSTA design 
center. 

REFERENCES 

1. National Semiconductor. NSl6000 Programmers Reference Manual. Santa 
Clara, California: National Semiconductor, 1981. 

2. Kaminker, Asher, Leslie Kohn, Yoav Lavi, Avraham Menachem, and Zvi 
Soha. "A 32-Bit Microprocessor with Virtual Memory Support." IEEE 
Journal of Solid State Circuits, SC-16 (1981), pp. 548-557. 



SOFTWARE 
ENGINEERING 





Exploiting parallelism for the performance enhancement of 
non-numeric applications 

by DAVID J. DEWITT and DINA FRIEDLAND 
University of Wisconsin 
Madison, Wisconsin 

ABSTRACT 

In this paper we examine the design of computer architectures that use parallelism 
to enhance the performance of non-numeric applications. In particular we examine 
how the technology of mass-storage devices has affected the design of computer 
architectures for non-numeric processing. 

207 





INTRODUCTION 

In this paper we examine the design of computer architectures 
that use parallelism to enhance the performance of non­
numeric applications. While this has been an active area of 
research for over ten years,l no commercial products that 
exploit parallelism have resulted from these efforts. This is 
especially interesting when one considers the wide range of 
products available commercially for numeric applications that 
use parallelism. At the top-end (in terms of both performance 
and price) are large scientific processors such as the Cray-1. 
At the bottom end (in terms of price) are products such as the 
Floating Point Systems attached pipelined processor. 

Why is this the case? There seem to be several possible 
explanations. The first is that the problems associated with 
parallelism for non-numeric computation have not received 
the same amount of attention as the numeric area. Consid­
ering the large number of papers on "database machines," this 
is not a very plausible explanation. There are, however, two 
plausible ones. The first is that while there has been a constant 
demand for "more cycles" for numeric computations from a 
variety of user groups (e.g., geologists at oil companies doing 
seismic data analysis, physicists at Lawrence Livermore Labo­
ratory solving large sets of simultaneous differential equa­
tions), a similar market has never developed for non-numeric 
applications. Another feasible explanation is that the recent 
advances in technology have not really helped make highly 
parallel non-numeric processors economically viable. 

In this paper we intend to present and discuss a number of 
alternative architectures that have been proposed for non­
numeric computation. While we will not present a per­
formance evaluation of these architectures, we have per­
formed a number of such studies recently. 2,3,4,5 Instead, we 
intend to summarize the results from these studies in de­
scribing the problems associated with the architectures that 
have been proposed. We begin by characterizing those oper­
ations that must be efficiently supported by a non-numeric 
processor (regardless of whether parallelism is used). The 
impact of limited 110 bandwidth on parallel architectures for 
non-numeric processing is discussed in the third section. In 
the fourth and fifth sections, we describe a number of archi­
tectures that have been proposed to increase the total 110 
bandwidth in the system. A class of architectures referred to 
as "on-the-disk" machines are described first. Processing 
"complex" non-numeric operations such as sorting requires a 
different type of machine. We discuss several alternative orga­
nizations for machines of this type in the fifth section. Finally, 
we present our conclusions and suggestions for future 
research. 

Exploiting Parallelism for Non-Numeric Applications 209 

OPERATIONS OF NON-NUMERIC PROCESSING 

Non-numeric databases can be naturally divided into two 
classes: (1) those that contain unformatted documents such as 
law cases and (2) those that contain formatted data such as 
inventory records. In this section we will describe the types of 
operations that must be supported by non-numeric processors 
for databases of both types. 

Unformatted data-text retrieval systems 

Processing unformatted data is both simple and complex. It 
is simple in the sense that what is required is to make a 
sequential pass through a database searching for those records 
(documents) that have a certain property. For example, in an 
online medical database containing all research reports deal­
ing with·cancer, a researcher might ask a text retrieval system 
to retrieve all documents that mention the word "liver." 

Processing queries can become significantly more complex, 
however. Consider the query "retrieve those documents that 
mention the liver and contain a reference to either the chem­
ical 'carbon tetrachloride' or 'perchloroethylene' 0" Processing 
this query is difficult because the reference to one of these 
chemicals might appear either before or after the reference to 
the liver and, in general, the references may be separated by 
an arbitrary amount of text. Furthermore, the system must be 
aware of a number of different delimiters (e.g., paragraphs, 
chapters, etc.), so that it does not retrieve a document when 
the query is satisfied by strings outside of the appropriate 
context. 

The number of documents that must be searched to process 
a query can be reduced by maintaining secondary indices6 on 
certain key words or phrases such as "organ type." However, 
simply storing these indices can become prohibitive when in­
dices must be maintained for a large number of different 
keywords. Unless users access the database using only a lim­
ited number of key words (i.e., organ names or chemical 
names), secondary indices are not viable. Thus, since pro­
cessing a query involves primarily a linear scan of the data­
base, application of parallel processing techniques appears to 
be a very promising approach to providing fast access to very 
large unformatted databases. In the section on search ma­
chines, we will describe several architectures that are well 
suited for processing unformatted queries. 

Formatted data-database systems 

While a number of different data models have been pro­
posed for describing the logical organization of a formatted 



210 National Computer Conference, 1982 

database,6 most researchers who have designed special pur­
pose architectures for enhancing database system per­
formance have assumed the relational data model. This has 
occurred primarily because of the regUlarity of the relational 
data model for specifying information on both entities (e.g., 
parts, suppliers) and relationships between entities (e.g., 
which parts a supplier supplies). 

A relational database7 consists of a number of normalized 
relations. Each relation is characterized by a fixed number of 
attributes and contains an arbitrary number of unique tuples. 
Thus, a relation can be viewed as a two-dimensional table in 
which the attributes are the columns and the tuples are the 
rows. In a relational DBMS, relations are used to describe 
both entities and relationships between entities. Figure 1 
shows a simple database that describes information about sup­
pliers (relation S), parts (relation P), and the association 
between suppliers and the parts they supply (relation SP). 

The operations supported by most relational database sys-

S RELATION 

Si SUPPLIER-NAME ADDRESS 

17 JONES MADISON 

P RELATION 

Pi PART-NAME COLOR WEIGHT 

36 STOVE YELLOW 300 

SP RELATION 

Si pi QUANTI TY-ON-HAND 

17 36 13 

1--. 

Figure I-Supplier-parts relational database 

tems can be divided into two classes according to the time 
complexity of the algorithms used on a uni-processor system. 
The first class includes those operations that reference a single 
relation and require linear time (i.e., -they can be processed in 
a single pass over the relation). The most familiar example is 
the selection operation which selects those tuples from a re­
lation that satisfy a simple predicate (e.g., suppliers in "New 
y;ork"). 

The second class contains operations that have either one or 
two input relations and require nonlinear time for their exe­
cution. An example of a relation in this class that references 
one relation is the projection operation. Projecting a relation 
involves first eliminating one or more attributes (columns) of 
the relation and then eliminating any duplicate tuples that 
may have been introduced by the first step. Sorting [which 
requires 0 (nlogn) time] is the generally accepted way of 
eliminating the duplicate tuples. The join operation is the 
most frequently used operation from this class that references 
two relations. This operation can be viewed as a restricted 
cross-product of two relations. A join would be used by a user 
to find the name and address of all suppliers who supply a 
particular part (see Figure 1). 

The problem of size 

The very size of both formatted and unformatted data sets 
introduces two important problems. First, operations on both 
types of database are almost always I/O and not CPU in­
tensive. For certain complex search conditions on both un­
formatted and formatted databases, a rather fast CPU may be 
required to process the query at the speed of the mass-storage 
device. However, as we will discuss in next section, during the 
last ten years improvements in technology have had a much 
more dramatic effect on performance of low-cost processing 
units (e.g., the Motorola 68000) than the bandwidth of I/O 
devices. We contend that even this type of query should be 
considered to be I/O limited rather than CPU limited. 

The second effect of very large data sets is that the algo­
rithms used must be "external" algorithms. For example, in 
designing a machine that can rapidly sort very large data files, 
one must never make the assumption that enough main 
memory will be available to permit the whole file to be 
brought into main memory and sorted. For a single processor, 
the algorithm normally used is an external merge sort. 8 It is 
important to realize that the requirement that external algo­
rithms be used has the side effect of increasing I/O activity. 
Later we will examine several architectures that employ paral­
lelism for processing complex operations in order to minimize 
the number of I/O operations performed. 

The algorithms for processing selection operations on for­
matted or unformatted databases are naturally external algo­
rithms as the normal mode of execution is to read the next 
block of data from mass storage and then apply the search 
condition to it. Since these queries can always by processed in 
one pass through the database, they are, when measured in 
terms of I/O activity, significantly simpler than sorting a very 
large data file. Thus a different class of architectures that 
exploit parallelism are appropriate. These architectures will 
be discussed in the fourth section. 



THE PROBLEM OF I/O BANDWIDTH 

The key factor in limiting development of parallel processors 
for non-numeric computation is the lack of sufficient I/O band­
width from commercially available mass-storage devices. 
Consider, for example, a typical (for 1981) mass-storage de­
vice such as the IBM 3350. Each track on this device holds 
19,069 bytes, and a revolution takes 16.7 ms. Thus, the max­
imum burst bandwidth of the device is 1.144 Mbytes/second. 
This represents an improvement of only 46% in I/O bandwidth 
when compared with the IBM 3330-a drive that was intro­
duced over ten years ago. 

As was discussed briefly in the previous section, executing 
a sequential search on a formatted or unformatted database is 
more likely to be. CPU limited than executing an external 
algorithm for a complex operation (e.g., a join) on a for­
matted database, since the first task requires only N I/O oper­
ations (one for each of the N blocks of data) while the latter 
requires, in general, on the order of NlogN I/O operations. It 
is thus most appropriate to examine the level of CPU per­
formance necessary to process data at the rate of 1.144 
Mbytes/second. 

At a data rate of 1.144 Mbytes/second, a processor that is 
directly attached to a disk controller has approximately 0.87 
microseconds to process each incoming byte. If one assumes 

. that it takes two instructions to process each byte (one in­
struction both to compare the next byte of the incoming data 
stream with the next byte of the search pattern and to do an 
autoincrement of both pointers, and a second instruction to 
test for both loop termination and branch on failure), then the 
processor must be approximately a 2.3 MIP processor. While 
this is significantly faster than a conventional microprocessor 
such as a Motorola 68000 (which is about a 1 MIP processor), 
it is certainly within the range of a simple processor con­
structed using bipolar bit-slice technology. If one insists on 
using "off the shelf' hardware, one might use three 68000 type 
processors each with an associated track-long buffer to pro­
cess the incoming stream of data. Since each processor would 
now have to process only every third track, the resulting per­
formance should be more than adequate. 

For formatted databases, every byte of the incoming data 
stream does not need to be examined, since the offset of the 
fields to be examined are located at known positions in the 
incoming records. Thus, a single processor with two track­
long buffers would be able to process selection queries at the 
data rate of an IBM 3350 disk. While the disk is filling one 
buffer, the processor can be applying the selection criterion to 
the records in the other buffer. Processing a record involves 
simply indexing into the record (by adding the offset of the 
field in the record) and then applying the selection condition 
to the field. As long as the number of bytes to be processed 
does not exceed approximately one-third of the record, one 
processor should be able to process the records as fast as they 
are read off the disk. 
- The point that we are trying to make with these examples 

is that one needs, at most, two to three processors and not tens 
or hundreds to process data at the rate of present conventional 
disk drives. Thus, an architecture that blindly uses a lot of 
processors (no matter how they are interconnected) to process 
data that resides on few standard disk drives will inevitably be 

Exploiting Parallelism for Non-Numeric Applications 211 

I/O bound. Advances in disk technology hold only limited 
hope for a resolution of this problem. Over the past ten years, 
increased disk capacities have been mainly the result of an 
increased number of tracks per surface, rather than an in­
creased number of bytes per track. It is only with the recent 
announcement of the IBM 3380 disk drive that this situation 
has changed significantly. The 3380, with a revolution time of 
16.7 ms. and a track capacity of 47,476 bytes, has a burst data 
rate (assuming no seeks) of 2.85 Mbytes/second. While this is 
a significant improvement, it still limits the number of pro­
cessors that can be effectively used to the range 6-8. 

In the next two sections, we will examine several architec­
tures that have been proposed for increasing the effective 
I/O bandwidth. In particular, we show that the architectural 
solutions for processing selection operations are different 
than those for processing complex operations on formatted 
databases. 

SEARCH MACHINES--"ON THE DISK MACHINES" 

Architectures for parallel processing of selection operations 
on formatted or unformatted data consist of two basic com­
ponents: (1) a processing element and (2) a storage unit. A 
number of different storage technologies can be used as the 
basis of the storage unit, including bubble memories, charge­
coupled devices, or conventional magnetic disks. Since the 
logical organization of the processing elements is independent 
of the storage medium used, we shall assume that the storage 
unit is a track on a magnetic disk drive and that records are 
stored bitwise along the track. 

There are two radically different approaches for designing 
the search engine. The first is to use a "conventional" pro­
cessor such as a Motorola 68000 or a simple processor con­
structed using bit-slice components. The query to be executed 
is first compiled (by some host processor) into the machine 
language (or microcode) of the processor. Next the compiled 
query is loaded into the memory of the processor and then 
executed by applying the query to the storage unit associated 
with the processing element. 

An alternative approach is to construct a special purpose 
processor9, 10 that behaves like a finite state automaton (FSA). 
In this approach the query to be processed is compiled into a 
state-transition matrix that is then loaded into the memory of 
the FSA. For each incoming byte, the FSA computes a next 
state based on its current state and the value of the incoming 
byte. Since processing any query requires only one transition 
for each byte in the data stream, processing an arbitrarily 
complex query can always be done at the speed of the data 
stream. The main disadvantage of this approach is that the 
state-transition matrix that represents the compiled query is 
rather large [number of rows (states) * number of different 
incoming symbols]. 

In the following sections we shall describe three ways of 
organizing processing elements and storage units. For each 
design, we have assumed that the processing elements are 
connected to a host processor. This processor serves two im­
portant functions. First, it accepts and compiles queries from 
the users of the system. Second, as we shall discuss below, it 
can be used to assist in the execution of certain queries that 
are too complex for the processing elements to handle alone. 



212 National Computer Conference, 1982 

Processor-per-track (PPT) machines 

In the first class of search machines, each storage unit has 
its own processing element associated with it as shown in 
Figure 2. The processing element scans the data as the track 
rotates and places selected records in an output buffer associ­
ated with the head. After a buffer fills, additional logic at­
tempts to place its contents on the output bus for transmission 
to the host. In the event that the processing logic is not able 
to output a selected record (because the bus is busy and the 
temporary storage buffers are full), processing is suspended 
until at least one buffer is emptied. 

HOST 

PROCESSOR 

DATABASE 

Figure 2-PPT design 

} 

PROCESSING 

ELEMENTS 

} S~ORAGE 
UNITS 

PPT machines were pioneered in 1970 by Slotnick,1 who 
suggested using first a track of a fixed head disk as the unit of 
storage and includes machines proposed by Parker, 11 Min­
sky,12 and Parhami.13 Two early database machine designs, 
RApI4

, 15 and CASSM,16 also belong to this class. Two ver­
sions of RAP, each having two processing elements and two 
storage units, were constructed using first a fixed head disk 
and then charge coupled devices. 

Because the entire database can be searched in one revolu­
tion of the storage units, this architecture is, at first glance, 
very appealing. However, it has a number of serious flaws. 
First, if magnetic disk technology is used as the basis of the 
storage unit, an extremely large number of storage units and 
cells are needed. Assume, for example, a state-of-the-art 
track capacity of 50,000 bytes. To have the same storage ca­
pacity as a conventional 300 Mbyte disk drive (which can hold 
only a very small database), 6,000 storage units and pro­
cessing elements would be needed. The resulting system 
would most likely be relatively unreliable. A second major 
problem with this approach is that the bus connecting these 
6000 processing elements to the host can easily become a 
bottleneck. Assume that the bandwidth of the output bus is 10 
Mbytes/second. If the storage units have a revolution time of 
16.67 ms., the maximum aggregated bandwidth of the pro­
cessing elements is 18 billion bytes/second. Even if only 0.1 % 
of the data stored in each storage element satisfies the search 
condition, the processing elements will have an output band­
width of 18 Mbytes/second and hence the bus wiU stili be a 
bottleneck. 

The PPT architecture appears to be feasible only if the 
capacity of each storage unit is much larger (with a propor­
tionally longer revolution time). The consequences would be 
twofold. First, the number of units required to store a "large" 
database could probably be reduced to a "reasonable" level. 
Second, a reduction in the number of processing units would 
ease the output bus bottleneck problem. There are two tech­
niques of increasing storage unit capacities. One is to use a 
different storage medium such as bubble memories (some of 
which have a capacity of one million bits eachl7

). While the 
performance of such an approach is excellent,2 most manu­
facturers are dropping bubble memory components because 
their cost per bit has not become competitive. A second ap­
proach is to associate each processing element not with a 
single track of a disk, but rather with an entire surface of a 
disk. This approach is discussed in the following section. 

Processor-per-head (PPH) machines 

In the second class of search machines, each processing 
element is associated with a head of a moving-head disk as 
illustrated in Figure 3. Thus, the storage unit consists of all the 
tracks on the surface of a disk instead of a single track. In this 
class of machines, data is transferred in parallel over I-bit 
wide data lines from the heads to the processing elements. 
Each processor applies the selection criteria to its incoming 
data stream and places selected records in its output buffer, In 
such an organization, an entire cylinder of a moving-head disk 
is examined in a single revolution (assuming no output bus 
contention). As in PPT organizations, additional revolutions 
may be needed to complete execution of the query if an out­
put buffer overflows. 

The DBC18 database machine project adopted the PPH 
approach over the PPT approach as the basis for the design of 
the "Mass Memory Unit" because PPT devices were not 
deemed to be cost-effective for the storage of large databases 
(say more than 1010 bytes). Another possible reason for taking 
this route is the apparent lack of success of head-per-track 
disks as secondary storage devices. Moving-head disks with 
parallel readout, on the other hand, seemed an attractive and 
feasible alternative. The Technical University of Braun-

HOST 

PROCESSOR 

PROCESSING 

ELEMENTS 

Figure 3-PPH design 

CONTROL 



schweig, in cooperation with Siemens, has actually built one 
for use in the Braunschweig search machine SURE.19 It is the 
case, however, that parallel readout disks are presently not 
widely available (a 600-Mbyte drive with a 4-track parallel 
readout capability and a data transfer rate of 4.84 Mbytesl 
second is, however, available for the Cray-l for approximately 
$80,000 without controller) and may never be cost-effective 
for the storage of large databases (when compared to 
"stan~ard" drives). 

Processor-per-disk (P P D) machines 

Unlike the PPT and PPH approaches, the PPD organiza­
tion utilizes a standard disk drive. In this organization, a pro­
cessing element is placed between the disk and the memory 
device to which the selected records are to be transferred as 
shown in Figure 4. This processor acts as a filter9 to the disk 
by forwarding to the host only those records that match the 
selection criteria. At first glance, it seems as though this ap­
proach is so inferior to the others that it does not merit any 
attention. However, its advantage is that for a relatively low 
price one can obtain the same functionality (but not the same 
performance) as the PPT and PPH designs. In addition, by 
broadcasting the data stream from the disk to a set of pro­
cessing elements,19 one can simultaneously process selection 
queries from different users over the same database. 

Use of Search Machines for Complex Database Operations 

Since the only functionality provided by the PPT, PPH, and 
PPD designs is to process selection queries, each of these 
designs processes complex operations (e.g., join) on for­
matted databases by decomposing the query using an algo­
rithm based on Wong's tuple substitution algorithm.20 As­
sume that the join operation as specified by the user has the 
form R. a = S. b and that S contains fewer tuples than R. These 
designs will process this query by issuing one selection sub­
query for each tuple in S. The form of each subquery will be 
R. a = x where x is the join attribute value from the current 
tuple in S. The result relation is produced by having the host 

HOST 

PROCESSOR 

PROCESSING 

ELEMENT 

"DISK CONTROLLER 

Figure 4-PPD design 

Exploiting Parallelism for Non-Numeric Applications 213 

processor "join" each tuple in S with all the tuples from R 
returned by the execution of its subquery. The performance of 
this approach, however, is very poor. 3 In fact, it is inferior to 
using only the host processor to perform a traditional 
"sort-merge" join. In the next section, we will describe several 
non-numeric architectures that are designed to process com­
plex database operations effectively. 

MACHINES FOR COMPLEX DATABASE 
OPERATIONS 

Parallelism can also be employed to enhance the performance 
of complex database operations. The use of parallel pro­
cessors to enhance the performance of the relational join and 
project operations is highly desirable, since both are very 
time-consuming in a conventional database management 
system. 

As discussed by De Witt and Hawthorn3 and Boral, De Witt, 
Friedland and Wilkinson, 21 we strongly advocate an "algo­
rithmic approach" to the design of architectures that use par­
allelism to enhance the performance of non-numeric oper­
ations. As an example of a complex operation, we present the 
relational join operator in the following section. Afterwards, 
we discuss four alternative building blocks that can be used as 
the basis for parallel algorithms for complex formatted data­
base operations. Then we describe parallel architectures 
based on two of these building blocks. Because a performance 
analysis of these alternative algorithms and architectures is 
beyond the scope of this paper, the interested reader is en­
couraged to examine Boral, DeWitt, Friedland and Wilkins21 

and Friedland.4 

Unlike the selection operation; for which a partition of the 
data can be searched independently by each processor, the 
join, projection, and the other complex operations require 
that the processors exchange data among themselves during 
intermediate stages of execution. In addition, the volume of 
I/O activity is significantly higher, since unlike the selection 
operation, these operations cannot be performed in a single 
pass over the operand relations. While the building blocks 
vary in terms of the degree of interprocessor communication 
and amount of I/O activity each requires, the architectural 
features that are needed to efficiently execute these tasks 
include a fast interprocessor communication facility and a 
cost-effective, mass-storage device that provides high I/O 
bandwidth. 

The relational join operation 

In Figure 5 the execution of the join operation is illustrated 
by the "nested-loops" algorithm. Relations Rand S are as­
sumed to have Nand M tuples respectively, and fields r of 
relation Rand s of relation S are assumed to be of the same 
type. Execution of the join requires that the r field from each 
tuple of R be compared to the s field from each tuple of S. 
When they match, the two tuples are concatenated. In gen­
eral, each tuple in R will match an arbitrary number of tuples 
in S. In the worst case, the join of Rand S will produce N* M 
tuples. 



214 National Computer Conference, 1982 

for i <- 1 to N do 
for j <- 1 to M do 

if R .. r = 5 .. s then 
begin ] 

t = join(R!,S.!); 
output(t) 1.1.- J 

end; 

Figure 5-The nested-loops join algorithm 

Building blocks for complex database operations 

While the nested-loops join algorithm is adequate for 
"small" relations, it is a very slow method joining two "large" 
relations. If indices exist on the join attributes for both re­
lations, then the join can instead be performed on the index 
entries (instead of the tuples themselves).22, 23 This procedure 
substantially reduces the volume of 110 activity, since the in­
dex files are much smaller than the data files. If indices are not 
available, the join of two "large" relations is usually per­
formed by presorting the operand relations. This process is 
followed by a modified merge phase in which matching tuples 
are located and joined. After the relations have been sorted, 
the actual join step requires only a linear pass through both 
relations. Sorting is also used by conventional database man­
agement systems to efficiently perform the duplicate elimi­
nation part in the projection. Alternatively, hashing24 can be 
employed to eliminate duplicate tuples in a projected relation. 

There appear to be four building blocks that can be used as 
the basis for parallel algorithms (and parallel machines to 
execute these algorithms) for complex database operations. 
They are 

1. Indexing 
2. Hashing 
3. Sorting 
4. Broadcasting 

Of these four techniques, sorting and broadcasting appear to 
us to be the most promising. In the following paragraphs we 
will describe a number of unresolved problems associated 
with using indices and hashing as basic building blocks. In 
both cases we shall use the join operation as a vehicle for 
explaining our objections. 

The basic idea of using indexing2S in a parallel algorithm for 
the join operation is to have both the indices and the corre­
sponding relations uniformly partitioned among the pro­
cessors, each of which has a mass-storage device associated 
with it. During execution of the algorithm, each processor 
uses its portion of the indices to compute its portion of the 
result relation. The fundamental flaw of this approach is that 
it assumes that if you uniformly distribute the tuples from both 
relations among all the processors, the two tuples from Rand 
S with the same attribute value will end up on the same 
processor. 

Goodman and Despain2s also propose using hashing as the 
basis for a parallel join algorithm. Again the two relations are 
assumed initially to be uniformly distributed among all the 

processors. The algorithm begins by applying a hash function 
to the "joining" attribute of both relations. This hash function 
is used to compute a processor number. After the appropriate 
processor has been identified, the tuple is sent to the pro­
cessor to be joined with the tuples with the same attribute 
value. During the second phase of the algorithm, each pro­
cessor joins the tuples it receives as the result of the first 
phase. 

There are a number of problems associated with this algo­
rithm. First note that the number of distinct join attribute 
values will, in general, be much larger than the number of 
processors available. Thus, each processor will receive tuples 
with a range of join attribute values. As a consequence, the 
processor must somehow (e.g., by sorting) determine exactly 
to which tuples every tuple is to be joined. A second problem 
is the cost of moving almost every tuple to a different pro­
cessor from where it originally resided. While both of these 
problems have solutions, a serious problem that is impossible 
to resolve remains. The idea of using a hash function in the 
first place was to distribute the tuples in a manner that would 
permit all processors to help perform the actual join oper­
ation. However, when there are only a few join attribute 
values, only a few processors will be used to actually perform 
the join. In general, since the distribution of join attribute 
values is unknown, the performance of a machine designed 
around this algorithm will be unpredictable (an unsettling 
fact). 

An architecture based on parallel sorting 

Until recently,4 parallel sorting had not been suggested or 
investigated as the basis for performing complex database 
operations. This can be partly explained by the lack of re­
search in the parallel external sorting area. While extensive 
literature on parallel sorting exists, no algorithms had been 
developed for sorting in parallel large mass-storage files. 
When one considers how successful sorting is for performing 
complex operations on a single processor, it is natural also to 
examine_ its use for parallel architectures. 

Friedland4 has examined and analyzed a number of external 
parallel sorting algorithms and architectures. The algorithms 
that display the best performance are based on either a two­
way external merge step26 or an extension of Batcher's bitonic 
sort27 to permit the sorting of external data files. In general 
case, the algorithm based on the two-way external merge step, 
termed the parallel binary merge algorithm, has the best per­
formance. In this section we will describe the operation of this 
algorithm on an architecture that permits the efficient exe­
cution of the algorithm. Use of this algorithm for performing 
the join would occur in two steps. First, both relations would 
be sorted on the joining attribute. Next, one processor would 
be used to join the two relations by reading the sorted files in 
a sequential pass through them. Tuples from the two relations 
with equal joining attribute values would then be joined. 

Execution of the parallel binary merge algorithm is divided 
into three stages as shown in Figure 6~ Wea~~~me that th~. 
number of pages to be sorted, N, is at least twice the number 
of processors, P. The algorithm begins execution in a sub­
optimal stage in which sorting is done by successively merging 
pairs of longer and longer runs until the number of runs is 



SUBOPTIMAL 
STAGE 

OPTIMAL 
STAGE 

POSTOPTIMAL 
STAGE 

Figure 6-Parallel binary merge with 4 processors and 16 pages 

equal to twice the number of processors. During the sub­
optimal stage, the processors operate in parallel but on sepa­
rate data. First, each of the P processors reads two pages and 
merges them into a sorted run of two pages. This step is 
repeated until all single pages have been read. If the number 
of runs of two pages is greater than 2 * P, each of the P pro­
cessors proceeds to the second phase of the suboptimal stage 
in which it repeatedly merges two runs of two pages into 
sorted runs of four pages until all runs of two pages have been 
processed. This process continues with longer and longer runs 
until the number of runs equals 2* P. 

When the number of runs equals 2* P, each processor will 
merge exactly two runs of length N /2P. We term this phase 
the optimal stage. At the beginning of the postoptimal stage, 
the controller releases only one processor and logically 
arranges the remainder as a binary tree (see Figure 6). During 
the postoptimal stage, parallelism is employed in two ways. 
First, all processors at the same level of the tree (Figure 6) 
execute concurrently. Second, pipe lining is used between lev­
els. By pipelining data between levels of the tree, a parent is 
able to start its execution a single time unit after both its 
children (i.e., as soon as its children have produced one out­
put page). 

The ideal architecture for the execution of this algorithm is 
a binary tree interconnection between the processors as 
shown in J:igure 7. The mass-storage device consists of two 
disk drives, and each leaf processor is associated with a sur­
face on both drives as in the PPH organization. This organiza­
tion permits the leaf processors to do I/O in parallel while 

Exploiting Parallelism for Non-Numeric Applications 215 

INPUT 
DRIVE 

OUTPUT 
DRIVE 

Figure 7-Binary tree interconnection between the processors 

reducing almost in half the number of processors that actually 
must do input/output. Analysis of the performance of this 
architecture shows substantial performance improvements 
(over a single processor) when such a mass-storage device is 
available. If, however, only two conventional disk drives are 
available, the performance improvement achieved is very lim­
ited, which indicates again the need for more I/O bandwidth if 
parallel architectures for non-numeric applications are to be 
viable. 

An architecture based on broadcasting 

By using broadcasting as a basic building block, a number 
of very simple and relatively fast parallel algorithms for com­
plex database operations can be constructed. As an example, 
consider the nested-loops join algorithm shown in Figure 5 
and assume that Nand M refer to the number of disk pages 
occupied by relations Rand S, respectively, instead of the 
number of tuples. Also assume (for the moment) that N pro­
cessors are available. A parallel nested-loops join algorithm 
would begin by having each of the N processors read one page 
from relation R. Next, the M pages of relation S are broad­
cast, one at a time, to all the processors. Upon receipt of a 
page of S, each processor will apply the nested-loops join 
algorithm to its page of R and the incoming page of S. If P < N 
processors are available, the algorithm is executed in N/P 
stages. 

Furthermore, as shown in Figure 8, the architecture re­
quired to support these algorithms is straightforward. All that 



216 National Computer Conference, 1982 

BROADC;\ST BUS 

Figure 8--An architecture based on broadcasting 

is required is a bus that is capable of broadcasting at the same 
data rate of the mass-storage device. The main disadvantage 
of this approach is that the first step of the algorithm in which 
each processor gets a page of R is sequential. It can, however, 
be parallelized if R resides on a parallel-readout disk drive. 

CONCLUSIONS AND FUTURE DIRECTIONS 

From the discussions contained in this paper we are able to 
draw a number of conclusions about parallel architectures for 
non-numeric applications. First, manufacturers must place 
more emphasis on the development of mass-storage devices 
that have higher transfer rates if parallel architectures for 
non-numeric applications are to become viable. Second, while 
we have suggested two different styles of parallel architectures 
for execute searching and complex operations, database man­
agement systems perform both types of operations. Thus, it 
appears worthwhile to investigate the design of a machine 
that combines the ability of the "on the disk" machines to 
process selection queries rapidly with those features that facil­
itate execution of complex operations on formatted data­
bases. The RDBM28 represents a first attempt at designing 
such a machine. 

ACKNOWLEDGMENTS 

We would like to acknowledge support of this research by 
the Department of Energy under contract #DE-AC02-
81ER10920 and the National Science Foundation under grant 
MCS78-01721. 

REFERENCES 

1. Siotnik, D. L. "Logic per Track Devices." In Frantz Alt (ed.), Advances in 
Computers (Vol. 10), New York: Academic Press, 1970, pp. 291-296. 

2. Boral, H., D. J. DeWitt, and W. K. Wilkinson. "Performance Evaluation 
of Four Associative Disk Designs." Journal of Information Systems, Vol. 7, 
No.1, January 1982. 

3. D. DeWitt and P. Hawthorn. "Performance Evaluation of Database Ma­
chine Architectures." Invited paper, Proceedings of the 7th International 
Conference on Very Large Databases, September 1981. 

4. Friedland, Dina B. "Design, Analysis, and Implementation of Parallel 
External Sorting Algorithms." Computer Sciences Technical Report #464, 
University of Wisconsin, January 1982. 

5. Hawthorn P. and D. J. DeWitt. "Performance Evaluation of Database 
Machines." IEEE Transactions on Software Engineering, January 1982. 

6. Date, e. J. An Introduction to Database Systems. Reading, Mass.: 
Addison-Wesley, 1981. 

7. Codd, E. F. "A Relational Model of Data for Large Shared Data Banks." 
Communications of the ACM, Vol. 13, No.6, June 1970. 

8. Knuth D. E. The Art of Computer Programming-Sorting and Searching. 
Reading, Mass.: Addison-Wesley, 1975, p. 160. 

9. Bancilhon F. and M. Scholl. "Design of a Backend Processor for a Data 
Base Machine." Proc. of the ACM SIGMOD 1980 International Conference 
of Management of Data, May 1980. 

10. Haskin, R. L. "Hardware for Searching Very Large Text Databases." Pro­
ceedings of the Fifth Workshop on Computer Architecture for Non-Numeric 
Processing, March 1980, pp. 49--56. 

11. Parker J. L. "A Logic per Track Retrieval System." IFIP Congress, 1971. 
12. Minsky N. "Rotating Storage Devices as Partially Associative Memories." 

Proc. 1972 FJCe. 
13. Parhami B. "A Highly Parallel Computing System for Information Re­

trieval." Proc. 1972 FJCe. 
14. Ozkarahan, E. A., S. A. Schuster, and K. e. Smith. "RAP-Associative 

Processor for Database Management." AFlPS Conference Proceedings 
(Vol. 44) 1975, pp. 379--388. 

15. Sadowski P. J. and S. A. Schuster. "Exploiting Parailelism in a Relational 
Associative Processor." Fourth Workshop on Computer Arch. for Non­
numeric Processing, Aug. 1978. 

16. Su, Stanley Y. W., and G. Jack Lipovski. "CASSM: A Cellular System for 
Very Large Data Bases." Proceedings of the VLDB, 1975, pp. 456--472. 

17. Bryson, D., D. Clover, and D. Lee. "Megabit Bubble-Memory Chip Gets 
. Support From LSI Family." Electronics, April 26, 1979. 

18. Kannan, Krishnamurthi. "The Design of a Mass Memory for a Database 
Computer." Proc. Fifth Annual Symposium on Computer Architecture, 
Palo Alto, CA., April 1978. 

19. Leilich H. 0., G. Stiege, and H. Ch. Zeidler. "A Search Processorfor Data 
Base Management Systems." Proc. 4th Conference on Very Large Data­
bases. 1978. 

20. Wong, E. and K. Youssefi. "Decomposition-A Strategy for Query Pro­
cessing. ,. ACM Transactions on Database Systems, Vol. 1, No.3, September 
1976, pp. 223-241. 

21. Boral, H., D. J. DeWitt, D. Friedland, and W. K. Wilkinson. "Parallel 
Algorithms for the Execution of Relational Database Operations." sub­
mitted to ACM Transactions on Database Systems, October, 1980. 

22. Astrahan, M. M. et al. "System R: Relational Approach to Database 
Management." ACM Transactions on Database Systems, Vol. 1, No.2, June 
1976, pp. 97-137. 

23. Blasgen M. W. and K. P. Eswaran. "Storage and Access in Relational Data 
Bases." IBM System Journal, Vol. 16, No.4, 1977. 

24. Babb, E. "Implementing a Relational Database by Means of Specialized 
Hardware." ACM Transactions on Database Systems, Vol. 4, No.1, March 
1979, pp. 1-29. 

25. Goodman, J. R. and A. M. Despain. "A Study of the Interconnection of 
Multiple Processors in a Data Base Environment." Proceedings 1980 Inter­
national Conference on Parallel Processing, August 1980, pp. 269--278. 

26. Even, S. "Parellelism in Tape Sorting." CACM, Vol. 17, No.4, April 1974. 
27. Batcher, K. E. "Sorting Networks and Their Applications." Proceedings 

Spring Joint Computer Conference (Vol. 32) 1968, pp. 307-314. 
28. Hell, W. "RDBM-A Relational Data Base Machine: Architecture and 

Hardware Design." Proceedings of the 6th Workshop on Computer Archi­
tecture for Non-Numeric Processing, June 1981. 



Performance engineering of software systems: a case study 

by C. U. SMITH 
Duke University 
Durham, North Carolina 

and 

J. C. BROWNE 
University of Texas at Austin 
Austin, Texas 

ABSTRACT 

This paper summarizes the concepts of performance engineering in large software 
systems and illustr"ates the application of performance engineering techniques to the 
early design phase of a large database system. 

Performance engineering is a methodology for evaluating the performance of 
software systems throughout their life cycles. The case study given here demon­
strates that it is possible to predict resource usage patterns of complex software 
systems even in early design phases of the system, although detailed predictions of 
resource usage are not likely to be validated. The results presented here show the 
leverage of considering performance implications in the early design phases of a 
software project. 

217 





1.0 INTRODUCTION 

This paper describes a performance engineering study of 
a large-scale software system. Performance engineering is 
a practical discipline used throughout the design and imple­
mentation stages of a system to ensure that it meets 
responsiveness and/or throughput goals. Performance en­
gineering is routinely applied to mechanical devices and com­
puter hardware, but it has been largely ignored in the realm 
of software engineering. 

Performance engineering is, however, an emerging disci­
pline. A methodology has been developed for the represen­
tation and evaluation of software systems, given specified 
workloads and specified hardware/operating system environ­
ments.1

,2 Smith3 has defined a software engineering context 
for performance engineering. It has been established and val­
idated that this methodology can generate accurate represen­
tations of the execution behavior of software systems, given 
implementation specifications and reasonable, measured in­
put data. 

This paper demonstrates the application of performance 
engineering in the early design phase of a large software 
project. It will be demonstrated that it is possible to assess 
accurately the principal resource usage patterns of a large and 
complex software system when only quite preliminary design 
specifications are available (provided that the target host 
hardware/operating system is known). The study reported 
here predicted the bottlenecks in performance that appeared 
more than a year later (fall 1979-prediction, spring 1981-
execution). Detailed prediction of specific performance char­
acteristics cannot be attained at the stage of preliminary de­
sign or even detail design. It is often the case that analysis 
leading to bottleneck predictions will result in design alter­
ations, thus precluding detailed validation of predictions. The 
case study presented here underwent many substantive 
changes in design over the 18-month period immediately pre­
ceding implementation, but many major patterns of resource 
usage remained constant and were due to constructs identified 
in the early design phase of performance engineering. (The 
major deviations from these early predictions were also iden­
tified in the detail design and early implementation phases 
prior to execution.) 

The example in this paper is a large database system in­
tended for the support of integrated CAD/CAM applications. 
The complete performance engineering study is volu­
minous. 4

,5 We use as an example the analysis of a small query 
transaction within a given hardware, operating-system, and 
database environment. It is an essential part of our purpose to 
establish that performance engineering is a low-effort/high­
return enterprise. The work reported herein is a part of a 
project that was usually staffed by a half-time systems analyst. 

Performance Engineering of Software Systems 219 

The part of the work reported here represents approximately 
one person-month of effort. 

2.0 OVERVIEW OF PERFORMANCE ENGINEERING 

Performance engineering includes all activities associated 
with constructing software to meet performance goals. It be­
gins with the analysis of the preliminary software design to 
determine whether its performance characteristics appear to 
be satisfactory. It is far better to correct performance prob­
lems before code is written than to invest significant devel­
opment effort in a product that is certain to have poor per­
formance. Performance engineering continues throughout the 
software life cycle. It is important to monitor software devel­
opment progress and to assess the performance impact of 
detail design decisions as well as design and implementation 
changes. It is important even after the implementation stage, 
during maintenance. Since maintenance usually includes soft­
ware redesign to incorporate additional functions, the revised 
system is subject to the same performance pitfalls as the orig­
inal design. 

A performance engineering project consists of obtaining 
the necessary data, conducting the analysis, comparing results 
to performance goals, and evaluating design alternatives. All 
performance evaluation projects should also be concluded 
with a validation of the results to evaluate their effectiveness. 
These topics are discussed in the remainder of Section 2. 

Performance engineering of software is most effective when 
conducted by a team supplying expertise in three areas: the 
intended use of the software (supplied by the client represen­
tative), its design (supplied by the software designers), and 
software performance analyses (supplied by the performance 
analysts). The team begins the performance engineering early 
in the design stage, just after the initial functional architecture 
is specified. The purpose of the first analysis is to rule out 
designs that are potentially disastrous, select a suitable one, 
and identify performance problems. It may also be used for 
capacity planning to determine the configuration that will be 
required to support the new product. 

2.1 Performance Specifications 

Seldom, at any development phase, is there sufficient docu­
mentation or written specification available to determine the 
performance characteristics of software systems. This infor­
mation must then be obtained through performance walk­
throughs. A performance walkthrough is similar in structure 
to the design and code walkthroughs characteristic of current 
software engineering practice. 

The team, therefore, conducts a performance-oriented de-



220 National Computer Conference, 1982 

sign walkthrough to gather the needed information. The client 
representative begins by describing a typical scenario or task 
that will involve the software from the user's point of view. 
The software designer then describes the processi,ng necessary 
for accomplishing the user's task. The performance analyst 
participates in these two discussions and asks pertinent ques­
tions to obtain the data necessary for the analysis. The analyst 
then summarizes the scenario and software processing, from 
the analysis point of view, to verify that the information was 
correctly interpreted. An example of a walkthrough is given in 
Section 4. 

The process is repeated for several representative sce­
narios; this may require multiple walkthroughs. The initial 
ones cover most of the necessary processing details; later ones 
cover only new information. 

After the walkthrough, the analyst gathers the relevant in­
formation, conducts the evaluation, and presents the results 
and recommendations to the team. The team then decides on 
the most appropriate course of action. 

Additional walkthroughs are conducted at later stages in 
the life cycle to update the information for the analyses, to 
compare the early results to the current results to see whether 
problems have arisen, and to look at the effect of replacing the 
usually optimistic assumptions used in early design with more 
realistic ones. 

The preceding discussion addressed the methods of obtain­
ing data for the analyses and following the software through­
out the development process. An important component of 
performance engineering is the analysis techniques used to 
obtain predictions. 

2.2 The ADEPT Analysis Technique 

"A Design-Based Evaluation and Prediction Technique," 
ADEPT,6 was used to evaluate the design in this case study. 
The following is a summary of the analysis steps: 

1. Definition of the performance goals and the workload of 
the system, from the user's point of view. 

2. Definition of the execution environment for the tasks. 
This may involve the specification of database character­
istics and volumes as well as hardware and basic 
operating-system characteristics. 

3. Definition of the system structure from a component or 
module viewpoint. The hierarchical development of sys­
tem structure and the incremental resolution of com­
ponents and modules are accommodated. 

4. Mapping the workload onto the system structure to de­
termine execution paths (execution graphs) that charac­
terize the typical processing of this transaction in the 
given data/hardware/OS environment. Detailed expla­
nations of execution graph concepts can be found in 
Smith.6 

5. Specification of the resource requirements necessary for 
executing the components in the execution graphs for 
this workload. 

6. Evaluation of the elapsed time and resources required 
for each module or component along the execution 
path(s). Techniques for evaluation of execution graphs 
can be found in Smith.6 

7. Mapping of the execution graph to a queueing network 
model of the hardware and operating system to allow 
study of the execution of the workload with mUltiple 
users in the context of existing workloads and computer 
system environments. 

8. Evaluation of the results of this analysis. 

Alternatives are evaluated by revising the corresponding 
specifications and repeating the analysis steps. 

A unique aspect of the ADEPT strategy is the initial use of 
a simplistic analysis of the performance in a best-case situ­
ation. More sophisticated analyses of realistic cases are intro­
duced as more detailed information is available. The initial 
concern is to identify feasible designs and eliminate poten­
tially disastrous ones. Since the analysis is based on estimates, 
a complex, costly, time-consuming initial evaluation is not 
justified. 

The rationale for the best-case analysis is to focus attention 
on designs and potential improvements and to eliminate argu­
ments about situations that are likely (or unlikely) to occur 
that would result in better (or worse) response times. For 
example, an analysis might show that the average response 
time is 25 seconds. Arguments could ensue about what partic­
ular combinations of input data will cause better (or worse) 
responses, when they will occur, and similar matters. But an 
analysis showing that the best response obtainable is 20 sec­
onds clearly indicates problems. Any arguments about the 
likelihood of specific situations is irrelevant, since the re­
sponse in those cases will be worse. 

2.3 Validation Of Performance Engineering 

Performance engineering has a unique problem: It will be 
impossible to demonstrate success, but its failures will be 
obvious. Successful performance engineering of a software 
system will lead to an effective and efficient product. Attri­
bution of the success to performance engineering is, of course, 
unlikely! Products that perform poorly when used are clearly 
visible as failures. It is clear, therefore, that performance 
engineering as a discipline may gain more credibility from 
failures in which poor performance was predicted, but in 
which the predictions went unheeded, than from its true suc­
cesses. A successful performance engineering project should 
be invisible at the conclusion of implementation, but very 
visible during design and development. 

It should be clear that performance engineering of a soft­
ware system can be initiated at early design stages and carried 
through the life cycle of the software product. The study de­
scribed here began with early design and followed through 
until field task execution of code. Predictions developed at the 
early stage of the system that were unheeded will be shown to 
be qualitatively valid for the actual system representation that 
emerged. 

3.0 PROBLEM DEFINITION 

The subject system of this performance engineering study is 
the database component called the integrated program for 
information processing (IPIP) of the integrated program for 



aerospace-vehicle design (IP AD) system. Information on 
IPAD can be found in the Proceedings of the IPAD National 
Symposium 7 and in reports available from NASA and the 
IPAD prime contract, the Boeing Commercial Aircraft Com­
pany. A schematic of the components of this system and their 
relationships are shown in Figures 1 and 2. The components 
illustrated in Figure 1 are the executive program, IPEX; the 

IFAC IPEX IPIP 

APPL. 

+ 
Host Operating System 

Figure 1-Structure of IPAD system 

Request --..... ~I~ __ M_PI_P __ -+-__ D_B_C_S __ ..... Arrival ..... 

Record 
Translator 

DMS 

Resource 
Manager 

Binder 

Figure 2-Partial list of IPIP major components at early design 

user interface program, IFAC; a user application program, 
APPL; and the data management system, IPIP. The IPIP data 
management system is a flexible and powerful system. It im­
plements a multischema data-definition capability similar to 
that proposed in the ANSI -SP ARC Three Schema Data 
Model. 8 The IPIP/IPAD system is written in Pascal. The early 
design representation of IPIP, shown in Figure 2, consists of 
a set of major functional modules. Figure 3 has the description 
of the functions of some of these modules. It is extremely 
large and has highly modular code. There are some one thou­
sand Pascal procedures in IPIP itself. The original design 
called for the recursive use of the database system; i.e., the 
database system itself would be used to manage at run-time 
the definitions of data items, schema, and other structural 
information. This implies that a call to the data management 
system may involve multiple levels of recursion-first to lo­
cate the definitions of the data, then to obtain index directory 
information before actually going and searching for the data 
values themselves. 

The specific task used here as an example is the execution 
of a simplified transaction proposed as a part of the demon-

Performance Engineering of Software Systems 221 

"Recursive Calls 

Figure 3--FETCH FIRST 

strati on package for the IPAD system. This transaction estab­
lishes a list of record occurrences that meets given qual­
ifications and delivers the first qualified occurrences to the 
user program. The database used here is an indentured parts 
list. This transaction against an indentured parts list could 
be part of the processing associated with a cost engineering 
study or manufacturing setup study. The actual processing 
steps included are three FIND FIRST commands, which qual­
ify a list of record occurrences from the three record types 
of the database and retrieve the first occurrence that quali­
fies. These are followed by a series of FETCH NEXT com­
mands (a total of 10), which deliver the balance of the qual­
ified records. Figure 4 shows the steps of the transaction. The 
last two FETCH NEXT commands are repeated four and five 
times, respectively, before the lists of qualified records are 
exhausted. 

This simplified transaction was selected as the basis for 
presentation of this case study because it is simple enough to 
be easily presented and because it includes the two most fre­
quent operations of a database system, FIND and RE­
TRIEVE. The fact that it includes both FIND and RE­
TRIEVE operations makes it exercise a large fraction of the 
modules of the system. It will be seen that the consideration 
of only this single transaction brings to visibility many of the 
fundamental resource usage patterns of execution of the en­
tire database system. The simplified transaction described 
omits from the analysis OPENing and CLOSEing of the sche­
ma and other low-frequency processing components. 

Selection of workload elements for an analysis can have 
major impact on the costfbenefit ratio of a performance en­
gineering study. It is important that elements selected be rep­
resentative of the actual workload in order to obtain accurate 
predictions of the performance of the actual workload. 



222 National Computer Conference, 1982 

Feteh Next Ree 3 

Avg. 

Total 

Avg. 

Total 

CPU 
(sees) 

.488 

.488 

.488 

.116 

.116 

.464 

.116 

.580 

2.624 

lID's 

27 

27 

27 

4 

1 

5 

91 

Figure 4--Scenario description and predictions 

4.0 EXECUTION OF THE PERFORMANCE 
ENGINEERING TASK 

4.1 Definitions And Specification Of Execution 

Elapsed 
(sees) 

1.514 

1.514 

1.514 

.154 

.154 

.616 

.154 

,770 

6.082 

The elements of the workload, the scenario containing 
FETCH FIRST and FETCH NEXT commands, were speci­
fied in the previous section. The next step is to determine the 
performance goals for the scenario. The demonstration pro­
gram is a query that will determine and display a list of parts 
for the engineer (the user of the system). An engineer may be 
prepared to wait from 1 to 5 seconds to begin to see results. 
The hardware/software environment for this study was a 
Cyber 170 computer executing the NOS operating system.9 

Additional specifications were obtained from a performance­
oriented design walkthrough. Figure 5 illustrates the con­
tribution of an engineer who described the scenario. Figure 6 
is a description of the processing steps required for the 
FETCH FIRST command. The resource estimates, obtained 
through questions posed by performance analysts, are in 
Figure 4. 

The data collected in the walkthrough were then collected, 
and the software structure was depicted by execution graphs. 
Figure 4 illustrates the processing steps in the scenario in the 
execution graph format, Figure 6 shows more detailed infor­
mation for the FETCH FIRST command, and Figure 7 shows 
processing steps for the FETCH NEXT command. 

This scenario is a query from a terminal asking for a list of all parts required 
to build a particular assembly. It contains multiple sub-assemblies each of 
which contains multiple parts. The query will be used to validate data and 

obtain information for inventory control. 
The user enters the identification number of an assembly and indicates the 

type of information desired. 
The data base is small and has a simple structure. There are three record 
types. The number of record occurrences that satisfy the queries is much 
smaller. For this example assume that we are interested in one assembly 

consisting of two sub-assemblies one of which contains three parts, the other 
four parts. 

Figure 5-Sample contribution of the engineer 

The query request is received from the terminal and sent to IPIP. MPIP is 
then called to interpret the message. Next, DBCS is called to process the 
request. It first calls DMS-FIND to locate the record occurrences which 

satisfy the request; then calls DMS-RETRIEVE to read in the first record; 
and finally calls Record Translator, RT, to convert the data to external 

format. The results are sent back through DBCS to MPIP for packaging, 
then to SEND to send the results to the requestor. 

Figure 6-Sample contribution of the software designer 

SEND 1 Send "Fetch 
Next" Message to IPIPI 
Return Results to 
Requesting Program 

l 
M PI P I Receive and 
Interpret Messagel 
Package Reply When 
Ready 

l 
DBCS I 
Control Execution of 
DB Commands 

t~ DBCS 

DMS-RETRIEVE I 
Read Next Qualifying 
Data Record* 

U 
RT I 
Translate Data to 
External Format 

·See Graph for DMS·RETRIEVE in Figure 6 

Figure 7-FETCH NEXT 

The analysis of the graphs yields the predictions shown in 
Figures 4,8 and 9. Many optimistic assumptions were made in 
this first analysis, such as the following: 

1. Pre-runtime binding of data items and schema descrip­
tions. 



2. Optimal ordering of data items. 
3. Processing-cost estimates that did not include memory 

management overhead. 
4. Minimal depth of recursion. 

Later analyses incorporated the additional processing re­
quired to include the above as the data became available and 
analyzable. This report focuses only on the analyses that could 
be made at early design. 

Component CPU estimate (secs) #IJO's 

SEND .014 
MPIP .045 
DBCS .273 18 
DMS-FIND .092 6 
DMS-RETRIEVE .059 3 
RT .005 

.488 27 

Figure 8-Prediction for FETCH FIRST 

Component CPU estimate (secs) 

SEND 
MPIP 
DBCS 
DMS-RETRIEVE 
RT 

.014 

.045 

.005 

.047 

.005 

.116 

#I/O's 

Figure 9--Prediction for FETCH NEXT 

Elapsed secs 

.014 

.045 

.957 

.320 

.173 

.005 
1.514 

Elapsed secs 

.014 

.045 

.005 

.085 

.005 

.154 

5.0 VALIDATION OF PREDICTED RESOURCE 
USAGE PATTERNS 

The IPAD system has now been implemented. Measurements 
are available of execution and resource usage behavior on a 
demonstration closely resembling that on which the analysis 
of Section 4 was based. The very early runs of the demon­
stration were totally dominated by memory management 
overhead, which could not be modeled at the design phase 
described herein (although they were later analyzed and pre­
dicted). The resource usage and response times given in Sec­
tion 4 display unacceptably long response time because of 
excessive CPU requirements. 

The data in Table I compare the CPU time and the elapsed 
time for predicted and measured execution with memory 
management overheads factored out of the measured times 
and CPU times scaled to CPUs of the same speed. These 
elapsed times are for a single query executing on a dedicated 
computer system of approximately 5 MIPS processing power, 
a CDC Cyber 175. It is clear that our prediction of CPU 
bottlenecking was validated. In fact, the CPU processing 
requirements are much higher than our deliberately very opti­
mistic estimates. These discrepancies are primarily due to 

Performance Engineering of Software Systems 223 

detail design and implementation considerations not yet re­
solved at the time these estimates were made. The principal 
additional causes of CPU overhead included excessive pro­
cedure calls and elaborate procedures for allocation of re­
sources. Analysis for this class of problems must await an 
appropriate stage of design and implementation. 

TABLE I-Actual times 

Without Memory 
Total Management 

Command CPU Elapsed Elapsed 

Fetch first 1 3.5 13.1 8.0 
Fetch first 2 3.5 13.2 8.1 
Fetch first 3 3.6 13.2 8.1 
Fetch next 1 2.2 5.6 4.0 
Fetch next 2 avg . 2.6 7.5 5.0 

total 10.2 29.9 19.9 
Fetch next 3 avg. 2.6 7.6 5.0 

total 12.9 38.0 25.2 
35.9 113.0 73.3 

Recall that the purpose of this comparison of performance 
predictions to actual performance characteristics is to demon­
strate that it is possible to identify unsatisfactory software 
design and the elements of the design that introduce problems 
early in the software development cycle before code is writ­
ten. An integral part of the methodology used for predictions 
is the analysis of best-case performance, rather than average 
performance, because best-case analysis focuses attention on 
design problems rather than on model assumptions. Thus, 
actual performance characteristics will vary from predictions, 
for several reasons: (1) implementation details are not re­
solved at an early design stage, so optimistic assumptions are 
made for their resource requirements; (2) the best case is 
unlikely, so predictions will be low; and (3) many changes are 
made during the implementation stage that invalidate initial 
descriptions of the software. For these reasons it is important 
to monitor software development and continually update the 
model and to identify critical software components with re­
spect to performance. These critical components should be 
implemented first and actual performance measurements sub­
stituted for early estimates to yield more realistic performance 
predictions. Note that the histograms of CPU and elapsed 
times for the scenario in Figure 10 are very similar; the differ­
ence is in the scaling factors. This supports the argument that 
both the critical resource and the critical components were 
identified at the early design stage. 

A performance enhancement project for IPAD was ini­
tiated in April-May 1981. The data given here are from that 
period of the project. The performance enhancement project 
for IPAD has, in fact, now incorporated most of the recom­
mendations resulting from the early performance engineering 
project. The data given in Table I actually reflect performance 
in the early phase of the performance enhancement project, 
in which many causes of poor performance were present. 
Performance has since been improved by approximately an 



224 National Computer Conference, 1982 

a) CPU Time Comparison 

Prediction 

Average Time (ms) 
Measurements 

Average Time (sees) 
250ms 500ms 750ms 2 4 6 

Command I I I 

1 

2 

3 
4 

5 

6 

b) Elapsed Time Comparison 

Prediction 

Average Time (secs) 
0.5 1.0 1.5 

Command 
1 
2 

3 
4 f--

5 f--

6 f--

Command I 

1 

2 

3 
4 

5 

6 

r---

Measurements 

Average Time (secs) 
5 10 15 

Commandr---~--L---~--

1 
2 

3 
4 

5 

6 

Figure lO-Histograms of predictions and measurements 

order of magnitude, but the detail data necessary for com­
parisons are not available. 

It is interesting to note that the principal reason for not 
correcting the performance problems identified during early 
design was that it would require effort and cause schedule 
slippage for delivery of the system. Performance problems 
that emerged during system integration testing were the pri­
mary cause of delays of many months in delivery of the soft­
ware, because systems tests were slow and because a sub­
sequent effort to improve performance took six to eight 
months. The problems can be attributed to decisions made 

both at the early design stage and at the implementation stage. 
Many of these decisions were analyzed and predicted to lead 
to performance problems before code was written. Some of 
the most serious problems, however, were due to low-level 
implementation decisions that were only detected in walk­
throughs conducted during the integration testing stage. This 
indicates that closer scrutiny is required during imple­
mentation. Since the information required at that time is very 
detailed, an automated tool for gathering information is es­
sential. 

6.0 SUMMARY 

This paper demonstrates through a case study the applicability 
and validity of performance engineering in the early design 
phase of software system development. The importance of 
carrying performance engineering through detail design and 
implementation is also stressed. 

REFERENCES 

1. Smith, C. U., and Browne, J. C. "Aspects of Software Design Analysis: 
Concurrency and Blocking," Proceedings Performance '80, Toronto, May 
1980. 

2. Smith, C. U. "The Prediction and Evaluation of Software from Extended 
Design Specifications." Ph.D. dissertation and Report TR-154, University 
of Texas at Austin, 1980. 

3. Smith, C. U. "Increasing Information Systems' Productivity by Software 
Performance Engineering." Proceedings XII CMG, New Orleans, Dec. 
1981. 

4. Information Research Associates IPAD Report No.1, October 1979. 
Information Research Associates, Austin, Texas. 

5. Information Research Associates IPAD Report No.2, August 1980. 
Information Research Associates, Austin, Texas. 

6. Smith, C. U. "Development of a Tool to Support IPAD." Report No. 
CS-1981-2. Computer Science Department. Duke University. April 1981. 

7. NASA IPAD Project Office, Langley Research Center, Hampton, Vir­
ginia. Proceedings of the IPAD National Symposium, Denver, Colorado, 
September 1980. 

8. Tsichritsis, D., and A. Klug. The ANSI/X3/SPARC Framework. Mont­
vale, New Jersey: AFIPS Press, 1978. 

9. Control Data Corporation. NOS Reference Manual. Publication No. 
60445300, CDC, Minneapolis, Minnesota. 



A systolic processor for signal processing 

by G. A. FRANK, E. M. GREENAWALT, and A. V. KULKARNI 
ESL Incorporated 
San Jose, California 

ABSTRACT 

A systolic array is a natural architecture for a high-performance signal processor, in 
part because of the extensive use of inner-product operations in signal processing. 
The modularity and simple interconnection of systolic arrays promise to simplify the 
development of cost-effective, high-performance, special-purpose processors. ESL 
Incorporated has built a proof of concept model of a systolic processor. It is flexible 
enough to permit experimentation with a variety of algorithms and applications. 
ESL is exploring the application of systolic processors t6 image- and signal­
processing problems. This paper describes this experimental system and some of its 
applications to signal processing. ESL is also pursuing new types of systolic architec­
tures, including the VLSI implementation of systolic cells for solving systems of 
linear equations. These new systolic architectures allow the real-time design of 
adaptive filters. 

225 





INTRODUCTION 

A systolic array is a set of identical processing elements (called 
cells) with regular, nearest-neighbor interconnections and 
fixed data flow patterns. Systolic array architectures have 
been developed by H. T. Kung. 1

,2,3 Systolic array architec­
tures promise to be a cost-effective way to organize a large 
number of computational elements to make a high-perform­
ance data processor. Because they have regular inter­
connection patterns, performance can be increased at low cost 
by adding cells. They have fixed data flow patterns, which 
implies simplicity in control structures; data stream into and 
out of the boundaries of the array. As the data stream through 
the array, they are used by every processor that they reach. 
This implies maximum use of every data item fetched from 
memory. As a result of the regular data flow, systolic arrays 
fully exploit the potential for parallel-pipelined processing. 
Systolic architectures are well suited to VLSI implementa­
tion1

,3,4 owing to their regularity and their high performance 
in comparison to their 110 bandwidth. 

The systolic processor developed by ESL is an experimental 
machine that performs three basic operations: matrix multi­
ply, 1-D convolution, and 2-D convolution. It is programmed 
to support arbitrary sizes of problems, and it can process many 
data formats. It is a 'proof of concept model, so development 
risks were minimized by employing off-the-shelf components 
and using simulation to debug software and hardware 
independently. 

SYSTOLIC ARCHITECTURE 

The systolic architecture described in this section is a linear 
array that performs parallel and pipelined inner products as 
the essential operation. Figure 1 shows the configuration of a 
linear array and the cell structure. 

Figure I-A linear systolic array and its cell 

A Systolic Processor for Signal Processing 227 

Each cell consists of a multiplier-accumulator, a cell mem­
ory, and three latch registers, one for each data stream. Three 
data streams are used by a cell: data input, address input, and 
output. The data input stream supplies one operand to the 
multiply-accumulator; the address input stream supplies ad­
dresses to the cell memory and the tag memory. The cell 
memory supplies the second operand to the multiply­
accumulator. The tag memory supplies control to the multi­
ply-accumulator to reset the accumulator and send results to 
the output stream. The data input and address input streams 
are passed through the cells unchanged; the output stream is 
either passed through intact or overridden with an output 
from the cell. Kulkarni and Yens show that no valid result is 
overwritten. Two examples will be given to show how the 
array operates: matrix multiplication and I-D convolution. 

Matrix Multiplication 

Table I is a list of snapshots of the array during the multi­
plication of the matrices 

Y=AX 

where A is a 2 x 3 matrix, X is a 3 x 2, and Y is a 2 x 2 matrix. 
This problem fits nicely on a 2-cell array, since the number of 
rows of A is 2. The table shows the data latched into each cell 
at selected periods during the multiplication. The ith row of 
A is stored in the memory of cell i. The rows are reused once 
for each column of X; this is accomplished by recirculating the 
data in the cell memories. The data in the cell do not move; 
instead the cell memory address is streamed through the cells 
systolically. The X matrix is streamed through the array in 
column order. Results are removed from the array by the 
output stream. Each result moves through two cells each 
'cycle, so that the results are not overwritten and occur in the 
correct order. 

TABLE I-Snapshots of a small matrix multiply 

CellI Cell 2 
Time Address Input Output Memory Address Input Output Memory 

o 
I 
2 
3 
4 
5 
6 
7 

o 
I 
2 
o 
I 
2 
o 

xl, I 
x2, I 
x3, I 
xl,2 yl,l 
x2,2 
x3,2 

yl,2 

aI, I 
al,2 
al,3 
aI, I 
al,2 
al,3 
aI, I 

o 

2 
o 
I 
2 
o 

xl, I 
x2, I 
x3, I 
xl,2 y2,1 
x2,2 
x3,2 

y2,2 

a2, I 
a2,2 
a2,3 
a2, I 
a2,2 
a2,3 
a2, I 



228 National Computer Conference, 1982 

Convolution this information can be used to control rounding or truncation 
on the next pass. 

One dimensional convolution is very similar to matrix mul­
tiply. In fact, the only difference if the array is large enough 
is the loading of the cell memories, and the fact that the input 
data stream comes from a vector rather than a matrix. 
Although for a matrix multiply each cell memory is loaded 
with a different row of the A matrix, for convolution all the 
cell memories are loaded with copies of the same kernel, 
appropriately rotated. Note that only four of the five results 
are generated by the pass described in Table II. A second pass 
would be required in order to generate the third result. This 
is part of the decomposition problem, fitting large problems 
on small arrays. 

TABLE II-Snapshots of a small I-D convolution 

CellI Cell 2 
Time Address Input Output Memory Address Input Output Memory 

0 0 xl wI 
I I x2 w2 0 xl 
2 2 x3 w3 I x2 wI 
3 0 x4 yl wI 2 x3 w2 
4 I x5 w2 0 x4 w3 
5 2 x6 w3 I x5 y2 wI 
6 0 x7 y4 wI 2 x6 w2 
7 0 x7 w3 
8 y5 wI 

2-D and multidimensional convolutions can be performed 
by loading the cell memories with the kernel weights appropri­
ately shifted5 and exploiting the multidimensional addressing 
capability of the local memory. ESL has also developed a 
scheme that uses multiple data streams for performing multi­
dimensional convolutions.6 

THE ESL SYSTOLIC PROCESSOR 

The systolic processor developed at ESL is designed for ex­
perimentation with different applications and algorithms. 7 

This requirement implies a great deal of flexibility in both ' 
software and hardware. Host software provides the experi­
menter with a simple view of the systolic processor by decom­
posing large problems and compiling the user's request into a 
program of systolic processor instructions. The systolic pro­
cessor hardware includes programmable address generators 
that allow a single cell design to support a variety of algo­
rithms including 1-D and 2-D convolution, matrix multi­
plication, and Walsh and Fourier transforms. The machine 
accommodates data representations that are widely used in 
image and signal processing: 8- or 16-bit input formats and 8-, 
16-, 32-, or 48-bit result formats. The data can be processed 
in either of two modes: signed (twos-complement) or un­
signed. The cells accumulate full-precision 42-bit results; final 
rounding or truncation is controlled by the user. The systolic 
processor instruction set includes operations for determining 
the most significant nonzero bit of a series' inner products; 

The Experimental System 

The demonstration model systolic processor (Figure 2) 
works as an attached processor to a host computer and is 
accessed from the host computer through a collection of FOR­
TRAN subprograms. The host interface transfers data and 
commands to the systolic processor from the host and trans­
fers results and status information from the systolic processor 
to the host. The command dispatcher stores systolic processor 
instructions in a command buffer and sends the instructions to 
other subsystems for execution. The local memory serves as a 
buffer to support the high-speed operation of the systolic 
array. Data are stored in the local memory of the systolic 
processor for repeated use. 

0 
S 
T 

A A 
T T 
A U 

S 

SYSTOLIC PROCESSOR 

Figure 2-The experimental system 

The systolic array is the computational unit of the systolic 
processor. It consists of an array controller and a linear array 
that can be configured with any number of cells. The cells do 
the computations; the array controller synchronizes the oper­
ation of the local memory, the cells, and the output processor. 
The output processor shifts and rounds the results according to 
the specifications supplied by the user and detects the max­
imum result value. This maximum value and its address in the 
result stream are returned to the user as status information 
that can be used to select the scaling parameter. 

The output buffer supports the high-speed operation of the 
systolic array and allows the systolic processor to rearrange 
data before they are sent back to the host computer by a direct 
memory access (DMA) transfer. The output is double buf­
fered, which allows the systolic processor to overlap the trans­
fer of results back to the host with computation of the next 
block of results. Programmable address generators provide the 
address sequences for the local memory and the output 
buffer. 



The Cells 

The architecture of a cell is shown in Figure 3. Each cell 
consists of a multiply-accumulate chip; a cell memory with 
1024 16-bit words; a tag memory with 1024 4-bit words; and 
three latch registers, one for each systolic stream that passes 
through the cell. Each of its cells can perform one 16-bit 
fixed-point multiplication and one full-precision (42-bit) accu­
mulation every 200 nanoseconds, which gives each cell a max­
imum computational rate of 10 MOPS. Thus, a systolic array 
of 20 cells would have a maximum computational rate of 200 
MOPS. The number of cells actually used in a computation is 
selected by the host software to match the needs of the com­
putation. The cells are built with TRW multiply-accumulate 
chips. The use of multiply-accumulate chips allows cells to be 
compact, but it also requires that results be accumulated in 
each cell. The tag memory supplies the control signals to the 
cells. It is indexed by the same address used to index the cell 
memory. 

System Software 

There are three levels of software in the host system: the 
application programs, the decomposition routines, and the 
systolic processor driver. The host software routines and the 
major data structures are shown in Figure 4. 

The user's application program in the host calls the de­
composition routines that perform standard image or signal 
processing functions. The user program specifies the type of 
operation (e.g., 1-D convolution, 2-D convolution, or matrix 
multiply), the size of the problem, the formats (word size) of 

CELL 
MEMORY 

I 
I 
I 
I 
I 

ADDRESS INPUT STREAM 

x 

TAG 
MEMORY 

+ 

L__________ _ __ ...1 

DATA INPUT STREAM 

OUTPUT STREAM 

Figure 3-Systolic cell architecture 

A Systolic Processor for Signal Processing 229 

Figure 4-System software 

the inputs and outputs, and the shifting and rounding of the 
results. 

The decomposition routine invoked by one of these calls 
divides the problem into subproblems manageable by the sys­
tolic processor and assembles a systolic processor program 
that processes the subproblems. The operations compiled by 
the decomposition routines use operands that reside in the 
host's primary memory and produce results that are then 
stored in the host's primary memory; the transfer of data and 
results to or from primary memory is the responsibility of the 
user's application program. The decomposition routines con­
struct two data structures: a list of systolic processor in­
structions and an I/O command table. 

The systolic processor driver transmits instruction lists and 
data arrays to the systolic processor, receives results and sta­
tus information from the systolic processor, and places the 
results and status in the application program's data area. It 
interprets the commands in the I/O command table that de­
scribe the sequential DMA transfers needed. When all the 
tasks in the I/O command table are completed, control is 
returned to the application program. 

System Performance 

The estimated performance of a 20-cell systolic processor 
on several types and sizes of problems is shown in Table III. 
The calculations are based on the use of an interface capable 
of sustaining a 4-Mbyte/second transfer rate during block 
transfers. The execution times shown in Table III include the 
time to load the input data and kernel into the systolic pro­
cessor and the time to place the results back into the host's 
memory. The effective computation rate is calculated as the 
total number of multiplications and additions performed for 
the task divided by the total execution time. A 20-cell systolic 
processor is capable of a peak computation rate of 200 MOPS. 

Four types of functions are tabulated in Table III: 1-D con­
volution on a 4096-element signal, 2-D convolution on a 
128 x 128 image, and a radix-8 DFT on a 64 x 64 image and 
a 512 x 512 image. 



230 National Computer Conference, 1982 

TABLE III-System performance 

Input 
data Kernel 

Function size size 

128 (16-bit) 
1-0 convolution 4096 256 (16-bit) 
48-bit results (16-bit) 512 (16-bit) 

1024 (16-bit) 
5 x 5 (8-bit) 

2-0 convolution 128 x 128 9 x 9 (8-bit) 
8-bit results (8-bit) 15 x 15 (8-bit) 

19 x 19 (8-bit) 
31 x 31 (8-bit) 

Radix-8 OFT 64x64 8 x 8 (16-bit 
16-bit complex complex 

results 512 x 512 matrices) 
Radix-8 OFT 64x64 8 x 8 (16-bit 
32-bit complex complex 

results 512 x 512 matrices) 

The table illustrates the high effective computation rate 
achievable by coupling the systolic processor to a mini­
computer through a standard interface. The processor is used 
more than 80% of the time for large I-D convolutions. The 
use drops off for problems with small-sized kernels as the 
nonoverlapped I/O time becomes significant. Performance on 
2-D convolutions exceeds 100 MOPS for a large range of 
kernel sizes (from 9 x 9 to 31 x 31). For the case of a 5 x 5 
kernel, 20 cells are used to produce 4 output scan lines at a 
time. For the case of a 9 x 9 kernel, 18 cells are used to 
produce 2 scan lines at a time. 

CURRENT SIGNAL PROCESSING APPLICATIONS 

Although the basic operations of the systolic processor are 
matrix multiply and convolution, many applications can be 
treated as variations on these themes. In a standard I-D con­
volution, all the cell memories are loaded with copies of the 
same kernel, appropriately shifted. If different weights are 
stored in the cell memories, variations on convolution can be 
performed. Appropriate choices of weights can be used to 
perform interpolation and decimation. In fact, the same tech­
nique is used to do both 2-D convolution and decimation. The 
only requirement for interpolation is that the results do not 
overwrite each other in the systolic output data stream. This 
will not happen if the number of cells employed is less than the 
length of the kernel. The decomposition routines guarantee 
that this will not happen. 

A Fourier transform can be expressed as a vector-matrix 
multiplication where the signal samples are multiplied by the 
powers of the basic frequency. This approach performs many 
redundant computations but can be performed quickly if the 
number of cells in the systolic array is as large as the size of the 
input vector. An alternate approach is a fast Fourier trans­
form (FFT), which minimizes the number of multiplications 
but cannot be performed efficiently by a systolic processor 
because of the complicated data flow. A compromise is a 
hight-radix version of the FFf algorithm, which uses the FFf 

Host memory to Effective 
host memory time computation 

(milliseconds) rate (MOPS) 

8.6 119 
13.1 150 
22.9 161 
38.7 163 
10.6 72 
20.6 113 
53.4 110 
66.5 131 

155.0 113 
13.0 81 

1510.0 67 
15.0 70 

1640.0 61 

approach to decompose the problem into a series of matrix 
multiply problems that are matched to the size of the array. 8 

The performance of the systolic processor using this approach 
to perform a DFf is shown in Table III. 

FUTURE SIGNAL PROCESSING APPLICATIONS 

As experimentation has proceeded with the systolic pro­
cessor, several modifications of the system have been sug­
gested that would increase the range of algorithms it could 
perform. This section discusses some of these modifications 
and the algorithms that they would permit. The final portion 
describes a major new effort by ESL to design systolic pro­
cessors that can do many basic linear algebra operations and 
discusses how these linear algebra processors can be used in 
signal processing. 

Adaptive Filtering 

The real power of the linear systolic array described here 
depends on two factors: the cell memories that are unique to 
each cell and the systolic address path that is used to address 
them. For the three basic operations the address stream is 
purely a function of time; it does not depend on the input 
stream. An alternative approach is to allow the address stream 
to vary with input data. The cell memories then perform a 
table lookup function. Many nonlinear functions of the input 
stream can be computed in this fashion, including sum of 
squares (or higher powers), computation of entropy, sum of 
magnitudes, or autocorrelation.9 

This approach can be used to solve geometric warp prob­
lems, including 2-D interpolation.6 

Systolic Arrays for Linear Algebra 

Many of the fundamental computational problems of digital 
signal and image processing can be stated as classical prob-



lems in numerical linear algebra. lU The optimum choice of 
weights for the control of an adaptive phased-array sensor 
system-an important problem in radar, communication, and 
radio astronomy-is an example of the linear least-squares 
problem of minimizing 

II Ax - b 112 = ~ I bi - ± ai,j· Xj 12 
1=1 J=l 

Identification of multiple emitters by the MUSIC algorithmll 
requires solution of the generalized eigenvalue problem 

Ax =aBx 

for symmetric positive definite A and B. Least-squares esti­
mation is used in solving the singular value decomposition 
problem used as part of a data compression technique.12 

These problems have all been largely solved, from the 
mathematical standpoint. The algorithms for their solution 
are not real-time on a conventional serial computer: they take 
o (N 3

) operations on N x N matrices. Often, suboptimal 
solutions generated by interactive, fast, approximate methods 
have been used,13 but these techniques can fail to deliver 
high-quality results. Hence there is strong interest in special­
purpose parallel hardware for the real-time solution of these 
problems. The basis of this work is the discovery14 that a 
family of systolic array architectures, using a simple lattice of 
processing elements and many identical cells, can efficiently 
carry out the matrix factorizations required to solve linear 
systems, least squares; and eigenvalue problems. With an eco­
nomical VLSI implementation of these cells as building 
blocks, a panoply of powerful systolic processors can be easily 
assembled. 

A Systolic Processor for Signal Processing 231 

REFERENCES 

1. Kung, H. T. "Special-Purpose Devices for Signal and Image Processing: an 
Opportunity in Very Large Scale Integration (VLSI)." Proceedings of the 
Society of Photo-Optical Instrumentation Engineers, 241 (1980), pp. 76-84. 

2. Kung, H. T. "Why Systolic Architectures?" Computer, January 1982. 
3. Kung, H. T., and C. E. Leiserson. "Systolic Arrays (for VLSI)." In I. S. 

Duff and G. W. Stewart (eds.), Sparse Matrix Proceedings, 1978. Philadel­
phia, Pennsylvania: Society for Industrial and Applied Mathematics, 1979, 
pp. 256-282. (A slightly different version appears in Mead, C. A., and L. 
A. Conway. Introduction to VLSI Systems. Reading, Massachusetts: 
Addison-Wesley, 1980, section 8.3.) 

4. Kung, H. T. "Notes on VLSI Computation." CREST Parallel Processing 
Systems Course, Loughborough, England, 1980. 

5. Kulkarni, A., and D. Yen. "The ESL Systolic Processor for Signal and 
Image Processing." Proceedings of Workshop on Computer Architectures 
for Pattern Analysis and Image Database Management, 1981. 

6. Kung~ H. T., and R. L. Picard. "Hardware PipelInes for Muitf-Dimensional 
Convolution and Resampling." Proceedings of Workshop on Computer 
Architectures for Pattern Analysis and Image Database Management, 1981. 

7. Blackmer, J., G. Frank, and P. Kuekes. "A 200 MOPS Systolic Processor." 
Proceedings of the Society of Photo-Optical Instrumentation Engineers, 298 
(1981). 

8. Brigham, E. The Fast Fourier Transform. Englewood Cliffs, New Jersey: 
Prentice-Hall, 1974. 

9. Kulkarni, A. "Everything You Thought A MAC-Based Linear Systolic 
Array Could Do But Were Skeptical About!" Technical Memo, ESL 
APTL,1981. 

10. Speiser, J. M., and H. J. Whitehouse. "Architectures for Real-Time Real­
Time Matrix Operations. " Government Microcircuits Applications Confer­
ence, Houston, 1980. 

11. Schmidt, R. "Multiple Emitter Loaction and Signal Parameter Esti­
mation." Proceedings of the RADC Spectrum Estimation Workshop, Rome 
Air Development Center, Griffiss Air Force Base, N.Y., October 1979. 

12. Andrews, H. c., and C. L. Patterson. "Singular Value Decomposition 
(SVD) Image Coding." IEEE Transaction Communications, 24:4 (1976), 
pp. 425-432. 

13. Widrow, B. "Adaptive Filters." In Kalman, R. E., and N. DeClaris (eds.), 
Aspects of Network and Control Theory. New York: Holt, Rinehart, and 
Winston, 1970, pp. 563-587. 

14. Gentleman,M.-, and H: T. Kung. "Matrix Triangularization by Systolic 
Arrays." Proceedings of the Society of Photo-Optical Instrumentation En­
gineers, 298 (1981). 





Parallel-processing a large scientific problem 

by ROBERT HIROMOTO 
Los Alamos National Laboratory 
Los Alamos, New Mexico 

ABSTRACT 

We discuss a parallel-processing experiment that uses a particle-in-cell (PIC) code 
to study the feasibility of doing large-scale scientific calculations on multiple­
processor architectures. A multithread version of this Los Alamos PIC code was 
successfully implemented and timed on a UNIVAC System 1100/80 computer. Use 
of a single copy of the instruction stream, and common memory to hold data, 
eliminated data transmission between processors. The multiple-processing algo­
rithm exploits the PIC code's high degree of large, independent tasks, as well as the 
configuration of the UNIVAC System 1100/80. Timing results for the multithread 
version of the PIC code using one, two, three, and four identical processors are 
given and are shown to have promising speedup times when compared to the overall 
run times measured for a single-thread version of the PIC code. 

233 





INTRODUCTION 

Anticipating a need for increased computational speed! 
for laboratory codes (which is unlikely to be attained by 
single-processor systems), we have initiated studies to test 
the feasibility of doing parallel processing on multiple­
processor architectures.2 In part, our hope is to learn about 
multiple-processor architectures, the compatibility of algo­
rithms with particular parallel-processing environments, 
parallel-processing speedups as a function of the number of 
processors, and the desirable characteristics of multiple­
processor architectures in general. 

This paper presents the results of our investigation concern­
ing the feasibility of parallel processing a specified scientific 
problem on a commercially available multiple-processor sys­
tem and particularly the computational speedups as a function 
of the number of processors employed. The problem used in 
this experiment involves a particle-in-cell (PIC) method for 
simulating the electrostatic interactions of a collisionless plas­
ma. We first outline the PIC algorithm and graphically de­
scribe its parallel-processing structure as implemented in our 
experiment. A general description of the UNIVAC System 
1100/80 is then given, followed by a discussion of the imple­
mentation of the PIC code on that system. The results of our 
experiment are given, showing overall computational speed­
ups as a function of the number of processors and the equiv­
alent number of parallel activities. 

PARTICLE-IN-CELL 

The problem selected for our parallel-processing experiment 
models the collisionless, electrostatic interaction between two 
superimposed plasma beams with a relative drift velocity. 3 

The code uses a particle-in-cell method for studying the inter­
action and resulting motion of the charged particles in this 
simulation.4 This code is of general interest to us because it 
represents a class of algorithms exhibiting limited vector capa­
bilities for implementation on our vector computers. Due to 
the PIC algorithm (discussed in the following paragraph), the 
conversion to parallel processing was made with relative ease. 

PIC Algorithm 

The particle-in-cell method used in this study decomposes 
a region of space into a collection of cells. These cells are then 
used for tracking particle movement, and they assist in evalu­
ating relevant physical properties. An initialization stage sets 
up two ensembles of charged particles (we shall use particles 
to mean charged particles throughout this paper) constituting 
the two superimposed, collisionless plasma beams. During 

Parallel-Processing a Large Scientific Problem 235 

this initialization, the particles are distributed uniformly in 
space and randomly in velocity. The movement of particles is 
discretized in a time step (dt). 

During each computational time step of the simulation (see 
Figure 1), cell-centered charges (C) are calculated by linearly 
weighting each particle's charge contribution to the four 
nearest-neighbor cell centers. Using this charge distribution, 
Poisson's equation with periodic boundary conditions is 
solved for the associated electrostatic potential (<l» on the grid 
of cell centers, with the resulting electric (E) field inter­
polated to individual particle positions. Under this E field, 
each particle's position and velocity (see Figure 2) are ad­
vanced (pushed). 

PIC-Parallel-processing Structure 

The computational structure of the PIC algorithm, as im­
plemented on the UNIVAC System 1100/80, takes advantage 
of the large, natural computational divisions of the particle 
initialization and aspects of the particle-in-cell calculations. 
Figure 3 graphically displays the multi/single-thread diagram 
of our PIC code, with accompanying definitions of the re­
spective calculation(s) each thread performs. 

- "" 

s 

s 
I 

Cj 

+ ....... 
f ....... 

--- ~ 
l 

" ----
~ ...... 

+ 
Cj 

s 

'-

s 
I 

1 

.-'" 

Cj + 1 
+ 

J~ 
..... 

\ , 
/ 

+ 

Cj+ 1 

s 

s 
I 

""-

""-

Figure I-A distribution of particles (dots with attached arrows-<ienoting 
position and velocity, respectively) contained within the four nearest­

neighbor, cell-centers ( + ) from which the charges C j , Ci+I' Cj , and Cj + I are 
in part calculated. 



236 National Computer Conference, 1982 

o~ 
i '0 

\ 

""--

-- ""- -4~--------------~---------------+- ""--

> 
I 

> 
I 

) 

I 

Figure 2-Distribution of particles pushed under the influence of the four 
nearest-neighbor, cell-centered (+) electric fields E j , E j + 1, E j , and E j + 1 

(detennined by solving Poisson's equation ( - '\724> = C) for 4» and the 
uniform background electric/magnetic fields. 

END 

t := 

f := 

t .­.-
t := 

1 
Initialize 

Particle Data 

Compute Ci 

+ 
An 

C = 2: Ci 
i=1 , 

Solve 

-'V 2cp =C 

t 
Compute E = E(¢) 

Push ni = n/An 
Particles 

Compute 0i 

t 
END 

Figure 3-A multithread version of PIC as implemented on a UNIVAC 
System 1100/80 with two parallel-processing tasks (1 and 4), where 

An = total number of parallel activities (multithread), n = total number of 
particles, nj = number of particles for activity i, C = total charge 

(distribution), and C j = charge computed for activity i. 

IMPLEMENTATION ON A UNIVAC SYSTEM 1100/80 

Our parallel-processing version of the PIC code was imple­
mented on a UNIVAC 1100/80 multiple-processor system. * 
The System 1100/80 may be configured with from one to four 
processors. UNIVAC's designation for its System 1100/80 
with a one-, two-, three-, or four-processor configuration 
is denoted by 1100/81, 1100/82, 1100/83, or 1100/84, 
respectively. 

A global software manager (EXEC) executes out of all 
processors and, coupled with hardware devices, drives the 
multiple-processor architecture of the System 1100/80. The 
aggregate of processors share a common memory, which al­
lows for multiple-program execution for tasks written in 
FORTRAN or COBOL. A principal feature of the System 
1100/80 is its ability to parallel-process a single instruction 
stream upon data in common memory. This capability, sup­
ported by the COBOL compiler but not by the FORTRAN 
compiler, was essential for our particular experiment. 

Implementation 

The PIC code was written entirely in FORTRAN and im­
plemented with a single copy of the instruction stream. The 
management of data addressing and the mechanics of parallel­
processing synchronization were devised and implemented by 
Dave Hammer of Sandia National Laboratories, Albuquer­
que, NM.t 

Figure 4 represents a simplified diagram of a UNIVAC 
1100/84 (four-processor) system, on which our PIC timing 

[ Central Memory 

Cache Cache 

p 

Figure 4-A simplified diagram of the UNIVAC System 1100/80 with four 
processors (P), designated 1100/84. 

*Provided for our use by the Computer Operations Department, Sandia Na­
tional Laboratories, Albuquerque, New Mexico. 

tBy devising an address mapping and a synchronization scheme for multithread 
activities, Hammer essentially converted the System 1100/80 into a FORTRAN 
parallel-processing machine for our use. 



runs were made. Although not indicated in the diagram, the 
processing of each activity is not necessarily handled by only 
one physical processor. In fact during the complete com­
putational cycle of such an activity, all processors may time­
share the execution of the activity. A distinction, therefore, is 
made between activities and processors. 

All relevant particle-in-cell data were put into various com­
mon blocks and partitioned for use by specific activities. Due 
to software addressing limitations, the PIC code was restricted 
to a maximum of 262k (decimal) words of total memory. For 
each particle, five data quantities (two for position and three 
for velocity) were required. Three mesh quantities, consti­
tuting a 34 x 34 mesh size, were required and duplicated for 
a maximum of eight (particle-push) activities. A total of 37k 
particles were initiated for processing, requiring 213k words 
of memory (particle plus mesh data). A further 47k of memo­
ry was used for the instruction stream, address mapping, and 
activity synchronization scheme. 

PIC PARALLEL-PROCESSING RESULTS 

A multithread version of the PIC code was executed on a 
UNIVAC System 1100/80:j: with one, two, three, and four 
identical processors. Overall run times were measured, and 
the results are given in Table I and Figure 5. The speedup 
values are the ratios of the overall execution time of a single­
thread version of PIC (running on one processor) to the over­
all execution time of a multithread PIC code running on two, 
three, and four processors. We found that a maximum speed­
up of three was attained when using four processors with four 
activities spawned for each task. 

Because the multithread PIC was not totally parallel (see 
Figu.re 3), the speedup for four processors may not indicate 
the full potential of the PIC algorithm. The times recorded 
and used for the parallel-processing speedup calculations were 
based on wall clock times, with timing runs made in a dedi­
cated mode. Due to resource and time limitations, actual 
CPU times were not measured; therefore, no estimates could 

TABLE I-Run times and speedups as a function of number of processors 
and number of activities for each parallel task spawned. 

Number of Activities Number of Average Run Speedup 
Per Parallel Task Processors Time (millisecond) 

1 1 102631 1 

2 2 57110 1.80 

3 3 42214 2.43 

4 4 33263 3.09 

:j:Provided for our use through the courtesy of SPERRY UNIVAC, Roseville, 
Minnesota. 

Parallel-Processing a Large Scientific Problem 237 

4 

3 

2 

2 3 

Number of Processors 

Figure 5--Plot of number of processors versus speedup corresponding to 
Table I. 

4 

be determined for losses in effective processing time during 
the synchronization stage of each multithread activity. 

CONCLUSIONS 

Our results strongly suggest the possibility of significant com­
putational speedups for a multiple-processor architecture sim­
ilar to the UNIVAC System 1100/80. The coupling between 
algorithm and processing architecture illustrates not only the 
seemingly high degree of compatibility between our particular 
code and the computing environment, but also the need to 
distinguish those algorithms for which specific multiple­
processor architectures are most effective. 

The straightforward use of FORTRAN in coding the multi­
thread PIC algorithm greatly simplified the overall task of 
implementing our parallel-processing experiment. Program­
ming in FORTRAN is certainly a characteristic of Laboratory 
codes, and would be a desirable feature to retain when con­
verting such codes from serial- to parallel-processing systems. 

Encouraged by our results, we currently are studying the 
possibility of a totally parallel version of the PIC algorithm. 
We also plan to investigate parallel processing on multiple­
processor architectures possessing as many as 16 processors. 

REFERENCES 

1. Buzbee, B. L., W. J. Worlton, G. Michael, and G. Rodrigue. "DOE 
Research in Utilization of High-Performance Computers." Los Alamos 
Scientific Laboratory report LA-8609-MS, December 1980. 

2. Bucher, I. Y., P. O. Frederickson, and J. W. Moore. "Experience with a 
Multiprocessor Based on Eight FPS 120B Array Processors." Los Alamos 
Scientific Laboratory Report LA-UR-81-1082 (unpublished), 1981. 

3. Morse, R. L., and C. W. Nielson. "One-, Two-, and Three-Dimensional 
Numerical Simulation of Two Beam Plasmas." Physical Review Letters, 23 
(10 November 1969), 19, pp. 1087-1090. 

4. Morse, R. L., and C. W. Nielson. "Numerical Simulation of Warm Two 
Beam Plasma." The Physics of Fluids, 12 (November 1969), 11, pp. 
2418-2425. 





Design of software for distributed/multiprocessor systems 

by TERRENCE R. MCKELVEY and DHARMA P. AGRAWAL 
Wayne State University 
Detroit, Michigan 

ABSTRACT 

Software design methodologies for distributed/multiprocessor systems are in­
vestigated. Parallelism and multitasking are considered as key issues in the design 
process. Petri-nets and precedence graphs are presented as techniques for the 
modeling of a problem for implementation on a computer system. Techniques using 
the Petri-net and precedence graph to decompose the problem model into subsets 
that may be executed on a distributed/multiprocessor system are presented. These 
techniques offer a systematic design methodology for the design of distributed/ 
multiprocessor system software. 

239 





INTRODUCTION 

Since the advent of the digital computer, the need for faster, 
larger, more reliable, and expandable systems has existed. 
Distributed/multiprocessor computer systems have resulted 
from this need. Though hardware has been developed to allow 
the exploitation of concurrent computation, the application of 
this hardware to real-world problems, and the development of 
software to solve these problems is developing at a slower 
pace. This paper presents some of the current thinking on the 
subject of software design methodologies for distributed/ 
multiprocessor systems. The following sections discuss some 
basic concepts and definitions, parallelism at the various levels 
of a computer system, multitasking as a design approach for 
mUltiprocessor systems, graphical techniques for the repre­
sentation of an application, and finally some techniques for 
using these graphical representations to decompose the appli­
cation into sections that can be run concurrently on a multi­
processor system. 

For the purposes of this paper, the concept of a distributed/ 
multiprocessor system may be defined as follows: "Distrib­
uted computing refers to the use of multiple, quasi-indepen­
dent processing modules, whose actions are coordinated to 
accomplish a large task or to implement a large system.,,1 
Though the system need not be large, the need for multiple, 
fairly independent processing modules tied together into a 
system is key to the concept of distributed/multiprocessor 
computation. Another key point is this one: "In a distributed 
computing system, the fact that multiple processing modules 
exist is visible to the user of the system, and therefore meant 
to be exploited in the design of applications.,,1 Though much 
work is being done to develop tools that hide this visibility 
from the user, optimal use of distributed/multiprocessor sys­
tems will result when the designer detects and exploits paral­
lelism existing in the application, as examined in the rest of 
this paper. 

PARALLELISM IN COMPUTER SYSTEMS 

Parallelism may be introduced into a system at various levels. 
Computation that can be done in parallel may be done within 
separate processor modules, thus obtaining the speed and 
reliability advantages offered by distributed systems. The de­
sign of the software will ultimately determine the success or 
failure of a computer system to solve a given real-world prob­
lem. "Matching a program representation to the underlying 
hardware or interpretive resources in a computer system is a 
key problem in computer system design. Failure to accurately 
and completely represent the computation significantly de­
grades the performance of the resulting execution.,,2 The 

Software for Distributed Multiprocessor Systems 241 

translation of a problem into a computer implementation may 
be represented as a hierarchical structure: 

1. An algorithm (or solution of the problem) specifies 
2. A set of tasks (functions to be performed), composed of 
3. Higher-level-language statements, represented by 
4. Computer instructions, which cause 
5. State transitions in the computer hardware. 

This hierarchy forms a pyramid, where each level of the hier­
archy is composed of a number of elements of the next level. 
(An algorithm is composed oftasks, for example.) Parallelism 
may be detected at any of these levels. Of these levels, the 
following three are the important levels at which parallelism 
may be detected: 

1. Algorithm level 
2. Source language level (i.e., the higher language level) 
3. Machine language level (i.e., instruction and state 

transitions) 

Detection and exploitation of parallelism is the key to the 
effective design of distributed/multiprocessor systems. Studies 
in the dvnamic detection of oarallelism at the machine lan­
guage le~el have been perfor~ed. 3 These studies have led to 
the conclusion that an overall net parallelism detection of less 
than a fivefold factor over the strictly sequential execution of 
machine language instructions is theoretically possible. This 
would probably lead at the practical level to a twofold im­
provement over the sequential approach. This level manifests 
itself in the detection and parallel execution of independent 
machine language instructions. Pipe lining at the instruction 
level is a similar technique to exploit parallelism at the ma­
chine instruction level. 

Detection and exploitation of parallelism at the source lan­
guage level is currently an area of active research.2,4 Program 
analyzers have been written to detect inherent parallelism in 
programs written in higher-level languages.4 It has been em­
pirically observed via such an analyzer that a speedup, SP, on 
P processors would be possible: 

SP = P / 10 10glOP 

This result is based on the analysis of FORTRAN programs 
and may be found to be better or worse for other higher­
level languages or implementations of FORTRAN on other 
computers. 

The detection of parallelism at the algorithm -level is, of 
course, very dependent upon the problem to be solved. Vari­
ous approaches to the parallel execution of sorting and search­
ing algorithms appear in the literature. However, very little 



242 National Computer Conference, 1982 

has been written concerning a design methodology to detect 
and exploit parallelism at the algorithm level. 

Very few real-world applications are as specific as searching 
and sorting algorithms. Many real-world applications consist 
of several algorithms, and one would most probably consider 
the algorithm level of the previous discussion to be the system 
design level as practiced by the computing community. This 
level may produce a system made up of hundreds of individual 
programs to perform the intended function. The process of 
breaking up the system into a number of tasks (to be defined 
shortly) and determining which of these tasks may be exe­
cuted in parallel offers a mechanism to detect and exploit 
parallelism at the algorithm level. This method, known as 
multitasking, has been used on uniprocessor systems for 
years. The subject of multitasking will be discussed in the 
following section. As an aside, however, it is worth noting that 
the methodologies presented offer no panacea for the design 
of distributed systems. The designer must intelligently, and 
often iteratively, apply these techniques in order to find the 
optimal design for his or her application. 

MULTITASKING AS A DESIGN APPROACH FOR 
DISTRIBUTED SYSTEMS 

As discussed in the previous section, multitasking offers a 
design methodology for the detection and exploitation of par­
allelism for distributed/multiprocessor systems. This section 
will define tasks and multitasking and present some examples 
of the multitasking approach to system design. 

A task may be defined as a unit of computational activity. 5 

When the computer first became available, a programmer 
would code an application as one large program or algorithm. 
The computer would load and execute this and any other 
tasks, one at a time, from start to completion of the algorithm. 
As time went on, it was found that the central processing unit 
(CPU) would be idle during certain activities-lIO, for exam­
ple. During this time, it was proposed, another task could be 
executed until CPU had to wait. Thus was born the concept of 
multitasking, the capability of executing more than one task 
concurrently. This capability, extended to multiple-processor 
computer systems, is known as multiprocessing. The capabil­
ity of multitasking is also known as mUltiprogramming. 

The concept of multitasking, as stated above, was initially 
conceived to take advantage of expensive CPU idle time. 
However, it is a valid method for the design of software sys­
tems. There is no reason why a problem must be programmed 
and executed one step at a time from start to finish. In fact, 
for many problems, this approach becomes extremely awk­
ward, especially in many real-time applications where data 
must be collected, displayed, and analyzed concurrently. 

Designers often shy away from the multitasking approach, 
since people generally tend to think sequentially. However, 
the multitasking approach offers advantages in terms of effi­
ciency of resource use; improvement in the overall speed of 
execution; and, most important; a natural design meth­
odology. An example will make the above statement clearer 
as well as allow a comparison of the sequential and multi­
tasking approaches to design. 

Suppose a designer is asked to design a system that will read 

a record of data from a data collection subsystem, display the 
data on a CRT, and save the data on a disk. Assume the 
following additional requirements: 

1. Data records must be averaged across ten readings. 
2. The display must be updated at least once every five 

seconds. 

A sequential design, presented in a pseudo-high-Ievellan­
guage, might be that shown in Figure 1. Though the solution 
is relatively straightforward, it could easily not fulfill a re­
quirement of the system: it m~y very well take longer than five 
seconds to reach the statement to display the results on the 
CRT. In fact, one may find that records from the data col­
lector might be missed if it takes too long to write the record 
to disk or to update the CRT display. Admittedly, this exam­
ple ignores the fact that direct memory access and interrupt 
processing capabilities could solve some of these problems, 
but the main point remains that the sequential approach may 
take too long and could potentially fail to do the required job. 
The multitasking approach asks the question, "Is there any 
way to break up this system into a number of cooperating 
tasks which could run concurrently?" The answer is "yes," and 
a solution is shown in Figure 2. The above solution assumes 
the existence of three record buffers for use by the three tasks. 
These three tasks can operate in a pipelined manner: that is, 
Task 1 collects a record bufferful and passes it to Task 2, which 
averages and saves the buffer on disk while Task 1 is collecting 
the next bufferful. Task 3 gets the results of Task 2; and while 
Task 3 displays the results, Task 2 processes the second buff­
erful while Task 1 is collecting the next bufferful. Once the 
pipeline is running, all three major functions (collection, aver­
aging and disk storage, and display) are proceeding concur­
rently. On a uniprocessor anyone task could run while the 
others are in wait states. To implement this any-one-of-three 

DO FOREVER: 

END 

CLEAR RECORD_BUFFER 

COUNT = 1 

DO WHILE COUNT <: = 10: 

WAIT FOR RECORD 

RECORD_BUFFER (COUNT) = RECORD 

COUNT = COUNT + 1 

END 

COUNT = 1 

CLEAR RESULT_BUFFER 

DO WHILE COUNT < = 10: 

RESUL T _BUFFER = RESULT _BUFFER + 

RECORD_BUFFER (COUNT) 

COUNT = COUNT + 1 

END 

RESUL T _BUFFER = RESULT_BUFFER I 10. 

WR ITE RESULT_BUFFER TO DISK 

DISPLAY RESULT_BUFFER ON CRT 

Figure I-Sequential design presented in pseudo high-level language 



TASK 1 

DO FOREVER 

WAIT FOR FREE RECORD_BUFFER 

CLEAR RECORD_BUFFER 

COUNT = 1 

DO WHILE COUNT <: = 10 

WAIT FOR RECORD 

RECORD _BUFFER (COUNT) = RECORD 

COUNT = COUNT + 1 

END 

SET RECORD_BUFFER = FULL 

END 

TASI-I" 2 

DO FOREVER 

WAIT FOR FULL RECORD_BUFFER 

COUNT = 1 

DO WHILE COUNT -( 10 

RECORD_BUFFER (1 ) 

RECORD_BUFFER (CO<JNT+1 i 

COllNT = COUtn + 1 
END 

SAVE RECORD_BUFFER ( 1) ON DISK 

SET RECORD_BUFFER = STORED 

END 

TASK 3 

DO FOREVER 

WAIT FOR A STORED RECORD_BUFFER 

DISPLAY RECORD_BUFFER ON CRT 

SET RECORD_BUFFER = FREE 

END 

Figure 2-A multitasking approach 

actions approach in a single task would result in a much more 
complex solution than that originally presented and would 
definitely be more complex than the three-task approach. 
Additionally, the three-task approach could be effectively run 
on a multiprocessor or distributed system. To summarize, the 
above example has shown how a multitasking approach can 
yield a simpler design which can be run on a distributed 
system. 

A group of such tasks, which work in concert to perform 
some application, is known as a task system. Some tasks with­
in a task system must be executed in sequence, but many parts 
may not require this restriction. This definition of required 
sequentiality among tasks is known as a precedence relation. 
This precedence relation, often represented graphically as a 
precedence graph, will be discussed in a succeeding section. 

An important concept relative to task systems is that of 
determinacy. A task system is determinant if and only if it 
always produces the same results, given the same inputs. For 
a task system to be determinant, the tasks making up the task 
system cannot interfere with each other. Given the premise 
that a task requires some set of inputs, called its domain, D, 
it produces a set of outputs, called its range, R. Also given a 

Software for Distributed Multiprocessor Systems 243 

task system C, madeupoftasks Tl, T2, ... , Tn, Tasks Tand 
T' of Care noninterfering if either of the following conditions 
is true: 

1. T is a successor or predecessor of T'. That is, T runs to 
completion before (predecessor) or after (successor) T' 
runs to completion. In other words, T and T' run in a 
strictly sequential relationship to one another. 

2. The intersection of the following sets is the null set: 
a. Ranges of T and T' 
b. Range of T and domain of T' 
c. Domain of T and range of T' 

That is, RT n Rr = RT n Dr = DT n Rr = <I> 

For C = {Tl, T2, ... , Tn}, 'If and Tj are mutually non­
interfering if Ti and Tj are noninterfering for all i,j where i 
not = j. Task systems made up of mutually noninterfering 
tasks are determinate.5 

---What the above dIscussion IndIcates IS" that one "establIshes 
a precedence relationship to assure the determinacy of a task 
system, thus assuring consistent results when executing the 
task system. A method will be presented under the discussion 
of precedence graphs to find the set of tasks that can be 
executed in parallel, given a determinant task system. 

A key question one might ask is, "How does one go about 
detecting possible tasks?" The answer lies in the concept of 
stepwise decomposition of the application into major func­
tions to be performed and the major functions into sub­
functions until one reaches a level of detail sufficient for un­
derstanding how the application will be implemented. This list 
of functions and subfunctions defines a potential list of tasks 
and steps within tasks. Using the previously presented exam­
ple, the application was a monitoring system. This system was 
decomposed into three major functions: read input, average 
and store on disk, and display on a CRT. For this particular 
system, this level of decomposition defines the application 
enough to make software implementation possible. Of course, 
on a larger system, more functions and even subfunctions 
could be defined. The relationships between tasks are estab­
lished, and it becomes possible to model the system by means 
of one of a number of graphical techniques. 

Various existing graphical techniques may be used to design 
the algorithms and tasks required for a specific application. 
Methods exist for partitioning these graphs into segments that 
may be executed in parallel. These techniques will now be 
discussed. 

GRAPHICAL TECHNIQUES FOR THE 
REPRESENTATION OF SYSTEMS 

As stated previously, this section will discuss graphical tech­
niques for the representation of application systems. These 
techniques may be used to partition an application into tasks 
and tasks into programs. Additionally, techniques exist for 
the partitioning of these graphs into segments that may be 



244 National Computer Conference, 1982 

executed in parallel. Two graphical techniques will be 
presented: 

1. Petri nets 
2. Precedence graphs 

These are commonly used techniques in the computer en­
gineering and computer science disciplines, respectively. 

PETRI NETS 

The Petri net has been discussed extensively in current litera­
ture;6, 7, 8 therefore only a brief introduction will be presented 
here. The major emphasis will be upon partitioning tech­
niques. A Petri net is a graph model for "modelling the flow 
of information and control in systems, especially those which 
exhibit asynchronous and concurrent properties.,,6 Two types 
of nodes exist in Petri nets: circles (called places) that repre­
sent conditions and bars (called transitions) that represent 
events. Black dots (called tokens) appear in circles to repre­
sent the holding of a condition at that place. The distribution 
of tokens throughout the graph represents the state of the 
system. The behavior of the system can be determined by 
tracing the flow of tokens through the system. Tokens move 
from one place to another when a transition fires. The follow­
ing rules define the conditions under which transition firing 
may occur: 

1. A transition is enabled if and only if each of its input 
places has at least one token. . 

2. A transition can fire only if it is enabled. 
3. When a transition fires: 

a. A token is removed from each of its input places. 
b. A token is deposited into each of its output places. 

Figure 36 depicts a simple computer system modeled via a 
Petri net. The concurrency between 110 on tape and the exe­
cution of computing on the CPU is apparent: when the tape 
is ready, the processor is ready, and an input queue entry 
exists, the transition fires, 110 on tape and computing run 
concurrently, and the results go to the output queue after the 
appropriate 110 and computing have completed. One could 
"walk through" the system in Figure 3 by moving the tokens 
from place to place. 

As shown in Figure 3, concurrent operations fork at the 
transition at the top of the figure and join at the transition at 
bottom of the figure. In a Petri net of more considerable size 
there may be many such forks and joins in the net, which 
represent sites of concurrent' activities. By partitioning the 
Petri net along these forks (called distribution AND nodes) 
and joins (called synchronization AND nodes) the net can be 
broken up into subnets having an initiation point and a termi­
nation point with no forks or joins between nodes. In other 
words, a subnet of strictly sequential places and transitions 
can be produced by breaking up a Petri net at each of its fork 
and join nodes. However, these subnets, while representing 
the maximum level of parallelism, cannot all execute in paral­
lel at the same time. This is due to the fact that the transitions 
firing resulting in forks happens at different times. Therefore, 

T APE READY 

TAPE READY 
OUTPUT QUEUE 

Figure 3-Petri net model of computer 

although one has all the subnets that could potentially run 
concurrently, one does not have subnets of operations that 
can all run concurrently. 

Since one does not have the set of all subnets that can all be 
executed concurrently, one would not be efficiently using pro­
cessors if one loaded each subnet into a separate processor 
and triggered each processor at the appropriate transition 
point. Some processors would be executing in parallel, it is 
true; but many would be idle during the course of execution 
of each subnet. What is desired is not to split the Petri net into 
subnets at each fork and join point, but rather, after the first 
fork, where one does do a split, to follow sequential chains 
through each fork and join. In other words, one breaks the 
Petri net at the first fork and proceeds down the places and 
transitions until either a fork or a join is encountered. In the 
case of a fork, one of the possible paths is chosen and the 
subnet chain continues along that pathway. The other possible 
pathway at the fork becomes the beginning of another chain. 
If a join is encountered, again a subnet chain continues; how­
ever, the other arrows entering that join transition become the 
termination points for the other subnet chains followed up to 
that point along other pathways. By following various path­
ways through the Petri net in this way, one produces subnets 
of sequential places and transitions that are longer than the 
approach of splitting the Petri net at each fork and join. If the 
paths are carefully chosen, it is possible to produce subnets 
that can be executed concurrently, although not necessarily all 
at the same time. To summarize, what is desired is to produce 
a set of sub nets from an initial Petri net so that the following 
conditions are met: 

1. A minimal number of subnets are produced, all of which 
are sequential chains of places and transitions. 



2. The sub nets are chosen to allow maximal concurrent 
execution of each subnet. 

Toulotte and Parsy 7 present an algorithm for this decom­
position that would satisfy Condition 1. This algorithm pro­
duces a set of subnets based on the idea that the optimal set 
of such subnets is the set having the least number of subnets, 
where each sub net is a sequential chain. The algorithm may be 
summarized as follows: 

1. Define the initial place. 
2. Trace down the chain of places and transitions until a 

fork or join transition is encountered (called an AND 
node). 

3. If the AND node is a fork, determine which output path 
will result in the smallest number of additional subnets. 

4. If the AND node is a join, determine which input path, 
if continued, would result in the smallest number of 
additional subnets. 

Though this algorithm would produce a minimal set of sub­
nets (see Toulotte and Parsy7 for more details on the algo­
rithm itself), this minimal set may not be the optimal set for 
maximally concurrent execution. That is, Condition 2 is not 
covered by this algorithm. With some alteration, the algo­
rithm could probably be modified to find the set of such 
subnets such that both Conditions 1 and 2 above would be 
met. This would result in an algorithm that would allow one 
to determine the maximum number of subnets that could 
concurrently execute on a set of processors, requiring one 
processor per subnet. This algorithm could be automated and 
done on a computer once a Petri net of the application was 

, produced. Some guidelines for producing the initial Petri net 
will be made after a specific example of the subnet splitting 
technique is presented. 

t, 

Figure 4--Petri net 

Software for Distributed Multiprocessor Systems 245 

Figure 4 presents a Petri net having several AND nodes. 
The places are labeled PI through P6 and the transitions tl 
through t6. If one were to split up this net at each fork and 
join, one would produce the following subnets: 

SI = PI, tl 
S2 = P2, t2 
S3 = P3, t5, P7, t3 
S4 = P4, t6, P8, t4 
S5 = P5, t3 
S6 = P6, t4 

The above subnets represent the maximally parallel set of 
subnets. However, these subnets cannot all be run concur­
rently. Applying the above algorithm, one produces the sub­
nets illustrated in Figure 5. These three subnets happen also 
to fulfill both the conditions listed above. For this example, 
the optimal number of processors would be three, where the 
second processor begins executing at t 1 and the third pro­
cessor at t2, with all three running until t3, at which point the 
second processor stops and the first and third processors con­
tinue until t4. While satisfying Condition 2 above was fairly 
obvious for this example, in a larger Petri net various alterna­
tive chains might have to be tried to find the optimal set of 
subnets. This, like the discussion on Petri net generation that 
follows, may require an iterative process to obtain the optimal 
results. 

As stated above, several guidelines may be presented on the 

PI 

tl 

P2 

t2 

PS 

t, 

P6 

t4 

tl 12 

Pi P4 

ts t6 

P7 P8 

_.lIL-_ 1, _..&.-- t4 

Figure 5-Decomposed Petri net 



246 National Computer Conference, 1982 

generation of the Petri net model for an application. The 
guidelines may be summarized as follows: 

1. Break up the application into major tasks to be per­
formed. These become the places in the Petri net. 

2. Define the precedence relationships between the major 
tasks (i. e., which tasks depend on results from other 
tasks). These precedence relationships define the transi­
tions between the tasks. Tasks that produce results 
needed by more than one other task are connected to 
those other tasks via a fork transition and have a prede­
cessor relationship to tasks needing the results of that 
task. Tasks that need results produced by more than one 
other task are connected to those other tasks via a join 
transition and have a successor relationship to those 
other tasks. 

3. Apply the splitting technique, based on the two condi­
tions listed above. 

4. Having found the major concurrent task subnets, further 
decompose each task, represented by a place, into sub­
tasks; and repeat Steps 1 and 2 above to decompose task 
subnets into sub task subnets that can run concurrently. 

In other words, the decomposition technique presented above 
is used on Petri nets to find the set of subnets that can be 
executed on a distributed/multiprocessor system. 

PRECEDENCE GRAPHS 

As previously stated, precedence graphs may be used to show 
the relationships of tasks within task systems. The method of 
decomposition of an application into a set of subfunctions, 
and subfunctions into tasks is used as the first step in the 
creation of a precedence graph. One then defines the pre­
cedence of the tasks based on their required order of exe­
cution to assure that a determinate task system results. Prede­
cessor tasks trigger successor tasks, which is indicated by a 
directed arc in Figure 6. As stated earlier, a task takes inputs, 
performs some transformation function upon the inputs, and 
produces outputs. Predecessor tasks produce outputs, which 
become the inputs to successor tasks. Figure 6 presents a 

Figure 6---Precedence graph 

simple precedence graph. Task T1 is the initiator task to the 
entire task system. It is the immediate predecessor of tasks T2 
and T3, which are T1 's immediate successors. T3 is the imme­
diate predecessor of T 4 and T5, and T6 is the terminator task 
for the task system. Once one has established a determinate 
task system, it becomes possible to apply a theorem to find the 
maximally parallel graph of the task system. Given a max­
imally parallel graph, one can visually ascertain the maximum 
number of tasks that may execute in parallel at any given time. 
The theorem given previously states the following: 

From a given determinate task system C, construct a new 
system C' that is the transitive closure of the relation 

then C' is the unique maximally parallel system equivalent to 
C. In other words, one performs the following steps to find the 
maximally parallel system equivalent of a task system: 

1. Calculate the relation X: 
One finds the union of the intersections of the follow-

ing sets: 
a. Ranges of T and T' 
b. Range of T and domain of T' 
c. Domain of T and range of T' 

2. Take the transitive closure of X by drawing the pre­
cedence graph of the relation, X; and eliminating redun­
dant arcs. 

The basic idea of this theorem is to take a determinate 
system and "relax" the determinacy to the point where any 
further "relaxation" would result in the system's becoming 
nondeterminate. Therefore if one starts by defining the task 
system as being entirely sequential-i.e., Task 1 is followed by 
Task 2, etc., one has defined a nonparallel, determinate task 
system. One then applies the procedure to find the maximally 
parallel task system resulting from relaxing the determinacy 
applied to the system by defining a strictly sequential pre­
cedence relationship among the tasks making up the original 
task system. 

This procedure is best understood by example. Assume that 
a task system is given whose input and output values are 
represented by the set M, where 

M ={M1, M2, M3, M4, M5}. 

These five values lie in the various domains and ranges of 
eight tasks that make up the task system. Table I summarizes 
which values lie in the domains and ranges of each task. 

TABLE 1- Values in relation to domains and ranges of tasks 

In domain In range 
Value of tasks of tasks 

M1 1,2,7,8 3 
M2 1, 7 5 
M3 3,4,8 1 
M4 3,4,5,7 2, 7 
M5 6 4, 6, 8 



Figure 7-Graph of relation, X 

The relation, X, is then calculated. As an example, M1lies 
in the domain of Task 1 and in the range of Task 3. This 
defines the ordered pair (1,3). One proceeds to find all the 
ordered pairs resulting from comparing the domains and 
ranges of the tasks as defined by Relation X. This results in 
the set X: 

(1, 3), (1, 4), (1, 5), (1, 8) 
(2, 3), (2, 4), (2, 5), (2, 7) 
(3, 7), (3, 8) 
(4, 6), (4, 7), (4, 8) 
(5,7) 
(6,8) 

One then draws a precedence graph, G, of the relation, X, as 
shown in Figure 7. The transitive closure of X can be found by 
by eliminating all redundant arcs in G. For example, Task 1 
has an arc to Task 3 and to Task 8. Task 3 has an arc to Task 
8. Therefore, the arc from Task 1 to Task 8 is redundant and 
can be eliminated. Having done this for all redundant arcs, 
and redrawing G to produce G " one has the maximally paral­
allel graph of the task system originally defined to be the 
strictly sequential task system executing from Task 1 through 
Task 8. This maximally parallel graph is shown in Figure 8. 
From Figure 8 one can see that Tasks 1 and 2 can run concur­
rently and that when they are done, Tasks 3,4, and 5 can then 
run concurrently. When Task 4 is completed, Task 6 may start; 
when Tasks 4 and 5 are completed, Task 7 may run. Finally, 
Task 8 runs when both Tasks 3 and 6 are completed. There­
fore, one could use three processors effectively to implement 
the example task system on a distributed/parallel system. 

Software for Distributed Multiprocessor Systems 247 

COMPARISON OF TECHNIQUES 

As a final example, to illustrate the previously presented tech­
niques as applied to a real problem, an automotive trip 
computer/speed control is to be designed. It will monitor mile­
age, fuel use, and time and maintain speed. The required 
system can be broken down into 10 tasks that perform the 
following functions: 

Task Function 

1 Read fuel flow, odometer, time, desired speed 
2 Calculate delta time: current time minus old time 
3 Calculate miles per gallon: 

m - (new odometer minus old odometer) 
pg - (new flow + old flow) /2 

4 Calculate speed: 
d (new odometer minus old odometer) 

spee = delta time 

5 Calculate throttle value: 

6 
7 

8 
9 

10 

If speed < desired speed minus 2, then 
increment throttle; otherwise, 

If speed > desired speed plus 2, then 
decrement throttle 

Output throttle value to throttle control 
Calculate fuel left: 

fuel left = fuel left - (new flow + old flow). 
delta timel2 

Read selected function button 
Update time, flow, odometer: 

oid time = new time 
old flow = new flow 
oid odometer = new odometer 

Display selected function: odometer, miles per 
gallon, time, or fuel left 

Figure 8-Maximally parallel graph 



248 National Computer Conference, 1982 

TABLE II-Task list variables in relation to domains and ranges 

Domain Range 
Variable of task of task 

New odometer 3,4,9,10 
New time 2,10 1 
Desired speed 5 1 
Old time 2 9 
Delta time 4, 7 2 
Mpg 10 3 
Old odometer 3,4 9 
New flow 3,7,9 1 
Old flow 3,7 9 
Speed 4,5 4 
Throttle 5,6 5 
Throttle control 6 
Fuel left 7,10 7 
Function index 10 8 
New time 9 1 
Display output 10 
Read input 

From this task list a table of variables (Table II) is created 
that specifies the variables themselves and whether they lie in 
the domain and range for each of the tasks. From this table it 
becomes possible to construct either a Petri net or a maximally 
parallel precedence graph. If the latter approach is taken, 
determinacy is established by requiring the strictly sequential 
execution of Tasks 1 through 10 in that order. Figure 9 
presents the Petri net constructed from the above table, and 
the subnets broken out from it. As can be seen, four subnets 
are possible, the fourth being one task. This implies that the 
optimal number of concurrently running processors is three. 
Figure 10 presents the calculation of the X relation and the 
resulting precedence graph. Figure 11 presents the result of 
taking the transitive closure of the graph in Figure 10---i. e., 
elimination of all redundant arcs-to produce the maximally 
parallel precedence graph for the above task system. Depend-

Figure 9-Petri net of trip computer 

Figure l(}-Graph of trip computer 

Figure ll-Maximally parallel graph of trip computer 



ing on the speed of execution of Tasks 2 and 3, the task system 
could function on at most three processors concurrently. 

One assumption made here is that the dependencies of 
some of the variables upon being updated by Task 9 before 
any of the tasks could run is eliminated by an initialization 
step in Task 1. What this means is that the first execution of 
the task system starts with Task 1 as noted and that after this 
the results of Task 9 are used, since the task system is basically 
completed at Task 10 and then recycles back to Task 1. This 
recycling can be represented, or left out, without affecting the 
way the task system would function. In this case it was left out 
for clarity. 

Having performed the above exercise, the authors found 
the precedence graph approach to be easier to apply, since 
from Table II the calculation of the X relation is straight­
forward. From the X relation a set of ordered pairs could be 
defined which in turn provides the transitive closure and 
hence, could easily produce a precedence graph. The produc­
tion of the Petri net proved to be more difficult and time­
consuming, since no calculation could be performed to create 
the ordering for the graph. However, both procedures could 
be computerized to perform the work after the initial task 
specification and identification of variables required had been 
performed. 

The Petri net, in the authors' opinion, presents more of the 
details of the intertask relationships, since the transitions indi­
cate that variables are input and output to cause the transi­
tions to fire. However, as stated above, the approach using the 
production of a maximally parallel precedence graph was eas­
ier to implement. Perhaps a method of combining the two 
techniques would be possible; however, that lies beyond the 
scope of this paper. 

Software for Distributed Multiprocessor Systems 249 

CONCLUSION 

This paper has presented the concept of multitasking as a 
design methodology for the production of software to execute 
on a distributed/multiprocessor processing system. Two 
graphical techniques were presented: the Petri net and the 
precedence graph. These techniques offer a means of visual­
izing the flow of control in such a software system. Both Petri 
nets and precedence graphs have been analyzed and methods 
found to find concurrent segments of these graphs. However, 
in the final analysis, all these methods still require the de­
signer to be cognizant of potential concurrency in the decom­
position of his or her application into tasks to which the above 
techniques may be applied. 

REFERENCES 

1. Flynn, M. J., and J. L. Hennessy. "Parallelism and Representation Prob­
lems in Distributed Systems," 1st International Conference on Distributed 
Computing Systems, Huntsville, Ala., Oct. 1-5, 1979. Piscataway, N.J.: 
IEEE Publications, 1979. pp. 124-130. 

2. Kieburtz, R. B. "A Hierarchical Multicomputer for Problem-Solving by 
Decomposition." 1st International Conference on Distributed Computing 
Systems. 1979. pp. 63-71. 

3. Tjaden, G., and M. J. Flynn. "Detection and Simultaneous Execution of 
Independent Instructions." IEEE Transactions on Computers, C-19, 
(1970), pp. 889-895. 

4. Kuck, D., et al. "Measurement of Parallelism in Ordinary Fortran Pro­
grams." 1973 Sagamore Conference on Parallel Processors, Sagamore 
Lake, Syracuse, Aug. 22-24, 1973. Piscataway, N.J.: IEEE Publications. 

5. Coffman, E. G., and P. J. Denning. Operating System Theory. Englewood 
Cliffs, New Jersey: Prentice-Hall, 1973, pp. 31-43. 

6. Ramamoorthy, C. V., and G. S. Ho. "Performance Evaluation of Asyn­
chronous Concurrent Systems Using Petri-Nets." IEEE Transactio!1.S on 
Software Engineering. SE-6 (1980), pp. 440-449. 

7. Toulotte, J. M., and J. P. Parsy. "A Method for Decomposing Interpreted 
Petri-Nets and Its Utilization." Digital Processes, Vol. 5 (1979), pp. 
223-234. 

8. Auguin, M., et al. "Systematic Method of Realization of Interpreted 
Petri-Nets." Digital Processes, Vol. 6 (1980), pp. 55-68. 





The use of performance models in systematic design 

by K. M. CHANDY, J. MISRA, R. BERRY, and D. NEUSE 
University of Texas 
Austin, Texas 

ABSTRACT 

The paper describes a top-down methodology for evaluating the performance of 
computer/communication systems and describes tools that help in implementing the 
methodology. It also deals with performance analysis during the design of new 
hardware and/or software systems. The goal of the methodology is to detect and 
correct performance problems early in the design cycle. 

251 





INTRODUCTION 

Much has been written about systematic design. 1,2 This paper 
describes tools that aid in designing to meet performance 
goals. We briefly review top-down performance design meth­
odology as expounded in Smith and Browne and elsewhere 
and then show how the methodology is implemented by the 
use of appropriate tools. 

In a data processing system, entities called transactions con­
sume resources. At different stages in the design cycle it is 
convenient to view transactions and resources at different 
levels of detail, incorporating more detail as the design pro­
ceeds. For instance, at an early stage in a software design, a 
transaction may be "opening a bank account" or "sending a 
reminder about accounts past due." At a later stage in the 
design cycle the "send reminder" transaction may be refined 
into a sequence of smaller transactions such as: 

• If amount owed exceeds AMOUNT-LIMIT, start trans­
action to cancel credit. 

• If account is past due for a period exceeding TIME­
LIMIT, start transaction to send warning letter and no­
tify collection agency. 

• Send reminder to customer. 

Note that the manner in which a transaction is refined may be 
conditional; i.e., the refinement may depend on certain condi­
tions (such as "amount owed exceeds time limit"). The refine­
ment must also indicate which sub transactions may be exe­
cuted in parallel and which must be executed sequentially. We 
will discuss a formal method for specifying the refinement of 
transactions later. 

It is convenient to view resources as logical resources, phys­
ical resources, and a mapping from logical to physical ones. 
For instance, a transaction specification might state that a 
transaction needs to execute 10,000 lines of instructions; here 
the resource specification is logical, because the identity of the 
CPU to be held (if there are several) is not specified, and 
neither is the duration of time for which the CPU is held. Of 
course, the duration of time for which the CPU is held will 
depend on CPU speed. It is convenient to separate the hard­
ware (physical-resource) specification from the software 
(transactions requesting logical resources). An application 
program will have the same specification no matter what hard­
ware it runs on. A physical computing system, computers 
(CPUs, channels, controllers, disks), and message commu­
nication links will be specified in the same way, no matter 
what application programs run on them. Changing the wayan 
application program runs (its priority, the specific site at 
which it runs, the allocation of databases to a different set of 
disks) only changes the mapping from logical resources to 
physical resources. 

If both hardware and software are being designed, the spec-

Performance Models in Systematic Design 253 

ifications of the physical resources are also refined as the 
design proceeds. If the hardware is in place and only the 
software is being designed, the specifications of the physical 
resources are available in detail and no refinement is neces­
sary. At the start of a design, a physical resource may be a 
computer; as the design progresses, this physical resource may 
be refined into a memory resource, CPU resources, and an 
I/O resource. At even later stages in the design the I/O re­
source may be refined into channels, controllers, and disks. 

The refinement of transactions and resources may not pro­
ceed in a synchronized fashion. Either the application pro­
grams may be already given while a new hardware system is 
being designed, or the hardware system may be given while a 
new application is being designed. To allow a decoupling of 
application program design and hardware design, the logical 
mapping must be capable of mapping any level of transaction 
definition to any level of hardware definition. The mapping is 
discussed later. 

In the next section we describe a tool called Performance 
Analyst's Workbench System (PAWS) that can be used to 
predict performance at various stages in the design cycle, 
given various levels of definition of transactions and hard­
ware. PAWS is derived from other languages, notably 
RESQ.3 This discussion also applies to RESQ. 

PAWS 

PAWS is a tool developed by Information Research Associ­
ates. 4 We will not describe PAWS in depth, but we will de­
scribe it in enough detail that the reader can understand how 
PAWS can be used to predict performance within the frame­
work of a systematic design methodology. 

PAWS is a very high-level simulation language designed 
specifically to model computer/communication/office sys­
tems. The specificity of the problems PAWS was designed to 
handle is both its strength and weakness: computer/commu­
nication systems can be modeled easily, whereas GPSS, SIM­
ULA, or SIMSCRIPT are probably preferable for general­
purpose simulation. Resources modeled by PAWS include 
memory, buffers, CPUs, and I/O devices. Scheduling disci­
plines to handle memory in PAWS include first-fit and best­
fit. New disciplines and new resource features are being 
added. Thus it is easy to study computer design problems such 
as the memory fragmentation problem in PAWS. A variety of 
scheduling disciplines are available for resources such as 
CPUs. 

Entities that use resources in PAWS are called transactions 
(see Figure 1). There are several facilities to control the man­
ner in which transactions use resources; facilities include 
branching on condition (to simulate if-then-else, while loops, 
go tos) , probabilistic branching (to simulate nondetermin­
ism), interrupts (to simulate one transaction's being inter-



254 National Computer Conference, 1982 

Release 
CPU Memo~ 

rrar2:: ~ =n--- 0 t~ ~~Le 
Start Get!} Contiguous "-

Words of Memory Loop M Times 

Figure 1-A diagram showing how a transaction uses resources 

rupted by some external action) and forks/joins (to simulate 
parallelism). Transactions have local variables, and the system 
has global variables that may be accessed by all transactions. 
Transactions acquire and release resources at resource­
manager nodes. For instance, a transaction may go to a 
memory management node and request a block of 100 words 
of contiguous memory. The transaction will have to wait at the 
memory management node until its request is satisfied or it is 
interrupted. Thus the sequence in which transactions request 
resources can be represented by a graph with resource man­
agement nodes, decision nodes such as forks/joins (to control 
the flow of transactions), and edges showing how transactions 
use resources. 

Though the specific sets of resources and transaction con­
trol facilities vary from one computer modeling language to 
another, the key ideas are common. 

In the next section we show how computer modeling lan­
guages can be used in systematic design. To help focus our 
discussion, we shall consider one specific language, PAWS, 
though the discussion applies equally well to languages such as 
RESQ. 

Design Methodology 

Performance modeling in the design of computer/commu­
nication systems occurs in three categories: modeling of (1) 
application programs (transactions), (2) hardware (re­
sources), and (3) the map between application programs and 
hardware. We now consider each of the three categories in 
turn. 

Application Programs 

The first step is to identify all transactions at a coarse level 
of detail-the business level. An example of a transaction at 
this level of detail is "adding to a checking account." The 
logical resources used by the transaction are identified next, 
also at a coarse-grained, or business, level of detail. Examples 
of logical resources for the adding-to-checking-account trans­
action are drive-in-windows, bank tellers, communication 
lines, and computing facilities. At this point in the design it 
may not be appropriate to describe the computer facilities 
resource at a finer level of detail; thus all resources of bank 
computing-terminals, CPUs, disks, databases-are lumped 
together into a single entity. If a bank is considering setting up 
small suburban drive-in branch offices, resources such as real 
estate and personnel may be more important than issues such 
as the number of disk accesses. At early stages in the design, 
the designer may be concerned with questions such as these: 
How many square feet, drive-in windows, and bank tellers will 

I need? What is the overall additional load on computing 
facilities? If answers to these general questions suggest that 
the new application is cost-effective, the design should pro­
ceed further. 

We shall now study the problem of specifying demand for a 
composite resource such as a computing facility. ,A. .. n adequate 
level of detail for specifying the load placed by a new applica­
tion on computing resources can be derived from accounting 
data. The amount charged for running a transaction on a 
system is a function of the amounts of resources consumed. In 
many cases, computer centers use linear functions such as 
service units, with weights attached to consumption of the 
different resources-CPUs, < 1I0s, memory. Our goal at the 
first stages in design is to estimate the service units (or some 
other composite accounting entity) required by each trans­
action in the new application. Using service units or an ac­
counting function is a very imprecise way of estimating load, 
because a computing system is not a homogeneous entity, but 
consists of very different parts. However, this level of detail 
may be sufficient at the first stage in design. The level of detail 
used in modeling real estate (drive-up windows), personnel, 
and computing depends on their relative incremental costs in 
the new application. 

The amount of service units required by a transaction in a 
new application is estimated by comparing the new applica­
tion with an existing one. No attempt is made to analyze the 
application in detail. It is quite common to hear an analyst 
say, "In Company X they handle aJ:?out 20,000 transactions of 
an application very similar to our new application, and their 
application takes about 30 percent of their machine." It is 
from such imprecise statements that the first models should be 
built, because such statements give one a ballpark estimate of 
load. As a first guess, we might estimate that each transaction 
in the new application takes 0.3/20,000 hour of a system equiv­
alent to Company X's. 

An initial model for a new drive-in-banking facility may 
have the form shown in Figure 2. 

Figure 2 has also set the level of detail for the resources. For 
instance, we assume M bank-tellers, all of whom are equiv­
alent, though in reality the bank manager or supervisor may 
be the only one who can handle special transactions. We have 
also assumed that there is enough bankwidth in the commu­
nication lines linking the tellers to the computers that com­
munication delays may be ignored. 

The mapping of logical resources to physical resources is 
straightforward if the computing system is centralized: all log­
ical computing system requests for all transactions map into 
the same centralized computer. When the computing system 
is distributed, the map from logical to physical states where 
each transaction will be processed. This map may be dynamic; 
however, as a first pass, it is often sufficient to assume that the 

Delay While Customers 
Prepare Materials Computer 

D-]Db-Jiru-=0-0-\7-\7-1 
! I l' /" ReleaSe! Sink Customers Delays While Teller Teller 

Source of Queue Up .tor One Processes Transaction Drive Away 
Customers of ~ Drive-In Walt for One from Window 

Windows of M Bank Teller 

Figure 2-Describing a business transaction 



map is fixed by the designer. The map becomes a critical. 
design variable. The amount of logical resources requested is 
stated in some standard units, usually with respect to a stan­
dard system. An important part of the logical-physical map is 
to specify the power of the computing systems at the various 
sites. The scheduling discipline we assume for the computing 
system may not correspond to any real discipline, because a 
multiplicity of disciplines may be used for the different com­
ponent resources. Since several transactions may be processed 
in parallel by the computing system, it is natural to assume 
either a priority discipline or a processor-sharing discipline (if 
all transactions have equal priority). " 

After constructing transaction diagrams such as those in 
Figure 2 for all the new "business" transactions, and after 
modeling the existing load on the system in an approximate 
manner, we are now ready to conduct modeling experiments 
to help guide the design. The next step is to identify the design 
parameters that need to be studied at this stage in the design. 
In our running example the design parameters are N, the 
number of service windows; M, the number of tellers; the 
priorities of each transaction type; and the logical-to-physical 
map. Since we wish to model severa] branch offices, it is 
convenient to construct a model with an array 1. . J of branch 
offices, and to refer to parameters N(i) and M(i) of the ith 
branch office, i = 1 , .. ,1. Assume that we have K distinct 
physical computing systems that may be distributed. The 
logical-physical map is an array L, where L(i) is the index of 
the physical computing system on which transactions from the 
ith branch office are run. All the parameters L (i), N(i), 
M(i), the priorities, and the relative powers of the computing 
systems at the different sites are easily set in PAWS; running 
a variety of experiments and changing the logical-physical 
map can be carried out simply. 

The experiments will show the designer how the various 
resources (drive-up windows, tellers, and computing facilities) 
interact and contribute to customer service levels. For in­
stance, if the logical-physical map is a poor choice, contention 
for computing facilities will cause the tellers to take longer for 
each transaction, thus causing cars to remain at drive-up win­
dows for longer periods of time, which in turn may cause 
automobile traffic jams around the drive-in area! Since com­
puters play such a ubiquitous role in business, it is important 
to model data processing as an integral part of business rather 
than in isolation. 

Cost, investment, and tax-related factors and personnel 
policy often play a more important role in data processing 
system design than the intricacies of resource-scheduling algo­
rithms. Simple models based on PAWS, RESQ, or other mod­
eling systems will help designers and accountants make trade­
offs early in the design. Performance analysts tend to ignore 
the huge, vital tradeoffs to be made at the business level and 
focus on the relatively unimportant tradeoffs at the data pro­
cessing subsystem level. Modeling systems can be used to look 
at tradeoffs at all levels, starting with tradeoffs at the business 
level and proceeding hierarchically to increasingly fine trade­
offs. 

Even for simple models the space of design parameters is 
vast. Use of models early in the design stage will help narrow 
the design space that needs to be considered in later stages of 
design. 

Performance Models in Systematic Design 255 

Refinement 

As the design proceeds into greater detail, the application/ 
hardware/mapping models become refined. The assumptions 
made in the earlier stages of design should be checked against 
the results of the refined models. If these latter results show 
that the assumptions made in the earlier models are grossly in 
error, the decisions made in the earlier stages of the design 
cycle must be reexamined. 

Refining a transaction model consists of (1) describing a 
transaction in terms of more detailed and smaller transactions 
and (2) specifying the logical resources at a greater level of 
detail. For instance, a transaction to process accounts past due 
that is specified as using x seconds of a standard computing 
system may be partitioned into several transactions, as shown 
in Figure 3. 

Traition '0\\ 3 Detect Amount 
Due and Interest Fork Into Two 
Owed Parallel Transactions 

Join 

Branch Point - If Amount Due is 
Less Than LIMIT Take Top Branch, 
eise Take Lower Branch 

Figure 3-Refining a business transaction 

In this example a single transaction at a coarse level of detail 
is partitioned into four smaller transactions. If the amount due 
is less than LIMIT, the single business transaction manifests 
itself as two transactions, (1) figure amount owed and (4) 
write letter. If the amount due is greater than LIMIT, the 
single business transaction manifests itself as four transac­
tions: after completing 1, 2 and 3 are executed in parallel; 
after both 2 and 3 are complete, 4 is executed. Resource 
demands for the smaller transactions are computed in the 
usual way. Branch points such as those shown in Figure 3 are 
normally modeled as probabilistic branches; some fraction of 
all transactions takes one branch, and some fraction takes the 
other. The modeling languages have explicit facilities for 
models of fork/join and routing, so transaction refinement is 
straightforward. 

In addition to specifying a business transaction in terms of 
more detailed transactions, the refinement step may also 
specify logical resources in greater detail. For instance, in­
stead of specifying a transaction's demand for data processing 
resources in terms of x seconds of system time, we may specify 
the demand in terms of x 1 units of memory, x 2 units of CPU 
time, and x3 110 accesses to data sets. The specification of 
which data sets are accessed and the relative frequency of 
access to each of the data sets is not given here; but it will be 
given, with further refinement, in later stages of design. 



256 National Computer Conference, 1982 

As the design proceeds, the refinement of the specification 
of the physical resources will continue as well. Thus a com­
puting system may be refined into memory, CPU, and I/O 
devices. If the refinement of transactions and physical re­
source models proceed hand in hand, the logical-physical 
mapping is straightforward. Let us consider the case where 
the hardware design lags behind the application program de­
sign. Suppose the hardware model is still that of a composite 
computing system. In this case the logical-physical map must 
map a relatively refined application program onto a relatively 
gross hardware model. In the initial design stages, the load 
placed on data processing resources by transactions is in terms 
of a single metric (processing time or service units) on a 
"standard" or benchmark computing system. The refined 
transaction model will result in better estimates of resource 
demand, though once again the estimates will be made with 
respect to the standard system. As long as the hardware model 
remains at the composite computer system stage, resource 
demand must be estimated as a single metric on a standard 
system and the proposed hardware must be defined in terms 
of its speed relative to that of the standard system. Now con­
sider the case where the hardware model has also been refined 
into distinct physical resources-memory, CPU, and 1I0s. 
The logical-physical map does not change, because once a 
transaction is assigned to one computing system, all logical­
resource requests (memory, CPU, and 110) will refer to phys­
ical resources within that computing system. Thus the map 
could continue to be in the form of an array L. The use of the 
physical resources by transactions in this more detailed model 
is also easily represented (Figure 1). 

In the detailed model of the data-processing system, the 
other aspects of the business should not be modeled at all or 
should be modeled in an extremely approximate fashion. For 
instance, we considered a problem in which, at the first stage 
in the design, tradeoffs were made between real estate (drive­
in windows), personnel (bank tellers), and data processing, 
using approximate models of the data processing system. At 
the next stage we construct more detailed models of each of 
the subsystems, including data processing. However, at this 
second stage we will ignore the other components, such as 
drive-in windows and bank tellers, and focus primarily on the 
data processing system. The load offered to the data pro-

cessing system in terms of transactions per hour is obtained 
from previous models, but no other aspects of the previous 
model are brought into the current model. The objective is to 
keep each model at a manageable size. Only if the results of 
the detailed model show that the assumptions made in the 
coarse model are grossly erroneous do we go back to the 
coarse model. 

The use of modeling languages in the design process in a 
systematic, top-down refinement procedure is extremely help­
ful in catching performance problems early. Moreover, the 
methodology is manageable, and the tools to implement the 
methodology exist. 

SUMMARY 

We have shown how modeling languages such as PAWS and 
RESQ can be used with performance design methodologies 
such as those in Smith and Brownel and Le Mer. 2 Our ap­
proach consists of building separate models for application 
programs, hardware, and the map from programs to hard­
ware. At each step in the design the models for application 
programs and hardware are refined. We have shown that 
these models can be represented naturally in modeling 
languages. 

ACKNOWLEDGMENTS 

This work was supported in part by a grant from the U.S. Air 
Force, AFOSR-81-0205. 

REFERENCES 

1. Smith, C. U., and J. C Browne. "Performance Engineering of Software 
Systems: A Case Study." AFlPS, Proceedings of the National Computer 
Conference, 1982 (Vol. 51). 

2. Le Mer, Eric. "MEDOC-A Methodology for Designing and Evaluating 
Large-Scale Real-Time Systems." AF1PS, Proceedings of the National 
Computer Conference, 1982 (Vol. 51). 

3. Sauer, C. H., E. A. MacNair, and J. F. Kurose. "The Research Queueing 
Package: Past, Present, and Future." AFIPS, Proceedings of the National 
Computer Conference, 1982 (Vol. 51). 

4. Information Research Associates. "PAWS: The Performance Analyst's 
Workbench System User's Manual." IRS, Austin, Texas, 1981. 



Performance modeling in the design process 

by WILLIAM ALEXANDER and RICHARD BRICE 
Los Alamos National Laboratory 
Los Alamos, New Mexico 

ABSTRACT 

Performance modeling and analysis of computer systems are often ignored during 
the project design phase in favor of other techniques collectively known as struc­
tured design or software engineering. We describe benefits that can result from 
including performance analysis as an integral part of the design process. Several 
different goals, time frames, and roles played by performance analysis during sys­
tem design are illustrated by three case studies of current projects at Los Alamos. 

257 





INTRODUCTION 

In the past decade, since the ideas collectively referred to as 
structured programming and structured design have gained 
acceptance, the conventional wisdom has become that one 
should ignore performance considerations in the design phase 
of a computer system project in favor of modifiability, main­
tainability, and correctness. This doctrine assumes that one 
can always "tune" the system to meet performance criteria 
after it is built. 1 If one is astute enough in design choices so 
that the first running version of the system comes within, say, 
an order of magnitude of the performance goals, these goals 
often can be met by relatively simple modifications; in this 
case the attention paid during design to understandable struc­
ture and modifiability will be rewarded. But performance is a 
result of interactions among many elements of software, hard­
ware, and environment, and sometimes these interactions are 
counterintuitive. It is not uncommon for systems to fall so far 
short of performance goals that only fundamental, and there­
fore very expensive, changes will serve. 

It is our experience that the chances of such catastrophes 
can be reduced by applying modeling techniques during the 
system design process in such a way that none of the advan­
tages of structured design need be sacrificed. 

The models we refer to in this paper may be analytic or 
simulation; in some cases the simpler methods of operational 
analysis are adequate.2 The point is that sufficient data should 
be collected, and sufficient analysis done on them, to give 
some assurance that the performance goals of the system be­
ing designed will be met. The kinds of data that must be 
gathered include hardware and software characteristics of the 
components of the system; measures of the behavior of the 
environment in which the system will run, including workload 
and competing systems; and even the ways in which the system 
being designed will alter the existing environment. Because 
most design projects have deadlines, it is much more likely 
that sufficient performance analysis will be included if the 
installation already has models of the proposed system's envi­
ronment, or at least has data collection facilities installed. 

Differences in performance goals as well as in other design 
objectives imply that modeling will assume different roles, 
occupy different time frames, and require different informa­
tion from one design project to the next. Three design 
projects with which we have been involved at Los Alamos 
illustrate some of these points. 

COMPUTING AT LOS ALAMOS 

At Los Alamos, the integrated computing network (lCN) 
allows all validated computer users at the laboratory access to 

Performance Modeling in the Design Process 259 

almost any of the machines or services of the Central Com­
puting Facility (CCF). Figure 1 is a schematic diagram of the 
ICN. (Dotted portions indicate future plans.) At the "front 
end" of the network (the right side of the diagram) over 1,350 
terminals and remote entry stations are concentrated in stages 
to front-end switches (the SYNCs) so that traffic can be 
routed between any terminal and any worker computer. The 
worker computers include four Cray-1s, four CDC 7600s, two 
CDC Cyber-73s, and a CDC 6600. Each of the worker com­
puters is connected to the file transport (FT) switches and so 
to the "back end" of the network (left side of the diagram). 
The FTs are the means by which workers can send files to each 
other and to the special-service nodes in the network. The 
special services provided at present by the network include an 
output station (PAGES) to which are attached a wide variety 
of printing and graphics devices, a mass storage and archive 
facility (CFS),3 a gateway that handles file traffic between 
workers and computers outside the ICN, and an integrated 
performance monitoring and batch job control station 
(FOCUS). 

Although all types of computing are done at Los Alamos, 
most of the CPU hours on the large workers are spent exe­
cuting large, long-running scientific programs. Many of these 
produce graphics output. Some users have a need to mn pro­
grams larger and longer than even our present worker com­
puters can handle. 

THREE CASE STUDIES IN DESIGN 

The distributed interactive graphics project 

The goal of the distributed interactive graphics project is to 
improve user productivity by improving the performance of an 
existing interactive graphics system that runs on a large sci­
entific computer (a Cray-1 or a CDC 7600).4 It is hoped that 
system responsiveness can be improved by adding an intel­
ligent terminal or a larger minicomputer as a front end and by 
distributing the software between the two computers. The 
front end is intended to handle graphics-terminal or device 
interactions and drive the graphics screen. Design issues in­
clude the choice of minicomputer, the hardware and software 
constituting the link between the two computers, the distribu­
tion of the graphics software, and whether the distribution 
should be static or dynamic. 

A simple model of this system might include CPU and 
memory on the two computers and simple links between the 
two computers and between the front end and the terminal. 
Input to this simple model would include the speed and size of 
the CPUs and memories and the bandwidth of each link. We 
would also need the CPU burst sizes and distributions and the 



260 National Computer Conference, 1982 

Focus I I I Workers - W CRAY 1 (4) V AX 111780 (2) 
CDC 7600 (4) 
CDC Cyber 73 (2) 
CDC 6600 (1) 

CFS -- Development 

IBM 3850 Machines 

IBM 3350 - ~ V AX 11/780 (3) 
IBM 4341 File VAX 11/750 (1) 
IBM 370/148 Transport PDP 11/70 (1) 

Switches 

SEL 
32177 (4) 

Special 

~ 
Services 

PDP 11/34 (1) 

I I 
Terminal 
Concentrator 

~ ~ 

I 
PDP 11 (12) 

SYNC Security --
~ 

PDP 11 (3) Control 
I--

PDP11 (1) 

Work Station 
Concentrator 

VAX 111780 (1) 

"'"'-

I 

- Data 
Comm 
Center 

L 
~ 

~ 

Terminals 

Word 
Processing 
Systems 

External 
Networks 

Pages 
~,-----------.- ~- --

Intelligent 
Work 
Stations Versatec 

FR 80 (3) 
Xerox 9700 -

Printer (2) 
Plotter (2) 
V AX 111780 (2) 

Distributed 
Processors 
Gateway 

V AX 11/780 (3) 

I I 
I t 
I I 

I I 
I L __ ..1 

VAX 
Distributed 
Processor 

Figure I-Los Alamos integrated computing network 

frequency and size of communications over each link for a 
given distribution of the software. All this information will 
probably be known or can be obtained by the system de­
signers. This model can only give an order-of-magnitude esti­
mate of performance and tell the designers whether a com­
ponent of the system is an obvious bottleneck. 

A more realistic model of this system would incorporate 
other information not so readily available to the application 
designers. The link between the two computers envisioned by 
the designers is actually the back end of the network depicted 
in Figure 1. Contention for network services, overhead in 
communication protocols, error rates, and buffer space within 
the network are all likely to reduce the effective bandwidth of 
the communications links. Contention for CPU and memory 
resources on the two computers will also alter the commu­
nication bandwidth and the rate at which the distributed appli­
cation can execute. As the distribution of software between 
the two computers changes, the competition this system intro­
duces into each of the two computer systems will change also. 
Quantitative knowledge about the effects of these factors will 
be available only if there has been an ongoing data collection 
effort on the mainframes and the network. There probably 
would not have been time or staff available to obtain the 
information for the design effort if it were not already being 
collected. 

One way to get around the problem of missing information 
is to distribute a prototype application and measure the effec­
tive communication bandwidth and rates of CPU service. The 
designers did this, using a DEC VAX 11/780 as the front end. 
The initial performance results were discouraging. The de­
signers concluded that the chosen division of software be­
tween the two computers was wrong. They also observed that 
the number of ways of splitting the application was too large 
for exhaustive trial and error. Yet the frequency and size of 
communications between each pair of modules was not 
known, and the model needed this information to predict 
performance for a given split of the software. The designers 
therefore invested the time to build distributing tools that 
automated the code conversion process, allowing them to 
move modules from one machine to another more easily. This 
effort turned their prototype into a flexible data collection 
tool for performance analysis, as well as providing the de­
signers with useful insights. 

The prototype multiprocessor project 

The prototype multiprocessor project has as a short-term 
goal the production of a tool for evaluating various ap­
proaches to parallelizing certain classes of numerical com-



putations.5 A longer-term goal is to determine the properties 
of applications that are candidates for multiprocessing and to 
determine the properties of a multiprocessor that will effi­
ciently execute the applications at Los Alamos. The prototype 
is explicitly intended to serve as a data collection device in 
designing or specifying an eventual production multiprocessor 
to meet production performance goals. The prototype is re­
quired to be as flexible as possible to allow hardware simu­
lation of a variety of architectures, such as banyon, perfect 
shuffle, star, ring, and hypercube networks. Its flexibility and 
self-measurement abilities are more important than its abso­
lute performance. 

Clearly, however, the prototype must perform well enough 
to allow timely and reliable execution of all test cases of inter­
est. Thus performance analysis and modeling are appropriate 
during its design to evaluate choices of CPUs, memories, and 
hardware and software communication mechanisms. The data 
required to support this first-phase performance analysis in­
clude the characteristics of the hardware components under 
consideration and the overhead costs of the communication 
protocols, all of which should be easily obtainable. We also 
need computational and communication characteristics of the 
application programs resulting from a given parallelization; 
here previous execution measurements and analysis of the 
individual application programs would be extremely helpful. 

This prototype will not be installed in our ICN, although 
some provision will probably be made for downloading pro­
grams to it. Thus the hardware will run in isolation, and we 
need not take environment into account when modeling its 
performance. In another sense, the existing large numerical 
programs that will be run on the prototype constitute its envi­
ronment, and information about their current performance 
characteristics will aid performance analysis on this prototype 
just as information" about the network and operating systems 
did for the distributed graphics project. 

Los Alamos has a long history of using supercomputers for 
scientific computation. The results of this experience have 
always been made available to vendors; by explaining the 
computing "needs of scientists and by specifying the per­
formance goals which each new generation of supercomlJuters 
must meet, the laboratory has contributed to their design. In 
the second phase of the multiprocessor project, performance 
modeling can be helpful in scaling up performance projections 
from the prototype to various production alternatives. Not all 
components will be speeded up by the same amount in going 
from prototype to production version, and some communica­
tion functions that were being simulated in software may be 
implemented in hardware. The data for this model will come, 
we hope, from the prototype. 

The network switch project 

The goal of the network switch project is to design a net­
work switch to replace the SEL 32177 minicomputers that act 
as file transports in the back end of the ICN. 6 The new switch 
will have more ports so it can be connected to more network 
nodes than each SEL can, and it will have hardware support 
for error detection so that the network can provide more 
reliability without software overhead. The performance of the 

Performance Modeling in the Design Process 261 

current Frs is quite satisfactory, so improving performance is 
not a primary motivation for this project. Building a proto­
type of the proposed new switch is unnecessary, because the 
present Frs serve very well in that role. 

It is desirable that the new Frs meet performance needs 
imposed by ever-increasing message traffic rates in the back 
end of the network as far into the future as possible. A rela­
tively simple model of the proposed switch and its environ­
ment was constructed to investigate its performance under 
loads in excess of those observed at present. The data needed 
for this model included characteristics of the CPU, buffer 
memory, channels chosen, and current back-end network 
message rates. Once again, the fact that these message rates 
were already being collected made the modeling effort more 
practicable. 

Merely increasing the present message rates with the same 
distribution of large versus small messages and with the same 
set of nodes currently comprising the network constituted a 
reasonable extrapolation of future workload for the Frs for 
two or three years. But predicting workload growth in any 
computing system more than a few years in the future is prac­
tically impossible because there are certain to be qualitative 
changes in the structure of the system as well as in the way 
people use it. We have discussed this problem in Alexander 
and Brice. 7 Our approach was to vary all the workload param­
eters over a wide range of values. In this way we were able to 
predict what loads the proposed system would handle and the 
characteristics of loads that may cause its performance to 
deteriorate. 

MODELS VS. PROTOTYPES AS PERFORMANCE 
ANALYSIS TOOLS 

In these three examples, we have seen both models and proto­
types play differing roles in the design process. Obviously, 
prototypes serve many useful purposes in design, but we are 
interested here only in their uses for performance prediction 
and their relationship to models. Models and prototypes have 
different strengths and weaknesses as performance prediction 
tools. 

Prototypes can provide order-of-magnitude performance 
information, especially if they can be installed in the actual 
environment in which the production system being designed is 
to run. But as performance predictors they have three major 
drawbacks. 

1. It is difficult to extrapolate measured service rates of a 
prototype to the production system, because it is not 
possible to predict accurately how the different behavior 
of the production system will interact with its environ­
ment. The production system will presumably have 
memory size, computational needs, communication be­
havior, and interaction rates different from the proto­
type, and these will affect the environment as well as 
being affected by it. Models can incorporate the environ­
ment. 

2. Although prototypes usually can be used to predict the 
effect on performance of simple changes in the system, 
they cannot do the same for changes in the environment. 



262 National Computer Conference, 1982 

For example, we know that the distributed graphics sys­
tem will run faster if we are allowed to make one simple 
change in the scheduling algorithm of the operating sys­
tem used on the large scientific computers, but this fact 
couid be iearned oniy from a modei that incorporated 
the operating system. 

3. Prototypes usually cannot be made as flexible as models; 
hence, prototypes cannot be used to predict the effect of 
fundamental design changes. This point requires further 
discussion. 

Flexibility can sometimes be achieved in prototypes, but 
usually at higher cost than in models. Prototypes are not al­
ways inflexible, but it is unusual to spend so much time and 
effort in the computer system design process on a prototype. 
The mUltiprocessor prototype was consciously designed as a 
hardware simulator of a variety of multiprocessor architec­
tures, and this capability makes it very like a model. One can 
imagine a continuum characterized by increasing cost and 
complexity as one moves from operational analysis through 
models and prototypes to the actual production system. The 
design process is characterized by making choices among al­
ternatives; typically one can try different alternatives more 
quickly and much more cheaply with a model than by actually 
implementing them. There is a subjective cost/benefit func­
tion that applies to the choice between trusting the results of 
a model and implementing a prototype. The cost of imple­
menting a prototype is usually more easily justified in extreme 
situations, such as designing with new technologies (includ­
ing new software technologies) or in completely unfamiliar 
situations. 

Modeling as part of the design process produces benefits 
besides performance prediction. Because modeling is a rela­
tively quick method of "implementing" a design, issues that 
normally come up only during implementation sometimes 
arise much earlier. Ambiguities in the specifications may be 
noticed early, and if these would have necessitated redesign, 
time and money can be saved. Beyond merely predicting per­
formance, modeling can specify the performance levels that 
individual components will have to achieve for the whole sys­
tem to meet its performance goals. Modeling can also help 
explore the behavior of the system under a variety of work­
loads or other external conditions. 

Although modeling is an art requiring some expertise, it is 
not nearly so difficult as it used to be. A number of commer­
cial packages and languages are available to support analytic 
and simulation modeling of computer systems.8

,9 It is not 
unreasonable to develop models and in-house modeling capa­
bilities with the aid of these tools, and the investment can pay 
repeated dividends. 

There are, of course, difficulties in integrating modeling 
into the design process. It is particularly difficult to analyze 
the performance of software that has not been written. Al­
though the work of Smith and Browne lO

-
14 is promising, much 

remains to be done. We do not imply that performance mod­
eling as part of design always works or can answer all ques­
tions, only that it has proved useful in our experience. 

CONCLUSIONS 

Here, in capsule form, are some lessons we have learned in 
trying to integrate performance modeling into the design 
process: 

• Performance modeling should play a central role in sys­
tem design; ignore it at your peril. 

• The role of performance modeling is not the same in all 
design projects. Clearly specify your performance goals 
and what factors will affect performance; then try to 
model those factors. 

• Obtaining the data for the models can be a major prob­
lem; ongoing measurement projects are always worth­
while. 

• Prototypes can be valuable data-gathering tools if they 
are instrumented for this purpose. 

• Anticipate the effect of environment on the system you 
are designing and the effects of the system on the envi­
ronment. 

• Include the performance analyst on the design team from 
the beginning; if he/she is perceived as an "outsider," 
he/she is more likely to be ignored, especially if decisions 
have already been made. 

REFERENCES 

1. Yourdan, E., and L. Constantine. Structured Design. Englewood Cliffs, 
New Jersey: Prentice-Hall, 1979, pp. 290-291. 

2. Denning, P. J., and J. P. Buzen. "The Operational Analysis of Queueing 
Network Models." Computing Surveys, 10 (1978), pp. 225-262. 

3. Blood, M., R. Christman, and B. Collins. "Experience with the LASL 
Common File System." Digest of Papers from Fourth IEEE Symposium 
on Mass Storage Systems, April 1980, pp. 51-54. 

4. Hamlin, G., and J. E. George. "Experiences with Distributing Graphics 
Sottware Between Processors," submitted to SIGGRAPH 82, Boston, 
MA, July 1982. 

5. Trujillo, V. A. "Multiprocessor System Description." Los Alamos Na­
tional Laboratory memorandum to Bill Buzbee, June 26, 1981. 

6. Tolmie, D., R. Christman, T. Klingner, C. Stallings, and R. Jurgens. 
"Network Switch Functional Design Requirements." Los Alamos Na­
tional Laboratory memorandum to Robert Ewald, March 31, 1981. 

7. Alexander, W., and R. Brice. "Long-Range Prediction of Network 
Traffic." Proc. CPEUG81, November 1981. 

8. ASPOL Reference Manual. Minneapolis: Control Data Corporation, 
Pub. No. 17314200-B, 1975. 

9. The Performance Analyst's Workbench System Users Manual. Austin, 
Texas: Information Research Associates, 1981. 

10. Browne, J. C. "Designing Systems for Performance." Proceedings of the 
ACMISIGMETRICS Conference on Measurement and Modeling of Com­
puter Systems, September 1981, p. 1. 

11. Smith, C. U., and J. C. Browne. "Performance Specifications and 
Analysis of Software Designs." Proceedings of the Conference on Simu­
lation, Measurement and Modeling of Computer Systems, August 1979. 

12. Smith, C. U., and J. C. Browne. "Modeling Software Systems for 
Performance Predictions." Proc. CMG X, 1979. 

13. Smith, C. U., and J. C. Browne. "Aspects of Software Design Analysis: 
Concurrency and Blocking." Proc. Performance 80, May 1980. 

14. Smith, C. U. "The Prediction and Evaluation of the Performance of 
Software From Extended Design Specification." PhD Dissertation, De­
partment of Computer Science, University of Texas, August 1980. 



MEDOC: A methodology for designing and evaluating 
large-scale real-time systems 

by ERIC LE MER 
ECA Automation 
Saint-Cloud, France 

ABSTRACT 

We introduce a global design methodology for large-scale real-time systems; it is 
based on such concepts as data-flow analysis, sequential processes, communication 
links, abstract architecture. These concepts give us a guide for designing real-time 
systems; two tools are also introduced, having a specific action in the design process: 
OGIVE, a Petri net analyzer, makes the verification and the validation of the 
abstract structure; OSCAR, analytical queuing network, oriented, evaluates quan­
titatively some implementation choices of the real system. These tools are inte­
grated very early in the design process to make us sure we shall not have dramatic 
regressions to do for, eventually, redesigning the system. 

263 





MEDOC: Designing and Evaluating Large-Scale Real-Time Systems 265 

INTRODUCTION 

The main problem in developing large-scale real-time systems 
is (1) to be sure the system will do what it has to do; (2) to be 
sure it will do it in a proper way; (3) to be sure the system is 
a real-time one. This is why we need some techniques and 
tools defining a methodological environment, as an aid for the 
designer, which is as automated as possible. Such an environ­
ment is introduced in this paper; the focus will be on valida­
tion and evaluation aspects. The paper attempts to show how 
the continuity of the concepts is preserved during the design 
process according to a top-down methodology by stepwise 
refinements. 

We first introduce two tools: (1) OSCAR (Outil de Simu­
lation pour la Conception d'une Architecture Repartie) and 
(2) OGIVE (Outil Graphique Interactif de VErification) 

OSCAR! 

OSCAR is an analytical tool based on queuing theory con­
cepts.2

, 3, 4 We can the use this tool in the following diagram: 

Build the ---.. ~ Create a ----.. Run the 
model new library model 
t • I I 

Build the model 

In this respect we have constructed a modelization lan­
guage. The main features are (1) nets and (2) queues and 
chains. That means that in the nets we describe the global 
structure of the queuing network; we may also note the hier­
archical ability of the designer to describe the internal struc­
ture of the network in more and more detail. For instance, in 
the first phase, it is possible to model something as a queue­
which is, in fact, a macro-queue-and in a second step to 
refine this queue into a net description. We shall see further 
how to handle these subnets, which can be considered macro­
queues. 
In the queues we describe the main parameters of the net­
work, which are as follows: 

1. Local classes, by which we establish a relation between 
the server and the job. (Note: The job signifies the entity 
circulating through the network. It can be a batch job, a 
transaction, a DBMS request, a message, or a similar 
item. This means the job is characterized according to its 
specific behavior with the server it requires. One can see 
the local class as the semantics of the job.) 

2. Service discipline, i.e., FCFS, LCFSPR, PS, IS. 
3. Service rate, which can be independent of or dependent 

on the length of the queue of the server. 
4. Type of server, active or passive. In fact, because of 

analytical restrictions, we only model the memory; and 
we suppose that, for instance, each job needs the same 
number of partitions. 

5. Service time according to the class of job the server is 
proceeding with. 

The chains are topological descriptions of the job circu­
lation; therefore we can say that the chain is the syntax of the 
job. OSCAR can deal with open or closed chains. 

The global model becomes a tree whose sub-root nodes are 
always nets and whose leaf nodes are queues and chains. For 
execution, we consider only the leaves. 

Create a new library 

At each step of the modelization, the designer may build 
nets or refine some queues issued from the previous step. 
Tnese nets are put in libraries, which constitute the global 
model. 
By the command language of OSCAR, one can: 

1. Select a library 
2. Merge several libraries 
3. Overlap several libraries 

in order to build more or less complex models by means of 
elementary descriptions. After each command the user is giv­
en a description of the net that has been built and validates it 
by creating a new library. 

Run the model 

Once the designer has built a satisfactory model, he can run 
this same basic model after initialization and eventual loop 
declarations on data. We have two analytical algorithms: 
NCA multichain and MVA multichain (NCA stands for nor­
malizing convolution algorithm and MVA for mean-value 
analysis). The appendix introduces our version of the NCA 
multichain, which is nearly a straightforward extension of the 
NCA monochain. As far as I know, I have never seen the 
convolution algorithm with multichain developed in the litera­
ture. (Note: In the NCA the normalizing constant is not 
computed.) 

According to the structure of the network and to the desired 
results, OSCAR chooses the best algorithm with some inter­
nal criteria. However, as networks get very large, it is no 



266 National Computer Conference, 1982 

longer possible to get exact results, and we need some approx­
imation techniques. We can share these techniques in two 
sets: 

1. Algorithm approximations5 that allow us to reduce sig­
nificantly (1) the run time and (2) the memory require­
ments. 

2. Structure approximations that allow us to reduce the 
complexity of a model. 

The basic concept is the aggregation technique.6 According to 
the nature of the complexity, we can aggregate (1) jobs, (2) 
chains, or (3) queues. (Note: It is under this technique [aggre­
gation of chains] that we handle open and mixed networks.) 
The selection of any kind of approximation can be manual 
(the will of the user) or automatic (entry point of OSCAR). 
One can find the outputs for a 3-chain academic example in 
the appendix, in French. 

OGIVE7, 8, 9 

OGIVE is a graphic and interactive tool dealing with Petri 
nets. The main features of OGIVE are the same as those of 
OSCAR; however, instead of modeling in terms of queues, we 
model by means of simple Petri nets. The general structure of 
OGIVE is the following one (Figure 1): The user is guided by 

Aid 

Stop Drawing 

Invariant Merge 

Figure I-Menu structure 

a menu, as shown on Figure 1, at each step of the mod­
elization. There are two means to draw a Petri net: 

1. A graphic method, menu-directed: places, transitions, 
and weights on the graph are drawn by showing the word 

on the menu and by pointing the pen on the screen. One 
can move, suppress, or mark on the drawing any kind of 
elementary entities. 

2. An interactive method, menu-directed, by which we de­
clare the nodes of the net, the next of each node, the 
weights and so forth. 

Once the net is drawn, it is possible to keep it in a library; the 
state of the library can be obtained at the beginning of the 
session by BEGIN. 

By the module MERGE one is able to merge several nets 
by two means-merging transitions and merging places-as 
soon as the nets are homogenous. The MERGE operation is 
manual; that is, the user must declare what places/transitions 
he/she wants to merge. Then it is possible to proceed to the 
analysis of the Petri net. The usual structural properties of 
Petri nets can be obtained by the ANALYSIS module (safe­
ness, liveness, boundedness, marking graph, and similar prop­
erties); if the net is too large, it is possible to reduce the Petri 
net in order to eliminate some places or transitions. Of course, 
this operation must preserve the properties of the original net. 
This process must be interpreted as an abstraction process, 
because we reveal the skeleton of the model and thus abstract 
the implementation aspects. 

Another way to analyze Petri nets is the use of the INVAR­
IANT module. By this means we can get the place/transition 
invariants; elementary, minimal, or total invariants; or other 
invariants. 

METHODOLOGICAL PROCESS 

This section shows how these tools are integrated into the 
entire design phase and what they are supposed to do or to 
prove. Usually the design phase is shared in some two or three 
steps with, eventually, the possibility of regressions. 1O

,1l,12 

MEDOC suggests two steps: in the first one, called functional 
design, we define and specify what the system is going to do; 
in the second one, called organic design, we describe how the 
functions will work. 

Functional design 

At that level we isolate the main functions of the system­
for instance, initialization, display, and computation-and we 
specify the interfaces of these with the environment, es­
pecially the flow of the data. This is why we have a description 
that is data-flow-oriented, with some basic entities, which are 
(1) processes, (2) dynamic data, (3) static data, and (4) 
sources and sinks. We establish the links between processes, 
sources, and sinks through dynamic data. The representation 
is graphic, with circles, squares, queues, slashes, and arrows. 
It is possible to translate this specification into a high-level 
specification language, by which we control the internal com­
pleteness of the description. Throughout the process we must 
respect two essential rules: 

1. The refinement of a process P from level i to level i + 1 
must be done on one sheet of paper. 

2. From level i to level i + 1 all the interfaces must be 
preserved. 



MEDOC: Designing and Evaluating Large-Scale Real-Time Systems 267 

For each level we define (1) the (new) static and dynamic data 
to be described and (2) the processes to be described and 
refined. A process must be refined if its specification is not 
detailed enough to be described or if it still contains some 
external entities belonging to the environment. In this case we 
must discard this specification element from the strict specifi­
cation of the process: for instance, in the design of a display 
function we usually find at the top levels the display screen 
and the operator, which do not belong to the implemented 
display function. 

At the end of this phase, when all the processes are to be 
described, we can start the organic phase. We have hidden an 
important aspect of this design phase: at each level, in parallel 
with the functional specification, we build a queuing model 
that we may call an abstract model, since we do not actually 
take care of the implementation on a computer and in a data 
processing environment. We are more interested in the evalu­
ation of a process, or a set of processes, if we do not have any 
hardware constraints. 

Since the specification of the whole system is a tree, with 
OSCAR and the hierarchical models and merge operations, 
we are able to evaluate the performance of each process, or 
specific part of a process, or a set of processes, by grouping 
and merging the corresponding models. If we have some hard­
ware constraints, we can obtain very early an evaluation and 
a prediction of the performance of the system and a first idea 
of the best implementation of the software. If we do not have 
such constraints, we can evaluate at least some configurations, 
centralized or distributed. For a study case we can optimize 
the process communications, the storage of the data, or simi­
lar items. In such a case we estimate our own constraints for 
the future hardware configurations in terms of CPU speed, 
mean access time for a disk, maximum number of terminals, 
speed of the communication lines, and so' forth. In doing so, 
we express only a tendency of the future behavior of the 
system; we do not attempt to reveal the exact truth. 

Here we have a dummy architecture In whiCh each process 
is run on a specific processor and the communications be­
tween processors and processes are implemented separately. 
Even if this architecture is not realistic today, the actual archi­
tecture is nothing other than a simulation of the internal 
behavior of the designed system. We now have to choose 
between the minimum and the maximum one. 

• 
ONE processor 

for 
ALL processes I 

• 
ONE processor 

for 
EACH process 

REAL SYSTEM 

We have to consider two questions before making the choice: 
(1) Will the designed system work properly? (2) How will it 
work regarding the real-time constraints? 

Before detailing the process, we show it globally in Figure 
2, keeping in mind that the structure of the system is a con­
nected graph, regardless of the implementation details (see 

Level i 
Level i + 1 

A 

and 

Figure 2-Refinement of level i 

Figure 3). One can see that the process described in Figure 4 
is a down-top process: i.e., we start from the basic descrip­
tions and models of sequential algorithms (SA) and commu­
nications links (CL) and then by successive merge get the 
complete model. This is a direct consequence of the top-down 
design process. 

OSCAR P . 
Level i :{P=P1, ... Pj}+ Data - M i (Queumg Model) 

, v I '" 

One " 
Sheet " Abstract 

Refine· 
Each Pk 

, 
"-, , , 

',2:: Pk 

j OSCAR ~. P k , * M i+1 
Level i+1: 2::Pk =2::P1,*;·· .l:Pj,* - 2,M ." 1 -M 

1 k 1+ erge 
~ ~ 

J Sheets J Models 

Figure 3--Design process 

The first question is answered with the aid of OGIVE. By 
this means we can validate the qualitative structure of the 
communication links, especially parallelism, synchronization, 
deadlocks, starvation, and so forth. Once this work is done, 
we input time in the model(s) when necessary. To do so, we 

~ SAe ~CLe, k~ SAk ~CLk, *~ 

r ~.j C~ r 
Cl/~lj 
~ SAi ~CLi, j~ SAj ..-CLj, * ~ 

+ + 
Figure 4-Graph structure of the system 



268 National Computer Conference, 1982 

have some macro-libraries at our disposal to describe some 
specific mechanisms, as, for instance, mutual exclusion, fork­
join, send-receive, and remote calL These indications give 
guidelines for the coming organic phase and its future imple­
mentation in an operational environment. We can summarize 
the functional phase as shown in Figure 5. 

S~i-PNi ~ Validation , , t (SAi) 
" OSCAR 

- Merge 
TTPNi - Evaluation r---- PN ~ Valid.(Sub. (SAi) t GRAP) 

OSCAR 
r---- TPN - Eva!. (Sub. 

PN' .OGIVE GRAP) 
C!-i, j I,J-" 

( ... ) , , 
~ , -

"-TPN' . OSCAR I,J-'" 

SAj-··· ~ PN: Petri Net 
TPN: Timed Petri Net 

Figure 5-Validation and evaluation process 

Organic phase 

At the end of the functional phase the leaves of the func­
tional tree have to be described. The description includes two 
separate aspects: (1) sequential algorithms (SA) and (2) com­
munication links (CL). At this level we must explain how the 
system works. The first step is to transform our functional 
description into an implementation description by means of 
the following entities: (1) processes (sequential), (2) channels, 
(3) clocks, and (4) nets. 

Each process communicates with the other processes by 
exchanging messages via channels. One process cannot know 
which other process is going to consume the message it is 
sending. We suppose, first, that each process is implemented 
on a specific immaterial processor (we know, approximately, 
the required performances of this processor, issued from the 
functional model of the process it is supposed to run). So we 
get a theoretical distributed architecture in which we specify 
the communications, CL, by means of a meta-language PAM­
ELA;13 we obtain the global structure of the architecture, the 
skeleton, in terms of SA and CL. The dynamic data are trans­
formed into messages going through the CL, and the static 
ones are distributed with the processes to which they are 
related. The internal structure of the data is also a tree; each 
tree is a type, which can be seen, more or less, as an OSCAR 
local class. 

Then the sequential processes (SA) are described by means 
of PAMELA. Mainly, we specify the global structure of the 
process: i.e., the control structures (IF ... THEN ... ELSIF ; 
LOOP; EXIT; ... ), the procedure/action calls, and the dec­
laration of static data. These parametrized macros are con­
nected automatically by OGIVE. The designer specifies time 
on each transition to get a timed Petri net model; there are 
two ways for including time. 

One can see that the second way of firing a transition com­
plicates very much the study of the net. This work is going on 
in collaboration with LAAS/CNRS at Toulouse, France, 

The goal is the following: once we have obtained a timed 
Petri net model of a local mechanism, we run it under an 
operational workload; we compute some "cycle time,,14, 15, Hi 

and some information queuing model oriented: service disci­
pline, service time, service rate. Then we introduce the Petri 
net model in a global OSCAR model (hierarchical net) and 
transform it in a local queue with the parameters computed 
before it is integrated into the global queuing network. We 
only model some specific complex mechanisms that we want 
to validate qualitatively and quantitatively. 

This process allows us to choose the best implementation of 
the entire system. It should be noted that often this approach 
is oriented by the fact that, at the beginning of the project, the 
hardware architecture and basic software are imposed by the 
results of the first investigations. In such cases the main work 
consists of evaluating the performances of these elements, 
especially those of the basic software, e.g., path length, inter­
actions with the application, and exceptions. 

The token is 

T----il---L::!,. When T T----...;I--- "IN" the transi-
Fires tion during 6. 

.. - P1 

T ----il--- T MIN, 
T MAX, 

P2 

time units. 

The token stays in P1 during time 
units where T MIN ~ 6. ~ T MAX, 
if T has not been fired at T MAX, 
then we fire T ... if the token is 
still in P1. 
T MAX may be understood as a 
time-out. 

Figure 6-Firing timed petri-nets 

CONCLUSION 

We have introduced a global design methodology based on 
concepts such as data flow analysis, sequential processes, 
communication links, and abstract architecture. These con­
cepts give us a guide for designing real-time systems. Two 
tools have been also introduced that perform a specific action 
in the design process: OGIVE, a Petri net analyzer, performs 
the verification and validation of the abstract structure; and 
OSCAR, which is analytical-queuing-network-oriented, eval­
uates quantitatively some implementation choices of the real 
system. These tools are integrated very early in the design 
process to insure that we will not have dramatic regressions to 
make in redesigning the system. 

REFERENCES 

1. Le Mer, E. "Outil de Simulation pour la Conception d'une Architecture 
Repartic." Actes de fa Convention lnformatique, Vol. A (1981), pp. 
227-230. 



MEDOC: Designing and Evaluating Large-Scale Real-Time Systems 269 

2. Baskett F., K. M. Chandi, R. R. Muntz, and F. G. Palacios. "Open, Closed 
and Mixed Networks of Queues with Different Classes of Customers." 
Journal of the ACM, 22 (1975), pp. 248-260. 

3. Reiser, M. "Mean-value Analysis and Convolution Method for Queuing 
Dependent Servers in Closed Queuing Networks." Performance Evalu­
ation, 1, (1981), pp. 7-18. 

4. Reiser, M., and S. S. Lavenberg. "Mean-value Analysis of Closed Multi­
chain Queuing Networks" Journal of the ACM, 27 (1980), pp. 313-322. 

5. Schweitzer, P. "Approximate Analysis of Multiclass Closed Networks of 
Queues." International Conference on Stochastic Control and Optimization, 
Amsterdam, 1979. 

6. Zahorjan, J. "The Approximate Solution of Large Queuing Network Mod­
els." Technical Report CSRG-122, University of Toronto, August 1980. 

7. Chezalviel-Pradin, B. "Un Outil Graphique Interactif pour la Verification 
des Systemes a Evolution Parallele Decrits par Reseaux de Petri." These 
Docteur-Ingenieur No. 671, University of Toulouse, 1979. 

8. Pradin, B., B. Berthomieu, P. Azema, M. Diaz, and S. Bachmann. 
"OGIVE: Un Outil Graphique Interactif de Verification de Reseaux de 
Petri." Revue MIKADO, 35 (1980), pp. 1-10. 

9. Peterson, J. L. "Petri Nets." Computing Surveys, 9 (1977), pp. 223-252. 
10. Woodgate, H. S. "Management of Large Scale Computer Program Produc­

tion." AFIPS, Proceedings of the National Computer Conference (Vol. 46), 
1977, pp. 277-283. 

11. Putnam, L. H. "Software Costing and Life Cycle Control." Proceedings of 
the Workshop on Quantitative Software Models, 1979, pp. 20-3l. 

12. Lehman, M. M. "Programs, Life Cycles, and Laws of Software Evolution." 
Proceedings of the IEEE, Col. 68, No.9 (1980), pp. 1060-1076. 

13. Lalanne, R. "PAMELA: Meta-language de Specification et Processeur 
d'Analyse." Technical Report ECA AUTOMATION, 1980. 

14. Ramamoorthy, C. V., and G. S. Ho. "Performance Evaluation of Asyn­
chronous Concurrent Systems Using Petri Nets." IEEE Transactions on 
Software Engineering, Volume SE6 (1980), pp. 440-449. 

15. Ramchandani, C. "Analysis of Asynchronous Concurrent Systems by Petri 
Nets." Project MAC, Technical Report 120, Massachusetts Institute of 
Technology, 1974. 

16. Zuberek, W. M. "Analysis of the Effectiveness of Central Processing 
Units." Groupe de reflexion sur Ie temps reel THOMSON-CSF, Thomson­
eSF, Orsay, France, May 1980. 

17. Laurent, M. "Les Algorithmes d'OSCAR: NCA et MVA Multichaines" 
Technical Report, ECA Automation, 1981. 

18. Memmi, G. "Methodologie d'Analyse et de Programmation des Systemes; 
Outils d'Evaluation. Rapport D.A.1.1. No. 79.35.059, February 1981. 

19. Boussinot, F. "Resaux de Processus Avec Melange Equitable: Une Ap­
proche du Temps Reel." These d-etat Universite Paris VII, 1981. 

APPENDIX-NCA multi chain and an academic OSCAR 
example17 

We first introduce the following notations: 
K = (Kl' ... , Ks) if s is the number of chains; state vector of 

Q (K) network of queues 
Q[i] The network issuing of Q without queue i 

g(K) Normalizing constant 
Pi (T, k) Steady-state probability of the event: j cus­

tomers at queue i when there are k cus­
tomers in the network 

8i r Visit rate at queue i for class r 
tlk) Mean-waiting time at queue i 
Si r Service time of queue i for class r 

niCk) Queue length at queue i for a k population 
in the network 

Ai, r(k) Throughput of queue i for class r 
!J..i(j) Service rate of queue i when j jobs are 

waiting in the queue. 
As an extension of NCA monochain we compute 

PN(T, k) = IIN (T) g[N] (k - T) I g(k) (1) 

where 
g[N](k) is the normalizing constant for network Q[N] 

d II (
7') (WN, l)il x ... x (WN,rt (ITI)! 

an N J -> • I' I . I 
fLN(l) x ... x fLN(1 j I) h·J2 .... Jr. 

with 

and 

g(k) 2: IIi (k l ) 

with 
F (k)i 

F (k) { (k l , ... , kN) I I k,! ~O and fk; 
l=i 

then, from equation (1) we get 

PN (0, k) = g[N] (k) I g (k) 

by induction we get the following recurrent equation: 

r 

PN (j, k) 2: PN (j - 1 , k - es) WN, s As (k) I !J..N(j) 

if in direction es the coordinate of k 
is nul 
then PN (j - 1, k - e s) = a 

using the relation on the throughput 

As (k) = g (k - es) I g (k) 

We get 
r 

(3) 

PN(j,k) 2: PN (j - 1, k - es) g (k - es) WN,s I g (k) !J..N (j) 
s=l 

If we set 

we have 
r 

P'N (j,k) = 2: PN(j - 1, k - es) g (k - es) WN,sl !J..N(j) (4) 
s=l 

Ikl 
2: P'N (j,k) = g (k) 
i=O 

So we have the algorithm NCA multichain: 

For a queue N, knowing g[N] (t) ; p(O,t) ... p(ltl,t) 
get) ; ... but g (t) = g[N+l] (t) and by the same way it is 
possible to compute pi, g, P for queue N + 1. 

We solve the network by iterating on the queues after the 
initialization as follows: 

g[2] (t) = 2: 1I1(t) 
F(t) 

[(W1,lr1 ••• (W1,ryr I fL1(1) ... fL1(1tD] (ltD!1 t1 L .. tr ! 

The example is the following (See Figure 7): 
There are three chains containing respectively 2, 4, 1 jobs. 



270 National Computer Conference, 1982 

~o :In/ Disk 1 

~\J~ 
CPU ~O 

Disk 2 

Figure 7-Network CPUIO 

The description could be as follows (the underlined words 
are keywords): 

Reseau cpuio (0, 3, 3) 
File disk 1, fifo, active 

nbc/ass = 2 
temps serv = t1, 1 ; t2 ,2 
Taux serv = 1 

File disk 2 
copy disk 1 

File cpu, ps, active 
( ... ) 

Chaine Chll fist chain / 
type = fermee 
charge = 2 
cpu, disk 1, 1; disk 1, cpu, 1 ; 

chaine Ch2 
( ... ) 

Fin reseau 

The outputs from MVA analysis are shown in Figure 8. 

Specification of bounded channel in L. R. with test on full 
channel and its translation in Petri net 18, 19 

L. R. is the high-level kernel of PAMELA for specifying tlie 
real-time concepts, especially the communication links and 
fairness; consider the net in Figure 9, which expresses commu­
nication by means of a bounded channel with test on full 
channel (no determinism). 
A producer of X sends a message =1= =1= 1 when he wants to put 
an information in X. If it is allowed to (=1= =1=) it sends the 
message on Xe. 
When the producer wants to know the state of X it sends a 
message =1= =1= 2 on Xe and waits for the answer on REP. 
The consumer sends message =1= =1= 3 on DEM when it wants 
an information and waits for the information on Xs. 
The specification of this net Rx and of the corresponding 
actions is the following: 

DEF(&XS,&rep PORTE mes)rx(&xe, Idem PORTE mes) 
RESEAU 

STRUC 
(g&) merge (&xe,&dem) 
(&xs,&rep) g (merge) 
FSTRUC 

DEF (&intm PORTE mes) merge (&ei,&e2 PORTE mes) 
CANAL TAILLE NON BORNEE 

FDEF 
DEF (&sl,&s2 PORTE mes) g (&intg) PORTE mes) 
PROCESS 

DEF f VAR TYPE file 
depos,prise CAR BOOLEEN 
z VAR TYPE mes 

FDEF 

DEF requete ACTION 
SI p(f) ALORS depos : = VRAI SINON 
METTRE(&s2, =1= =1= ok) FSI 

test ACTION 
SI p(f) ALORS METTRE(&s2,VRAI) SINON 
METTRE( &s2,FAUX) FSI 

prise ACTION 
SI v(f) ALORS prise: = VRAI SINON (z) get (f); 

METTRE( &sl,z) ; 
SI depos ALORS METTRE 

FSI 

depos : = FAUX 
PSI 

depos ACTION 

(&s2, =1= =1= ok); 

SI prise ALORS METTRE(&s2,z); prise: = FAUX 
SINON (f) put (z) 

FDEF 
EXEC 

FSI 

prise: = FAUX; depos : = FAUX; 
BOUCLE 

PRENDRE(&intg,z); 
CAS z VAUT =1= =1= 1 FAIRE requete 

VAUT =1= =1= 2 FAIRE test 
VAUT =1= =1= 3 FAIRE prise 
AUTREMENT depos 

FCAS 
FBOUCLE 

FEXEC 
FDEF %g% 
FDEF% rx% 

Then we translate it in a Petri net (see Figure 10) to evaluate 
the length of the channel "rep" (communication between g 
and the producer), the channel "XS" (communication be­
tween g and the consumer), and the channel "int" (between 
merge and g) 
One can see that this net, modeling Rx, works well (no dead­
locks, no starvation) if 

length ("rep") = 1 
length ("XS") = 1 
length ("int") = 3 

These results are obtained by OGIVE, using, for instance, the 
INVARIANT module. 



MEDOC: Designing and Evaluating Large-Scale Real-Time Systems 271 

3 STATIONS 3 CHAINES TAUX CONSTANTS 

NOMBRE DE FILES 3 

NOMBRE DE CHAINES ET REPARTITION DES JOBS 
3 2 4 1 

DEMANDES DE SERVICE 
FILE 1 

CHAINE 1 
CHAINE 2 
CHAINE 3 

FILE 2 
CHAINE 1 
CHAINE 2 
CHAINE 3 

FILE 3 
CHAINE 1 
CHAINE 2 
CHAINE 3 

NO 
RESSOURCE 

RESSOURCE 1 
(CHAINE 1) 
(CHAINE 2) 
(CHAINE 3) 

RESSOURCE 2 
(CHAINE 1) 
(CHAINE 2) 
(CHAINE 3) 

RESSOURCE 3 
(CHAINE 1) 
(CHAINE 2) 
(CHAINE 3) 

.1000E - 01 

. 1500E - 01 

.2000E - 01 

.3000E - 01 

.OOOOE + 00 

.3000E - 01 

.OOOOE+ 00 

.3500E - 01 

.3500E - 01 

MVA MULTICHAINES 

TAUX 
UTILISATION 

.7389E + 00 

.2499E + 00 

.3625E + 00 

. 1265E + 00 

.8445E + 00 

.7497E + 00 

.OOOOE + 00 

.9485E - 01 

.9566E + 00 

.OOOOE + 00 

.8459E + 00 

.1107E + 00 

LONGUEUR 
FILE 

.2018E + 01 

.6468E + 00 

.1039E + 01 

.3330E + 00 

. 1579E + 01 

. 1353E + 01 

.OOOOE + 00 

.2253E + 00 

.3403E + 01 

.OOOOE + 00 

.2961E + 01 

.4417E + 00 

Figure 8---0utputs from MV A analysis 

DEM 

The process merge is fair, 
I-e it selects each of 

INT its entries such that it 
gets an infinite number of 
times Xe and DEM. 

Figure 9-Bounded channel 

TEMPS DE 
REPONSE DEBIT 

.3638E -01 .5548E + 02 

.2588E -01 .2499E + 02 

.4297E - 01 .2417E + 02 

.5266E - 01 .6323E + 01 

.5607E - 01 .2815E + 02 

.5415E - 01 .2499E + 02 

.OOOOE +00 .OOOOE + 00 

.7126E -01 .3162E + 01 

. 1245E + 00 .2733E + 02 

.OOOOE + 00 .OOOOE + 00 

. 1225E + 00 .2417E + 02 

. 1397E + 00 .3162E + 01 

? 

Figure 10-Bounded channel model 





The research queueing package: past, present, and future 

by CHARLES H. SAUER, EDWARD A. MACNAIR, and JAMES F. KUROSE 
IBM Thomas J. Watson Research Center 
Yorktown Heights, New York 

ABSTRACT 

Queueing networks are important as performance models of systems where per­
formance is principally affected by contention for resources. Such systems include 
computer systems, communication networks, office systems and manufacturing 
lines. In order to effectively use queueing networks as performance models, appro­
priate software is necessary for definition of the networks to be solved, for solution 
of the networks (by numerical, approximate and/or simulation methods) and for 
examination of the performance measures obtained. One of the most widely known 
and influential pieces of queueing network software is the Research Queueing 
Package (RESQ). This paper discusses the evolution of RESQ and plans for further 
RESQ development. 

273 





The Research Queueing Package: Past, Present, and Future 275 

INTRODUCTION 

Many physical systems, including computing systems, com­
munication networks, office systemS, and manufacturing 
iines, are heavily dependent on sharing of resources. Sharing 
of resources necessarily leads to contention, i.e., queueing, 
for resources. Contention and queueing for resources are typi­
cally very difficult to quantify when estimating system 
performance. 

Queueing models have been used for decades in studying 
the performance of manufacturing lines, communication net­
works, and similar systems. In the last two decades, queueing 
models have become important as performance models of 
computing systems. Since office systems have become heavily 
dependent on computing and communication, queueing 
models are appropriate in office system performance evalu­
ation. These models are often networks of queues because of 
the interactions of system resources. For a general discussion 
of queueing network models, see Sauer and Chandy1 and 
recent special issues of Computing Surveys (September 1978) 
and Computer (April 1980). 

For queueing network models to be used effectively, appro­
priate software is necessary for constructing models and ob­
taining solutions for models. One of the most widely known 
and influential pieces of queueing network software is the 
Research Queueing Package (RESQ). 2-5 Other pieces of soft­
ware influenced by RESQ include the Queueing Network 
Analysis Package (QNAP)6 and the Performance Analyst's 
Workbench System (PAWS).7 

RESQ is important and Influential because of (1) the "ex­
tended" queueing networks associated with RESQ, (2) the 
diagram language used to informally represent queueing net­
works to be handled by RESQ, (3) the user language and 
machine interfaces used to formally represent queueing net­
works and their solutions, and (4) the multiple-solution meth­
ods of RESQ, including the research effort that has gone into 
their design and implementation. This paper discusses these 
points from a historical viewpoint and discusses the expected 
future evolution of RESQ. 

QUEUEING NETWORK MODELS 

The following discussion will primarily use computing system 
terminology and assume that the reader can provide the 
analogous terminology for other systems. A typical queueing 
network model consists of a set of queues (corresponding to 
resources in a computer system) and a set of jobs (which 
correspond to processes in a computer system, users at termi­
nals, messages sent from computer to computer, etc., de­
pending on the system). The individual queues are usually 
described in terms of types of resources, numbers of units of 

resources, queueing (scheduling) disciplines, and probability 
distributions for the service times of jobs at the queues. The 
jobs are described by their individual characteristics, by their 
routing from queue to queue (corresponding to the sequence 
of resource requirements in the system), and by their arrival 
processes (and departure procedures). 

Much of the research on queueing network models has 
focused on methods for obtaining solutions, i.e., performance 
estimates, for the models. Efficient numerical algorithms have 
been developed for networks with a product form solu­
tion. 1,8--12 However, there are many system characteristics that 
preclude a product form solution-e.g., priority scheduling or 
simultaneous resource possession. For models with these 
characteristics and more than a few queues and/or jobs, the 
only solution methods available are approximate numerical 
methods1

,13,14 and simulation. Specialized simulation tech­
niques have been developed that apply to simulation of 
queueing networks. 1,15 

RESQ incorporates both numerical and simulation solution 
methods. Though RESQ includes simulation components, we 
do not consider RESQ to be a simulation language, but a 
modeling language, We make the distinction primarily be­
cause of the higher level of abstraction of RESQ elements, as 
compared to popular simulation languages, and also because 
of the numerical (nonsimulation) solution methods provided 
in RESQ. 

EXTENDED QUEUEING NETWORKS 

To facilitate more accurate representation of systems, the 
queueing networks of RESQ have been designed to include 
and naturally build upon the category of networks with prod­
uct form solution. Some of the elements are obvious gener­
alizations of product form elements; for example, queues with 
general (e.g., priority) scheduling disciplines. Other generali­
zations of product form networks include (1) capabilities for 
marking jobs with information (such as message length for a 
job representing a message in a communication network) and 
(2) routing rules dependent on the current network state-­
(e.g., queue lengths) as well as the usual probabilistic routing 
rules. 

In addition to allowing the characteristics described above, 
which usually violate product form solution conditions, we 
provide in RESQ new network elements and refer to the 
resulting category of networks as extended queueing net­
works. 16 We restrict attention to the most important of these 
elements, the passive queue (Figure 1). We refer to traditional 
queues as active queues. One of the limitations of a network 
consisting only of active queues is that a job can hold only one 
resource at a time. This can be a severe restriction in studying 
systems in which a job requires several resources simulta-



276 National Computer Conference, 1982 

Destroy 

Figure I-A passive queue 

neously. For example, a program requires memory as well as 
a CPU before it can be run, but most traditional queueing 
models will ignore either memory contention or CPU con­
tention. In extended queueing networks a job can hold re­
sources at several passive queues and one active queue 
simultaneously. 

A passive queue consists of a set of allocate nodes, a set of 
release nodes, a set of create nodes, a set of destroy nodes, and 
a pool of identical tokens of a resource. A job joins a passive 
queue when it arrives at an allocate node. Upon arrival the job 
requests one or more tokens. If sufficient tokens are available, 
the requested number of tokens is allocated to the job, which 
then moves on to another queue of the network without delay. 
However, the job belongs to the queue from which it received 
the tokens as long as it holds the tokens. If insufficient tokens 
are available, the job waits until enough become available and 
then immediately moves on through the network after re­
ceiving them. When several jobs wait for tokens of a passive 
queue, they are allocated tokens according to a specified 
scheduling discipline. A job gives up tokens, and thus leaves 
the corresponding passive queue, when it is routed through a 
release node of the queue. The job passes through the release 
node instantaneously. Create nodes have no effect on the job; 
jobs passing through a create node simply add new tokens to 
the pool. Destroy nodes are similar to release nodes but do 
not return the tokens to the pool. Jobs pass instantaneously 
through create and destroy nodes. (See Figure 1.) 

The terms active queue and passive queue are intended to 
indicate the nature of the queue's effect on a job's use of a 
server or token, respectively, and of the relative dominance of 
the modeled resources. With an active queue the length of 
time a job holds a server is entirely determined by the charac­
teristics of that queue and the jobs at that queue. With a 
passive queue the length of time a job holds a token is deter­
mined entirely by events at other queues. 

Figure 2 shows a simplistic representation of a widely used 
model of interactive computer systems. The resources repre­
sented by active queues are the terminals, CPU and I/O de­
vice(s). A passive queue is used to represent memory con­
tention. After a think time at the terminal, a user keys in a 
command. A job representing the process executing the com­
mand requests memory. After receiving memory, the job al­
ternates between CPU and I/O activities until the command is 
finished. The job then releases its memory and returns to the 
terminals queue for another thinking and keying time. For 

other examples of passive queues and extended queueing net­
works j see Sauer and MacNair16 and Sauer,17 

RESQ HISTORY 

The original solution components of RESQ, QNET4 (numer­
ical solution), and APLOMB (simulation) were separately 
developed in 1974 by M. Reiser at the IBM Thomas J. Watson 
Research Center and C. H. Sauer at the University of Texas, 
respectively. 

Tenninals 

Figure 2-Computer system model 

----, 
I 
I 
I 
I 

QNET4 was initially implemented in APL and sub­
sequently reimplemented in PUI. Though QNET4 is essen­
tially unchanged, it represents the state of the art of the "con­
volution" algorithm it uses. (The Research Queueing Package 
Version 2 (RESQ2) provides an alternate computational algo­
rithm, Mean Value Analysis,10 for the same class of networks 
handled by QNET4.) 

APLOMB was initially implemented in Fortran. Two spe­
cial features of APLOMB are (1) the use of extended queue­
ing networks (including passive queues) used to represent 
models and (2) the provision of statistical output analysis tech­
niques (including confidence interval estimation and stopping 
rules). APLOMB has been (and is being) continually revised 
and improved over the years. In late 1976 APLOMB was 
translated from Fortran to PL/I. 

In the spring of 1976, QNET4 and APLOMB were pro­
vided with a common user interface implemented by E. A. 
MacNair. The three programs became collectively known as 
RESQ. This prototype version of RESQ used the APL 
QNET4 with the interface implemented in APL. 2,3 In the 
spring of 1977, a new version of RESQ, "RESQ1," was devel­
oped. RESQ1 was implemented entirely in PLII, though some 
components were duplicated in APL for users who preferred 
that environment to CMS or TSO. 

In the summer of 1978, an entirely new user interface was 
designed to overcome a number of fundamental limitations of 
the original interface. This new version is known as 
"RESQ2." It became operational in July 1980. 

TECHNICAL CONTRIBUTIONS OF RESQ1 

Two of the primary technical contributions of RESQ1 are the 
extended queueing networks and the diagram language for 



The Research Queueing Package: Past, Present, and Future 277 

describing extended queueing networks. The extensions, es­
pecially passive queues, make queueing networks a powerful 
framework for abstracting the essential characteristics of sys­
tems' performance. The diagram language provides a concise 
means of describing systems, even when actually constructing 
a model with RESQ is not contemplated. The extended 
queueing networks and diagram language have had a strong 
influence outside of IBM, e.g., have influenced software 
packages such as QNAp6 and PAWS.7 Though RESQ2 is a 
much more powerful tool than RESQl, there have been only 
relatively minor additions needed in the extended queueing 
networks of RESQl in the development of RESQ2. 

Besides the extended queueing networks and diagram lan­
guage, the focus of RESQl development was the simulation 
portion, APLOMB. The numerical solution portion, QNET4, 
remained essentially unchanged from its state before RESQl 
(and remains essentially unchanged today). However, since 
APLOMB provides the simulation capability needed to solve 
extended queueing networks, APLOMB continued to evolve 
as the queueing network extensions were developed. 
APLOMB and the extended queueing networks were also 
important in that they provided an impressive demonstration 
that the regenerative method for confidence intervals,15 new 
in the literature at that time, had practical application far 
beyond the "toy" applications in the literature. APLOMB 
also included a sequential stopping rule for determining simu­
lation run length. IS 

The greatest failing of RESQl was the rigid language used 
to formally define and describe the queueing models. Little 
attention was given to this language, though much effort went 
into the interactive implementation of the language. An im­
plicit assumption in the language design was that models con­
structed with RESQl would be small in terms of numbers of 
elements and the language could thus be designed for imple­
mentation convenience and efficiency, rather than user con­
venience and efficiency. Because of this rigidity, the inter­
active interface (and its subsequent "dialogue file" mode) 
were inconvenient, at best, for the large system models made 
attractive by the extended queueing networks and APLOMB. 

RESQ2 DESIGN AND DEVELOPMENT 

RESQ2 Language Design 

The objective in the language design was to provide a lan­
guage similar in appearance to the RESQl dialogues16 but 
providing the features and flexibility of a modern pro­
gramming language. (Block structured programming lan­
guages, in particular Pascal, were especially influential, 
though this influence is not obvious in the actual syntax.) 

Some of the changes from the RESQl language to the 
RESQ2 language are simple, yet important, improvements 
which corrected some of the deficiencies of the RESQl lan­
guage. For example, the RESQl dialogues require that 
queues (and other network elements) be numbered se­
quentially and referenced by these numbers. The RESQ2 
language allows symbolic naming of elements. The RESQl 
dialogues generally allow only numeric constants where nu­
meric values are required. The RESQ21anguage allows arbi­
trary numerical expressions in such places. These expressions 

may include symbols previously defined to have constant val­
ues, symbols representing parameters to be defined by the 
user before solution begins, and symbols representing values 
which may vary during a simulation. The RESQl dialogues 
require that the number of queues (and numbers of other 
elements) be specified at the beginning, forcing the user to 
make a count and stick to it. The RESQ21anguage avoids all 
such requirements. 

In addition to these changes, the RESQ2 language pro­
vides two kinds of "templates" (macro-like constructs) which 
greatly enhance its power. The use of templates makes it 
possible to describe networks in a much more "structured" 
manner (in the sense of structured programming) and to 
sharply reduce the effort required to construct models. One 
kind of template, the "queue type," provides the ability to 
create parameterized definitions of queues. Once a queue 
type has been defined, it can be repeatedly used (invoked) to 
define speci,fic instances of queues. Queues defined using 
queue types have default characteristics specified in the queue 
type definition; other queue characteristics are specified by 
parameter values given with the queue type invocation. 

--The other kind of template, the "submodel," allows defini­
tion of a parameterized template of an entire subnetwork, 
which may be used repeatedly in defining a network. Previous 
work on programming languages provided little guidance on 
how such subnetworks should be specified and interfaced with 
the remainder of a network. Following is a submodel defini­
tion for part of the network of Figure 2: 

SUBMODEL:cssm /*Computer System SubModel*/ 
NUMERIC PARAMETERS:pageframes 
DISTRIBUTION PARAMETERS:disktime cputime 
CHAIN PARAMETERS:chn 
NUMERIC IDENTIFIERS:cpiocycles 

CPIOCYCLES:8 
QUEUE:diskq 

TYPE:fcfs 
CLASS LIST:disk 

SERVICE TIMES:disktime 
QUEUE:cpuq 

TYPE:ps I*Processor Sharing*/ 
CLASS LIST:cpu 

SERVICE TIMES:cputime 
QUEUE: memory 

TYPE:passive 
TOKENS:pageframes 
DSPL:fcfs 
ALLOCATE NODE LIST:getmemory 

NUMBERS OF TOKENS TO ALLOCATE: 
discrete(16, .25 ;32,.5 ;48, .25) 

RELEASE NODE LIST:freememory 
CHAIN:chn 

TYPE : external 
INPUT:getmemory 
OUTPUT:freememory 
:getmemory->cpu->disk 
:disk->freememory cpu; lIcpiocycles l-l/cpiocycles 

END OF SUB MODEL CSSM 



278 National Computer Conference, 1982 

and a complete model definition which assumes the submodel 
has been stored in a library: 

MODEL:csm /*Computer System Model*/ 
METHOD:aplomb 
NUMERIC PARAMETERS:thinktime users pageframes 
NUMERIC IDENTIFIERS:cpiocycles 

CPIOCYCLES:8 
DISTRIBUTION IDENTIFIERS:disktime cputime 

DISKTIME:.019/*mean of exponential*/ 
CPUTIME:standard(.05,5) /*mean and coefficient of 

variation * / 
QUEUE:terminalsq 

TYPE:is 
CLASS LIST:terminals 

SERVICE TIMES:thinktime 
INCLUDE:cssm /*submodel definition from library* / 
INVOCATION: host 

TYPE:cssm 
PAGEFRAMES :pageframes 
DISKTIME: disktime 
CPUTIME:cputime 
CHN:interactiv 

CHAIN :interactiv 
NODE LIST:terminals 
REGEN POP:users 
INIT POP:users 

CONFIDENCE LEVEL:90 
SEQUENTIAL STOPPING RULE:yes 

QUEUES TO BE CHECKED:host memory 
MEASURES:qt 
ALLOWED WIDTHS:10 

SAMPLING PERIOD GUIDELINES-
QUEUES FOR DEPARTURE COUNTS:host.memory 

DEPARTURES: 1000 
LIMIT - CP SECONDS:100 
TRACE:no 

END 

The above are examples of dialogue files, i.e., files similar to 
the interactive dialogue. Upper case corresponds to prompts 
in the interactive version, and lower case corresponds to re­
plies in the interactive version. In the true interactive mode, 
there would be additional prompts of the same form as shown 
above. These additional prompts would receive no reply from 
the user, thus indicating the end of a subsection of dialogue. 
For example, in interactive mode, the actual dialogue corre­
sponding to the above file might be 

MODEL:csm /*Computer System Model*/ 
METHOD: aplomb 
NUMERIC PARAMETERS:thinktime users pageframes 
NUMERIC PARAMETERS: /*Null response*/ 
NUMERIC IDENTIFIERS:cpiocycles 

TYPE:closed 
POPULATION :users 

:terminals->host.input 
:host.output->terminals 

QUEUES FOR QUEUEING TIME DIST:host.memory 
VALUES: 1 2 3 4 5 6 7 8 

CONFIDENCE INTERVAL METHOD:regenerative 
REGENERATION STATE DEFINITION-
CHAIN :interactiv 

RESQ2 Translator 

Because the RESQ1 "dialogue files" had become the more 
important mode of usage of RESQ1, and because the severe 
limitations of the language and translator for the dialogue files 
were the major motivation for RESQ2, the focus of the lan­
guage and translator design was the dialogue file. It was clear 
that a compiler-like program was necessary to support the new 
language features. 

A key design decision was that the compiler-like translator 
use recursive descent parsing. Recursive descent has two im­
portant advantages for our translator over more recent tech­
niques based on parser generators. (1) Recursive descent is 
much more flexible in terms of error recovery. (2) More im­
portantly, due to the flexibility of recursive descent, it has 
been possible for the same translator to operate effectively as 
an interactive prompter. Having the same translator capable 
of both "batch" and interactive modes has been remarkably 
useful in model construction because (1) in interactive mode, 
it is possible to immediately make revisions or corrections to 
prior dialogue by escaping to an editor to revise a transcript of 
the dialogue so far (a dialogue file) and to then continue in 
prompting mode after the (incomplete, edited) dialogue file 
has been reparsed and (2) revision of an existing model is 
possible in mixed mode by deleting portions of the existing 
dialogue file and using interactive mode for specification of 
revisions or additions. This mixed mode capability provides 
the "user friendliness" of interactive mode without losing the 
flexibility and efficiency of "batch" mode for development of 
significant models. 

RESQ2 Expansion Processor 

The output of the translator is a highly symbolic form, far 
removed from the interface expected by the solution com­
ponents. This is necessarily the case because of the provision 
of parameters which are left undefined until the model is to be 
solved. These run-time parameters allow a model to be solved 
parametrically without retranslation. A hierarchical network 
definition, with invocations of submodels, cannot be trans­
lated into a monolithic network definition until these parame­
ters are specified. Thus a major portion of the RESQ2 im­
plementation has been the "expansion processor," which 
produces a network definition at the solution component in­
terface from the symbolic translator output. (The term "ex­
pansion" is consistent with the analogy between sub models 
and macros.) 



The Research Queueing Package: Past, Present, and Future 279 

RESQ2 Solution Methods 

An implementation of Mean Value Analysis is becoming 
the dominant numerical solution component of RESQ2. 
(Mean Value Analysis and the Convolution algorithm of 
QNET4 both handle the full class of product form networks. 12 
Each has advantages over the other.) A major aspect of the 
evolution of APLOMB has been a gradual redesign of the 
data structures and rewriting of the code to get away from 
APLOMB's Fortran heritage. These efforts were critically 
necessary to obtain the efficiency (both storage and run time) 
and flexibility needed for RESQ2. Additional extensions to 
APLOMB were needed to support RESQ2language features. 
These extensions include simulation time expressionisymbol 
evaluation and submodel support. Though submodels are 
nominally hidden from the solution components, submodels 
must be considered in simulation error messages, trace output 
and evaluation of expressions which involve submodels. 

Other extensions to APLOMB are relatively independent 
of the RESQ2 language. A major area of improvement in 
APLOMB is in its output analysis capabilities. Confidence 
intervals obtained by the classical method of independent 
replications1 have been added as an alternative to the regen­
erative method for models where the regenerative method is 
not practical or appropriate. The regenerative method imple­
mentation has been made more rigorous in its determination 
of regeneration states. The sequential stopping rule has been 
refined and made more flexible. 

A major new feature of APLOMB is an interactive simu­
lation capability. It is now convenient to continue a simulation 
run after examining results, either because one wa..Tlts to see 
results at intermediate points in the run or because one is not 
satisified with results at the planned run length or stopping 
condition. 

RESQ2 PLANS 

A number of RESQ2 features remain to be implemented. 
Some of these are parts of the original design, while others 
have been added to our plans more recently. The most im­
portant of these features is the "substitution" (hierarchical! 
hybrid solution) form of invocation of submodels. Substitu­
tions have the potential of greatly reducing the computational 
expense of model solution, especially where simulation is in­
volved. A hierarchical solution facility such as this is the best 
hope for making practical the simulation of very large sys­
tems. Since there has been very little work in this area outside 
of a few feasibility studies,19,20,21 the substitution design will 
continue to evolve after we gain experience with it. 

Another new feature will be the addition of the spectral 
method for confidence intervals. 22 The spectral method pro­
vides another practical alternative to the regenerative method 
for situations where the classical method of independent rep­
lications is inappropriate. 

Finally, some of our most ambitious plans are in terms of 
graphics capabilities for RESQ. For some time we have had 
the ability to produce high quality diagrams of extended 
queueing networks on graphics devices. We have recently 
added the ability to produce diagrams using the output of the 

RESQ2 translator as input to the graphics programs. This is 
of great benefit in documenting and debugging models. We 
have also begun work on constructing models directly by 
drawing a diagram with a light pen and graphics display. Even­
tually, this may be sufficient to dramatically reduce the need 
for typed input. In order to achieve maximum usability, all of 
the graphics facilities are intended to be usable on low resolu­
tion devices, even though a higher resolution device is needed 
to obtain aesthetically pleasing results. 

ACKNOWLEDGMENT 

We are grateful to E. Jaffe, P. Rosenfeld, M. Reiser, S. Salza, 
and S. Tucci for their contributions to RESQ. 

REFERENCES 

1. Sauer, C. H., and K. M. Chandy. Computer Systems Performance Mod­
eling. Englewood Cliffs, New Jersey: Prentice-Hall, 1981. 

2. Sauer, C. H., M. Reiser, and E. A. MacNair. "RESQ-A Package for 
Solution of Generalized Queueing Networks." AFlPS, Proceedings of the 
National Computer Conference (Vol. 46), 1977. 

3. Reiser, M., and C. H. Sauer. "Queueing Network Models: Methods of 
Solution and their Program Implementation." In K. M. Chandy and R. T. 
Yeh (editors), Current Trends in Programming Methodology, Volume III: 
Software Modeling and Its Impact on Performance. Englewood Cliffs, New 
Jersey: Prentice-Hall, 1978, pp. 115-167. 

4. Sauer, C. H., and E. A. MacNair. "Queueing Network Software for Sys­
tems Modeling." Software-Practice and Experience, 9 (1979), pp. 369--380. 

5. Sauer, C. H., E. A. MacNair, and S. Salza. "A Language for Extended 
Queueing Networks." IBM Journal of Research and Development 24 
(1980), pp. 

6. Merle, D., D. Potier, and M. Verano "A Tool for Computer System Per­
formance Analysis." In D. Ferrari (editor), Performance of Computer In­
stallations. Amsterdam: North-Holland, 1978. 

7. Chandy, K. M., J. Misra, R. Berry, and D. Neuse. "Simulation Tools in 
Performance Evaluation. " Computer Performance Evaluation Users Group 
Conference 1981, San Antonio, Texas, November 1981. 

8. Jackson, J. R. "Jobshop-like Queueing Systems." Management Science 10 
(1963), 131-142. 

9. Buzen, J. P. Queueing Network Models of Multiprogramming. Ph.D. 
Thesis, Harvard University, Cambridge, Massachusetts, 1971. New York: 
Garland Publishing, 1980. 

10. Reiser, M., and S. S. Lavenberg. "Mean Value Analysis of Closed Multi­
chain Queueing Networks." IBM Research Report RC-7023, IBM, York­
town Heights, New York, March 1978. Journal of the ACM, 27 (1980), pp. 
313-322. 

11. Chandy, K. M., and C. H. Sauer. "Computational Algorithms for Product 
Form Queueing Networks." IBM Rese~rch Report RC-7950, IBM, York­
town Heights, New York, November 1979. Communications of the ACM, 
23 (1980), pp. 

12. Sauer, C. H. "Computational Algorithms for State-Dependent Queueing 
Networks." IBM Research Report RC-8698, IBM, Yorktown Heights, New 
York, February 1981. 

13. Chandy, K. M., and C. H. Sauer. "Approximate Methods for Analysis of 
Queueing Network Models of Computer Systems." Computing Surveys, 10 
(1978), pp. 263-280. 

14. Sauer, C. H., and K. M. Chandy. "Approximate Solutions of Queueing 
Models of Computer Systems." IBM Research Report RC-7785, IBM, 
Yorktown Heights, New York, July 1979. Computer, 13 (1980), pp. 25-32. 

15. Iglehart, D. L. "The Regenerative Method for Simulation Analysis." In K. 
M. Chandy and R. T. Yeh (editors), Current Trends in Programming Meth­
odology, Volume III: Software Modeling and Its Impact on Performance. 
Englewood Cliffs, New Jersey: Prentice-Hall (1978). 

16. Sauer, C. H., and E. A. MacNair. "Computer/Communication System 
Modeling with Extended Queueing Networks." IBM Research Report RC-
6654, IBM, Yorktown Heights, New York, July 1977. 

17. Sauer, C. H. "Passive Queue Models of Computer Networks." Computer 
Networking Symposium, Gaithersburg, Maryland, December 1978. 



280 National Computer Conference, 1982 

18. Lavenberg, S. S., and C. H. Sauer. "Sequential Stopping Rules for the 
Regenerative Method of Simulation." IBM Journal of Research and Devel­
opment, 21 (1977), pp. 545-558. 

19. Sauer, C. H., L. S. Woo, and W. Chang. "Hybrid Analysis/Simulation: 
Distributed Networks." IBM Research Report RC-6341, IBM, Yorktown 
Heights, New York, June 1976. 

20. Schwetman, H. D. "Hybrid Simulation Models of Computer Systems." 

Communications of the ACM, 21 (1978), pp. 718-723. 
21. Chiu, W. W., and W-M Chow. "A Performance Model of MVS." IBM 

Systems Journal, 17 (1978), pp. 444-462. 
22. Heidelberger, P., and P. D. Welch. "A Spectral Method for Confidence 

Interval Generation and Run Length Control in Simulation." IBM Re­
search Report RC-8264, IBM, Yorktown Heights, New York, 1980. Com­
munications of the ACM, 24 (1981). 



Audience identification for end user documentation 

by JANIS G. RAYMOND 
Michigan Wisconsin Pipe Line Company 
Houston, Texas 

ABSTRACT 

Audience identification in writing is comparable to the analysis phase of systems 
development. Understanding who the users will be, what their business function is 
and how it relates to the computer system, and what the users need to know is the 
only way to write effective user documentation. Identifying the users determines the 
type and amount of detail to include as well as the format, tone, and level of the 
documentation. Audience identification is the planning phase of the documentation 
and as such controls the entire writing process. This paper presents guidelines for 
identifying end users and directing the documentation to their needs. 

281 





INTRODUCTION 

Companies are just starting to recognize the importance of 
effective end user documentation. This recognition is based 
on two tangible benefits: 

1. Good user documentation protects the investment in 
. development costs by providing an understanding of 
what a system can do and how the system can be used. 

2. Good user documentation makes the system more effi­
cient by providing the information required for using the 
system. 

With companies scrutinizing system development for a return 
on investment, it becomes imperative that each step in the 
development process be evaluated. 

End user documentation is the final product, the last deliv­
erable, in the system development process. Without docu­
mentation, a system is useless. That is a harsh statement, but 
true. Systems are developed to help users in their jobs. With­
out users there would be no system requirements and there­
fore no systems. Thus, the only way to make a system a 
profitable investment is to make the system usable. Effective 
end user documentation is the answer. And the first step in 
producing effective end user documentation is identifying the 
audience. Establishing who the users are and what their needs 
are controls the entire documentation process. 

WHY IDENTIFYING THE USER IS IMPORTANT 

Identifying the user before you begin writing ensures that the 
documentation meets the users' needs. Understanding who 
the users are, what business function the system performs, 
and what the users know and need to know allows you to write 
documentation that will help the users. 

Typically, users are less knowledgeable about computers 
than the person writing the documentation. Since the purpose 
of user documentation is to describe the system functions in 
terms of the users' jobs, the writer must step away from com­
puterese and present the information in terms that are rele­
vant to the users. This may mean more work up front in the 
writing process, but ultimately it will save both the writer and 
the user time and frustration. 

Users often see computers simply as a means to an end. 
They don't want to be burdened with endless computer jargon 
in trying to decide how to request a report. Nor do they want 
to wade through pages of paper looking for a simple instruc­
tion. Thus the language used and the organization of the 
documentation should be two primary considerations. 

When daily use of a system seems more a problem than an 
aid, users lose interest in the system and become advocates of 

Audience Identification for End User Documentation 283 

the "I can do it easier myself' school of thought. Documen­
tation written from the users' perspective, in terms users un­
derstand, is the only way to make the documentation effective 
and the system worth the development time and costs. 

WHO IS THE USER? 

For such a simple question, the answer is seldom straight­
forward. It would be nice if the writer could quickly identify 
the user as Person X. Furthermore, if you knew the position 
Person X held in which department, and if you knew that 
Person X was responsible for Business Function A, you would 
have a relatively good understanding of the user. 

Unfortunately, identifying the user is rarely that easy. Typ­
ically, the user is a department or a group of departments in 
the organization. To have a good understanding of the busi­
ness functions involved, you must first find out how this de­
partment fits into the overall organization. Is there a central 
user department, but are there also decentralized depart­
ments in other areas of the company? If so, it is important to 
determine the needs of each of these departments to decide 
whether the same documentation will serye each group. 

Once you understand what department or departments you 
are dealing with, you must become familiar with the internal 
structure of each group. You must determine who in the de­
partment will be using the system. Will only the clerical staff 
be preparing input data? Or will engineers and geologists as 
well as the management staff be involved? 

It is also important to establish whether there is sensitive 
information that should not be included in the documen­
tation. Additionally, find out whether authority is required 
before certain functions of the system can be performed. If 
either of these situations exist, you may need to have limited 
distribution of certain sections of the final documentation. 
Often the final user manual will be sets of documentation that 
when combined document the entire system. 

Understanding these aspects is your first step in identifying 
the user. This knowledge gives you the broadest concept of 
who the user is and ensures that the documentation both 
includes and excludes the appropriate information. This 
knowledge also gives you the first clue to the organization of 
the overall user manual. 

WHAT DOES THE USER KNOW? 

For the documentation to address the specific needs of each 
user group, the second step is to determine what the users 
know. This knowledge will direct how much detail is included. 

It is important during this step to keep in mind the purpose 



284 National Computer Conference, 1982 

of user documentation. Technically, or from a business point 
of view, you must assume that users know their jobs. A sys­
tem's user documentation is not intended to be an overall 
on-the-job training manual. User documentation should ex­
plain how to use a system to aid the users in their jobs. The 
key word here is "aid." If accountants are trying to use a 
system to produce payroll checks, you have to assume they 
know the details involved, like gross pay, taxes, and insurance 
deductions. This does not mean that the documentation 
should be so brief that users can't decide how the system 
relates to their business functions. Therefore, a certain 
amount of overlap will be required to explain what business 
function is involved and how to use the computer to perform 
that function. 

To do this, besides understanding the work the users do and 
how the system fits into their work flow, you must also know 
the educational levels of the users and the language or termi­
nology they use. Certain words, like field, element, table, or 
key, that are common to computer personnel mean something 
entirely different in the user world. Therefore, to write the 
documentation in terms users understand, you must exercise 
caution in your choice of words. This is particularly true if the 
users are novices at the computer game. Too much computer 
jargon will not only confuse, but also alienate, the users. 

Finding out what the users know requires interviewing 
and working with them. Writing the user manual from a com­
puter person's perspective will not accomplish the purpose 
intended. 

WHAT DOES THE USER NEED TO KNOW? 

To use a system, users need to know answers to these ques­
tions: 

1. What is the system designed to do? 
2. How do they get data into the system? 
3. What can they expect out of the system? 

These, too, may sound like easy questions; but writing a 
user manual that answers these questions is not so simple. 

Defining the System's Purpose 

Telling the users what the· system does may be the easiest 
part of the documentation to write. Assuming that the system 
does what it is supposed to do, you may be able to use the 
requirements document to help you write about the system's 
purpose. 

If the system is multipurpose (like a database designed for 
use by several departments), your documentation will be set 
up in modules. In these cases an overview stating the purpose 
of the entire system is needed, as well as an overview for each 
module defining the system's purpose for each department. 

A system overview does not have to be a lengthy expla­
nation of every function performed, but it should provide 
enough information to anow users to determine whether the 
system is designed to perform their application. A purpose 

such as, "System X is a database system designed to provide 
the user with standardized reports" tells the user nothing. 
That statement could be the purpose of any system. 

So, in the overview, give the users sufficient information to 
determine what business functions the system performs and to 
decide whether they can use the system to accomplish what 
they need to do. Write the overview in users' terms and from 
their perspective. 

Getting Data into the System 

Don't shortchange users when describing how to enter data. 
If the system is executed in batch mode, explain in detail how 
the data are entered. Do the users fill out forms which are 
submitted to data entry for keypunching or keying? If so, what 
forms are required (including batch control forms) and what 
is entered on each form? 

If the system is executed in interactive mode, do the users 
know how to access screens, page forward, and correct errors 
as they occur? 

Are data elements required, optional, dependent on the 
presence of other data? Are there minimum and maximum 
limits on data elements? For certain types of data, you need 
to give instructions on the units expected: Are volumes 
handled by the programs as MCF per day or MMCF per 
month? Are rates expected as cents or dollars? The users 
should be informed if data are converted from one unit into 
another within the system, since their output may be affected. 

If the system is a database, the users will also need to know 
how to correct stored data or remove data. Are transaction 
reports stating acceptance or rejection of the data formatted 
so they are easily understood by the users? If not, the docu­
mentation should include a description of how to read the 
transaction report. 

In general, while considering the system's input data, try to 
presuppose all questions a user might have and plan to answer 
those questions in the user manual. Additionally, plan a good 
format for describing the input. Write the input instructions in 
active voice and make the instructions easy to read. 

Getting Data Out of the System 

Users also need to know what reports to expect as output. 
Will the reports be generated automatically or must they be 
requested? If the reports are requested, what is the procedure 
for requesting them? Another form? 

Think about what data are shown on the output reports. 
Some of the data will be a regurgitation of the data entered by 
the user; but what about the calculated items? Some users 
may want the calculations used within the system to be in­
cluded in their documentation. A code listing will not suffice 
for this unless your users know how to read COBOL, FOR­
TRAN, or whatever language has been used in the program­
ming. Just as the calculations were translated into a program­
ming language for the system, calculations presented in the 
user documentation should be retranslated into normal math­
ematicai equations. 

What about the error messages? "GETD FAILED 



WHERE NO PARENT RG EXISTS" is not self-explanatory 
to users who are unfamiliar with databases. If it has not been 
done before, you should review error messages while you are 
writing the documentation. Even if the error message is 
straightforward, is it clear what the users should do to correct 
the problem? A section on error-handling procedures may be 
needed in the documentation. 

Detailed information on a system's reports is essential if a 
user is to understand what the system does. Knowing what 
functions the system performs and how to enter data will not 
help the users if they can't understand what their reports 
indicate. 

Audience Identification for End User Documentation 285 

SUMMARY 

Identifying the users is really just a series of questions­
questions you ask yourself and questions you ask the users. 
Your goal is to make the documentation thorough, yet simple 
and easy to understand. Just like developing the system, writ­
ing the documentation requires planning, analysis, testing, 
and review. Months of work go into developing a system to 
make the users' jobs easier and more efficient. Don't throw 
those months away with poorly written user documentation. 
A system that is not understood cannot be used. Make your 
systems usable with well-written end user documentation. 





Computer-aided documentation 

by SAUL ROSENBERG 
Riverside Research Institute 
New York, New York 

ABSTRACT 

Current standards for high-quality documentation of complex computer systems 
include many criteria, based on the application and user levels. Important points 
common to many systems are: targeting to specific user groups; being complete, 
concise, and structured; containing both tutorials and reference material; being 
field-tested; and being timely in appearence relative to the software delivery. To 
achieve these goals, uniform quality standards should be more vigorously applied, 
the documentation development cycle should be shortened, more documentation! 
software help should be available on line, and more user interaction should be 
solicited. 

For future computer systems, the proposal is made that the documentation be 
"machine comprehensible." This should be phased in, with the immediate goal 
being to facilitate user querying for information, and with an ultimate goal of 
providing a database for "programmer apprentice" artificial-intelligence programs 
that assist software development. This new functionality will be the result of several 
trends, including the drastically reduced cost of read-only online random-access 
storage via video optical disks, the ongoing successes of artificial-intelligence pro­
grams when applied to limited application areas, and the ever increasing cost of 
software programmers. 

287 





INTRODUCTION 

This paper first discusses desirable standards for documen­
tation that are realizable using current techniques and then 
discusses goals for documentation to be produced. over the 
next five years using anticipated technological improvements. 
A quantum jump in documentation capabilities can be ex­
pected as the computer becomes able to aid the user in extrac­
ting relevant and timely information. 

Good documentation is absoluiely essential. It is not an 
accident that the hottest mini- and microcomputer products 
that have emerged over the past few years are distinguished 
from their competitors by higher-quality and easier-to-use 
documentation. 

The paper is written from the perspective of a computer 
user and of a computer-center manager/systems programmer 
engaged daily in helping scientific/engineering users in a mod­
erately sized computer center. 

CURRENT DOCUMENTATION TECHNOLOGY 

Good documentation requires careful planning and analysis 
on a level comparable to the software development and should 
be written in tandem with the code. Professional writers 
should be engaged and should have clearly defined re­
sponsibilities to ensure that the final product meets uniform 
standards. 

Documentation must be readable. It should follow good 
English writing practices and flow smoothly. Detailed tech­
nical descriptions should be confined to the appropriate tech­
nical sections. 

Documentation must be targeted at specific user groups 
such as students, casual users, experienced analysts, and so 
on. The authors should at all times be conscious of the user's 
level. Terminology and technical content should be adjusted 
as required. 

Documentation must be complete, containing all the infor­
mation the user will require. It must be concise, omitting 
information or background that is not required for a particular 
application. Extraneous detail clutters manuals, making them 
harder to use. 

A set of manuals should have a common glossary and a 
combined index to the important keywords over all the manu­
als. These are especially important when faced with a transi­
tion to a new vendor and/or new system. 

Documentation must be structured. Each manual must be 
well organized and have an overall plan that is apparent to the 
casual reader. The location of material in the document 
should be predictable to a new user familiar with the general 
subject matter. Sets of manuals should fit together in a cohe­
sive, relatively non-overlapping fashion. Documentation put 

Computer-Aided Documentation 289 

together without a guiding plan is often of uneven quality and 
information content. 

Documentation should have an appropriate structure. Dif­
ferent uses of documentation can require radically different 
structures. In particular, tutorial introductions for beginners 
should be structured differently than reference material for 
systems programmers. Briefly: 

• Tutorial material should gradually move from introduc­
tory concepts toward detailed descriptions. It should 
have a moderate number of examples in line and refer to 
a much larger set of examples in an appendix or auxiliary 
material, such as computer files distributed with the soft­
ware. Conceptual diagrams should be strategically 
placed. 

• Reference material should be written as an outline, per­
mitting rapid answers to specific questions by concen­
trating information about particular topics. The refer­
ence section can contain many of the examples referred 
to in the tutorial material. It should also present a com­
pact synopsis of the information for the frequent user. 

• Internal-logic documentation should follow the concep­
tual structure of the program. This will vary based on the 
application area. For most programs, a top-down ap­
proach is most valuable for showing logic, but some pro­
grams in which data transactions are of primary impor­
tance may require a structure that traces data records and 
ignores the logical program order. High-level charts are 
important. The overview they provide is usually more 
important than the particular form (flow, HIPO, 
Warnier-Orr, etc.). Detailed flow charts should not be 
used because they are often too obsolete to be reliable. 
References should be made both to specific code portions 
and to the formal reference document. 

• Internal-code documentation must be readable and refer 
back to the internal-logic documentation. It must be con­
cise and not obstruct the reading of the actual code. 
Major code sections should be clearly delineated. 
Unusual or particularly important code techniques 
should be emphasized. Many of the computer-science 
structured programming practices that have been devel­
oped over the past decade are also highly applicable to 
documentation. 

Documentation must be timely in its appearance. Fre­
quently, a good set of documentation covering a product will 
not be fully formed until several years after the product's 
initial introduction into the field. This imposes extra problems 
in using state-of-the-art software technology. It is recom­
mended the documentation proceed more or less simulta­
neously with the software development. This helps assure its 



290 National Computer Conference, 1982 

timely appearance and helps the developers avoid inconsis­
tencies that are not noticed until the rules are codified onto 
paper. 

Documentation must be updated periodically, both to inte­
grate new material and to correct mistakes. Areas that have 
been found to be confusing to many users (based on a user 
feedback mechanism) should be clarified or rewritten. 

A new method for updates to documentation is required. 
Many manuals are used that are not the latest versions. The 
causes for this problem relate to the high distribution cost of 
paper, which makes it impractical to circulate entire new sets 
of manuals with new software releases. The update notifica­
tion process is often haphazard, having to filter through sev­
eral layers of people, from the vendor's site through the 
user's. Finally, many users do not bother with regular inser­
tion of the updates into manuals owing to the menial and 
time-consuming nature of the job. 

The new update method should have a faster cycle. Exam­
ples and reference material in the documentation are some­
times incorrect. For most reputable vendors this is not a fre­
quent situation, but when it does occur it can send users in 
circles until the problem is resolved. Long document-update 
cycles cause the same errors to be repeated by additional users 
even after a problem has been identified. 

Documentation must be field-tested! This is standard prac­
tice for new software products and should be applied to new 
software documentation as well. Usually, new products are 
placed for Beta testing at experienced sites that can detect 
bugs in the code and produce their own workarounds. The 
problem is that these sites typically have person-to-person 
contact with the vendor and thus do not rely primarily on the 
written documentation. The suggestion is that software and 
documentation must also be placed at "inexperienced" sites, 
and records be kept of the user documentation queries. 

Feedback from users must be encouraged. It is vital for 
vendor employees to be in periodic contact with real end users 
to learn what is required in the field. Feedback also helps 
focus attention on obscure sections and is a source of ideas for 
new manuals. If resources permit, all customer letters should 
be answered. 

REALIZABLE NEW 
DOCUMENTATION TECHNIQUES 

The preceding discussion mentioned many standards that 
good documentation must meet. Accomplishing this is a 
highly labor-intensive process, absorbing quality staff re­
sources. Fortunately, continuing and new trends in computer 
hardware and software technology can make feasible in the 
near future (the next five years) techniques that will enhance 
the quality and speed the distribution of documentation. 

Problems with Paper-Publishing Cycles 

Current documentation techniques are built along standard 
paper-publishing technology. This leads to a relatively long 
documentation production and printing cycle before the ma­
terial appears in the field and makes very expensive the up­
dating and enhancement of the information. It also makes it 

impossible to tailor the documentation to a specific user's 
questions. 

These problems are typically alleviated via the user's resi­
dent systems programmer. His/her job involves reading most 
of the manuals, knowing where information is located, read­
ing bulletins about updates and new features, and having a 
reservoir of experience and knowledge to draw on in applying 
software facilities. While systems programmers will be essen­
tial in the foreseeable future, many of the lower-level, 
straightforward tasks can and should be automated. The re­
sult will be friendlier computers that are more tolerant of user 
mistakes and are able to tailor information to the specific 
needs of the user. 

Software and Hardware Advances Applicable 
to Documentation 

Advances have been made in the following areas: 

• Cheap bulk read-only online random-access storage 
• Codification and successful implementation of artificial­

intelligence techniques in circumscribed applications 
• Development of programmer apprentice artificial-intelli­

gence programs 

Commercial companies are beginning to interface video­
disk systems to computers. These are being used in educa­
tional-training centers and inventory-parts applications 
among others. Capacities of 15,000 to 50,000 pages of text 
seem achievable using current hardware. These pages can be 
randomly accessed and are "printed" on a cheap-to­
reproduce vinyl disk. These should be used for distribution of 
system manuals. 

Immediate Benefits-Up-to-Date Manuals 

The immediate benefit is a consistent set of up-to-date man­
uals for all the products with each new release. Since vinyl­
disk manuals are relatively cheap (say $2(}-$50, compared to 
$50(}-$1000 per full set for many computer systems), they can 
be distributed automatically to all users. 

Interim Benefits-Query Programs 

The important interim benefit lies in the machine read­
ability of the documentation. Many current systems are con­
sidered "friendly" because, among other things, they have 
consistently implemented online "Help" documentation 
throughout their command syntax. The information on line 
today is usually only a fraction of what could be available, 
considering that most new manuals are prepared using word 
processors. The cheap bulk storage approach can make most 
of this information available and make it amenable to analysis 
by programs. 

Semi-intelligent query programs are already in use today in 
online database systems. An example is a medical pharma­
cological database that advises doctors on drug selection, tol­
erances, and side effects. The rapid growth that has occurred 



in these services testifies to the viability and friendliness of 
query programs. It is time these techniques were applied to 
computer software. These query programs would allow a user 
to skim documentation and receive tailored extracts relevant 
to his/her immediate needs. 

Note that general-purpose comprehension of all possible' 
topics written in English is not required. Many artificial­
intelligence programs perform very successfully in narrow 
fields of knowledge. Surely the computer field is eligible, 
considering the enormous efforts expended to make computer 
systems rigorous in their definitions, and predictable in their 
execution. 

The query programs' capability to bypass irrelevant infor­
mation and examples should not be undervalued. They can 
concentrate information based on what a particular user is 
requesting and based on hislher recent history of queries. 
Such programs also permit writing one "document" with all 
the information and having the query program present differ­
ent levels of detail based on the applicability to the request on 
hand and the user's background. Currently, documentation 
writers must restrain the numbers and types of examples used 
to avoid cluttering the document and to avoid providing, for 
example, FORTRAN code to COBOL programmers. Query 
programs can select the appropriate ones. 

Aspects of these query programs would be similar to 
Computer-Aided Instruction (CAl) programs, such as Con­
trol Data Corp's Plato. Indeed, it would seem reasonable that 
both types of programs could draw from the same database. 

The online availability of examples makes it possible to 
produce programs that extract and retest the examples, to 
confirm both the continued functioning of the software and 
the correctness of the examples. This will help to lessen the 
historical problem of differences between the published 
reference-manual standard and the actual implementation 
standard. 

System-error messages can refer to specific portions of ref­
erence material on code in error and, if requested, quote 
chapter and verse on possible causes. 

Long-Term Benefits-Programmer Apprentice Programs 

In the long term (five to ten years), the availability of doc­
umentation structured for access by computer programs will 
form a database usable by high-level artificial-intelligence 
programs. These are being developed to aid an analyst in 
formulating programs and to perform much of the mechanics 
of coding. They will respond to high-level commands, such as 
"use a quick-sort on the credit records, and then merge them 
with the master file." These programs will undoubtedly con­
tain high-level abstract descriptions of basic computer-science 
algorithms. It is unlikely they will be able to contain code 
fragments to implement all possible variations of them. When 
faced with applying a specific algorithm, these programs will 
have to formulate many of the same questions that a person 
would in selecting language features to implement an idea. 

Automatic recording of the high-level commands during the 
program-generation process would also be a start toward the 
internal program documentation discussed earlier. 

Separation of the algorithm descriptions from the language­
implementation details would allow use of new language fea-

Computer-Aided Documentation 291 

tures as they become available, allow people to give advice to 
the program on which features are more reliable, and permit 
comparison of new computer languages against previously 
developed realistic programs. 

The online availability of documentation can also lead to 
programs that can respond to specific questions, such as 
"What will this language construct do when this parameter 
has this value?" or its inverse, "Given this behavior, what 
were the most likely inputs to this language construct?" 

Implementation Considerations 

These new features do not depend on immediate integra­
tion of video disks in particular. Another plausible candidate 
is the large-capacity "write-once" laser optical recording disk. 
More conventionally, rotating magnetic-disk storage costs 
have been dropping so consistently each year that dedicating 
say 5% of the total available (in typical moderate to large 
systems) would be sufficient to begin implementing many of 
these ideas. With time, this would apply to smaller systems 
also. The disk tradeoff would be amply repaid by the lowered 
software costs. 

The full implementation of these methods will require con­
siderable document writer/programmer/educator time. Fur­
thermore, when operational, the system will use nontrivial 
CPU power. However, over a ten-year minimum life (for the 
more durable languages, such as FORTRAN, PASCAL, 
BASIC, C, and various well-known operating systems), such 
an investment would be repaid. 

SUMMARY 

The trend is clear toward low-cost bulk storage becoming 
commonly available. This fact, together with the increasing 
programmer shortage, should lead to the exploration and im­
plementation of as many programmer aids as possible. 

Good documentation is vital to the success of software 
products. By using well-known, current principles, vendors 
can improve their manuals. Design and writing of documen­
tation should be an integral, simultaneous part of software 
development. Updates to manuals should be distributed on a 
regular basis, as frequently as needed. 

New techniques that apply the computer's potential for arti­
ficial intelligence in specialized areas should make it feasible 
to query/abstract from documentation databases. This will 
instrumentally increase the friendliness and usability of sys­
tems and ultimately be a fundamental part of the knowledge 
base for programmer apprentice programs that assist in pro­
gram development. 

REFERENCES 

1. Dwyer, Barry. "A User Friendly Algorithm." Communications of the 
ACM, 24 (1981), pp. 556-561. 

2. Gass, Saul I., Karla L. Hoffman, Richard H. F. Jackson, Lambert S. Joel, 
Patsy B. Saunders, "Documentation for a Model: A Hierarchical Ap­
proach," Communications of the ACM, 24 (1981), pp. 728-733. 

3. Waters, Richard c., "The Programmer Apprentice: Knowledge Based Pro­
gram Editing", IEEE Transactions on Software Engineering, Vol. SE-8 
(1982), pp. 1-12. 





The development of software engineers: a view from a user 

by WALTER P. WARNER 
Naval Surface Weapons Center 
Dahlgren, Virginia 

and 

RICHARD E. NANCE 
Virginia Polytechnic Institute & State University 
Blacksburg, Virginia 

ABSTRACT 

Like many organizations, the Naval Surface Weapons Center (NSWC) has recog­
nized a tremendous growth in the use of computing resources. How NSWC focused 
attention on the crucial role of software development technology and devised a plan 
for dealing with the scarcity of competent software development personnel is the 
subject of this paper. 

The necessary knowledge areas for software engineering are identified in dis­
cussing the academic requirements, and some conclusions arrived at during the 
deliberations are mentioned. 

293 





INTRODUCTION 

Like many organizations, the Naval Surface Weapons Center 
(NSWC) has recognized a tremendous growth in the use of 
computing resources. This growth is reflected in several statis­
tics; a simple indicator is the increase in users of the central 
mainframe from 1,350 in 1978 to approximately 1,800 in 1981. 
The development of computer software delivered to the Navy 
and Marine Corps, estimated to consume 610 staff-years in 
1979, was projected at 640 staff-years in 1980. Such rapid 
growth has brought several difficulties to the surface, but the 
overriding problem is the scarcity of software development 
talent. The way that NSWC focused attention on the crucial 
role of software development technology and devised a plan 
for dealing with the scarcity of competent personnel is the 
subject of this paper. 

Aware of the Bureau of Labor Statisticsl estimate that the 
need for software development personnel is to double be­
tween 1978 and 1981, NSWC conducted an informal survey of 
internal requirements. The results were startling: an addition 
of 117 to the workforce of 2,084 professionals in FY 1981 and 
an addition of 373 over five years. The National Science Foun­
dation prediction of a 3.5:1 ratio of positions to graduates with 
master's and bachelor's degrees in computer science clearly 
acknowledges the global nature of the problem observed by 
NSWC. l 

The NSWC approach to the problem of scarcity of software 
development talent should not be viewed as a preconceived 
insightful long-range strategy. Admittedly, the plan has 
evolved, and this description of the evolution takes the follow­
ing order: 

1. A background sketch of the NSWC showing its early and 
long-standing role in Naval computing efforts and soft­
ware development 

2. A picture of the current weapons system context, in 
which the software development task is conducted 

3. The NSWC initiatives that collectively define the plan 
4. The conclusions arising from the various initiatives that 

have exerted significant influences 

NSWC BACKGROUND IN 
SOFTWARE DEVELOPMENT 

The history of software development at the Naval Surface 
Weapons Center began with the advent of large digital com­
puters for laboratory usage in the late 1940s. Because of its 
long-standing mission responsibility for the numerical data 
required to aim, target, or control Navy weapons, the Naval 
Proving Ground (combined with the Naval Ordnance Labora­
tory to form NSWC in 1975) was the first Naval activity to 

The Development of Software Engineers 295 

have a large-scale computer. Correspondingly, the Center was 
the first Navy activity to develop and support software for 
Navy-deployed operational digital systems, beginning about 
1960. With the continually evolving Navy requirements for 
digital computer applications, the Center has sustained its 
leading role in digital computer applications and software de­
velopment expertise. 

The Center is responsible for the complete weapons control 
software package development, testing, and operational sup­
port for the Fleet Ballistic Missile Systems POLARIS, PO­
SEIDON, and TRIDENT. It has provided the wrap-around 
simulations and facilities for testing the digital fire control 
programs for the TARTAR, TERRIER, and TALOS surface 
missile systems. Similar support has been provided for the Mk 
86 and Mk 92 gunfire control systems. In connection with the 
Navy's Gunnery Improvement Program, the Center has de­
veloped the software for the Mk 68 digital fire control system 
for 5-inch guns. 

The Center has pioneered the application of minicomputers 
for Fleet electronic warfare (EW) systems and ELINT pro­
cessing systems. These digital systems have enabled orders-of­
magnitude advancements in processing quality and quantity, 
in data response time, and in overall Fleet EW effectiveness. 
Two current major examples are the development of the Air­
borne ESM Data Analysis Systems and the support of the 
AN/SLQ-32 EW Countermeasures Suite. The Intelligence 
Analysis Center for the Marine Air/Ground Intelligence Sys­
tem (MAGIS) and the shipboard Intelligence Center for LHA 
and CVV installation are additional examples of systems de­
veloped in-house by the Center. These are the first major 
deployed intelligence database-oriented systems incorpo­
rating Navy standard computers. Among the large software 
systems developed on general-purpose computers are the 
TRIDENT Advanced Weapon System Simulation and 
CELEST (a satellite orbit determination program). 

COMPUTING SUPPORT FOR NAVAL 
WEAPONS SYSTEMS 

Operational software might also be described as software for 
"embedded computer systems." The principles and tech­
niques underlying the software development task for large, 
complex systems apply regardless of the applications context. 
However, the enclosing system and the application often im­
pose constraints and limitations of time (time-critical require­
ments) and storage that are shared only by the most chal­
lenging general-purpose programs (e.g., operating systems, 
run-time control systems, etc.). 

The typical Naval weapon system is becoming extremely 
complex. The AEGIS weapon system, for which the Center 
has life cycle support of the software, is an illustrative example 



296 National Computer Conference, 1982 

AEGIS SHIP COMBAT SYSTEM -- BASELINE 

~ r----1 UNDERWATER 
I TSES I COUNTERMEASURES 
L_ _ _J L-_.:...SY...;S~T.:...EM __ ...J 

" .. 
U AIR SEARCH 

ANiSPS-49 RADAR SYSTEM 

WITH ADT 

~ SURFACE SEARCH 

AN/SPS-55 RADAR SYSTEM 
WITH ADT 

~ESJ IDENTIFICATION 
SYSTEM 

AN/UPX-29 

[[] ELECTRONIC 
WARFARE 

SYSTEM 

NAVIGATION 
SYSTEM 

UNDERWATER 
SURVEILLANCE & 
COMMUNICATIONS 

SYSTEM 

@ 
ANiSQS-53A 
SONAR 

GUN 
WEAPON, 
SYSTEM 

HARPOON 
WEAPON 
SYSTEM 

TOMAHAWK 
WEAPON 
SYSTEM 

FIRE CONTROL 
SYSTEM 

MARK 99 MOD 1 

AN/SPQ-9~ 
~5 
U 5"/54(2) 

~ 
~ HARPOON 

CANISTER (4) 

~fo!:AWK 
CANISTER (21 

&:HAlANX (21 

~ AN{sPG·62 (41 

r---------, 
: GMLSMARK26(21 l 
I I 

..... _--tI~~SM-2.SMli 
I ~:SROC : 

-+~21 ! L _________ .J 

tc===D TORPEDO 
MARK46 

...... ---l~~(21 
OTS TORPEDO 

TUBES MARK 32 

Figure 1-AEGIS ship combat system-baseline 

(see Figure 1). Specific configurations for different ship 
classes may have different subsystems, but most of the sub­
systems, shown pictorially around the periphery, contain em­
bedded computers. The total software development task 
includes: 

1. The operational software for the embedded computing 
support of the weapons subsystem 

2. The integration software enabling the necessary commu­
nications among subsystems 

3. The control software by which the weapons subsystems 
function as a total system 

4. The life cycle support software necessary for testing, 
verification and validation, and maintenance and 
enhancements 

The magnitude of this task is underscored by the simple sta­
tistic that 45 computers are required in some AEGIS 
configurations. 

NSWC INITIATIVES 

The evolutionary plan has proceeded primarily through the 
work of the following committees: 

1. A committee that developed a computing technology 
seminar for top-level management. This committee con­
sisted of an NSWC middle-level manager with software 
development experience, an industry representative, 
and a university faculty member. 

2. A second committee that examined the required back­
ground knowledge for software development at NSWC. 
This committee identified the necessary knowledge 
areas, evaluated their relative importance and assessed 
the utility of on-the-job training, in-house or academic 
courses in each area. This committee included experi­
enced project managers and a computer science faculty 
member. 

3. A third committee, comprised of representatives from 



technical departments responsible for software devel­
opment, that explored the alternatives for developing 
the needed expertise. This committee addressed formal 
academic programs, internal training, and employee de­
velopment possibilities. 

COMPUTING TECHNOLOGY: A SEMINAR FOR 
SENIOR EXECUTIVES 

A seminar consisting of talks by top experts in the country was 
conducted by NSWC. 2 The purpose of this seminar was to 
understand computing technology in general and software de­
velopment in particular better at all levels in the organization. 
The historical development and the perceived future tech­
nology, integrating the hardware and software evolution, 
were presented. Other topics were the software development 
process, distributed computing and computer networks, the 
regulatory environment, and information support systems for 
management. This seminar, presented in a three to four day 
concentrated format, has been given to all managers from the 
commanding officer and technical director to first line super­
visors and to two groups of Naval Flag rank officers (admi­
rals), who are some of the NSWC sponsors. 

IDENTIFYING THE ACADEMIC PREPARATION 

An NSWC study was made to determine the best academic 
preparation for the kind of software engineering performed at 
NSWC. 3 

Needs Specification 

The participants' in this study could not come to an agree­
ment on a definition of a software engineer; therefore, we' 
began by identifying the knowledge areas important to the 
development of the Navy systems for which NSWC has, or 
could have, responsibility. These knowledge areas, consid­
ered to be necessary for those individuals developing success­
ful systems, are defined in Table 1. A definition notwithstand­
ing, in the remainder of this paper we use the term "software 
engineer" to identify the required software personnel. 

Areas of Academic Preparation 

The study committee encountered a problem experienced 
by many groups in examining the role of the software en­
gineer; i.e., the inability to differentiate between the function 
of the systems engineer, who has total systems responsibil­
ities, and the software engineer, who is responsible for the 
software subsystem and its effect on that total system. 

After reviewing several sources, 4-9 we recognized that a 
consensus exists concerning the definition of software en­
gineering, and consequently, some direction was provided in 
defining a "software engineer." 

• The establishment and use of sound engineering prin­
ciples in order to obtain economically software that is 
reliable and works efficiently on real machines (Bauer, 
p. 530).10 

The Development of Software Engineers 297 

We were pleased to discover that this definition did not differ 
in principle from that given in the Department of Defense 
Directive 5000.29 of 26 April 1976: 

• (The) science of design, development, implementation, 
test, evaluation, and maintenance of computer software 
over its life cycle. 

In order to circumvent the problem of differentiating be­
tween the responsibilities of the systems engineer and the 
software engineer, we sought to compare or contrast the two 
(software and systems) using the 13 knowledge areas. Ap­
plying the following scale: 4-in-depth knowledge, 3-good 
working knowledge, 2-some knowledge, and 1-little or no 
knowledge; we produced a consensus estimate of the im­
portance of each area in fulfilling the duties of the software 
and the systems engineer (see Table I). 

Academic or On-the-job Knowledge 

In some knowledge areas, academic preparation is believed 
to be less effective than job experience. Table I reflects the 
consensus regarding the better source of knowledge, and in 
some cases, a closer description of the contributing experience 
is given. 

Integration and Summary 

Obviously no academic program is likely to offer prepara­
tion in all the areas marked in the academic column of Table 
I (Areas 1, 5, 7, 9, 10, 11, 12, 13). The identification of the 
most essential areas of academic preparation should follow 
from the inspection of Table 1. A reasonable first cut is to 
begin with the academic areas (those where academic prepa­
ration was judged better) designated as requiring in-depth 
knowledge (level 4). This discrimination identifies only the 
areas of programming systems techniques (Area 9) and in­
formation structures (Area 11). Relaxing the criterion 
slightly admits interpersonal communication skills (Area 4), 
which are not clearly designated as better with academic 
preparation. 

At this point we examine the remaining areas, judging the 
importance of the area considering the better source of knowl­
edge. The consensus is that Areas 5 and 6 should be added as 
primary knowledge, and the remaining designated as either 
secondary or useful. This decision produces the resulting 
classification: 

1. Primary 
a. Interpersonal communications skills 
b. Functional capabilities of digital hardware 
c. Software design technology 
d. Programming systems techniques 
e. Information structures 

2. Secondary 
a. Process exposure/dynamic interrelationships 
b. Design principles 
c. Systems integration 
d. Human factors engineering 
e. Systems simulation 



298 National Computer Conference, 1982 

TABLE I-Software engineering knowledge areas 

KNOWLEDGE BEST PROVIDED BY KNOWLEDGE AREA IMPORTANCE 
SOFTWARE SYSTEMS 

KNOWLEDGE AREAS: 

1. Controls - controls, information feedback systems, basic systems 
distinctions (open loop, closed loop, hierarchical, etc.). 

2. Process exposure - dynamic interrelationships-time-dependent behavior, 
system interactions, the "process" concept, cross effects, binding 
time, process communication, cooperation, and competition. 

3. Design principles - the principles of engineering for the 
scientific method}, elements of the design activity (specifi­
cation, analysis, decomposition, syntheses, testing), maintenance 
and reliability. 

4. Communication skills - written and verbal communication, team 
participation, and team leadership. 

S. Digital hardware - logical structure and composition. (This area 
was recognized to be potentially divisible into computer hardware 
and digital non-computer hardware.) 

6. Software design - system life cycle, specification techniques 
(e.g., PSL/PSA, workbook, Jackson, etc.), development techniques 
(e.g., chief programmer, structured "walk-through, design review, 
builds, code reading), documentation, modification, maintenance 
and configuration management. 

7. Evaluation - systems analysis techniques, models and modeling, 
identification or creation of alternatives, characterization 
of trade-offs. 

8. Systems integration - component and subsystem testing, systems 
reliability, progressive testing, diagnostic capability, degraded 
mode options, recovery. 

9. Programming - programming languages, systems programs, structured 
programming, modularity, stubs, program documentation, program 
testing. 

10. Human factors - human/machine interface, dialogue design, 
prompting, "trainability" and "learnability," adaptability 
and design for change. (This area was recognized as 
potentially divisible into software design for human use and 
hardware design for human use.) 

11. Information structures - logical and physical organization of 
data, data definition, abstract data types, database technology. 

12. Communications technology - digital communications, devices, data 
transmission, coding techniques, protocols, security. 

13. Systems simulation - experimentation and system testing using 
simulation, discrete event and continuous simulation models, 
wrap-around simulators, emulation. 

ACADEMIC ON-THE-JOB ENGINEER 

x 2.5 

x(a) 

x(b) 

3.5 

x 

** x(c) 

x ** 

xed) 

x 

x 

x 

* 

NOTES: * neither or both; ** better job needed; (a) development and support of real-time systems; (b) design of systems 
emphasizing hardware, software, and firmware interfaces from user needs specifications; (c) development of large software 
systems; (d) design and testing of systems with software and hardware components. 

ENGINEER 

3. Useful 
a. Controls knowledge 
b. Evaluation 
c. Communications technology 

We believe that an academic preparation exposing the student 
to the primary areas is essential. As many of the secondary 
areas as possible should be included. 

istrations. Our purpose is to try to encourage them to include 
the academic training needed for software engineering, since 
it is from these universities that we obtain many of our new 
hires. Their initial response has been favorable, but it is well 
known how long it takes a university to shift its gears. It is also 
well understood that they have a real problem in obtaining 
adequate faculty for their present programs. 

University Contacts 

Based on our study of the needs for and the necessary 
training of software engineers, we have communicated with 
the presidents of several universities in the local area and plan 
to follow this up with visits and presentations to their admin-

SOFTWARE ENGINEERING 
DEVELOPMENT PROGRAM 

In order to try to meet NSWC needs for software engineers, 
another committee developed a program to retrain some of 
our own in-house people and to better educate those who are 
already doing software engineering tasks.l1 



We reviewed and accepted the 13 knowledge areas iden­
tified as being critical to software engineering in the previ­
ous study regarding the academic preparation of software 
engineers. 

Three core courses were selected as providing the necessary 
foundation for learning software engineering: (1) FORTRAN 
(Structured) for Scientists and Engineers, (2) Computers Sys­
tems Organization, and (3) Software Development. 

FORTRAN for Scientists and Engineers provides an 
introduction to computer programming using FORTRAN IV 
and the CDC 6700 computer. Practice problems, dealing with 
topics from mathematics, will not be written in an arbitrary 
fashion, and heavy emphasis will be placed on some of the 
contemporary structured programming techniques designed 
to produce readable, coherent, and structured programs. To 
meet this goal, students will be expected to follow coding 
conventions provided by the instructor. The instructor will 
stress: (1) efficiency of algorithm and code, (2) program struc­
ture and style, (3) documentation (in-line commentary), and 
(4) correctness·of answers and form. 

The Computer System Organization course is an introduc­
tion to the generic organization, or structure, of digital com­
puters. It also includes instruction in machine and assembly 
language programming which requires a more extensive 
knowledge of computer hardware than does the higher-level 
language programming covered in Course 1. The material is 
taught from a hardware user's standpoint. The course will 
not prepare a person for work in designing computers. It is 
oriented toward preparing the software engineer to specify or 
select computers for various needs and to understand better 
the implications of hardware design on the software. 

Software Development is a course on the development of 
software for large single- and multi-computer applications, 
using both assembly and higher-level languages. Develop­
ment extends from definition of requirements through intro­
duction into use. Life support functions also are included from 
the standpoint that for many applications, development con­
tinues throughout much of the life of a system. This course, of 
necessity, is taught within the framework of systems engineer­
ing methodology, but avoids addressing the full scope of the 
technology involved in the broader process. Three examples 
are carried through the course to illustrate the material and 
provide the basis for work assignments. 

The three core courses at the Dahlgren Laboratory are 
being sponsored by Mary Washington College. Because they 
are just getting started in their own computer science curricu­
lum, we are teaching them with our own personnel. The 
courses are being taught at the White Oak Laboratory under 
the auspices of the University of Maryland. 

Having completed the three core courses, the trainees 
should have an understanding of the basics of software. It is 
planned to follow up with the following series of short (three 
to four days) courses covering the entire spectrum of software 
engineering: 

1. Comparative Software Engineering: A summary semi­
nar that acts as an introduction to the technical subject 
matter covered by the curriculum. The seminar pro­
vides a broad overview of the alternatives, experiences, 
and issues encompassed within the field. 

The Development of Software Engineers 299 

2. Comparative Design and Analysis Techniques: A semi­
nar which discusses in detail how various modern re­
quirements and design techniques can be used to re­
duce rework costs and improve quality through better 
specifications .. 

3. Modern Programming Techniques: A seminar which 
describes how structured programming concepts and 
principles (i.e., structured design, top-down develop­
ment, modular coding, etc.) can be practically imple­
mented in weapons systems within the Navy. 

4. Software Testing: A seminar which describes different 
test approaches, techniques, and tools that can be used 
to realize more quantitative goals set for software and 
system testing. 

5. Embedded Computer System Architectural Engineer­
ing: A summary course that provides the attendee with 
the knowledge needed to make informed hardware/ 
firmware/software engineering trade-off decisions. 

6. Software Project Management: A summary seminar 
which addresses the subjects of project planning, orga­
nizing, staffing, directing, and controlling real-time 
weapons projects. 

7. Software Economics: This seminar surveys the dynamic 
field of software cost estimation, compares methods, 
and discusses experiences both pro and con of various 
software cost estimation models. Productivity measures 
and evaluation methods are described. 

8. Software Configuration Management: This seminar dis­
cusses the subject of configuration identification, 
change control, status accounting, and verification in 
the context of Navy systems and documentation 
requirements (e. g., MIL-STD-1679, SECNAVINST 
3560.1). 

9. Software Quality Assurance: This seminar discusses 
how a software quality assurance program responsive 
to MIL-S-52779 can be implemented to provide for an 
objective set of checks and balances. It also treats the 
subject of software testing. 

10. Software Acquisition Management: A seminar that dis­
cusses the issues and experiences associated with plan­
ning and conducting software development in an acqui­
sition environment. 

CONCLUSIONS AND SUMMARY 

1. The shortage of software engineers and the needs of soft­
ware development activities has caused NSWC to take a 
hard look at how to solve the problem. Colleges and 
Universities cannot supply them in sufficient quantities in 
time to meet the needs. 

2. There is a general lack of appreciation for the role of 
software at all levels of management. There is also a lack 
of agreement on what software engineering is and, there­
fore, what the duties of a software engineer are. 

3. The NSWC seminar for senior executives has given man­
agement a better appreciation for the problems of devel­
oping software and has done much to foster the accep­
tance of new software development techniques. It has also 
focused the attention of top-level management on the 



300 National Computer Conference, 1982 

need to do something to solve the problem of the supply 
of software engineers. 

4. The knowledge areas designated as primary in this paper 
are essential in any software engineering program. As 
many of the secondary areas as possible should be in­
cluded. This list should be helpful in developing software 
engineering programs and in evaluating existing or pro­
posed programs in an academic, commercial, or internal 
setting. 

5. No amount of formal training, either academic or in­
house, can produce expert software engineers, and the 
best that can be done with an in-house program is to give 
people enough knowledge to get them started in the field. 
It is believed that those who successfully complete the 
in-house training program, with additional on-the-job ex­
perienceand formal training, can progressively assume 
the responsibilities of software engineers. 

6. The decision that the three core courses should be taught 
under the auspices of a college reflected the conviction 
that the participants would perceive the necessity of their 
commitment to the training, because it begins in an aca­
demic environment with attendant homework and grades. 
It is hoped also that receiving college credit for the 
courses will encourage some of the trainees to pursue a 
second degree in a computer-related field. 

7. Trainees who wish to change career fields to software 
engineering will stay in their present jobs while taking the 
core courses. Thus those who do not succeed in the pro­
gram will still be in appropriate positions. It is felt also 
that any amount of knowledge gained from the courses 
will be beneficial in any job in an R&D organization such 
as NSWC. 

8. The training plan is initially being restricted to holders of 
scientific degrees in order to have a somewhat homoge­
neous background and scientific maturity in the classes. It 
is recognized that there will be others without degrees 
who may have the capability of succeeding in the pro­
gram, and they will be considered on an individual basis. 

9. The response of the program is encouragmg. One hun­
dred and fifteen employees have signed up for the Soft­
ware Engineering Program. All are non-programmers 
with degrees in engineering, physics, chemistry, materials 
sciences, etc. Of this group, 58 have taken the FOR-

TRAN class; the others, having had some experience with 
FORTRAN, will be taught structured programming. 

10. Activities such as NSWC should encourage their per­
sonnel to attend universities granting advanced degrees 
in software engineering under government-sponsored 
programs. 

11. An effort should be made among academia, industry, and 
government to arrive at a consensus of the definition of a 
software engineer and his duties. This definition should 
clearly define the differences between a system engineer 
and a software engineer, similar to the distinction that 
now exists between sy~tems engineers and electronic 
engineers. 

12. Colleges and universities should move more rapidly in the 
direction of educating software engineers. Industry and 
government should cooperate in the delineation of the 
needs and providing an interchange of personnel and ex­
perience with universities. 

REFERENCES 

1. COMPUTERWORLD, Vol. XIV, No. 45, November 3, 1980. 
2. Warner, W. P., R. E. Nance, and J. H. Manley. "Computing Technology: 

A Seminar for Senior Executives." NSWC TR 79-174, June 1979. 
3. Nance, R. E., and W. P. Warner. "Anticipating the Software Engineer: 

The Academic Preparation." DTIC AD-A086827 (NSWC TR 80-108. 
May 1980). 

4. Hoffman, A. A. J. Personal correspondence, February 18, 1980. 
5. Stucki, L. G., and L. J. Peters. "A Software Engineering Graduate 

Curriculum." Proceedings of the 1978 ACM Annual Meeting, Washington 
D.C., (December 4--6, 1978), pp. 63--67. 

6. Fairley, R. E. "Educational Issues in Software Engineering." Proceedings 
of the 1978 ACM Annual Meeting, Washington, D.C. (December 4--6, 
1978), pp. 58-62. 

7. Fairley, R. E. "Software Engineering Education." Proceedings of the 
Thirteenth Annual Hawaii International Conference on System Sciences, 
Hawaii (1980), pp. 70-75. 

8. Jensen, R. W., C. C. Tonies, and W. I. Fletcher. "A Proposed 4-year 
Software Engineering Curriculum." SIGCSE Bul/etin, Vol. 10, August 
1978, pp. 84-92. 

9. Hoffman, A. A. J. "A Proposed Masters Degree in Software Engineer­
ing." Proceedings of the 1978 ACM Annual Meeting, Washington, D.C. 
(December 4--6, 1978), pp. 54-57. 

10. Bauer, F. L. "Software Engineering." Information Processing, 71 (1971). 
North Holland Publishing Co. 

11. "Report of the Software Engineering Committee." NSWC AP 81-314, 
August 1981. 



An industrial software engineering methodology supported by 
an automated environment 

by MICHAEL S. DEUTSCH 
Hughes Aircraft Company 
El Segundo, California 

ABSTRACT 

In recent years, industry and government have sought to formalize software devel­
opment by constructing automated environments that support the application of 
modern techniques and methodologies to the production of software. This paper 
describes the automated software development system being installed at Hughes 
Aircraft Company. This system is expected to be a major contributor to the orderly 
management of software development at Hughes. 

This software development system consists of integrated development techniques 
over the life cycle, a set of software tools, and a physical facility for software 
development and test. Structured methodologies such as structured analysis, struc­
tured design, and structured programming are supported by automated tools. The 
configuration of the software development facility consists of a host software devel­
opment system, the target machines, and the user display terminals. 

Project planning and performance measurement are based on the rate charting 
technique and earned value assessment. 

301 





INTRODUCTION 

The "software crisis" of which we are constantly reminded is 
connected with the vastly increased complexity of contem­
porary data processing systems and the limited ability of tradi­
tional software practices to deal with this complexity. Only 
within the last several years has this stagnation in software 
technology been generally recognized and accepted in govern­
ment/industry circles with the realization that current software 
practices were of little help in attacking increasingly complex 
applications. 

One of the more positive responses of industry to this situa­
tion has been to formalize software development into an en­
gineering practice by developing automated software devel­
opment environments that support the application of modern 
techniques and methodologies to the production of software. 
These software development systems have been built largely 
as proprietary products with exact characteristics varying from 
organization to organization. Regardless of the differences, 
these systems support the same thrust, i.e., that orderly soft­
ware management and predictable results are based on meth­
odologies of how software is specified, structured, and inte-
grated into lar~er systems. . 

In this paper, the software engineering development system 
being installed at Hughes Aircraft Company's Space and 
Communications Group is described in terms of the devel­
opment methodologies being used, the software tools that 
support the methodologies, and the facility that hosts the 
tools. An overview of the development system is presented 
followed by a description of the engineering method within 
each life cycle phase. The project planning and performance 
monitoring approach is also described. 

SOFfWARE DEVELOPMENT SYSTEM 

The three required constituent elements of a software en­
gineering development system are: (1) an overall approach of 
coherent methodologies covering the entire software life 
cycle, (2) a set of software tools that supports the consistent 
application of the methodologies, and (3) a computational 
facility that houses the tools. 

The techniques and tools for the Hughes development sys­
tem are delineated on Figure 1 for each life cycle phase. Note 
that several tools/methodologies span multiple life cycle 
phases and provide a unifying influence. Noteworthy is the 
system verification diagram (SVD) that is used for require­
ments and design verification and to guide the construct, test, 
and integration processes. (The SVD technique was originally 
conceived by Computer Sciences Corporation.) 

The software development facility is shown on Figure 2 and 
consists of a host software development system, the target 

Industrial Software Engineering Methodology 303 

TECHNIQUE 
ROMTS 

DEFINITION DEFINE DESIGN CONSTRUCTIPQT TEST INTEGRATE 

• STRUCTURED ANALYSIS 
• COMPUTER-AIDED ROMTS ANALYSIS ____ _ 

• SYSTEM VERIF DIAGRAMS 

• STRUCTURED DESIGN GRAPHICS 

• DESIGN QUALITY METRICS 

• ADA POL/STRUCTURED PROGRAMMING 
~ PROCESSING LCQ,C TREES 

-- --
• THREADS - ---+----~ 
• STRUCTURED CODING 

• RXVPSO AUTO. TESTING AND 
CODE ANALYSIS 

• BUILDSIBUILD PLANNING --- ------~--~---4 
• DEVELOPMENT TEAMs/wALKTHRUS 

--~--~--~------+-------
• PROGRAMMER'S WORK BENCH SOURCE 

CODE CONTROL SYSTEM 

• RATE CHARTING/EARNED VALUE 
REPORTING 

-----

__ PRIMARY USAGE _ _ _ _ SECONDARY USAGE 

Figure 1-Summary of tools and techniques 

machines, and the user display terminals. The host devel~ 
opment system consists of several PDP lI170s and VAX ma­
chines. The lI170s house the programmer's work bench 
(PWB), which is a facility for source code generation and 
word processing. The VAX hosts a set of requirements defini­
tion and design tools. Requirements engineering, design, and 
code generation are accompiished on the host system inde­
pendent of the target machine. 

Dynamic execution of code is performed on the target ma­
chines. The target machines contain machine peculiar tools 
including compilers, assemblers, linkers, debuggers, and au­
tomatic test tools. 

User terminals are linked to an "intelligent" microcode 
driven switching device called a port contention unit. A termi­
nal may be connected by user request at sign-on time to any 
of the host system or target machines. There is at least one 
terminal for every two programmers (located in their offices), 
thus providing practically unlimited access to computational 
resources. 

r - -;'F-:;:;A~ ;-V~O~EN7s';;"E;- - --, 
PDP 11nO's 

UNIX 

• SOURCE CODE A 11 80 
CONTROL SYSTEM VMS 

• WORD PROCESSING 

L- __ 

ON-LINE SWITCHABLE TERMINALS 

Figure 2-Software development facility 

TARGET MACHINES 

• CoMPILERS 

• ASSEMBLERS 

• OEBUGGERS 

• RXVP80AUTQMATED 
VERIFICATION SYSTEM 



304 National Computer Conference, 1982 

Requirements Definition Phase 

This phase normally consists of two constituent activities: 
(1) a specification activity that generates the system level func­
tional requirements specification and (2) an allocation activity 
that generates a specification for requirements allocated to 
each computer program configuration item (CPCI). 

The structured analysis methodology is used to analyze the 
requirements and produce structured specifications. A data 
flow diagram is constructed to present a logical model of the 
system functions. By successively decomposing the elements 
of the data flow diagram, the system is disclosed in an order 
proceeding from the most abstract to the most detailed. All 
the data items flowing between bubbles are defined in a data 
dictionary. Each function in the detailed level data flow dia­
grams is described by a process description. 

CADSAT is a PSL/PSA based tool that supports structured 
analysis by describing a system in machine-readable form. 
Objects that play a role in the system, data elements and 
processes, are named in a requirements language along with 
the relationships among the named objects. CADSAT consis­
tency checks the stated requirements and reports on possible 
discrepancies in the defined relationships. 

Functional requirements verification is achieved using a 
technique based on the mapping of functional requirements 
into units called stimuluslresponse elements. Each element 
identifies the stimulus (or input condition) and response (or 
output condition) of each function in the system or CPCI. The 
stimulus/response elements are then graphically analyzed 
showing all stimulus/response flows through the software sys­
tem. This graphical mapping is the SVD. 

The process of preparing an SVD reveals and highlights 
errors of completeness, consistency, and redundancy in the 
functional requirements. These errors will appear in the form 
of incomplete stimulus/response pairings, illogical connec­
tions between stimuluslresponse elements, and contradictions 
or redundancies among stimulus/response elements. 

Preliminary Design 

In this phase, the CPCI functional specification require­
ments are transformed into a preliminary physical design. The 
ConstantinelYourdon structured design methodology is used. 

The data flow diagrams, included in the CPCI requirements 
specification, are scrutinized to identify certain generic design 
constructs. These constructs are the basis for converting the 
logical design (the data flow diagrams) into a physical design. 
The constructs form the basis of an initial structure chart. The 
structure chart shows the structure of the program modules, 
the interface with data modules, and the parameters passed 
between modules. This structure is successively refined until 
each of the modules in the architecture corresponds to 100 
HOL lines of code on the average. 

This design methodology is supported by two automated 
tools: (1) structure chart graphics (SCG) and (2) design qual­
ity metrics (DQM). SCG is a display interactive tool forcrea­
ting, modifying, and maintaining structure charts. A hardcopy 
of the created structure chart can be output that is suitable for 
deliverable documentation. DQM analyzes a structure chart 

by identifying areas of the design that are overly complex 
using algorithms based on a hierarchical tree model. Highly 
complex sections are potential problem areas that are subjects 
for redesign on the next iteration. 

Verification of the design versus requirements is accom­
plished by "threading" or associating each stimulus/response 
element of the SVD with a sequence of software modules that 
implement the stimulus/response pairing. Incomplete, miss­
ing, or extraneous associations suggest a nonresponsive design 
or misinterpretation of requirements. This allocation of mod­
ules to threads is the method by which a visible connection 
between requirements and design is maintained throughout 
the development cycle. 

Detailed Design 

Each of the modules identified in the structure charts is 
expanded into a detailed design. The design of each module 
is expressed in pseudo-code and input interactively into a 
programming design language (PDL) processor. Logic tree 
plots are automatically generated by a tool that uses the PDL 
syntax as a command language. These logic trees represent 
the PDL syntax in a graphical form that permits better 
comprehension of the abstract information and are suitable 
for design walkthroughs, design reviews, and deliverable 
documentation. 

A deveiopment presentiy in progress will replace the exist­
ing conventional PDL with an Ada PDL. This will permit a 
module design to be developed in two major steps of 
refinement-specification and implementation. A module 
specification providing a functional definition of the module 
procedure and a definition of the visible data interfaces is 
produced first. The module implementation providing the de­
sign of the procedure that operates on the visible data is then 
generated. One of the major advantages of the Ada PDL is 
that it will provide automated verification of interface consis­
tency between module specifications. 

Software Construction 

. The software construction phase entails the coding, check­
out, and preliminary qualification testing of each CPCI. A 
build plan for each CPCI is graphically depicted as a calen­
darized network of threads that were previously defined on 
the system verification diagram. Because each thread is cor­
related with specific modules, the coding sequence of modules 
is defined by the build plan. Each thread undergoes a pre­
liminary qualification test before being baselined. 

HIFTRAN, a Hughes developed structured FORTRAN 
preprocessor, is used wherever possible as the source 
language. 

Each thread is exhaustively tested with the assistance of the 
RXVP80 automatic test tool. RXVP80 "instruments" the 
code to determine the extent of the testing coverage. Reports 
are generated by RXVP80 showing which paths of the code 
have been covered by previous testing and which paths remain 
to be tested. Additional test cases are contrived to target on 
previously untested paths. This sequence is repeated until a 



complete (or very close to complete) path coverage is 
attained. 

Actual project experience has shown that this early empha­
sis on comprehensive testing using the automatic test tool 
reveals a significant number of errors during the construction 
phase that otherwise would have gone undetected until some 
later time. During subsequent periods, however, including 
operations, the detection rate of latent errors is lower. The 
cost of rectifying an error later in the life cycle is, of course, 
higher than if detected earlier. The comparative error de­
tection profiles, depicting testing with and without the aid of 
the test tool, is illustrated on the left-hand side of Figure 3. 
Exhaustive testing assisted by the automated tool, while re­
quiring a slight additional level of immediate testing effort, is 
believed to be a worthwhile investment that pays dividends in 
reduced life cycle costs. 

TIME 

• WHEN ERRORS DETECTED EARLY 

COST = 400 ERRORS 
PERSON DAYS 

X2 --- = 800 PO 
ERROR 

'---______ ---' t. = 4400 PO 

• WHEN ERRORS DETECTED LATER 

[
200 ERRORS] [200 ERRORS l 

COST = X2 E:OR (4\) + X2 E:~OR p = 5200 PO 

t; c:: 10 9 

00 
'-'II: 
wII: 

~~ 5 4 

~g 

I SOURCE: TRW STUDY 

Figure 3-Testing with automatic test tool pays off in life cycle costs 

The exhaustive test procedure applied on a recent project at 
Hughes detected an average of one additional error per thread 
(approximately 400 additional total errors). The cost, in 
schedule time, of performing the extended testing ranged 
from one-half day to three days per thread, with the average 
schedule cost close to one day per thread. Normally, two 
persons were involved in testing the thread at this point and, 
therefore, the incremental cost of the exhaustive testing effort 
was an average of two person-days per thread. The subject 
project consisted of about 400 threads. The incremental cost 
of finding and correcting the 400 additional errors was 800 
person-days (400 errors x 2 person-days/error) as shown on 
the upper right of Figure 3. 

The average relative cost to fix an error during the integra­
tion activity versus construct activity is four times as great, and 
the average relative cost to fix an error during the operations 
phase versus construct activity is nine times as great. To model 
the life cycle cost benefits, it is assumed that discovery of the 
400 errors would otherwise have been evenly distributed over 
the integration and operations periods. This is probably a 
conservative estimate since the type of error overlooked dur­
ing the construct activity is more likely to reappear during 
operations in which the software would otherwise undergo its 
first thorough exercise. The 200 errors found during integra­
tion would cost 1600 person-days (200 errors x 2 person-days/ 

Industrial Software Engineering Methodology 305 

errors x 4) to correct under this model; the 200 errors found 
during operations would cost 3600 person-days (200 errors x 2 
person-days/error x 9) to correct. The differential savings 
in life cycle cost achieved by the exhaustive testing strategy 
on this project is estimated to be 4400 person-days 
(3600 + 1600 = 5200 person-days less 800 person-days). This 
computation is depicted on the lower right of Figure 3. 

Integration and Test 

An incremental integration and test philosophy is based on 
the "builds" technique. In this approach there is considerable 
overlap between system integration and CPCI construction. A 
major emphasis is to segment a complex system development 
into smaller, more manageable, functionally oriented seg­
ments called builds. 

Testing at the system level is planned and organized in the 
same manner as the "thread" testing at the CPCI level. The 
series of system level tests will integrate CPCI versions and 
hardware CIs. An SVD derived from the system requirements 
specification is used to establish the content and order in 
which partial versions of CPCIs and CIs are developed and 
introduced into the integrated testing process. Adding only 
one new element at a time toward a deliverable system capa­
bility permits more efficient detection and correction of inter­
face problems. 

Builds are incrementally constructed from components of 
one or more CPCIs and hardware CIs. Each build augments 
a previously established baseline. Prior to build testing, a 
preliminary qualification test is performed on components of 
the CPCI to establish a CPCI baseline version. This baseline 
is subsequently augmented by additional components which 
extend the baseline to a complete CPCI. The key objective 
with this approach is to establish a logically complete system 
skeleton early in the integration period. 

The merits of this approach include: (1) demonstration of 
key functional capabilities early in the development cycle, 
(2) early demonstration of the essential viability of the system, 
(3) early demonstration of key interfaces, and (4) minimiza­
tion of special test bed environments required for test and 
integration. 

PROJECT PLANNING AND 
PERFORMANCE MEASUREMENT 

At this point, the software development process has been 
examined from a technical perspective. This development ap­
proach is now explored in terms of some of the accompanying 
management methodologies that complement the technical 
approach. A project planning approach, based on earned 
value reporting, that is a natural adjunct to the technical soft­
ware engineering process will be described. This planning 
approach consists of methods for scheduling, reporting, and 
monitoring development progress. 

Earned value measurement is directed toward assessment 
of progress through comparison of actual versus planned ex­
penditures and schedule. The procedure involves decom­
posing a project into small work packages. Each work pack­
age is accompanied by frequent milestones with specific 



306 National Computer Conference, 1982 

completion criteria, a situation naturally supported by the 
engineering process previously described. 

At periodic points, schedule and cost variance for each 
work package is determined and summarized at yarious levels 
of the work breakdown structure up to the total project level. 
Three parameters are used in this determination: (1) the bud­
geted cost of work scheduled (BCWS), (2) budgeted cost of 
work actually performed (BCWP), and (3) actual cost of work 
performed (ACWP). The cost variance is the difference of the 
ACWP and BCWP. The schedule variance expressed in dol­
lars is the difference of BCWP and BCWS for the effective 
reporting date. 

The basic management tool used in this project planning 
approach is the rate chart. It is a simple two-dimensional plot 
of the percentage of work planned and actually completed as 
a function of time. 

As illustrated on Figure 4, planning begins by constructing 
a master schedule bar chart showing the time-oriented re­
lationships among the various phases of the project. Although 
the bar chart is an effective tool for initial project planning, it 
inadequately portrays overall project status and production 
trends. Instead, a technique called "rate charting" is used. 
The composite rate chart plan shown on Figure 4 has been 
derived from the bar chart. The rate chart shows start and end 
planning dates (derived from the bar chart) and production 
rates. By weighting the work in each of the phases according 
to the allocated budget~ a total project production rate can be 
planned as shown here. 

ROMTS 

PRELIM DESIGN 

DETAILED DESIGN 

CODEIPOT 

INTEG/FaT 

DOCUMENT 

100 
III 

80 

~ 60 
:IE 

40 0 
u 
;fe. 

MASTER 
SCHEDULE 
BAR CHART 

COMPOSITE 
RATE CHART 
PLAN 

Figure 4-Rate charts: tools for monitoring progress 

Rate charts provide visibility for all levels of management­
individual work areas, project management, and customer. 
By evaluating the slope of the actual production rate with 
respect to th~ planned rate, a manager is alerted to trends and 
can consider reallocation of resources. 

Each of the development activities is broken down into 
several or more work packages. Planned versus actual accom­
plishments are monitored at the work package level and sum­
marized on a composite rate chart. Individual work package 
contributions to the composite summaries are weighted ac­
cording to the BCWS that has been allocated to each package. 
This is depicted on Figure 5. 

INTEGRI 
PRELIM DETAIL CODEI FOT 

60 I I ,I PROGRESS 

1

1:!r ~DESIGN !ESIGN/7~/ /DOC ---PLANNED 

40, t. 'I / II , --~~~~SS 

~! 1:;1'1/ I 

WORK PACKAGES 

~ID~-
WORK WORK .. - , ~ ~ ....!!!:!!!L 

~. ~ 'PLANNED ............. REQUIREMENTS DOCUMENT CHAPTER, SUBCHAPTER 

lil ~ ~ PRELIM DESIGN DOCUMENT CHAPTER, SUBCHAPTER 

TIME DETAIL DESIGN CPCI MODULES, DATA UNITS .--- CODE/PQT CPCI THREAD UNITS 

INTEGRATE/FQT BUILD COMPONENT UNITS 

DOCUMENT DOCUMENT CHAPTER, SUBCHAPTER 

Figure 5-Work package contributions factored into composite rate chart 

Work packages are generally defined around the natural 
products of the engineering process. During requirements and 
design activities, these products and work packages are docu­
ments (specifications, ICDs, test plans, etc.). Progress is 
planned and measured by allocating points or work units to 
subchapter and chapters of the document. Work units are 
accumulated as each subchapter is completed. During coding, 
the complexity units assigned to each thread serve as work 
units. In integration, work units allocated to each functional 
component are accrued as each component is integrated into 
the baseline system. 

The schedule variance (BCWP minus BCWS) and cost vari­
ance (ACWP minus BCWP) is computed monthly for each 
work package and summed up through the work breakdown 
structure to evaluate overall project status. This performance 
measurement is supported by an automated tool, the Per­
formance Evaluation and Measurement System (PEMS). 
PEMS receives and archives actual expenditures weekly, pro­
vides an interactive interface for scheduling and recording of 
accomplishments, and performs earned value assessment. 
PEMS outputs automatically produced reports that document 
earned value accomplishment and variances. 

CONCLUDING OBSERVATIONS 

The software engineering approach described here has em­
phasized auditable verification and validation events in each 
life cycle phase that are directed toward early detection of 
errors. These verification and validation mechanisms are sum­
marized on Figure 6. This reflects a sensitivity to the esca­
lating cost of fixing errors as a function of the time in the life 
cycle that they are detected as shown on the upper right of 
Figure 6. The software engineering development process that 
has been outlined here has emphasized parallel verification 
and validation in all the life cycle phases as a cost-effective 
approach to guarantee product reliability and contain life cy­
cle costs. 

These parallel verification and validation mechanisms are 
recapped briefly here. During requirements definition, the 
CADSAT analysis tool is used to verify interface relation­
ships, while the system verification diagram verifies the func­
tional requirements. The SVD is later employed to guide 
design verification, construction, and test/integration. Design 



THREAD ALlOCATION 
THREAD MODULES 

§~ 1: 
~ffi 20 

S~ 10 

~~ 5 

'\o<:;RE'=""=T O=ES='GN=DDD=ET.:'N=TG=R OOS= 

Figure 6--Summary of verification and validation mechanisms 

Industrial Software Engineering Methodology 307 

verification is performed by "threading" the design modules 
against the stimulus/response pairings of the SVD and also by 
using the design quality metrics tool to evaluate design com­
plexity. During detail design, an Ada PDL processor verifies 
interface relationships among the various modules by auto­
matically checking Ada package specifications. In the con­
struct activity, CPCI requirements are informally validated 
using threads defined by the SVD and assisted by the 
RXVP80 automated verification system to exhaustively test 
the software and maximize error detection at the thread level. 
CPCI and system requirements are formally validated during 
test and integration using the builds approach, guided by the 
SVD, and directed toward early establishment of a system 
skeleton. 





An approach to the definition and implementation of a 
software development environment 

by JAMES F. ELWELL 
TRW Defense & Space Systems Group 
Redondo Beach, CA 

ABSTRACT 

During the past two decades, a marked increase in software costs has been seen. 
The ingredients are now present to define and implement a software development 
environment which provides an increase in programmer productivity. The methods 
used by TRW to identify the goals of such an environment and define the com­
ponents of the environment are discussed. The resultant TRW Software Office Of 
The Future is presented and its current status given. Observations relevant to this 
process are made. 

309 





Definition and Implementation of a Software Development Environment 311 

INTRODUCTION 

In the past two decades, we have both witnessed and par­
ticipated in a remarkable expansion of the role of the com­
puter in commerce and industry. For those of us associated 
with software, it has been particularly significant because dur­
ing this time the cost for software has overtaken that of hard­
ware (see Figure 1), as predicted by Boehm in 1973.1 

Another consequence of this expansion has been the steady 
increase in demand for the trained computer professional-a 
demand that has not been matched by the university, which is 
the main source of new computer professionals. 2

,3 This trend 
is expected to continue for the foreseeable future. 

The cost implications are clear; unless something is done, 
software costs will continue to rise at a rapid rate. Increasing 
programmer productivity is essential to keep software costs 
down. 

During the same period of time, the cost of the computer 
has shown a marked decrease. For example, in the early 
1960's an IBM 7094 cost approximately $1.5 million, while 
today a computer with comparable power (e.g., a DEC PDP 
11170) costs $100,000.4 This is the other half of Figure 1, and 
the prediction by Boehm seems on schedule. In addition to 
becoming cheaper, the computer is packing increasing power 
into smaller and smaller packages. In the past few years we 
have witnessed what can be described only as the dawn of the 
age of the microcomputer. The computer has now become 
accessible to the user, no longer requiring the specially 
equipped rooms of their predecessors. This accessibility, cou­
pled with decreased cost and increased power, suggests that 
hardware which could be used to support software produc­
tivity gains is available. Computer professionals can now off­
load portions of their work to hardware, thus "automating" 
themselves as a way to becoming more productive. 

Software expertise has also shown rapid expansion during 
this period of time. A brief summary of the evolution of 
software tool systems shown in Table I will exemplify this. 

Each generation of these tool systems has provided signifi-

100~--------------------------------------~ 

80 

60 

40 

20 

1970 
Year 

Figure I-Hardware/software cost trends 

1985 

cant productivity gains. For example, the switch from assem­
bler code to a high-level language increased the number of 
machine instructions produced per source instruction by a 
factor of 5.5 There has likewise been a notable advance in 
software development methodologies, the application of 
which tends to reduce the cost of software. 6,7 

The conclusion to be reached is that the ingredients are 
present to define and build a software development environ­
ment that supports programmer productivity gains. The moti­
vation is provided by the increasing software cost and shortage 
of computer professionals. The means are provided by the 
decreasing hardware cost, increasing hardware capability, im­
proved software tool system, and the evolution of software 
development methodologies. In fact, the development of this 
productivity environment is essential. In the remainder of this 
paper I would like to describe the steps taken at TRW to 
define and implement the TRW Software Office Of The Fu­
ture. I will conclude with a brief status report and some obser­
vations which are relevant to this process. 

TABLE I-Tool system summary 

Time Span 

1950-
1957-
1963-
1968-
1974-

Tool system 

Assembler 
Compiler 
Operating system 
Time-sharing system 
Software Environment 

Example 

IBM map 
FORTRAN,ALGOL 
System 360 
IBM TSO, TRW TSS 
UNIX, ALTO 

Characteristics 

Mnemonic code, macro capability 
High-level language, functions 
Multi-language support, utilities, simple job streaming 
Remote job entry, collection of independent tools, multitasking 
Integrated tool set 



312 National Computer Conference, 1982 

LONG-TERM GOALS 

The first step in defining an environment that will provide 
productivity gains is to understand just what gains are desired. 
To do this, TRW established a Software Productivity Tools 
Working Group, whose charter was to analyze software tool 
usage at TRW, assess the current and likely future state ofthe 
art in software, and recommend actions leading to improved 
software productivity within the company. Although the 
Group concentrated on automated aids to software develop­
ment, considerations of documentation, facilities, and pro­
cedures were central concerns throughout the study. The ma­
jor conclusion of this study was that software tools are a 
critical part of an integrated productivity improvement strat­
egy which could increase productivity on large software pro­
jects by a factor of two in 1985 and by a factor of four in 1990. 
In addition to productivity improvements directly related to 
tools (such as increasing tool usage, increasing interactive 
development and the avoidance of the cost of retooling), the 
indirect gains (such as personnel motivation, modern pro­
gramming practices, tool system experience and stability) 
were considered. 

To achieve these productivity goals, the concept of an inte­
grated TRW Software Office Of The Future (TSOF) was de­
fined. TSOF drew upon the best of environments that are 
currently defined or operational,8--10 modified to meet the 
unique requirements of TRW. Its goals are to provide the 
following characteristics: 

1. Hardware: low-cost, medium-power personal computer 
each with individual file-storage capability; high-capa­
city bus which connects the terminals in a local network 
to a medium-size mainframe (e.g., DEC VAX 111780), 
which supports the network and various peripherals; a 
gateway from each of the local networks to a large-scale 
mainframe (e.g., CDC Cyber). 

2. Software: an integrated tool set which supports the soft­
ware development life cycle and is user-friendly, easy to 
use, portable, expandable, flexible, and secure. 

3. Facilities: offices which are approximately 100 square 
feet with floor-to-ceiling walls and which provide ade­
quate work space, storage, lighting and quiet for a single 
person. 

Thus, the following set of goals was established: 

1. Implement a TRW Software Office Of The Future 
2. Increase productivity by a factor of two by 1985 
3. Increase productivity by a factor of four by 1990 

APPROACH TO REALIZING THE GOALS 

The realization of the long-term productivity goals and the 
implementation of the TSOF require a significant level of 
corporate investment. To justify such an investment, an anal­
ysis of the effect of the expected software productivity gains 
on the cost of delivered software was made using the TRW 
proprietary Software Cost Estimation Program (SCEP). This 
showed that the productivity goals were achievable. 

A further justification was made on the basis of cost. An 
investment of $15,000 per programmer to provide the facili­
ties and hardware and software toois that win doubie (or 
quadruple) productivity is returned the first year they are in 
place. This return on investment comes from either the value 
of the additional software which may be built or from the 
reduced cost of the production of the same amount of soft­
ware. 

The development approach to the realization of the goals 
was based on three principles: (1) The resultant environment 
would be built in increments, (2) data would be collected to 
use as a guide for the next increment, and (3) the environment 
would be used to support an ongoing project. This approach 
enables the builder to define and implement something in the 
near-term, measure progress, then introduce new or im­
proved hardware and/or software, and measure again. Thus a 
cycle of building, evaluation, and improving is established. 
The use of the TSOF to support an ongoing project provides 
a practical focus for the work. 

IDENTIFICATION OF NEAR-TERM OBJECTIVES 

The result of establishing long-term goals and defining an 
approach to their realization was the establishment of a Soft­
ware Productivity Project (SPP) , whose charter is to effect 
those two charges. As a practical matter, the building of the 
TSOF is a project that will take many years. A set of near­
term objectives is therefore necessary to direct the work on a 
more manageable basis. For 1981, work proceeded based 
upon the following six objectives: 

1. Get something up and running in 1981. This "some­
thing" was defined to be Increment One. As with any 
new concept or project, it is important to show results, 
particularly to a sometimes skeptical audience. This ob­
jective also provides an impetus to the work, as does the 
support for an ongoing project. The builder has prom­
ised, and the project needs some results now. 

2. Increment One must be a foundation for the future. 
What constitutes the foundation clearly must be identi­
fied. This foundation must process at least one charac­
teristic; the ability to accommodate change must be built 
in. 

3. Increment One must provide some support for all phases 
of software development. In addition to the usual phases 
of software development (e. g., requirements, design, 
code), tools for managers and necessary support func­
tions (e.g., documentation) must also be provided. 
Some tools take a long time to build. If they are not 
started early, they won't be ready by the time they are 
needed, say in the test phase. 

4. Increment One must be amenable to change. With the 
limited time scale for Increment One, both the hardware 
and the software will be a subset of that which is ulti­
mately desired. Succeeding increments will add features 
to that which is built in previous increments. Changes 
will also occur because of technological innovation and 
as a result of the measurement process. Ability to ac; 
commodate these changes must be built in. 



Definition and Implementation of a Software Development Environment 313 

5. The total system aspects of Increment One must be em­
phasized. Currently, most tools are independent. ll

,12 

With some exceptions, each was built with little or no 
knowledge of the other. Productivity gains accrue from 
the elimination of duplication of effort and the intrusion 
in the work of one person by another. Tools, then, 
should be "systematized"; i.e., the incidental informa­
tion generated in the performance of one task which is 
valuable to another should be available to the second 
tool. 

6. Certain aspects of potential productivity gain are de­
ferred to later increments. The funding and time limits 
placed on SPP required the exclusion of some facets of 
the software and hardware world. In particular, the 
security aspects of the system (except those that are part 
of the foundation), graphics, and CAD/CAM were not 
to be considered as part of Increment One. The gateway 
from the local network to other networks was also 
excluded. 

CHOOSING THE TEAM 

The charter given to the Software Productivity Project (SPP) 
required building a team with a wide range of talent. This mix 
of talent is important in providing a perspective on the needs 
of the potential users of the resultant system and also in pro­
viding the expertise necessary to implement the system. Thus, 
individuals with software, hardware, and facilities expertise 
who also possessed managerial, project and/or line organiza­
tion backgrounds were sought. Representatives from various 
support areas such as configuration management, data entry, 
and secretaries also participated in the definition and imple­
mentation of the TSOF. 

Team members were also chosen because they possessed 
the qualities of creativity and experience, the former because 
it is essential for the pioneer, and the building of the TSOF is 
truly a pioneering effort; the latter because each individual is, 
in effect, a representative of a class of users. A high level of 
experience is required to effectively represent these users. 

There must also be a careful balance between the academics 
and the practitioner. Both are necessary because they provide 
complementary talents, but one group cannot dominate the 
other without serious consequences for the project. With too 
many practitioners, an inflexible, one-purpose system may be 
built; while with too many academics, a sand-box project and 
perhaps even no system at all could result. In this case, the tie 
to an ongoing project is a great help, because real deadlines 
require real results. 

The team selected for the SPP consisted of 15 full-time and 
6 part-time people. Included in this group were 4 individuals 
with PhD's and 10 with master's degrees. The average amount 
of experience was 9 years. The team was organized as shown 
in Figure 2. 

Organization is strictly along funcdonal lInes, with -each 
functional area responsible for research and development ex­
pertise in its area. The system engineer has overall respon­
sibility for the conceptual integrity of the system, its testing, 
and performance. 

I DATA BASE I 

Figure 2-SPP organization 

For the team to be effective, each of the individuals must 
not only be committed to goals of the project, but also be 
willing to work in an open, cooperative environment. This is 
accentuated by the unusually high level of interaction between 
each of the functions. 

SYSTEM DEFINITION 

With computational capability available directly to users from 
two different sources ((1) the medium-size central computer, 
in this case a DEC VAX 111780, which supports the local 
network and (2) the personal computer/terminal), the first 
task of the system definition process is to partition the work. 
In the TSOF, the personal computer/terminal initially will be 
used mainly to off-load the word processing and text editing 
from the central computer. If a tool were able to be operated 
on both computers, it would be available on both. Thus, the 
central computer becomes a repository for the text files used 
to support a software project, the machine on which the large 
tools are run, and the storage point for the project database. 
This partitioning has certain hardware implications, the most 
important one being the requirement for a high-capacity bus 
to support the rapid transfer (ideally almost instantaneous) of 
files between the central and personal computer. 

The second step in defining the system was to identify the 
tool set which was to be built. This tool set is dependent upon 
the software development methodology used at TRW. To 
define this tool set, the activities required to develop software 
according to TRW standards were identified. Then a set of 
tool types which could be provided to support these activities 
was defined. The result was a matrix of 110 activities and 25 
tool types. To choose the tools to be built in Increment One, 
an "x" was placed at the point at which a tool type supported 
an activity. For the tool types which supported the greatest 
number of activities, the actual tools (if they existed) which 
provided that capability were surveyed. For this survey, the 
following criteria were applied to aid in the choice of the tools 
to be built: 

1. Consistency with the near-term objectives: The ability of 
a tool to satisfy the near-term objectives was scrutinized. 
The tools which satisfied the greatest number of these 
objectives were retained as candidates. 

2. Availability: If a tool which passed Test 1 was available 
and porting to the TRW system was reasonable, it was 
given preference as a candidate. 

3. The sum total of the resources required to either build or 



314 National Computer Conference, 1982 

port the tools chosen must be less than our allocated 
budget. 

Clearly this was an iterative process. 
Ten tools were chosen as a result of this process. These tools 

are described below. 

Automated Unit Development Folder (AUDF) 

This tool maintains an electronic representation of a soft­
ware Unit Development Folder Cover Sheee3 and provides 
functions for the addition, modification, and deletion of items 
on that sheet. Each of the nine sections of a UDF is repre­
sented, and an Associated Information Pointer is included for 
each section to provide access to the text content of the UDF. 

PDL 

The Program Design Language is the software package de­
veloped by Caine, Farbe and Gordon, Inc. This provides a 
structured method for the design of software. 

Automated Office 

The Automated Office consists of a set of facilities to en­
hance the communications between people in an office en­
vironment via electronic means. These facilities include elec­
tronic mail, calendar, document templating, word processing, 
text editing, and UNIX automated office functions. 

Front-End Help 

This tool provides an initial high-level view of the tool set 
through two levels: (1) a menu-driven conceptual view of the 
collection of tools available and (2) a help capability for each 
available tool which describes the tool's nature, documen­
tation, person-in-charge, and invoking command. 

FORTRAN 77 Analyzer 

This tool provides an automated system for the analysis of 
FORTRAN programs, including those written in ANSI 77 
FORTRAN. Analysis data is provided at three levels on the 
static structure of the code and on the dynamic structure 
indicated during program testing. It is useful as a code aud­
itor, test effectiveness measurer, and general software devel­
opment aid. 

Software Requirements Engineering Methodology (SREM) 

SREM is a set of tools and a technique for defining and 
analyzing software requirements. 14

,15 The technique is built 
upon a language, Requirements Statement Language (RSL), 
readable both by computer and by person. The set of tools is 
collectively termed the Requirements Engineering and Vali­
dation System (REVS) and is used to analyze the require­
ments specified by the user for completeness and display input 
and output in a variety of ways. 

Automated Test Manager (ATM) 

ATM controls and supports the testing of FORTRAN soft­
ware units. This includes the specification of test case inputs 
and expected outputs for the unit, the generation of a test 
driver for the unit, and the execution and analysis of one Qr 
more units using the generated test driver. 

Relational Database Access (RDA) 

RDA allows the user to modify a relational database in a 
user-friendly way. RDA prompts for inputs, provides help 
messages, validates the inputs, and provides default values. 
RDA is designed for a user with some knowledge of relational 
database and enables such a user to add, delete, modify, or 
show tuples in a relation. 

Requirements Traceability (RT) 

RT allows the user to trace requirements through software 
design and test. RT generates reports such as the test evalu­
ation matrix and exception reports. 

Distributed System Design (DSD) 

DSD supports the designers of software development 
projects utilizing distributed computer architectures. By pro­
viding a central location for the design of hardware and soft­
ware elements, and the interfaces between them, DSD fa­
cilitates communication among software designers, systems 
engineers, and database administrators and encourages an 
integrated design. 

The third step was the choice of the operating system. 
There were two systems considered: (1) UNIX as distributed 
by the University of California at Berkeley and (2) VMS, the 
standard DEC operating system for the VAX. This was not 
the first time a choice of operating systems was made between 
these two alternatives. In fact, it seems that this choice has the 
power to arouse passionate debate. 16

,17 To resolve the prob­
lem, an evaluation was performed to determine which of the 
systems could best support the needs of the large TRW 
project which would be the first user of the TSOF. A list of 38 
capabilities was developed, and the ability of each system to 
support these needs was evaluated. The major conclusions 
were that neither system supplied all the project's needs and 
that each possessed features needed by the project that the 
other did not. Moreover, with some augmentation, each could 
support the project. After satisfying ourselves through an in­
dustry survey of UNIX use that UNIX could support the 
software development of a large-scale real-time system, 
UNIX was chosen. It was chosen primarily because it offered 
the best approach to achieving the long-term goals of porta­
bility, flexibility, conceptual integrity, etc., which were de­
fined for software. 

During the process by which the tool set was defined, it was 
noted that a centralized database was an essential feature of 
any system that would emerge. Accordingly, a list of ten 



Definition and Implementation of a Software Development Environment 315 

candidate database management systems (DBMS) was pre­
pared and, given certain criteria, evaluated. To provide· a 
foundation for future expansion and to provide for flexibility 
in use, a relational database was deemed superior to a hier­
archical database. The choice was further narrowed by the 
choice of the UNIX Operating System. Again, the industry 
was surveyed to determine user experience with the now 
candidate DBMS's. The result of this was the choice of 
INGRES as the DBMS to be used by the productivity system. 
In addition to being the best rated DBMS, the potential to 
port INGRES programs to a machine, the Britton, Lee IDM-
500 existed. The prospect of off-loading a large software data 
processing activity to hardware was very appealing. 

Thus far, only the software component of the TSOF has 
been considered. There are two more segments which were 
also studied and defined: (1) the hardware components of the 
system and (2) the office facilities. There are three major 
hardware components which were chosen: (1) the bus for the 
local network, (2) the personal computer, and (3) the termi­
nal. The evaluation of the potential candidates for each of 
these components was performed in early 1981 and has al­
ready been dated by the rapidly changing technology of the 
industry. The results of this evaluation are shown on Table II. 

Of more interest is the resultant hardware configuration, 
which is shown in Figure 3. 

The final component of the TSOF is the office facilities in 
which the programmer would work. After surveying the exist­
ing facilities in industry and the universities and visiting some 
of them, notably the IBM Santa Teresa facility and Xerox 

PARC, the basic goals for the office facilities evolved. The 
TSOF would be a single-person office with a closeable door 
and floor-to-ceiling walls. It would be self-contained; i.e., 
each office would be connected to the network and have suf­
ficient power, lighting, and air conditioning to support the 
potential system hardware configurations. Communication 
with others would be via the terminal over the network and by 
a telephone. Sufficient internal space would be provided so 
that two people could meet in any office. 

The IBM Santa Teresa facility18 strongly influenced both 
the design and the criteria of the office facilities. However, 
whereas IBM built a building which embodied their ideas, the 
TRW buildings were already in place. This necessitated 
adapting certain criteria to reality; e.g., not every office could 
be 100 square feet because of existing building constraints. 
The resultant office characteristics are shown below: 

1. Facilities-Each office will be from 8~ 100 square feet 
with floor-to-ceiling walls, a closeable door, rug, walls 
coated with sound absorbent material and lights inlayed 
in an acoustic ceiling. 

2. Furniture-Two chairs; approximately 30 square feet of 
work surface, a portion of which would be at proper 
terminal height; wastebasket; and two-drawer security 
cabinet. 

3. Storage-Approximately nine linear feet of hanging files 
and fifteen linear feet of shelf space in close proximity to 
the work surface; space for tape and disk storage must 
also be provided. 

Table II-Hardware components 

Model 

Bus Spp 

VAX 111780 

Computers DYNASTY 

VT100 

Terminals VISUAL 100 

CIT 101 

Manufacturer 

TRW DSSG/S&SO 
Redondo Beach, CA 90278 

Digital Equipment Corporation 
Maynard, Mass. 

Tymshare/Santa Cruz Operation 
Santa Cruz, CA 

Digital Equipment Corporation 
Maynard, Mass. 

Visual Technology, Inc. 
Tewksburry, Mass. 
C.ITOH Electronics, Inc. 
Los Angeles, CA 

Characteristics 

• 150K characters/second per channel (minimum) 
• 50 channel capability 
• 100 to 300 users per channel 
• Throughput 

-960 characters/second 
(terminal to terminal or terminal to computer) 

-25,000 characters/second 
(file transfers between computers) 

• Medium scale 32 bit computer (4 M bytes RAM) 
• Two 250 M byte disks 
• 30 users 
• UNIx/Operating System 

• LSI 11/23 based microcomputer (250 K bytes RAM) 
• 30 M byte Winchester disk and two 8" floppies 
• 4 users 
• DYNIX Operating System (Derived from UNIX) 

VT100 or VT100 emulator: 
• a multitude of keyboard selectable options, e.g., 

-2 scroll speeds 
--scroll/no scroll button 
-80/132 column selectable format 
-print white on black or black on white 
-throughput up to 1,920 characters/sec 



316 National Computer Conference, 1982 

MULTIPLE-TERMINAL MICROCOMPUTER 

--1 
-------,~-B-IT---------lJC) ~ 

MICROCOMPUTER r-u 
I 

_D~K...J 

960 
CHAR/SEC 

25K 
CHAR/SEC 

960 
HAR/SEC 

BIU 

HSEI 

BIU 

14 

INBOUND_~4-______ ~~_~~~ ____ ~-+ ____ -L~ ____________ ~ __ ~~ __ ~~ __ ~~ __ ~-+ __ ~ __ ~ HEAD END 
AMPLIFIER OUT~D ____ ~ ________ ~-r~ __ ~ ______ ~ ______ -L ____________ ~ ____ ~ ____ ~~ __ ~ ____ ~ __ ~ __ -J 

n DUMB c..J TERMINAL 

SINGLE-TERMINAL MICROCOMPUTER 

SPP BUS 
150K CHAR/SEC 
ONE CHANNEL 

125K 
CHAR/SEC 

DUMB TERMINALS 

125K CHAR/SEC 

125K 
CHAR/SEC 

DUMB TERMINALS 

Figure 3-SPP network configuration 

4. Lighting-A task light over the work surface in addition 
to industry-standard overhead lights. 

5. Ambience-The office should offer a pleasant work at­
mosphere and, where possible, be comprised of ergon­
metrically correct components. 

6. Communications-Built-in wide-band bus connections. 

To satisfy these criteria, it was necessary to have some of the 
components custom-designed. By working with various ven­
dors, a full-scale prototype office was built and furnished. A 
picture of the resulting office is shown in Figure 4. A full-time 
programmer was assigned to work in this office as a test of the 
configuration. The feedback from this experience was used in 
the design of a much larger area, which would be built to 
house the contingent of programmers who would be the first 
users of the TSOF. 

MEASUREMENT 

One of the most important features of the TSOF is the ability 
to gather feedback from and measure the performance of the 
users. By measuring the performance, improvements to the 
system can be identified and their effects quantified. Mea­
surement also provides the hard data which is necessary to 
convince management of the need to continue their commit­
ment to this concept because it is providing a return on their 
investment. 

There are two types of metrics which will be measured. The 
subjective metrics will explore the attitudes and impressions 
of the users toward the TSOF. Such impressions can be used 

to rate the morale of the user, identify the best features for 
reinforcement, and spot weaknesses for improvement. The 
objective metrics which will be used are: time sheets, which 
will be used to determine work patterns; system accounting; 
delivered source instructions; and cost model ratings for the 
TRW SCEP Program. The latter metrics will be used to pro­
vide an object measure of work activity and productivity. 

The data will be gathered in the following ways: auto­
matically as the users perform their work, and subjectively, by 
interviewing the users, by filling out questionnaires, and by 
observation. Only the approach to performance measurement 
has been done this year. The actual performance measure­
ment and analysis is an effort for 1982. 

STATUS 

At the time of this writing (November 1981) an area of ap­
proximately 6,000 square feet has been configured in two 
equipment rooms, two secretarial bays, and 37 offices. Con­
struction of this area is complete. The office furniture for this 
area has been designed and built and is beginning to arrive 
and be installed. 

Designing, building, equipping, and working in a prototype 
office during the year was completely successful. The feed­
back received from the occupant and from the many visitors 
to this office was used to improve the design of the subsequent 
offices. 

The hardware components, with one exception, have been 
ordered, have arrived, and have been installed in temporary 
locations pending completion of the offices. Although the full 



Definition and Implementation of a Software Development Environment 317 

Figure 4-Typical office 

local network is not yet available, valuable experience has 
been gained in using the personal computer/terminal in a 
stand-alone mode. In this mode they are able to support virtu­
ally all their assigned functions, the major exception being the 
transfer of files between the personal computer and the cen­
tral computer. 

The schedule for the delivery of the software tools, again 
with one exception, is being met. Some of the tools are in 
operational use on the central computer, others are in integra­
tion and test, and one, the Automated Office, is operational 
on both the personal and central computer. 

OBSERVATIONS 

The project to build the TRW Software Office of the Future 
has had a successful first year. However, like all projects, 
there were deviations from the original plan, oversights, and 
things done so right that they bear pointing out because of 
their potential value to others who attempt similar work. 

The first observation to be made is that the project ex­
panded virtually from the time it started. The l:milding of the 
TSOF was a relatively new idea within many areas of TRW, 

and everyone wanted to have the final product today. Because 
of this pressure, every facet of the project expanded in scope; 
the tools had more capability than originally planned, more 
hardware was required to support this expansion, and the size 
and diversity of the user group was increased. The staff, too, 
contributed to this expansion with a wealth of ideas and just 
plain hard work. All of this is good, but it is easy to lose 
control of the activities and thereby lose your way. The in­
cremental development approach which was used on the 
project was very helpful in collecting these ideas and chan­
neling this pressure along constructive, controlled paths.-

The next observation to be made is that as different groups 
of potential users view this system, they feel that it rightfully 
belongs to them and should reflect only their needs. The 
system is flexible enough to accommodate that view. In partic­
ular, it is difficult to resist tailoring the goals and objectives of 
the project to those of the first user. With different areas 
having different aims, control ofthe project becomes difficult. 
To mitigate this problem, a high-level program office was 
established to oversee the direction of the project. This cen­
tral point of both control and contact with the different parties 
served to coordinate the work. The main advantage of this 
centralization is that it provides an opportunity to build only 



318 National Computer Conference, 1982 

one system, thus saving the cost of duplication if each of the 
areas built their own. 

The importance and scope of the training necessary to sup­
port the use of the tools provided by this project was grossly 
underestimated during the planning phase. It is difficult to 
overstate the critical importance of a well-planned, well­
rehearsed, thorough series of training sessions. This training 
must address psychological issues which are not part of the 
usual training class. After all, the user is being asked to accept 
a new method of doing business which changes, in some cases 
radically, the previous method. Training must provide the 
user not only with technical skills to use the tools but also with 
the psychological will to use them. The truth of this became 
apparent well into the project's life, and a crash effort to 
provide the many courses required by an enlarged user group 
was instituted. The problem was complicated because the user 
group was no longer homogeneous. Programmers require dif­
ferent training than, say, managers, and the courses must 
accommodate that difference. 

It is essential to have the firm commitment of upper man­
agement to a project such as this. Without it there is no 
project. With it, it is possible to attract the high quality of staff 
required to do the work, little effort is used finding funds for 
equipment, and positive direction comes from high levels. 
Fortunately, we have this commitment at TRW. 

There seems to be real benefit in tying the development of 
this software environment to the needs of an ongoing project. 
The system being developed is flexible by design. The poten­
tial for working a problem to death to find the "right" solution 
is great. (It may well be that there is no one "right" solution, 
but several. This suggests that what needs to be built is a 
system that is easily configurable to each individual's needs 
and idiosyncracies.) Having a project depending upon the 
completion of tools to meet their deadlines serves to focus the 
discussion so that results are produced more rapidly. It is 
worth the risk of tailoring the system too closely to the needs 
of the project. 

Finally, one of the most fruitful areas for increasing pro­
ductivity seems to lie in building an integrated system. In this 
type of system, actions which are incidental to performance of 
one job are captured and become the essential data needed 
for another. To date, most of the tools which have been built 
are independent, one being unaware of the existence of anoth­
er. To build such an integrated system requires extensive 
front-end analysis to understand the interrelationships be­
tween the tasks being performed and the tools being provided. 
By establishing tool standards early in the life of the project, 

individual tools may be built which fit both within the inte­
grated system and support one another. 

ACKNOWLEDGMENTS 

The author wishes to both acknowledge the help given him by 
J. Hurvitz, M. Imura, P. Bogle, M. Green, and D. Nunez in 
the preparation of this paper and to thank them for it. Except 
for the figures, the manuscript of this paper was prepared 
using the facilities of the system described. 

REFERENCES 

1. B. W. Boehm. "Software And Its Impact: A Quantitative Assessment." 
TRW Software Series TRW-SS-73-04, May 1973. 

2. "Science and Engineering Education for the 1980's and Beyond." Prepared 
by the National Science Foundation and the U.S. Department of Edu­
cation, October 1980. 

3. P. J. Denning. "Eating Our Seed Corn." CACM, Vol 24, No.6, June 1981. 
4. T. A. Dolotta, et al. "Data Processing in 1980-1985." John Wiley & Sons, 

1976. 
5. F. P. Brooks, Jr. The Mythical Man-Month. Reading, Massachusetts: 

Addison-Wesley, 1975. 
6. A. I. Wasserman. "Toward Integrated Software Development Environ­

ments." Tutorial: Software Development Environments, 1981. 
7. D. L. Paster. "Experience With Application of Modern Software Manage­

ment Controls." Fifth International Conference on Software Engineering, 
March 1981. 

8. R. A. Beach, et al. "Software Productivity Tools Working Group Report." 
TRW memo, October 1980. 

9. "Requirements for Ada Programming Support Environments 'Stoneman'." 
Department of Defense, February 1980. 

10. "UNIX Time-Sharing System." The Bell System Technical Journal, Vol. 57, 
No.6, Part 1, July-August 1978. 

11. "Software Tools: Catalog and Recommendations." Applied Systems De­
sign Section, TRW DSSG, January 1979. 

12. "NBS Software Tools Database." Center for Programming Science and 
Technology National Bureau of Standards, October 1980. 

13. F. S. Ingrassia. "The Unit Development Folder (UDF): An Effective Man­
agement Tool for Software Development." TRW Software Series, TRW­
SF-76-11, October 1976. 

14. M. W. Alford. "A Requirements Engineering Methodology for Real-Time 
Processing Requirements." TRW Software Series, TRW-SF-76-07, Sep­
tember 1976. 

15. T. E. Bell, et al. "An Extendable Approach to Computer-Aided Software 
Requirements Engineering." TRW Software Series, TRW-SF-76-05, July 
1976. 

16. D. L. Kashtan. "UNIX and VMS Some Performance Comparisons." SRI 
International. 

17. W. Joy. "Comments on the Performance of UNIX on the VAX." 
18. G. M. McCue. "IBM's Santa Teresa Laboratory-Architectural Design for 

Program Development." IBM System Journal, Vol. 17, No.1, 1978. 



A JOVIAL programming support environment 

by EDITH M. McMAHON 
Computer Sciences Corporation 
Falls Church, Virginia 

ABSTRACT 

Programming support environments are developed to provide facilities to be used 
in addition to, or in absence of, host operating systems. This paper describes a 
system that incorporates Stoneman principles and provides a transportable Pro­
gramming Support Environment for the Air Force standard language JOVIAL. The 
tools provided by this Jovial Programming Support Environment facilitate both 
software management and development throughout the life cycle. 

319 





INTRODUCTION 

The Communications Software Development Package 
(CSDP) is being developed to be used as an automated, por­
table JOVIAL J73 programwing support environment that 
enhances the production of high-quality software. Program­
ming support environments are being developed and used by 
both program managers and software implementers. These 
environments provide tools and comprehensive support for 
different high-order languages, such as Ada, C, and JOVIAL. 
The concept of an environment to provide supporting facili­
ties in addition to, or in the absence of, host operating systems 
has been definitized in Stoneman. 1 

Because of the diversity of operating systems (OS) and the 
time involved in learning a new OS, a need arose for a trans­
portable system to allow users to shorten the learning curve 
necessary when transferring to a different computer system. 
The user would then interact only with the host system during 
the initial login procedure, after which he no longer commu­
nicates with the host directly. 

Once fully implemented, retraining requirements for per­
sonnel transferring between sites is minimal. CSDP has been 
designed to be a transportable JOVIAL programming support 
environment in accordance with the Stoneman design 
guidelines. 

This paper examines the CSDP project as a programming 
support environment that is also being used to support its own 
development. Following a brief overview of CSDP and a 
description of how CSDP has been developed to satisfy the 
design guidelines enumerated in Stoneman, the functionality 
of CSDP and the support that it has provided during its own 
development is provided. 

OVERVIEW OF CSDP 

CSD P is designed to be used on a large mainframe to develop 
software for embedded computer systems that do not nor­
mally have development facilities of their own. CSDP sup­
ports the Air Force standard language, JOVIAL 173. CSDP 
consists of a set of methodologies and tools to support soft­
ware development throughout the entire life cycle, a Project 
Support Library (PSL) for managing development systems, 
and a user interface for invocation and utilization of both the 
tools and the PSL. 

CSDP is designed and structured to provide standard tech­
niques which will enhance all phases of software development 
with respect to project management, as well as implementa­
tion at the design and programming levels. 

To fully realize the benefits of language commonality, a 
common interface to the host environment is required. This 
permits programmers to move from one host system to 

A JOVIAL Programming Support Environment 321 

another, continuing to employ the same development tools 
and user interface. 

The key element of the CSDP system design is the percep­
tion of CSDP as an abstract machine providing services 
through automated tools to users through an automated inter­
face. The overall structure of CSDP is modularized, with sub­
systems being separate and independently replaceable. 
System tools can be added or deleted as desired, and users 
may create and use tools privately developed in either the 
command language or a high-order programming language. 

CSDP is comprised of five subsystems as illustrated in Fig­
ure 1: Shell, Tool Manager, Tool Kit, Project Support Library 
(PSL), and Environment. A brief description of each of these 
subsystems follows. 

Figure l-CSDP subsystems 

The Shell subsystem functions as the interface for both 
interactive and batch users. Through the Shell, the user speci­
fies which tools are to be executed and may pass arguments to 
the tools to control their execution. The tools to be executed 
may be executable object code or they may be Shell Com­
mand Language (SCL) files. An SCL file is composed of 
standard and frequently used command sequences, consoli­
dated into a single file for repetitive use. The Shell allocates 
space for any variables which a user may find necessary to 
declare and use during an interactive session. In addition, the 
Shell provides a help facility and a statistics collection 
capability. 

The Tool Manager, not visible to the user, interfaces with 
the Shell, providing the Shell with tool and help file location 
and access information. 

The Tool Kit, one of the most visible subsystems of CSDP, 
is an expandable set of software tools. All current tools are 
implemented in JOVIAL, although tools need not be imple­
mented in JOVIAL to be accessible to CSDP users. Capabil-



322 National Computer Conference, 1982 

ities provided by various tools include text manipulation, file 
management, implementation of software, and development 
of documentation. It should be noted that the JOVIAL J73 
compiler and linker/loader are not incorporated into the cur­
rent CSDP. These facilities are provided on the host system. 

The PSL, which provides primary support for configuration 
management, performs the following basic functions: man­
agement of software documentation, version control, and 
documentation and file revision statistics gathering. 

The Environment subsystem serves as the interface be­
tween the other subsystems, the tools, and the host operating 
system. This subsystem is the critical factor in achieving por­
tability for CSDP; it is the sole machine-dependent sub­
system. In cases where the host and target are the same, a 
subset of the Environment routines provides input/output and 
file management capabilities for JOVIAL programmers. 

CSDP AND STONEMAN 

The Stoneman repore defines requirements for an Ada Pro­
gramming Support Environment (APSE) as a set of tools 
supported by Kernel APSE (KAPSE) functions to provide 
database and host machine interfaces. A Minimal APSE 
(MAPSE) is composed of a KAPSE augmented by a minimal 
set of support tools. 

The CSDP design incorporates many of the Stoneman pre­
cepts and provides for the basic functionality for a pro­
gramming support environment as defined in Stoneman. Fig­
ure 2 illustrates the relationship of CSDP to Stoneman. Level 
o in the figure represents the host system. The KAPSE func­
tionality is supported in CSDP by the PSL and Environment 
subsystems. Tool interfaces are provided by the Tool Manager 
through invocation by the Shell, which incorporates the com­
mand language interpreter. Also within the Tool Kit, which 
corresponds to the formation of a MAPSE, are text editor, 
text formatter, PDL formatter and file utilities. All of the 

• INTERFACE TO 
EXISTING TOOLS 

Figure 2-CSDP and Stoneman 

tools, the PSL, and the Tool Manager are portable portions of 
CSDP, although the PSL is made more efficient through con­
sideration of host capabilities. 

The Stoneman report identified design guidelines to be 
used in the development of programming support environ­
ments. A discussion of these guidelines and CSDP's con­
formity to them is given below. Additional discussion of these 
concepts was presented in "CSDP as an Ada Environment.,,2 

1. Scope: CSDP provides development and maintenance 
support for the development of software for embedded 
computer systems. 

2. Quality: The technologies upon which CSDP is based 
have been in use for several years at Bell Labs. 3 UNIX 
has been proven to be very effective and useful in sys­
tem development for a variety of different mainframes. 
All the tools that are incorporated in CSDP have been 
used and proven successful for software development. 

3. Simplicity: CSDP has a simple overall structure, in­
volving a user interface (the Shell), a tool kit, a tool 
manager, and a software database. The command lan­
guage provides three basic facilities-a standard pro­
cedure for tool invocation, a standard method for pass­
ing arguments to tools, and programming constructs for 
building mUltipurpose command sequences. 

4. Life Cycle Support: The Tool Set and PSL have been 
configured to provide coordinated development sup­
port throughout the entire development life cycle. This 
aids in requirements definition, design, implementa­
tion, testing, and operations and maintenance. 

5. Project Team Support: All functions required by a 
project team, including management control, docu­
mentation, and configuration control, are provided by 
the PSL and the Tool Set. 

6. User Helpfulness: The CSDP user interface (the Shell) 
is easy to learn and use. It also provides a help facility 
for the user. 

7. Uniformity of Protocol: All tool interfaces to the host 
operating system have been isolated in the interface 
package. The Shell provides standard interfaces 
between both users and tools and among tools in the 
same way. The uniformity of the system aids not only 
in implementation but also in ease of use and 
transportability. 

8. System Portability: CSDP is designed to be as trans­
portable as possible. The major portions of the system 
are implemented in J73, with all operating system spe­
cific functions isolated in the Environment subsystem. 
When these Environment routines are reimplemented 
on another host, the rest of CSDP can be transported 
without changes. 

9. Project Portability: Projects developed using CSDP on 
one host system can be moved to another host that 
supports JOVIAL J73. 

10. Hardware: CSDP has been designed to use low-risk 
technology; therefore, it can be used on a large number 
of operating systems with little difficulty and requires 
only basic support of the JOVIAL language. Each tool 
has been chosen to be as efficient as possible within the 
constraints imposed by its function. The number of 



actions necessary to invoke a tool has been kept to a 
minimum. The low-level Environment routines will be 
made as efficient as possible, although their efficiency 
depends greatly on what services the host operating 
system provides. 

11. Robustness: CSDP provides meaningful diagnostics to 
its users in the case of error. 

12. Integrated: Inter-tool communications are handled 
through the Shell, and all tools can access the PSL as a 
common database. 

13. Granularity: New tools can be added from within 
CSDP as well as without. New tools can be written in 
the supported high-order language, or can be imple­
mented as a procedure in the Shell Command Lan­
guage. The new tools are invoked in exactly the same 
way as standard CSDP tools are from the Shell. The use 
of existing tools to build new tools is restricted only by 
the constraints set on the tools a user can invoke. 

14. Open-Ended: CSDP's design supports changes and ex­
pansion as new requirements arise. The overall struc­
ture is modularized, with the Shell, the PSL, the tools 
and the Tool Manager all being separate and indepen­
dently replaceable. System tools can be added or de­
leted as desired, and users may create and use tools 
privately developed. 

CSDP FUNCTIONALITY 

CSDP provides a standard interactive interface for JOVIAL 
users, with a comprehensive set of tools available to software 
managers and developers. The following paragraphs describe 
how the subsystems of CSDP and the tools provide a full range 
of support for both management and development of software 
throughout the life cycle. 

Management support 

During the initialization of a project, the project manager 
allocates all user file storage areas. The project manager is, 
therefore, distinguished from all users in the project and has 
full access to all user directories and their files. 

The PSL is a repository of information connected with each 
project throughout the project's life cycle as well as a col­
lection of basic commands and functions for the manipulation 
of the PSL. Options for tailoring the configuration manage­
ment program to fit the needs of each particular project are 
available in the PSL. This includes the specification of file 
types which will be subject to version control. File types in­
clude source, object, relocatable, and text. Each project may 
specify conventions for naming file types, and these may be 
selected for version control. The approval cycle for placement 
of files in the PSL and for making subsequent changes to those 
files is determined by the project and/or configuration 
manager. 

Managers may examine statistics automatically collected 
with respect to tool usage. These statistics indicate the fre­
quency of a specific tool's usage, help to pinpoint problem 
areas with any of the tools or their documentation, and aid in 
the identification of training needs. 

A JOVIAL Programming Support Environment 323 

All CSDP tools are available to managers. To determine 
current status of modules under development, a manager may 
use tools such as LISTF and PRINT to locate and examine the 
files of particular interest in users' directories. The tool LISTF 
identifies all files in users' directories. The tool LISTF iden­
tifies all files in a user's directory and provides various statis­
tics for each file. Once located, any file or part of a file may 
be displayed at the terminal using the tool PRINT. The output 
from either of these tools may be stored in files, rather than 
output to the terminal, via the output redirection capability of 
the Shell, thus saving the information for subsequent exam­
ination and analysis. 

In addition, tools such as EDIT and FORMAT, for text 
manipulation, are available to management for use in the 
preparation of project documentation and reports. 

By using SCL files, management can automatically gener­
ate current reports which detail progress and statistics per­
taining to a given project or a particular user. This type of 
routine report can be generated at time intervals controlled by 
project managers, thus enabling the charting of the life cycle 
progress of any project using CSDP. 

Project-specific documentation also can be controlled by 
using the SCL to routinely update any information contained 
in a file. As an example, it is possible to routinely update 
portions of design documentation kept in files associated with 
the source to include the most current documentation, reflec­
ting the addition or deletion of modules and changes made in 
module descriptions. This capability allows concurrent con­
trol of software and its associated documentation. 

Programmer support 

CSDP has been developed to facilitate the development of 
software in the JOVIAL 173 language on a DEC-20 System. 
CSDP also offers advantages and capabilities for software 
development in any language on any host, provided the lan­
guage requirements (for example, a JOVIAL 173 compiler) 
are available to CSDP users. 

CSDP acts as an interactive and user-friendly interface to 
the host. CSDP contains a wide range of tools and commands 
to facilitate software development and provides information 
messages pertaining to current use of CSDP and its sub­
systems. Additionally, CSDP provides a help facility to en­
courage full use of CSDP capabilities. 

Access to all CSDP standard tools is given to all program­
mers. In addition, project-specific tools may be developed by 
project members. Such tools may be stored in a project tool 
library and made available to the project's developers. Dupli­
cation of effort can be avoided through the exchange of 
project-developed tools when appropriate. The CSDP Envi­
ronment subsystem acts as an interface between CSDP and 
the host machine and therefore provides the interface be­
tween the JOVIAL programmer and the host machine. The 
availability of Environment functions for JOVIAL pro­
grammers provides for a more unrestrained usage of the 
JOVIAL language, since the Environment supplies facilities 
for disk-file management, input/output, and argument and 
error handling. These facilities enhance the early stages of 
software development as well as the testing and implementa­
tion phases. 



324 National Computer Conference, 1982 

Developers and managers are likely to find it necessary to 
use a sequence of Shell commands repeatedly. SCL files auto­
mate this process. In addition to the Shell commands used to 
execute tools, CSDP offers its users a programming-like lan­
guage providing variables, decision making, and looping facil­
ities. For example, using SCL file constructs, it is possible to 
create an SCL file containing test procedures that can be 
reinvoked in order to perform regression testing. 

Batch job capability is provided so that the user is free to 
work interactively while concurrently executing time and 
resource-consuming jobs in batch mode. Users have the capa­
bility to check the status of batch jobs and to modify batch job 
execution sequences. 

CSDP EXTENSIBILITY 

CSDP can be tailored easily to fit user, management, and/or 
project needs, since specific tools may be added or deleted 
from the Tool Kit. This flexibility allows growth of a project­
oriented tool library, while allowing maximum use of file­
storage area through the deletion of unrequired tools. 

The portability of CSDP affords the capability to achieve 
standard software development and management practices for 
all JOVIAL systems developed under it. CSDP supplies a 
uniform system with which to pursue JOVIAL programming 
and management endeavors. 

CSDP is designed to be a transportable system. The Envi­
ronment defines a virtual interface to the host-operating sys­
tem in order to execute and support the portable CSDP sub­
systems. The Environment presents a consistent, uniform, 
machine-independent interface to CSDP and interfaces di­
rectly with the host system in its native language. This in­
tentional isolation of host-dependent functions means that 
only the Environment need be modified in order to rehost 
CSDP on a new system. All ofthe other subsystems are imple­
mented in JOVIAL. 

For CSDP to function as intended, certain capabilities must 
be provided by the host system. These include a JOVIAL 
compiler, linkerlloader, and a time-sharing environment. 

In some instances it will be possible to ease the amount of 
effort by taking advantage of host-provided functions. For 
example, if the host system supports a directory concept as the 
DEC-20 does, then interfacing routines, rather than a por­
table directory system, reduce the amount of software neces­
sary to provide this function. 

The procedures for extending CSDP by adding a new tool 
or integrating an existing one are essentially the same. 
Accesses to specific services of the CSDP host (such as the file 
system) and to the CSDP framework (such as interprocess­
communication mechanisms) are through standard interfaces 
to primitive routines (i.e., the CSDP Environment); there­
fore, all tool interfaces look alike to CSDP. 

CSDP SUPPORTS ITS OWN DEVELOPMENT 

CSDP is designed to support the development and mainte­
nance of software through its entire life cycle and is being used 
in its own deveiopment to provide earlier operation and pro­
duce a system easier to use and maintain. This is manifested 

by the incremental Build approach used for the CSDP imple­
mentation. A Build is a group of related functions that forms 
an implementable subset of the system capabilities. A partial 
operational capability is provided with the first Build and is 
enhanced with each successive Build. 

Developing software projects following the Build approach 
(a phased implementation) increases productivity and reduces 
risk. This incremental approach as applied to the CSDP devel­
opment not only provided for early demonstration of the sys­
tem's capabilities but also provided tools that could be used in 
the continuing development of CSDP. 

Using this approach, CSDP was partitioned into a series of 
three Builds, each of which provided increasing functionality. 
Each Build consists of modules from CSDP subsystems, and 
the completion of each Build demonstrated additional capa­
bility of CSDP. This incremental development of the system 
enabled portions of CSDP to be used in later development 
and testing of the system. 

The first Build consisted of the Tool Manager and modules 
from the subsystems interface (the Environment), the user 
interface (the Shell), and a subset ofthe complete Tool Kit, as 
shown in Figure 3. The virtual file system was provided along 

~~1~llr-1 PROJECT 

L£GEND [{{:::::~:~~N ~ 
COMPLETE PARTlAL 

Figure 3-CSDP Build 1 

SUPPORT 

UBRARY 

with the capability to ready, suspend, and resume CSDP pro­
cesses in this Build. The tools included the text editor and 
formatter, which were then used by the CSDP developers in 
the continued implementation of the project. This also pro­
vided an opportunity for more extensive testing of the tools 
and other CSDP capabilities through continued exercise of 
these capabilities. At the completion of Build 1, the CSDP 
implementers were able to work a minimal CSDP system, 
using it to develop the remainder of the programming support 
environment. 

In the second Build, the modules from the first Build were 
expanded and new modules were added to enhance CSDP 
functional capabilities, as shown in Figure 4. A software data­
base (the PSL) was made available for managing the devel­
oping system. System statistics collection function, job sub­
mission through batch mode, an interactive help facility, and 
Shell Command Language processes were implemented. In 
addition, the rest of the tools to support software devel­
opment using CSDP were implemented in the second Build. 



LEGEND [tttf::;::j ~ 
COM~E PARTIAL 

Figure 4----CSDP Build 2 

The functionality provided by this second Build enabled even 
more effective and efficient production of the system. At this 
point, the Shell, Environment, Tool Manager, and Tool Set 
were complete and used in the completion of the PSL. 

The third Build added the complete functionality of the 
PSL, including all configuration management support for ver­
sion and history control. Stubs used in the earlier Builds were 
replaced, and the full capabilities of CSDP were realized. 

CONCLUSION 

The CSDP project provided an opportunity for the applica­
tion of a software development methodology as well as provid-

A JOVIAL Programming Support Environment 325 

ing automated tools to support the development. In particu­
lar, the Build approach to implementation was used to 
provide a minimal JOVIAL programming support en­
vironment used to complete the implementation of itself. That 
is, CSDP as a support environment was used in its own 
development. 

ACKNOWLEDGMENTS 

This work was supported in part by Rome Air Development 
Center under contract F30602-79-C-0051. 

REFERENCES 

1. Department of Defense, Requirements for An Ada Programming Support 
Environment-Stoneman, February 1980. 

2. Allshouse, R. A., D. T. McClellan, G. E. Prine, C. P. Rolla. "CSDP as an 
Ada Environment." Proceedings of the Ada Environment Workshop, No­
vember, 1979. 

3. Dolotta, T. A., R. C. Haight and J. R. Mashey. "The Programmers Work­
bench." The Bell System Technical Journal, Vol. 57, No.6, Part 2, July­
August, 1978. 

4. Computer Sciences Corporation. "Communications Software Development 
Package (CSDP}-SystemlSubsystem Specification." July, 1980. 

5. Fischer, K. F. and M. G. Walker. Digital Systems Development Meth­
odology. Computer Sciences Corporation, November, 1978. 

6. McMahon, E. M. "Software Development Environment at Computer Sci­
ences Corporation-A Case Study." Proceedings of the Fifteenth Annual 
Asilomar Conference on Circuits, Systems, and Computers, November, 
1981. 





The impact of Ada on software engineering 

by KENNETH L. BOWLES 
TeleSoft and University of California at San Diego 
San Diego, California 

ABSTRACT 

The term software engineering has traditionally been applied to extremely diverse 
activities, ranging from system programming to managing programmer teams. Ada 
appears destined to become the first widely used programming language designed 
to bring these diverse activities together in ways supported by both programmers 
and managers. Among many important aspects of the Ada language, the most 
important appear to be (1) its orientation to system construction using inter­
changeable building-block packages, and (2) strong standardization in the interest 
of program portability. These aspects should foster the emergence of a new kind of 
software component industry. A probable result will be an inversion of the tradi­
tional view of software as an added value for use on major hardware products. 
Instead, major machine-independent software systems will emerge, and hardware 
will be increasingly regarded as an added value. 

327 





BACKGROUND 

Software large enough to require more than a month or two 
of design and programming effort and/or the collaboration of 
two or more programmers tends to be one of the most 
complex engineering activities undertaken by human beings. 
Often the complexity is illusory and ill understood by the 
sponsors or managers of a project-not to mention the 
project's participants themselves. The problems that result 
typically include the following: 

1. Logical errors and unreliable program execution. Be­
cause computer systems are being used increasingly to 
control equipment or situations on which human life 
depends, the control and prevention of these errors is 
assuming great importance. 

2. Much higher costs to maintain a software system than to 
create the system in the first place. 

3. Great difficulties in project cost estimation and fre­
quently spectacular cost overruns. 

4. Frequent duplication of development efforts to accom­
plish tasks that are nearly identical on different machines 
or in differing application settings. 

5. Divergence of the program behavior actually achieved 
from the behavior intended by a project's sponsors. 

Characteristically, efforts to solve Problem 1 by increasing the 
size of one's programming staff results in retrogression be­
cause of the rapid escalation of required communication 
among the staff members. 

Engineering is the art of applying relevant scientific knowl­
edge to the solution of real-world problems. In the case of 
software engineering, the relevant knowledge includes both 
program design techniques and methods for managing and 
enhancing the work of groups of cooperating people. The two 
fields are related because the available program design tech­
niques determine much of the style of interaction among the 
members of a design team. The Ada language design is the 
result of a major effort to distill the best current knowledge 
about programming language design into a single language 
powerful enough for use in embedded system design. In the 
second field a large-scale effort is under way to create a com­
prehensive set of software tools-called an Ada Programming 
Support Environment, or APSE-to serve both programmers 
and their managers. Both design efforts were initiated in the 
hope of alleviating the problems listed above. 

Neither Ada nor an APSE will provide automatic solutions 
to the list of problems cited above. It will still be possible for 
ill-disciplined programmers to write erroneous and unreliable 
programs, and in many cases it will still be very difficult for 
managers to control the errors or enhance the reliability of 

The Impact of Ada on Software Engineering 329 

products developed under their care. On the other hand, the 
combination of Ada and a disciplined programming style will 
make it easier for programmers to write correct programs. A 
good APSE will both enhance the productivity of the disci­
plined programmers and support effective management deci­
sions affecting those programmers. 

The Ada design has been criticized as too large and also 
somewhat dangerous for use in design of programs for which 
execution errors can be extremely expensive. The charge of 
excessive size has been debated extensively in the design pro­
cess, and the result is an engineering tradeoff that will be 
tested as the language comes into widespread use. Ada draws 
its design philosophy from Pascal and from a large number of 
more recent research languages derived from Pascal. Stan­
dard Pascal has been found too small for practical software 
engineering, and most practical implementations embody a 
diversity of extensions to the language, thereby making most 
implementations nonstandard. The Ada design can be viewed 
as an effort to collect the most commonly demanded Pascal 
extensions into a single internally consistent language for 
practical system programming. 

Whereas extended Pascal is unlikely to be covered by a 
widely implemented standard for many years, Ada is backed 
by a very strong standardization effort. All conforming imple­
mentations of Ada are expected to support the same lan­
guage, with neither subsets nor subsets considered conform­
ing. This approach is intended to permit the reuse of even 
large and complex Ada programs on many different machines 
and Ada implementations. Effective program portability was 
a major goal in the Ada design effort. To this observer, it 
seems unlikely that true portability can be achieved in a lan­
guage intended for a very wide range of practical applications 
without making that language somewhat larger than ideal for 
any single application area. Portability will be achieved at the 
expense of a number of generally minor inconsistencies in the 
Ada design. Acceptance of the remaining inconsistencies is a 
tradeoff between the time needed to create a fully consistent 
language and the need to begin using a better software en­
gineering language in the near future. 

The charge that Ada may be dangerous! seems curious in 
view of the lack of any other widely accepted language de­
signed to enforce program correctness. Ada permits handlers 
for run-time exceptions which, in Pascal, might cause abnor­
mal full termination of a program. Much of the charge against 
Ada is based on the concept that a programmer should be 
forced to test explicitly for any and all potential abnormal 
conditions (at least if he/she wishes to avoid full program 
termination). It is true that sloppy use of Ada exception hand­
lers could result in continued program execution while mask­
ing the existence of serious execution errors. On the other 
hand, disciplined use of exception handlers permits the main 



330 National Computer Conference, 1982 

(unexceptional) program flow to be more readable by elimi­
nating the intrusion of a large number of special-condition 
tests. Careful testing of an Ada module should insure that all 
possible exception conditions are properly handled. The Ada 
design encourages enumeration of the various possible excep­
tion conditions in each exception handler. Concentration of 
the programmer's attention on exception conditions in one 
part of a small module should be an aid to comprehensive 
checking for all possible errors, but it is not an automatic 
solution to the problem. One objection to ADA exception 
handlers is that their behavior is still ill-understood in the 
context of automated proofs of program correctness. It is 
debatable whether such proofs will soon be well understood in 
complex real-time applications, with or without exception 
handlers. 

PROGRAM MODULARITY­
PROGRAMMER INTERACTIONS 

Perhaps the most important style issue in software engineer­
ing is the manner in which large programs are broken into 
modular pieces. Questions of modularity arise at several dif­
ferent levels of detail, such as the following, starting with the 
most detailed: 

1. Isolation of small program control sequences in such a 
way that only one entry point and one exit point are 
used. This is one of the two main ideas on which the 
structured programming movement has been based. 2 

2. Isolation of related data objects in named data structures 
definable by the programmer. Again a part of structured 
programming. 2 

3. The recognition of distinct algorithms which can be iso­
lated in their own subprograms. Reasons for using sub­
programs range from a desire to improve program clarity 
through the hiding of unnecessary details to an avoid­
ance of duplicated program sequences. 

4. The separation of major groupings of routines and data 
from other parts of a large program or system. Objec­
tives range from the need to cope with limited main 
memory to a desire to subdivide the design work among 
several programmers. 

The key idea running through all of these is the hiding of 
details except in localized areas where they can be handled in 
limited quantity.3 We human beings can concentrate on only 
a limited amount of detailed information at one time in our 
short-term memory. Other information, stored in our long­
term memory, can be retrieved and actively used only at the 
expense of the displacement of other details from short-term 
memory. When concentrating on the overall structure of a 
complete system, or even on a subsystem, we must use ab­
stract names and concepts to represent the details present at 
lower levels. When concentrating on a detailed level, we must 
put aside direct consideration of the overall structure. 

The need for information hiding, and for isolation of modu­
lar groupings of details, arises not only because of the limits 
of human short-term memory, but also because of the high 
human communication overhead associated with the division 
of labor among several people working on a common project. 

Whenever detailed information needs to be shared by two or 
more programmers, an effort is needed to insure that all par­
ticipants have the same view of those details. Any change in 
the common information by one programmer must be re­
viewed with the others-often leading either to changes by 
several programmers to accomodate the revision or to argu­
ments about the best way to confront the new situation. 

The Pascal and C languages are probably the most widely 
used prototypical implementations of the first three program 
modularity concepts enumerated above. Both suffer in the 
fourth area, groupings of routines, because efficient commu­
nication among such groupings requires the use of shared data 
objects in common global areas of memory. At best, the 
shared data objects must be the subject of continuing commu­
nication among the several programmers on a team. At worst, 
the use of shared data objects is an invitation to programmer 
errors that result from an overload of detailed information, 
afflicting both individual programmers and groups of pro­
grammers. Insofar as it deals with the first three listed areas 
of program modularity, the Ada language is very similar to 
Pascal. 

For some applications, the UNIX operating system pro­
vides an effective solution to the fourth modularity problem 
through the mechanism of pipes. The standard text stream 
output of one small UNIX program component can easily be 
connected via a pipe to the standard text stream input port of 
another program. From two to many such programs can be 
connected via a single pipe. This leads to a highly modular 
style of programming, described by Kernighan and Plauger. 4 

The UNIX pipe is a simple, easily described and understood 
abstraction for the interconnection of otherwise independent 
program components. All detail shared between these com­
ponents is conveyed in the text stream passed via the pipe. To 
be useful, the logical structure of a text stream emitted by a 
program component must be well understood. The pro­
grammer writing a component designed to receive that text 
stream as input needs no other information about the emitting 
program. Indeed, many service program tools are designed to 
cope with text streams coming from a wide variety of sources, 
with no knowledge of details regarding those sources. The 
simplicity and generality of the pipe mechanism in UNIX 
permits the intermingling of program components written in 
C, Pascal, RATFOR (Rational Fortran, including various 
structured programming control constructs), and other lan­
guages. However, pipes are inefficient for many applications, 
and they often hide important information on data types that 
really should be communicated between modules. 

Ada modules, i.e., both packages and tasks, are designed to 
meet needs associated with the fourth style issue listed at the 
beginning of this section. An Ada package is a collection of 
related subprograms, data objects, types, and constants, all of 
which can be separately compiled and stored in a library for 
later use. Most details regarding a package are hidden within 
the body part of the package and are not available for use or 
inspection by a using program. Only those carefully chosen 
details that the package writer wants used as an interface to 
the package are placed in the specification part of the package 
and thus made available to the using programs. 

Many of the concepts that led to the design of Ada packages 
were drawn from research on abstract data types. 5 For exam-



pIe, an Ada package can "export" a data type declared to be 
"private." This allows using programs to declare objects of 
that type but forces all operations on data stored within those 
objects to be performed by the package. Indeed, Ada permits 
alterations (and recompilation) to be made in the body part of 
a package without affecting the specified interface. Thus, de­
tails on possibly changing internal structures associated with 
the data objects can be isoiated in the package-and are of 
little or no concern to users of the package. 

Ada tasks are superficially similar to packages but are in­
tended to run concurrently as semi-independent program 
components. The formal interface to a task is limited to a set 
of entries that have the appearance of procedure headings. 
Ada tasks generally are expected to serve other program com­
ponents via calls to these entries. Data flow to and from a 
server task during the parameter passing that takes place in 
the rendezvous of the server with a client task. 

The syntax of Ada module interfaces provides no guarantee 
that unnecessary details will be hidden to the maximum de­
gree possible nor that the high overhead of programmer inter­
actions will be minimized. Indeed, with very little effort it is 
possible for a team of Ada programmers to run into most of 
the structural problems that cause errors using earlier pro­
gramming languages. On the other hand, it does appear that 
a style of programming can be developed to make use of Ada 
in such a way as to accomplish the following: 

1. Minimize the interaction of programmers working on 
separate modules. 

2. Maximize the possibility of independent changes for 
maintaining the bodies of separate modules; without af­
fecting programs that use those modules. 

3. Maximize the possibility that suites of test programs can 
be used to insure correct operation of each substantial 
module of a large system-and that human designers will 
understand the implications regarding the whole system. 

Early experience in the use of Ada for design of large 
systems suggests that the necessary new style of programming 
demands substantially more advance planning before actual 
coding begins than does more traditional programming prac­
tice. The management school of software engineering has ar­
gued in favor of advance planning for some time. Earlyexperi­
ence with Ada has made the benefits of careful design of 
module interfaces easily apparent to programmers. Though 
the effort to produce those interfaces in a consistent way is 
relatively large, the actual implementation of the underlying 
module bodies then turns out to be relatively simple. More­
over, the module interfaces are typically written at a level of 
detail easily understood by managers. As a result, the system 
granularity resulting from this style of Ada programming 
should lead to better programmer/manager interactions. 

SOFTWARE COMPONENTS INDUSTRY 

Most software products sold today are complete programs. 
The idea of a software components industry, or marketplace 
in which building-block software components are sold inde­
pendently, was suggested by M. D. McIlroy.6 Since that time 

The Impact of Ada on Software Engineering 331 

a flourishing marketplace has developed in building-block sys­
tem components on printed circuit boards for use with several 
popular interconnecting bus standards. McIlroy's idea was 
that a similar marketplace should be available for the inter­
change of software system components roughly equal in com­
plexity to the board components. Implementation of that idea 
in connection with uses of the UNIX operating system within 
the Bell Telephone System (see, for example, Kernighan and 
Plauger4

) appears to have been very successful. However, the 
interchange of UNIX program components among users in 
general has remained informal and largely noncommercial. 
As described earlier, interchangeable UNIX components are 
generally connected by pipes-a useful mechanism for trans­
mitting streams of text between components, but of limited 
utility in many other applications. In spite of that limitation, 
the rapid acceptance of UNIX for the current generation of 
desktop work stations may well encourage the emergence of 
a commercial market in UNIX components. 

In principle, Ada modules can be interconnected in a wide 
variety of ways, including pipes. In practice, a flourishing 
market in Ada program components will only grow if most 
implementers adhere to a small number of conventionalized 
interconnection designs. The software components industry 
will require common bus designs similar to the standard bus 
designs that support the printed-circuit-components industry 
associated with single-board computers (SBCs). A hardware 
system design based on SBC components represents a trade­
off minimizing development time at the expense of opti­
mized performance. Similarly, a software system composed of 
building-block components connected by a general-purpose 
interconnection design will usually be completed in much less 
time, but perform somewhat less efficiently, than a system 
constructed specifically for the application at hand. 

Thus the economics surrounding the software components 
industry can be expected to be similar in this respect to that 
characterizing the SBC components industry. Frequently, the 
decision whether to use building-block components or a spe­
cific design will depend on the number of copies of the system 
projected for delivery to customers and on the time available 
for completion of the design. A small manufacturer of hard­
ware systems generally chooses a specific design if the number 
of system copies is projected to be in the thousands. The 
higher investment made in the design, compared with the use 
of building-block components, is then more than offset by the 
larger spread between manufacturing costs and prices paid by 
customers. If the expected number of identical system copies 
is only in the hundreds, the design cost per copy is a relatively 
large part of the potential sales price, and a design using 
commercially available building-block components becomes 
preferable. This suggests that system integrators will be will­
ing to pay per-copy royalties for the right to distribute hun­
dreds of copies of building-block software components. For 
projected duplication in the thousands (or more), integrators 
either will prefer to buy full rights to the software components 
they use, or will choose instead to develop the equivalent 
software in house. If the current shortage of qualified system 
programmers persists, as projected, integrators are likely to 
buy rights to fully developed software components rather than 
choosing in-house development, except for small parts specif­
ically related to the purpose of the final design. 



332 National Computer Conference, 1982 

Among the most important domains for interconnection of 
building-block software components will be that associated 
with user-defined data records. One of the strong principles 
behind the design of Ada (and before it, Pascal) is compile­
time checking to insure that incompatible data objects cannot 
be intermingled without explicit conversion instructions by 
the programmer. To be generally useful, a library of modules 
designed for use with data records will have to cope with data 
records of many different user-defined types. The following 
list gives examples of frequently needed modules: 

Sort and merge packages 
B-tree record storage and retrieval packages 
Index handler packages 
Data display and data capture packages 
Report writer programs 

Ada offers an alternative to the common method of using 
program generators to provide library modules like these. A 
program generator maps a user's input of specifications into a 
complete program written in one of the widely used pro­
gramming languages. The generated source program is then 
compiled normally, as if handwritten. This is a relatively 
clumsy method. Either a substantial repertoire of specialized 
program preparation tools is needed, or the user needs to 
master a substantial volume of detail to make use of a program 
generator. 

In Ada, these modules will commonly be provided as ge­
neric library packages. The user-defined record type of infor­
mation will be partially supplied as parameters passed to the 
generic packages when they are instantiated in the user's pro­
gram. However, an Ada generic library package will not be 
given direct access to the individual data fields within a user­
defined record. That access can be provided through a 
Record_Access package supplied by the user (i.e., by the 
programmer working as system integrator). Subprograms 
such as Store, Retrieve, and Compare will be provided by the 
Record_Access package interface for indirect access to the 
fields of a record. These subprograms will also have to be 
passed as generic parameters to each library package. AI-

though this implies processing overhead for accessing each 
field, it is a method that allows hiding details on how the data 
fields are stored except with the Recordj-\ccess package it­
self. Indeed, several different mappings of the same data 
items within different record formats could be used with the 
same set of generic iibrary packages without change. 

It may be seen that specifications for the interface part of 
the Record_Access package will provide the common meeting 
ground for both writers of the general-purpose library pack­
ages and writers of specific Record_Access package bodies. 
These specifications will take the role of a software bus for 
applications in the record domain. 

Easily understood interface conventions will also be needed 
in several other domains where building-block Ada com­
ponents are likely to be used extensively. For example: 

1. Message passing among the several layers of a handler 
for a communication protocol such as X.25 or Ethernet. 
Here the messages are likely to be passed as complete 
units rather than as character streams, as in a pipe. 

2. Packing and unpacking of data objects in the fixed-size 
information "containers" of a paged virtual-memory 
management scheme. 

3. Interface controllers for peripheral devices ranging from 
disks, printers, and CRT display terminals to laboratory 
instruments. 

REFERENCES 

1. Hoare, C. A. R. "The Emperor's Old Clothes." Communications of the 
ACM, 24 (1981), pp. 75-83. 

2. Dahl, O. J., E. W. Dijkstra, and C. A. R. Hoare. "Structured Program­
ming." New York: Academic Press, 1972. 

3. Parnas, D. "On the Criteria to Be Used in Decomposing Systems into 
Modules." Communications of the ACM. 15 (1972). pp. 1053-1058. 

4. Kernighan, B. W., and P. 1. Plauger. Software Tools. Reading, Massachu­
setts: Addison-Wesley, 1976. 

5. Shaw, M. "The Impact of Abstraction Concerns on Modern Programming 
Languages." Proceedings of the IEEE, 68 (1980), 1119-1130. 

6. McIlroy, M. D. "Mass Produced Software Components." Software En­
gineering, Report on NATO Conference, Garmisch, Germany (DBR), 
October 7-11, 1968. 



The importance of Ada programming support environments 

by THOMAS A. STANDISH 
University of California 
Irvine, California 

ABSTRACT 

In this paper it is argued that even if we assume the most optimistic scenario we can 
think up for the introduction of the Ada* language, the language alone, in the 
absence of an Ada Programming Support Environment (APSE), is insufficient to 
achieve the gains in programming productivity and software reliability with which 
use of Ada tantalizes us. 

Moreover, it is argued that the level of support envisaged in the Minimal Ada 
Programming Support Environment (MAPSE), specified in the STONEMAN, 
which provides a rudimentary level of capability incorporating a text editor, com­
piler, linker/loader, and symbolic debugger, is also insufficient; and that it is time 
to seize the opportunity to conceptualize what sort of advanced programming 
support tools should populate a mature APSE of high utility and effectiveness. In 
this context, consideration of support tools for software project management, inter­
active programming, modern programming practices, software reuse, and improved 
program understanding techniques arises. 

*Ada is a trademark of the United States Department of Defense (OUSDREAJPO). 

333 





WHY THE ADA LANGUAGE NEEDS AN APSE 

Suppose that the most optimistic scenario we can dream up for 
the introduction of the Ada language actually comes to pass. 
Will this be enough for us to reap the benefits we are hoping 
Ada can provide? 

In this paper, it shall be argued that the Ada language, 
considered as an isolated tool, cannot solve all of the problems 
of reliability, performance, and productivity that must be ad­
dressed if Ada is to succeed in realizing the high hopes some 
have for it. Rather, it is argued that Ada must be buttressed 
by powerful programming support environments that provide 
the means for performing a variety of essential tasks lying 
beyond the reach of programming languages. 

Defining an Ada Programming Support Environment 
(APSE) as the collection of tools, resources, procedures, and 
policies that support the development, repair, and upgrade of 
Ada software, it is argued that even more than the rudi­
mentary level of capability envisaged in the STONEMAN's 
Minimal Ada Programming Support Environment (MAPSE) 
is necessary if we are to achieve the significantly improved 
levels of programming productivity and software quality with 
which use of Ada beckons us. 

Thus, the central question that the paper addresses is: could 
the Ada environment be even more important than the Ada 
language in helping to achieve the benefits we seek from the 
use of Ada? 

First, for the purposes of setting an appropriate context for 
the subsequent discussion, let's conjure an optimistic scenario 
for successful introduction of the Ada language. 

An Optimistic Scenario 

Our optimistic scenario for the introduction of Ada consists 
of the assumption that we succeed in accomplishing the fol­
lowing steps: 

1. There would have to be success in establishing precise, 
comprehensible standards for the definition of Ada. If 
we don't know what Ada means, we can't write certified 
compilers which implement the common meaning and 
provide a framework for exchanging Ada programs. 

2. There would have to be success in writing certifiable Ada 
compilers which produce efficient, reliable running pro­
grams. (Note: the author is not so naive as to be unaware 
that the risk that we might fail in getting this far isn't 
entirely trivial; but the rest of the paper would be rather 
uninteresting if we don't assume we can reach at least a 
state of affairs where we have certified Ada compilers 
running on many computers of reasonable size. That is, 
if we lose the game by failing to define a standard and by 

Ada Programming Support Environments 335 

failing to implement certified compilers that achieve per­
formance and reliability, there is no point in discussing 
what must follow for the whole game to be won.) 

3. If certified Ada compilers run standard Ada on most 
machines of reasonable size, the best we can hope for is 
that a framework will be established permitting a flour­
ishing commerce of Ada programs. (Few people these 
days are so ill-informed as to think that having a pre­
cisely defined and implemented standard programming 
language will solve the program portability problem 
100%. After all, programs are written containing depen­
dencies on operating system calls, device characteristics, 
and other interface requirements that lie outside the 
scope of definition of a programming language. None­
theless certification, standardization, and widespread 
implementation of Ada compilers could help reduce the 
cost of program transfer, since machine dependencies 
could be isolated in Ada packages with invariant exter­
nal interfaces, and since some machine dependencies 
could be expressed using Ada representation specifica­
tions. This tells us that we might be able to reduce the 
cost of program transfer with Ada to a point at which it 
costs less to do it with Ada than with other approaches.) 

To continue by optimistic speculation, if Ada becomes 
widespread in use, begins to function as a medium of ex­
change, and opens up a substantial market for the sale and 
exchange of programs, what response might one assume from 
the free enterprise system? 

Perceiving that a wide market will exist for sales, here is a 
list of possibilities: (a) computer manufacturers would de­
velop certified Ada compilers for new computers; (b) software 
firms would develop and sell Ada programming support tools; 
(c) publishers would publish books and educational materials 
on Ada; (d) educators would introduce and teach Ada in 
programming courses (perceiving that Ada, in addition to 
being popular and useful, could be a good carrier of modern 
programming principles); and (e) enterprises could get Ada 
programmers, Ada compilers, and Ada programming support 
tools in the marketplace and could import and export Ada 
programs. 

To complete the optimistic scenario, we assume that some 
(but not necessarily all) of these economic consequences of 
the introduction of Ada take place. 

Ada is Still Not Enough! 

Even if an optimistic scenario such as this comes to pass, it 
is argued that the Ada language alone is not enough. More is 
needed. Here's why. 

Wonderful as they are, programming languages play only a 



336 National Computer Conference, 1982 

small role in the software life cycle. It is estimated, for in­
stance, that in software projects of substantial size, coding the 
design in a programming language accounts for only 15% of 
the total pre-release cost, and that the total pre-release cost 
may be only 10-30% of the total life cycle cost. 

Furthermore, many activities in the software life cycle are 
supported by tools, procedures, or policies that are not di­
rectly connected with the programming language( s) employed 
by the project. 

For instance, software project managers devise project 
schedules; manpower loading plans; milestone charts; and 
budgets for machine cycles, memory, and monetary re­
sources. They monitor tasks on the critical path, report on 
progress and resource consumption, incrementally shift re­
sources in response to perceived needs, and oversee the hiring 
and training of new project personnel. Recent evidence l sug­
gests that upward of 80% of software project failures are 
software management failures as opposed to technical fail­
ures. Few if any of these management activities depend in any 
essential way on the choice of the programming language. 

The system requirements and the system design may be 
expressed in natural language or in design representation no­
tations separate from the programming language; and activ­
ities such as requirements tracing and design reviews may take 
place using notations, language, and procedures entirely sep­
arate from those given by the programming language. 

Maintenance of current system documentation, module test 
sets, test completion status, and system configurations may 
depend more on database, word processing, and file system 
tools than on the programming language or on programming 
language support tools. 

Let's take a glimpse at some software economics, for a 
moment, to try to establish a framework in which we can 
discuss the relative importance of trying to introduce vari­

_ou'S kinds of support tools and policies into a programming 
environment. 

In the first place, the demand for computer instructions 
appears to be increasing rapaciously, and a serious shortfall of 
programmers to produce them exists in relation to demand. 

For instance, the number of instructions NASA used to 
support the Mercury, Gemini, Apollo, and Space Shuttle pro­
grams has been growing at 24-25 % per year for a couple of 
decades. While Gemini support took 1 million support in­
structions, and Apollo took 10 million, the Space Shuttle now 
takes 40 million. Most of the Space Shuttle instructions sup­
port ground launch and pre-launch check-out procedures and 
were designed to avoid the necessity of employing a ground 
launch support crew of 20,000 people. What is true for NASA 
appears to be true for the economy in general; namely, auto­
mation is being employed to avoid inefficient, labor-intensive 
production, and computers are being used to enhance product 
versatility and market appeal. Thus, the overall demand for 
computer instructions appears to be increasing in the neigh­
borhood of 10% per year in many industries, and the national 
demand for computer instructions may, in general, be grow­
ing somewhere near 20% per year. 

However, the supply of programmers is increasing perhaps 
only in the neighborhood of 5% per year, and programmer 
productivity has been falling! During the 1960s when high­
level languages were replacing assembly languages, program-

mer output (in delivered instructions per person year) was 
increasing at perhaps 8-11 % per year; but recently, the an­
nual increase has been estimated to be in the range of 4-5% 
per year. 

In short, given the poor prospects for increasing the output 
of new programmers from the educational system, there may 
be no alternative but to increase software productivity if the 
demand for production of computer instructions is to be met 
and if the shortfall in programmers will be a condition we will 
have to live with. 

How then do we address the problem of increasing produc­
tivity? One approach is to analyze the cost drivers that cor­
relate with the cost of software projects. In his new book, 
Software Engineering Economics 2 Barry Boehm introduces 
the COnstructive COst MOdel (COCOMO), which is a good 
fit to a database of measurements on 63 software projects 
spanning a range of different application areas. Briefly, one 
starts with a baseline estimation formula such as 

MM = 2.4(KDSI)**l.05 

giving an initial unadjusted estimate of the number of man­
months (MM) to complete a project as a function of the 
number of thousands of delivered source instructions (KDSI), 
and one multiplies by coefficients that determine whether the 
estimated man-months will increase or decrease as a function 
of measurable software project characteristics (which can be 
thought of as cost-drivers). The ratio between the best in­
crease and worst decrease in productivity for each cost-driver 
forms a productivity range. Examples of such productivity 
ranges are as follows: 

1.20-programming language experience 
1.32-turn-around time 
1.49-software tools 
l.51-modern programming practices 
1.57-applications experience 
2.36---product complexity 
4. 18-personnellteam capability 

Software Productivity Range 
(from cover of Boehm2) 

Some of these cost-drivers are controllables. That is, by in­
vesting to provide software project resources or by following 
certain project disciplines, we can control factors that enhance 
productivity. 

For instance, we could invest in good programming support 
equipment to give programmers excellent turn-around time. 
We could provide good software tools. We could train pro­
grammers to use the programming language well. We could 
adopt modern programming practices as a software project 
discipline, and we could attempt to select programmers with 
proven track records and applications experience, if possible. 
The cumulative effect of these measures on productivity could 
be very dramatic (e.g., factors of 4,8, or 10 could be achieved 
using the short list of measures just given), and these could 
easily dwarf any effects of choosing to use Ada or not. 

-In summary, we see that software productivity may depend 
heavily on the characteristics of the environment employed 



and not so heavily on the characteristics of the programming 
language employed. 

What is true for software productivity may be true to a 
lesser but still significant extent for software reliability and 
software performance. 

Software performance will obviously be influenced criti­
cally by whether or not it is possible to compile Ada source 
programs into compact, fast-running object programs. How­
ever, performance may also be influenced critically by 
whether or not the Ada Programming Support Environment 
provides effective tools to perform measurement and opti­
mization. Frequently, upwards of 90% of the execution costs 
are attributable to 7 to 10% of the code. Identifying and 
optimizing the critical sections has been found to be an effec­
tive way to improve performance. If the name of the game is 
measurement and tuning, both the programming support en­
vironment and the compiler must work together to provide 
the solution, with the environment furnishing performance 
measurement tools and the compiler providing optimizations. 
Where compiler optimizations are insufficient, the environ­
ment may make the key difference by providing source-to­
source program improvement transformations or by making 
manual program rewriting more manageable and systematic. 

Where software reliability is concerned, the programming 
language can play a key role in promoting reliability. Pro­
ponents of Ada have argued that Ada will promote reliability 
because it supports clean module interfaces and information 
hiding (through packages) and because it permits clear ex­
pression of control and data (through exceptions, tasking, and 
an extensive data type system). Opponents have argued that 
Ada programs may not be reliable because the language is too 
complex or may have ill-defined interactions between its fea­
tures. But we have all known reliable programs written in 
unreliable languages and unreliable programs written in reli­
able languages. Promoting reliability may have more to do 
with assuring clean designs and thorough testing than with the 
characteristics of the language in which the program is writ­
ten. It is the environment, not the language, which must pro­
vide tools and disciplines to perform design, design review, 
and testing. 

Thus, it could be that the reliability of Ada programs will be 
more dependent on the characteristics of the Ada Program­
ming Support Environment and the programmers who write 
them than on the characteristics of Ada itself. In summary, 
the success of Ada in promoting software reliability, per­
formance, and productivity depends critically on the char­
acteristics of APSEs. While Ada is clearly necessary for suc­
cess, even under the most optimistic scenario, Ada alone is 
insufficient. 

A BRIEF VIEW OF THE STONEMAN PHILOSOPHY 

The STONEMAN3 requirements document for APSEs speci­
fies three levels of structure: (a) a KAPSE or Kernel Ada 
Programming Support Environment, (b) a MAPSE or Mini­
mal Ada Programming Support Environment, and (c) the 
APSE itself. In a nutshell, the KAPSE provides basic oper­
ating system services and database capabilities and is intended 
to provide a machine-independent set of kernel services on 

Ada Programming Support Environments 337 

which APSEs may be built. The MAPSE provides minimal 
Ada programming support services such as: (a) a text editor, 
(b) an Ada compiler, (c) a linkerlloader, (d) an Ada debug­
ger, and (e) a command language interface (for logging on, 
calling tools, manipulating files, etc.). 

The STONEMAN philosophy, expressed in its so-called 
"strategy for advancement," envisages that the KAPSE can 
be implemented as a standard operating system kernel on 
many machines to provide a standard foundation for APSEs. 
If the KAPSE could be standardized and expressed as an Ada 
package, then all the KAPSE services and capabilities could 
be made available to Ada programs, and a major deterrent to 
program portability could be overcome. 

The MAPSE, if successful, could provide a means for using 
Ada as a systems programming language for implementing 
not only Ada applications programs, but also the tools that 
constitute the full APSE. Thus, one could get going by sup­
plying a rudimentary Ada programming environment (the 
MAPS E) , and one could bootstrap out of the rudimentary 
environment into an advanced APSE by using Ada as the 
systems programming language for populating the APSE with 
environment tools. Such tools could be compiled, loaded, and 
run on top of the MAPSE to form a highly portable APSE. 

APSE tools would thus be supplied in an Ada library avail­
able as a companion to the MAPSE. Current design efforts 
(the Army's ALS or Ada Language System and the USAF's 
AlE or Ada Integrated Environment) focus on providing the 
MAPSE-level capability specified in the STONEMAN but do 
not call for design of full APSE toolsets. 

While STONEMAN provides some guidance on what 
APSEs must support effectively (such as maintenance and 
configuration management), STONEMAN does not attempt 
to present an extensive or very refined view of how to popu­
late an APSE. 

At the moment, therefore, an important opportunity exists 
for conceptualizing what an advanced APSE should contain. 

Thus it is important to do our homework on what a full 
APSE should look like, and a number of important targets of 
opportunity come to mind. 

POSSIBLE TARGETS OF TECHNOLOGICAL 
OPPORTUNITY FOR APSES 

Interactive Programming 

Although it is hard to cite credible experiments that demon­
strate that interactive programming is more productive than 
batch programming, some experiments suggest an improve­
ment of roughly 33% if interactive programming is used in 
place of batch. 

Good interactive languages, such as APL and LISP, permit 
sophisticated and powerful actions to be taken by program­
mers while interacting with their programs. For example, at a 
point of suspension of a running program, a user at a terminal 
can do such things as: (a) print formatted values or texts of 
defined procedures; (b) define new procedures or assign new 
values to new variables; (c) perform queries ("Where am I?, 
Who calls this procedure? Who can read and set this vari­
able?"); (e) resume program execution at the point of sus-



338 National Computer Conference, 1982 

pension (or at other valid points of control); (f) call for expla­
nations to be printed from online manuals; and (g) set break­
points, traces, and performance measurement probes. 

It is rare that such interactive services are available to the 
user of a high-performance systems programming ianguage, 
such as JOVIAL, CMS-2, BLISS, C, Pascal, or MESA. In 
order to support queries and incremental changes character­
istic of interactive programming, programs must usually be 
represented in a somewhat elastic (and thus incrementally 
updatable and explicitly queriable) representation. Usually 
this implies that program representations must be interpreted 
to be executed. On the other hand, to get high performance, 
programs must usually be compiled into rigidly efficient ma­
chine code. Such machine code does not conveniently support 
incremental editing in source program terms, and it usually 
does not contain symbolic information discarded by compilers 
yet needed at run-time during interactive sessions to reply to 
user queries in source program terms. 

To the author's knowledge, nobody has succeeded satis­
factorily in providing the combined advantages of compiled 
systems programming language performance with the power 
of interactive language query and incremental change. There 
may be a considerable technological challenge in provid­
ing this kind of support for Ada (or for any other high-per­
formance systems programming language for that matter). 

Management Support 

If the evidence suggests that upward of 80% of software 
project failures are management failures and not technical 
failures, and that these failures result, in large measure, from 
ignoring software practices of proven effectiveness, what 
might we do to support project management so it can avoid 
well-known pitfalls? 

Might we ha,:,e online management interviews at the time a 
project is being organized to remind managers about software 
practices of proven effectiveness and to enable them to select 
thorough, effective project disciplines well-matched to a par­
ticular organization's characteristics? 

What sort of management support tools might help man­
agers devise project schedules, estimate resources required, 
make required reports, track project activities (monitoring 
especially the activities on the critical path), and adjust re­
sources incrementally to fit changing needs? 

Programming Methodologies? 

Should an APSE support a programming methodology? If 
so, should it try to support a standard one and encourage its 
use? For example, should an APSE provide for use of an 
Ada-based program design language (PDL) together with 
some sort of discipline for design composition, design review, 
and requirements tracing? 

Any suggestion that an APSE should support a standard 
programming methodology usually engenders heated oppo­
sition and dire warnings about the evils of premature stan­
dardization, and the points about such evils are usually well­
taken. However, it may be possible to phrase the policy on the 
use of such methodologies in order to overcome most of the 

objections. One might say, for instance, "Here is a recom­
mended methodology which is provided in the APSE library, 
and here are its abstract characteristics: (a) it provides a clear, 
comprehensible design representation, (b) it is accompanied 
by effective ways of getting design review by independent 
teams, and (c) one can determine which design modules are 
responsible for implementing which items of the system re­
quirements, and so on." An RFP might then specify the fol­
lowing: "You can propose either to use the recommended 
methodology or you can propose to use your own, but if you 
choose to use your own, you should give some justification as 
to how using your own meets the essential abstract charac­
teristics of the recommended one." 

Software Reuse 

Since the biggest cost-driver in software projects is the size 
of the software, any method that permits successful reuse of 
software to implement portions of a system dramatically in­
creases productivity. Although the idea of software reuse has 
been around for a long time, and although it works in limited 
application areas (typified by well-defined interface and com­
position paradigms and by libraries of useful, well-indexed, 
well-explained components), we do not generally build soft­
ware by assembling catalogued, prefabricated components. 
Getting software reuse methods to work as a general program 
composition technique may involve surmounting challenges 
such as finding ways to reuse designs and higher-level program 
abstractions and finding how to generate concrete refinements 
of the abstractions that meet the extraordinary variety of con­
crete usage constraints encountered in practice. Nonetheless, 
the payoff for finding an effective software-reuse technology 
would be dramatic, especially if performance measurement 
and certification were performed on all components entered 
into a component catalogue. 

Program Understanding 

Software maintenance accounts for 70 to 90% of the cost of 
the software life cycle for many large, long-lived systems. If, 
as recent evidence suggests, upward of half of the software 
maintenance time is devoted to trying to understand how a 
program works and what the effects of a proposed alteration 
would be, the activity of trying to understand programs and 
the effects of incremental program changes could be a domi­
nant cost-driver in the system life cycle. 

If this is the case, there might be an inviting technological 
target of opportunity in trying to devise ways of making it 
vastly less expensive and more effective to go about under­
standing programs. We might ask the following questions: 

1. How can we write comprehensible program descrip­
tions? 

2. Is paper a good container for program documentation, 
or can we do better by using a computer to store expla­
nations appropriate for different intended audiences and 
by computing various appropriate views for the different 
audiences? 

3. Given a projected software lifetime (and other appropri-



ate unit costs), what level of capitalization is appropriate 
for developing program explanations? 

4. Are there any techniques for "program archaeology," 
wherein, if we are confronted by an undocumented or 
poorly documented program, we could systematically go 
about trying to develop an understanding of it and 
whereby we could estimate the cost of doing so ahead of 
time? 

Advanced APSE Tool Sets 

What kinds of tools could an APSE provide the system 
builder? (Unfortunately, there is a great variety of answers to 
this question, and space does not permit the author to do 
more than provide a pointer or two to the literature. Two good 
sources that provide a variety of views and excellent bibli­
ographies are Hiinke4 and SIGSOFT. 5

) 

RISK AREAS IN APSE DEVELOPMENTS 

What are some of the risk areas that confront the develop­
ment of APSEs? Since this is highly speculative, the author 
prefers to give just two areas where he perceives risk: 

1. No KAPSE Standardization: What if the KAPSE never 
gets standardized? The KAPSE in STONEMAN is en­
visaged as a machine-independent Kernel operating sys­
tem and database support system. If it can be standard­
ized (with a machine-independent interface, given, for 
example, as an Ada package), one can write machine­
independent Ada programs which call on KAPSE ser­
vices in a standard notation (much as package Standard 
functions in Ada now), and such Ada programs will 
transfer to every machine on which an Ada compiler 
interfaces to a standard KAPSE. A special case of pro­
gram transfer of great interest is a full APSE with tools 
written in Ada and depending on KAPSE services for 
support. Thus, KAPSE standardization holds the key to 
the machine independence of APSEs and tp providing a 
powerful conduit for portability of Ada programs and 
environments. If the KAPSE cannot be standardized, 
can the market for APSE tools, which depends on hav­
ing a viable method for the exchange and portability of 
Ada programs, ever become an effective reality? 

2. Too Little and Too Late: What if some of the thirty or so 
current efforts to write Ada compilers succeed and seri-

Ada Programming Support Environments 339 

ous Ada programming begins before MAPSEs and 
APSEs can be designed, built, and used? If serious Ada 
programming begins starting with a compiler, does one 
not then tend to use the available tools in the de facto 
environment surrounding that compiler (meaning the 
text editors, file system, linkers, and so forth), and do 
not critical dependencies then develop which inhibit pro­
gram transfer to other different environments (with 
other different file system and operating system conven­
tions)? To what degree is the timeliness of APSE devel­
opment a critical factor in its possible success? 

CONCLUSIONS 

In conclusion, this paper argues that the benefits some seek 
for the introduction of Ada cannot be realized effectively 
without also introducing advanced APSEs that provide capa­
bilities well beyond the STONEMAN MAPSE level. Further­
more, the time is ripe to do our homework on what a full 
APSE should look like, and a number of inviting targets of 
technological opportunity present themselves. 

ACKNOWLEDGMENTS 

This work was supported by the Defense Advanced Research 
Projects Agency of the United States Department of Defense 
under contract MDA-903-82-C-0039 to the Irvine Program­
ming Environment Project. The views and conclusions con­
tained herein are those of the author and should not be inter­
preted as necessarily representing the official policies, either 
expressed or implied, of the Defense Advanced Research 
Projects Agency or the United States Government. 

REFERENCES 

1. Boehm, Barry. "Software Engineering as it is." 4th International Confer­
ence on Software Engineering, Munich, September 1979. 

2. Boehm, Barry. Software Engineering Economics. Englewood Cliffs, NJ: 
Prentice-Hall, 1981. 

3. Buton, J.N. and Druffel, L. E. "Requirements for an Ada Programming 
Support Environment, Rationale for Stoneman." Proceedings COMPSAC 
80, Chicago, Ill., October 1980. 

4. Hunke Horst. Software Engineering Environments. North Holland, Am­
sterdam, 1980. 

5. SIGSOFf. NBS Workshop Report on Programming Environments, Soft­
ware Engineering Notes, Vol. 6, No.4, August 1981. 





Challenges and requirements for new application generators 

by ALFONSO F. CARDENAS 
University of California, Los Angeles 
Los Angeles, California 

and 
WILLIAM P. GRAFTON 

Continental Airlines 
Los Angeles, California 

ABSTRACT 

The need for application generation as an alternative to the aging programming 
languages (COBOL, FORTRAN, PLIl, Pascal, etc.) is put forth. Major tech­
nologies that participate in the movement toward application generation are re­
viewed. A variety of technical problems that plague these individual technologies 
are identified. The problem of lack of standards in the participating technologies is 
discussed. A satisfactory application generator (AG) should synthesize the over­
whelming variety of services and individual technologies into a cohesive whole. The 
desired characteristics of an AG are indicated. Last, the resistance of programmers, 
analysts, and other specialists to embracing a new level of application development 
beyond handcoding in programming languages is indicated. 

341 





Challenges and Requirements for New Application Generators 343 

INTRODUCTION 

The last fifteen years have seen a gradual introduction of new 
techniques in application development. High-level procedural 
languages have largely replaced assembler languages for ap­
plication code. Complex operating systems have assumed 
most of the computer system management tasks, freeing ap­
plication programmers to concentrate on solving business 
problems. Standard sort programs, subroutine packages, util­
ity programs, access methods, and such have solved common, 
recurring problems once and for all. 

Generalized file-management systems have simplified re­
port programming and data manipulation for simple to 
moderately complex applications. Generalized database/data­
communication systems have made it feasible to put a whole 
enterprise on line. Data-dictionary/directory systems have of­
fered the potential for storing the definitions, relationships, 
and usage of all data in an organization. Database modeling 
technology permits an organization to be described in terms of 
its need for and use of information. 

Software development practices have emerged under the 
banner of software engineering. Structured programming, 
modular programming, top-down design, and so on are some 
of the developmen~ methodologies that have been advocated 
as enhancing software development productivity. However, 
the actual productivity enhancement realized has rarely been 
in terms of orders of magnitude. 

The Basic Approach Remains Unchanged 

These innovations, while encouraging, are merely refine­
ments of a basic approach to application development that has 
remained unchanged since the early days of data processing. 

We still analyze requirements, conduct a feasibility study, 
identify and evaluate alternatives, select a solution, prepare 
cost and schedule estimates, obtain budgetary and staffing 
approval, design the external and internal system specifica­
tions, write and check out detail procedural cQde, publish 
program and system documentation, conduct exhaustive test­
ing, train the user and operators to run the system, and finally 
implement. By this time the environment has often changed, 
the schedule has slipped, the budget has been exceeded, the 
user is unhappy, the DP staff has turned over, and we are 
ready to begin again. 1

,2 

The Basic Approach Is Unsatisfactory 

A strong case can be made for the proposition that this 
approach is unsatisfactory in several important ways: 

1. It is not responsive. The process just described generally 
requires months or years to produce a usable application 

system. The time required from the recognition of a 
user requirement until a computer-based solution is 
available is perceived as excessive and unacceptable by 
many users, and the data-processing organization is 
universally regarded as being unresponsive to user 
requirements. 

2. It handles changes poorly. The basic application­
development process is inherently weak in its ability to 
handle changes in design. The further along in the devel­
opment cycle an application project progresses, the 
greater the impact of a change. Environmental changes, 
misunderstanding of problems, new or improved ideas, 
and errors in communication will inevitably lead to the 
need for changes; the result is rework, schedule slip­
pages, cost overruns, and frustration. The response of 
data-processing organizations has been to lengthen and 
formalize the front end phases of the process in an at­
tempt to obtain specifications from the user that amount 
to a signed contract. 3 While this may help in avoiding 
unnecessary changes and may assist in fixing respon­
sibility for changes that do occur, it does not address the 
underlying problem. 

3. It results in a backlog of undeveloped systems. The pro­
cess is so labor intensive, and the skills involved are so 
scarce and so expensive, that most organizations simply 
cannot put together an application-development staff of 
the quality and quantity needed to meet user require­
ments. This results in a backlog of undeveloped appli­
cations, failure to exploit the potential of the comput­
ing system, and a general dissatisfaction with data 
processing. 

4. It produces systems that are difficult to maintain. The 
difficulty of change noted above does not only im'pact 
development; it follows a conventionally developed sys­
tem throughout its life. Maintaining production applica­
tions occupies a major part of a data-processing orga­
nization's time. It is often estimated as requiring 70 to 80 
percent of programming resources. The culprit seems to 
be the procedural coding technique, which requires hu­
man definition, in extreme detail, of exactly how the 
application is to be processed. Designing ease of mainte­
nance into a procedurally coded system requires time, 
talent, and foresight, and these resources are usually in 
short supply in a development project. 

A New Approach Is Necessary 

What is needed is a new capability that will overcome the 
problems and break the logjam in application development 
and maintenance. Application systems should be produced 
directly from their specifications without the need for pro-



344 National Computer Conference, 1982 

cedural coding and lengthy testing. This capability is of course 
the subject under discussion-the application generator 
(AG). The call for automatic production of applications di­
rectly from their specification is not new. Various authors and 
efforts in the past have worked toward this.4, 5, 6, 7, 8, 9, 10 

CURRENT APPLICATION-GENERATION 
TECHNOLOGY 

Under the broad category of application-generation tech­
nology we can identify the following major technologies and 
emerging product lines. 

Turnkey Applications Software 

A variety of proprietary software packages are available, 
usually from software houses (for example, most of the bread 
and butter business applications such as payroll, order entry, 
inventory control, and invoicing). 

Turnkey applications usually offer only a limited range of 
customizing options in the final application. The range of 
features is very fixed and is mostly limited to cosmetic changes 
(e.g., names of fields in files but no changes in the structure 
of the files). Significant changes required in the application 
necessitate hand coding via "user exits" or recoding of the 
code "generated." Thus, turnkey software cannot be classi­
fied as a full-fledged application-generation technology. 

As a consequence, the prime ciients for such software are 
organizations that, since they do not wish to develop their own 
special systems, are willing to adjust or even change signifi­
cantly their usual systems or procedures to fit the turnkey 
software. A small company today can obtain a set of related 
turnkey applications for as little as $15,000 to $25,000. 

Self-customizing Applications 

Self-customizing applications or application customizers 
have the characteristic that the structure of the programs that 
make up the applications can be changed significantly to fit a 
customer. It is not a matter of just changing a few parameters 
or making rather cosmetic changes that may be required by a 
client. It is the capability of allowing significant structural 
changes that is required. This is a fundamental capability of 
self-customizing applications. 

The changes are to be done automatically by the customizer 
without programmer intervention at the programming­
language level. A few customizers have been reported in the 
literature: for example, IBM's Application Customizer Ser­
vice (ACS) for System /3 environments,l1 Distribution System 
Simulator,12 and "programming-by-questionnaire" efforts. 6 

Most special-purpose languages fall in the category of self­
customizing applications. For example, there are GPSS and 
SIMSCRIPT for discrete system simulation and CSSL and 
CSMP for solving ordinary differential equations. 

Generalized File-Management Systems (GFMS's) and 
Sophisticated Report Writers 

This technology excels in report writing, sorting/merging, 
and related tasks, usually against existing files and databases. 

In contrast to turnkey and application-customizing tech­
nologies, this technology is not application specific, that is, it 
can apply to completely different application areas, such as 
sales/marketing analysis and real-time spacecraft data analy­
sis. The GFMS adapts itself to the application by means of 
detailed data definitions and high-level, nonprocedural in­
structions provided by the user at execution time (e. g., "select 
all invoices greater than 6 weeks past due"). Prime examples 
of such technology are Informatics' Mark IV, ASI's ASI-ST, 
and Cullinane's Culprit. Experience has shown that GFMS's 
provide productivity gains over using conventional pro­
gramming languages (COBOL, PLll, FORTRAN, etc.) of on 
the average 8 to 1 in a significant percentage of the bread and 
butter applications of an organization. By productivity is 
meant the elapsed time and person/days required to do the 
job. GFMS's are mostly used by medium to large or­
ganizations with a major investment in EDP. There are 
probably from 3000 to 4000 installed GFMS's. 

Query Language Processors 

This technology has emerged with generalized database 
management systems (GDBMS's) to provide high-level and 
intelligent data retrieval and update (write, modify, delete) 
capabilities over a database. Query languages are transaction/ 
record oriented as opposed to GFMS's, which are batch 
report/full file oriented. They are particularly effective in on­
line, interactive applications not requiring the data volumes or 
complex report writing, sorting/merging, and so on where 
GFMS's excel. Without a query langauge, a nonsimple re­
quest for data from a database would require a number of 
statements in the programming language and in the pro­
cedural data manipulation language of the GDBMS (e.g., 
DLil in IMS, DML in CODASYL GDBMS). The more in­
telligent query processors, and in particular those furnished 
with the newer relational GDBMS's such as IBM's QBE13 and 
SQLlDS,14 automatically generate the commands that would 
otherwise have to be hand-coded by a programmer-user to 
obtain the answer. An example of a nonsimple data request 
that illustrates this point is the often-quoted "list the names of 
all employees whose salary is more than that of their manag­
ers, and list also the corresponding manager names." 

Application Development Systems (ADS's) 

This is a nebulous area of more recent activity than the 
previous technologies. ADS's are attempting to automate 
some of the tasks involved in developing more advanced appli­
cations involving online, screen-dialogue, and database envi­
ronments. Specific examples are the American Management 
Systems Generation Five (possibly),13 IBM's Application De­
velopment Facility, 16 Cullinane's Application Development 
System,17 and Informatics' Mark V. 18 These systems provide 
a variety of tools that have shown significant gains in pro­
grammer productivity in developing applications for a 
database-communications environment. 19,20 Libraries of pre­
canned code for frequently used database I/O, screen format­
ting, auditing, and so on can be invoked by the application 
developer, thus reducing total programming time and effort. 



Challenges and Requirements for New Application Generators 345 

Thus far, these new systems have been developed for use with 
specific GDBMS and data-communications facilities. 

Other Generators 

Data-dictionary/directory systems (DDS's) have emerged 
recently as central tools in a database environment. Descrip­
tions of data residing in databases, of application programs, of 
users involved, of the terminal network, and so on are con­
centrated in the DDS. The DDS can then generate the record 
descriptions and file descriptions (FD's) for application 
programs, as well as schema and subschema descriptions in 
the language of the particular GDBMS to which the DDS 
interfaces. 

A number of other less encompassing code-generation aids 
that do not fit well in the previous categories have been devel­
oped and are in some use. 8 Two of these are 

1. Decision table packages that can generate procedural 
code based on the logic defined in a decision table 

2. COBOL aids and COBOL precompilers such as ADR's 
METACOBOL 

However, their program-generation capability is usually 
limited to only narrow portions of the complete application 
required. 

At the R&D and futuristic end of the spectrum lie efforts on 
automatic programming conducted by the artificial intel­
ligence community. However, such exciting possibilities con­
tinue in the research stages, are highly speculative and still 
long range, and remain to be proven in practical commercial 
situations. 

PROBLEMS OF CURRENT APPLICATION 
GENERATION TECHNOLOGY 

A number of problems are observed in much of the current 
application development software. 

1. The large majority of turnkey applications software and 
self-customizing applications do not use database man­
agement systems. Neither the generators themselves nor 
the applications that they generate enjoy the benefits of 
GDBMS, such as data independence, relatability be­
tween files, access flexibility through query languages, 
and performance and efficiency, etc. This is rather sur­
prising, since a number of the flexibilities provided by a 
GDBMS would tend to enhance the range of services and 
customizing provided by the turnkey or self-customizing 
applications software. A major reason for the current 
situation is that conversion of software to a database 
environment usually requires reprogramming of the soft­
ware. In addition, if the vendor wishes to penetrate the 
full database market, it must either provide a version for 
all of the popular GDBMS's (e.g., IMS, TOTAL, IDMS, 
ADABAS) or utilize a generalized GDBMS interface 
with a translation bridge for each GDBMS supported, 
accepting some loss of function and performance as a 
result. This is a very expensive process that most vendors 

of such software have not been willing to undertake or 
able to justify. Nevertheless, it is expected that the bulk 
of such software will eventually evolve toward databases, 
just as the bulk of hand-coded applications software is 
evolving (actually, being largely reprogrammed) toward 
databases. 

User companies that have entered the world of data­
bases will very likely find it undesirable to make use of 
application generators if the code generated is not data­
base oriented. Only in the case that the applications gen­
erated have no connectivity to other database applica­
tions and do not use or interact with data from existing 
databases will non-database application generators be 
attractive. However, there may be various applications 
that can have such isolation, so non-database application 
generators can not be automatically ruled out. 

2. The few turnkey applications software systems and self­
customizing applications that do use or interface with 
GDBMS's usually select the one or two most widely 
used GDBMS's to work with, namely, IB~1's IMS and 
Cincom's TOTAL. The CODASYL standard is followed 
by a significant number of GDBMS's but not by IMS or 
TOTAL. Applications software targeted at non­
CODASYL systems is thus tightly cemented to a specific 
GDBMS and its vendor. Vendors of turnkey software 
and application generators face the same question that 
everybody else faces: which GDBMS should be used? 
For the vendor it makes sense to interface with the 
GDBMS in widest use. 

The same can be said of GFMS's regarding their use of 
database technology. They usually provide interfaces to 
work only with databases under IMS and TOTAL. There 
are only a few exceptions at this stage of evolution, sig­
nificant ones being Cullinane's Culprit and IDMS (a 
CODASYL GDBMS). 

3. Applications are evolving toward not only database but 
also data-communication environments. Users are in­
creasingly demanding online terminal access and remote 
access through communication lines. This leads toward 
the need for generalized software for data communi­
cation, for example, IBM's CICS and Cincom's ENVI­
RON. Such generalized data-communication systems 
(GDCS's) are unfortunately incompatible with one an­
other because no standard exists. Thus, any choice by a 
vendor of the turnkey software or of a customized appli­
cation generator essentially cements the software to the 
particular data-communication system chosen. There is a 
trend to choose IBM's CICS because it is the most com­
monly used of the data-communication systems. 

4. Turnkey software and application generators may claim 
to have built in their own database and data-communi­
cations (DB/DC) facilities. This means that part of the 
software generated for a client includes the DBIDC facil­
ities. It is very doubtful that these generated DBIDC 
facilities match up to the power of the acknowledged 
generalized DBIDC systems. However, this approach 
may (a) enable the generated software to be independent 
of the variety of full GDBMS' and GDCS's in the market 
place, and (b) enjoy custom DBIDC horsepower. But 
what if, as most likely is the case with medium to large 



346 National Computer Conference, 1982 

organizations, the application software generated is to 
use a shared database under a GDBMS and not be iso­
lated from other hand-coded applications using the data­
base? Now we have an interface problem to solve, and it 
is not a minor one. 

5. There is no standard for report writers and the more 
sophisticated GFMS's. Consequently, all GFMS's differ 
in syntax, semantics, and features (although functionally 
they pursue the same goals). The architect of an applica­
tion generator faces the same problem that the architect 
of an application faces: which GFMS to use. Once one 
is chosen, the generator or application is cemented to it. 
To no longer use the specific GFMS would mean re­
programming for another GFMS, or reprogramming by 
hand-coding in a conventional programming language, 
which might cost much more than reprogramming for 
another GFMS. 

It is observed that many millions of dollars invested in 
hand-coded applications and also in turnkey software 
and application customizers could have been saved by 
the use of report writers and, particularly, sophisticated 
GFMS's. What applications do not involve report 
writing, sorting/merging, and so on? We seem to be 
reinventing the wheel all the time by hand-coding these 
tasks. The lack of a standard for generalized report 
writers and GFMS's has contributed much to the 
problem. 

6. There is no standard for query languages. Even the 
CODASYL standard followed by a significant number 
of GDBMS's does not specify a query language. Prac­
tically all GDBMS vendors now market a query lan­
guage with their GDBMS's. Unfortunately, all of the 
query languages are incompatible with one another, 
even among CODASYL GDBMS's. It would make 
much sense to be able to use the same high-level, non­
procedural query language, or maybe two or three at the 
very most, to access data from databases with little or no 
concern for the particular GDBMS managing the data­
base. Unfortunately, in the 1970's we fell into the prac­
tice of developing essentially n query languages for n 
GDBMS's, rather than 1, 2, or 3 query languages for 
most of the GDBMS's. 

The trend toward relational query languages and 
GDBMS's may be a way out of the dilemma. Un­
fortunately, no standard for the relational architecture 
has been developed yet. Consequently, it is to be ex­
pected that incompatibility will predominate even 
among the new relational GDBMS's or reiational query 
languages that may be developed on top of enhanced 
existing GDBMS's. 

DESIRED CHARACTERISTICS OF AN APPLICATION 
GENERATOR 

1. It should be a system. As indicated in previous sections, 
we have a significant and rather overwhelming variety of 
tools that go beyond the aging programming languages. 
Worse still, the standards for such tools are few. As a 
result, questions of overlap, incompatibility, what com­
plements what, what interfaces are needed from whom, 

and so on make the task of the individual application 
architect most difficult. 

A satisfactory AG should synthesize all of the avail­
able services and productivity tools into a cohesive 
whole. It should be the driving force that ties the devel­
opment process together. It is thus a system, not merely 
an application package. 

2. It should be databased. A reasonable requirement for 
generated applications is that they be databased systems. 
If an organization's data and relationships are prede­
fined and the data may be accessed by a GDBMS, then 
the problem of generating systems to manipulate the 
data is greatly simplified. If an enterprise intends to use 
an AG, it should also do some sort of information mod­
eling, design major subject databases, install a GDBMS, 
and develop detailed "families" of operational databases 
in parallel with the implementation and use of the AG. 
A data-dictionary/directory is also indicated, either as an 
integral part of the GDBMS, as a part of the AG, or as 
a separate package. 

Subject databases are beginning to attract attention, 
and products are beginning to emerge. An example is 
Cullinane's Integrated Manufacturing System (CIMS), 
which embodies the structures of a manufacturing data­
base.21 Subject databases should be a good start and a 
more attractive alternative than starting from scratch for 
a significant portion of the market. 

3. It should interface with GDBMS. The AG should use the 
GDBMS but should not be dependent on any specific 
GDBMS product. This means that the AG developer 
will have to build the system to be "GDBMS indepen­
dent." An interface module will have to be supplied to 
bridge between the AG and the more popular GDBMS's 
such as IMS, IDMS, and TOTAL. Interface module 
specifications should be made available so that software 
vendors, user groups, and so on may develop interfaces 
with other GDBMS products. An interesting possibility 
in this direction is the Informatics' TAPS interface pack­
age, 22 offered to software vendors as a means of making 
their products DBIDC independent. 

Unfortunately, current application-generation soft­
ware packages that embrace databases seem to be tied 
either to a specific GDBMS or to their own database 
facilities. 

4. It should emphasize terminal-based applications. The 
AG should recognize that more and more applications 
will be on line and terminal based, and its architecture 
should emphasize this type of development. Fortunately, 
report-based batch type applications can be viewed as 
essentially a subset of the more complex terminal-based 
transaction type applications, and a system that has been 
designed to produce terminal-based applications can be 
extended to produce report-based applications with mi­
nor extra effort on the part of the system vendor. Specif­
ically, the following facilities can be envisioned. 
a. Screen-format designer aid. Terminal-based applica­

tion generation should begin with a user-oriented 
definition of the input and output terminal dialogs 
(i.e., screen formats) involved. The AG should in­
clude a screen-format design aid in its architecture. 



Challenges and Requirements for New Application Generators 347 

This facility would permit the application designer to 
enter on line to the AG the exact formats desired, 
including data names, screen placement, and attri­
bute characteristics. The AG would in turn obtain 
data characteristics from the data dictionary and/or 
database schema, perform editing, error checking, 
and standards verification, and return a "picture" of 
the desired formats to the designer, repeating the 
process interactively until the design is satisfactory. 
The AG would then create correct input data for 
whatever screen-format generation process is used by 
the DC system involved (e.g., Message Format Ser­
vice in IMS/DC, Basic Mapping Support in CICS). 

b. Batch application I/O descriptions using GFMS. The 
input/output specifications for batch applications 
should be developed by the AG using analogous tech­
niques. A GFMS facility should be part of the AG, 
and it should use input transaction record descrip­
tions and output report formats in the same manner 
as input and output screen descriptions. 

5. It should include data-flow fallout from user I/O specifi­
cations. The information developed in the input/output 
specifications should be used directly by the AG as the 
foundation of the input-process-output data-flow specifi­
cations of the application. Data requirements that can­
not be inferred from the I/O specifications should be 
added by the application designer in terms of what data 
are needed. Given the data-element names the AG 
should be able to determine the data format, where it 
resides, and how to access it. It should be nqted that all 
information supplied by the application designer is ma­
chine readable and nonprocedural. 

6. It should include nonprocedural data manipulation. 
Data-manipulation requirements should be defined to 
the AG through a menu or decision table. The associ­
ated data-manipulation code should be generated by the 
AG from a library of "canned" modules. Perhaps the 
AG should include a standard global set of such rou­
tines, with extra-cost options being available for various 
industry groups. The AG standards and interfaces 
should encourage easy library expansion of data manip­
ulation capability by in-house development, user groups, 
software houses, and the product vendor. User exits 
should also be provided for custom-coded procedural 
language modules as required. 

PROTOTYPE APPLICATION DEVELOPMENT 
SUPPORT 

One of the greatest potential benefits of AG's is in their ability 
to reduce the impact of change on the application-develop­
ment process. 

Heuristic Development 

It is un arguably true that users often do not know precisely 
what they need, that system developers often design a less 
than optimal solution, and that the application environment 
often changes during or soon after development. It is also true 

that great benefits would often accrue if an application c~uld 
be implemented quickly, albeit inefficiently, and optimized 
later. It would thus be desirable to develop applications on an 
iterative heuristic basis if feasible. The AG offers the potential 
to do this. 

"Prototype" Development 

AG architecture should include heavy support for "proto­
type" application development for "quick and dirty" imple­
mentation, followed by migration later to more efficient im­
plementation, where indicated. Features of such support 
might include: 

1. DB space "for rent" in standard formats 
2. Interpretive processing 
3. Global screen formats 
4. Application invocation of query facility 
5. Effective monitoring and reporting of resource utiliza­

tion, so as to highlight hogs and assist cleanup 

Prototyping Scenario 

In a typical scenario, the user and the application designer 
would discuss requirements and specifications. They would 
then use a terminal to define data elements, relationships, and 
space requirements in a temporary generalized database that 
was already in place. Next they would customize a few global 
screen formats to meet application needs. This would be fol­
lowed by definition of data-manipulation instructions to an 
interpretive processor and the query facility. Preparation and 
input of data would follow. The application would now be 
ready to check out and use. Elapsed time would vary from a 
few hours to a few days, depending upon complexity. Proba­
bly response time would be slow for high-volume production, 
and resource consumption would be relatively high. But the 
user would be up and running and happy. He/she could easily 
make changes or do the whole system over if necessary. When 
the user was satisfied, the system could be regenerated on a 
permanent basis, perhaps as part of an integrated system and! 
or database plan. 

IMPROVED APPLICATION MAINTENANCE 

Another major benefit of the AG is in the area of application 
maintenance. Since there is little or no procedural code in­
volved, application changes as a result of specification mod­
ifications should be greatly simplified. The AG vendor should 
design maintenance aids into the system, including automated 
documentation support, change-control and audit-trail facili­
ties, and data-dictionary interface. 

HUMAN BARRIERS AGAINST NEW SOFTWARE 
PRODUCTION TECHNOLOGIES 

The introduction of new software-production technologies 
faces various challenges. One major challenge is the re­
sistance of programmers, analysts, and other specialists whose 



348 National Computer Conference, 1982 

activities are directly affected by such technologies. Years 
ago one frequently heard the words "assembly programmers 
die hard" as we were leaving behind assembly programming 
and evolving toward higher-level languages such as COBOL 
and FORTRAN. Now we can perhaps observe that "COBOL 
programmers die even harder" as we are trying to leave 
behind programming in the conventional COBOL, FOR­
TRAN, and such and evolve toward another level of software 
development. 

One significant technology that is part of the wave toward 
replacing conventional programming languages is GFMS 
technology. GFMS's excel in report writing, sorting, and so 
on. As noted earlier, productivity gains of GFMS's over con­
ventional programming languages have been publicized as 
averaging 8 to 1 in a significant percentage of the bread and 
butter applications of an organization. In spite of these pro­
ductivity advantages, GFMS's are used in only a fraction of 
such applications. All too frequently one of the reasons why 
this is so, and sometimes the major reason, is the resistance of 
EDP staffs to abandoning conventional programming lan­
guages, or the inertia of continuing to do business as usual. 

We should realize that many EDP staffs have been in exis­
tence for almost two decades by now. Bureaucracy has solid­
ified in many EDP shops. Worse still, the "Peter Principle" is 
already present in a growing number of cases. EDP staffs used 
to be among the most dynamic and innovative groups in or­
ganizations, but are now at times exhibiting reactionary be­
havior like many established professional groups. There is the 
reality that in many shops EDP staff have invested 10, 15, or 
20 years in becoming proficient and capable with conven­
tional-language programming. To suddenly ask them to put 
aside the tools that they have learned so well over so many 
years is bound to raise problems in many cases. Resistance to 
change is a strong human tendency with which we must cope. 
It takes time to educate, change attitudes, and gain pro­
ficiency in significantly new ways of doing business. If it took 
several years for most assembly programmers to abandon 
their old tools in favor of conventional programming lan­
guages, it will take more years to abandon the latter in favor 
of a new generation of software production tools. 

Such human resistance to change will have to be added to 
the technological difficulties of developing new application­
generation technologies to replace the aging conventional 
programming languages. 

Recent history is filled with examples of rapid public ac­
ceptance of profound changes in lifestyle, religious, social, 
and political attitudes, foods and consumer products, the arts, 
medical care, and other fundamental components of our cul­
ture. We should therefore be able to effect technological 
change in software-production techniques with equal success. 

CONCLUSIONS 

A number of important technologies participate in the wave 
toward application generation, away from the aging pro­
gramming languages. The technologies range from 

1. the inflexible turnkey packages, to 
2. intelligent self-customizing packages, to 

3. generalized file-management systems that can replace pro­
gramming languages for batch 110, report writing, and 
sorting/merging tasks, to 

4. query processors and associated database-management 
systems (GDBMS's) that can replace programming lan­
guages for all 110 from databases, to 

5. the newer application-development systems that integrate 
a number of tools to develop more quickly online, 
terminal-oriented applications in a database/data-com­
munications environment. 

Unfortunately, none of them individually fulfills the role of 
a complete AG. Besides constituting an overwhelming vari­
ety, these technologies exhibit various limitations and suffer 
from the lack of standards. Complementing one technology 
with another becomes a difficult interfacing problem. 

There is the need for AG's that synthesize the variety of 
services and individual technologies into a cohesive whole. 
The AG should exhibit the following characteristics: 

1. It should support a database environment. 
2. It should interface with popular GDBMS's. 
3. It should emphasize terminal-based applications. 
4. It should include data-flow fallout from user 110 

specifications. 
5. It should include nonprocedural data manipulation. 

The AG should include heavy support for "prototype" ap­
plication development for "quick and dirty" implementation 
followed by later migration to more efficient implementation 
where indicated. 

A major benefit of the AG should be in enhancing applica­
tion maintenance by greatly simplifying the introduction of 
inevitable application changes. 

Not all the problems and challenges of evolving toward 
future generators are of a technical nature. A major problem 
is the resistance to change of programmers, analysts, and 
other specialists toward embracing a new way of doing busi­
ness, away from hand-coding in the traditional programming 
languages. 

REFERENCES 

1. Fisher, D. A., "DOD's Common Programming Language Effort," Com­
puter, March 1978, pp. 25-33. 

2. Brooks, F. P., The Mythical Man-Month. Reading: Addison-Wesley, 1975. 
3. "Introduction to SDMl70 Systems Development Methodology." Atlantic 

Software Inc. 
4. Tiechroew, D., and H. Sayani, "Automation of System Building," DATA­

MATION, August 1971, pp. 25-30. 
5. "Problem Statement Language, User's Manual." IS-DOS Project, Univer­

sity of Michigan, Ann Arbor, Michigan. 
6. Low, D. W., "Programming by Questionnaire: An Effective Way to Use 

Decision Tables," Communications of the ACM 10 (1973), 5, pp. 282-286. 
7. Hammer, M. M., W. G. Howe, and I. Wladawski, "An Overview of a 

Business Definition System," in Proceedings, ACM SIGPLAN, Sympos­
ium on Higher Level Languages, Santa Monica, Calif., March 28-29, 1974. 

8. Cardenas, A. F., "Technology for Automatic Generation of Application 
Programs-A Pragmatic View," Management Information Systems Quar­
terly 1 (1977), September, pp. 49-72. 

9. Winograd, T., "Beyond Programming Languages." Communications afthe 
ACM 22 (1979), 7, pp. 391-401. 

10. Zollicker, M. L. (ed.), "Proceedings of a Conference on Application De­
velopment Systems," Data Base 11 (1980), pp. 1-20. 



Challenges and Requirements for New Application Generators 349 

11. "Application Customizer Service, System 13 Application Description Man­
ual." IBM Reference Manual GH 20-0628. 

12. "Distribution System Simulator (DSS) for System 360/370." IBM Systems 
Guide LB-21-0980. 

13. "QBE, Query-by-Example." IBM Reference Manual G320-6062. 
14. "SQL Data System." IBM Reference Manual GH24-5013. 
15. "Generation Five." American Management Systems Inc., Arlington, Va. 
16. "IMS Application Development Facility, General Information Manual." 

IBM Manual GB 21-9869. 
17. "Application Development System/OnLine." Cullinane Data Base Sys­

tems, Westwood, Mass. 

18. "Mark V Concepts and Facilities Manual." Informatics, Inc., Canoga Park, 
California. 

19. Holtz, D. H., "A Non-Procedural Language for On-Line Applications." 
DATAMATION, April 1979, pp. 167-176. 

20. "Programming Aid Reduces Cost 1.5 Million Dollars." Information Pro­
cessing, 1 (1982). Information Systems Group, National Accounts Division, 
IBM Corporation. 

21. "Cullinane Integrated Manufacturing System, Summary Description." Cul­
linane Data Base Systems Manual TXCM-llO-lO,Westwood, Mass. 

22. "Terminal Application Processing System, Concepts and Facilities." Infor­
matics Inc., New York, New York. 





Program generators and their effect on programmer 
productivity 

by RICHARD L. ROTH 
Information and Systems Research, Inc. 
Coraopolis, Pennsylvania 

ABSTRACT 

This paper investigates the concepts and utilization of source-code program-gen­
erating systems within the business programming sector; and, using a "standard" 
system development framework as a guide, discusses the advantages and disadvan­
tages of program generators to software organization and their personnel. 

351 





Effect of Program Generators on Programmer Productivity 353 

INTRODUCTION 

The topic of software tools is becoming an increasingly popu­
lar one within the software community. Programmers' salaries 
are constantly increasing, in line with increasing demand for 
these technicians; and with the steady decline of hardware 
prices, the software industry is constantly seeking new ways to 
cut costs, increase productivity, and maintain the quality of 
the software produced. 

Many different kinds of software tools have come into exis­
tence since the introduction of the digital computer. Of 
course, depending on the definition of the term software tool, 
the nature of these various tools may be less than obvious, or 
may even be taken for granted, in today's world of high­
technology software. 

For example, computer hardware provides access to mag­
netic storage such as memory, tapes, and disks. The operating 
systems software provides a simplified method of storing and 
retrieving data from these devices. 

Computer hardware provides a set of machine-level in­
structions to guide its internal actions; higher-level languages 
and language compilers exist to provide a method of commu­
nicating algorithms with a vernacular consistent with the prob­
lem to be solved. 

The use of single-user batched systems has been to a great 
degree superseded by interactive, multiple-user systems that 
provide the programmer with tools to ease the burden of 
creating and debugging programs. For example, these systems 
allow the use of interpretive languages, which bypass lengthy 
compilation procedures and allow immediate communication 
of problems and errors to the user during the entry of the 
program; on-line diagnostic aids have replaced unreadable 
memory dumps and allow the user to examine, step by step, 
the actions of the program during execution; on-line text edi­
tors have replaced the key-punch, allowing easy access to the 
source program for immediate correction and retesting of 
incorrect source code; and other utilities have been designed 
to simplify the task of communicating a problem-solving 
procedure to the machine that will eventually perform that 
procedure. 

Another tool in use today is the concept of relational data­
bases and database management systems. 

Aside from the technical considerations, these types of 
tools provide an almost unrestricted access to data stored on 
an information processing system. Coupled with sophisticated 
query languages and report generators, a database manage­
ment system can provide an unsophisticated user with easy 
access to information while simultaneously providing a power­
ful tool to the software designer. 

However, the design of most query languages and report 
generators requires the inclusion of routines for all possible 

requests that can be made. Obviously, the more routines that 
are included in the query language, the more powerful it 
becomes. 

Unfortunately, users who would most benefit from the 
power of this type of system are, for the most part, excluded 
from using this tool. The user of a small- to medium-sized 
system is unable to support, by virtue of machine size and 
software cost, the overhead of a database management sys­
tem. It is a fact that the needs of the users of the small systems 
are no different from those of the users of the larger comput­
ers; regrettably, the "scaled-down" versions of these tools 
cannot provide the type of access that most users need. 

However, none of the tools mentioned really accommodate 
what is generally the largest, most time-consuming task. 
Problem-solving procedures must still be designed and hand­
coded prior to the use of any of these other programming 
tools. As a result the programmer invariably spends less time 
thinking about the problem and more time thinking about 
communicating the problem to the computer by a method the 
computer will ultimately understand. 

One of the most recent additions to the class of programmer 
tools has been the program generation system. 

PROGRAM GENERATORS AND THE SYSTEM 
PRODUCTION PROCESS 

A program generator is, very simply, a program that writes 
programs. Directed by series of parameters entered into the 
system by means of a user-oriented front end, the program 
generator actually creates a source code program, which can 
then be compiled and executed in the same fashion as an 
equivalent hand-written program. This is very different from 
table-driven application generators, or even program gener­
ators that produce machine level code directly, in that neither 
of these methods allows for the manual modification of gener­
ated code. 

The introduction of a program generation system into the 
system development environment has a number of effects on 
the individual aspects of the process of system design and 
programming. 

Using the typical system implementation process as a 
benchmark, one can examine how the introduction of a 
program-generating tool would affect each of the six segments 
of the procedure and simultaneously determine the effect of 
such a tool on programmer productivity. 

The first step in the creation of a software system is the 
system design stage. Normally, during this stage, the analyst 
would discuss the needs of the systems end user, and attempt 
to translate these needs into terms to which the programmer 
can relate. During this stage the programmer or systems ana-



354 National Computer Conference, 1982 

lyst must organize a vast amount of information concerning 
the structure of files, the interactions of fields within these 
files, and the operation of the actual programs. 

The introduction of a program-generating system has a pro­
found effect on this task of designing a software system. In 
order to use the program-generating tool fully, the analyst 
must be fully aware of the philosophy of the program­
generating system. 

The typical program-generating system creates programs 
within a very small class of all programs. It is necessary for the 
system designer to keep this in mind while performing this 
analysis: that is, if this tool is to be used efficiently, the pro­
grams (or at least the functional procedures) designed during 
the specification stage must be as close as possible in internal 
operation and in form to the class of programs that can be 
generated. If the analyst strays too far from these prototype 
programs, the increase of productivity with the use of the 
program generator would be negated in proportion to the 
routines that would be "nongeneratable" and would therefore 
have to be created by conventional means. 

It is the analyst's responsibility to use the features of the 
program-generating system within the application system de­
sign; in fact, the degree to which the program-generating 
system aids in the production of the programs is totally de­
pendent upon the initial design of the system. 

The existence of a program generator may also have rami­
fications in terms of the types of individuals who would actu­
ally perform the analysis. Because of the fact that the program 
generator would be addressing most of the computer pro­
gramming issues that normally arise during an analysis, the 
individual actually performing this analysis should not neces­
sarily have to be as sophisticated in terms of computer pro­
gramming. This indicates that the individual performing the 
analysis could be more oriented to the application; in fact it 
may be that the end user could perform this analysis without 
the aid of a technician. As such, many of the communications 
problems that arise between nontechnical users and technical 
analysts would disappear, providing an analysis that would be 
more oriented toward the application area rather than the 
technical side of systems development. Finally, many of the 
difficulties that arise between the user and the designer would 
necessarily disappear, since they could very possibly be the 
same person. 

The impact of a program-generating system can also affect 
the actual end result of the software systems design process. 
Most analyses yield a systems design communicated in the 
form of file layouts, including descriptions of fields, data 
types, field lengths, and allowed value ranges; data entry 
screen layouts, handwritten to show the position of fields and 
computer responses; report layouts showing the positions of 
fields on the printed page and totals and subtotals given on the 
report; flow charts and narrative flow descriptions, indicating 
the actions of individual programs and routines; and other 
information communicated by the printed page. 

However, when considering the existence of a program­
generating system, many of these written documents could be 
eliminated, thereby decreasing the amount of time the analyst 
would have to spend in preparing them, not to mention the 
clerical time and cost necessary to produce them. In fact, since 
the program-generating system would require the input of its 

parameters in some predetermined manner, the actual form 
of the end product of the system design could very well be the 
data input sheets for the program-generating system. 

The second step in the system development process would 
be the actual programming, according to the specifications 
developed and accepted during the previous step. The role of 
the programmer during this phase of the project would also be 
dramatically altered by the introduction of a program­
generating system. Assuming that during the previous step the 
systems analyst took pains to adhere to the philosophy of the 
program-generating system, and further assuming that the 
end result of the analysis was recorded on the data input 
sheets for the program-generating system, for the most part 
the programmer's task would become clerical. In fact, de­
pending upon the user-friendly nature of the front end to the 
program-generating system, entering the results of the sys­
tems analysis into the program-generating system might not 
require the services of a programmer but rather those of a 
clerical worker. The effects on productivity here are obvious. 
Routines that are inherently simple and are repeated many 
times within the series of programs making up the application 
system would most probably be those created by the program­
generating system. Programs such as formatted screen data 
entry programs, sorting programs, formatted report pro­
grams, and less complicated file update routines would most 
probably be targets for the program-generating system. In 
fact, depending on the application system, it can be shown 
that programs that fall within these categories represent any­
where from 50% to 90% of most business-oriented systems in 
existence today. In this regard one can further extrapolate to 
say that programmer productivity would then increase by sim­
ilar percentages on the typical project. 

In any system there are programs that because of their 
application area or complexity of design fall outside the class 
of programs that could be generated. The programmer would 
necessarily have to produce these programs in a conventional 
manner. However, because the program-generating system 
has been used to write many of the more mundane programs, 
these generated programs actually set up guidelines for the 
internal structure of any other program that would have to be 
handwritten. For example, portions of source code that de­
fines file structures, performs initialization functions, opens 
files, performs input/output functions, and performs other 
system-wide utility routines could be extracted from the gen­
erated programs. Even in the cases where programs would 
have to be written by hand, a major part of these programs 
could be borrowed from the source code generated in other, 
automatically created programs. 

In terms of program text editing time alone, the savings 
would be quite significant. In terms of more important factors 
such as program correctness, debugging, and organizational 
source code programming conventions, the savings would be 
substantial. 

The third of these six steps in the system development pro­
cess would include the actual testing and debugging of the 
software system. Assuming again that the 50% to 90% figures 
are accurate for the average software system, it follows that 
the same percentages would hold for the number of programs 
which, by virtue of their being generated rather than hand­
coded, could be assumed to be error-free (at least at the 



Effect of Program Generators on Programmer Productivity 355 

programming level). One could then assume that the amount 
of time necessary for a programmer to test individual routines 
for desired functionality would be reduced by a comparable 
amount. The major portion of the testing and debugging pro­
cess would only involve checking the interaction between pro­
gram modules, checking any routines that had been hand­
coded, and verifying the mechanically generated routines that 
for one reason or another might have been modified by the 
programmer after their generation. 

The testing and debugging process is all too often skipped 
over in the interest of getting the system up and running. With 
the use of the program-generating system this technique may 
in fact become more acceptable as more and more of the 
programs can be considered bug-free at the point at which 
they are generated. 

The fourth step in the system implementation process in­
volves the creation of the software documentation, both from 
a technical and from an end user standpoint. The program­
generating system can increase productivity in this critical 
area as well. From the fact that the programs that would be 
generated exist in a class of similar programs, it -follows that 
the documentation describing the actions of these routines 
would also be fairly regular in their form. This fact holds true 
for technical-level as well as end-user-Ievel documentation. 
The only variables within this documentation would be based 
on the actual parameters input during the initial program 
generation process, which could be preserved during their 
entry. The program-generating system would generate tech­
nical documentation in the form of file layouts, screen 
formats, report formats, and flow charts of the program's 
activities, complete with machine-generated English­
language narratives describing this flow. The clerical time 
required to produce this documentation would be reduced to 
the level needed to generate technical documentation for the 
hand-coded portions of the system, overall system philos­
ophy, and other nongeneratable documentation. 

In addition, because the activities of these routines are also 
defined within a narrow class, the user level documentation 
would be similarly generated. For example, English-language 
narratives describing the activity of a screen data entry pro­
gram, complete with field-by-field descriptions of data to be 
entered, range checks and edit checks performed, and legal 
versus illegal values, could all be produce-d during the process 
of program generation. In this fashion pages for the users' 
guide could be generated, and the clerical time needed to 
develop the complete users' guide would be reduced to the 
task of developing users' instructions for the hand-coded por­
tions of the system. 

The use of program generators also adds a new dimension 
to the fifth step, which is training the users of the software 
system. This area is vital to the success of any software instal­
lation. Many excellent techniques using the computer's power 
for CAL (computer-assisted instruction) have been developed, 
but for the most part they have been ignored because of the 
time and expense necessary for incorporating these tech­
niques into the design and programming of an application 
system. In addition, the added size and disk capacity needed 
to store this added information could become prohibitive on 
a small computer system. However, program-generating sys­
tems could be used to solve these problems. During program 

creation, dual sets of programs could be generated, of which 
one would be a normal application program for production 
use and the second would be a temporary program containing 
the additional code and textual information required for 
computer-assisted instruction. This secondary set of programs 
would be maintained in lieu of the first set during the initial 
training and installation and then removed from the system 
and repiaced with the production programs once the oper­
ators were trained sufficiently. Again, the amount of person­
nel time required to do training at the user's site would be 
significantly reduced by the existence of computer-assisted 
instructional programs, without the added burden of writing 
these programs and the permanent burden of maintaining 
these routines in a production environment. The programs 
that interface directly to the user (for example, screen data 
entry programs and query-level report programs) would be 
excellent candidates for computer-assisted instruction code 
created by a program-generating system. 

The last of these six steps generally occurs sometime after 
the final installation of the software system. This step, of 
course, is the modification and enhancement of the software 
system once it has been placed in production use. In many 
instances, and especially where a database management sys­
tem has not been used, the addition of fields to data files and 
the addition of new features to application programs repre­
sents a major problem for the software systems organization. 
Individual programs must be individually modified to ac­
knowledge the existence of new data and functions, documen­
tation must be updated, and in some cases users must be 
retrained. Even in instances where COBOL-like libraries 
have been used throughout a system of programs, the pro­
cedural sections of each individual program must still be mod­
ified in order to use this new data. In this situation the pro­
gram generator becomes an invaluable tool. Unlike the 
COBOL-like libraries and other source code management 
techniques, the parameters entered into a program generator 
carry with them information concerning the actions of the 
programs, relationships between fields, and specific descrip­
tions of individual fields within data files. In the event of 
post-installation modifications these parameters can be up­
dated to include new fields and concepts and the program 
generator can be used to create updated programs, training 
materials, technical documentation, and user level documen­
tation for the newly modified system. It is not difficult to 
foresee instances where it will be more cost effective to auto­
matically recreate entire subsystems that have been previously 
handwritten, even when the updates to that system are not 
dramatic. In cases where the original software was auto­
matically generated this type of update would be only an 
operational (rather than a technical) matter. 

In summary, then, the existence of a program-generating 
system dramatically increases productivity in all the major 
areas of the system design and development process. 
Assuming that the system design is consistent with the philos­
ophy of the program-generating system, the systems in­
stallation process-including the system design; the actual 
specifications; and the programming, testing, debugging, in­
stallation, and training-would all enjoy significant increases 
in productivity. 

This new mode of systems development is based to a great 



356 National Computer Conference, 1982 

degree on the existence of a program-generating system con­
taining features in all the areas of system development, includ­
ing systems analysis, actual programming, technicai doc­
umentation, user level documentation, computer-assisted 
instruction, and end user training. In addition, it assumes that 
the capability of this program-generating system extends into 
many sub application areas, including screen data entry 
program generation, sort program generation, file update 
program generation, reports program generation, and the ex­
istence of a user-friendly front end to access the program­
generating system. But even with a program generation sys­
tem that does not contain all these features, it is evident that 
the role of computer professionals in light of these program­
generating systems, and the activities that will be performed 
by these professionals, have been dramatically altered. In 
essence the program-generating system would cause a type of 
professional migration. Systems analysts would strive to 
become experts in one or more application areas, and pro­
grammers and program analysts would strive to become algo­
rithmic engineers, spending less time thinking about ex­
plaining problems to the computer system and more time 
thinking about sophisticated solutions to the actual problems 
at hand. 

ACCEPTANCE WITHIN THE PROFESSIONAL 
COMMUNITY 

It may be, however, that some programmers are fearful of this 
attempt at automating their jobs; in fact, many become re­
sentful. This is unfortunate for two reasons: First, the concept 
of program generation is truly in its infancy and requires the 
input of a majority of the data processing community to be­
come a truly effective tool. Program generators must be cre­
ated for a much wider range of application areas than they 
exist for today. And, of course, these program-generating 
systems are not today themselves generated; in that they are 
also programs, they are today handwritten. Second, it is usu­
ally these types of people who resist the professional advance­
ment that program generators offer-who are either fearful of 
or unable to make these changes within their professional 
community. 

It is conceivable that the introduction of a program­
generating system into a software organization where these 
types of professionals exist would not cause a dramatic in­
crease in productivity. The impact of the system would be 
lessened by individuals who resist the use of the product. 

ADVANTAGES AND DISADVANTAGES 

A program-generating system is not a panacea; and, de­
pending on the method of its use within a particular environ­
ment, the program-generating system has several advantages 
and disadvantages to the organization using it. In terms of the 
organization, the existence of a program generator, properly 
used, would necessarily decrease the need for programmers 
and programming support individuals involved in the creation 
of systems software. For the most part, the low-level pro­
gramming activities would be handled cost effectively by the 
program-generating system. In addition to the actual pro-

gramming, the organizational overhead would also be re­
duced in terms of documentation, training, and technical sup­
port personnel. The need for systems design and analysis staff 
within the organization would probably not be reduced, but 
the skills that these personnel would have or acquire would be 
dramatically different from those of their counterparts in or­
ganizations not incorporating a program-generating system. 
Systems personnel ~ould necessarily begin to acquire skills in 
application areas rather than systems programming areas to 
supplement the effect that a program-generating system 
would have on the organization. Although this is not a direct 
productivity gain, it does have positive ramifications for the 
software organization. It is apparent that the most successful 
software houses concentrate on a small number of application 
areas, and the quality of their products is in direct proportion 
to the amount of knowledge concerning the application (not 
systems) that the software house and its personnel command. 

In examining the disadvantages of a program-generating 
system it is possible to draw several analogies between 
program-generating systems and the concept of structured 
programming. For either of these techniques to be used effec­
tively within an organization, the organization must be or­
ganized to use the tool properly and effectively in the day-to­
day business of creating programs. One of the most obvious 
disadvantages of a program-generating system is its inherent 
inability to generate all the programs required in a particular 
software system. Because no program-generating system can 
accomplish 100% of the required tasks, there are gaps in the 
program-generating process that must be filled by conven­
tional programming techniques. If the organization is not 
structured in such a way as to monitor this activity, a long­
term trend of increasing numbers of conventional programs 
and decreasing numbers of generated programs may occur. 
Obviously, then, this one disadvantage of program-generating 
systems would effectively negate all the aforementioned 
advantages. 

Another disadvantage of program generation systems is 
that the source code is generated with a single, immutable 
style. Obviously a given program-generating system will gen­
erate programs with a single, consistent internal structure; 
and as such, this internal design will probably not be consis­
tent with that which the organization has been producing 
previously. Again, the degree of acceptance of a program­
generating system would be based on how well the or­
ganization could change its techniques and internal standards 
to match those of the program-generating system. Unlike a 
human programmer whose techniques may be modified, the 
program-generating system cannot be so easily retrained. For 
the same reasons as mentioned above, any roadblock in the 
path of acceptance of a program-generating system decreases 
its effectiveness within the organization. However, this disad­
vantage might also be considered an advantage in organiza­
tions having no internal standards for the generation of con­
ventionally writt~n programs. 

A third disadvantage, along these same lines, has to do with 
the actual operation of the programs that the program­
generating system would produce. In terms of highly visible, 
user-interactive programs such as screen data entry programs, 
and in terms of printed output such as that produced by report 
programs, the output of the automatically generated pro-



Effect of Program Generators on Programmer Productivity 357 

grams might not conform to the standards already accepted 
within an organization or might not match those formats cre­
ated by canned packages used by the organization. This could 
lead to extensive modification of generated programs, aban­
doning the program-generating system as an in-house tool or 
massive updates of these canned routines. Obviously, any of 
these actions would have a severe effect on productivity gains. 

It is interesting to note that ail the disadvantages mentioned 
could be (for the most part) eliminated by either modifying 
standards to include the program-generating system or de­
signing the program-generating system to match widely ac­
cepted standards. Similar to the structured programming 
techniques mentioned above, the organization's ability to ac­
cept these techniques is directly proportional to the benefits 
gained by using them. Many programmers within an organiza­
tion may resist the installation of new techniques or pro­
gramming tools, stating reasons such as "We've always done 
it this way." As Edward Yourdon states in his book, How To 
Manage Structured Programming, "It's literally all they can do 
to write programs in the disorganized fashion to which they've 
been accustomed; to suggest they should introduce some or­
ganization, some structure into their work is literally beyond 
their ken." (P. 172)1 

Unlike structured programming techniques, however, the 
program-generating system can, in effect, replace this type of 
individual within the organization instead of attempting to 
modify the individual's behavior to fit some predetermined 
pattern. 

OTHER USES OF PROGRAM GENERATORS 

As previously discussed, program-generating systems must 
continue to grow, both in their capabilities and in the scope of 
generated programs, in order to be an effective tool for the 
future. 

For example, program-generating systems should be ex­
panded to cover more of the tasks involved before and after 
the actual generation of a program. Tools designed to simplify 
the task of systems analysis, including natural-language input 
of system parameters, would be a very desirable addition to 
the front end of a program-generating system. In fact, within 
a certain restricted set of application programs, it may be 
possible to design a table-driven decision tree system that 
would actually guide the unsophisticated user through a sys­
tems analysis of the desired application. This system would 
simultaneously gather the parameters to be used by the 
program-generating system. Coupled with computer-assisted 
instruction and even a natural-language interface, this tech­
nique would provide for direct interface with the end user and 
eliminate the need for computer expertise during the design 
stage. 

The program-generating system could be used as an in­
structional tool for teaching proper programming techniques 
within a classroom situation and as an instructional tool for 
new members of the programming staff of a software organi­
zation. Obviously, if the internal standards of the organization 
were closely related to the structure of the generated pro­
grams, an instructional program could be based on the pro­
gram generation system, teaching new programmers the 

desired structure of conventionally written programs. In a 
classroom situation dealing with first-time programmers, the 
program-generating tool could be invaluable in instructing 
students in the use of proper programming techniques. The 
student would simply describe a desired program to the pro­
gram generator and would be able to examine the final results. 
By imitating these programming techniques, the student pro­
grammer would learn these techniques by example. 

Another natural migration path for a program-generating 
system would be the generation of programs in other lan­
guages, as well as the generation of programs for other man­
ufacturers' computers and operating systems, as an option 
during the generation process. For the sake of ease of mi­
gration from one manufacturer's computer to another, and 
especially in the case of languages such as COBOL and BA­
SIC, this migration would be a fairly trivial task when com­
pared to the task of creating a new program generator for the 
new computer system. However, the task of translating from 
one language to another is not as simple. 

For example, consider the case where a COBOL program 
is written to generate COBOL programs. Simply translating 
this COBOL program into another language, say BASIC, 
would result in a BASIC program, which would still generate 
COBOL code. It is therefore necessary to translate not only 
the program itself, but the class of programs that program 
would generate as well. 

There are many ramifications to consider regarding the 
possibility of an easily transportable program-generating sys­
tem. Unlike any other transportable feature of an operating 
system or language, the idea of a transportable program­
generating system implies the existence of transportable pro­
gramming techniques across manufacturer lines and the soft­
ware organizations using the manufacturer's computers. It is 
reasonable to assume that if a single program-generating sys­
tem were to become popular in the industry, and further, that 
the program-generating system created source code in a trans­
portable language, for a variety of popular computers, these 
conditions would define a standard of programming technique 
unparallelled in the industry today. 

The existence of such a portable program-generating sys­
tem also has some implications for the microcomputer side of 
the industry. By simply reading today's microcomputer jour­
nals it is easy to see that the average cost of a software pack­
age, be it operating-system or application-level, is generally a 
small percentage of the hardware price. As hardware prices 
continue to drop, the prices asked for the software may drop 
to almost ridiculous levels. If one adheres to the concept of 
getting what one pays for, it becomes obvious that the quality 
of conventionally written customized programs existing on 
microcomputer systems would be less than desirable. How­
ever, the existence of program-generating systems on these 
microcomputer systems would be a natural way to increase the 
quality of the custom software products without increasing 
their price (beyond that which the typical microcomputer user 
would be willing to pay). 

SUMMARY 

It is obvious that, unlike any other tool, the program­
generating system is today and will continue to be a major 



358 National Computer Conference, 1982 

factor in changing the face of software organizations. As these 
tools become more sophisticated in terms of their internal 
structure for the generation of programs, expand their scope 
in terms of the types of programs they will generate, and 
improve their interface to the end user via user-friendly 
natural-language front ends, the program generator will lit­
erally reorganize the whole structure of the design, installa­
tion, and implementation of computerized software systems. 
Many of the problems besieging our industry today, including 
lack of good-quality personnel, lack of widely accepted stan-

dards, problems with reputation and acceptance by the gen­
eral public, and the rapidly decreasing price of hardware with 
respect to the labor-intensive costs of software production, 
are problems that can be solved today and in the future by the 
program-generating tool. 

REFERENCES 

Yourdon, Edward. How To Manage Structured Programming. New York: Your­
don, Inc., 1976. 



Application generators at IBM 

by AARON M. GOODMAN 
IBM Corporation 
San Francisco, California 

ABSTRACT 

This paper discusses the reasons for the great interest in application generation. 
Because of the growing backlog of user demands on data processing, a new tech­
nology with an order-of-magnitude increase in productivity is suggested. IBM has 
two families of application generation products. One, DMS, operates in a CICS/VS 
environment; the other, IMSADF, operates in an IMS/VS environment. An over­
view of the techniques involved and the benefits of using these systems is discussed. 

359 





The most important problem facing data processing manage­
ment today is the backlog of applications. There are a number 
of studies done by IBM and other groups which show the 
backlog to be many years long. Figure 1 shows the results of 
some studies on application backlog. The trend for the future 
indicates an even greater need for data processing solutions. 
The labor force is growing more dependent on information 
which must be provided to do their jobs. We, as individuals, 
demand more and more information in a timely fashion; it 
would be inconceivable, for instance, to go back to the days 
where airline reservations and ticketing were not immediate. 
As consumers, we ask for more and better service. 

Application Backlog Growth 

Have Application Backlog 

# of Applications in Backlog 

# to be Operational by 
End of Year 

# of Online Applications 
in Backlog 

1977 

94% 

5 

3 

1978 

96% 

15 

3-4 

Figure I-Statistics on application backlog 

1979 

97% 

20 

5 

10 

One reason for the large and growing backlog is, as men­
tioned, the increase in service that we demand from data 
processing groups. There is another important reason, i.e., 

, the availability of skilled data processing professionals. Figure 
2 shows the expenditures for programming, as reported by 
Diebold, across industry. We see that 24% of the data pro­
cessing budget is for programming, but 69% of that 24% is 
used to maintain existing systems. Therefore, only 8% is avail­
able to develop new applications. The backlog of applications 
can be addressed in only a small way, since the bulk of the 
programming resource must be used to maintain current 
systems. 

The difficulty of finding and attracting qualified pro­
grammers is well known. Figure 3 shows some results of stud­
ies and indicates that the future is bright with prospects in the 
programming field. Put another way, it's going to be more 
difficult and much more costly to satisfy our data processing 
needs by simply hiring more programmers. This is already 
evident when we recognize the decline in the percentage of 
D P budget due to hardware costs and the increase due to 
software costs. Due to the educational philosophies of various 

Application Generators at IBM 361 

countries, this problem may be more or less important, de­
pending on geography. 
, So, we find a situation where more data processing solu­

tions are required, but with severe constraints of people and 
budget to get the necessary systems. 

The DP Dollar 

Mai ntenance-
16' 

Programming 
Personnel 
24¢ 

Figure 2-Programming expenditures 

In addition, the advent of major DBIDC systems such as 
IMS and CICS brought two long-existing problems into sharp 
focus. One is data security, a topic of much discussion in data 
processing. Now it is a more significant topic since more data 
are located in a single or a few repositories. The data, being 
more centralized and more complete, are more valuable. The 
results of destruction or unauthorized usage are more pro­
found. In addition, sharing of the data processing resources, 
database, and programs has caused more attention to the 
topic of change isolation. How to share resources, while still 
retaining independence for individual systems and being able 
to change systems without widespread effects on other sys-

Programmer Availability 

Number of 
Programmers 

Need: 
320K 

Supply: 
308K 

1974175 

Need: I 
640K 

Supply: 
476K 

+4% 

1985 

Source: U.S. Department of Labor, SHARE SILT Report. 

Figure 3-Statistics on programmer supply and demand 

t 
26% 
1_ 



362 National Computer Conference, 1982 

terns, is a significant problem which is accentuated by DB/DC 
systems. 

Many of these problems can begin to be addressed today by 
using a new tool-Application Generators. This "new" tool 
is, in fact, a continuation of a trend we've had in data pro­
cessing since the 1950's. Remember machine language? We've 
come a long way since then, and Figure 4 will allow us to 
reminisce a bit. 

Evolving Programming Technology 

Machine Language 

Interactive 
Programming 

High-Level Procedural 
Languages 

Figure 4--Trends in programming technology 

Application 
Generators 

IBM has developed two families of Application Generator 
products in the large system environment. One is based on 
usage of IMSNS; the other is based on CICSNS. In the early 
1970's, people in the Rochester, Minnesota, manufacturing 
plant of IBM developed a system to assist in solving a number 
of problems with application delivery at that plant. That was 
the granddaddy of IMSADF. At about the same time, people 
on the East Coast were developing a system to assist the 
development of online systems (particularly screen design and 
development), and this was the start of DMS/CICSNS. 

We now have a number of years of experience with these 
systems and have worked with customers to support more and 
more requirements. From an architectural point of view, a 
generator is feasible because it makes it possible to identify 
and separate out functions which are common to many appli­
cations, code them separately, and put them together in a way 
that supports a particular application need. The programmer, 
then, needs to work with specifications which relate to the 
business needs to be addressed, not primarily to the pro­
gramming required. 

Let us look at the functions in an online program. Architec­
turally, most business data processing applications will fit into 
the framework of Figure 5. We have, in addition, coded the 
logic of each of these functions in a generalized manner and 
have developed a technique to supply specifications through a 
source external to the common program modules. Therefore, 
we have decoupled the FUNCTIONS which satisfy the appli­
cation requirement from the PARTICULARS of that exact 
transaction. 

The usefulness of a particular generator depends, in large 
measure, on its richness of function. It is clear, I think, that 
we'll not get to the point where all application requirements 
are satisfied with common code alone. Both ADF and DMS 

allow for EXITS and Special Processing, where the pro­
grammer gains control and programs in a traditional manner. 
'Where this is required, the increased productivity promised 
by generators is reduced. Therefore, the intent is to, over 
time, put more and more of these functions into common 
code. 

The benefits of this technique accrue throughout the devel­
opment cycle-during design, during programming, in test, 
and during maintenance. During design, the ability to work 
closely with a user and prototype the solution quickly, enables 
the user and the programmer to understand the needs and 
agree on the system. The wide gulf between user and the DP 
function is often crossed by simply showing a proposed solu­
tion, or at least an approach. 

During programming, much of the work is reduced because 
much of the code is supplied. The programmer often works at 
the external level of the system, specifying the particular re­
quirements for this particular application. If security is to be 
enforced, for example, the programmer now supplies DATA 
about the authorization, rather than reinventing another secu­
rity module. Even if some code must be written because all 
the needs are not addressed, it is much less than if the whole 
application were written conventionally. 

Traditional Application Development 

o-
j I 

Read from Terminal 
Validate Input 
Read from Data Base 
Check for Errors 
Process 
Edit Data 
Write to Data Base 
Check for Errors 
Write to Terminal 
and Much, Much More 

Design - Code - Test - Maintain 

Figure 5-A traditional application development framework 

The approach to testing can be quite different if a generator 
is used. The common modules of code are pre-tested, and if 
problems occur, they are to be corrected by the vendor. But, 
even more important, hundreds of customers are running 
these exact common modules; therefore, they tend to be thor­
oughly debugged. Testing of a particular application involves, 
by and large, verification of the parameters and business in­
formation that the programmer provides to the generator. 

All of the above contribute to the improved maintainability 
of generator-produced solutions. But in addition, a person 
can easily maintain their application because changes are usu­
ally external, and the common code is left alone. It is also 
much easier to maintain someone else's application, since the 
need to understand the data processing techniques used is 
lessened. Parameters, constants and business rules change, 
and these in fact are held separate from the common modules. 

Because of these benefits, we can now begin to approach 
the growing backlog with a tool which offers an order of 
magnitude of improvement on our productivity. 



Application generators: a case study 

by JAMES H. WALDROP 
Hamilton Brothers Oil Company 
Denver, Colorado 

ABSTRACT 

Hamilton Brothers Oil Company recently implemented a complex accounting and 
finance system. This system contains 157 reports, 53 online screens, and 1,320 data 
elements. The system was designed, developed, and implemented in 20 months. 
Most of the approximately 300 programs contained in this system were developed 
with an application generator. Using an application generator allowed the project 
team to complete the coding and unit testing in three months. Based upon the 
experience acquired in this effort, many benefits appear to be gained by using an 
application generator in the system development process. These include reduced 
coding, faster testing, and enforced structured development. However, these bene­
fits must be weighed against the constraints associated with an application gener­
ator. These include potential file and processing inefficiencies, limited language 
syntax, and minimal debugging facilities. 

363 





INTRODUCTION 

Hamilton Brothers Oil Company recently developed anew, 
comprehensive accounting and financial information system. 
The development of this complex system was accomplished 
under an extremely difficult schedule. A key ingredient of this 
project was the use of an application generator language to 
address the programming requirements. An application gen­
erator is a software tool designed to anticipate standard user 
requirements in a functional area such as accounting and fi­
nance. It provides data 'management facilities, autoinated 
common functions, and a specialized language. The following 
narrative presents a brief project background, the project's 
goals, the impact of an application generator language on the 
system development process, and several key areas to con­
sider for future use of application generators. 

PROJECT BACKGROUND 

Hamilton Brothers' senior management decided in January 
1980 to terminate its service bureau computer support and 
implement an inhouse Financial Reporting System (FRS) con­
sisting of five integrated subsystems: accounts payable, ac­
counts receivable, general ledger, joint interest billing, and 
budget. After a thorough four-month evaluation of 19 differ­
ent vendors, it was determined that Hamilton Brothers' re­
quirements could only be met either through a total custom 
development or through significant modifications to an off­
the-shelf software package. 

Amplifying the magnitude of the challenge, the company 
simultaneously began a major expansion effort. This expan­
sion led to an increase in new key users who would determine 
the design of the system. In addition, the company had to 
establish and staff a complete medium-size computer installa­
tion. Furthermore, the data to be used in the new system 
would also require a complex conversion effort from the pre­
vious service bureau environment. The target date for imple­
mentation of the new system was January, 1982-20 months 
elapsed time. 

The plan to accomplish this substantial effort encompassed 
several critical phases. First, a detailed evaluation of the re­
quest for proposal (RFP) responses from the qualifying ven­
dors was accomplished. The selection criteria focused on 
several topics: optimum use of off-the-shelf software to ad­
dress user requirements; utilization of the most current soft­
ware architecture; maximum software flexibility; and a finan­
cially and technically sound software vendor. This phase was 
accomplished in two months, culminating in the selection of 
the Corporate Financial System (CFS) marketed by American 
Management Systems, Inc. This system was developed using 
their application generator (Generation Five) as the under-

Application Generators: A Case Study 365 

lying software. It would become the core of FRS after consid­
erable custom modifications. Second, a system concept defini­
tion phase was performed to refine the general requirements 
presented in the RFP. This phase also required two months. 
Next, a general system design stage was completed requiring 
six months. With the completion of the general design, there 
were only 10 months remaining to accomplish the detail de­
sign, programming, testing, and implementation phases. It 
was obvious that new techniques must be evaluated to max­
imize the efficiency within the programming, testing, and im­
plementation stages. This requirement, coupled with the fact 
that CFS had been developed using an application generator, 
led to the consideration of using an application generator to 
perform the custom development work. 

PROJECT GOALS 

As with any project, the ultimate goal is to provide a sound 
system which meets the user's requirements. However, be­
cause of the special nature of the FRS project, there were 
several ancillary goals to be addressed. First, FRS must be 
user friendly. To accomplish this, we introduced the concepts 
of online processing, user controlled parameters, and user 
report development with minimal support from the data pro­
cessing staff. We also required a table-driven architecture to 
provide flexible data modification by the users. Second, FRS 
must be capable of easy technical modifications and provide a 
solid base for future expansion. This consideration introduced 
the need for a structured development methodology and self­
documenting code. Third, the system development process 
must take advantage of key development productivity tools. 
This aspect included online program development, simple re­
port writers, online screen generators, a data dictionary, and 
a project task plan. 

Since this was the department's first project, its success was 
crucial to establishing the department's credibility. The fol­
lowing synopsis of the characteristics of the system provides 
an insight into the magnitude of the project: 

• 1,300 pages of general design narrative 
• 6,000 mandays for concept definition, general design, 

detail design, and implementation 
• 25 people assigned full time at the peak point in the 

project 
• 3,000 pages of automated technical documentation on a 

data dictionary 
• 1,320 data items 
• 285 programs (most of these were developed in Gener­

ation Five or its associated report writer) 
• 157 reports 



366 National Computer Conference, 1982 

• 53 online screens 
• 102 master tables 
• 132 data files 
• 48 input forms 

The selection and use of an application generator con­
tributed to the achievement of the project's goals and its time­
ly implementation. The FRS project was completed within 
one month of the plan which had been developed nearly two 
years earlier. 

IMPACT OF THE APPLICATION GENERATOR ON 
THE PROJECT'S DEVELOPMENT 

The programming effort was started six months prior to im­
plementation. The project plan allocated approximately 30% 
of the elapsed time (50% of the total man days ) for all tech­
nical facets of the project. At this point, the project leaders 
reviewed the application generator (Generation Five) mar­
keted by AMS. It appeared to offer several programming 
advantages over a standard programming language such as 
COBOL or PLIl. The syntax appeared easy to code and did 
not seem to require significant training. General house­
keeping functions such as opening and closing files were elim­
inated. Several application unique keywords were included in 
the syntax. For example, REJECT-BATCH and REJECT­
DOCUMENT offered easy techniques to reject an entire 
batch of data or only an individual document within the batch. 
The online screen generation facility of Generation Five also 
appeared to provide a relatively simple, high-level technique 
for developing input/output screens without acquiring the 
knowledge necessary to develop native teleprocessing code. 
The structured methodology inherent in Generation Five cou­
pled with its editing facilities offered the potential of elimi­
nating the occurrence of a program dump. The "forced" 
structured methodology should also require fewer compiles to 
complete a program developed in Generation Five. The obvi­
ous benefit to be gained was increased programmer pro­
ductivity and reduced machine utilization. 

The above expectations were developed by the project team 
prior to using Generation Five for the first time. As the 
project progressed through the remainder of the development 
effort, the actual experiences encountered using Generation 
Five were somewhat different from the expectations. The fol­
lowing narrative is a synopsis of the benefits gained from using 
Generation Five as an application generator, a discussion of 
the key problems encountered in its use, and a review of the 
project team's expectations of Generation Five compared 
with its actual performance. 

Problems encountered 

The initial obstacle encountered by the project leaders was 
the project members' occasional resistance to using a new 
software language. The programmers preferred to use 
COBOL, a familiar tool, to do the development. This issue 
and the lack of previous experience with any similar product 
presented many unknown problems in the design process. 

Without any previous Generation Five experience, the staff 
was not aware of the constraints inherent in the software. As 
each design issue arose, such as file merging/sorting or data 
element storage and retrieval, the options and capabilities 
supported by Generation Five had to be reviewed. The con­
clusions reached from the review of supporting documenta­
tion occasionally did not match the actual required implemen­
tation of the design issue. For example, a file that required 
both random and sequential processing could be accom­
plished with only one copy of the file in a COBOL designed 
system. Under Generation Five, the random file must be 
copied to a sequential file for sequential processing. For small 
files, this was not a critical issue; for large files, it introduced 
excess processing requirements. 

The thought processes used by the programming team for 
such typical data processing functions as file access, edit error 
message generation, and online screen generation also had to 
be altered. The file access method used by Generation Five is 
a non-standard technique. This becomes critical when other 
program languages are used to access the data stored by the 
application generator. For example, when non-Generation 
Five software is used to update Generation Five data files, 
those updates are not integrated with the Generation Five 
recovery facility, thereby increasing the complexity of the 
backup and recovery function. 

One of the unique aspects of Generation Five is its ability 
to automatically generate online and batch edit error mes­
sages based upon the section (or paragraph) name used for the 
portion of code performing the edit. However, this feature 
eliminates the dynamic characteristics of edit error message 
presentation. (For example, "COMPANY CODE xx IS 
INVALID" where xx is replaced by the invalid company 
code.) The online screen generation capabilities provided by 
Generation Five allow extremely easy and fast development 
of either input only screens or output only screens. It does not 
provide online interactive screen facilities. 

Other limitations encountered using Generation Five in­
cluded constraints on the number of data elements allowed in 
a random file (master table) record plus the inability to allow 
multiple record types in a file. These two constraints required 
an increase in the number of random files that had to be 
defined in the system leading to suboptimal use of storage 
space. Also, the architecture of Generation Five presented 
critical throughput problems during compiling and testing. 
Simultaneous compiles/tests occurring against the same data­
base were prohibited. This forced the project team to create 
multiple copies of the database to avoid single thread com­
piling of Generation Five code. While the limitation of simul­
taneous executions against a single database is inherent in 
many non-Generation Five systems, the single thread compile 
requirement is unique to this software (because compilation 
accesses the database). This fact has had a negative effect on 
the simultaneous development of multiple programs using 
Generation Five. 

Benefits gained 

While several unexpected problems were encountered 
using Generation Five, it is also true that several benefits were 



gained from its use. The structured architecture and selected 
keywords enforced programmer standardization. It als-o pro­
vided an excellent technique for developing common code 
included in many programs. These characteristics reduced the 
amount of code that otherwise would have been required for 
a typical program. The online screen generation facility elim­
inated the need to train the project team to program in native 
teleprocessing code. The code developed to process the online 
input data could also be used to process the same data in a 
batch mode. This eliminated the need to develop two sets of 
processing code, one for batch and one for online. This was a 
significant benefit given the 53 online screens that were re­
quired. Simple "read-a-record, process, write-a-record" ap­
plications were coded and tested rapidly. These last two facets 
of the system allowed very junior programmers to be immedi­
ately productive on the project. 

A major benefit provided by Generation Five is an auto­
matic transaction suspense processing facility. This is im­
plemented through its document database feature. Input 
transactions captured through online or batch processing 
techniques reside in a holding file (the document database) 
awaiting subsequent processing. After processing, the re­
jected transactions are retained on the document database 
until corrected, while valid transactions proceed through the 
remainder of the processing cycle. The invalid transactions 
can then be corrected as necessary. This feature eliminates the 
sizable effort required to design, develop, and implement 
complex transaction-master file processing requirements. 

A subtle feature of Generation Five is the ability to use 
identical names for multiple data fields. This feature offers 
several advantages. First, data fields with the same name are 
moved automatically from the input record to the output 
record (without regard to their relative position within the 
records). This eliminates encoding numerous MOVE state­
ments to accomplish the same objective. Second, data fields 
can use standard naming conventions not only among multiple 
programs but also within a program without the use of qual­
ifying syntax. This reduces the coding required and also 
greatly simplifies tracing the life cycle of a data element 
throughout all of the software acting upon it. Third, the use of 
a data dictionary to document Generation Five code is greatly 
simplified. With standardized data element names enforced 
through the Generation Five architecture, the number of 
unique data element names are minimized. This reduces the 
information to be captured within the data dictionary and 
enhances its consistency and accuracy. 

Coding in Generation Five also eliminates the need to open 
and close data files. While this is advantageous, a greater 
benefit is achieved by not coding end-of-file logic. Depending 
upon the application, this may be a very complex function to 
accomplish in a traditional programming language. 

Expectations versus actual performance 

The actual experiences encountered in using Generation 
Five when compared to the project team's original expecta­
tions highlighted areas where Generation Five could be im­
proved. The language syntax did turn out to be relatively easy 

Application Generators: A Case Study 367 

to code and was no more difficult to learn than another high­
level language. However, while the structured aspect of the 
language made it self-documenting, the syntax was occasion­
ally confusing to follow. Portions of the software allowed a 
PERFORM capability (the EDITOR segment of Generation 
Five) but did not allow nested IF logic. The remainder of the 
software (the report writer) allowed nested IF logic but pro­
hibited the use of a PERFORM. 

Several general housekeeping functions were supported 
and directly contributed to improved programmer produc­
tivity both in the coding and testing stages. The use of selected 
application unique keywords such as REJECT-BATCH or 
REJECT-DOCUMENT also eliminated the need to code and 
test these types of routines. Other application unique key­
words such as POST or GENERATE (another form of 
WRITE or PUT command) offered virtually no productivity 
gains but did relate the function (WRITE) to application ori­
ented terminology (POST). 

The online screen generation provided the greatest increase 
in programmer productivity. Fourteen of the sixteen program­
mers on the project team had never used a teleprocessing 
monitor and, therefore, had no experience in generating on­
line screens. The Generation Five screen facility provided 
each programmer with an easy-to-learn tool to perform that 
function. However, it does lack the interaCtive characteristics 
desirable in some applications such as receiving input param­
eters, retrieving data from multiple files, performing a calcu­
lation, and displaying the results. 

Perhaps the most criticial disappointment in the use of Gen­
eration Five was the frequency with which program dumps 
were encountered. Unlike using COBOL or PLil where the 
programmer knows how to interpret the dump, this generally 
was not the case under Generation Five since it would have 
required highly specialized training. Unfortunately this facet 
removes a valuable tool from the programmer's arsenal for 
solving problems. Unless the problem is fairly simple, it may 
be very difficult to track down under Generation Five. The 
obvious solution to this problem is to incorporate significant 
debugging aids within the application generator language to 
address this area. 

Perhaps the best measure of the productivity gains provided 
by this application generator was the relatively brief time re­
quired to develop the code through unit testing. The elapsed 
time for this task was approximately three months, certainly 
a significant testimony to the potential value of an application 
generator. 

Key considerations in selecting an application generator 

The Hamilton Brothers FRS project team derived several 
factors that should be considered prior to the future use of an 
application generator. The initial point to be evaluated is the 
size and complexity of the impending project. A complex 
project requiring unique access methods, specialized pro­
cessing techniques, and/or sophisticated online requirements 
may not be suitable for development using an application 
generator. Whereas for less complex systems, project teams 
should carefully consider the beneficial contribution of an 



368 National Computer Conference, 1982 

application generator to the system development and testing 
phases of a project. 

Once a project team concludes that an application gener­
ator is an appropriate tool for the project, a careful evaluation 
of its technical capabilities should be performed. Application 
generators are inherently oriented to specific functional areas. 
The selection of the correct application generator for a given 
functional area is paramount to the ultimate success of the 
project. The design of a system is directly correlated to the 
technical capabilities of the underlying software. A limited 
software tool generally leads to an inefficient system design. 
Once an understanding of the application generator's capabil­
ities and constraints is developed, the project team must be 
willing to live within those constraints. The following list iden­
tifies several key characteristics desirable in a mature applica­
tion generator: 

• Provide code usable for both online and batch processing 
• Incorporate facilities to eliminate or minimize program 

dumps 
• Provide integrated program looping and nested IF pro­

cessing with self-documenting code 
• Provide online inquiry/retrieval facility with data manip-

ulation and selection features 
• Support a structured development methodology 
• Support standard file access methods 
• Enforce consistent data element naming standards 
• Provide high-level application oriented features such as 

automated batch balancing and file open or closing 
facilities 

• Offer easy-to-use debugging aids 
• Provide thorough and accurate documentation with sets 

of complete examples 
• Provide a simple facility for interfacing with programs 

developed in a traditional language such as COBOL 
• Offer flexible data storage techniques (i.e., variable 

length records with multiple record types per file) 
• Provide an integrated online recovery facility for all soft­

ware (including non-application generator programs) 
which updates an application generator data file 

• Provide table processing features 

CONCLUSIONS 

Hamilton Brothers' use of Generation Five as an application 
generator language provided several key benefits. It did, how­
ever, introduce inefficiencies into the design process that 
could have been avoided under a COBOL or PLl1 based 
system. How effective was the project team in meeting the 
goals of FRS as outlined above? The user friendliness of the 
system is superior to what existed in the old batch system. 
Users have complete control, primarily through online tech­
niques, of system parameters. The user report development 
facility (using the report writer associated with Generation 
Five) is yet to be attempted. However, it appears that simple 
reporting can be accomplished by selected users with minimal 
data processing support. More complex reporting will require 
direct data processing support. The table-oriented design of 
Generation Five provides extremely flexible data file mod­
ifications, thereby dynamically changing most edit criteria 
without programmer intervention. 

Future technical modifications can be easily incorporated 
into FRS if the code is developed in Generation Five. Non­
Generation Five online routines will still require extensive 
technical evaluation prior to implementation. The structured 
coding requirements of Generation Five were beneficial but 
were somewhat offset by limitations in the syntax. 

The implementation of key development productivity tools 
such as online program development, report writers, screen 
generators, a data dictionary, and project task planning ex­
ceeded the original goals. These tools were critical factors in 
the success achieved by the project team. 

The concept of application generators is an innovative tech­
nique for improving the quality and timeliness of system de­
velopment. The facilities provided by Generation Five are 
beneficial as they exist today. However, the product could be 
greatly enhanced with a few additional capabilities such as 
more data manipulation and retrieval flexibility, interactive 
online processing, and more variable file processing options. 
American Management Systems has indicated their intention 
to address these areas in future releases of Generation Five. 
Generation Five offers a good tool for accounting applica­
tions. Its use for other application areas appears, by design, to 
be limited. 



Requirements definition and its interface to the SARA design 
methodology for computer-based systems 

by JAMES W. WINCHESTER 
Hughes Aircraft Company 
Fullerton, California 

and 
GERALD ESTRIN 
University of California 
Los Angeles, California 

ABSTRACT 

This paper presents results of efforts during 1979-1981 to integrate and enhance the 
work of the System ARchitects Apprentice (SARA) Project at UCLA and the 
Information System Design Optimization System (ISDOS) Project at the University 
of Michigan. While expressing a need for a requirements definition subsystem, 
SARA had no appropriate requirements definition language, no defined set of 
requirements analysis techniques or tools, and no procedures to form a more 
cohesive methodology for linking computer system requirements to the ensuing 
design .. Research has been performed to fill this requirements subsystem gap, using 
concepts derived from the ISDOS project as a basis for departure. 

369 





INTRODUCTION 

Research into requirements definition and design method­
ologies for Computer-based Information Processing Systems 
(CIPS) has been extensive. Some fundamental concepts have 
emerged: 

1. Hierarchical decomposition from abstract descriptions to 
refined detail1 

2. Verification analysis to ensure that each level of descrip­
tion is consistent with and traceable to adjacent levels2 

3. Simulation as a legitimate analysis aid in detecting in­
complete and inappropriate designs3

,4 

Many methodologies utilize notations that ease the burden 
of analysis and decomposition as well as provide a vehicle 
that enhances understanding and design freedom. Of prin­
cipal interest are pictorial and graphical modelling, 5 special­
ized textual languages,6,7,8 and database management of 
information.9 

Less prevalent before the SARA research 10-13 was recog­
nition of the following needs: (1) describing attiibute require­
ments along with process and function requirements, (2) 
modelling CIPS structure as well as behavior, (3) separating 
models of the environment and the CIPS and modelling the 
environment along with the CIPS, and (4) constructing tests 
for requirements satisfaction as a necessary adjunct to defin­
ing the requirements. Nearly all methodologies concentrate 
separately on either the requirements phase or the design 
phase of the CIPS development cycle. That narrow concen­
tration creates an artificial gap in notation and analysis be­
tween the requirement and design phases, generally resulting 
in ad hoc methods to bridge this gap. More coherence 
between the requirements definition and design method­
ologies is needed, not only to bridge this gap but to close or 
eliminate it. 

In this paper, the authors discuss the results of efforts to 
relate requirements definition and design methodologies by 
integrating and enhancing the work of the System ARchitects 
Apprentice (SARA) Project at UCLA and the Information 
System Design Optimization System (ISDOS) Project at the 
University of Michigan. SARA 12 offered support to a designer 
in creation and analysis of multilevel models. While express­
ing a need for a requirements definition subsystem, SARA 
had no appropriate requirements definition language, no de­
fined set of requirements analysis techniques or tools, and no 
procedures to form a more cohesive methodology for linking 
requirements to the ensuing design. The ISDOS Project's 
PSLlPSA System9 offered support to problem statements, 
problem analysis, and management of resulting information 
but had no other support to give to the design process. Re-

Requirements Definition and Its Interface to SARA 371 

search has been performed to fill the SARA requirements 
subsystem gap, using concepts derived from the ISDOS pro­
ject as a basis for departure. Neither the PSL/PSA nor the 
SARA systems were looked on as models of perfection in 
supporting computer-aided creation of complex systems 
whose behavior would satisfy customers' and designers' in­
tents. They each offered some unique strengths but also need­
ed each other's strengths. 

This paper is organized as follows. The system develop­
ment life cycle, specifications and requirements categories, 
and analysis aspects of requirements definition are first 
summarized. 

The SARA methodology and the PSLlPSA system are then 
briefly described. The framework of SARA, augmented with 
a requirements definition subsystem derived from the con­
cepts of PSLlPSA, is proposed as a viable approach to an 
integrated development methodology. 

The requirements definition subsystem can be character­
ized by three components: (1) a Requirements Definition Lan­
guage (RDL) , (2) Requirements Analysis Techniques and 
Tools, and (3) Requirements Definition Procedures. Due to 
the limitations on publication length, the emphasis of this 
paper is on the RDL and its semantic foundation. Details of 
the complete requirements definition subsystem and its inter­
face with the SARA methodology are found elsewhere. 13 

Finally, a brief summary of experience using RDL and the 
state of the support tool development is described. 

OVERVIEW OF REQUIREMENTS 
DEFINITION ISSUES 

The requirements for a CIPS must be recorded in some 
fashion to provide a means of communication between indi­
viduals and supporting tools involved in its design. This record 
consists of a set of specifications comprising language state­
ments (natural or some special language), graphs, diagrams, 
and tables. Determination of the form and format of these 
specifications is an important issue. Its resolution is affected 
by the desired interface between the requirements specifica­
tion and the succeeding design processes. 

The requirements specification must include three catego­
ries of requirements. First are function requirements. Func­
tion requirements specify the transformations that a system 
must perform. Second are process requirements. Process re­
quirements specify coordinated sequences of functions. Third 
are attribute requirements. These are statements of con­
straints and performance parameters imposed upon elements 
of the CIPS. 

A means must exist to analyze the requirements specifica­
tion to ensure that certain criteria for a well-formed specifica­
tion are satisfied. The specification should be understandable 



372 National Computer Conference, 1982 

to those who are providing the requirements information (the 
"customers") as well as those responsible for developing the 
proposed system (the "designers"). The information within 
the specification should be consistent; i.e., no subset of re­
quirements should be incompatible with any other subset. The 
specification should be complete so that unintended value 
judgements can be avoided during the design process. The 
information within the specification should be traceable to the 
resulting design and implementation to verify that the result­
ing CIPS has addressed all requirements. The requirements 
should be testable to validate that the resulting design satisfies 
all of the requirements. The requirements should be realizable 
in the sense that there are no unattainable requirements which 
are detectable. Finally, the requirements should be specified 
so that there is design freedom allowed wherever possible. 

SARA METHODOLOGY 

The SARA methodology uses a set of tools and procedures to 
design computer-based information processing systems. The 
SARA methodology has evolved from research and develop­
ment continued since the early 1960's at UCLA. 11 

An overview of the SARA methodology is illustrated in 
Figure 1. The methodology is characterized as requirement­
driven; that is, requirements that the CIPS must satisfy are 
specified, and the design activity proceeds to create a system 
that can meet those requirements. The environment with 
which the CIPS is assumed to interact is explicitly defined at 

the beginning of the design process. Validation of a CIPS' 
design is meaningful only in the defined environment. 

To describe and evaluate CIPS (and the set of decomposed 
subsystems) a collection of modelling tools is used. 10,11,12,14 A 
structural model identifies subsystems and their interconnec­
tions. A set of behavioral models14 expresses the behavior of 
subsystems and their behavioral interrelationships. The 
Graph Model of Behavior (GMB) consists of two separate but 
interrelated control and data graphs to express behavior. An 
interpretation model is associated with each processor and 
data set. A GMB model can then be exercised through an 
interpreter that simulates the behavior represented in the 
model, providing a means to evaluate ensuing CIPS designs. 
A control flow analyzer15 is used to detect pathologies such as 
deadlock. 

Once a CIPS has been partitioned to the point at which the 
designer feels confident in understanding each subsystem and 
knowing how to fabricate it, the composition process begins. 
The designer composes the subsystems using validated build­
ing block models of existing hardware, software, and other 
elements that may be used to enhance analysis. The specifica­
tions for the building blocks should be consistent in form with 
top down requirements. In the limit, if a building block exists 
whose specification satisfies a requirement which was gen­
erated top down, its acceptance should be simple. Research is 
ongoing to discover canonical forms for specification of exist­
ing hardware and software elements. 16,17 The composed mod­
els of the subsystems are then analyzed and tested using the 

SARA METHODOLOGY PHASES 

I 

INITIALIZE I I 
REQUI REMENTS I PARTITION & I I 

EVALUATION COMPOSITION 

I OF DESIGN & I & EVALUATION I 
REQUIREMENTS I OF BUILDING 

I BLOCK I I MODELS 

NEEDS I I I 
ANALYSIS I I I I 
• • • • • REQUIREMENTS 

DEFINITION I 

I DESIGN 

I 
I 

IMPLEMEN· 
TATION 
OF 
SUBSYSTEMS 

OPERATIONAL 
TEST OF 
SUBSYSTEMS 

OPERATIONAL 
TEST OF 
INTEGRATED 
SYSTEM 

IIMPLEMENTATIL 

~------------+-••• 
ACCEPTANCE MAINTENANCEi 
TEST MODIFICATION 

LIFE CYCLE PHASES 

Figure I-The CIPS development life cycle phases as constrained by the 
SARA methodology phases 



modelling and simulation tools to verify that the subsystems 
and, ultimately, the complete CIPS satisfy all requirements. 
The physical implementation of the CIPS can then be fabri­
cated directly from the building blocks used in the model of 
the CIPS. 

PSLlPSA SYSTEM 

The PSL/PSA system is a product of the Information System 
Design Optimization System (ISDOS) Project. The ISDOS 
Project is an ongoing research effort at the University of 
Michigan. 

The Problem Statement Language (PSL) consists of a syn­
tax and semantics for describing requirements according to a 
structured format of objects and relationships. Aspects of 
system structure, size, volume, dynamics, properties, data 
structure and derivation, and project management can be de­
scribed. Included in the language is the capability to add 
descriptive English language comments and definitions of ob­
ject attributes.9 

The Problem Statement Analyzer (PSA) consists of all the 
computer software to process, analyze, and manage the PSL 
statements and the resulting database of PSL information. 
Final complete documentation of the PSL database can be 
produced by PSA semiautomatically in desired formats. 

REQUIREMENTS DEFINITION FOR SARA 

The SARA methodology is based upon accurate specification 
of requirements for a CIPS being designed. The methodology 
includes tools and procedural steps for decomposing, compos­
ing, and modelling CIPS to create a design that tries to meet 
the desired requirements and can be directly implemented. 
Figure 1 illustrates how the system development life cycle 
phases can be defined in terms of the SARA methodology 
phases. The requirements definition phase is seen to form the 
basis for all of the decomposition (refinement) activity. Thus 
the requirements specifications form a continuous stream of 
documentation of the CIPS from the most abstract customer­
defined need for the CIPS down to the detailed refinement of 
subsystems, so that the designer can construct the subsystem 
from existing building blocks. In this context, the concept of 
distinct design specifications is not necessary; the design spe­
cifications can be a refined level of the requirements 
specifications. 

A REQUIREMENTS DEFINITION LANGUAGE 
FOR SARA 

The RequiremeIilts Definition Language (RDL) is used to 
express the requirements of a CIPS and to interface those 
requirements to the ensuing SARA oriented design. To deter­
mine what elements of information must be included in a 
requirements definition, one must have an appropriate 
model, or representation, of a computer-based information 
processing system (from requirements definition and design 
definition viewpoints) and an appropriate model of a require­
ments specification. 

Requirements Definition and Its Interface to SARA 373 

Computer-based Information Processing System Semantic 
Model (CIPSSM) 

RDL's semantic model of a computer-based information 
processing system is based on SARA's structural and be­
havioral models of a system. 10,12,18,19 Most requirements for a 
system deal with conceptual information as opposed to physi­
cal realization. Therefore a semantic model, from a require­
ments viewpoint, should be concerned with conceptual con­
structs onto which physical constructs can be mapped as part 
of the design activity. The CIPSSM is derived from this basis. 

CIPSSM primitives 

The CIPSSM consists of six primitives that can be combined 
to model the structure and behavior of a CIPS and its environ­
ment. This representative framework allows the require­
ments, design, and implementation information to be associ­
ated with the model as the system development proceeds from 
requirements definition through implementation. Inherent in 
this modelling approach is the ability to perform a controlled 
refinement of the primitives to create a multilevel representa­
tion of a CIPS. At each refinement, more descriptive details 
are added to effect a progression from the conceptual require­
ments to physical realization. 

The CIPSSM structural model primitives are systems, 
dataflows, and connectors. The CIPSSM behavioral model 
primitives are functions, data-uses, and processes. Figure 2 
illustrates the graphical representation of the primitives and 
provides a brief description of the meaning of each primitive. 

CIPSSM rules 

The CIPSSM primitives interact with each other according 
to well-defined rules. The semantic rules are organized into 
three categories: (1) allowed relationships between the en­
vironment and CIPS domains of the design universe (the only 
allowed interface between the environment and the CIPS is 
through connectors, data-flows, and processes); (2) allowed 
relationships between primitives within each domain (e.g., a 
function can derive any number of data-uses); and (3) allowed 
decomposition relationships (e.g., a function can consist of 
any number of subfunctions). The RDL is designed to imple­
ment these semantic rules while the Requirements Definition 
Techniques and Tools are designed to enforce them. 

Requirement Specification Model 

The Requirement Specification Model (RSM) is a defini­
tion of the form and format of the requirements specifications 
for a CIPS. RDL is the principal language that will document 
the information that must be included in the RSM. The RSM 
ensures that the criteria for a well-formed specification are 
achievable and that the three categories of requirements are 
discernible. To perform this task, the RSM is set up to provide 
a means to describe a CIPS at all stages of its development and 
then automatically extract the function, process, and attribute 
requirements identified in the description. After the require-



374 National Computer Conference, 1982 

CIPSSM STRUCTURAL PRIMITIVES 

SYSTEM 

CONNECTOR 

DATA-FLOW 

• 

• 

• 

• 

A system pri mitive represents a real or conceptual 
object that contains some set of information PiO­
cessing activities 

A connector primitive represents a real or conceptual 
communication path between system primitives. 

A data-flow primitive represents some real or con­
ceptual information that flows into or out of 
system primitives . 

CIPSSM BEHAVIORAL PRIMITIVES 

FUNCTION 

/ 
DATA-USE 

PROCESS 

A function primitive represents a real or con.::eptual 
operation that transforms input data into output 
data. 

A data-use primitive represents real or conceptual 
information that is used by functions. 

A process primitive represents the combination 
and control of function primitives to perform a 
particular set of (one or more) tasks. 

Figure 2-The graphical representation and definition of the CIPSSM 
primitives 

ments are extracted, the tests for requirement satisfaction can 
be defined. 

CIPS views 

The RSM provides a description of four interrelated views 
of the CIPS. These views are decomposable in a structured 

fashion so that, within any particular view, the information at 
level (i + 1) is related to the view from level (i). The views 
adhere to the semantic rules of the CIPSSM. An example of 
the graphical representation of the four views using CIPSSM 
primitives is illustrated in Figure 3. The four views are de­
signed to form a composite of the CIPS and its environment. 
All information expressed graphically in the four views and 



SCG-USER 

ENVIRONMENT DOMAIN 

SCG-USER 

ENVIRONMENT DOMAIN 

START 

SCG-USER 

START 

I 
USER-CONNECTION 

SCG-OUTPUT 

I 
USER-COMMANDS 

I 

I 
I 

SCG-OUTPUT 

I 
USER-CONNECTION 

I 
USER-COMMANDS 

SCG-OPERATION 

Requirements Definition and Its Interface to SARA 375 

SYSTEM-CONNECTOR VIEW 

CIPS DOMAIN 

MODIFIED­
SCG-SYSTEM 

DEFINE SYSTEM modified-seg-system; 
INTERCONNECTED BY user-connection; 

DEFINE E-SYSTEM scg-user; 
INTERCONNECTED BY user-connection; 

DEFINE CONNECTOR user-connection; 
l~nERCONNECTS modified-scg-system, scg-user; 

SYSTEM-FLOW VIEW 

CIPS DOMAIN 

MODIFIED-
SCG-SYSTEM 

CIPS DOMAIN 

DEFINE SYSTEM modified-scg-system; 
GENERATES scg-output; 
RECEIVES user-commands; 

DEFINE E-SYSTEM scg-user; 
G EN E RATES user-commands; 
RECEIVES scg-output; 

DEFINE 10 scg-output; 
GENERATED BY modified-scg-system; 
RECEIVED BY scg-user; 

DEFINE 10 user-commands; 
GENERATED BY seg-user; 
RECEIVED BY modified-scg-system; 

FUNCTION-DATA VIEW 

PROCESS VIEW 

J---+-- FINISH 

DEFINE FliNCTION scg-functions; 
DERiVES scg-output; 
UPDATES data-base; 
USES user-commands; 

DEFINE E-FUNCTION user-activities; 
DERIVES user-commands; 
USES seg-output; 

DEFINE 10 user-commands; 
DERIVED BY user-activities; 
USED BY scg-functions; 

DE FIN E 10 scg-output; 
USED BY user-activities; 
DERIVED BY scg-functions; 

DEFINE ENTITY data-base; 
UPDATED BY scg-functions; 

DEFINE PROCESS scg-operation 
SYNONYM scgo; 
PROCEDURE; 
(process procedure language description) 
scgo-s (start: user-activities) 
user-activities (scgo-s+$cg-functions: scg-functions) 
scg-functions (user-activities: user-activities+scgo-e) 
scgo-e (scg-functions: finish); 

COMPOSITE VIEW 

MODI FI ED-SCG-SYSTEM 

FINISH 

DEFINE SYSTEM modified-scg-system; 
PE R FO RMS scg-functions; 
RESPONSIBLE FOR data-base, scg-output; 

DEFINE E-SYSTEM scg-user; , 
PERFORMS user-activities; 
RESPONSIBLE FOR user-commands; 

DEFINE CONNECTOR user-connection; 
PASSES scg-output, user-commands; 

DEFINE PROCESS scg-operation; 
UTI LlZES user-activities, scg-functions; 

Figure 3-An example of the four CIPS views and the corresponding RDL 
representation for a modified structure chart graphics (SCG) system 



376 National Computer Conference, 1982 

their composite have a corresponding RDL textual represen­
tation. RDL also allows a means to express detailed informa­
tion about CIPSSM primitives that cannot be represented 
graphically. 

CIPS view decomposition 

Requirements decomposition proceeds from a primarily 
logical description of a CIPS to a physical description of the 
CIPS that ultimately represents the actual design. The four 
descriptive views of a CIPS are oriented toward gradiated 
levels of logical versus physical description, between the 
views, and within the views. 

The requirements decomposition process proceeds in par­
allel with the design process after the initial requirements 
specification is completed. The requirements decomposition 
is made as the result of design decisions. Figure 4 illustrates the 
graphical representation of a decomposition of the function­
data view shown in Figure 3. At each level of decomposition, 
the designer gets a new set of requirements to respond 
to; however, since the new set of requirements were derived 
and documented from the previous level of requirements, 

ENVI RONMENT 

DOC­
CMOS 

EDIT­
CMOS 

ANALYSIS­
CMOS 

USER·COMMANDS 

PLOTTER­
OUTPUT 

TERMINAL­
OUTPUT 

I SCG·OUTPUT 

L-, 
I 
I 
I 
I 
I 

continuous traceability is maintained between one step of 
decomposition and another. The RSM, built upon the 
CIPSSM primitives and documented by the RDL, is appropri­
ate for the description of the CIPS at all stages of the require­
ments definition phase of the development cycle, as displayed 
in Figure 1. 

Requirements extraction 

Once a satisfactory requirements specification level is de­
fined, using the CIPS graphical views and corresponding RDL 
descriptions, a complete set of function, process, and attribute 
requirements can be extracted. The function requirements are 
the RDL descriptions of the function primitives that are por­
trayed in the function-data view. The process requirements 
are the RDL descriptions of the process primitives that are 
portrayed in the process view. The attribute requirements are 
the RDL descriptions of attributes associated with all of the 
primitives in all four views. The requirements extraction con­
cepts are illustrated in Figure 5. The function requirement 
extracted from the initial CIPS description of Figure 3 is 
presented in Figure 6(a). 

CIPS 

DATA·BASE 

DATA­
BASE 

VAX­
INPUT 

PLOTTER­
DATA 

TERMINAL­
DATA 

Figure 4--An example decomposition of the function·data view shown in 
Figure 3 



Requirements Definition and Its Interface to SARA 377 

INTRALEVEL CHECKS 
r -----1------,------, 

r 
I 
I 

I 
len 
I~ 

::I: 

I~ 

SYS-CONNECTOR VIEW 
(DRAWING + RDL DESC) 

SYS-FLOW VIEW 
(DRAWING + RDL 
DESC) 

FUNCTION-DATA VIEW 
(DRAWING + RDL DESC) 

PROCESS VIEW 
(DRAWING + RDL 
DESC) 

w 

I~ 
REQUI REMENTS 
LIST ATTRIBUTES FUNCTIONS PROCESSES 

-I 

I'~ 
I~ 

I 
I 
I 
L_ 

I 
I 
I 

I 
I 
I 

I 
I 
I 

J 
LEVEL 2 

I 
I 

LEVEL N 

Figure 5--At every level of specification, requirements are extracted from 
the complete CIPS description as represented in the four views 

Requirements tests 

At every requirements specification level, a list of function, 
process, and attribute requirements is generated. At every 
level, each unique requirement makes one or more associated 
tests mandatory, so that the requirement can be verified and 
validated. The tests consist of test procedures and criteria to 
judge the outcome of the tests (i.e., whether the requirement 
is satisfied or not). In addition, the tests should reflect the 
multilevel decomposition of the requirements by becoming 
more detailed during refinement. 

The nature of the test procedures and criteria depends upon 
the category of requirements being tested. RDL provides con­
structs permitting definition of initial conditions, final condi­
tions, and procedures for defining how the test cases should be 
executed and acceptance criteria for determining how the out­
come of each test case will be evaluated. A test for the re­
quirement extracted in Figure 6( a) is described in Figure 6(b). 

Requirements specification outline 

The body of the requirements specification is organized by 
requirements specification level. Each level of the document 

consists of the four drawings of the CIPS views; a composite 
drawing of the four views; the function, process, and attribute 
requirements and tests; and any supporting RDL sections 
referenced by the requirements descriptions (e. g., definition 
of the 'user-commands' of Figure 6(a) and 'scg-ftl-ac' of Fig­
ure 6(b). At the end of the requirements specification, docu­
ments referenced by the requirements specification body that 
are not expressed in RDL are found. 

Requirements Definition Language Characteristics 

The Requirements Definition Language is based upon the 
same syntactical constructs as the Problem Statement Lan­
guage (PSL) of the ISDOS project. 9 The language consists of 
objects, relationships, descriptors, and associators. Objects are 
essentially equivalent to nouns in English-they represent the 
things being described (CIPSSM primitives and associated 
information elements) when describing the CIPS. An object­
type is a generic class of objects. The object-types are cate­
gorized according to what aspect of the RSM and CIPSSM 
they support. In Figure 6(a) the object 'scg-functions' is an 
example of the object-type FUNCTION. 

Relationships are the "verbs" of RDL-they define the as-



378 National Computer Conference, 1982 

DEFINE FUNCTION 
USES 
DERIVES 
UPD,I\TES 
PERFORMED BY 
UTILI ZED BY 

(a) 

scg-functions; 
user-commands; 
scg-output; 
data-base; 
modified-scg-system; 
scg-operation; 

(b) 
DEFINE FUNCTION- TEST scg-function-testl; 

TESTS scg-functions, user-activities; 
DESCRI PTION; 

This test sequence is designed to provide 
a customer acceptance test for creating 
structure charts, as one of the necessary 
functions of the modified-scg-system.; 

INITIAL-CONDITIONS ARE scg-ftl-l, user-cmd-seq; 
FINAL-CONDITIONS ARE scg-ftl-2; 
ACCEPTANCE-CRITERIA ARE scg-ftl-ac; 
PROCEDURE; 

DO. 
set initial-conditions to 'scg-ftl-l'. 
DO UNTIL final-conditions='scg-ftl-2'. 

execute initial-condition 
'user-cmd-seq' . 

ENDDO. 
check acceptance-criteria 'scg-ftl-ac'. 

ENDDO. ; 

Figure 6---(a) A function requirement extracted from the initial CIPS 
description shown in Figure 3 

(b) A test for the function requirement 

sociations between objects based upon the allowed relation­
ships between object-types as determined by the CIPSSM and 
the RSM. In Figure 6(a) USES is an example of a relationship 
associating 'scg-functions' and 'user-commands.' Relation­
ships are designed to be complementary in the sense that if the 
object-types are interchanged in an RDL statement, an equiv­
alent relationship can be formed. 

Descriptors are RDL constructs which fall outside of the 
object, relationship character of most RDL statements. De­
scriptors are associated with objects but are not objects them­
selves. Descriptors are an important source of redundancy 
which is counted on to help reduce the gap between intent and 
designed behavior. The most common descriptor-type is the 
comment-entry. This descriptor-type consists of English lan­
guage text, or any more formal language of the users' choos­
ing, that can be used to further describe an object outside the 
realm of the object's relationships with other objects. De­
scriptors are associated with objects via associators. Associ­
ators and descriptors allow one type of extensibility within 
RDL by permitting any desired language (e.g., SARA's GMB 
expressions, program description languages) to be included in 
the RDL specification. The associator DESCRIPTION and 
its comment -entry is illustrated in Figure 6(b). 

ffhe RDL sy,ntactical constructs are patterned after the con­
structs ·that are supported by the ISDOS Project's Meta­
generator and Generalized Analyzer. 20 RDL statements are 
grouped together by sections. Each section defines an object 
name and the relationships of that object to all other objects 
in a specification, plus the descriptors associated with that 
object. Figure 3 illustrates simple RDL sections that describe 
CIPS views. 

RDL implementation of CIPSSM 

RDL implements the CIPSSM by providing constructs that 
allow all CIPSSM primitives and properties to be described, as 
well as maintaining a basis for the semantic rules. There are 
unique RDL object-types for primitives that exist in the en­
vironment domain versus the CIPS domain. Their purpose is 
to provide a mechanism for maintaining the universe partition 
in a CIPSSM description. 

RDL support of RSM 

RDL supports the RSM by providing constructs that allow 
the following: (1) the four CIPS views to be incrementally 
developed and then rigorously coupled (Figure 3), (2) easy 
extraction of requirements by category (Figure 6( a)), (3) asso­
ciation of tests with each requirement (Figure 6(b)), and (4) 
easy extraction of RDL sections for the organization of the 
requirements specification. 

The RDL syntax permits the designer/customer to describe 
the objects and relationships associated with anyone particu­
lar CIPS view and then later to add the relationships that 
couple the views. 

REQUIREMENTS ANALYSIS TECHNIQUES TOOLS 
AND PROCEDURES 

Analysis techniques have been defined as a set of checks on 
the information within the specification to determine its com­
pliance to the criteria of being understandable, consistent, 
complete, traceable, testable, realizable, and allowing design 
freedom. These checks are driven by the CIPSSM rules, 
heuristics of the design activity, and the modelling and analy­
sis power of SARA. The requirements definition activity is 
designed to be extensively supported by computer-aided 
tools. The tools can be categorized into five functional areas: 
(1) an RDL interpreter and editor (plus associated database 
storage mechanism), (2) database query, (3) analysis check­
ers, (4) graphics support of the CIPS view constructions and 
translation to corresponding RDL, and (5) CIPS view to 
SARA model construction and translation. 

An eighteen-step procedure has been developed that serves 
as a guideline on how to construct a model of the CIPS using 
RDL and graphics, perform analysis checks, and decompose 
a specification. 

USAGE EXPERIENCE 

The ISDOS Project's META System20 was used to implement 
an RDL interpreter and editor (including database manage­
ment system) and query system. A collection of SARA tools 
(fully operational and accessible on the ARPANET) exist and 
include the GMB Simulator and Control Flow Analyzer, plus 
structural modelling tools and a sophisticated help system. 
Using this continually expanding support environment, RDL 
has been applied in two practical CIPS specification activities 
since early 1981. The experience of these applications re­
vealed that the modelling scheme was well liked, particularly 



for the separation of environment and CIPS, and the pro­
vision of integrated multiview aspects. However, the follow­
ing improvements are considered essential: 

1. A graphics interface is needed to reduce the tedium of 
CIPS view construction and translation into RDL. 

2. A better user interface to the support environment is 
needed. 

3. Automated utilities to support test construction are 
needed to lessen the difficulty of creating appropriate 
requirements tests. 

4. The ease with which RDL can express specifications of 
existing building blocks (e.g., manufacturers chip speci­
fications) must be tested. 

REFERENCES 

1. Ross, D. T., and K. E. Schoman, Jr. "Structured Analysis for Require­
ments Definition." IEEE Transactions on Software Engineering, Vol. SE-3, 
No.1, January 1977. 

2. Alford, M. W. "Requirements for Distributed Data Processing." Pro­
ceedings of First International Conference on Distributed Data Processing, 
IEEE,1979. 

3. Alford, M. W. "Software Requirements Engineering Methodology 
(SREM) at the Age of Two." COMPSAC 78 Proceedings, November, 1978. 

4. Willis, R. R. "DAS: An Automated System to Support Design Analysis." 
Proceedings of the Third International Conference on Software Engineering, 
Atlanta, Georgia, May 1978. 

5. Alford, M. W., and I. F. Burns. "R-nets: A Graph Model for Real-time 
Software Requirements." In Proc. Symp. On Comput. Software Eng., MRI 
Symp. Ser., Vol. XXIV, Polytechnic Press, Brooklyn, NY. 

6. Riddle, W. E., .1. C. Wileden, .1, H. Sayler, A. R. Segal, and A. M. Stavely. 
"Behavior Modeling During Software Design" IEEE Transactions on Soft­
ware Engineering, Vol. SE-4, No.4, July 1978, pp. 283-292. 

7. Zave, P., and R. T. Yeh. "Executable Requirements For Embedded Sys­
tems." Proceedings'of the Fifth International Conference on Software En­
gineering, San Diego, California, 1981. 

Requirements Definition and Its Interface to SARA 379 

8. Heninger, K. "Specifying Software Requirements For Complex Systems: 
New Techniques and Their Application." IEEE Transactions on Software 
Engineering, Vol SE-6, No.1, January 1980. 

9. Teichroew, D., and E. A. Hershy III. "PSLlPSA: A Computer-Aided 
Technique for Structured Documentation and Analysis of Information Pro­
cessing Systems." IEEE Transactions on Software Engineering, Vol. SE-3, 
No.1, January 1977, pp. 41-48. 

10. Gardner, R.1. "A Methodology for Digital System Design Based on Struc­
tural and Functional Modeling." Ph.D. dissertation in Computer Science, 
University of California, Los Angeles, January 1975. 

11. Estrin, G. "Modeling for Synthesis-The Gap Between Intent and Be­
havior." Proceedings of the Symposium on Design Automation and Micro­
processors, Palo Alto, California, February 24-25, 1977, IEEE, Piscataway, 
New Jersey, 1977, pp. 54-59. 

12. Estrin, G. "A Methodology for Design of Digital Systems-Supported by 
SARA at the Age of One." Proceedings of the National Computer Confer­
ence, Anaheim, California, June 1978. 

13. Winchester, J. W. "Requirements Definition and Its Interface to the SARA 
Design Methodology for Computer-Based Systems." UCLA Technical Re­
port, UCLA-ENG-8092, January, 1981. 

14. Razouk, R., M. Vernon and G. Estrin. "Evaluation Methods in SARA­
The Graph Model Simulator." 1979 Conference on Simulation, Measure­
ment and Modeling of Computer Systems, Boulder, Colorado, August 1979. 

15. Razouk, R. R. "Computer-Aided Design and Evaluation of Digital Com­
puter Systems." UCLA Technical Report, UCLA-ENG-8055, February 
1981. 

16. Penedo, M. H. "The Use of a Module Interface Description in the Synthesis 
of Reliable Software Systems." UCLA Technical Report, UCLA-ENG-
8091, January 1981. 

17. Vernon, M., D. Patel, and G. Estrin. "A SARA Building Block Model: 
Am2909 Microprogram Sequencer." UCLA Internal Memorandum #210, 
October 1981. 

18. Campos, I. M., and G. Estrin. "SARA Aided Design of Software for 
Concurrent Systems." Proceedings of the National Computer Conference, 
Anaheim, California, June 1978. 

19. Razouk, R., and G. Estrin. "Modeling and Verification of Communication 
Protocols in SARA: The X.21 Interface." IEEE Transactions on Comput­
ers, Vol. C-29, No. 12, December 1980, pp. 1038-1052. 

20. Teichroew, D. "Overview of the META System." ISDOS Research Pro­
ject, Department of Industriai and Operations Engineering, University of 
Michigan, Ann Arbor, Michigan, ISDOS Project META-1 Memorandum, 
May 1977. 





The role of requirements analysis in the system life cycle 

by YUZO YAMAMOTO, RICHARD V. MORRIS, CHRISTOPHER HARTSOUGH, 
and E. DAVID CALLENDER 

California Institute of Technology 
Pasadena, California 

ABSTRACT 

One of the problems that personnel from the computer industry face today is to find 
the proper role of requirements analysis in the design and implementation of 
information-intensive systems so that the results of that activity may be effectively 
transferred to the rest of the life cycle. This paper addresses the problem by 
examining the life cycle process in terms of the various viewpoints that human 
beings use. The interplay between human capabilities and limitations for dealing 
with the problems of design representation and the increasing complexity of modern 
information-intensive systems is discussed. The concept of viewpoints around a life 
cycle wheel that are used throughout the entire life of the information-intensive 
system is introduced and used to define the functions performed during require­
ments analysis. Finally, the concept of a system-engineered set of techniques and 
tools to support the life cycle activities is proposed. 

381 





INTRODUCTION 

The scope of this paper is the design and implementation of 
information-intensive systems. Such a system is one where the 
use and production of information is either a major function 
or a major component of the control of the process. Such a 
system usually has as its components hardware and human 
beings, using software and procedures, respectively. 

Historical Background 

The development of information-intensive systems is still a 
difficult task despite progress in relevant methods and tools. 
One of the early developments in attempts to better manage 
the development process was the recognition of a system life 
cycle. This allowed a phased approach1

•
2 in managing the 

development of information-intensive systems from the defi­
nition of initial requirements through operation. 

Historically, the phases receiving the most attention have 
been implementation, integration, and test. The importance 
of the early phases has been recognized,3,4 partly because of 
the increased attention to the entire system life cycle (as op­
posed to preoccupation with a particular part of it). These 
early phases are called by various names, such as require­
ments analysis, logical design, or systems analysis. A few tools 
are being used during the early phases. For example, success­
ful applications of PSL/PSA5 have been reported. 6

,7 

One problem encountered by users of requirements anal­
ysis techniques is to determine how to transfer the results of 
the requirements analysis to the later phases of the life cycle. 
In order to accomplish this successfully, the execution of the 
system life cycle itself must also be viewed as an information­
intensive system and the role of requirements analysis identi­
fied in that respect. 

Objectives of This Paper 

The main objective of this paper is to identify the proper 
role of requirements analysis in the system life cycle. The 
second objective is to present an improved life cycle model 
based on the concept of viewpoints. The third objective is to 
present the concept of a "techni-kit" to support the life cycle 
activities. 

Structure of the Paper 

First, the fundamental causes of the problem, i.e., the 
complexity of modern information-intensive systems, and the 
limitations of human beings in handling a complex situation 
directly are discussed. Next, the viewpoint dimension of char­
acterizing the distinct activities of the life cycle is introduced. 

Requirements Analysis in the System Life Cycle 383 

Based on the viewpoint dimension, the life cycle wheel model 
is introduced, and the role of requirements analysis is defined 
in that framework. Finally, a life cycle support facility, called 
a techni-kit, is proposed. 

HUMAN CAPABILITIES AND LIMITATIONS 

We believe that a major source of problems faced during the 
design and implementation of an information-intensive sys­
tem is the conflict between the complexity of such systems and 
human limitations in concurrently handling large amounts of 
complex information. 

Today's information-intensive systems are complex. In­
stances of complexity can be seen in a number of ways. Typi­
cally, systems are made up of many parts, related to one 
another in many ways. The same is true of many of their 
components. These systems are often required to meet con­
currently a number of distinct but interacting needs. More­
over, a system can often be operated in any of several differ­
ent ways to meet a particular need. 

On the other hand, there are characteristic limitations to 
human capability in dealing simultaneously with large num­
bers of concepts and relations. Over a period of time a person 
can deal with a great number of intricately related concepts, 
but with only a few at any particular time. 8 There is con­
siderable evidence that indicates that this limit is a small 
number. 9 This human limitation directly affects the ways in 
which complex system developments and applications can be 
conducted. 

Methods and tools that are developed to support designers 
and implementers of information-intensive systems must take 
explicitly into account two conflicting properties: complexity 
and human intellectual characteristics. One way to do this is 
by using (1) conceptual models that provide structure and (2) 
computer-based tools that augment human logical and clerical 
capabilities. In this manner the designer can focus individually 
on a series of small parts of the system with the expectation 
that the pieces of the system can be combined into an inte­
grated whole. To aid the designers and implementers we have 
extended the life cycle model and provided a structure for the 
methods and tools they use. 

DIMENSIONS FOR DESCRIBING 
DEVELOPMENT PROCESS 

Any model of the life cycle process must include the following 
distinct dimensions: 

1. Phases: When in time an activity occurs. 
2. System level: Where in the hierarchy of the system 

structure attention is being focused. 



384 National Computer Conference, 1982 

OBJ!:CT 
IfIHe 
EXMIIN:D 

/~ 
d:~::~ 

------:---;;~ ---- /::,,,"// ----- ..... ,," / // ,./ " / 
,..; .",/ ,/ 

... '" .",/ ,// ,,/ // . ... ... / 
:/:; ,I /""" ... 

(J:X:1/--_ -/ ......... 

I I --;~~~~~~::~~:'" 
I / I ------- .... ~. 

\ I, I SENSOR ::::-.....-..... __ -----\ I, I - ---~-
\ I' / OBSERVING OBICT " --"'"::....--~ 
\ I I I FILlIR CRI1IRIAJ , -. 
\ I I I " 
\\'1 " VEW \ 'I IF 

\ I I I OBLCT 
\ I' I 

\ 11/ 

~ 
/ II \ 

I II \ 
I /1 \ 

I I I \ 

~
/I\\ 

f \ 

~\ 
I 

Figure I-Taking a view 

3. Viewpoint: The context in which one is currently 
working. 

In this paper one part of a complete model of the life cycle 
process, the formal structure of viewpoints, is examined. The 
formalization of this concept is necessary because an impor­
tant way that human beings deal with complexity is to work 
with views. Formalization of viewpoints forces the articulation 
of fundamental, hidden assumptions that different individuals 
use during the life cycle process. Making these hidden 
assumptions public facilitates the exchange of information 
(results of work) between individuals during the life cycle 
process. 

A viewpoint is the position of an individual taking a view. 
A view is the result of filtering the available information about 
a situation and selecting a subset that is useful to an individual 
in doing a particular task. The information in the view may be 
formatted in a particular way to increase its usefulness. Figure 
1 illustrates this concept. 

Filtering may be considered a process operating on a stream 
of inputs. Operations of the following kinds are performed on 
each item in the stream: 

1. Comparing the input items with a set of filtering criteria 
2. Tagging it with additional information that states which 

(of several possible) output stream(s) or output set(s) 
the item will be inserted into 

3. Separating the filtered items or copies of them into the 
individual output streams or sets that win subsequentiy 
receive different kinds of processing 

As Figure 1 indicates, when a physical object is being exam­
ined, the observer's particular location relative to the object 
is one of the factors that determines the subset of information 
that the observer can see. The location of the observer is thus 
a part of the filtering criteria. 

Important aspects of the process of taking a view include 

1. The location of the observer (vantage point) 
2. The other filtering criteria (process) 
3. The data to be filtered (input) 
4. The resultant view (output from the viewing process) 

The concept of viewpoint will be used as a basis for a model 
of system development process in the next section. 

LIFE CYCLE WHEEL MODEL OF SYSTEM 
DEVELOPMENT 

In conventional life cycle models, the role and context of the 
individual has been largely ignored. To correct this omission, 
a structure of viewpoints is associated with the development 
process. The six top-level viewpoints, which form the life cycle 
wheel model of system development, are illustrated in Figure 
2 and defined below. Such viewpoints can most easily be 
introduced in terms of the activities associated with them. It 
is important, however, to note that the essence of the view­
points is not the activities but the continued, vested interest 
that a group of people develop as they undertake their normal 
activities. To facilitate understanding, an analogy of the pro­
cess of building a manufacturing facility for a particular prod­
uct is given for each viewpoint. 

The user needs viewpoint is taken when unanalyzed user 
needs are sought, captured, and recorded. This may also be 
called the buyer's viewpoint. This viewpoint is interested in 
results-solutions to the specific problem presented. The 
viewpoint also sees and levies constraints under which the 
system must operate. Individual users often express their 
needs in terms of scenarios. A scenario describes how the 
system will operate to achieve a particular purpose and the 
situation and environment in which the system will be applied. 
It is also a temporal exposition of the interdependent activities 

Figure 2-The life cycle wheel model 



Figure 3--The project management viewpoint 

of the environment, the system, and its operators in the ac­
complishment of a particular purpose. In addition to sce­
narios, individual users may have needs or desires for certain 
other characteristics of the system, such as throughput capa­
bility, mean time between failures, and adaptability. In a 
manufacturing environment, the analogous activity is market 
research. 

Tne user design viewpoint is principally concerned with 
extracting a common, logically consistent set of requirements 
from those expressed by individual users. From this view­
point, system requirements are defined. These requirements 
provide an envelope of services that encompass all reason­
able/acceptable demands by individual users. From this view­
point, assessments are also made of the stability of require­
ments and of the effect that changes in requirements will have 
on the system design. The manufacturing analogy for this 
viewpoint is product design. 

The implementation design viewpoint is principally con­
cerned with laying out an overall structure, or architecture, of 
components to meet user design requirements. Sometimes 
work done from the implementation design viewpoint directs 
the attention of the user design viewpoint to an incomplete 
area in the design. This work leads to derived requirements 
that must be incorporated into the user design. Although 
frequently perceived as different, derived requirements differ 
from other user requirements only in their date of discovery. 
The same type of analysis needs to be performed on all user 
requirements. The manufacturing analogy is the engineering 
of the manufacturing plant. 

The detailed design, implementation, and training viewpoint 
is concerned with the specifics of constructing the system ac­
cording to the architecture developed from the implementa­
tion design viewpoint. Training is included here because it 
provides the human components of the system with the guide­
lines and procedures they will use during system operation. 
The manufacturing analogy is the construction of the plant 
and training of the workers. 

Requirements Analysis in the System Life Cycle 385 

The integration and test viewpoint is concerned with the 
fitting together of implemented (or trained) parts of the sys­
tem to produce a correctly-operating, verified, and validated 
whole that is ready for use in achieving the users' objectives. 
In manufacturing, pilot production and product test are the 
closest analogies. 

The user operations viewpoint is concerned with applying 
the system, as constructed, to achieve the users' objectives. 
The experience gained in this viewpoint is a rich source of user 
needs for the next (or modified) system. Use of the plant to 
produce the product in volume is the manufacturing analogy. 

One common viewpoint has been omitted from the present 
picture of the model-the maintenance viewpoint. The model 
includes maintenance as a part of operations and restricts its 
scope to 

1. Identifying and evaluating problems within the system 
2. Adjusting previously designed controls to keep the sys­

tem in tune 
3. Replacing failed parts with identical spares 

If changes in the design of the system or its component are 
needed, the design is recycled as necessary through the life 
cycle to design and implement the changes. 

There is another important viewpoint associated with the 
development process, the viewpoint of project management. 
This viewpoint is illustrated in Figure 3. Project management 
is able to plan and control the development process by viewing 
and monitoring the efforts of the major inline development 
activities performed from the six viewpoints. 

The viewpoints have been described in terms of the activi­
ties performed. However, as pointed out earlier, the essence 
of the viewpoints is not the activity, but the continued, vested 
interest of a group of people involved in the life cycle activ­
ities. Two important concepts that arise out of the life cycle 
wheel model are identified and explained in the follow­
ing subsections: information transfer and locus of principal 
activity. 

Information Transfer Between Viewpoints 

The first concept derived from the life cycle wheel model is 
that of information transfer between viewpoints. Since the 
context in which an individual works has been formalized, it 
is necessary to consider how information is transferred be­
tween different viewpoints. When transfers of information are 
made between viewpoints that are not adjacent, our experi­
ence indicates that misinterpretations and misuses of the in­
formation are more likely. For this reason, only information 
transfer between two adjacent viewpoints is considered. 

Information exchange and information mappings are the 
two important kinds of information transfer. An information 
exchange is a formal process of handing information from one 
viewpoint to another. It can be further subdivided into feed­
forward and feedback. Feed-forward is the transformation of 
a particular element of information from a viewpoint to the 
next viewpoint (along the general direction of the locus of 
principal activity, described in the next subsection), and feed­
back is the reverse. Mappings are relationships established 



386 National Computer Conference, 1982 

between the contents of information items of two view­
points. A consistency check or requirement traceability be­
tween views at different viewpoints is an important use of such 
mappings. 

Locus of Principal Activity 

The second concept is that of locus of principal activity. The 
locus of principal activity is the time-ordered sequence of 
major development activities. It is the replacement for the 
idealized concept of life cycle phases used in the conventional 
life cycle model. If the development process were to proceed 
in the idealized manner, then the development phases would 
correspond directly to the six major viewpoints. Rarely does 
the idealized occur. Iteration and concurrent activities make 
the idealized model invalid. 

The separation of viewpoints from life cycle phases is one of 
the major differences between the life cycle wheel model and 
the classical development model. It has important implica­
tions. First, the viewpoint structure exists throughout the 
complete life cycle of the information-intensive system. Sec­
ond, the separation allows the model to explain and show the 
place for iteration between development activities and con­
current development activities. 

The locus of principal activity is the bridge between view­
points and development phases. Treating phases in this man­
ner focuses project management's attention on several fac­
tors, all of which require management: 

1. The existence of iteration in the development process 
2. The oscillation of the focus of activity back and forth 

between viewpoints 
3. The existence of concurrent development activities (at 

least two major efforts existing simultaneously in time) 
4. Ensuring consistency between the work done from dif­

ferent viewpoints (requirements traceability) 

REQUIREMENTS ANALYSIS IN THE 
LIFE CYCLE WHEEL 

Based on the life cycle wheel model, requirements analysis is 
viewed as a design activity from a user viewpoint. This design 
is synthesized from various (incomplete, inconsistent) user 
scenarios and other expressions of needs. The emphasis is on 
what functions the system is to perform and how the system 
interacts with the users. It is helpful in distinguishing between 
user design and implementation design to say that, from a user 
design viewpoint, the functions are performed "as if by 
magic." A major pitfall to be avoided is the temptation to 
specify implementation details in the statement of the user 
design. Use of implementation information should be allowed 
only as a communication aid or for enunciation of constraints 
that the users impose. An example of such a constraint would 
be a de facto selection of computer hardware. This type of 
implementation design information should be considered as 
implementation information that appears during the user de­
sign phase. To further illustrate the importance of being able 
to distinguish between views and phases, we point out that it 

is impossible to finish the user design (in the form of user 
how-to manuals) until the final stages of implementation. 

Requirements analysis (user design) is an important activity 
at both the information systems level and the software engi­
neering level. As an increasing number of system levels are 
added to the description of the product system, requirements 
analysis will first (going along the locus of principal activity) 
be performed at the information system engineering level for 
the top system levels of the product system. Later, require­
ment analysis will again be performed at software subsystem 
levels. The user design at the system level is a major part of 
the user needs at the software system level. 

A classic problem of requirements analysis is ensuring that 
an internally consistent and complete user design has been 
prepared. The model delineated in the previous section pro­
vides two major features to assist with this problem. The first 
is the application of consistency mappings to verify that all the 
scenarios can be supported by the functional features of the 
user design. In this manner the user design may be tested for 
completeness using the user scenarios. Internal consistency is 
a more difficult test to apply. The application of the life cycle 
wheel model will assist the designer in the check for internal 
consistency. However, additional design rules that are de­
pendent on the product system need to be applied. The ulti­
mate test for internal consistency is an application of the 
consistency mapping-from user design around the life cycle 
wheel to the successful use of the product system by the users 
against all of the required scenarios. 

TECHNI-KIT 

During the life cycle activities, methods and tools are used to 
support the human being in the design or implementation of 
an information-intensive system. There are two parts to such 
support: methodology used in thinking; and tools to capture, 
store, and manipulate the products of thought. Both meth­
odology and tools are used to amplify the effectiveness and 
productivity of the human being doing design and imple­
mentation. The methodology may be divided into 

1. Theories 
2. Methods (how theories are applied) 
3. Criteria (for judging the development and its product) 

Supporting tools may be manual (such as paper and pencils) 
or computer-based. We are principally interested in the com­
puter-based tools. Such tools can provide the enhanced speed, 
capacity, and accuracy needed to augment the human thought 
process in the development of large, complex systems. 

A number of methodologies and supporting tools are usu­
ally pertinent to the design and implementation of any partic­
ular information-intensive system. The application of such a 
collection of methodologies and tools can be made more ef­
fective if its components are selected and shaped to form an 
integrated, system-engineered set of methodologies and sup­
porting tools. We call such a set a techni-kit. We believe that 
many of the components of a particular techni-kit can be 
drawn from a reservoir of techni-kit resources that are gener­
ally applicable to a class of information-intensive systems. The 



generation of any particular techni-kit involves two impor­
tant, but not as yet well understood, tasks: (1) the particu­
larization of the methodologies and supporting tools for the 
task at hand (modify the candidate components of the techni­
kit to be most effective for the particular task) and (2) the 
design and implementation of that particular techni-kit in an 
efficient and rapid manner. 

Techni-kits have been proposed, and some have been built 
and used. 10,11 To date, most of the techni-kits that the authors 
are aware of (including the ones that they use) are not well 
engineered, are incomplete, and place large clerical demands 
upon their users. Formalizing the concept of a techni-kit can 
achieve a better balance between the efforts spent on meth­
odology and the efforts spent on tools. 

CONCLUSION 

The life cycle wheel model of the development of an informa­
tion-intensive system has been introduced; it is based on the 
concept of viewpoint. In conventional life cycle models for 
information-intensive systems, the role of requirements anal­
ysis has been unclear. Further, such models have had diffi­
culty in dealing with concurrent activities and iterations. By 
introducing the concept of a viewpoint and mappings between 
the results of work done from different viewpoints, these is­
sues can be clarified. In addition, the context in which an 
individual works is recognized as having a major impact on the 
development of an information-intensive system. By adding 
the dimension of viewpoint to the traditional dimension of 
phases and system levels, a richer life cycle model has been 
created. 

Requirements analysis is recognized as a design activity 
from the users' viewpoint in the extended life cycle model. 
Because of the increasing complexity of function and use of 
information-intensive systems, the insertion of a user design 
between user needs and implementation design allows the 
engineers, designers, and implementers to better handle the 
ever increasing levels of complexity of information-intensive 
systems. 

The last concept introduced in this paper is that of a techni­
kit. It provides a structure for considering the techniques and 
aids that exist or have been proposed for use in the creation 

Requirements Analysis in the System Life Cycle 387 

of complex information-intensive systems. Methodologies 
and computer-based tools are two main components of any 
good techni-kit. They must complement one another if the 
techni-kit is to be an effective aid to engineers, designers, 
implementers, and managers. 

ACKNOWLEDGMENTS 

The research described in this paper was carried out by the 
Jet Propulsion Laboratory, California Institute of Tech­
nology, under contract with the National Aeronautics and 
Space Administration. 

REFERENCES 

1. Metzger, P. W. Managing a Programming Project. Englewood Cliffs, New 
Jersey: Prentice-Hall, 1973. 

2. Biggs, C. L., E. G. Birks, and W. Atkins. Managing System Development 
Process. Touche Ross Management Series. Englewood Cliffs, New Jersey: 
Prentice-Hall, 1980. 

3. Teichroew, D. "A Survey of Languages for Stating Requirements for 
Computer-based Information Systems." AFlPS, Proceedings of the Fall 
Joint Computer Conference (Vol. 41), 1972, pp. 1203-1224. 

4. Couger, J. D. "Evolution of Business Systems Analysis Techniques." 
ACM Computing Surveys, 5, (1973), pp. 167-198. 

5. Teichroew, D., and E. A. Hershey. "PSLlPSA: A Computer Aided 
Technique for Structured Documentation and ~nalysis of Information 
Processing Systems." IEEE Transactions on Software Engineering, SE-3, 
(1977), pp. 41-48. 

6. Winters, E. W. "Experience with Problem Statement Language: A Lan­
guage for System Requirements and Specification." Proceedings of IEEE 
Compsac, Chicago, November 5-8, 1979, pp. 283-288. 

7. Farny, A. M., et al. "An Application of Computer Aided Requirement 
Analysis of Deep Space System." AIAA Computers in Aerospace III 
Conference, October 26--28, 1981, San Diego, California, pp. 531-536. 

8. Wickelgren, W. A. Cognitive Psychology. Englewood Cliffs, New Jersey: 
Prentice-Hall, 1979, p. 384. 

9. Miller, G. A. "The Magical Number Seven Plus Or Minus Two: Some 
Limits on Our Capacity for Processing Information." Psychological Re­
view, 63 (1956), pp. 81-87. 

10. Teichroew, D., E. A. Hershey, and Y. Yamamoto. "Computer-Aided 
Software Development." Software Reliability, Part 2. Maidenhead, Berk­
shire, England: Infotech International Limited, pp. 299-368. 

11. Ramamoorthy, C. V., and H. H. So. "Software Requirements and 
Specification: Status and Perspective." In V. Ramamoorthy and R. Yeh 
(eds), Tutorial: Software Methodology. New York: IEEE Computer Soci­
ety, 1978. 





Application generators: an introduction 

by JERROLD M. GROCHOW 
American Management Systems 
Arlington, Virginia 

ABSTRACT 

Application generators represent a new class of software development tools, which 
may yield the next order-of-magnitude productivity improvement in systems design, 
programming, and maintenance. This paper provides an introduction and bibliog­
raphy for the topic. Current references to more than 50 articles and publications, 
as well as to some two dozen products, indicate the extent of recent interest in this 
topic. 

389 





INTRODUCTION 

As recently as 18 months ago, an article in a major computer 
publication stated that application generation was a tech­
nology that was unlikely to have any significant impact on the 
development of computer systems. 14 Today, almost 50 compa­
nies have products which they call application generators46 

(see product description bibliography). They operate on a 
wide variety of computers ranging from microprocessors 
to large-scale mainframes. Almost every major manufacturer 
of computers has or is working on application generator prod­
ucts. IBM, with perhaps the largest research and development 
budget of all, is devoting substantial resources to expanding 
its offerings in this area. 15 In short, we have seen a revolu­
tion within the past two years in the types of software­
development tools that are being offered to the industry. 
Rather than producing just new computer languages, soft­
ware suppliers are aiming their sights much higher at a new 
generation of systems software that transcends the concept of 
both procedural and nonprocedural languages and takes us 
into the new realm of complete application specification and 
application generators, 6 

Application generators are a natural outgrowth of our 
search for better ways to develop not just single programs but 
complete application systems. While the term "application 
generator" is currently applied to a wide range of products, it 
is generally used to connote a development tool or tools 
whose input is a specification not just of a single program but 
of an entire system, including the database, transaction for­
mats, reports, programs, and job-control logic. In the ideal 
case, the output of an application generator would be a com­
plete application system in executable form. However, the 
current reality is somewhat less than the ideal. Application 
generators today typically produce only pieces of the applica­
tion system, often ignoring one or more of the inputs listed 
above and the consequent outputs. 

Claims have been made that application generators result in 
10, 100, or even 1,000 to 1 productivity improvements over 
traditional system-development techniques. While these 
claims are largely unsubstantiated and are certainly not di­
rectly comparable, they are indicative of the goals of the de­
velopers of these system-development tools and of the order­
of-magnitude changes in the system-development process that 
can be achieved, at least in certain well-defined cases. Appli­
cation generators do indeed represent a generational step in 
the software evolution process. 

The following bibliography indicates the range of recent 
publications on application generators and related topics. A 
separate section provides a representative listing of products 
advertised as members of the application generator family. 

Application Generators: An Introduction 391 

The Genealogy of Application Generators 

EJ 
+ 

Application Generators 

BIBLIOGRAPHY 

1. American Management Systems, Inc. "Generation Five: An Application 
Generator for Financial Systems." Arlington, Va. July 15, 1980. 

2. Cardenas, A. F., and W. P. Grafton. "Challenges and Requirements for 
New Application Generators." AFIPS, Proceedings of the 1982 National 
Computer Conference, June 7-10, 1982, Houston, Texas. 

3. Cardenas, A. F. "Technology for Automatic Generation of Application 
Programs-a Pragmatic View." MIS Quarterly, 1 (1977),9, pp. 49-72. 

4. Chamberlin, D. D., et al. "A History and Evaluation of System R." Com­
munications of the ACM, 24 (1981), 10, pp. 632-646. 

5. Cobb, R. H. "COBOL-80 Controversy: Exercise in Futility." Computer­
world, 15 (1981), 12, p. 45. 

6. Computerworld Extra. "Dawn of the Software Decade." 14 (1980), 38. 
7. de Peyster, D. "Application Generator Runs on TI 990 Series." Computer 

Business News, 3 (1980), 6, p. 16. ' 
8. de Peyster, D. "High-Level Languages Lauded as Software Tools." Com­

puter Business News, 3 (1980), 26, p. 3. 
9. EDP Analyzer. "Application System Design Aids." 19 (1981), 10. 

10. EDP Analyzer. "Developing Systems by Prototyping." 19 (1981), 9, pp. 
1-12. 

11. EDP Analyzer. "Easing the Software Maintenance Burden." 19 (1981), 8. 
12. EDP Analyzer. " 'Programming' by End Users." 19 (1981), 5. 
13. Enos, J. c., and R. L. Van Tilburg. "Software Design." Computer, 14 

(1981), 2, pp. 61-83. 
14. Frank, R. A. "Let the Users Program." Datamation, 28 (1982), 1, p. 88. 
15. Goodman, A. "Application Generators at IBM." AFIPS, Proceedings of 

the 1982 National Computer Conference, June 7-10, 1982, Houston, Texas. 
16. Goodman, A. M. "IMSADF: A Tool for Programmer Productivity." Tele­

systems Journal, 7 (1980), 4, pp. 11-21. 
17. Grochow, J. M. "Application Generators Anticipate Requirements." 

Computerworld, 15 (1981), 13, p. 30. 
18. Grochow, J. M. "Financial Information Systems: The New Generation." 

Proceedings of the Conference on Financial Information Systems: The New 
Generation, October 5, 1981. Chicago, Illinois: National Institute for Man­
agement Research. 



392 National Computer Conference, 1982 

19. Hammer, M., W. G. Howe, V. J. Kruskal, and I. Wladawsky. "A Very 
High Level Programming Language for Data Processing Applications." 
Communications of the ACM, 20 (1977), 11, pp. 832-840. 

20. Hancock, J. L. "Chipping Away at Productivity." Computerworld, 13 
(1979), 32, pp. 7-18. 

21. Holtz, D. H. "A Nonprocedural Language for On-Line Applications." 
Datamation, 25 (1979), 4, pp. 167-176. 

22. Houghton, R. C. National Bureau of Standards Software Tools Database. 
Washington, D. c.: National Bureau of Standards, 1980. 

23. Information Systems News. "The Productivity Dilemma." February 9,1981, 
pp.21-40. 

24. Kaufman, S., and M. J. Elmore. "The Package Software Industry-An 
Investor Perspective." San Francisco, Ca.: Hambrecht & Quist, October 8, 
1981. 

25. Leavitt, D. "Software Generators are Keys to Efficiency." Computer Busi­
ness News, 3 (1980), 7, pp. 1,6. 

26. Leverett, B. W., R. G. G. Cattell, et al. "An Overview of the Production­
Quality Compiler-Compiler Project." Computer, 13 (1980), 8, pp. 38-49. 

27. Loomis, J. E. "Reader Puts Spotlight on Applications Generators." Com­
puter Business News, 4 (1981), 8, p. 10. 

28. Loomis, J. E. "Using Generation 5 to Produce Product Labor Rate 
Sheets." AMS memorandum (available from author). August 1979. 

29. Mandell, M. "Gloom and Glad Tidings for James Martin." Computer Deci­
sions, 13 (1981), 1, pp. 10, 12. 

30. Mishelevich, D. J., and D. Van Slyke. "Application Development System: 
The Software Architecture of the IBM Health Care SupportJDU1-Patient 
Care System." IBM Systems Journal, 19 (1980),4, pp. 478-504. 

31. Musgrave, B. "Relating to Data Bases." Datamation. Special Edition, vol. 
29 (1980), p. 30. 

32. O'Connor, R. J. "Applications Generator to Target 32-Bit Systems." Com­
puter Business News, 4 (1981), 8, p. 2. 

33. Pettinger, J. "Are Programmers Obsolete?" Interactive Computing, 7 
(1981),2, pp. 2-11. 

34. Rosen, E. C. "Vulnerabilities of Network Control Protocols: An Exam­
ple." ACM SIGSOFT, Software Engineering Notes, 6 (1981),1, pp. 6-8. 

35. Roth, R. L. "Program Generators and Their Effect on Programmer Pro­
ductivity." AFIPS, Proceedings of the 1982 National Computer Conference, 
June 7-10, 1982, Houston, Tx. 

36. Runyan, L. "Applications Development Software Still a Sore Spot." Data­
mation, 27 (1981), 3, pp. 165-167. 

37. Seaman, J. "Make or Buy ... Software, Processing, Maintenance, and Fa­
cilities Management, Too." Computer Decisions, 12 (1980), 12, pp. 43-56. 

38. Schofield, D., A. L. Hillman, and J. L. Rogers. "MMf1, A Man-Machine 
Interface." Software Practice and Experience, 10 (1980), 9, pp. 751-763. 

39. Shoor, Rita. '''Mark V' Hikes Productivity 50%." Computerworld, 15 
(1981), 39, pp. 1, 7. 

40. Small Systems World. "Generators vs. Compilers." 7 (1979), 4, p. 23. 
41. Snyders, J. "Generators Overcome Programmer Shortage." Computer 

Decisions, 13 (1981), 3, pp. 34-42. 
42. Snyders, J. "Snyders on the Software Highlights of 1980 and What They 

Mean for You." Computer Decisions, 12 (1980), 12, pp. 74-87. 
43. Sperling, T. B., and R. Egli. "The Future Application Generators in Cor­

porate Systems." Infosystems, 25 (1979), 6, pp. 88-92. 
44. Stiefel, M. L. "Surveying Data Base Management Systems." Mini-Micro 

Systems, 12 (1979),11, pp. 94-104. 
45. Stotland, V. G., "Shortcut Systems." Datamation, 27 (1981), 4, p. 163. 

46. "Systems and Software." Electronic Design. Special Editorial Series. No­
vember 12, 1981. 

47. Teichroew, D., and H. Sayani. "Automation oiSystemBuiiding." Datama­
tion, 17 (1971), 8, pp. 25-30. 

48. VanErp, S. D. "Software Flexibility." ICP INTERFACE Insurance Indus­
try, 6 (Spring 1981), pp. 14-16. 

49. Waldrop, J. H. "Application Generators: A Case Study." AFIPS, Pro­
ceedings of the 1982 National Computer Conference, June 7-10,1982, Hous­
ton, Tx. 

50. Weiss, H. M. "The ORACLE Data Base Management System." Mini­
Micro Systems, 13 (1980), 8, pp. 111-114. 

51. Wulf, W. A. "Trends in the Design and Implementation of Programming 
Languages." Computer, 13 (1980), 1, pp. 14-22. 

52. Zloof, M. M. "QBE/OBE: A Language for Office and Business Auto­
mation." Computer, 14 (1981), 5, pp. 13-22. 

53. Zornes, A. "Then My Computer Said to Me ... " ICP INTERFACE Data 
Processing Management, 6 (Autumn 1981), pp. 27-29. 

REPRESENTATIVE PRODUCT DESCRIPTIONS 

1. Admins, Inc. AdminslII Summary. Cambridge, Ma. 
2. American Computer Group, Inc. The Proven DBMS Application Devel­

opment System for DEC II & VAX. Boston, Ma. 
3. American Management Systems, Inc. Generation Five. Arlington, Va. 
4. Artificial Intelligence Corporation. Intellect User's Guide. Newton Center, 

Ma. 
5. Cincom Systems, Inc. MANTIS. Cincinnati, Oh. 
6. Cullinane Corporation. IDMS. The Data Dictionary Driven Data Manage-

ment System. 
7. Distribution Management Systems. ORACLE. Bedford, Ma. 
8. DJ 'AI' Systems Ltd. The Last One. Los Angeles, Ca. 
9. Ev~luation and Planning Systems. FCS-EPS: The Management Decision 

Support System. New York. 
10. General Automation. NoCode. Anaheim, Ca. 
11. Henco, Inc. INFO. Wellesley, Ma. 
12. IBM. Application Development Systems Catalog. G320-6562. White Plains, 

N.Y., 1981. 
13. IBM. "ApplicationiDevelopment Aids." Information Processing (January 

1982), pp. 22-23. 
14. IBM. A Departmental Reporting System. G320-6097. White Plains, N. Y., 

1979. 
15. IBM. Development Management System IVS. GH20-1863. White Plains, 

N. Y. 
16. IBM. Storage and Information Retrieval SystemlVirtual Storage. General 

Information Manual. GH12-5114. White Plains, N. Y., 1981. 
17. Information Builders, Inc. FOCUS. New York. 
18. Information and Systems Research, Inc. RIMS/MPG. Coraopolis, Pa. 
19. Mathematica Products Group. RAMIS II. Wilton, Ct. 
20. National CSS. NOMAD 2. Wilton, Ct. 
21. Prime Computer, Inc. Prime/TAPS-Terminal Application Processing Sys­

tem. Natick, Ma. 
22. Science Management Corporation. IDOL. Product Description of Data­

base Management System. Riverdale, Md. 
23. Planning Research Corporation. Central Software. McLean, Virginia. 



Software product quality assurance 

by-JOHN R. RYAN 
Texas Instruments, Inc. 
Austin, Texas 

ABSTRACT 

Providing clear objectives, guidelines, and requirements in an environment con­
ducive to high productivity is absolutely essential to designing and producing high­
quality software. The Software Quality Branch of the Computer Systems Division 
of Texas Instruments is tasked with providing support functions that are vital to 
producing high-quality software. 

This paper explains the role of the Software Quality Branch in administering the 
development methodology of the Computer Systems Division. The paper also 
describes our participation in a corporate effort to define and monitor quality 
indices and our use of a software quality circle to encourage commitment to quality 
goals and to develop solutions to quality problems. 

393 





INTRODUCTION 

For a computer system to be competitive in today's market­
place, the manufacturer must commit significant resources to 
its support. For the product to remain viable, timely mainte­
nance releases must be made to correct functional defi­
ciencies, to provide the additional functionality needed to 
maintain a leadership position, or simply to meet competition. 
When functional enhancements are made, it is essential that 
upward compatibility with earlier releases be maintained in 
order to protect the users' investment in application software. 
The product must be scrutinized to assure that manu­
facturability, configurability, and ease of installation have 
been accounted for in the packaging. 

Good software engineering practices must be employed in 
the analysis, design, and implementation of the product for it 
to be testable, maintainable, and easy to use. It is economic­
ally essential that the development and maintenance of a 
viable computer system product be carefully controlled in 
order to meet customer requirements while minimizing devel­
opment, maintenance, and support costs. 

It is the responsibility of the Software Qualitv Branch to 
provide all levels of management with the inform-ation neces­
sary to orchestrate the development and maintenance of a 
computer system product without neglecting any of the critical 
quality attributes, l including the following: 

1. Correctness-The extent to which a program meets its 
specifications and fulfills the user's objectives. 

2. Flexibility-The effort required to modify an opera­
tional program. 

3. Interoperability-The effort required to couple one sys­
tem to another. 

4. Reliability-The extent to which a program can be ex­
pected to perform its intended function with the re­
quired precision. 

5. Maintainability-The effort required to locate and fix an 
error in an operational program. 

6. Usability-The effort required to learn, operate, input 
data and interpret output of a program. 

7 . Testability-The effort required to test a program to 
insure that it performs its intended function. 

THE SOFTWARE QUALITY ORGANIZATION 

Each section of the Software Quality Branch is responsible for 
insuring that one or more of the quality attributes are present 
in the product under development. The sections are as fol­
lows: 

1. Software Quality Assurance 
2. Software Audit 

Software Product Quality Assurance 395 

3. Software Engineering Support 
4. Software Configuration Management 

Software Quality Assurance 

The Software Quality Assurance (SQA) Section verifies 
t?at the product meets all specifications (requirements, func­
tIOnal, and design). When authorization has been granted to 
develop a new product or enhance an existing one, staff begin 
immediately to develop an overall test plan. 

The test plan describes both the strategy for testing the 
product and the hardware and software configurations in 
which it will be tested. A list of features added since the last 
version is complemented by a description of new tools and 
programs that will be developed to test them. All previously 
developed test tools and regression test software are de­
s~ribed. A schedule is included, indicating when specifica­
tIons, user documentation, unit test results, hardware, and 
s~ftware are to be delivered to SQA and when status reports 
WIll be made to the project manager. 

An SQA representative attends the weekly project reviews 
to report on the status of the test effort. SQA verifies the 
technical content and clarity of the user documentation pro­
duced by the Technical Publications Branch. 

Documentation and software defects are noted by submit­
ting Software Trouble Reports (STRs). When SQA has re­
ceived a new version and verified that the deficiency has been 
corrected, the STR is marked "fixed." Both the SQA and the 
project managers receive reports showing the status of all 
STRs against the product. Using these reports to track out­
standing STRs reduces the chance that a problem will be 
accidentally overlooked. 

When all tests have been passed satisfactorily and the prod­
uct and documentation are deemed customer-ready, i.e., 
meet all specified requirements, they are turned over to the 
Software Audit Section for final verification. 

Software Audit 

The Software Audit (SWA) Section is responsible for veri­
fying the installation and operation of the computer system 
product on actual production hardware, using only the docu­
mentation that will be shipped to the customer. A software 
auditor must simulate as closely as possible a "real" customer. 
He uses the system in a simulated production environment. 
. A mi~~r d~fect that is encountered after SWA has begun 

final venflcatIOn must be documented in the product Release 
Information document. If the problem is sufficiently serious 
~hat the product is no longer judged to be customer-ready, it 
IS returned to the project and must undergo regression testing 
by the SQA Section before it can be resubmitted to SWA. 



396 National Computer Conference, 1982 

Some examples of serious problems that can cause a prod­
uct to fail final verification are these: 

1. It causes the operating system to crash or hang. 
2. It causes data to be lost or destroyed. 
3. It interferes with the operation of other programs. 
4. It does not satisfy its specifications. 

By insuring that all known problems with the final version 
ofthe product are either fixed or documented, the SWA Sec­
tion protects the customer from unexpected difficulties when 
installing and using the product. 

Software Engineering Support 

The Software Engineering Support (SES) Section reviews 
specifications, evaluates software prototypes from a human­
factor point of view, and coordinates the development and 
distribution of appropriate software tools that are used inter­
nally for development activities. 

SES representatives attend all design reviews and comment 
on the consistency and compatibility of the proposed design 
with respect to other related products. In addition, they coor­
dinate the proposed changes in development standards or 
methodology. 

Because of the involvement of the SES Section, many com­
patibility and usability problems are identified and corrected 
early in the development cycle. Their efforts in promoting 
standards, methodology improvements, and the use of soft­
ware tools also contribute to the efficiency of the development 
effort. 

Software Configuration Management 

The Software Configuration Management (SCM) Section is 
responsible for controlling source changes for products under 
development. They verify that product installation kits (the 
collection of programs that the customer purchases to install 
on a system) can be manufactured from the corresponding 
source code by using standard manufacturing procedures. 
SCM integrates new modules to be tested into the master 
library and produces each intermediate test version for the 
project and SQA. 

One of the key elements of configuration management is 
the control of reports of software failures and requests for 
design changes. 2 For this reason the SCM Section manages the 
Software Trouble Report (STR) system. This system tracks 
functional deficiencies and requests for enhancements from 
customers, field analysts, and factory personnel. 

THE DEVELOPMENT CYCLE 

The Software Quality Branch participates actively in each 
phase of software development, assisting management in veri­
fying that all milestones have been met and all quality require­
ments are being satisfied. The major phases of product devel­
opment are as follows: 

1. Initiation 
2. Definition 
3. Design 
4. Programming 
5. System test 
6. Acceptance 

Initiation Phase 

During the initiation phase of product development, all 
market requirements are analyzed by the Product Planning 
Branch. The product planners work with systems analysts 
from one or more of the software development branches to 
produce the marketability requirements specification. At this 
time, the SQA Section becomes familiar with the system re­
quirements in order to later evaluate the functional specifica­
tion, prepare the product test plan, and develop any test tools 
or environments needed. 

The SES Section uses the marketability specification to es­
tablish a user profile for the proposed product. This user 
profile, which assesses the background, capabilities, and pref­
erences of the projected user, forms a basis for evaluating the 
applicability of the user interface and documentation. 

Definition Phase 

The definition phase of product development includes the 
analysis of functional requirements necessary to satisfy mar­
ket demands. It culminates in the review and approval of the 
functional specification. SQA verifies that the proposed prod­
uct meets all of the marketability requirements and develops 
a preliminary test plan. The SES group projects whether the 
system will be easy to use and whether it will be operationally 
consistent with related software products. 

Design Phase 

The SQA Section reviews the system design during this 
phase to insure that it is complete, consistent with the ap­
proved functional requirements, and compatible with related 
system products. SQA also completes the product test plan 
and puts it into final form. The test plan is reviewed and 
approved by the project manager. As draft copies ofthe user's 
guide and other manuals become available, they are reviewed 
by SQA for accuracy of technical content and conformity to 
system specifications. 

Programming Phase 

During the programming phase of product development, 
the Software Configuration Management (SCM) Section as­
sists the development programmers in controlling source code 
changes; archiving copies of source, object, and listings as 
required; and maintaining the unit test library. 

The software prototype of the user interface is evaluated by 
the SES Section for usability, user friendliness, and simplicity. 



SQA participates in project code-reading sessions to see that 
the code is being developed according to standards and to help 
identify problems early. They evaluate the unit test results to 
determine when the product is ready to proceed to the system 
test phase. 

System Test Phase 

Most of the system test phase is executed in the factory by 
the SQA Section. An internal alpha test is conducted as soon 
as the product is sufficiently functionally complete and opera­
tionally stable to be used in a limited production environment. 
When the product has satisfactorally completed the alpha test, 
it is distributed to selected external customers for beta test. 
The beta test period is concurrent with the final weeks of 
system test. 

Internal alpha test 

As integration is completed on major subsystems, they are 
turned over to the SQA Section for system testing. Problems 
encountered are reported to the project manager so that the 
modules affected may be identified, corrected, and resub­
mitted to SCM. SCM integrates the changes into a new test 
version for SQA. The test history and current problem status 
are used by the project manager and the SQA manager to 
determine when the product is ready to proceed to beta test 
and finally to the acceptance phase. 

External beta test 

The SQA Section coordinates the planning and execution 
of the beta test. With the assistance of Product Marketing, 
customers are identified to use the new software for its appli­
cation in a controlled, quasi-production environment. Each 
beta test site is contacted weekly for a report of confirmed or 
suspected bugs. This information is used to identify areas 
within the system where intensive testing may be needed. 

The beta test arrangement gives the selected customer the 
advantage of advance information about the new product and 
a -head start in developing applications to use the new func­
tions. It also enables SQA to identify problems in environ­
ments that are extremely difficult to stage or even simulate in 
the factory. The beta test sites provide an important evalu­
ation of the usability of the software and user documentation. 

Acceptance Phase 

The SWA Section performs the final verification for the 
product during the acceptance phase. SWA receives the prod­
uct on the same media as will be shipped to customers, includ­
ing the released documentation. It is installed and executed 
according to the instructions in the manuals and verified to be 
functionally complete prior to shipment. 

THE SOFTWARE QUALITY CIRCLE 

The Software Quality Circle has been established within the 
Computer Systems Division to provide representatives of 

Software Product Quality Assurance 397 

each development group with a forum where they can express 
their concerns about quality and propose solutions to any 
perceived problems. This not only promotes cooperation but 
also gives the Software Quality Branch access to the combined 
experience, wisdom, and innovative creativity of the devel­
opment branches through their representatives on the circle. 

Typical Issues 

One of the first issues raised before the circle was the criti­
cal dependence of all other development groups on the basic 
functions provided by the operating systems. In order to bet­
ter coordinate incremental changes to the operating systems, 
an OS control board was established. Composed of represen­
tatives from the various development areas, the OS control 
board evaluates the potential effect of each proposed change 
on other products. 

After synthesizing, prioritizing, and carefully studying a list 
of problems that were judged to undermine the quality effort, 
the circle focused on several key areas of development meth­
odology that were not being consistently applied. Various 
subcommittees were formed to formulate standards and pro­
cedures. They operate under the guidance of the Software 
Quality Branch and periodically report on their progress to 
the Software Quality Circle. 

Assessment of Results 

The Software Quality Circle has made several important 
contributions to the overall software quality effort during its 
first year of operation. The major benefits have been pro­
moting better understanding of the root causes of quality 
problems and promoting community commitment to the pro­
posed solutions. 

The members come to the monthly meeting with sympto­
matic observations; group discussion and analysis normally 
lead to the identification of the underlying causes. Finally, the 
Software Quality Circle members have been of enormous help 
in promoting awareness of quality issues in the development 
community. 

Future Plans 

It is our intention to continue using the circle as a source of 
both new ideas and feedback with respect to quality standards 
and procedures. If a problem is identified that will require 
management attention to resolve, appropriate action will be 
taken by the Software Quality Branch to send the problem to 
the level of management necessary to solve the problem. The 
circle will also play an important role in coordinating our 
training effort to maximize the quality awareness of the devel­
opment community through the use of structured methods. 

QUALITY MEASURES 

The project managers are required to forecast the quality of 
all computer system products. The Software Quality Branch 



398 National Computer Conference, 1982 

manager must report on the actual results to the corporate 
quality manager. Any variance from the forecast must be 
explained and an action plan described to remedy the 
problem. 

Leading, concurrent, and lagging quality indices have been 
established to indicate the measurable quality of the product 
during the programming phase, during the system test phase, 
and after the release of the product. 

Leading Index 

We have found that program complexity as measured by the 
Halstead Effort metric3 correlates well to the number of times 
that a module must be reworked to correct errors. We are 
currently establishing complexity guidelines for our products. 
Any module that exceeds the guideline will be reviewed and, 
if possible, reworked or decomposed into multiple smaller, 
simpler modules. 

Concurrent and Lagging Indices 

The concurrent index of quality is based on the number of 
problems documented by STRs while the software product is 
in the system test phase. At the time development is begun, 
a maximum number of acceptable outstanding problems is 
established for the product. If the number of STRs ever ex­
ceeds the maximum, corrective action is mandatory. 

The lagging index is established in an analogous manner, 
but it is computed by using STRs that are submitted after the 
product is released. If the number of STRs for a product 
exceeds the established maximum, a new version of the prod­
uct will be released to correct the reported problems. 

CONCLUSIONS 

Throughout the development cycle, Software Quality Branch 
personnel review specifications, plan and conduct various 

tests, and verify completion of each of the development 
phases. The project manager is regularly provided with an 
objective assessment of the status of the product relative to 
approved specifications. When conflicts arise, they are sent to 
higher management. 

One can conclude from the specification, coordination, as­
sessment, and verification activities described that software 
quality is fundamentally a management problem. This fact 
sometimes becomes lost in the myriad of very real technical 
issues and business decisions that project and quality manage­
ment are faced with. The fact that computer products must be 
suited to a variety of applications can provide further compli­
cations for the computer system vendor. 

To deal in an objective way with the complexity of modern 
systems having diverse requirements, it is essential to agree 
formally on the system requirements and a quality plan that 
insures that they will be met. Objective quality measures are 
essential to the avoidance of conflicting assessments of the 
true state of project completion. 

A software quality circle is an invaluable forum for gaining 
community acceptance and support for methodology changes. 

Although the responsibility for product quality must rest 
squarely with the project manager, the successful execution of 
both development and quality plans depends on the level of 
cooperation that the project manager and the quality manager 
are able to achieve. 

REFERENCES 

1. McCall, James A. "An Introduction to Software Quality Metrics." In J. 
D. Cooper and M. J. Fisher (eds.), Software Quality Management. New 
York, Petrocelli, 1979. 

2. Bersoff, Edward H., V. D. Henderson, and S. G. Siegel. "Software 
Configuration Management, An Investment in Product Integrity." En­
glewood Cliffs, New Jersey: Prentice-Hall, 1980. 

3. Halstead, Maurice H. Elements of Software Science. New York: Elsevier 
North-Holland, 1977. 



A quality assurance program for software maintenance 

by JOHN W. CENTER 
Medtronic Incorporated 
Minneapolis, Minnesota 

ABSTRACT 

This paper presents the description of a quality assurance (QA) program applied to 
software maintenance projects. The QA program is a set of checks or inspections 
overlaid on the steps of the maintenance project. The relationship between the QA 
program and project management is shown. The paper includes a brief discussion 
of waivers and deviations to standards and control documents. The QA checks are 
delegated to three levels. The rationale, scope, and authority for each level are 
discussed. A list of sample criteria used for each QA check or inspection is given. 

399 





INTRODUCTION 

Recently a great deal of interest has developed relative to 
quality assurance (QA) techniques and their application in the 
environment of management information systems (MIS). 
Problems associated with controlling software maintenance 
have also been recognized. The MIS department of a manu­
facturing company is usually responsible for applications with 
diverse characteristics. The applications cover the range of 
finance, planning, inventory control, personnel, process con­
trol, and automatic test equipment. With such differences in 
applications, the requirements and risks of maintenance are 
different. A means to control the maintenance process and 
reduce the risks would be of distinct benefit. If the MIS de­
partment has or is starting a QA function, a QA program 
applicable to software maintenance would be most useful. 

Fischer! and Mendis2 give excellent descriptions of general 
QA programs applied to software environments. Though the 
articles describe programs intended for new software devel­
opment, they establish excellent background useful in under­
standing how a QA program works and what the objectives 
are. 

Lientz and Swanson3 have a new book on the topic of soft­
ware maintenance. Roberts4 presents the software mainte­
nance problem in a very practical light. A set of plans is a 
major aspect of any QA program. Included are test plans, 
assurance plans, configuration control plans, etc. Buckley5 

and Dunn and Ullman6 recently gave excellent presentations 
of QA plans for software projects. 

The QA program presented here should be treated as an 
example. Readers who attempt to implement an identical one 
in their departments may find certain problems and ineffi­
ciencies. However, readers should be able to establish a soft­
ware maintenance QA program by using the major features 
and concepts presented in this paper as guidelines. 

THE PROGRAM 

There are several components to the software maintenance 
QA program. The program is based on a set of checks or 
inspections. The placement or execution of inspections is de­
termined when the software maintenance project is broken 
into steps. The checks or inspections are placed according to 
a set of rules used by traditional quality assurance manage­
ment. The rules have evolved over time. The checks are fur­
ther classified by type, in-line or off-line, and by three levels. 
There is often difficulty in applying current standards to older 
software being maintained. Waivers and deviations become 
an important component of the QA program as mechanisms 
to document difficulties in the universal application of 
standards. 

A QA Program for Software Maintenance 401 

Each of the following sections discusses the various com­
ponents of the QA program in more detail. The description of 
the rationale, authority, etc., of each level of QA check is 
discussed. A list of the criteria used for each inspection or QA 
check is also included. 

Project steps 

There are dozens of ways to break a software maintenance 
project into separate steps. One might treat maintenance of 
sufficient size or magnitude the same as traditional new sys­
tem development. It would then make sense to use steps given 
in one of the current books or tutorials on system develop­
ment methodologies. The QA program for very large mainte­
nance projects would be the same as the QA program used for 
new development. 

One could also consider the maintenance of a single pro­
gram. Perhaps the number of lines on a report page is being 
changed. A project of this size is so small, and would be 
completed so quickly, that the benefit of a formal QA pro­
gram is questionable. Projects in the emergency maintenance 
class could also be too small to require the formal QA pro­
gram suggested in this paper. One must remember that 
emergency maintenance relates to the occurrence of a failure 
condition. There should be a separate formal QA program for 
failure investigation and corrective action. 

Thus, the QA program discussed in this paper is oriented 
toward the middle-size maintenance project. The vast major­
ity of maintenance resources are expended on projects in the 
middle group. Books and articles have been published recent­
lyon the topic of software maintenance. However, there ap­
pear to be few articles directly related to breaking the mainte­
nance project into separate steps. There is one interesting 
potential source of information on this aspect of software 
maintenance projects. A major computer hardware con­
version has strong similarity to the maintenance process. A 
publication provided by Sperry Univac7 to assist in the con­
version process gives an excellent breakdown of steps in a 
conversion project. Some of the quantitative results of using 
a QA program during a conversion were presented and pub­
lished at the 1981 National Computer Conference.8 The QA 
program for software maintenance is almost the same as one 
used during that conversion. 

The box labeled "Establish Need for Maintenance" in Fig­
ure 1 represents the first identification of a potential or real 
software maintenance project. This need might be determined 
by the user department when a new law is passed, a new 
format for ZIP codes is used, etc. The need might be deter­
mined by the MIS department when it becomes apparent that 
much higher processing efficiencies might be obtained, a con­
straint on the physical hardware has been reached, etc. Usu­
ally a formal request or form is generated. The request is 



402 National Computer Conference, 1982 

processed through the MIS channels to place the maintenance 
project in the queue. 

The box labeled "Schedule Maintenance" is the first task of 
the newly assigned project leader. This task includes the 
when, who, and how of the maintenance project. The project 
leader determines which subsystems are involved, which peo­
ple should do the specific tasks, whether there are any auto­
mated tools available, etc. It is assumed that the project is 
broken down primarily by information subsystem. The sub­
sequent steps for each subsystem are concurrent. The project 
leader establishes the detailed schedule of subsystems on the 
basis of contingencies and requirements. The steps for a single 
subsystem are shown as a representation of many that might 
be in parallel. 

The box labeled "Maintenance Preparation" represents the 
tasks performed prior to the actual maintenance work. This 
step includes the following tasks: (1) establishing the docu­
mentation package, detailed requirements documents, status 
checklists, forms, etc.; (2) gathering test data, sample files, or 
data specifically designed to test the (sub )system; (3) gather­
ing file information or file descriptions, record layouts, and 
look-up tables for both the old and new versions; and (4) 
gathering program listings, cross-reference data, special or 
library routine descriptions, etc. 

The box labeled "Modify Code" is the activity on which the 
entire maintenance project depends. Closely associated with 
the code modification is compilation. The box that directly 
follows code modification is error free or "Clean compile." It 
is usually assumed there were no program coding errors prior 
to maintenance. A significant portion of software mainte­
nance relates to data or file descriptions. When changes are 
made in the data descriptions, the data and files must be 
modified to match the new ones. The box labeled "Convert 
DatalFile" represents this process. 

After making the appropriate modifications to the program 
code and the data representations, the "new" programs have 
to be tested or checked out. In order to isolate problems 
quickly, each program should be tested separately. The pro­
cess of testing the programs or routines is represented by the 
box labeled "Program Test and Debug." 

After all the programs have worked successfully, the sub­
system is put back together and checked out. The box labeled 
"Subsystem Test and Debug" represents this process. Test 
failures mean looping back to modify code and convert datal 
files. 

The "new" subsystem now has to be integrated into the 
system. The processing related to the integration is repre­
sented by the box "Preparation for System Integration." This 
preparation includes a large number of administrative tasks. 
The following is a sample: (1) Generate new control language 
explanations or higher-level flow charts. (2) Generate new 
program documentation updates, new program listings, cross­
references, etc. (3) Generate new data/file documentation 
updates, new data element, record or file descriptions. (4) 
Generate transactions to update the data catalog or config­
uration management mechanism. (5) Generate updates for 
operations documentation. 

The new system is now ready to be put into operation. This 
process is represented by the box labeled "System Integra­
tion." The entire information system is tested; this step is 

represented by the box labeled "System Test and Debug." 
Problems and errors may be discovered during this process. 
This means that the maintenance for the subsystems with 
problems will have to loop back to modify code and convert 
data. With tight project control, the maintenance for the 
problem subsystems may have to start over completely. 

The remaining process is represented by the box labeled 
"Documentation Update." The preparations done at sub­
system level should make it easy to actually perform this task. 
The final task is the box labeled "System Acceptance." The 
user now gets involved in using the newly maintained system. 
The user will perform the acceptance test procedures that 
were generated early in the maintenance project. 

The steps shown in Figure 1 are representative of the tasks 
performed during software maintenance. The remainder of 
this paper assumes that this set of steps is used to actually 
perform the maintenance and control the project. The QA 
program and associated QA checks grow around on the skel­
eton of these steps, or the project management methodology, 
used for software maintenance projects. 

Placement of QA checks 

One of the more critical aspects of developing a QA pro­
gram is the placement of the QA checks or inspections. Ex­
perience from the long history of manufacturing QA gives 
some of the basic ground rules. Juran and Gryna9 give an 
excellent list of potential locations for manufacturing QA in­
spections. The following is a paraphrased version of that list, 
emphasizing software terms or analogies: 

1. At receipt of software from vendor, called incoming in­
spection or vendor inspection. 

2. Following the setup of the production process, setup 
approval, to provide added assurance against producing 
defective software. Sometimes the setup check is used to 
give prior acceptance of the software that goes through 
the subsequent process. 

3. During the execution of critical or costly operations, 
usually called process inspection. 

4. Prior to delivery of software from one processing group 
to another, called toll-gate inspection. 

5. Prior to shipping completed software to the customer/ 
user, called finished-goods inspection for hardware. 

6. Before performing a costly irreversible operation. 
7. At natural peepholes in the project flow. 

The QA checks are represented by triangles on Figure 1. The 
names for the numbered triangles are (1) preparation, (2) 
compilation, (3) datalfile conversion, (4) subsystem test and 
debug, (5) preparation for system integration, (6) documen­
tation update, and (7) system acceptance. 

The triangles were placed on the project step flow on the 
basis of the list of potential locations given above. The prepa­
ration check is called a set-up approval. The checks done for 
compilation and data conversion are called process in­
spections. In some cases an additional set-up approval QA 
check should be established prior to data conversion, es­
pecially when the conversion itself is irreversible. The check 



Establish 
Need For 

Maintenance 

Schedule 
Maintenance 

Maintenance 
Preparation 

Convert 
Data/File 

Modify 
Code 

Clean 
Compile 

n 

A QA Program for Software Maintenance 403 

Subsystem 
Tesl And 

Debug 

Preparation 
For Sysiem 
Integration 

System 
Integration 

System 
Test And 

Debug 

Documentation 
Update 

Program 
Test And 

Debug 

MA Checks 

n 

4 - Subsystem Te •• 
and Debug 

5 - Preparallon tor 
System IntegrliUon ....-__ ......... __ _ 

1 • Preparation 
2 • Compllallon 
3 • Data/File 

6 - Documentation 
Update 

7· System 
Acceptance Conversion 

Figure I-Software maintenance project steps overlaid with QA checks 

done for System Test and Debug is a toll-gate inspection. 
Additional formal checks could be done for Program Test and 
Debug as process inspections. The check done at Preparation 
for System Integration is a toll-gate inspection. Documen­
tation Update is a natural peephole. The check called System 
Acceptance is a finished-goods inspection. 

The QA checks were placed assuming a normal project, 
based on the scales of size, level of criticality, magnitude of 
costs, etc. Additional checks are certainly not precluded. 
When any additional checks are desired, consider the list of 
potential locations. Extreme care must be given regarding the 
removal or consolidation of the seven locations listed above. 

Project management milestones 

Placing QA checks in the stated locations gives an addi­
tional project management benefit. QA checks are associated 
with each of the major tasks of the maintenance project. 
Passing a QA check provides an absolute milestone. The 
project leader can truthfully say that the documentation has 
been updated only when the associated QA check has been 

completed. Additional QA checks provide the project leader 
with more detailed project milestones when needed. 

The relationship between project management and QA 
checks has been recognized before. The NBS Special Publica­
tion by Fife lO gives a brief but excellent presentation of this 
relationship. 

In-line QA checks 

Some of the project steps have distinct boundaries, are very 
critical, have a serial relationship, etc. The QA checks associ­
ated with these distinct steps are placed in the line of the 
project flow. These checks are known as in-line checks. They 
may also be known as gates. These checks are called manda­
tory hold points in the draft by the Canadian Standards 
Associationll on software quality assurance programs. 

When the project encounters an in-line QA check, progress 
is technically stopped. No further work can be done on the 
maintenance project until the inspection or check is consid­
ered accepted. Generally, these are the steps where further 
progress with undetected errors or problem conditions would 



404 National Computer Conference, 1982 

be costly in terms of time, staff, etc. Corrections can be made 
when it is still cheap. Since these are placed in the more 
critical positions, they make excellent project milestones. 

Off-line QA checks 

Some of the steps of the software maintenance project are 
of a detail, recursive, or parallel nature. The QA checks asso­
ciated with these steps are often a quick inspection or obser­
vation for a particular condition. One example involves errors 
detected during compilation. The code for other routines can 
be modified or compiled while the cause for a detected com­
pile error is being researched. The QA checks for steps with 
these characteristics can be done off the line of project flow. 
This class is therefore known as off-line checks. They might 
also be called monitoring checks. 

The off-line checks usually relate to conditions that can be 
quickly repaired or changed. The off-line checks are good for 
determining the effectiveness of the task being executed. The 
successful completion of the off-line checks is a good means to 
determine the project or task status, schedule impact, etc. 
They are good milestones internal to the major project steps. 

Waivers and deviations to standards 

Most MIS organizations have standards, test plans, pro­
cedures, and other control documents. QA programs require 
adherence to the appropriate control documents. However, 
maintenance takes place on systems that were probably devel­
oped under few or no control documents, under a different set 
of control documents, or in a different environment. Stan­
dards and procedures now used may not be applicable. The 
old standards may even conflict with those now used for devel­
opment. Maintenance projects should be treated in ways sim­
ilar to those employed for new development. The system 
should be brought up to current standards. The desire for 
bringing the systems into adherence is not practical in some 
cases. 

Waivers are conditions where a standard, plan, procedure, 
etc., is completely dropped. Deviations are cases where tem­
porary or very isolated changes are made relative to control 
documents. With documented waivers and deviations, the test 
plans, standards, etc., can be referenced by exception. It 
would be assumed that the normal or standard procedures 
were executed unless a waiver or deviation was requested. 

There is risk associated with each deviation. Documen­
tation of deviations is necessary to properly assess the risk, 
determine need for document changes, and make later main­
tenance more effective. The method of quantifying software 
quality discussed by Mendis12 is based on careful documen­
tation of deviation and failure conditions. Only the QA func­
tion can approve the maintenance waivers and deviations. 

LEVEL OF QA CHECKS 

In Figure 1 there are seven triangles symbolic of QA checks 
or inspections. In the iower right corner of each triangle is a 

letter, A, B, or C. These letters designate the level of QA 
check. 

There are several spectra to which the term level refers. 
These include detail, impact and scope, experience of person­
nel, degree of personnel responsibility, depth of personnel 
knowledge, breadth of personnel knowledge, and significance 
of results. 

The QA function has the ultimate accountability for all QA 
checks. The actual execution of the check and the associated 
responsibility can be delegated to other people or organiza­
tions. The delegation is an attempt to place the responsibility 
for detecting and correcting, problems, deficiencies, and er­
rors at the functional level closest to the source and most 
directly affected by the discovered problems. The use of levels 
allows the QA checks to be performed more cost-effectively. 

Level C 

The Level C checks are the lowest level of the QA checks. 
This level of check is delegated by the QA function to the 
people or organizations actually performing the maintenance. 
These checks are usually performed by the people with the 
least general experience, the least management resppnsibility 
for the maintenance project, and the narrowest direct scope of 
responsibility. The checks at this level are inspections of the 
tasks or functions that have the most constrained impact on 
the project. Referring to Figure 1, all the Level C checks are 
off-line or monitoring steps. 

The- Level C check coufd be done by the programmer, by a 
supervisor or senior programmer, or by a QA inspector as­
signed to and closely associated with the task. The NBS Spe­
cial Publication by Brandstad13 is a good tutorial on checks at 
this level. The Level C checks are normally performed in or 
near the same physical area where the task is executed. 

The programmers physically performing the maintenance 
should not check or inspect their own work. Independence 
can be obtained by having the programmers rotate or ex­
change work. On a periodic basis, the pattern of exchange 
needs to be changed, because the effectiveness of the "inde­
pendent" check may deteriorate if it is not changed. 

Level B 

The QA checks performed at Level B are delegated by the 
QA function to the project leader. The results of the checks 
done at this level usually have significant impact on the sched­
ules and budgets of the task or project. There are three Level 
B checks in Figure 1. Two of the Level B checks are gates or 
in-line checks. The other is a monitor or off-line check. 

The QA checks done at Level B are usually not performed 
in the same physical area where the work or task is done. This 
type of check would be done in a project work area or in the 
office of the project leader. The Level B check could be a 
consolidation of checks done at Level C. It might be a check 
of consolidated work or a consolidation task itself. The Level 
B check is a project milestone in most cases. 



Level A 

The QA checks at Level A are kept within the QA function. 
The checks done at this level are the most crucial, have the 
widest scope, and have the biggest impact on overall schedules 
and budgets. The checks done at Level A are also very infor­
mative in a project management sense. They are used to de­
termine the adequacy and completeness of the checks done at 
Level C and Level B. 

The Level A checks are similar to those done at Level B. A 
great deal of the effort of the Level A check is consolidation 
of previous checks. However, the final system acceptance 
evaluation is an extensive system execution. The system test 
would probably be executed against a standard or special set 
of test data. 

The QA check done at Level A would seldom, if ever, be 
performed in the same physical area where the maintenance 
work was done. It would probably be performed in a work 
area dedicated to the QA function or in the office of the 
assigned QA personnel. Separation is used to maintain the 
independence and integrity of the Level A inspection or eval­
uation. 

QA CRITERIA 

The primary purpose of QA checks is to determine whether 
maintenance was performed properly. A secondary purpose is 
to determine the magnitude and associated risk of any devi­
ation. The determination is made against a set of objective 
standards. Each step of the maintenance project process is 
different and has different goals. The various QA checks need 
different criteria oriented toward the object of the task being 
inspected. 

The following sections give a representative set of criteria 
for each of the QA checks identified in Figure 1. When the 
QA program for software maintenance is implemented, those 
responsible for QA, system maintenance, etc., will have to 
determine whether the proposed set of criteria is correct for 
their department, systems, and people. 

Preparation inspection criteria 

These criteria apply to the QA check shown as Triangle 1 on 
Figure 1. This check is in-line or a gate, and is at Level B. The 
objective is to make sure that information needed in the later 
steps of the project is available. It is expected that the mainte­
nance project leader will take a few extra minutes to check 
and double-check the status of the required documentation. 
Any oversights or omissions could cause significant delays 
during the execution of the maintenance. 

The following criteria are the bare minimum. The project 
leader is given the authority to make additional checks and 
add criteria based on the case, people, system, and situation. 
The criteria are as follows: (1) Complete, or sample, data files 
must be present or storage location must be referenced. When 
sample or test data are to be used, the source and general 
content of the data file are to be documented. (2) File and 
record descriptions are to be present, referenced, or other-

A QA Program for Software Maintenance 405 

wise accounted for. (3) Program descriptions, lists, specifica­
tions, and other appropriate information are to be present, 
referenced, or otherwise accounted for. (4) Status, back­
ground, and detail information necessary to execute the main­
tenance properly and to insure that it was done, must be 
available. (5) Test plans, system acceptance criteria, etc., 
must be present or available. 

Compilation inspection criteria 

A check is performed to insure that the changes made as 
part of the maintenance project did not contaminate the orig­
inal source program. This check is shown as Triangle 2 on 
Figure 1. The QA check, Level C, is performed by the pro­
gramming personnel in an off-line or monitoring mode. 

If no error messages are generated by the compiler, the 
program or routine is considered to have passed this Clean 
Compile check. Error messages are to be cleared or disposed 
on the basis of criteria given below. The classification of error 
messages is based on the ANS COBOL compiler used on the 
Univac 1100 series of computers. 14 

1. Leveling: Violations of ANS or Federal Standard 
COBOL. 15,16 This error message is conditionally accept­
able. A request for deviation is needed. The request 
should discuss the reasons for using the extension. In­
clude plans or suggestions to remove the condition 
where applicable. 

2. Remarks: Actions taken by the compiler, but not neces­
sarily an error in the source program. This dass of error 
message is generally acceptable. Where possible, and 
reasonable, the condition should be removed for the 
sake of clarity. 

3. Minor: The compiler generates code based on assump­
tions. Attempt to remove all error messages in the minor 
class. When it is considered necessary and reasonable to 
keep the condition, a request for deviation is to be filed. 
The request should include a plan to remove the condi­
tion where appropriate. 

4. Serious: The compiler is unable to make reasonable as­
sumptions, and no code or incomplete code is generated 
for statement. Errors in the serious class are not accept­
able. Corrections will be made until all errors of this 
class are removed. When the serious error cannot be 
removed after reasonable effort, a compiler specialist 
will investigate the problem and provide a solution. If 
the specialist feels the risk is warranted, a deviation can 
be issued until solution is found. 

5. Fatal: No code for the program or routine is generated. 
Errors in the fatal class are not acceptable. Corrections 
will be made until all errors of this class are removed. 
When the fatal error cannot be removed after a reason­
able effort, a system or technical specialist will inves­
tigate the problem. The subsystem, and possibly the 
project, will not be allowed to proceed until a solution is 
found. 

6. Compiler Errors: Internal conditions that generate er­
rors during the compilation. This class is obviously not 



406 National Computer Conference, 1982 

acceptable. The compiler specialist will work with the 
experts at the vendor to remove the condition. 

Data conversion criteria 

The QA check associated with the data conversion step is 
shown as Triangle 3 on Figure 1. This is a Level C check 
performed in an off-line mode. 

Typically, the data are converted by using a system utility, 
a local utility, or a special program. The utility routines are 
executed by using directives that give parameters, selected 
options, etc. The following criteria associated with the use of 
utilities and directives must be met: (1) There must be no 
syntax or format errors in the directives. (2) There must be no 
obvious execution errors associated with the directives. 

In most cases, a test is made for input and output record 
counts and control totals within both utilities and special rou­
tines. The following criteria apply to the record counts and 
control totals: (1) There are to be no unexpected mismatches 
in the record counts or control totals. (2) There are to be no 
unexpected changes in the data size parameters like record 
size, blocking factor, and file size. 

When the specified criteria are not met, an investigation is 
to be made. Disagreements involving the acceptance or rejec­
tion of a data conversion QA check will be resolved by the 
project leader. It is assumed the project leader will consider 
technical advice from a data or system specialist. 

Subsystem Test and Debug Criteria 

The QA check for Subsystem Test and Debug is indicated 
by Triangle 4 on Figure 1. This check is a Level A check done 
in an off-line mode. Though the QA function does not actu­
ally perform the tests, the status of success or failure is of 
prime interest and concern. The QA function is to see that all 
the tests required by the appropriate test plan are carried out. 
The presence and adequacy of the test plan was one of the 
criteria points in the QA check for preparation. The NBS 
Special Publication by Adrion17 is a brief tutorial on testing 
procedures. Smith18

,19,20 is an author of some other books and 
articles published recently on the topic of testing and valida­
tion techniques. The QA function acts as an overseer and 
expeditor. Any disagreements that arise about the acceptance 
or rejection of tests will be settled by the QA function. 

The test and debug process for the subsystem is executed 
after all the routines and programs have been successfully 
tested. There is no formal QA check during the debug phase 
of programs and routines. It is assumed that all the programs 
and routines have passed their tests, so any problems found at 
the subsystem level are . considered very serious. If the fault 
cannot be quickly cleared and resolved, one of the previous 
steps will become the point for starting maintenance over. 

One of the techniques often used to determine the success 
of a subsystem test is a file and report comparison. This ap­
proach is very effective when maintenance does not result in 
major changes in the data file structures or report contents. It 
is often easy to use a system utility or a local utility to do the 
file comparison. The following criteria are to be met when 

comparisons are used to evaluate success: (1) Files must have 
no unexpected mismatches, and (2) reports must have no 
unexpected mismatches. Expected differences can be cleared 
by documenting them with a request for deviation. Un­
expected differences that cannot be easily removed are to be 
documented for further investigation. 

Preparation for system integration criteria 

The QA check for this step is Triangle 5 on Figure 1. It is 
a Level B check performed in a gate or in-line mode. The 
objective of this QA check is to make sure that all the docu­
mentation required for system integration is present. A sec­
ond objective is to insure that all previous QA checks have 
been performed to a satisfactory degree. 

The check is to make sure that the system can be rein­
tegrated from the maintained subsystem. The check is also 
used to make sure that the new documentation can be easily 
generated. The project leader is expected to take sufficient 
time to check, double-check, and even triple-check the status 
of documentation. Any omission or oversight would cause 
major setbacks. The project leader should take enough time 
to insure that there will be no major problems found at system 
test. 

The project leader is given the authority to make additional 
checks and add criteria based on case, people, system, and 
situation. The following criteria are the bare minimum: (1) 
Flow charts are to have adequate explanations. (2) Updates to 
the file and records descriptions must be present or refer­
enced. (3) Updates to program and routine descriptions, lists, 
and other appropriate information must be present or refer­
enced. (4) Updates for generating operations documentation 
must be present or referenced. (5) All deviations and waivers 
are to be approved. (6) All documented problems are to be 
cleared. 

Documentation update criteria 

This QA check is the last step performed prior to final 
operational testing. The check appears as Triangle 6 on Figure 
1. It is a Level A check performed as an in-line gate. 

The QA check is to insure the presence of documents that 
will define the system at a later time. The following criteria 
are to be used for the check: (1) All internal MIS documents 
for the system must have been replaced or updated. (2) All 
entries in the data catalog, or configuration management 
mechanism, must have been updated. (3) User documents 
must have been updated, retrieved and replaced, etc. (4) The 
system history must have been brought up to date. 

System acceptance criteria 

The QA check for System Acceptance is shown as Triangle 
7 on Figure 1. The system acceptance is the last step in the 
maintenance project. This check is at Level B and is really 
integrated into the acceptance procedure itself. 

The users of the system playa major roie in system accept­
ance. The criteria for the acceptance of a system will vary with 



the features of that system. One of the criteria for the prepa­
ration QA check is the presence of system acceptance criteria. 
The responsibility for controlling the execution of the accept­
ance procedure is left to the project leader. With well-defined 
and adequate QA checks executed at each of the major steps 
of the maintenance project, the system acceptance check be­
comes a simple procedure. 

CONCLUSIONS 

This paper has presented the structure and some details of a 
QA program for software maintenance. The program is still in 
its infancy. A QA program almost identical to the one 
presented in this paper was used when our company converted 
its systems from the computer of one hardware vendor to 
another. Once the personnel have become accustomed to the 
QA program, they should find it beneficial. 

The QA program discussed in this paper can serve as a 
model or prototype for other organizations. Those who intend 
to implement a similar QA program should study the struc­
ture or features of the program rather than the details. The 
most significant features of the QA program are the use of 
three levels of QA checks, two types of checks, and the waiver 
or deviation. These features make the program work, make it 
effective, and make it acceptable to the personnel and man­
agement. 

REFERENCES 

1. Fischer, K. F. "A Progra...'TI for Software Quality Assurance." ASQC 
Technical Conference Transactions, 32 (1978), pp. 333-340. 

2. Mendis, K. S. "A Software Quality Assurance Program for the 80s." 
ASQC Technical Conference Transactions, 34 (1980), pp. 379-388. 

3. Lientz, B. P., and E. Swanson. Software Maintenance Management. 
Reading, Massachusetts: Addison-Wesley, 1980. 

4. Roberts, T. J. "Maintaining Quality after the Software is Released." 
ASQC Technical Conference Transactions, 31 (1977), pp. 157-166. 

A QA Program for Software Maintenance 407 

5. Buckley, F. "A Standard for Software Quality Assurance Plans." Com­
puter, August 1979, pp. 43-50. 

6. Dunn, R. H., and R. S. Ullman. "A Workable Software Quality and 
Reliability Plan." Proceedings of 1978 Annual Reliability and Maintain­
ability Symposium, Los Angeles, Ca, Jan. 17-19, IEEE, pp. 210-217. 

7. Conversion Standards and Procedures. Document FS9009. St. Paul, Min­
nesota: Sperry Univac Customer Marketing Services, 1979. 

8. Center, J. W. "Quantitative Measures of MIS Quality Assurance during 
Hardware Conversion." AFIPS, Proceedings of National Computer Con­
ference, 1981 (Vol. 50), pp. 323-327. 

9. Juran, J. M., and F. M. Gryna, Jr. Quality Planning and Analysis (2nd 
ed.) New York: McGraw-Hill, 1980, p. 362. 

10. Fife, D. W. Computer Software Management: a Primer for Project Man­
agement and Quality Control. NBS Special Publication 500-11, Washing­
ton, DC: US Government Printing Office, 1977. 

11. Software Quality Assurance Plans. Document CSA Q396 (Draft). Rex­
dale, Ontario: Canadian Standards Association, April 1981. 

12. Mendis, K. S. "Quantifying Software Quality-A Practical Approach." 
ASQC Quality Congress Transactions. 35 (1981), pp. 11-18. 

13. Branstad, M. A., J. C. Cherniavsky, and W. R. Adrion. Validation, 
Verification, and Testing for the Individual Programmer. NBS Special 
Publication 500-56. Washington, DC: U.S. Government Printing Office, 
1977. 

14. American National Standard COBOL (ASCII) Programmer Reference 
Manual. Document UP8582. Blue Bell, Pennsylvania: Sperry Univac 
Corp., 1978. 

15. American Standard COBOL. ANSI X3.23-1974. New York: American 
National Standards Institute, 1974. 

16. Federal Standard COBOL. FIPS PUB 21-1. Washington, D.C.: U.S. 
Government Printing Office, 1975. 

17. Adrion, W. R., M. A. Branstad, and J. C. Cherniavsky. Validation, 
Verification, and Testing of Computer Software. NBS Special Publication 
500-75. Washington, D.C.: U.S. Government Printing Office, 1981. 

18. Merilatt, R. L., M. K. $mith, and L. L. Tripp. Computer Software 
Validation and Verification: A General Guideline. BCS-40342. Seattle, 
Washington: Boeing Computer Services Co., June 1981. 

19. Smith, M. K., and A. R. Bennett, A Guideline for Business-oriented 
Software: Validation and Verification. Document BCS-40343. Seattle, 
Washington: Boeing Computer Services Co., June 1981. 

20. Smith, M. K., L. L. Tripp, L. J. Osterweil, R. N. Taylor, and W. E. 
Howden. "An Approach to Transfer Verification and Validation Tech­
nology." AFIPS, Proceedings of National Computer Conference, 1981 
(Vol. 50), pp. 367-373. 





The independent role: verification and validation, and 
compliance testing 

by BARBARA J. TAUTE 
Time, Inc. * 
New York, New York 

ABSTRACT 

The independent role of quality assurance can be most beneficial in the final testing 
phase of the software development life cycle. At this point various efforts and 
groups merge, often for the first time. The period of time devoted to the discovery, 
understanding, prioritization, and correction of software problems is critical to the 
timely delivery of the product. Quality assurance can provide and foster a healthy 
working environment for this interaction, as well as serve as an intermediary during 
points of disagreement. 

This paper discusses an actual compliance testing effort of customized, complex 
vendor-supplied software. The value of having an independent group involved 
during the testing effort was clearly made visible during the arbitration process. The 
critical timing was monitored, points of disagreement over the contract were re­
solved, and the testing effort was shortened through the involvement of an indepen­
dent group. In effect, both vendor and user/purchaser benefited from the quality 
assurance techniques brought by an independent role involvement. 

*This paper was written while the author was employed by Peat, Marwick, Mitchell & Co., New York, New York. 

409 





INTRODUCTION 

A close interaction between the developer and user is re­
quired to guarantee the delivery of data processing software 
which complies with a given set of requirements. This inter­
action has classically been a difficult process because of both 
groups' differing points of view and varying interpretations of 
the software's requirements. The final phases of the devel­
opment process, particularly that of testing, can become 
strained due to the addition of time criticality for system deliv­
ery and the stress of interaction between these two groups. 
This intense testing interaction can be even further compli­
cated in a vendor-contracted software environment in which 
there is no common ground to resolve the problems. An inde­
pendent Quality Assurance (QA) Group, whether internal or 
external to the company, can greatly ease this transition peri­
od by laying early plans for the compliance test process, mon­
itoring or assisting in the testing, and acting as arbitrator if 
difficulties arise. 

This paper discusses the specifics of one such testing effort 
of customized, complex vendor-supplied software and the 
benefits of an independent QA Group during the verification 
and validation and compliance (acceptance) testing phases. 
The independent QA Group was a different company than 
the vendor or the intended user. The intended user was the 
purchaser of the package and as such was concerned with its 
timely test and installation in their environment. Specifics of 
the environment, perceived and actual QA needs, techniques 
of implementation, and effects of the independent QA ap­
proach are described. 

PERCEIVED NEED FOR QA 

The intended users of the software package felt they had a 
need for and initiated the request for the involvement of an 
independent QA Group because 

1. They were unsure of the compliance test process 
2. The timeliness of software delivery was critical 
3. Communication with the vendor was becoming difficult 
4. Staff numbers were insufficient 
5. Forms for the new process were not developed 

The user/purchaser felt it was important to select a QA 
Group that was proficient in the independent testing meth­
odology and would be able to assist during the arbitration 
process, since they lacked this discipline and knowledge in 
their own shop. From the user's past experiences with this 
vendor, they had learned that many areas which appeared to 
be clearly defined in the specifications were confused or mis­
interpreted by vendor and user alike. During this particular 
installation effort, the user hoped to avoid these costly mis-

Verification and Validation, and Compliance Testing 411 

understandings by employing a group which would interpret 
and mediate during the discussion periods. A high level of 
independence was important to the users because they desired 
to involve a QA Group which would neither offend the vendor 
development group nor impede progress. 

Whether or not this perceived need justified the involve­
ment of an independent QA Group depended upon the spe­
cifics of the environment. 

USER ENVIRONMENT DEFINITION 

The contracted system was comprised of minicomputer hard­
ware, associated systems software, hardware and software 
maintenance agreements, and the application software pack­
age. The package was intended to be turnkey software, but 
more than 30% of the original code had been changed at the 
user's request. Further, additional new modules were specifi­
cally created by the vendor for the user and added to the 
system; thus the system approached custom-developed soft­
ware. The total cost of the system (hardware and software 
modifications) to date of involvement was $850,000, and the 
development and initial data conversion effort had thus far 
spanned a period of two years. 

The vendor was implementing the system in a phased ap­
proach as shown in Figure 1. 

The independent QA Group was requested to give assis­
tance primarily during the major implementation phase, espe­
cially regarding specification review and testing assistance. 

The application package was industry-specific and was to 
provide an online automatic method of merchandise contwl. 
The processes of merchandise. ordering, credit verification, 
delivery, billing, inventory, returns, terminations, accounts 
payable, and accounts receivable comprised the various sub­
programs of the package. Direct general ledger entries were 

~ I lID I ES I IS I CODE I TEST INST. 1 

----------1 
:s I lID I ES I IS CODE I TEST I ~T. I 

r---------J 

~ I lID I ES I IS I CODE I TEST I INST. I 

ES - External SpecIIIcaIions 

IS = InIemaI SpecIIIcations 

INST. - RlIaIaIion 

.... _------, 
i. J I 
:. '. 

Figure I-Period of involvement 



412 National Computer Conference, 1982 

to be implemented at a later date. This system (hardware and 
software) was intended to replace an existent batch mini­
computer system; therefore, established databases, expec­
tations of data processing output, and forms of input to the 
system were already present. 

These conditions indicate a fairly complex system. How­
ever, the need and level of involvement of an independent QA 
Group is directed by implementation factors. 

ACTUAL NEED FOR QA 

The level of involvement of an independent QA Group is 
dependent upon the program complexity, the user, and the 
developer. In this type of environment, the involvement of 
an independent QA Group is essential for the following 
reasons: 

1. Program is extremely large ($850,000 in 2 years) 
2. Internal QA group does not exist 
3. Software is developed by vendor 
4. Time is extremely critical 
5. User lacks data processing compliance testing expertise 

Any development effort of this size or implementation time 
is necessarily complex and should have rigorous control mech­
anisms. A QA Group can assist the effort by early involve­
ment in helping to define deliverables, monitoring the pro­
cess, and providing testing assistance or acceptance sign off. 
Ideally, even in internal development, the QA Group should 
be independent in order to ensure that equally high standards 
of quality apply to all development groups. For externally 
developed, vendor-contracted software, the involvement of 
an independent QA Group is essential. The independent 
group can help resolve problems and points of disagreement 
in either party. This can help avoid litigation proceedings. The 
independent QA Group can help ensure the timely delivery of 
the software by evaluating the delivery schedule and mon­
itoring the process. Finally, if the user lacks data processing 
expertise, the independent QA Group can help educate and 
train the users to enable a smooth installation. Also, an inde­
pendent QA Group can help improve the developer's testing 
process through the installation of procedures that more 
thoroughly control the test process and the software release 
process. This yields more information, more control, and few­
er chances for error in the installation process. 

The involvement of an independent QA Group will yield 
certain deliverables, or tangible evidence of the QA process. 

QA PRODUCT DELIVERABLES 

Quality assurance must use a disciplined approach and as such 
it is important that documentation be maintained to reflect its 
involvement. The involvement of the independent QA 
Group, specifically during this testing effort, yielded various 
deliverables; among them were the following: 

1. Project "pert" chart 
2. Project test plan 
3. Problem report forms 

Project "Pert" Chart 

A scheduled daily chart based upon key items and integra­
tion points was established for the testing time involvement. 
This allowed the progress of the time critical project to be 
measured and reported to management. Responsibilities, 
dates, dependencies, and a brief description of the task were 
included in the chart. 

Project Test Plan 

A test plan which described in detail the responsibilities and 
activities of all three parties (user, vendor and independent 
QA Group) was constructed. In the development of the test 
plan, the absence of certain testing efforts was discovered, and 
these were subsequently assigned to individuals. 

Problem Report Forms 

Problem report forms and summary logs were installed. 
The problem reports permitted a priority, description, dates, 
version numbers, and error category to be specified and for­
mally recorded for every "query" about the system. This help­
ed ensure that trivial problems were not lost and provided an 
identification element for all items. 

These three deliverables allowed the QA Group to monitor 
the development effort. 

QA TECHNIQUES DEFINED 

The deliverables were used to record results of the activities 
and techniques of the QA Group. The specific methodologies 
that an independent QA Group can bring to the final testing 
process are as follows: 

1. Progress measurement 
2. Test development 
3. Problem report control 
4. Configuration management 

All of these techniques are key to the successful completion 
of the project and critical during the final testing phase. 

Progress Measurement 

The ability to measure the test/development effort can pro­
vide invaluable information about the project and its expected 
delivery date. If no control interaction chart is in effect (or if 
it is no longer being used) QA should formalize this process. 
For this specific effort, a daily manual "pert" chart was drawn, 
showing responsibilities and activities of all participants. 

Test Development 

The tests that an independent QA Group develops will 
often test various aspects of the system that would be missed 
by both the users and vendors. For this specific effort, tests of 



"an accounting nature," naive operator understanding, ease 
of use, error conditions, and uniformity were tested by the 
involvement of the independent QA Group. 

Problem Report Controls 

QA can act as an effective mediator between user and/or 
vendor during the testing process. For this specific effort, the 
independent QA Group insisted that formal trouble report 
sheets be used, priorities be established, enhancements be 
recognized and as such postponed, approval from the user be 
given before changes were made by the vendor, and an appro­
priate retesting cycle established for RETEST. 

Configuration Management 

The knowledge of what is being used or tested is essential 
to the testing process. During this specific effort, the indepen­
dent QA Group required that version numbers be placed on 
every report and screen, the file interaction be made clear 
(levels of complexity), all subprograms be identified, and the 
system be tested in a stand alone environment, with no 
changes during the test process. 

These four aspects of test control greatly enhanced the 
control of the project and were accepted well by the user and 
vendor. 

The actual applications of these techniques will be de­
scribed next. 

METHOD OF QA APPLICATION 

There were five sfeps through which the QA Group added 
value to the effort. These were comprised of the following: 

1. Quality assurance review 
2. Specification sign off 
3. Test plan development 
4. Test case assistance 
5. Compliance test participation 

A quality assurance review was first conducted to establish 
a base point for the project. The level of involvement of the 
independent QA Group needs to be modified by the level of 
testing or assumed responsibilities of the other participant 
groups. In this effort, the quality assurance review exposed 
the fact that no project schedule, no test plan, and no con­
tingency plans existed. The development of these was recom­
mended to the user, who developed the documents with QA's 
assistance. 

Specifications for the major phases were close to sign-off 
when the independent QA Group became involved. There­
fore, QA briefly assisted with this effort. The QA Group sat 
in on review meetings and requested clarification on several 
points. Because of QA's attention to detail, its direct input 
clarified numerous vague statements and formulae. Basically, 
the independent QA Group acquired industry expertise while 
reviewing the specifications. Thus by initially bringing a naive 
point of view to the review process, they helped ensure a more 

Verification and Validation, and Compliance Testing 413 

product-representative specification. This eventually led to 
satisfactory specifications sign-off between the user and the 
vendor. 

It was discovered by the independent QA Group that no 
test plan had been developed for either the vendor or the user. 
The independent QA Group recommended that a test plan be 
developed and reviewed by both groups. This clarified the 
responsibilities of both parties and identified all efforts. 

Since the user had not yet developed test cases, the inde­
pendent QA Group acted in an advisory position and also 
actually helped develop the test cases. Five increasingly com­
plex iterations were selected as sufficient to prove the accept­
ability of the software. Test data and expected results were 
created by the QA Group and user for these five iterations. 
The independent QA Group also wrote specific tests to detect 
if invalid entries were being trapped by the system. 

During the actual testing, the independent QA Group ran 
tests by inputting data at the terminal, recording results, and 
organizing the cycle process. This methodology was used in 
subsequent RETESTS. 

Sufficient errors were discovered to warrant a retest. These 
errors were prioritized, discussed, and agreed to correction by 
both parties, with the independent QA Group acting as medi­
ator. The QA Group provided a very useful function as medi­
ator, because it allowed both user and vendor to vent their 
feelings. After the discussions, the QA Group would help find 
a "best-fit" answer. 

From the comments by both vendor and user, it was obvious 
that the QA Group role was effective and perceived to be 
beneficial by both parties. 

EFFECT OF APPLICATION 

Any interface has both positive and negative effects, and so 
did the involvement of the independent group in this effort. 
Overall, the benefits of the QA Group's involvement far ex­
ceeded any negative aspects, and the entire effort was seen as 
productive. 

Some of the benefits included the following: 

1. Security 
2. Role definition 
3. Information transfer 

The development of plans and schedules assisted the effort 
by giving guidelines and the ability to measure progress. The 
user group thus felt there was direction to the installation 
process, and they had a tangible means of relating to the 
effort. Also the user had a basis to report progress to upper 
management. This measurement gave them a good feeling of 
security. 

Role definition was made possible by assigning the identi­
fied tasks to specific individuals. Thus, on an individual per­
sonal basis, people knew their activities to achieve the desired 
results. 

Most important, information was transferred among all par­
ties. This yielded a better understanding and increased appre­
ciation for each other's jobs. More than anything else, the 
transfer of information yielded greater system satisfaction by 



414 National Computer Conference, 1982 

the user. Also, the vendor gained knowledge of the user's 
environment that would prove useful in future modifications 
to the system. 

However, the involvement of an independent QA Group 
was not entirely positive. Some of the negative aspects of the 
QA Group involvement are the following: 

1. Cost in dollars 
2. User dependence 
3. Group qualifications 

The role of the independent QA Group can be expensive, 
depending upon their level of involvement. In this specific 
effort, multiple tasks were actually done by the QA Group 
instead ofthe user. Some of these tasks (test data preparation) 
could have been completed by the user had there been suf­
ficient staff. The QA Group could then have done a manage­
ment or monitoring of the process rather than actual partici­
pation. The degree of actual involvement by the QA Group 
will vary, depending upon the tasks which can be done by the 
user group. Therefore the user should be made aware early of 
the QA Group's responsibilities and activities in order to plan 
for possibly less expensive alternatives or to allocate budget 
for the effort. 

Another problem in the involvement of an independent QA 
Group is the eventual user dependence on the group. In this 
specific effort, because of the depth of QA Group involve­
ment, the user relied upon the QA Group to act as an inter­
mediary and in many cases desired that it authorize changes 
to the system. The QA Group should never do this, because 
it will possibly lose its independence. QA should act as an 
advisor or mediator only in this role; and if they feel the user 
is relying too much on them for direction, the QA Group 
should seek to correct the problem. 

The final problem of group qualifications is one which will 

affect many efforts. When one searches for the best group to 
function in the independent QA role, a select set of charac­
teristics emerge. In this specific effort, the independent QA 
Group lacked industry expertise (this lack, however, was 
turned positive through naive testing). Although not all char­
acteristics will probably be found in a candidate group, the 
following (in decreasing order of priority) should be weighed: 

1. State-of-the-art quality assurance views 
2. Multiple-level testing experience 
3. Maintenance program responsibility experience 
4. Applications systems development experience 
5. Specific industry expertise 

These should help determine the group with the "best fit" 
for the job. 

SUMMARY 

An independent QA Group is invaluable in the verification 
and validation, and acceptance test process. QA can fulfill the 
functions of mediator, director, advisor, and participant. 
These functions are especially needed in a vendor-supplied, 
complex software environment in which the user/purchaser 
and the vendor may clash during the final testing phases. The 
user and the vendor represent different disciplines and neces­
sarily differing points of view. Most important, through the 
use of an independent QA Group, communication between 
these two groups can be greatly improved, and the delivery of 
a more functional system can be aided. 

At its best, the QA Group can assure a trouble-free, well 
controlled acceptance of a jointly agreed upon system. At its 
worst it is a costly, dependency-inducing process. In any case, 
both vendor and user have much to gain by the involvement 
of an independent QA Group. 



Quality assurance in a large commercia! data processing 
installation 

by C. W. LYBROOK 
Chemical Bank 
New York, New York 

ABSTRACT 

Quality assurance (QA) is one of the most misunderstood, highly desired, yet 
inconsistently defined, organizational entities in the data processing industry today. 
There is an increasing number of articles and literature available on the subject. 
Senior management finds it very attractive. In spite of this, however, few commer­
cial data processing organizations have successfully assimilated effective QA pro­
grams into their organizations. This paper describes such a program by the Informa­
tion Services Group (ISG) of Chemical Bank. Particular emphasis will be placed on 
the organizational defintion of QA and the philosophy of its operation. 

415 





Quality Assurance in a Large Commercial DP Installation 417 

INTRODUCTION 

Quality assurance suffers from a lack of standard definition. 
When discussing QA with different companies, it is very im­
portant to begin the discussion with a carefully worded de­
scription of what you mean when you refer to QA. What are 
the component parts? Where does the function report? What 
is the management philosophy behind the organization and 
how does it know that it is satisfying the objectives as viewed 
by senior management, middle management, and technical 
personnel? Anyone faced with the challenge of establishing a 
QA organization has been faced with these questions. They 
are not easy questions to answer. In light of the lack of stan­
dardization and of the general lack of understanding by man­
agement and technical personnel regarding the function itself, 
QA becomes a most difficult organizational unit to create and 
manage. In this paper the Chemical Bank QA organization 
and the organizational structure, goals, and philosophies are 
discussed. 

THE CHEMICAL ENVIRONMENT 

Chemical Bank is the sixth largest bank in the United States. 
It has the second largest retail branch system in New York 
City. There are many offices overseas and throughout the 
United States, with over 18,000 employees. Chemical's assets 
are in excess of $40 billion. 

Most data processing within Chemical falls under the man­
agement of the Information Services Group (ISG). ISG has 
responsibility for all of the general purpose computing for the 
bank, as well as most of the special purpose computing. Spe­
cial purpose computing outside the management concern of 
ISG includes check processing, the processing requirements 
of several subsidiaries throughout the country, and data pro­
cessing for our international branches. ISG has responsibility 
for the operation of three computer sites: one in New York 
City, a second in New Jersey, and a third on Long Island. ISG 
operates multiple IBM 3033s and 3032s as well as a significant 
number of smaller mini systems. An extensive, standard com­
munications facility is available, providing the Bank with a 
worldwide communications capability. 

The quality assurance organization is one of the units re­
porting to the senior vice-president in charge of ISG (see 
Figure 1). There are two Systems Development Groups with 
a total staff of over 400 programmers and analysts. The 1982 
ISG staff includes more than 1,000 people, with a budget in 
the range of 100 million dollars. Systems Development (SDD) 
develops and maintains business application systems in a 
matrix-like fashion, working very closely with both user 
groups as well as database and communications technical sup­
port groups (represented in the organization chart as Informa-

tion Systems Integration [lSI]). In most cases, the user groups 
are surrogate users (not the end user) and are formed into 
what we call Automation Groups. This relationship of SDD to 
users and technical staff becomes very important when under­
standing the role that QA plays in the development process. 

QUALITY ASSURANCE ORIGINS 

The quality assurance function was established in late 
19781early 1979. It started as a staff of four. There were four 
start-up activities: systems assurance, change control, project 
accounting, and standards and procedures. 

It was created by consolidating existing functions which 
were placed in other parts of the organization. For example, 
at that time, ISG had a standards and procedures group as 
well as a systems assurance function reporting to the database 
group. Change control was in the computer operations area. 

The ISG budget was about $24 million. At that time, ISG 
was experiencing the problems that many people consider 
typical of commercial data processing: all too frequent delays 
and cost overruns in Systems Development; general instability 
in the computer operations environment; and an apparent 
lack of acceptable administrative, developmental, and oper­
ational standards and guidelines that were used by the person­
nel in the organization. This is not to suggest that the intro­
duction of QA solved all the problems nor is it to suggest that 
it was introduced in response to a specific crisis. Our budgets 
were growing rapidly, and change was being introduced into 
ISG at an accelerated rate. This accelerated rate of change, 
coupled with dramatic personnel growth and increasing com­
plexity (from both a technological and organizational perspec­
tive), caused severe strains on management. It became evi­
dent that we needed to standardize and institutionalize many 
management and technical functions if we were to be success­
ful. QA was but one of several management improvements 
that were introduced to help us manage better the data pro­
cessing and communications enterprise. In establishing QA, 
however, several specific objectives were identified. 

We wanted to establish a quality environment and to reduce 
the tendency for crisis management through problem avoid­
ance. We wanted to be able to provide rules and consistency 
in terms of the way we worked and the products that are 
produced. 

We also wanted to provide consistency in terms of the way 
we conducted business with our clients. Our final objective 
was to raise the level of productivity and productivity aware­
ness. For ISG to be successful we had to have a disciplined 
development process, provide for continuing integrity of our 
production systems, increase our organizational productivity, 
and raise our level of organizational effectiveness. These over­
all objectives, as expressed above, were translated into a QA 



418 National Computer Conference, 1982 

r--------
I I I 

CHEMNETWORK QUALITY PROCESSING 
ASSURANCE SERVICES, INC. 

I I I I 
PERSONNEL 

DATA CONTROL AND PLANNING 
ADMINISTRATION SECURITY 

I I I I 
TIMESHARING COMPUTER INFORMATION DIVISIONAL INSTlTUT~ONAL 

SERVICES OPERATIONS SYSTEMS SYSTEMS SYSTEMS 
INTEGRATION DEVELOPMENT DEVELOPMENT 

Figure l-ISG organization 

charter and set of responsibilities as outlined in Figure 2. 
An important part of our approach in creating QA was to 

view the establishment of QA as a management process, not 
as a series of technical challenges. We believed that QA must 
have a management orientation and that the function had to 
become an integral part of the management process. 

QA MANAGEMENT PHILOSOPHY 

There are essentially two ways to approach QA. One is for 
QA to view itself as the watchdog, or policeman, of the or­
ganization. There is a significant risk to QA in assuming this 
posture. When taking that role, QA tends to establish an 
adversary relationship with other organizational units. Infor­
mal communication generally tends to break down and this, in 
turn, can give the QA organization additional problems. 

The group tends to begin relying solely on formal commu­
nication channels. This can evolve to the point that QA ac­
quires a focus on "after the fact standards checking." When 
such occurs, QA not only loses its credibility, but also its 
effectiveness. Soon senior management starts to question the 
payback of QA. There are many examples of unsuccessful 
attempts at starting QA, and I suggest that scenarios such as 
the one above have accounted for many of these failures. 

A DIFFERENT APPROACH 

I would like to suggest a different approach to QA, one of 
active and positive management participation. QA must play 
a leading role in the management of the organization and must 
have processes and check points in place that facilitate the 
identification of problems before they occur. QA should be 
able to identify and understand the technical issues, while 
applying management judgments in terms of recommen­
dations for resolution. Managing a large data processing or­
ganization is indeed a challenging and demanding job. Data 
processing management is constantly dealing with large, com­
plex issues, and there exists a need for third party objectivity 
to current issues and problems. This would suggest that QA 
must be in a position to address a technical issue and help 
interpret the issue in management terms in such a way that 
management can take timely, corrective action. In my view, 
one of the worst things that a QA organization can do is to 
determine that a situation is out of control when it is too late 
to take corrective action. The anticipation of problems, being 
in a position of knowing and anticipating a problem, is a key 
to having senior management support for the QA activity. 

Assuming a positive management stance provides many 
benefits. One favorable result of functioning this way is that 



Quality Assurance in a Large Commercial DP Installation 419 

QUALITY ASSURANCE 

CHARTER AND RESPONSIBILITIES 

The primary purpose of Quality Assurance (QA) is to foster a uniformly high 

level of quality in EDP Systems developed and installed on behalf of the 

Wormation Services Group. This purpose is achieved by means of provisions 

which have been set up: 

l)for assuming active and coordinated participation in considerations 

leading to the establishment, revision, evaluation and dissemination of 

standards, management guidelines, and procedures; 

2) for research into definition, establishment, enhancement, and mainten­

ance of a systems development methodology(ies); 

3) for consultation, review and evaluation of computer projects at signifi­

cant milestones in their development; 

4) for establishment, enhancement, and maintainance of a methodology to 

facilitate the orderly introduction of change into the operational envir­

onment; to manage the process of introducing such change into the 

environment; 

5) for research into definition, establishment, and maintenance of a stand­

ard, consistent, and well-defined testing methodology; 

6) for implementation and maintenance of an automated project control 

and project planning system that facilitates planning and project 

accounting; 

7) for providing the impetus and focal point for the successful and timely 

introduction of new technology to ISG's computing environment. 

Figure 2-QA organization charter 

information becomes more readily available to the QA staff. 
Managers, project managers, and programmers are less reluc­
tant to discuss their problems. Certainly there is a lot to learn 
from looking at a document, and a lot can be gained by 
working in isolation. However, the key to QA effectiveness, 
the key to producing a positive effect on the company and the 
data processing organization, is being able to assimilate all 
that information, including what you learn in the hallways; 
exercising good judgment; and making timely recommen­
dations to management in such a way that no one is embar­
rassed. A lot of work must be accomplished behind closed 
doors, and a lot of persuasion takes place. QA should become 
part of the management process, have a positive influence on 
events, and become involved in organizational decision­
making. Much of this involves the availability of information. 
If QA is considered by the organization to be a help rather 
than a hindrance (and a bureaucratic hindrance at that), it 
starts to flourish. Like a snowball rolling down a hill, it gains 
momentum. In this kind of a situation, people will look for 
QA's help as a third party. This is fundamental to the way we 
have approached the introduction of QA at Chemical Bank. 

Philosophically there are essentialfy two ways to approach 
QA. One is to stop people from doing things incorrectly. The 
other is to help people do things correctly. There is a great 
deal to be gained by choosing the latter approach. 

ORGANIZATIONAL COMPONENTS 

The QA organization at Chemical Bank is composed of ap­
proximately 35 people and is organized into eight (8) units 
(see Figure 3). There is a high ratio of experienced people in 
the organization. This is not only a result of the need for 
quality analytical work but also a reflection of the need for 
management oriented interpretation of technical issues and 
information. The remainder of this paper discusses the com­
ponent parts of QA and provides some insights into how the 
organizational units interrelate and reinforce each other. 

• CHANGE MANAGEMENT • PRODUCTIVITY MEASUREMENT 
• PROBLEM MANAGEMENT • STRUCTURED TECHNOLOGY 

• APPLIED TECHNOLOGY 

Figure 3-QA organization 

DEVELOPMENT METHODOLOGY AND 
EDUCATION 

One of the key requirements for effective QA is to provide the 
organization (ISG) with well-defined methods of work as it 
relates to systems development. This means having a well 
understood systems development methodology. I will put 
everything from breadboarding (proto typing) to structured 
techniques under the umbrella of development methodolo­
gies. To be effective, systems development methodologies 
must be simple to use, simple to understand, and flexible. 
They must also be adaptable to changing technologies, chang­
ing organizational environments, and changing needs. This 
unit of QA is concerned that the methodologies in use for 
systems development and maintenance are effective for ISG 
and the Bank. In a sense, this unit provides the cornerstone 
for work accomplished by the other units of QA and ISG. 
Chemical Bank uses a project life cycle (PLC) as defined in 
Figure 4. This PLC provides the overall framework for most 
other QA activity. The PLC is straightforward and very easy 
to understand. It provides standardization in terms of the way 
we develop and maintain our computer systems. The PLC is 
occasionally modified, as necessary, to meet the needs of the 
organization. It is the responsibility of this group to define and 
properly coordinate PL~ changes and to provide education 



420 National Computer Conference, 1982 

PROJECT LIFE CYCLE 

SYSTEMS 
ASSURANCE 

TEST 
MANAGEMENT 

Figure 4---ISG project life cycle 

SYSTEMS 
MANAGEMENT 

regarding the nature of the change to affected groups. There 
are four major users of the PLC from a QA perspective: 

1. Systems Assurance 
2. Project Planning and Control 
3. Systems Management 
4. Test Management 

SYSTEMS ASSURANCE 

The cornerstone of our development process concerns project 
reviews (Table I). Systems Assurance is responsible for re­
viewing and monitoring all PLC projects while they are under 
development. It holds reviews on these projects at ddined 
milestone points in the development process. We have found 
formal project reviews to be very effective. These meetings 
are always chaired by Systems Assurance and are held at 
predetermined points within the life cycle (see Figure 5). For 
example, once requirements are established, there is a formal 

TABLE I-ISG project life cycle reviews 

PROJECT LIFE CYCLE/REVIEWS 

REVIEW PHASE ---
PROJECT INITIATION MEETING INITIATION AND SURVEY 

REQUIREMENTS REVIEW ANALYSIS 

SECURITY AND AUDIT REVIEW ANALYSIS 

TECHNICAL ALTERNATIVES REVIEW ANALYSIS 

PROPOSAL REVIEW ANALYSIS 

ARCHITECTURE REVIEW DESIGN 

SECURITY/AUDIT DESIGN REVIEW DESIGN 

CRITICAL DESIGN REVIEW DESIGN 

PROJECT COMPLETION MEETING IMPLEMENTATION 

PRODUCTION ACCEPTANCE MEETING IMPLEMENTATION 

WALK·THRU any phase 

IN·PROCESS REVIEW any phase 

PROJECT LIFE CYCLE I REVIEWS 

SECURITYI 
AUDIT DESIGN 

REVIEW 

Figure 5-ISG project life cycle/review 

requirements review. It is at this point that we ensure that all 
parties are brought into the process. All groups must either 
sign off on the requirements definition or express their reser­
vations. A management report of review is drafted bv Svstems 
Assurance and delivered to the director of data proc~ss-ing for 
comment and/or signature. The signed report is then sent to 
all project and management personnel, including senior user 
management. Most reviews result in the creation of action 
items (things to be done by the project team). These action 
items are listed in the management report. Systems Assurance 
will track action items to ensure their completion. Other re­
views in the life cycle follow the same basic process. 

People from EDP Auditing, Data Security, Information 
Systems Integration, Computer Operations, Systems 
Development, and the user areas are present at every review 
(Table II). Other participants at the reviews vary, depending 
upon the nature of the project and the PLC phase in question. 
Information Systems Integration is responsible for all archi­
tectural questions and, as such, they are with the project from 
the very inception. This is also true of computer operations 
people. They attend all reviews. 

The Systems Assurance Group is composed of project man­
agers drawn from other ISG groups (usually Systems Devel­
opment). It is considered a positive move in terms of their 
career development. There is every attempt to ensure that 
they have organizational credibility and exceptional commu­
nication skills. They must exercise good judgment and tact in 
dealing with people. They are asked to be helpful in their 
approach. Most development project managers, when ap­
proached that way, are receptive and will take advice. 



Quality Assurance in a Large Commercial DP Installation 421 

TABLE II-Project life cycle review attendees 

REVIEW PARTICIPANTS 

ALWAYS 
USER 
DEVELOPMENT 
OPERATIONS 
COMMUNICATIONS 
SECURITY 
EDP AUDITING 

WHEN REQUIRED 
CONTROLLER 
PLANNING 
BANK ACCOUNTING 
TRAINING 

Competence, good judgment, and a positive attitude of 
Systems Assurance personnel are fundamental to the success 
ofthe project review process. Systems Assurance people must 
exercise good judgment and understand when a problem 
needs escalation. Tom West of Data General once said, "Not 
everything worth doing is worth doing well.,,1 These are very 
appropriate words for Systems Assurance Personnel to heed 
when reviewing projects. Our objective is to help get systems 
out the door, systems that can be operated and maintained 
cost-effectively by ISG. Knowing what is important and under­
standing when to take a firm stand is critical. It is sometimes 
counterproductive to require compliance to the letter of the 
law in striving for the last 10% of perfection. 

The role of Systems Assurance at Chemical Bank can per­
haps best be described by the following excerpts of a letter 
from the head of ISG to a senior user manager at the Bank: 

"Attached is the Requirements Document and supporting 
Approval Package for the ... System. As a part of the project 
management procedures specified in the Project Life Cycle, 
ISG, through its Quality Assurance organization, conducts a 
series of reviews at critical points throughout the life of a 
project. One such review is conducted immediately prior to 
the submission of a proposal. It is called the Proposal Review 
and was conducted for this system on April 17th. A follow-up 
was conducted on May 6th to resolve the action items gener­
ated at the reviews. 

Quality Assurance representatives concluded that although 
the requirements are well documented and the project is 
sound from a technical viewpoint, the completed system may 
be cumbersome and expensive to operate. (More detailed 
comments by Quality Assurance are included in the last Tab 
of the proposal package.) 

I want to emphasize that Quality Assurance exists to pro­
tect the Corporation and the user as well as to insure proper 
ISG performance. I am very well aware of the fact that any 
time a Quality Assurance organization reaches a conclusion 
other than "all is well," it is often viewed as being a roadblock 
to progress or supporting a vested interest of one of the play­
ers. I am also aware that the Quality Assurance finding in the 
extant instance can be viewed as "covering ISG"-if the sys­
tem turns out to be a failure (however defined), ISG is vin­
dicated; if on the other hand the system is successful, ISG can 
say that it was only through dint of ISG effort that success was 

achieved. Finally, I don't doubt but that at some levels in both 
your office and mine, this project is being viewed as a series 
of tedious confrontations on both sides-a "we vs. they." 
Only reasonable and strong management is going to overcome 
or at least negate such feelings. 

I have been involved in many projects such as this and a 
reasonable share of them have turned out to be unsatisfactory. 
I think that the Quality Assurance finding on this project 
deserves your special attention and I highly recommend an 
independent assessment of the Requirements by a third party. 
This should not reflect on your staff but should help to assure 
that you are going to get the system you need and one which 
the Corporation can afford." 

It is also perhaps obvious that such senior DP management 
support is also critical to the success of Systems Assurance. 

PROJECT PLANNING AND CONTROL 

Another QA organizational unit at Chemical Bank is Project 
Planning and Control. This unit is responsible for providing 
support and automated capabilities in the following areas: 

1. Project planning 
2. Project accounting 
3. Project monitoring 

We currently use PAC II~ for these purposes. Once again, the 
project life cycle provides the overall framework for the prod­
ucts and activities of this area. In terms of project planning, 
standard PLC activities and deliverables are defined in the 
planning model. This proves to be a great aid in terms of the 
standardization of development work. It is also an aid to 
Systems Assurance in monitoring development activity. 

In 1979, ISG established a budgeting and project account­
ing methodology that categorizes ISG activities into three 
major groups for management purposes: 

1. Minimum maintenance 
2. Discretionary enhancements 
3. Development work 

Minimum maintenance is defined as that expense level nec­
essary to continue to operate and maintain the current portfo­
lio of computer application systems. In addition to pro­
gramming staff, it includes the systems support infrastructure 
necessary to operate the computer complex. In this sense, 
technical support personnel, equipment, and supplies needed 
to keep the computer applications running are included in 
the minimum maintenance category. This is a baseline 
component. 

Unlike baseline, expense levels for discretionary enhance­
ments and development are largely controlled by the user 
community. The identification and justification of new work 
and the decisions to add functions to existing systems are user 
driven. However, once the bank commits itself to the devel­
opment of a new system and after implementation of that 
system, the ISG baseline will be driven upward to accommo­
date the continuing maintenance requirements. There is, 



422 National Computer Conference, 1982 

therefore, a direct correlation between ISG baseline and the 
impact of past decisions. The identification of ISG work in 
such a manner offers management an opportunity to assess 
ISG workload characteristics in terms of spending patterns 
and work type trends. The objective of ISG management is, 
of course, to reduce the amount of resources (in a relative 
sense) required to maintain its portfolio of business applica­
tion systems. This, in turn, provides the Bank greater oppor­
tunity to devote more resources to new automation. While 
accounting for the fact that past decisions cause baseline in­
crease, ISG strives to control the rate of increase in mainte­
nance work, thereby maintaining a favorable ratio of devel­
opment to maintenance activity. 

SYSTEMS MANAGEMENT 

Another aspect of quality assurance concerns the operational 
environment. This is the concept of Systems Management. 
Systems Management is composed of two functions, Change 
Ma!1agement and Problem Management. 

The objective of Change Management is to minImize the 
risk of making applications and systems changes in our oper­
ational environment. This is much easier to do in a large, 
centralized computer operations area operating mainframes 
than in a distributed systems environment where the hardware 
and software are operated within the user area. Change Man­
agement is responsible for the establishment and maintenance 
of a process to accommodate th.e planned, orderly introduc­
tion of all application and software changes. As such, all work 
being requested of ISG is sent to a work request desk, man­
aged by Change Management. When the work in question is 
completed, the request to make the change to the computer 
system must also be sent to the work request desk. This pro­
cess affords ISG an opportunity to closely monitor and ana­
lyze all changes taking place in the operational environment. 

One method to help reduce the risk of change is to reduce 
the frequency of such change. All users are requested to ad­
here to a planned change cycle for their business applications. 
The cycle frequency is determined by them, in concert with 
ISG Systems Development. Once-a-month change cycles are 
not uncommon. The checks and balances implied in this pro­
cess provide ISG an opportunity to reduce the risk of intro­
ducing software change. 

Another way of providing for more operational stability is 
through the process of problem management. Problem 
Management provides for a systematic way of identifying, 
categorizing, assigning and tracking problems that occur in 
Computer Operations. We currently use an IBM product 
"Information Systems" for automated support. There are ter­
minals strategically located in the data centers. As problems 
are encountered, information concerning the problem is 
keyed into the system (we are in the process of building auto­
mated interfaces to SMF, RMF, etc. to reduce the manual 
intervention) . 

The group in Problem Management monitors all this activ­
ity and ensures that the problems are being properly identified 
and assigned. They also monitor the process to ensure that 
follow-up action is being taken and that the probiems are 
being resolved. 

TEST MANAGEMENT 

Software testing is one of the most critical tasks performed by 
a large data processing organization. Testing is important in 
the development of new systems, but it may have an even 
greater effect on the maintenance of production systems. In 
spite of this, testing is rarely approached in the same disci­
plined manner as other software production activities. This 
neglect of software testing is not, however, a result of the lack 
of available technology. Over the last several years, software 
testing has been the subject of intense activity in the research 
community, and many books and articles can be found on the 
subject.2

, 3 An organization can often achieve significant im­
provements in both software testing effectiveness and effi­
ciency through a relatively low-cost investment in testing 
methodologies, tools, and techniques. 

The Test Management staff of QA is responsible for provid­
ing ISG with a standard methodology for testing. This stan­
dard testing methodology is closely integrated with the PLC 
framework (see Figure 6). As a project moves through the 
various phases of the development or maintenance life cycles, 
the program guides and identifies testing activities to be per­
formed and possibly documented. The review points estab­
lished in the PLC provide the opportunity for QA to evaluate 
testing plans and progress at critical life cycle milestones. 

Test Management has defined three progressive levels of 
increasing involvement with the testing of individual systems 
in development or maintenance: 

1. Testing program review 
2. Testing coverage audit 
3. Independent testing 

Referred to as certification levels, these procedures provide 
increasing organizational assurance of system reliability 
through third-party review. 4 

Testing Program Review 

This is the certification level for most systems a~ Chemical. 
It uses the project life cycle review points to verify adherence 
to the standard testing program. These reviews are handled by 
Systems Assurance in the development cycle and by Change 
Management in the maintenance cycle. Test Management 
provides technical assistance to both project teams and the 
QA review teams in preparing for these reviews. 

Testing Coverage Audit 

At this certification Level, QA Test Management uses the 
TRAILBLAZER tool (including its change analysis feature 
for systems in maintenance) to assess independently -the thor­
oughness of test data provided by the systems developers. 
Standards of thoroughness ranging from 75% to 95% cov­
erage of (changed) program logic are established as part of a 
system's testing strategy or regression test manual and agreed 
to by QA, the developers, and the user(s). If tht!se standards 
are met, QA certifies the system; otherwise, the detailed re­
ports showing unexecuted iogic are returned to the project 
team for additional testing. 



Quality Assurance in a Large Commercial DP Installation 423 

STANDARD TESTING METHODOLOGY 

INITIATION 
AND 

SURVEY 

-T------i-- DESIGN --I 

I 

ANALYSIS ~-S-IG-N-----'-----D-ET-A-IL-ED--T----- FlN::- IMPLEMENTATION MAINTENANC_E_I 

I APPROACHES DESIGN DESIGN 
I ~-- -----,---- -- ---__ L-. __ --,--___ .---L-__ ~ 

_.~E~~~ESj _>:_~~_~:~~NJ • : ~SPE:~~TlON~:;i_ 
EXECUTION TEST 

t
- "~~-J 

TESTING 
STRATEGY 

. - - -- ... ~-. - --

• FOR EACH TEST PHASE DEFINED IN TESTING STATEGY 

(::::>:::>::'>1 REQUIRED AS DOCUMENTS 

• 

• 

• 

PROCEDURE LOG 

TEST 
CASES 

TEST 
LOG 

TEST 
DOCUMENTATION 

TEST 
DOCUMENTATION 

---1- l"EGRESSION 

TEST 
PACKAGE 

Figure 6--ISG project life cycle/testing 

Independent Testing 

This highest certification level transfers system testing re­
sponsibility from the development organization to QA. It is 
relatively costly, since QA analysts must understand the appli­
cations area of the system under test in order to do an effective 
job. In an organization with a high volume and diversity of 
applications being developed and maintained simultaneously, 
this approach can be justified for only a few, extremely critical 
systems. 

TEST SERVICES 

The success of the Test Management program is, to a large 
extent, dependent upon a reliable test environment. Chemical 
Bank has significant resources devoted to testing and, as such, 
is concerned that testing services are consistently available 
and that performance is reliable. A Test Services Group was 
established in QA to monitor the ISG test environment, seek 
new tools and methods to improve the service, and to follow 
up on performance problems. 

The group is responsible for: 

1. Establishing and maintaining all management reporting 
functions as they relate to the performance and avail­
ability of the testing environment. 

2. Performing liaison with all appropriate areas of ISG in 
providing a consistent and cost-effective level of testing 
service. 

3. Performing liaison with the users of the testing environ­
ment to ensure proper education and training in the 
utilization of the test environment. 

4. Establishing and communicating appropriate policies 
and procedures in the use of TSO and other test systems 
(CICS, IMS, etc.). 

FUNCTIONAL INTERACTION 

Testing, Systems Assurance, Systems Management (Change 
and Problem) and other facets of quality assurance bring indi­
vidual benefit to the company. However, it is important to 
remember that the real payback is when these functions begin 
to interact and support each other. Accept for a moment that 
there are two ways a system can be changed: (1) through 
problem correction and (2) through a user-generated change 
(see Figure 7). Also accept that there are two outputs of that 
process. One is a product of some nature (a report, CRT 
screen, etc.); and the other is another problem. This could be 
conceptualized as the normal processing cycle. 

One of our objectives is to institutionalize procedures 
whereby the various groups reinforce each other. Organiza-



424 National Computer Conference, 1982 

User 
Generated 

FUNCTIONAL INTERACTION 

(Normal Processing) 

\ 
IChangel~ 

Problem 
Correction 

Figure 7-Normal processing 

Problems 

tional payback is greatly increased when the units begin work­
ing together as seen in Figure 8 and described below. 

In the Problem Management organization, we establish a 
threshold of problems for each production system and keep 
track of the problems encountered with that system. Once the 
threshold is reached, the Problem Management group notifies 
Change Management. The Change Management Group 
places it on a key problem list. As long as the problem thresh­
old on the application in question is being exceeded, any new 
changes for that application must be rerouted to Test Manage­
ment. The Test Group has two options. They can start doing 
third-party independent testing on those changes or they can 
start reviewing, through the use. of their test tools, the pro­
gram coverage of those changes until the problem level falls 
below the threshold. Through such interaction, the or­
ganization begins to get significant payback from QA. 

STANDARDS AND PROCEDURES 

I will briefly cover Standards and Procedures. It has been said 
that data processing people do not believe in standards. We all 

Problem 
Correction 

FUNCTIONAL INTERACTION 

(Problem Threshold Reached) 

Figure 8-Problem processing 

are aware of manuals gathering dust on the tops of desks. 
Standards is traditionally a paper-driven process. 

When the creation of standards is a unilateral process ac­
complished by a Standards and Procedures Group, the users 
of the material have a tendency to ignore them. Often Stan­
dards and Procedures Groups are not responsive, taking 
months and months to get new material out the door. Often­
times the standards are partially outdated by the time they are 
distributed. We developed a program to overcome these prob­
lems by focusing on three things: 

1. Introduce the idea of ownership. Foster the thought that 
Standards and Guidelines belong to the area most direct­
ly affected by the Standards and Guidelines in question. 
Give the users of Standards and Guidelines a piece of the 
action. 

2. Move from a paper-driven process to utilization of office 
technology. Create, update, and deliver material elec­
tronically. Cut down the lead time required to deliver 
material. 

3. Create standards, guidelines, and requirements that re­
flect minimal needs (a standard is not a standard unless 
it is machine enforceable). One area that needs most 
attention in this regard is Systems Maintenance docu­
mentation requirements. Requiring extensive narratives 
that describe systems applications functions are usually 
counterproductive (the use of structured analysis and 
design is helping to overcome this problematic area). 
Require only that which is necessary. 

In our view, Standards and Procedures is an internal service 
organization. It is staffed with professional technical writers. 

PRODUCTIVITY 

Data processing (DP) and communications are playing an 
ever-increasing role at Chemical in helping the Bank meet the 
competitive challenges of the marketplace. To meet the de­
mands being placed on EDP, ISG must be constantly seeking 
new tools, techniques and methods to assist in keeping cost 
and service at cost-effective levels. 

ISG established a management unit with the responsibility 
to identify, assess, and, where appropriate, help implement 
new productivity-oriented products and procedures within 
ISG. Another aspect of this productivity program is to pro­
vide concise, meaningful, and easily understood mea­
surements of ISG productivity. Quantifying data processing 
organizational productivity has been an elusive target of the 
industry for years. There is a great deal of theory written in 
journals and publications; but few, if any, organizations have 
arrived at satisfactory measurement techniques. 

One key to understanding or discussing a productivity mea­
surement program lies in obtaining a working definition of 
productivity that most people in the organization can accept. 
We define productivity as the ratio of an output produced by 
an activity to an input used by the activity. Our reference to 
productivity and productivity measures refers to this rather 
simple, working definition. ISG has taken steps to better un­
derstand the DP productivity issues, and we have begun to 
apply measurement techniques to our activities. 



Quality Assurance in a Large Commercial DP Installation 425 

There are two fundamental objectives that were established 
in the measurement of ISG productivity: 

1. To better understand and measure the effectiveness of 
the products and services that we provide to the Cor­
poration. This "external" view is briefly discussed below 
and is undoubtedly the greater of the challenges in the 
area of productivity measurement. 

2. To measure the efficiency with which we provide these 
products and services. This could be thought of as the 
internal view of ISG productivity. 

Effectiveness 

Measuring ISG effectiveness is undoubtedly the more diffi­
cult. The activity of an organization like ISG, as seen by 
senior bank management, is to provide appropriate services to 
the user divisions and, where appropriate, directly to bank 
customers (i.e., ATMs). 

The measure of our success is how well the users are served 
in relation to the cost of the service. Thus, increasing the 
productivity of ISG is defined as: (a) increasing the service 
levels provided to the divisions and customers while con­
suming no more resources or (b) providing equal services 
while consuming fewer resources. Assuming the resources can 
be measured and the services provided are measureable, then 
either (a) or (b) results in an increased productivity ratio. 

Efficiency 

We view the measurement of ISG efficiency as having two 
dimensions: (1) a measure of the operations or productions 
set of activities and (2) a measure of the factors relating to the 
systems development process. Productivity, and the measure­
ment of our productivity, is viewed as one of the key issues for 
ISG in the 1980's. 

QUALITY ASSURANCE IMPERATIVES 

Quality Assurance is like motherhood and apple pie. Every­
one believes in it, but most are not sure how to define it in 
terms of its role in the organization. This paper has presented 
QA at Chemical Bank. In the process of implementing the 
function, certain needs and requirements for successful imple­
mentation have been identified. 

Functionally Complete 

To get maximum payback out of a QA function, the QA 
organization should evolve to the point where it has sufficient 
function whereby units can mutually support each other. In a 
sense, this creates the potential for making the whole stronger 
than the sum of the component parts. 

Technical Competence 

It is probably obvious that QA must be staffed with tech­
nically competent personnel. Historically, QA has been 
viewed by DP professionals as a dead-end road. Some DP 
organizations have, in some instances, moved incompetent 
people aside (to QA) to minimize their visibility and lessen 
the potential impact of their "mistakes." This view of QA is 
changing, and must change if an organization is serious about 
the function. There is a school of thought that DP will see the 
emergence of QA professionals and that QA will soon be 
considered a productive and meaningful career in and of it­
self. The DP industry (unlike manufacturing) has not yet ma­
tured t; this point. I believe such will be the case, but in the 
meantime, we must attract (by providing visible career paths) 
well qualified and respected developers and other DP special­
ists to the QA area. 

Management Orientation 

A good technical decision is sometimes not the best man­
agement decision. Quality assurance must never lose sight of 
organizational objectives and not consider their work as a 
series of technical challenges. 

Third-Party Objectivity 

In the course of their work, QA can and must assume the 
role of an objective third party. This is particularly important 
to senior DP management. QA should not become a part of 
the problem. It is possible to work closely with a problem 
solver and be so closely associated with a proposed solution 
that, as viewed by senior management, QA becomes part of 
the problem. In that sense, QA can offer no alternatives or 
proposed remedies to senior management. 

Information Source 

To effectively anticipate problems, QA must establish itself 
as a fertile source of information for the organization and for 
senior management. The degree of success in this area is due, 
in large part, to the perception of QA by the rest of the 
organization. Formal reporting structures are important. The 
informal communications process is equally important. 

Senior Management Peer Level 

Quality Assurance must actively participate in the decision­
making process of the DP organization and should be in a 
position to influence direction and strategy. There is great 
variation in data processing organizations in terms of the re­
porting level of QA. Groups producing papers on QA 
(GUIDE et al.) seem to begin with a discussion of reporting 
levels. We believe it is imporiant for QA to report at the 
highest organizational level if management wants to realize 
maximum benefit. 



426 National Computer Conference, 1982 

Positive Contributor Towards Organizational Goals 

This is the bottom line. Success in this regard is a reflection 
of the attitudes, philosophies, and posture of the QA organi­
zation. It is a function of the technical competence and orien­
tation of QA. If QA is considered a hindrance to progress, 
i.e., a group that gets in the way and fails to provide added 
value, then the QA organization will not be able to make a 
positive contribution and will eventually fail. Quality assur­
ance must thoroughly understand the goals, objectives, and 
problems of the corporation and the data processing organi­
zation. These concerns must be considered in daily activities. 

REFERENCES 

1, Kidder, T. The Sou! of a New Machine. Boston: Little, Brown and 
Company, 1981. 

2. Hetzer, W. C. Program Test Methods. Old Tappan, New Jersey: Prentice 
Hall, 1972. 

3. Myers, G. I. The Art of Software Testing. New York: Wiley-Interscience, 
1979. 

4. Holthouse, M. A. and C. W. Lybrook. "Improving Software Testing in 
Large Data Processing Organizations." AFIPS, (Volume 50), 1981, pp. 
353-359. 



PERSONAL 
COMPUTING 





Data-server design issues 

by FRED MARYANSKI 
Digital Equipment Corp. 
Hudson, MA 

ABSTRACT 

The expected proliferation of local-area networks has created a need for network 
database servers. It is reasonable to view local-area network data servers as exten­
sions of backend database systems. This paper addresses several critical data-server 
design issues: distribution of functionality, high availability, security, and per­
formance. Particular consideration is given to applying experience with backend 
databases to the problems of data servers. Several design alternatives are proposed 
and evaluated in terms of their impact on reliability, security, and performance in 
a gross sense. The concluding section emphasizes the need for greater practical 
experience with local-area networks in order to more accurately weigh the tradeoffs 
of different data-server configurations. 

429 





INTRODUCTION 

In the 70's the concept of a backend database system was 
introduced as a potentially cost-effective method of increasing 
the data-processing capability of third-generation main­
frames. 6 Although some activity continues in this area, the 
backend concept has not been realized in a large number of 
commercially successful systems owing in a large part to the 
high-performance costs of communications. 17 With the ex­
pected advent of local-area networks in the commercial mar­
ketplace in the 80's, it appears that backend database tech­
nology may find a more suitable basis for its application. 
Strictly speaking, the local-area networks of the future will 
probably not contain backend machines in the traditional 
sense. Figure 1 pictures a backend database system in which 

Host 

I 

Applications 
Application-COMM Interface 

Communications 

Backend 

Communications 
COMM·DBMS Interface 

Data Manager 

Data 

Figure I-Backend database system 

the database and the data manager are offloaded onto a ded­
icated processor that is tied directly to a mainframe host. The 

Data-Server Design Issues 431 

local area network equivalent of the backend database is the 
data server, which provides data-management facilities for the 
network. This paper considers the design of data servers for 
local-area networks, with an emphasis on applying the 
lessons learned with backend database systems to this new 
environment. 

The next section provides references on backend database 
systems and mentions some related work on network data 
servers. The type of local network environment for which a 
data-server design is specified in this paper is defined in the 
third section. Critical design issues of the data server are 
covered in the following section. The paper concludes with a 
discussion of the key problems to be faced in this area and 
some suggestions for further work. 

BACKGROUND 

The ground breaking paper on a dedicated database processor 
was written by Canaday and his associates in 1974.6 The func­
tionality of a backend computer has been investigated by 
several researchers who have detailed the progression from 
general purpose computers to special-purpose database 
machines.4,13,22 A survey of backend database systems is 
available. 17 

From the point of view of data-resource management, there 
is a strong argument for dedicating processors to the data­
management function. 20 Until recently, the high cost of wide­
bandwidth communication imposed severe performance 
limitations upon such configurations. With the advent of 
local-area networks, it now appears feasible to designate one 
or more processors as network data servers. Several micro­
processor data servers have been prototyped: 

• The PHLOX project's network data servers runs on a 
specially tailored microprocessor in which the data man­
ager and the operating system are integrated. 

• The MINIMET14 and MICRONET25 data servers are 
composed of several microprocessors each containing a 
portion of the database. Each database request is broad­
cast to all of the microprocessors, which respond to the 
host independently. It is the responsibility of the host 
software to assemble the results. 

• The UNITY system26 consists of a microprocessor "data 
server" that has its data downline loaded from a mini­
computer. The microprocessor server then operates in a 
standalone fashion. The minicomputer database is peri­
odically refreshed from the microprocessor server. A 
basic design decision of UNITY is not to provide con­
tinuous synchronous access to the main database. 

The local-area network environment for which the problem 
of data-server design is considered in this paper differs slightly 



432 National Computer Conference, 1982 

from the environments of prior studies. The structure of the 
network is presented in the next section. 

LOCAL-AREA NET\VORK STRUCTURE 

Before we consider data server design issues, the environment 
in which such a system will operate must be defined. Figure 2 
pictures the generic local-area network for which the data 
server will be defined. In all subsequent discussion, commu­
nication is assumed to take place using a high-bandwidth 
broadcast mechanism with perhaps some distance limitations. 
The issues of contention, nets versus rings, will not be 
addressed. 19,29 

Network 

Figure 2-Local-area network 

There are two basic types of processors in the network, 
workstations and servers. Workstations directly support user 
terminals. A workstation contains sufficient functionality to 
support the professional tasks of the user. The servers provide 
all users with access to shared facilities such as high-speed, 
high-quality printers, a file repository, and a common data­
base. The data server is distinguished from a file server in the 
same manner that a database-management system is func­
tionally distinguished from a file system in a single-machine 
environment. Descriptions of networks of this nature that 
have been developed for special application environments 
have been given by Kaisler and Lind. 11

•
12 

A basic principle of local-area networks is that the high­
communication bandwidth and the declining cost of pro­
cessors dictate the functional specification of processors. Such 
dedicated processors can be tuned, or perhaps specially con­
structed, to provide their allocated functionality in an opti­
mum fashion. The specific concentration of this work is the 
design of a processor, or group of processors, dedicated to the 
data management function. 

DATA SERVER DESIGN CONSIDERATIONS 

In order for an efficient, reliable data server to be built, sever­
al important issues must be carefully considered. An attempt 
is made to address in this paper the most pressing of these 
issues, as indicated in the following list. 

• Distribution of data management functionality 
• Availability 
• Security 
• Performance 

Distribution of Functionality 

As in the case of backend systems, a data server cannot be 
created by simply placing the data-management software in a 
dedicated processor. The data-management software must be 
partitioned between the workstation and the data server. As 
with a traditional backend, additional communication soft­
ware must be added to a data-server configuration in order to 
tie the pieces of the data-management system together. One 
of the lessons of the backend experience is that the record-at­
a-time DML statement, a la CODASYL, is not the proper 
unit of interprocessor communication.16,17,21 Even in a local­
area network with high communication bandwidth, the fre­
quency of interprocessor communication must be minimized. 
Thus a higher-level data-access language must be employed. 
A relational data-manipulation language such as SEQUEL or 
QUEL is well-suited for the data-server environment. The 
attractive feature of this class of languages is that a single 
request can result in the transfer of a large amount of data. 
The underlying data manager need not be relational, provided 
that a high-level data-manipulation language can be em­
ployed. Germano gives an example of a high-level data­
manipulation language for a CODASYL data manager. 9 

However, for purposes of this discussion, the data server will 
be designed to support the relation model. 

A local-area network data server must support spontaneous 
queries as well as the execution of canned transactions. The 
discussion of the distribution of data-management functions 
will use the structure of System R, which is described in 
several articles.1,5,7 As explained by Chamberlain,7 PLiI or 
COBOL application programs may access a System R data­
base by including $LET, $OPEN, $FETCH, and $CLOSE 
statements in the program. These statements perform the 
following functions: 

• $LET -Defines the SEQUEL query as a transaction and 
names the program variables utilized in the query. This 
statement is processed by the System R precompiler to 
create an access module for this transaction. 

• $OPEN-Binds the variables. 
• $FETCH-For a retrieval operation, this function causes 

data from one selected tuple to be written into program 
variables. 

• $CLOSE-Frees the variables. 

The precompilation of System R transactions in a single­
processor environment is depicted in Figure 3.7 In the local­
area network described in the preceding section, the compila­
tion function resides on the workstation. Thus a copy of the 
data management precompiler must be available to every 
workstation. The question of the placement of the access 
module generated by the precompiler must be deferred pend­
ing consideration of the structure of the transaction run-time 
environment. The System R transaction run-time environ-



PLII Source Program 
with SOL Statements 

System R Precompiler 

Modified PLII Program 
Access Module with Access Module Calls 

Figure 3-System R precompilation step 

ment is protrayed in Figure 4.7 The most straightforward 
approach to partitioning the run-time environment is to assign 
the user object program to the workstation and place the 
remaining modules on the data server. However, if the inter­
action between the access module and the object program is 
examined closely, certain problems with the aforementioned 
partitioning strategy can be detected. In the precompilation 
phase, each of the System R operators just described is re­
placed by a call to the appropriate access module. If the 
program issues a request that results in the retrieval of several 
tuples, the $FETCH statement will be executed to retrieve the 
data for each tuple. Consider the sample transaction shown 
below. 

$LET Cl BE 
SELECT NAME, SALARY INTO $X, $Y 
FROM EMP WHERE JOB = $Z; 

DO JOB INDEX = 1 TO NUM JOBS; 
$Z = JOB TABLE (JOB INDEX); 
$OPEN Cl; 

DO WHILE (SYR CODE A = DONE); 
I $FETCH Cl; 

END; 

$CLOSE Cl; 
END; 

In a local-area network, if the entire execution-time system 
resides on the data server, then an exchange of messages 
between the workstation and the data server will-be required 
each time the $FETCH statement is executed. In effect, the 
data server will be provided information on the same basis as 
if a CODASYL DML were used. Our experience with back­
end databases has taught us to avoid this type of access. 

The solution is to partition the execution-time system and 
the access module in a manner that permits all of the tuples 
selected in a retrieval operation to be moved from the data 
server to workstation local memory simultaneously. Individ-

Data-Server Design Issues 433 

User's Object 
Program 

! Call 

Execution-Time System 
Loads, Access 

, I 
Then Module 
Calls 

Call 

System R 
Storage Subsystem 

Data 

Figure 4--System R transaction execution step 

ual tuples are then extracted from the workstation memory in 
response to $FETCH statements. The actions associated with 
each of the System R statements and their location in the 
network are summarized below. 

• $LET -Processed in the precompilation phase. Pieces of 
the resulting load module are stored at both the work­
station and the data server. 

• $OPEN-The binding of the variables of the selection 
expressions occurs at the workstation using the load mod­
ule. Then the database request is transmitted to the data 
server in the form of a call to the load module. At the 
data server, the request is executed. The result, in the 
form of status information and perhaps data tuples, is 
then transferred back to the workstation. The tuples 
must be buffered in the workstation memory. 

• $FETCH-A tuple is retrieved from the workstation 
memory and the data associated with program variables. 
This entire operation is local to the workstation. 

• $CLOSE-Frees the buffers that held the selected tu­
ples. This operation is also local to the workstation. 

The above discussion indicates that a substantial portion of 
the processing of database transactions is the responsibility of 
the workstation. Figure 5 shows the partitioning of the data­
management modules for transaction handling between the 
workstation and the data server. 

The processing of queries in System R resembles trans­
action processing with the exception of the precompilation 
step. The System R query-processing facility is illustrated in 
Figure 6. 7 The two specialized query operations are 

• PREPARE-The operands of this statement are the text 
of a query and a set parameter, which are identified by a 
"?" token. The text is processed by the precompiler to 
produce an access module. 

• EXECUTE-This statement is called with the name of a 
query that has been processed by a PREPARE statement 



434 National Computer Conference, 1982 

Workstation 

Precompiler 
Run-Time System 

Load Module Buffers 

$Open (Partial) 
$Fetch 
$Close 

Comm Interface 

Network 

Data Server 

COMM Interface 
Load Module 

Storage Subsystem 

I I 
Data 

I 

Figure 5-Distribution of data-manager functionality 

and the name of the formal parameters. The formal pa­
rameters are bound to the access module produced by the 
PREPARE statement. 

These statements are used by the SQL query processor to 
build load modules for spontaneous database requests. These 
modules are called by the query processor using the $OPEN, 
$FETCH, and $CLOSE statements in the same manner as in 
the case of canned transactions. Once a query has been com­
piled, the SQL query processor accesses the database in the 
same manner as an application program. Since the processing 
of queries and transactions differ only in the precompilation 
step, there is no need to alter the data-server architecture 
described above to support a query facility. 

Availability 

In a discussion of data servers and local-area networks, it is 
quite common to hear a remark such as, "If I am going to have 
to put all my data on a data server, it better be reliable." One 
might be tempted to enquire about the reliability of the 
general-purpose machine on which the speaker's data are 
likely to be residing at present. However, it is easy to accept 
the argument that data servers must provide a high degree of 
availability and reliability. The first design decision with re­
spect to high-availability data servers relates to redundancy. 
Clearly, additional reliability can be obtained through the use 

Query Processor 

Then 
Calls 

Figure 6-Availability 

Access 
Module 

Call 

System R 
Storage Subsystem 

Data 

of multiple processors. In any reasonable database facility, 
backup copies of the data are maintained. In terms of a data 
server, the issue to be addressed is whether the backup copies 
should reside on the same processor as the current data or be 
located on another processor. The basic philosophy of local­
area networking argues for multiple processors. There is, of 
course, an added cost associated with additional processors, 
but this is offset by the increased reliability, the declining 
cost of processors, and the potential for high-bandwidth 
communication. 

If the decision to employ multiple processors is made, the 
next problem is organizing the data and data-management 
system on a multiprocessor data server so that high availability 
can be provided with reasonable efficiency. There exist two 
basic alternatives for distributing the control of data across a 
group of data servers. In a high availability environment, 
multiple copies of the data must be present. Thus it is the 
control of the data that is distributed. 

1. One server contains the primary copy of the data while 
the other nodes maintain backup versions. All requests 
are initially directed to the master data server. 

2. The control of data is partitioned among the data serv­
ers. Each server has primary responsibility for some por­
tion of the data and backup responsibility for other 
pieces of the database. 

A primary difference between these two general ap­
proaches is the requirement of the second philosophy for a 
distributed concurrency-control algorithm. Distributed con­
currency control has proven to be among computer science's 
knottier problems. While several theoretical solutions have 
been proposed, the performance effects of the overhead intro­
duced by these algorithms is still unknown. 3 Therefore, for 
reasons of simplicity and perhaps performance, a master data­
server scheme will be presented here. In a local-area network 
with a large demand for database service requiring several 
data-server nodes, some combination of the strategies may be 
employed. 



M 
. D b Static Dump am ata ase f-----.:..------I~ 

Reorganization 

Differential 
File 

Update Committed 

Record Requested 

Backup 

Working 
Space 

Figure 7-Fault-tolerant database architecture 

The master data-server scheme proposed here is an exten­
sion of an architecture developed for a single-machine envi­
ronment. Figure 7 presents the fault-tolerant database archi­
tecture defined by Maryanski. 18 This approach to reliability is 
based upon the concepts of differential files23 and careful 
replacement.28 Briefly, the differential-file approach involves 
maintaining all modifications to the database in a separate 
file, the differential file, and periodically merging the main 
database with the differential file. A distinct backup copy of 
the main database is also maintained. A filter is utilized to 
determine whether a record requested by a read operation is 
present in the differential file. Read requests for data that 
have not been changed since the last reorganization are 
directed to the main databases. The proportion of requests 
processed against the main database with respect to the differ­
ential file declines with time until a reorganization takes 
place. An algorithm for online reorganization is given by 
Maryanski. 18 

The technique of careful replacement avoids "updating in 
place." When an update occurs, the current value is copied 
into the working space, with the change taking place in that 
space. Pointers are adjusted after the new value is written. 
The careful replacement strategy is only employed when a 
record already in the differential file is updated. The use of a 
differential file effectively provides careful replacement for 
the first time a record is updated. 

Initially assume that two processors are utilized to provide 
the database service. The goal of a strategy for partitioning 
the components of Figure 7 between the two processors is to 
maximize performance while maintaining fault tolerance. 
One partitioning formula (see Fig. 8) is to place the differ­
ential file on the master processor with the main database 
residing at the backup or slave processor. In this arrangement, 
all update requests are handled by the master processor. A 
read operation is executed by the master if it involves data in 
the differential file. Read requests for unaltered data are 
passed to the backup processor. Since the master node han­
dles all updates, it also assumes responsibility for concurrency 
control. The distribution of work between the two processors 
is a function of the update frequency. Initially, all read re­
quests are routed to the slave processor with the master han­
dling only updates. In fact, the execution of an update of data 
not in the differential file in this configuration requires the 

Data-Server Design Issues 435 

Network 

Master Data Server Backup Data Server 

Differential Main Database 
File 

Working Space 

Figure 8-Redundant data servers, configuration 1 

master to obtain data from the backup processor. 
Another problem with this configuration is that utilization 

of the processors is completely data driven. The allocation of 
work between the processors may be unbalanced, depending 
on the frequency at which rea~ requests access data in the 
differential file. Initially the backup processor will handle all 
read requests. As the differential file increases in size, the 
master will assume an increasingly large portion of the 
activity. 

The configuration portrayed in Figure 9 alleviates the first 
problem of the previous configuration by eliminating the need 
for interprocessor communication when data not in the differ­
ential file are updated. Since a copy of the main database is 
maintained on the master processor as well as the backup, the 
transfer to the differential file from the main database can 
occur more quickly. The maintenance of a copy of the main 
database at both nodes presents the opportunity for balancing 

Network 

, 
Master Data Server Backup Data Server 

Differential I Main Database 1 
File 

Working Space 

Main Database 

Figure 9--Redundant data servers, configuration 2 



436 National Computer Conference, 1982 

the utilization of the database processors. This modification to 
the strategy will only have an effect when the differential file 
is small. According to the 80--20 rule,15 most of the database 
activity will be concentrated on a relatively small portion of 
the data. As the database reaches a stable size, the differential 
file will contain the most frequently accessed portion of the 
database. Thus, the master will handle a larger percentage of 
the database requests. However, since the differential file is a 
small subset of the entire database, searching the differential 
file is faster than searching the main database. 

The final possibility for the partitioning of the components 
of the high-reliability data-server configurations involves rep­
licating the differential file and the main database on both 
processors. This configuration, which is depicted in Figure 10, 
eliminates both of the deficiencies noted in the data-server 

Network 

Master Data Server Backup Data Server 

Differential Differential 
File File 

Working Space Working Space 

I 
Main Database 

I 
Main Database 

Figure lO-Redundant data servers, configuration 3 

organization of Figure 8. In addition, it provides the potential 
for more consistent balancing of processor utilization than the 
configuration given in Figure 9. Unfortunately, this latest 
architecture introduces the problem of maintaining consistent 
copies of the differential file. The possible mechanisms for 
keeping the differential files consistent are 

• Execute all updates at the master, then broadcast the 
changes to the backup processor. This approach limits 
load balancing since only retrievals can be executed by 
either processor. However, concurrency control remains 
the function of the master processor only. 

• Use the load-balancing mechanism to distribute the up­
dates between the data-server processors. In effect, the 
master-slave relationship no longer exists. While this 
approach has the potential for an equitable distribution 
of the workload among the processors, the problem of 
distributed concurrency control is introduced. The re­
sulting configuration bears a strong resemblance to a 
fully redundant distributed data-management system.2 

The first of these partitioning alternatives is simpler to im­
plement and consequently requires less memory and time for 
the controlling software. Since the data server is dedicated to 
a single function, efficiency may not appear to be critical. 
However; the demand for this resource may be high; therefore 
the data server must execute as effectively as possible. The 
multiprocessor data-server configurations presented in this 
subsection, along with the algorithms given by Maryanski,18 
Severance and Lohman,23 and Verhofstad,z7 will ensure a high 
degree of data availability. As explained by Maryanski18 and 
Severance and Lohman,23 the performance of systems based 
upon the differential-file concept is strongly dependent on 
update frequency and the presence of locality. The architec­
tures described here make every effort to provide rapid exe­
cution of both retrieval and update commands. 

Security 

The issues of security in a local-area network's data server 
are akin to those in a backend database system. The basic 
question is "Does a network data server provide more security 
than a data manager on single, multipurpose processor?" The 
key factors involved in the evaluation of this question are 

• Isolation 
• Authorization 

Isolation 

The primary reason behind the claim that a backend data­
base system provides enhanced security is that the backend 
processor is dedicated to the data-management function. 7 

Therefore, no corrupt applications can circumvent the data 
manager and access the database files surreptitiously. In many 
data managers that are constructed upon a standard file sys­
tem, it is possible to access the data files directly through the 
operating system without knowledge of the data manager. 
Both the backend database and data-server configurations 
eliminate this problem by isolating the data from all applica­
tion programs. Thus the bogus user must be camouflaged in 
order to access the database in an unauthorized manner. This 
observation leads to the conclusion that the data isolation 
provided by the data server can only be useful for security if 
the problem of authorization is resolved. 

Authorization 

Database systems have always relied on an authorization 
mechanism to provide the most basic level of security. The 
dependence heightens in a local-area network in which the 
data manager and the application are not coresident on a 
single processor. In System R, authorization information is 
maintained as relations in the schema of Griffiths and Wade. 10 

Designated users may grant and revoke access to portions of 
the database by issuing special commands that effect these 
relations. INGRES employs a similiar authorization strat­
egy.24 An authorization mechanism of this type can be 
adapted to the data-server environment with little alteration. 



The relations containing authorization information reside at 
the data server. Commands to grant and revoke privileges 
emanate from the workstations to the data server. 

The above scenario assumes that the underlying network 
control structure provides a foolproof method for the identi­
fication of users. The question whether a local-area network 
enhances or degrades the effectiveness of the authorization 
mechanism is an open one. Clearly, the data server is heavily 
d~pendent on the network's authorization mechanism. If the 
network's security mechanism does prevent penetrators from 
disguising themselves as valid users, the standard relational 
approach to authorization will be adequate for a data server. 

Performance 

Database performance is of course dependent upon such 
difficult-to-characterize variables as database structure and 
usage patterns. The two primary questions that arise in the 
evaluation of data-server performance are 

• How does the performance of a data server on a local­
area network compare with a single mainframe running 
both the data manager and applications? 

• Which data server configuration gives the best perform­
ance for a particular environment? 

Answering the first question is particularly difficult, since 
the performance of a data manager on a general-purpose 
mainframe is influenced by the nondatabase workload of the 
mainframe as well as by database requests. Overall disk utili­
zation has a strong effect on the behavior of the data manager. 
In a local-area network with dedicated servers, the data man­
ager will not have to contend with other subsystems for disk 
resources. However, the interprocessor communication of a 
local-area network will exact a performance penalty in terms 
of transmission delay and the overhead of communication 
software. The proper determination of the performance 
tradeoffs of a single mainframe system versus a local-area 
network of dedicated processors requires a detailed analysis. 
Simulation is the best approach to judging these tradeoffs for 
a particular application environment. 

Queueing-model analysis could be supplied to the problem 
of comparing the relative performance of the data-server con­
figurations pictured in Figures 8-10. These models must be 
parameterized to describe a particular environment, with the 
key factors being distribution of requests over the database, 
frequency of updates, and the communication delays, both 
line and software, between the data servers. Simulation tech­
niques could also be applied here to project the performance 
of the various configurations in a range of environments. An­
other interesting variable in the analysis of data-server per­
formance is the optimum number of processors in a data­
server configuration. Here the tradeoff between concurrent 
operation and communication overhead must be balanced. 
Cost becomes an important factor in an analysis in which the 
number of processors is permitted to vary. 

Experience with backend database systems leads us to ex­
pect a difference between performance projections obtained 
by simulations or analytical studies and the performance of 

Data-Server Design Issues 437 

actual prototypes. 17 The difference between theoretical and 
actual performance can be attributed to inaccurate modeling 
of the workload and the underestimation of the time spent 
executing communication software. Experimenters have had 
difficulty in creating large workloads with several applications 
concurrently accessing the database. Unless the database is 
heavily used, the benefits from concurrent operation of the 
host and backend will not be realized. The higher speed of the 
local-area network links certainly will yield better perform­
ance than a backend system using standard point-to-point 
communication. However, the utilization of a high-bandwidth 
communication medium does not automatically imply more 
efficient communication software in the workstations or the 
data server. The overabundance of communication software 
that was present in many backend database system prototypes 
must be reduced in local-area network data servers if they are 
to meet performance expectations. 

CONCLUSION 

The issues of data-server design raised here are the product of 
initial investigations into the problem. As mentioned earlier, 
experience with backend database systems has strongly influ­
enced the definition of the problems as well as many of the 
proposed solutions. Since experience with local-area net­
works is limited, it is difficult to model accurately user work­
load characteristics in order to establish reasonable perform­
ance models for data servers. The key problems facing data 
server designers in the immediate future are 

• The definition of reasonable high-level communication 
protocols that allow a high rate of actual data transfer 
between the application and the data server 

• The synthesis of accurate performance models to permit 
the evaluation of architectural alternatives 

• The understanding of the requirements for relia­
bility, security, and high performance in particular 
environments. 

Prototyping remains the best method for obtaining a true 
understanding of the character of experimental systems. This 
is certainly valid for local-area network data servers. The 
component technologies are available. The critical task is 
assembling the communication, data-management, and appli­
cation systems into a well-integrated network data-service 
facility. 

REFERENCES 

1. Astrahan, M. M., et aI., "System R: Relational Approach to Database 
Management," ACM TODS, 1, 2 June 1976, pp. 97-137. 

2. Bernstein, P. A., et aI., "The Concurrency Control Mechanism of SDD-l: 
A System for Distributed Databases (The Fully Redundant Case)," IEEE 
Transactions on Software Engineering, SE-4 (1978), pp. 154-169. 

3. Bernstein, P. A., and N. Goodman, "Fundamental Algorithms for Concur­
rency Control in Distributed Database Systems," CCA-80-5, Computer 
Corp. of America, Cambridge, Mass. (1980). 

4. Berra, P. B., "Data Base Machines," ACM SIGIR Newsletter (Winter 
1977), pp. 4-23. 

5. Blasgen, M. W., et aI., "System R: An Architectural Update," IBM Re­
search Report, San Jose, Calif. (1979). 



438 National Computer Conference, 1982 

6. Canaday, R. E., et aI., "A Back-End Computer for Data Base Manage­
ment," CACM, 17, pp. 575-582. 

7. Chamberlain, D. D., et aI., "Support for Repetitive Transactions and Ad 
Hoc Queries in System R," ACM TODS, 6 (1981), pp. 70-94. 

8. Delvecchio, B., and P. Penny, "The PHLOX Project: Three Database 
Management Systems for Microcomputers/' ACM SIGSMALL-SIGPC 
Symposium (1980), pp. 173-178. 

9. Germano, F., Jr., "DSEED: A Distributed CODASYL Prototype Sys­
tem," Ph.D. Dissertation, Wharton School, University of Pennsylvania 
(1980). 

10. Griffiths, P. P., and B. W. Wade, "An Authorization Mechanism for a 
Relational Database System," ACM TODS, 1 (1976), pp. 242-255. 

11. Kaisler, S., "The Agency Personal Information System," ACM 
SIGSMALL-SIGPC Symposium (1980), pp. 114-125. 

12. Lind, L., "An Actual Implementation of a Distributed Database on a 
Minicomputer," in State of the Art Report on Distributed Databases, 
INFOTECH (1979), pp. 187-202. 

13. Lowenthal, E. I., "A Survey-The Application of Data Base Management 
Computers in Distributed Systems," VLDB October 1977, pp. 85-92. 

14. Maekawa, M., and S. Ishii, "An Extensible Distributed Data Base Sys­
tem," AFIPS Proceedings of the National Computer Conference, 47 (1978), 
pp. 813-822. 

15. March, S. T., and D. G. Severance, "The Determination of Efficient 
Record Segments and Blocking Factors for Shared Data," ACM TODS, 2 
(1977), pp. 279-296. 

16. Maryanski, F. J., et aI., "A Prototype Distributed DBMS," Hawaii Inter­
national Conference on Systems Science, Vol. 2 (1979), pp. 205-214. 

17. Maryanski, F. J., "Backend Database Systems," Computing Surveys 12 (1) 
(1980), pp. 3-27. 

18. Maryanski, F. J., and P. Charoenpong, "An Architecture for Fault Toler­
ance in Database Systems," ACM Annual Confere,._e, October 1980, pp. 
389-398. 

19. Metcalfe, R. M., and D. R. Boggs, "Ethernet: Distributed Packet Switch­
ing for Local Computer Networks," CACM, 19 (1976), pp. 395-404. 

20. Nolan, R. L., "Restructuring the Data Processing Organization for Data 
Resource Management," IFIP Information Processing 77 (1977), pp. 
261-265. 

21. Passafiume, J. J., and J. Rivan, "Providing Network Data Services Using 
a Backend Data Base Machine," IEEE COMPCON, February 1980, pp. 
251-262. 

22. Rosenthal, R. S., "The Data Management Machine, A Classification," 
Workshop on Computer Architecture for Non-Numeric Processing, May 
1977, pp. 35-39. 

23. Severance, D. G., and G. M. Lohman, "Differential Files: Their Applica­
tion to the Maintenance of Large Databases," ACM TODS, 1 (1976), pp. 
256-267. 

24. Stonebraker, M., et aI., "The Design and Implementation of INGRES," 
ACM TODS, 1 (1976), pp. 189-222. 

25. Su, S. Y. W., et aI., "A Microcomputer Network System for Managing 
Distributed Relational Databases," VLDB, September 1978, pp. 288-298. 

26. Ting, P. D., and D. C. Tsichritzis, "A Micro-DBMS for a Distributed Data 
Base," VLDB, September 1978, pp. 200-206. 

27. Verhofstad, J. S. M., "Recovery and Crash Resistance in a Filing System," 
ACM SIGMOD Conference, August 1977, pp. 158-167. 

28. Verhofstad, J. S. M., "Recovery Techniques for Database Systems," Com­
puting Surveys, 10 (1978), pp. 167-195. 

29. Wilkes, M. V., and D. J. Wheeler, "The Cambridge Digital Commu­
nication Ring," Local Area Communications Network Symposium, May 
1979. 



SOCIAL AND 
ORGANIZATIONAL 

IMPLICATIONS 





Acceptance criteria for computer security 

by WILLIAM NEUGENT 
System Development Corporation 
McLean, VA 

ABSTRACT 

Acceptance criteria define the degree of quality required and identify areas to be 
examined in evaluating the degree of quality. Three categories of computer security 
acceptance criteria are proposed: functionality, performance, and development 
method. Each is further divided into sub-categories. Aids in formulating require­
ments and criteria are noted, including the use of organizational policies and risk 
analysis methods. Quantification is shown as a volatile tool, since numbers are often 
treated as single data points rather than as ranges. A set of principles is presented, 
to be followed in formulating acceptance criteria. Illustrative principles are as 
follows: (1) Get a good start, (2) make sure everyone understands, (3) distinguish 
shall from should, and (4) explain why. The acceptance determination process is 
discussed, a key point being that intermediate products must be approved. The 
value of acceptance criteria is in making the product better and the judgment easier. 

441 





INTRODUCTION 

There are no people more surprised than computer users who 
first confront a system built "according to their require­
ments." Some might recognize their feelings as similar to 
those experienced upon meeting a blind date: It's much easier 
to recognize the unacceptable than to define the acceptable. 

This problem is particularly common in the area of com­
puter security. One reason for the problem is that there is 
little awareness of the role played by acceptance criteria. Peo­
ple think of requirements definition as solely a process of 
defining what capabilities they need. They forget that require­
ments definition must also consider how product acceptability 
will be determined. The criteria for this acceptability decision 
are called acceptance criteria. 

This paper proposes a categorization for acceptance crite­
ria, along with a set of principles that can make their defini­
tion easier. The goal is to help people define computer secu­
rity requirements in ways that both improve the resultant 
product and simplify the determination of product accept­
ability. The paper is concerned only with the development of 
software and hardware, although it has applicability in other 
areas. 

ACCEPTANCE CRITERIA 

Acceptance criteria are specialized security requirements. 
They are specialized because they represent a perspective 
different from that of other security requirements. Whereas 
normal requirements are typically formulated in response to 
the question "What do we need?" acceptance criteria respond 
to the question "How will we decide whether the product is 
acceptable?" These clearly are overlapping sets, since prod­
ucts are usually defined as being acceptable if they meet 
needs. The problem is that if only the first question is asked, 
needs will often not be sufficiently defined. The role of accept­
ance criteria is to ensure that the requirements include suf­
ficient definition of (1) "What degree of quality is required?" 
and (2) "What will be examined in evaluating the degree of 
quality?" 

Thus acceptance criteria are measurable or demonstrable 
features of required security functions that characterize their 
desired quality. They serve as decision criteria used to deter­
mine whether a product complies with security requirements. 
They also guide developers who must decide how much qual­
ity to build into a product. 

Decisions on quality are made at all levels of a development 
effort. This is true because every design level serves as a set of 
requirements for the level below it (Figure 1). Each level tells 
what must be done by the level below and describes how to 
implement the level above. The process of telling what is 

Acceptance Criteria for Computer Security 443 

User Requirements 

Functional Specification 

System Specification 

Program Specification 

Code 
Figure I-Relation between design levels 

needed is a requirements definition process, and carries with 
it the need for some form of acceptance criteria. For example, 
criteria are needed at the functional specification level to help 
those defining the system specification decide how much re­
dundancy to build in; and they are needed at the system 
specification level to help the program specifiers decide on the 
extent of error checking and handling. 

This paper is concerned with acceptance criteria at the user 
requirements level. Since this level involves definition of the 
basic problem to be solved, criteria at this level are the most 
important. These criteria reside in the user requirements doc­
ument. More specific forms of the criteria appear in many 
lower-level documents, the foremost being the functional 
specification and the acceptance test procedures. 

From this general look at acceptance· criteria, let us now 
examine them in more detail. 

A STRUCTURE FOR ACCEPTANCE CRITERIA 

The task in defining acceptance criteria is to describe control 
quality with an eye towards evaluation. To do this, one must 
first determine which characteristics of controls are the pri­
mary determinants of control quality. Three categories of 
determinants are proposed: 

1. Functionality. What control functions are required? 
2. Performance. What performance criteria must control 

functions achieve? 
3. Development method. How must the system and controls 

be developed? 

Each is discussed below. 

Functionality 

This category includes those things most often thought of as 
security requirements: control functions and data and sensi­
tivity requirements. 



444 National Computer Conference, 1982 

Control functions 

These include not only controls themselves, such as authen­
tication and authorization functions, but also the functions 
required to manage and monitor them. Management includes 
such functions as changing authentication or authorization 
tables. This must consider issues such as who can change the 
tables and whether changes can be made dynamically. Mon­
itoring includes the recording of security events such as errors 
and file accesses. The definition of monitoring functions must 
include what capabilities the system needs to measure its own 
performance. Examples are the measurement of resource use 
and response time. The operational system must be capable of 
reporting on measurements of its quality. Monitoring also 
encompasses the auditability o~ the function. 

In defining control functions, there are several heuristic 
aids that can be used to help ensure completeness. These are 
similar to the who, what, why, when, and where of expository 
writing. 

1. Control purposes: prevent, detect, or correct security 
exposures. 

2. Violations thwarted by controls: disclosure, modifica­
tion, denial of service, destruction. 

3. Control functions: authorization (access control), au­
thentication (identification), monitoring. This is some­
times expanded to include flow control, inference con­
trol, and encryption. 

The definition of control functions can include factors such 
as when, how often, and how long (life span) the function is 
to be used; the level of detail at which it is performed; oper­
ating conditions and constraints; and the relationships among 
the functions. Additional and particularly important factors 
that need to be addressed for security are the amount of data 
sharing among users and the extent of user functional capabil­
ities. 1 User acceptance and error tolerance needs must also be 
defined. User acceptance needs include guidance in what 
users will find acceptable so that they will not avoid or subvert 
controls. Error tolerance needs clarify how sophisticated or 
well trained the users are and how tolerant the system should 
be of errors they make. 

Data and sensitivity requirements 

Data requirements define system outputs, inputs, data ele­
ments, and data structures, along with estimated peak and 
average volumes and expected growth. Sensitivity require­
ments include sensitivity categorizations for data, software, 
hardware, and personnel positions. These categorizations 
must identify protection requirements for the various sensi­
tivity categories. Consideration must be given to whether the 
processing or aggregation of data will change their sensitivity. 

Performance 

There is much more to control quality than proper func­
tional operation. A number of qualitative acceptance criteria 

are listed here under the general heading Performance. They 
can be applied either to individual controls or to systems. 

Availability 

Define what proportion of time the system must be avail­
able to perform critical or full services. Availability incorpo­
rates many aspects of reliability, redundancy, and maintain­
ability. It is often more important than accuracy. Some 
systems such as power supply systems require an availability 
of well over 99%. Others such as chemical process control 
systems and telephone network switching systems are almost 
as high. Security controls usually require higher availability 
than other portions of a system. 

Survivability 

Define how well the system must withstand major failures 
or natural disasters, where withstand includes the support of 
emergency operations during the failure, backup operations 
afterwards, and recovery actions to return to normal oper­
ation. Major failures are those more severe than the minor or 
transient failures associated with availability. Survivability 
and availability overlap where failures are irreparable, as in 
space systems and heart pacemakers. 

Accuracy 

Define how accurate controls must be. Accuracy encom­
passes the number, frequency, and significance of errors. 
Controls for which accuracy measures are especially applica­
ble are identity verification techniques (e.g., using signature, 
voice) and communication-line error-handling techniques. 
Research in software quality metrics is applicable here. 2 

Penetration resistance 

Define the needed resistance to the breaking or circum­
vention of controls, where resistance is the extent to which the 
system and controls must block or delay attacks. Cryptanal­
ysis is an example of a technique for breaking a control (en­
cryption). Creating and using a fraudulent system logon utility 
to discover passwords is an example of control circumvention. 
It is important to define who the penetrators might be: users, 
operators, application programmers, system programmers, 
managers, or external personnel. Keep in mind that most 
losses come from people performing their authorized tasks. 

Response time 

Define acceptable response times. Slow control response 
time can entice users to bypass the control. Examples of con­
trols for which response time is critical are passwords (es­
pecially in distributed networks) and identity verification 
techniques. Response time can also be critical for control 
management, as in the dynamic modification of security ta-



bles. It is useful, in defining response requirements, to note 
the impact of varying levels of degradation. 

Throughput 

Define capacities that must be supported, where capacity 
includes the peak and average loading of such things as users 
and service requests. This can involve the use of performance 
ratios, such as total users versus response time. 

Cost 

Define acceptable costs to operate and maintain controls. 
Costs to build controls are also important and are included 
below under criteria for the development method. Getting the 
right amount of security means striking a balance between 
how much you might lose and how much you can afford to 
spend to reduce losses. 

Development Method 

Any craftsman knows the value of good tools. They make 
some tasks easier and other tasks possible. The same is true 
of the tools used to develop computer systems. The method 
used to develop controls is a major determinant of control 
quality. Important security aspects of the development are 
listed below. 

Objectives 

Tne importance of security relative to operational per­
formance, cost, and other factors must be defined. This will 
help developers decide which objectives take precedence, 
should conflicts arise. 

Project control 

Define required management and technical project struc­
tures. An effective change control process is also required. 

Resources 

Define the amount of time and money available. These 
have a critical influence on control quality. 

Development techniques 

Define required design, programming, and test techniques. 
Design techniques can include adherence to security design 
principles (e.g., least privilege, complete mediation3

) as well 
as generally desirable design principles such as simplicity and 
modularity. Formal specifications and verification might be 
required, as might the use of program description languages. 
Programming techniques can include the use of particular 
high-order languages and adherence to standards of good pro­
gramming practice. Test techniques can include required test 

Acceptance Criteria for Computer Security 445 

types or conditions and should usually include stress testing. 
Required measures of test coverage can be specified.4 In addi­
tion to specifying the general use of particular techniques, one 
can also define areas in which assurance measures such as 
testing need to be emphasized. This gives different degrees of 
evaluation assurance for different controls. 5 

Documentation 

Define what is required, when, and what it must contain. 
More acceptance decisions pertain to documents than to sys­
tems, since acceptance is often required of specifications and 
manuals. It is thus critical that required documentation con­
tents be well defined. No definition can ensure quality, but a 
good definition can benefit the entire effort by improving the 
nature and timing of development decisions. 

Developer trust 

Define the amount of trust to be placed in developers. This 
may require investigations and clearances or even the use of 
particular people. 

AIDS IN FORMULATING CRITERIA 

Now that we have a clear view of what criteria are, we must 
consider how to go about formulating them. Some principles 
to assist in this process are given later in this paper. Here we 
consider useful aids. 

Many aids are available in the form of laws,* standards,t 
and guidelines.:/: \Vhether or not these are mandatory in a 
specific case, they are useful guides. Another useful aid is an 
organizational or industry security policy that can be used as 
a guide to acceptable practice (and that ultimately might be 
used to establish objectives against which organizational per­
formance can be measured, as in management by objectives). 
Unfortunately, few organizations have such a policy. To help 
fill this void, several professional organizations such as the 
Canadian Institute of Chartered Accountants6 and the EDP 
Auditors Foundation7 have defined general control objec­
tives. Figure 2 is an example adapted from the Canadian 
work. 

The control objectives are derived from types of loss that 
need to be controlled. There are several control technique 
objectives for each control objective and several techniques 
for each technique objective. The technique objectives must 

*The Privacy Act, the Freedom of Information Act, the Foreign Corrupt Prac­
tices Act, and others, including many at the state level. 
tThe National Bureau of Standards (NBS) has issued several computer security 
standards, including the Data Encryption Standard (DES) and the DES Modes 
of Operation Standard. More are planned. NBS computer standards are man­
datory for the executive branch of the federal government. 
:j:Many organizations, including NBS, have issued computer security guidelines. 
NBS guidelines address physical security, the Privacy Act, risk analysis, security 
of computer applications, contingency planning, and other areas. NBS guide­
lines that might be released shortly address the areas of user access author­
ization, security evaluation, security certification, and development of a security 
program. 



446 National Computer Conference, 1982 

CONTROL OBJECTIVE: To prevent or detect accidental errors occurring 
during processing by the EDP department. 

CONTROL TECHNIQUE OBJECTIVE: There shall be some meth­
od to ensure correct files are mounted, switches are correctly set, and 
output files are properly allocated. 

CONTROL TECHNIQUE: Computer files should be labeled 
internally and externally. 

Figure 2-Structure for defining control requirements 

be complied with, whereas the techniques serve as a menu of 
ways to achieve the technique objective. The two lower levels 
are particularly useful in defining security requirements. 
Unfortunately, the notion of quality, so crucial to acceptance 
criteria, is typically addressed only implicitly in such 
structures. 

Risk analysis methods * * are also helpful. They assist in 
deciding where to place controls and how much to spend on 
them. Most risk analysis methods require that estimates be 
made of how often each threat might occur and how much 
might be lost with each occurrence. They are therefore most 
reliable where there are good data on threat frequencies and 
losses, as is the case in the area of environmental risks as 
posed by fires and floods. 

There are no good underlying data on hardware or software 
risks. Therefore the use of numeric frequencies and dollar 
values can be awkward in analyzing such risks. Despite this, 
risk analysis has value in the definition of requirements for 
hardware and software security. The value is simply in helping 
to systematically analyze risks to improve understanding and 
to make better judgments. 

So risk analyses are useful. As was true for organizational 
or industry security policies, however. risk analyses are more 
helpful in identifying needed control functions than in identi­
fying acceptance criteria associated with the controls. 

QUANTIFICATION 

The preceding discussion of risk analysis touched on the awk­
wardness of using numbers when good underlying data do not 
exist. Since quantification often plays an important role in 
both formulating and representing criteria, further discussion 
of this topic is required. 

Numbers themselves are not the problem. They are helpful 
tools in making and recording decisions. The problem that 
arises is a people problem. People simply tend to 'be careless 
in their use of numbers. 

The primary error is in treating numbers as single data 
points rather than as ranges. Numbers require some measure 
of their accuracy or flexibility to be associated with them. 
Without this, misunderstandings can result when the under­
lying judgments that give rise to numeric criteria are not as 
precise or inflexible as the numbers imply. The subjectivity 

**Many methods are becoming available for analysis of computer security risks. 
Examples include an NBS guideline (FIPS PUB 65), System Development 
Corporation's "Risk Assessment Methodology" (developed for the Navy), Pan­
sophie's PANRISK", and the Fuzzy Risk Analyzer by Dr. Lance Hoffman of 
George Washington University. 

involved in making decisions is well illustrated by the follow­
ing description of how the National Aeronautics and Space 
Administration (NASA) defined the overall reliability accept­
ance criterion for the Apollo program.8 

When President Kennedy gave birth to Apollo, 
some of the best minds in the country were giving it 
one chance in ten of making it to the moon. But 
[NASA] engineers were choosing much better odds: 
999 to 1. Caldwell Johnson, an engineer at the 
Manned Spacecraft Center in Houston, remembers 
how the odds were chosen. 

"The question of reliability came up," Johnson 
said not long ago. "Should 50 percent of the mis­
sions be successful? Should 9 out of 10 guys come 
back alive? 

"Or should it be 999 out of 1,000 guys? The cost 
of development is a function of reliability. If you can 
afford to lose half the spacecraft and half the men, 
you can build them [much] cheaper." 

While work on the Apollo design stopped in 1961, 
th.e .question was debated for weeks. With nobody 
wIllIng to make a decision, the engineering team 
turned to Robert Gilruth, then director of the 
Manned Spacecraft Center. Engineer Max Faget 
spoke up: "If we're successful halfthe time, that will 
be worth it." 

"No, that's too low," Gilruth said. "We can make 
9 out of 10. Maybe 99 out of 100, lose one man out 
of 100 on lunar missions." 

"That's ridiculous," said Walt Williams, the di­
rector of the one-man Mercury. "Make it one in a 
million." 

"How about three nines?" Gilruth responded. 
"How about a reliability of 9-9-9?" 

And so it was. 

Today NASA prefers to avoid the use of such numbers,9 but 
this example reveals how a quantitative criterion can have a 
highly subjective derivation. 

The need for a variance or confidence measure must be 
stressed, because the apparent clarity of numbers can create 
a sense of their legitimacy or authority that is difficult to 
dislodge. This authority can be improperly exploited through 
the intentional use of numbers to camouflage inadequate data 
and analysis. In such cases, numbers can serve more to pro­
mote judgments than to formulate them. The authority of 
numbers can also lead to unintentional misinterpretation, as 
when numbers are manipulated or used to make inferences 
that cannot be justified by the underlying data. This problem 
has led Touche Ross & Company to consider deleting the use 
of certain numbers from a control evaluation method that they 
have developed. 10 Touche Ross will replace the numbers with 
letters that, though serving the same purpose, are less sus­
ceptible to misinterpretation. 

So numbers are useful but volatile tools. The challenge in 
using them is to assess the quality of the supporting data, 
accommodate this quality in the analysis, and reflect the re­
sultant variance or confidence in the product. 

An issue related to the subject of quantification is briefly 
mentioned here. That is the lack of a security metric. Despite 
much effort, there are no general metrics suitable for common 
use today by which security levels can be defined or 



measured-no inches, pounds, or degrees for representing 
security quality. The reason for this is that the widely differing 
types of security needs do not lend themselves to straight­
forward representation as general levels. There might be par­
ticular situations in which it is possible to define specific lev­
els. In general, however, no useful metric exists to simplify the 
definition of acceptance criteria. 

PRINCIPLES 

Having examined what acceptance criteria are and what aids 
are useful in their formulation, let us now look in detail at the 
process of formulating criteria. This discussion is presented as 
a set of principles-rules of thumb to keep in mind when 
formulating criteria. These principles cannot guarantee suc­
cess, but they might help avert failure. 

1. Get a good start. Acceptance criteria are important 
guides for development. Their definition requires 
highly experienced people. They must also be defined 
early. In too many cases, criteria are derived during 
testing, when it is too late to influence development. 
Users and analysts must think about criteria at the 
start. For example, they can include with require­
ments a list of tests based on "impossible" things that 
might happen, but that might not occur to designers or 
programmers. Such tests, which might be included as 
formal acceptance tests, can thus provide early 
guidance. 

2. Make sure everyone understands. Clarity is crucial. 
The criteria are agreements or, in many cases, con­
tracts. They must be reviewed and approved by all 
parties, ide.ally before any contract is signed. To illus­
trate the importance of clarity, consider the criterion 
that an identity verification technique improperly re­
ject no more than 1 % of claimed identities that are in 
fact valid. This is a useful criterion, as long as every­
one agrees that it includes only random errors, not 
intentional penetration attempts. In this and many 
other situations (e.g., denials of service), attacks by a 
penetrator can skew statistics. 

3. Distinguish shall from should. Some things are more 
important or more achievable than others. The terms 
shall (or must), should, and may are often used to 
classify needs, reflecting whether they are mandatory, 
optional but recommended, or highly optional. When­
ever used, their meaning must be precisely defined. 

4. Explain why. Often the purpose to be served by re­
quirements or criteria is not clear. It is difficult to 
understand the implications of criteria without know­
ing the reasons behind them. Hierarchies of control 
objectives, control technique objectives, and control 
techniques, as shown in Figure 2, are good for this 
purpose, as are narrative justifications. 

5. Include measurement conditions. Surrenders can be 
unconditional; criteria cannot. Acceptance criteria 
must either indicate the conditions under which mea­
surements will be made or reserve the right of the user 
to set the conditions at the time of evaluation. If the 
user understands the system well, the former ap-

Acceptance Criteria for Computer Security 447 

Security 

Cost 
Figure 3-Costs for security 

proach is preferable; if not, the latter approach must 
be taken. Conditions can be complex, including sys­
tem states, number and types of users and activities, 
points of measurement, factors counted, and so forth. 

6. Remember that almost may be good enough. In com­
puter security, almost is often all that is possible: 99% 
accuracy may be twice as expensive as 98%. Security 
costs tend to follow the curve shown in Figure 3. 

7. Use numbers judiciously. Quantitative criteria must 
be founded on reliably measurable data and must re­
flect their accuracy and flexibility. 

8. Do not let the criteria become the specification. A 
system built to pass a precise set of tests might do 
nothing else. Several types of criteria are needed to 
prevent optimization for one type. 

9. If you cannot define the acceptable, define the un­
acceptable. An example from the NASA Voyager 
program was that "no single failure shall cause the loss 
of ail data return from more than one science instru­
ment or the loss of more than 50 percent of the en­
gineering data."l1 

10. Do not ask for the impossible. It is commonly stated 
and accepted that absolute security is not achievable. 
This is true. There are, for example, no absolute de­
fenses against human subversion, human error, or 
hardware failure. It is not meaningful, then, to say 
"the system must prevent data disclosure" when it is 
impossible, even with unlimited resources, to build a 
system that will absolutely ensure this prevention. 
Such needs must be phrased as objectives rather than 
as requirements. 

11. Do not go overboard. It is possible to do too much. 
For example, measures of penetrability can vary, de­
pending on penetrator costs, collusion, degree of ac­
cess, system state, likelihood of detection, types and 
extent of loss, and other factors. Attempts to capture 
this detail might instead founder in it. It can be prefer­
able to say, "The objective is that no users of Applica­
tion A be permitted to gain control of the operating 
system." 

ACCEPTANCE DETERMINATION PROCESS 

We have now examined what acceptance criteria are and have 
looked at rules to follow in their formulation. To complete this 



448 National Computer Conference, 1982 

discussion, we must finally consider the acceptance determi­
nation process as a whole. Successful completion of the pro­
cess is, after all, a condition for acceptance. Three points are 
stressed. 

First, intermediate products must be subject to user ap­
proval. The development process is itself a system, requiring 
feedback and control. An initial set of criteria and a final 
decision are not enough. Once specifications are approved, 
compliance with them also becomes an acceptance criterion. 

Second, it is a conflict of interest for developers to evaluate 
their own products. If quality is critical, it must be assessed 
independently, perhaps with the help of third-party expertise. 
For example, operating system vendors have been known to 
imply that their products can resist penetration by application 
programmers. This is rarely true. Customers who accept the 
word of the vendors might thus be unaware of vulnerabilities 
in systems they are using. 

Finally, there can be no decision without choices. It is rela­
tively easy to cancel a project when it is small and in its early 
stages. There is a threshold, however, beyond which many 
people seem to feel they cannot afford to stop. This tendency 
has made many casinos wealthy. 

The Department of Defense sometimes avoids this cancel­
lation dilemma by sponsoring the competitive development of 
specifications or even prototype products and funding the 
winner to continue on to implementation or production. Short 
of this, other options are available. The most common are to 
withhold acceptance pending completion of corrections or to 
accept conditionally, on the basis of an explicit agreement on 
which corrections will be made, when, and at whose expense. 
Many types of operational restrictions are also possible. Ex­
amples follow. 

1. Adding procedural security controls 
2. Restricting the system to the processing of only nonsen­

sitive or minimally sensitive data 
3. Restricting users to only those with approved access to 

all data being processed or to those with a sufficient 
clearance, based on an investigation 

4. Restricting use of the system to noncritical situations 
where errors or failures are less severe 

5. Removing dialup access 
6. Removing especially vulnerable functions or compo­

nents 

CONCLUSION 

Most users who define their own computer requirements ne­
glect security. Security officers often consider it a success just 
to get computer security on the agenda. As should be clear 
from this paper, making the agenda is not enough. Thought 
must be given not only to needed security functions, but also 
to the required quality of those functions. Acceptance criteria 

for computer security are both necessary and achievable. Per­
haps users can be motivated to act on this if they are reminded 
that good security defenses p~ for themselves. 12 

In closing, two caveats are warranted. First, people and 
systems, no matter how well meaning, will never be perfect. 
Therefore, although criteria must be as precise as possible, 
decisions based on noncompliance require an enlightened 
blend of both toughness and tolerance. Reasonable people 
with flexible acceptance criteria and a spirit of cooperation 
will fare better than people with rigid criteria and a spirit of 
confrontation. Second, acceptance criteria by themselves are 
not sufficient to ensure successful development. No set of 
criteria can anticipate everything or supplant the need for 
later judgment. No criteria can offset inadequate develop­
mental resources. Their value is in making the product better 
and the judgment easier. This is no small value. 

ACKNOWLEDGMENTS 

Much of this paper is adapted from work funded by the Na­
tional Bureau of Standards Institute for Computer Sciences 
and Technology under U.S. Department of Commerce con­
tract NB80SBCA0323. 

The author is indebted to Dr. Charles Eldridge of System 
Development Corporation, Mr. John Gilligan of the Defense 
Communications Agency, Dr. Stephen Morse of MRJ, Inc., 
and Mrs. Zella Ruthberg of the National Bureau of Standards 
for their insights. 

REFERENCES 

1. "Secure-System Evaluation." In 1979 Summer Study on Air Force Com­
puter Security. lR June to 13 July 1979. Camhridge. Massachusetts. The 
Charles Stark Draper Laboratory, Inc., 1979, p. 84. 

2. Bowen, John B. "Are Current Approaches Sufficient for Measuring Soft­
ware Quality?" Proceedings of the Software Quality and Assurance Work­
shop, 7, nos. 3-4 (1978). ACM Special Interest Group on Measurement and 
Evaluation. 

3. Saltzer, J. H" and M. D. Schroeder. "The Protection of Information in 
Computer Systems." Proceedings of the IEEE, 63 (1975), pp. 1278-1308. 

4. Miller, Edward F., Jr. "Tutorial, Program Testing Techniques." Computer 
Software and Applications Conference 1977. Software Research Associates, 
1977. 

5. Konigsford, William L. "Developing Standards for Operating System Secu­
rity." Computer Security Journal, Spring 1981, p. 49. 

6. Computer Control Guidelines, The Canadian Institute of Chartered Ac­
countants, 1970. The figure was adapted from pages 46-49. 

7. Control Objectives-1980, EDP Auditors Foundation for Education and 
Research, 1980. 

8. O'Toole, Thomas, and Jim Schefter. "The Bumpy Road That Led Man To 
The Moon," The Washington Post, 15 July 1979. 

9. Williams, WaIter C. "Lessons From NASA." IEEE Spectrum, Vol. 18, No. 
10, October 1981. 

10. Davis, Keagle, Touche Ross & Co., private communication, 1980. 
11. Williams, "Lessons From NASA," p. 80 (ref. 9). 
12. IBM Corp. "Establishing a Data Processing Security Program." Computer 

Security Manual, Computer Security Institute, 1980, p. 1.20. 



Private sector needs for trusted/secure computer systems* 

by REIN TURN 
California State University 
Northridge, CA 

ABSTRACT 

Computer systems that have been subjected to formal verification of correctness of 
their access control mechanisms and that can provide multilevel security are called 
trusted systems. Their prototypes are now being developed under government 
programs and, to a much lesser scale, as a part of vendors' in-house research and 
development. While the need for trusted systems in national defense applications 
is well known, the need for trusted systems in private sector's business and industrial 
applications has been largely unexplored. This paper identifies several generic types 
of needs and incentives for the use of trusted systems, such as maintaining manage­
ment control, complying with regulatory requirements, protecting computer repre­
sentations of assets and resources, assuring safety and integrity, realizing certain 
operational economies, and enhancing marketing advantage or public image. It 
then examines the private sector's aspects of these generic needs, as well as disin­
centives that may surface. The paper concludes with an assessment of the prospects 
for commercial availability of trusted systems and the vendors' incentives for devel­
oping and marketing these systems. 

*This paper is based on the Report R-2811-DR&E, Trusted Computer Systems: Needs and Incentives for Use in 
Government and the Private Sector, June 1981, which the author prepared for The Rand Corporation as a consultant. 
It was sponsored by the Office of the Undersecretary of Defense Research and Engineering. 

449 





Private Sector Needs for Trusted/Secure Computer Systems 451 

INTRODUCTION 

Computer systems are a necessity in the functioning of a mod­
ern, industrialized society. They are used by business and 
industry, and by government agencies, in a wide variety of 
applications, including financial transactions, research and 
product design, control of manufacturing processes, record 
keeping, long-term planning, and the general support of daily 
operations. Users expect these systems to have integrity and 
security, that is, correct functioning of programs, correct data 
values, and assurance that there have been no unauthorized 
access, modification or disclosure. In other words, users ex­
pect their computer systems to be trustworthy. 

In a broad sense, a computer system consists of equipment, 
the operating system and application programs, data files or 
data bases, data communication networks, facilities, per­
sonnel, and users. Threats to system integrity and security 
may emanate from any of these subsystems, inadvertently or 
by deliberate design. A variety of protection techniques 
have been developed to counter these threats. For example, 
effective techniques exist for controlling physical access to 
computer systems. It has been much more difficult, however, 
to implement effective access controls within multi-user, 
resource-sharing computer systems where sensitive infor­
mation is processed concurrently with other processing tasks, 
and where the trustworthiness of all users has not been 
established. 

Within the computer, the access control function is imple­
mented in the operating system programs, supported by vari­
ous hardware mechanisms. However, for various design and 
implementation reasons, no existing operating system is fully 
secure-unauthorized users can surreptitiously disable or by­
pass the access control features of any current system. One 
solution to this problem would be the rigorous use of formal 
specification and certification techniques to prove that an 
operating system fully implements the desired security policy 
and that all access attempts are mediated, consistent with this 
policy. Computer operating system programs that have been 
subjected to formal certification of their access control fea­
tures have been termed "trusted systems" by the Department 
of Defense Computer Security Initiative program.l-4 It has 
defined a trusted system as one that "has sufficient hardware 
and software integrity to allow its use for simultaneous pro­
cessing of multiple levels of classified and/or sensitive infor­
mation."l In the present paper, the term is used more broadly 
to mean security-certified computer systems, and computer 
operating systems, in general. 

The need for trusted systems in the national defense com­
munity's computer applications is well known. This need is 
less clear for civilian agencies of the federal government, for 
agencies of state and local governments, and especially for the 

private sector's business and industrial organizations. An 
analysis of the civilian governments' trusted system needs is 
given in Turn. 5 The present paper addresses the private sec­
tor's security needs and the potential of trusted systems to 
handle these needs. A projection of commercial availability of 
trusted systems is also made. 

TRUSTED COMPUTER SYSTEMS 

An important prerequisite for the development and certifica­
tion of trusted systems is the precise identification of their 
access control mechanisms and the formulation of criteria for 
evaluation of the degree of protection they can provide. Many 
technical features can influence the overall integrity of oper­
ating system programs and the protection provided. Some 
features are essential regardless of the type of application or 
operating environment, but others are essential only in certain 
specific environments. Therefore, a particular system in­
stalled in one environment may provide sufficient security, 
while the same system in a different environment may be 
unacceptable. Accordingly, trusted systems can be catego­
rized on the basis of their suitability for use in various oper­
ating environments. An important dimension in the catego­
rization is the degree of certification of the systems' design 
and implementation. 

Within the DoD Computer Security Initiative, seven pro­
tection levels have been developed. 1

,6 They are cumulative in 
the sense that at each level the criteria for that level and all 
lower levels must be satisfied. When an operating system is 
evaluated, its rating will be determined by the highest protec­
tion level that is completely satisfied. The categorization crite­
ria were defined so that systems rated at the lowest protection 
levels must meet certain security policy standards, even if the 
access control mechanisms are not judged sufficiently strong 
to counter certain subtle threats. For systems at higher protec­
tion levels, the emphasis is on evidence that the software, and 
ultimately the hardware, is correct. The protection levels are: 

1. Level 0: No protection. A system that has no demonstra­
ble ability to protect information. 

2. Levell: Limited controlled sharing. A system in which 
some attempt has been made to control access, but the 
controls are limited. For example, login authentication 
in a Level 1 system is based on passwords. (Most of the 
current operating systems provide Level 1 protection 
and are suitable for dedicated-mode operation.) 

3. Level 2 : Extensive mandatory security. A system in which 
minimal protection requirements are satisfied. Assur­
ance is derived primarily from attention to protection 
during system design; extensive testing, including pene­
tration testing, has been performed. Mechanisms in-



452 National Computer Conference, 1982 

clude read and write authorization controls, virtual 
memory, and virtual machine architecture. (Some 
recent, mature operating systems provide Level 2 pro­
tection and are suitable for benign environments with 
need-to-know controls,) 

4. Level 3: Structured protection mechanism. A system in 
which additional confidence is provided through 
methodical construction of protection-related software 
components and modern programming techniques, in­
cluding a top-level specification. (The Multics operating 
system is an example of Level 3 protection in a benign 
environment with two levels of national-defense secu­
rity, top secret and secret.) 

5. Level 4: Design correspondence. A system whose 
protective-mechanism design has been formally speci­
fied and verified. Tests are generated from the formal 
design specifications, and operating system security ker­
nels are used to implement complete mediation. (Exam­
ples are the KSOS-6, KSOS-ll, and KVMl370 systems.) 
Level 4 systems are suitable for environments where 
limited user programming is permitted and three levels 
of security are allowed (e.g., top secret, secret, and con­
fidential) in a reasonably benign environment. 

6. Level 5: Implementation correspondence. A system 
whose software design and implementation have been 
formally specified and verified. Test cases are derived 
from the formal specifications. Extended provisions are 
provided for blocking covert information leakage paths. 
There are no examples of Level 5 systems at the present 
time. This protection level is suitable for environments 
where full user programming is permitted and three lev­
els of security are allowed (top secret, secret, and con­
fidential) in a reasonably benign environment. 

7. Level 6: Object code analysis. In addition to meeting 
Level 5 requirements, Level 6 systems include object 
code analysis and object code to source code correctness 
proof, as well as additional hardware features such as 
extensive failure tolerance. There are no examples of 
Level 6 systems. Application environments would have 
full user programming and full multilevel security and 
would not have to be benign. 

A specification of security mechanisms that would be re­
quired at each level is still being developed,6 along with spec­
ifications of the administrative procedures that must be in 
place for the mechanisms to be effective, the threats that can 
be prevented, and the costs that arise. Given these specifica­
tions, the application areas and operational environments can 
be analyzed to dete!mine protection levels required. Then the 
appropriate trusted systems can be selected from a security­
evaluated set of trusted systems (i.e., from an Evaluated 
Products List that is expected to be developed by evaluating 
systems that are submitted by the industry). This process can 
be depicted graphically, as shown in Figures 1 and 2. 

The protection environment of a trusted computer system 
is achieved through hardware and software access control 
mechanisms, including implementation in firmware or micro­
code, that control the sharing of information. These mech­
anisms, which comprise a trusted computer base (TCB) of the 
operating system,. implement the "reference monitor" 

TRUSTED SYSTEM SELECTION 

I Asset protection Organization's 
ADP application 
characteristics 

Imply ___ ... ~ Legal requirements 
Control requirements 
Costs or benefits 
Incentives 

Environment considerations: 
Processor coupling 
User capability 
User / data classification 
relationship 

Developer / user trust 

Imply 

concepe,8 for controlling when and how data are accessed. 
In general, the TCB must enforce a given protection policy 

which describes the conditions under which information and 
system resources can be made available to users of the system. 
Protection policies specify precisely the rules for granting ac­
cess to information in the various sensitivity categories and 
also cover the handling of such problems as unauthorized 
disclosure or modification of information, and damage to the 
system that can result in denial of service to authorized users. 

TRUSTED SYSTEM EVALUATION PROCESS 

System security mechanisms Determine Level of trusted ness 
and their verification 

Mechanisms: 

Prevention 

Detection 

Recovery 

Operations 

Support 

Assurance: 

Specification 

Design 

Implementation 

Verification 

Testing 

Proof that a trusted system can enforce the desired protec­
tion policy requires formal approach to TCB design, imple­
mentation, and verification. Since the TCB contains all the 
protection-related mechanisms of the trusted system, proof of 
its correctness will imply that the rest of the operating system 
will also perform correctly with respect to the security policy. 
Ideally, protection policy and protection mechanisms should 
be treated separately in the system design, so that the TCB 
can be flexible and amenable to different environments and 
will not require rewriting or reverification to accommodate 
changes in policy. Details of trusted system and TCB design 
have been described elsewhere,t-8 as have the security prin­
ciples involved. 9 

The evaluation of industry-developed systems for possible 
inclusion in the Evaluated Products List for Defense De­
partment purposes will be performed by a center established 
at the National Security Agency (NSA). It is envisioned that 



Private Sector Needs for Trusted/Secure Computer Systems 453 

this list will also be available for private sector users. The 
evaluation process will consist of four sequential steps, 
matched to the computer system development life-cycle devel­
opment phases: 1o 

1. Preliminary evaluation: Analysis ofthe TCB of a submit­
ted system environment requiring trusted access con­
trols. Tne purpose of the preliminary analysis is to deter­
mine whether the TCB has been sufficiently well 
designed and documented to warrant further evaluation. 
This step can be performed as soon as the proposed 
system has completed its concept formulation phase. 

2. Interactive evaluation: An extension of the preliminary 
evaluation. This review will focus on whether the system 
satisfies the criteria for the level of protection specified 
in the preliminary evaluation. It will be based on a series 
of presentations by the developer and his documentation 
on the development phase of the system. The developer 
and the evaluation center will interact closely so as to 
assure that evaluation criteria are met and that discrep­
ancies are found early in the development process. 

3. Final evaluation: Analysis and testing of the production 
version of the proposed operating system to determine 
its strengths and weaknesses relative to the criteria for 
the specified level of protection. The developers will 
provide the evaluation center with a production-level 
system and the details of the test methods and pro­
cedures they have used to evaluate it. This step cannot 
be undertaken until the initial acceptance testing has 
been completed and the system is available for field 
testing. The final evaluation wi!! determine the "actual" 
protection level of the system and where (and if) it is to 
be placed on the Evaluated Products List. 

4. Periodic reevaluation: Required reevaluation of trusted 
systems on the Evaluated Products List that have been 
modified or enhanced. The evaluation center and the 
vendor will jointly analyze all system changes to evaluate 
the security-related aspects and to determine the extent 
of reevaluation needed. 

A vendor who has a trusted operating system on the Evalu­
ated Products ~ist must maintain a master copy of the system 
in a physically secure facility, as well as assure the integrity of 
the copying process, so that users can verify that their copies 
are identical with the system that passed the evaluation. 

The evaluation criteria to be used to determine eligibility 
for inclusion in the Evaluated Products List are still being 
developed. 6

,10 Basically, they address two essential aspects of 
a trusted system: (1) completeness and adequacy of the pro­
tection policy that is implemented, and (2) verification of 
adequate implementation. In general, specific techniques or 
ways of implementation (i.e., hardware, software, or firm­
ware) will not be prescribed. 

TRUSTED SYSTEM NEEDS IN THE 
PRIVATE SECTOR 

The definition of security and the requirements for it in the 
private sector tend to differ from those in the government. A 
recent analysis summarizes the need for computer security in 

private business and industry, especially in corporate manage­
ment and operations systems based on ADP, as follows: 11 

1. Computers have become a basic resource in the oper­
ation of a business. The exception today is the non-use 
of computers in business function, not the use of com­
puters. The end effect of this is an extensive business 
dependency on computer systems. 

2. The concern in business and industry is with the con­
sequences of interruptions of ADP support, including 
security failures: loss of production, loss of assets, loss 
of confidentiality, and loss of customer services, as 
examples. 

3. The broad business incentive is the prevention of failure 
of the information-system portion of business systems. 
From the ADP management point of view, the security 
objective is to provide business managers with trusted 
information systems. 

4. Security may be defined as knowing your business pro­
cedures, being confident of their correctness and com­
pleteness, and being sure that they are in place. In gen­
eral, the DoD trusted system concepts are necessary but 
not sufficient for private-sector information security. 

There are no standard security requirements or personnel 
clearance levels in the private sector, nor is there a consensus 
that these are needed. Various industry associations have de­
veloped security standards for their own members, however. 
The security function, like any other business function, is 
regarded by top management as an economic one--certain 
losses are viewed as tolerable if their prevention is too expen­
sive or if loss prevention interferes excessively with business 
operations. However, because of federal or state laws, certain 
aspects of security are mandatory. 

As in government agencies, trusted systems are needed in 
the private sector for the protection of assets and resources, 
regulatory compliance, maintenance of management control, 
and safety and integrity. Additional incentives may stem from 
potential improvements in operational economies, marketing 
advantages, and enhancement of public image. 

Protection of Assets and Resources 

Nearly every organization in the private sector that uses a 
computer system has automated its payroll, accounting, and 
inventory systems and is likely to use various MIS features as 
well-for financial planning, product development, market 
research, production scheduling, and so forth. 

The assets that are stored in the computer system and thus 
exposed to security risks include financial records, informa­
tion necessary for business functions, trade secrets, and mar­
keting data. They are subject to internally perpetrated fraud, 
industrial espionage, and vengeful actions by disgruntled em­
ployees or others who may object violently to an organi­
zation's policies or activities. The data base on such comput­
er-related crime in the private sector is thought to be 
substantial12 (although most reports have been challenged as 
unverifiable). 13 

Information itself is an important resource in the operation 
and management of an organization. Management informa-



454 National Computer Conference, 1982 

tion systems (MIS) are used both for decisionmaking in daily 
operation and for long-term organizational planning and guid­
ance. The information used in strategic pianning, aiong with 
the decisions themselves, is often very sensitive and must be 
protected against unauthorized access. In highly competitive 
industries, information on competitors' long-term develop­
ment, production, and marketing plans is of great value, and 
the integrity of MIS data bases is extremely important. More­
over, the presence of inaccurate or deliberately falsified infor­
mation can lead to decisions having very detrimental con­
sequences. Trusted systems for MIS applications seem to be a 
necessity rather than a luxury. 

Computer files containing sensitive information are subject 
to clandestine, unauthorized access by legitimate users of the 
system and, in some cases, by outsiders as well. If unauthor­
ized actions can be detected, it is likely that their effects can 
be corrected, albeit sometimes at considerable expense and 
with substantial delays in the availability of correct informa­
tion. If they are not detected, such actions can result in both 
the direct loss of assets or resources and the indirect losses 
that may ensue from operating without knowing that those 
assets or resources are missing or that the system has been 
tampered with. Numerous cases of such losses have occurred 
in the past; the problem is real, and it is serious. 12 

Trade secrets are another type of corporate asset. They are 
protected by law against unauthorized use by outsiders, pro­
vided they have been handled as secrets from the very begin­
ning of their development. If computer systems are involved 
in the development of trade secrets, protection of programs 
and data is a requirement; at the very least, trusted systems 
could be implemented as a demonstration of concern over the 
security of the trade secrets being developed. 

In general, managers tend to be quite skilled at providing 
adequate protection to manual accountings of assets and re­
sources, using control techniques that have proven effective 
through years of use. However, these techniques are not di­
rectly transferable to the protection of computerized informa­
tion. Moreover, high-level managers tend to be unfamiliar 
with protection techniques for computer systems (and with 
computers and data processing in general), and few have ad­
dressed the problem of protecting accountings of assets and 
resources maintained in such systems. 

When certified trusted systems become available as off-the­
shelf items, effective access controls can readily be provided. 
Trusted systems can augment the existing administrative con­
trols and will eliminate the vulnerabilities of current computer 
systems. Moreover, individual organizations and agencies 
will not have to design their own protection mechanisms and 
will be spared the tasks of protection system verification and 
evaluation. 

Regulatory Compliance 

A sizable body of federal and state laws and regulations that 
affect automatic data-processing (ADP) systems and their 
management and control has evolved over the past several 
years. Collectively, these regulations 

1. Prescribe secure processing and storage of certain cate-

gories of information (e.g., identifiable personal records 
on individuals). 

2. Require assurances that full management control is exer­
cised over ADP operations and use. 

3. Require implementation of security techniques in ADP 
systems and facilities as indicated by risk assessments. 

Compliance with such requirements may necessitate the use 
of trusted computer systems. For example, in the pharmaceu­
tical industry, FDA regulations require accurate and con­
trolled record-keeping. Trusted systems can provide the assur­
ance that the required records are kept accurately. 

Many suppliers of ADP services assure their customers 
(both external subscribers and internal users) that their data 
and programs are fully protected. Failure to provide that pro­
tection may lead to legal actions against them involving breach 
of contract. Trusted systems can provide the means to mini­
mize protection failures and associated losses, thereby elimi­
nating management vulnerability to breach-of-contract law­
suits or other claims of negligence and liability, including 
lawsuits filed by stockholders. 

Legal admissibility of computer records as accurate repre­
sentations of a corporation's financial status or business activ­
ity is an important consideration in modern business and in­
dustry. If records from a corporate computer system are not 
considered trustworthy by authorities, they may be ruled inad­
missible, and the corporation may have to keep additional 
records using more expensive manual methods. Trusted com­
puter systems may become a prerequisite for full legal accep­
tance of computerized accounting systems and reports. 

The following federal record-keeping legislation affect­
ing the private sector has been enacted or is pending in the 
Congress: 

1. The Fair Credit Reporting Act of 1969 (15 U.S.c. 1687 
et seq.) applies to organizations that collect, maintain, 
and make available for a fee creditworthiness infor­
mation on individuals. The Act focuses on individual 
rights. Disclosure to clients is the credit bureaus' busi­
ness; thus, prevention of unauthorized access is mainly 
intended to maintain data integrity (a requirement of the 
Act) and prevent data thefts. Bills to amend the Act and 
broaden its coverage to depository institutions (H.R. 
1046) and to insurance carriers (H.R. 1047) are pending. 

2. The Family Educational Rights and Privacy Act of 1974 
(20 U.S.c. 1232g) applies to any educational institution 
that receives federal funds from the Department of Edu­
cation. It grants certain privacy rights to students and 
their parents and restricts disclosure of educational 
records to third parties. Amendments to the Act are 
pending (H.R. 1048). Security provisions are needed in 
computer systems where student records are stored con­
currently with other data, including student schedules, 
and in systems that are also used by students in course 
work. H.R. 1048 addresses the use of student records for 
research purposes and requires that" ... adequate safe­
guards to protect the record or information be estab­
lished and maintained by the recipient, including a pro­
gram for removal or destruction of identifiers." 



Private Sector Needs for Trusted/Secure Computer Systems 455 

3. The Financial Privacy Act of 1980 (12 U.S.c. 3401) ap­
plies to banks and restricts access to depositors' bank 
transaction records by government agencies. Pending is 
a bill, H.R. 1046, which in part also addresses Electronic 
Funds Transfer Systems (EFTS) but includes no state­
ments on EFTS security requirements. These systems 
are certain to be subject to future federal legislation. 

The report of the Privacy Protection Study Commission 14 
contains detailed data and specific recommendations regard­
ing privacy protection and confidentiality of credit, financial, 
insurance, employment, medical, welfare, and educational 
records maintained by federal and state agencies and by or­
ganizations in the private sector. 

Accountability requirements 

The Federal Securities and Exchange Act of 1934 (15 
U.S.c. 78) defines certain accounting requirements for pub­
licly held corporations. These corporations are required to 
establish internal controls to safeguard assets against loss and 
to provide reliable financial records for internal use and for 
external reporting purposes. Similar requirements are estab­
lished in state corporation codes. The internal control and 
auditing procedures implemented to comply with these stat­
utes usually involve the following elements: 

1. Competent, trustworthy personnel with clear lines of 
authority and responsibility. 

2. Adequate segregation of duties. 
3. Proper procedures for authorization. 
4. Adequate documentation and records. 
5. Proper procedures for record-keeping. 
6. Physical control over assets and records. 
7. Independent (internal) checks on performance. 

In organizations that use ADP, these controls are applied to 
programs and data bases; to data acquisition, storage, and 
processing; to report generation; and to data communication 
software, hardware, and personnel. Development of effective 
controls and auditing procedures is still a difficult prob­
lem, but progress is being made. 15,16 The use of trusted com­
puter systems promises considerable enhancement of control 
effectiveness. 

The Federal Foreign Corrupt Practices Act of 1977 (P.L. 
95-213) amends the Securities Exchange Act of 1934 by in­
serting Title I to strengthen the accounting and accountability 
requirements. Section 102 of Title I, Accounting Standards, 
states that: 

(2) Every issuer which has a class of securities registered pur­
suant to section 12 of this title and every issuer which is re­
quired to file reports pursuant to section 15( d) of title shall-

(A) make and keep books, records, and accounts, which, 
in reasonable detail, accurately and fairly reflect the 
transitions and disposition of the assets of the issuer; 
and 

(B) devise and maintain a system of internal accounting 
controls sufficient to provide reasonable assurance 
that-
(i) transactions are executed in accordance with 

management's general or specific authorization; 
(ii) transactions are recorded as necessary to permit 

preparation of financial statements in conformity 
with generally accepted accounting principles or 
any other criteria applicable to such statements, 
and to maintain accountability for assets; 

(iii) access to assets is permitted only in accordance 
with management's general or specific author­
ization; and 

(iv) the recorded accountability for assets is compared 
with existing assets at reasonable intervals and 
appropriate action is taken with respect to any 
differences. 

The impact of this Act on publicly held corporations is to 
require further strengthening of internal control and account­
ability along the lines described above. In 1980, the SEC 
proposed (and then withdrew) a set of rules17 which discuss 
internal control and explain the notion of "reasonable assur­
ance" as follows: 

The concept of reasonable, as opposed to absolute, assurance is 
incorporated in the proposed rules in recognition that it is not in 
the interest of shareholders for the cost of internal accounting 
control to exceed the benefits thereof. Such benefits, and in 
many cases such costs, are not likely to be precisely quantifiable. 
Therefore, many decisions on reasonable assurance will neces­
sarily depend in part on estimates and judgments by manage­
ment which are reasonable under the circumstances. 

Improved internal control may bring about not only quan­
titative benefits, such as reduced exposure to theft of assets, 
but also qualitative benefits, including preservation of the 
good reputation of a company and its management. 

International laws and regulations 

Within the last 8 years, privacy and data protection laws 
have been enacted in several European countries and in Can­
ada. 18 In addition, a convention on privacy protection is being 
ratified by the member countries of the Council of Europe,19 
and a set of voluntary privacy protection guidelines has been 
completed by the Organization for Economic Cooperation 
and Development (OECD),2° which includes the United 
States, Japan, Canada, and Australia. 

The foreign data protection laws and international agree­
ments contain requirements for privacy protection, data con­
fidentiality, and data security in international data transfers, 
especially when personal information on either natural or 
legal persons is involved. They affect so-called multinational 
corporations and the data-processing networks that provide 
services in Europe using U.S.-based computer systems. 

OECD Guidelines Governing the Protection of Privacy and 
Transborder Flows of Personal Data, September 1980 (An­
nex, Part 2, sec. 11), state that "personal data should be 
protected by reasonable security safeguards against such risks 



456 National Computer Conference, 1982 

as loss or unauthorized access, destruction, use, modification 
or disclosure." The United States has voted to approve the 
OECD Guidelines and U.S. private-sector organizations that 
are affected have been urged to voluntarily abide by them. 

Data-protection laws have been enacted in Austria, Can­
ada, Denmark, France, Germany, Luxembourg, Norway, and 
Sweden and are pending in several other countries. The Aus­
trian Data Protection Act (1978) applies to natural and legal 
persons. It requires that "the processor shall, having regard to 
economic feasibility and technical possibilities, introduce or­
ganizational, staff, technical and structural security measures. 
Such measures shall, having regard to the type of data and 
technical facilities and to the scale of processing, [ensure] that 
data are not unlawfully disclosed or brought to the knowledge 
of third parties and cannot be consulted, processed or dis­
closed by unauthorized persons." 

The French Act on Data Processing, Data Files, and Indi­
vidual Liberties (1978) states: "Any person processing per­
sonal data or ordering such processing shall thereby under­
take, vis-a-vis the persons concerned, to see that all necessary 
precautions are taken to protect the data and in particular to 
prevent these from being distorted, damaged or disclosed to 
unauthorized third parties." 

The Federal Data Protection Act of the Federal Republic of 
Germany (1977) spells out the security requirements in con­
siderable detail: 

Where personal data are processed automatically, appropriate 
measures suited to the type of personal data to be protected shall 
be taken to ensure observance of the provisions of this Act: 

a. Unauthorized persons shall be refused admission to data 
processing facilities which process personal data that are 
restricted (admission control); 

b. Persons employed in the processing of personal data shall 
be prevented from removing storage media without au­
thorization (leakage control); 

c. Unauthorized input into the memory and the unauthorized 
examination, modification or erasure of stored personal 
data shall be prevented (storage control); 

d. The use by unauthorized persons of data processing sys­
tems from which or into which personal data are dissem­
inated by means of automatic equipment shall be pre­
vented (use control); 

e. It shall be ensured that persons entitled to use a data pro­
cessing system have access by means of automatic equip­
ment only to the personal data to which they have a right 
of access (access control); 

f. It shall be ensured that it is possible to check and to estab­
lish to which bodies personal data can be disseminated by 
means of automatic equipment (dissemination control); 

g. It shall be ensured that it is possible to check and establish 
what personal data have been input in data processing 
systems, by whom and at what time (input control); 

h. It shall be ensured that personal data processed on behalf 
of other parties are processed strictly in accordance with 
the instructions of the principal (control of processing on 
behalf of other parties); 

i. It shall be ensured that data cannot be read, modified or 
erased without authorization during their dissemination or 
during transport of relevant storage media (transport con­
trol); and 

j. It shall be ensured that the internal organization of author­
ities of enterprises is suited to the particular requirements 
of data protection (organization control). 

Nearly all the cited laws require the organizations that are 
affected to obtain some form of prior licensing or approval by 
data-protection authorities, who examine and evaluate the 
security features of the systems being examined. The use of 
trusted systems may satisfy many of the above requirements 
for internal access controls. 

Management Control 

Effective management control is required by various laws 
and regulations, but it should also be an organizational goal in 
its own right. An organization must have mechanisms in its 
structure, administrative procedures, and technical opera­
tions that minimize the potential for detrimental actions or 
events and that provide a high level of confidence that such 
events will be detected, if they do occur. With the advent and 
increasing use of ADP systems, many of the traditional means 
of implementing management control have become ineffec­
tive. They must be, and have begun to be, replaced by new 
means of control that take into account the environmental and 
functional changes brought about by the use of computers. 15,16 

It has been necessary to develop internal control and audit­
ing techniques to assure accuracy and completeness of 
computer-based transaction processing, record maintenance, 
and reporting, and to provide access control and physical 
security to computer systems and data files. However, tech­
nical hardware and software measures are not sufficient to 
assure full management control by themselves. They must be 
supported by clear and consistently applied management pro­
cedures and, above all, they must have the full support of 
top-level management. 

Verified trusted systems can provide the first part of the 
overall protection system-the technical mechanisms. Man­
agement actions and support must, of course, be provided by 
the organization itself. 

The potential benefits of trusted systems are evident, yet 
certain tradeoffs must be acknowledged: Rigid control can 
stifle innovation and impair efficient use of computer re­
sources. Moreover, beyond required regulatory compliance, 
the risk of losses must be weighed against economic pressures 
on an organization. At times, the risk of loss due to imperfect 
controls may be small when compared to the risk of not being 
able to function at all. For example, retail stores will always be 
subject to a certain amount of shoplifting, since attempts to 
eliminate it totally-for example, by manually searching every 
exiting customer-would be excessively costly as well as un­
acceptable to the customers. 

Assurance of Safety and Integrity 

A potential collateral benefit of trusted operating systems 
development and use relates to system safety and integrity. 
Computer systems are being increasingly used to implement 
control over systems that operate in "real time" and whose 
operation must be monitored continuously. Computers are 
used to detect deviations from correct operation and to apply 
remedial measures immediately in process control in oil re­
fineries and steel mills, automated assembly lines, rapid tran-



Private Sector Needs for Trusted/Secure Computer Systems 457 

sit systems and air traffic, onboard applications in aircraft, 
national-defense systems, and many other applications. All of 
these real-time control situations are characterized by the 
possibility of disastrous consequences in the event of failure. 
Thus it is imperative that steps be taken to assure the safety 
of personnel, facilities, and equipment. Hardware and. soft­
ware components in such systems must be highly reliable, and 
their integrity must be assured throughout their life cycles. 

High levels of hardware reliability can be achieved by use of 
various failure-tolerant design techniques. Reliability and 
continued integrity of software and data bases are more diffi­
cult to achieve. Software-engineering techniques can increase 
software reliability considerably, but full assurance of the re­
liability of a software module will require formal verification 
of design correctness and of subsequent implementation as 
computer object code. Such verification is exceedingly diffi­
cult for all but very small programs. 

The trusted system development effort is based on full veri­
fication of operating system program modules and their inter­
faces. Since real-time control systems are essentially special­
purpose operating systems, the concepts of trusted systems 
and their verification are fully applicable. Thus, real-time con­
trol systems should be viewed and developed as trusted 
systems. 

The same is true for computer-aided design (CAD) systems 
whose products affect public safety, and for other computer 
models that are used to make important design or policy deci­
sions. Construction engineering, nuclear power generation, 
aerospace engineering, and econometric modeling are exam­
ples. In such systems it is necessary to assure that the integrity 
of the design programs or models is not compromised acci­
dentally or intentionally. Trusted operating systems or their 
design and verification techniques can be used here to provide 
that assurance. 

Operational Economies 

The use of trusted systems may lead to certain economies in 
the operation of a computer facility. Whether or not such 
economies actually materialize will, of course, depend on spe­
cific situations and contexts. For example, an existing system 
that has been acceptably secure by virtue of the disruptive 
technique of scheduling sensitive processing to be done at 
times when the system is closed to other users could be re­
placed by a trusted system, which does not require periodic 
scheduling. Or trusted systems could obviate the need for 
extensive personnel background investigations (the so-called 
system-high clearance level mode of operation). In these 
cases, trusted systems can eliminate special security efforts 
and thereby reduce associated expenses. In other situations, 
the cost benefits of using a trusted system may be less clear­
cut. 

In general, the following operational economies may be 
achievable through the use of trusted systems: 

1. Reduced duplication of data, equipment, or personnel 
required when dedicated systems are used for processing 
sensitive data. 

2. Reduced requirements for personnel clearances or secu­
rity procedures (e. g., stringent control of physical access 
to terminals). 

3. Reduced insurance premiums for business risk or lia­
bility or management liability (in the private sector). 

4. Reduced downtime losses and recovery costs that should 
result from the better design and implementation of 
trusted systems. 

5. Elimination of the need for a dedicated processing shift 
(e.g., in private-sector organizations that use propri­
etary data extensively or that have trade secrets to 
safeguard). 

6. Reduced need for highly trained operators and support 
personnel to apply access controls and other controls. 

Marketing Incentives 

Certain organizations that provide services involving their 
customers' assets-e.g., banks, savings and loan associations, 
and other financial institutions-must be able to insure that 
those assets are properly handled and safeguarded. These 
organizations, particularly the financial institutions, tend to 
be very competitive and therefore are always seeking new 
approaches that will give them competitive advantages. The 
use of trusted systems to reduce risks to customers' assets may 
give an institution a more favorable image even though all 
competing institutions may already provide adequate protec­
tion of assets through insurance coverage. 

Clients of organizations such as computer service bureaus 
are concerned with the security of the data or programs they 
submit for processing or storage and are likely to choose an 
organization that can provide better safeguards, such as the 
use of trusted systems. 

Finally, all government and private-sector organizations 
that interact with the public are concerned about their image. 
Government agencies make special efforts to explain their 
missions and to publicize the necessity or benefits of their 
operations. Private-sector organizations likewise expend re­
sources to emphasize their concerns for the welfare of the 
public. A particularly important area of public concern is the 
collection and maintenance of personal information about 
individuals. The safeguards that are implemented to assure 
that personal information remains confidential and is not ac­
cessed or disseminated by unauthorized individuals can 
greatly enhance an organization's public image. Two or three 
corporations have already purchased advertising space in na­
tional magazines to emphasize their concern and to describe 
the approaches they are taking to assure confidentiality of 
personal data. Recent public-opinion surveys, including the 
Harris Poll directed by Alan Westin in 1978,21 have demon­
strated that there are strong public sentiments in fa\or of 
assuring confidentiality of personal information commen­
surate with individual privacy rights. 

Public-image concerns also arise in the area of asset and 
resource protection. No organization wants publicity resulting 
from fraud or other substantial losses or because of having 
being victimized by a computer crime. The use of trusted 
systems can reduce the possibility of adverse publicity by re­
ducing the probability of occurrence of such events. 



458 National Computer Conference, 1982 

Other Considerations 

The all-important issues in the private sector are business 
economics, ability to remain competitive in the marketplace, 
and making a return on stockholders' investments. Acquisi­
tion of computer systems or any other equipment is a business 
decision made in view of these issues. Thus, there is a natural 
tendency in the private sector to view the acquisition of a 
trusted computer system also as a purely dollars-and-cents 
question. In addition, a trusted system either must be shown 
to be cost-effective in comparison with other security tech­
niques that could achieve a comparable level of protection or 
it must provide additional benefits that justify any additional 
cost. The impact of trusted system implementation on the 
performance of the corporate computer system and any re­
quirements to modify existing applications software of data 
bases are of particular concern. It is not surprising, therefore, 
that some private-sector ADP system managers are skeptical 
about the need for trusted systems in their organizations and 
about the cost-benefit aspects of trusted systems. 

However, as discussed extensively in this section, the acqui­
sition of a trusted system is not just a matter of business 
economics. There are numerous important considerations-­
protection of assets and resources, regulatory compliance, 
public image, management prudency-that are likely to be 
the deciding factors. In more technical terms, it is certainly 
true that while a trusted computer system can reduce the need 
for the more conventional security techniques, it does not 
eliminate entirely the need for physical, administrative, per­
sonnel, or communication security techniques, nor can it fully 
handle a denial-of-service threat by authorized users or sys­
tem personnel. But it provides a trustworthy base for imple­
menting sets of discretionary protection mechanisms for mon­
itoring denial-of-service threats and generating tamperproof 
evidential audit-trail records. 

Concerns over performance or efficiency losses reSUlting 
from the use of trusted systems and the need to justify what 
some people see as a deliberate reduction of service are valid 
and understandable, as are concerns over possible large-scale 
conversions of applications software or data bases. Many per­
formance concerns are based on a single, experimental data 
point-the preliminary results in KSOS-11 development 
where emulation of the UNIX operating system on PDP-ll 
computers resulted in a substantial performance slowdown on 
the untuned system. However, in KSOS-6, implementation of 
the UNIX emulator on the SCOMP hardware (a specially 
modified Honeywell Level 6 minicomputer) has resulted in a 
much smaller performance slowdown. There is a general trend 
in the development of applications software to include fea­
tures that are also very useful for implementing performance­
efficient trusted systems; thus, performance loss is likely to be 
a much lesser problem in the future, and there is some reason 
to believe that the performance costs of trusted systems will be 
negligible, or even nonexistent, as the experience base grows. 

Any sizable application software or data base conversions 
that are required by the acquisition of a trusted system are 
certainly cause for concern. However, if the TCB is com­
patible with an existing (untrusted) operating system, soft­
ware that ran under the operating system can be run on the 
trusted operating system with only minimal conversion. Such 

compatibility was a design goal for the KVM/370 and KSOS 
and has been successfully demonstrated with the KVM sys­
tem. If the TCB and the existing operating system are not 
compatible, the conversion could be a significant part of the 
price of having a trusted application. 

In general, concerns over performance losses or software 
conversion have been expressed whenever important innova­
tions have been introduced, including the present-generation 
operating systems, with their resource-sharing capabilities. 
However, as vendors have become more experienced, many 
of the perceived problems have either failed to materialize or 
have been solved effectively and efficiently. It is highly likely 
that this will be the case in trusted systems development as 
well. 

PROSPECTS FOR AVAILABILITY OF TRUSTED 
SYSTEMS 

Whether or not trusted operating systems will be widely avail­
able within the next 3 to 5 years in a sufficient range of protec­
tion levels and hardware bases to satisfy the needs of govern­
ment and the private sector will depend on the computer 
industry's perception of the size of the potential marketplace; 
the costs of developing trusted systems, having them certified, 
and maintaining them (in the sense that software is main­
tained now); and the profits that manufacturers and distrib­
utors can expect to make. 

The Potential Market 

System software vendors are primarily concerned with 
whether or not a proposed system will have a sufficiently large 
market to justify its development costs. We must make a 
distinction here between (1) large vendors of computer sys­
tems and associated software and (2) software houses. The 
trusted system development decision is much more complex 
for large vendors, because they must consider the issue of 
compatibility of new software with existing applications, sys­
tems, and equipment, and that of maintaining compatibility in 
the future. The introduction of a new operating system (or a 
family of operating systems) is more difficult to justify for an 
organization whose existing software base is large. Software 
houses, on the other hand, are likely to have less stringent 
requirements for maintaining across-the-board compatibility 
with their existing products, but they are more dependent on 
vendors' changes of hardware bases. 

This paper is not attempting to determine the quantitative 
marketing opportunities for trusted systems, but it can make 
some qualitative observations. First, there seems to be a con­
sensus among vendors that the government (federal, state, 
and local) does not in itself constitute a sufficiently large 
market to support the development, certification, and mainte­
nance of trusted systems. However, the,market is not insignif­
icant, and if future RFPs require the use of trusted systems, 
vendors may be compelled to produce them in order to remain 
viable in the government marketplace. 

Second, most of the market for trusted systems in the civil-



Private Sector Needs for Trusted/Secure Computer Systems 459 

ian agencies of the government and in the private sector will 
probably be for Levell through Level 4 systems (as defined 
earlier in this paper). Some organizations in which asset pro­
tection or safety is very important may need higher-level sys­
tems. Some of the latter will be developed to satisfy the DoD 
needs once the state of the art permits such development, 
regardless of other markets. In all cases, the important aspect 
is that these systems have been certified to provide the speci­
fied level of protection. 

Production Of Trusted Systems 

The trusted operating system concept involves the estab­
lishment of a completely separate, or virtual, environment 
within the computer for each concurrent user. Most existing 
operating systems are modifications of earlier batch­
processing designs, updated to accommodate multiprogram­
ming and time-sharing. In these systems, the mechanisms to 
accomplish shared concurrent use are scattered throughout 
the operating system, making the TCB very complex, and are 
not completely isolated from users. Thus, these operating 
systems are not currently secure, and it may be infeasible to 
upgrade them to the point where they become demonstrably 
secure (or reach a higher level on the Evaluated Products 
List). 

Computer vendors recognize the implications of this 
problem-it affects much more than just the security aspects 
of a system-and they are gradually developing system archi­
tectures that can create fully isolated processing environ­
ments. But the need to maintain compatibility with existing 
systems weighs importantly against drastic changes, as does a 
certain inertia of designers who are familiar vvith existing 
architectures and design principles and therefore are reluctant 
to change. Users' system programming staffs have the same 
sort of inertia, and as a result, the few operating systems that 
do use virtual machine concepts, Honeywell's MULTICS and 
IBM's VMl370, have until quite recently found relatively little 
use even though they have been available for ten years. 

The compatibility problem is not entirely untractable, how­
ever. The virtual machine concept permits each user to run his 
own operating system under the control of the virtual machine 
monitor (VMM) , which is essentially transparent to users. 
This generality will necessarily result in some loss of perfor­
mance, but the loss can be compensated by the faster hard­
ware that is becoming available. The increasingly clear-cut 
needs for the capabilities that only trusted systems can pro­
vide will lead to greater user acceptance-and demand­
which should provide a strong incentive for vendors to incor­
porate the necessary architectures in their new operating 
systems. For example, the VMl370 maintains many compati­
bilities for users of IBM systems. 

Three trusted-system development prototypes, sponsored 
by the DoD Computer Security Initiative, are now being test­
ed to demonstrate the feasibility of design, implementation, 
verification, and operational use of trusted systems. 1 As the 
marketplace for trusted systems expands, uncertainties such 
as the compatibility question will be resolved and vendors 
should begin to incorporate trusted systems technology into 
their new product lines. 

Evaluation and Certification 

Certifiable trusted systems are difficult to develop unless 
the criteria for certification are unambiguous, reasonable, and 
clearly stated. Three sets of factors have thus far been identi­
fied by the Initiative program:6

, 22 protection policy, mech­
anisms, and assurance. While the policy may vary from user 
to user, the mechanisms and assurance tend to employ a com­
mon set of technical approaches. The protection policies, too, 
form a hierarchy, since the goals of each are the same, and 
differences are those of degree only. A basic trusted system 
framework can be "customized" to satisfy the user's protec­
tion policy by applying appropriate mechanisms. Certification 
will then be based on the embedded policy. 

A protection policy specifies the conditions under which 
information and computer resources may be shared, typically 
placing controls on the disclosure and modification of infor­
mation. Given a clear and concise formal statement of protec­
tion goals, it will be possible to evaluate whether or not the 
system meets those goals. 

To be effective, the hardware and software mechanisms that 
enforce the protection policy must be complete and verifiable. 
They must also be self-protecting against unauthorized actions 
or inadvertent intrusions by users or their programs. Oper­
ating systems that are poorly designed will not only fail to 
confine users to their authorized actions and data, but they 
may also undermine discretionary protection mechanisms 
provided by the users in applications programs. Thus, evalu­
ation must necessarily concentrate on operating systems and 
their related software and hardware controls, particularly 
those relating to detection an.d prevention of policy violations, 
recovery from errors, and system operations and 
maintenance. 

Absolute assurance that implemented mechanisms can pro­
vide the protection that they promise will never be possible, 
but steps can be taken in the design, implementation, and 
validation phases of a trusted system's development to raise 
confidence to a high level. Such techniques include top-down 
design, structured programming, and other techniques col­
lectively known as modern programming practices. 

Trusted Systems Support 

Computer software tends to be a complex commodity in 
that throughout its life cycle, numerous changes are inevitably 
made to meet modified design requirements, to increase effi­
ciency, and to improve user interfaces. These changes are 
usually the vendor's responsibility, and an operating system 
typically moves through a series of releases. Any new release 
of a trusted system that involves changes of critical portions of 
the TCB will require reexamination of the previous certifica­
tion. In such cases, if the system is to keep its rating, the 
Evaluation Center and the vendor must jointly analyze the 
changes and the extent of recertification needed. Clearly, it is 
important for the vendor to minimize changes in the TCB (but 
changes in the non-security-relevant portions of the system 
can be made as needed, since they will not involve 
recertification) . 



460 National Computer Conference, 1982 

CONCLUDING REMARKS 

The DoD Computer Security Initiative program is now 
demonstrating the feasibility of designing and i~plementing 
trusted computer systems that can provide high levels of 
protection to data, programs, and processing in certain con­
strained operational environments. Ultimately, full, multi­
level secure operation will be possible in unconstrained 
operational environments. But, of course, physical, adminis­
trative, personnel, and communications security will always 
be required. 

A federal-government-Ievel trusted system Evaluation Cen­
ter that will establish an Evaluated Products List of trusted 
systems has been established at NSA. Before an Evaluated 
Products List can be created, however, the need for trusted 
systems in the government and the private sector must be 
sufficiently great for system vendors to perceive a marketplace 
beyond national-defense requirements that warrants submis­
sion of their systems for evaluation. 

Trusted systems can contribute effectively to the solution of 
the growing problems of protection of assets and resources, 
compliance with laws and regulations, assurance of safety and 
integrity, and implementation of full management control. In 
addition, trusted systems may provide operational economies, 
marketing advantages, and public-image enhancement. They 
are needed in a variety of applications that constitute a market 
that should be of considerable interest to vendors and that 
should strongly encourage participation in trusted system de­
velopment efforts. The use of trusted systems is in the interest 
of private business and industry, as well as of public policy, 
public safety, and national welfare. 

As the use of trusted systems in business and industry ex­
pands, such use is likely to become a standard of good practice 
for management control and protection of computer-based 
assets, resources, or customer data. Failure to employ trusted 
systems could eventually be construed by insurance carriers, 
external auditors, regulatory agencies, customers, contract 
granters, and stockholders as management practice that is not 
prudent and reasonable. 

ACKNOWLEDGMENTS 

The author wishes to acknowledge substantial contributions 
made to the Rand Corporation report,S on which this paper is 
based, by Gary Martins and Willis H. Ware of the Rand 
Corporation, Marvin Schaefer of the System Development 
Corporation, and Stephen T. Walker of the Department of 
Defense. Other contributors were Walter L. Anderson of the 
General Accounting Office; Gary Bearden of Tenneco, Inc.; 
Louise G. Becker of Congressional Research Service; Sheila 
L. Brand of HHS; Dennis Branstad of NBS; Harry DeMaio 
of IBM; Edwin Jacks of General Motors; Seymour Jeffery, 
formerly of NBS, now at TRW; Paul Karger of Digital Equip-

ment; Theodore Lee of Sperry-Univac; Joseph Millen and 
Grace Nibaldi of Mitre; Donn Parker of SRI International; 
Kenneth Pollock of the GAO; Oliver Smoot of CBEMA; and 
Edward Springer of OMB. 

REFERENCES 

1. Walker, S. T. DoD Computer Security Initiative: A Status Report and R&D 
Plan, Information Systems Directorate, Assistant Secretary of Defense, 
Communications, Command, Control, and Intelligence, Department of the 
Defense, Washington, D.C., March 1981. 

2. Walker, S. T. "The Advent of Trusted Operating Systems." AFlPS, Pro­
ceedings of the National Computer Conference (Vol. 49), 1980, pp. 655-665. 

3. Proceedings of the Seminar on the DoD Computer Security Initiative Pro­
gram, National Bureau of Standards, Gaithersburg, Md., July 17-18, 1979. 

4. Proceedings of the Second Seminar on the DoD Computer Security Initiative 
Program, National Bureau of Standards, Gaithersburg, Md., January 
15-17,1980. 

5. Turn, R. Trusted Computer Systems: Needs and Incentives for Use in the 
Government and the Private Sector. R-2811-DR&E, The Rand Corpora­
tion, Santa Monica, California, June 1981. 

6. Nibaldi, G. M. Proposed Technical Evaluation Criteria for Trusted Comput­
er Systems. M79-225, The MITRE Corporation, Bedford, Massachusetts, 
October 25, 1979. 

7. Schell, R. R. "Security Kernel Design Methodology." Proceedings of the 
Seminar on the DoD Initiative Program. National Bureau of Standards, 
Gaithersburg, Md., July 17-19, 1979, pp. E-I-E-21. 

8. Anderson, J. P. Computer Security Technology Planning Study. ESD-TR-
73-51 USAF Electronics System Division, Hanscom AFB, Massachusetts, 
October 1972. 

9. Ware, W. H. (ed.) Security Controls for Computer Systems. R-609, The 
Rand Corporation, Santa Monica, California, February 1970. 

10. Trotter, E. T., and P. S. Tasker. Industry Trusted Computer System Evalu­
ation Process. MTR-3931, The MITRE Corporation, Bedford, Massachu­
setts, May 1, 1980. 

11. Jacks, E. L. "Computer Security Interest in the Private Sector." Pro­
ceedings of the Second Seminar on the DoD Computer Security Initiative 
Program. National Bureau of Standards, Gaithersburg, Md., January 
15-17, 1980, pp. E-I-E-I0. 

12. Parker, D. B. Crime by Computer. New York: Scribner, 1976. 
13. Taber, J. K. On Computer Crime (Senate Bill S.240), Computer/Law Jour­

nal, 1 (1979), pp. 517-543. 
14. Personal Privacy in an Information Society. Report of the Privacy Protec­

tion Study Commission, Washington, DC, July 1977. 
15. Russell, S. H., T. S. Eason, and J. M. Fitzgerald. System Auditability and 

Control Study: Data Processing Control Practices Report. SRI International 
for the Institute of Internal Auditors, Altamonte Springs, Florida, 1977. 

16. Ruder, B., T. S. Eason, M. E. See, and S. H. Russell. Systems Auditability 
and Control Study: Data Processing Audit Practices Report. SRI Inter­
national for the Institute of Internal Auditors, Altamonte Springs, Florida, 
1977. 

17. Statement of Management on Internal Accounting Controls. Securities and 
Exchange Commission, Federal Register, 45, (1980), p. 40134ff. 

18. Turn, R. (ed.) Transborder Data Flows: Concerns in Privacy Protection and 
Free Flow of Information. Arlington, Virginia: AFIPS Press, 1979. 

19. Convention on Protection of Individuals with Regard to Automatic Pro­
cessing of Personal Data. Council of Europe, Strassbourg, France, January 
28, 1981. 

20. Guidelines on the Protection of Privacy and Transborder Flows of Personal 
Data. Paris: OECD, 1980. 

21. The Dimensions of Privacy. Sentry Insurance Company, Stevens Point, 
Wisconsin, 1978. 

22. Nibaldi, G. H. Specification of A Trusted Computer Base (TCB). M79-28, 
The MITRE Corporation, Bedford, Massachusetts, November 30, 1979. 



Impacts of information system vulnerabilities on society 

by LANCE J. HOFFMAN 
The George Washington University 
Washington, D.C. 

ABSTRACT 

After briefly presenting examples of potential vulnerabilities in computer systems 
which society relies on, the concept of risk analysis is introduced and applied to a 
simplified model for a nation's financial system. A sampling of specific technical 
safeguards to ameliorate the risk in this (or any) computer system is then given. The 
paper concludes with examples of questions to be asked before committing to any 
new technological system. 

461 





INTEGRATED INFORMATION SYSTEMS 

As computer applications in many countries have become 
increasingly sophisticated, the operators of these systems 
have become increasingly concerned about the unforeseen 
consequences of total reliance on them and have become 
more and more aware of the vulnerability of these systems to 
failures. 

Society's dependence on the uninterrupted operation of 
large information systems has been increasing. 13 As these sys­
tems have grown larger, more complex, and more centralized, 
the potential societal loss from their failure or misuse has also 
increased. When society becomes highly dependent on the 
reliable functioning of a single integrated technological sys­
tem or small collections of such systems, the possibility of a 
"domino-like" collapse of several of the individual connected 
units could be disastrous. The failure of the Northeast power 
grid in 1965, which blacked out much of that section of the 
United States (including all of New York City), is an example. 

Other risks may be in the form of economic losses, such as 
the failure of an automated check-clearing system or a nation­
al automated securities market. Banks or brokerage houses 
could be severely damaged in a matter of minutes, long before 
it was discovered that the system had failed. The potential 
victims would be the owners of the failed system, individuals 
with accounts, correspondent organizations, and (if the fail­
ure cascaded through other institutions) all of society. 

Still other risks may entail social costs such as would oc­
cur if a centralized criminal history system or an electronic 
funds transfer (EFT) payment system were misused by a 
government or a private firm to exert undue control over 
individuals.2 

Large, centralized systems are not all bad; in addition to 
cost and functional advantages, a large nationally networked 
information system may provide greater availability than a 
single-site system by supplying instant backup to nodes that 
fail. However, there may also be a greater risk that the entire 
system will collapse if an unlikely or unexpected combination 
of events occurs. While the likelihood of this may be very low, 
the consequences might be extremely damaging in terms of 
physical, economic, and/or social costs. 

How can we estimate the potential risks of such catastrophic 
events? To do this, we turn to the field of risk analysis-the 
study of estimating loss from adverse events. 

RISK ANALYSIS 

Risk analysis often is used to estimate the exposure of system 
components to various threats and to allocate resources to 
provide both technical and nontechnical safeguards against 
various threats. 3,15,19,20,21 

Impacts of Information System Vulnerabilities 463 

We prefer inexact tree-based risk analysis methods4
,14,16 

which use linguistic terms such as "high," "medium," and 
"low." One can use fuzzy set theory17 or other means to 
implement these and to allow the estimator to provide a de­
gree of confidence for the estimates; this can then be taken 
into account when risk is computed. The computed results are 
then less prone to instill false confidence, because they are 
modified to reflect estimator confidence in the inputs and 
given in words rather than in numbers. We also believe that 
linguistic estimates are more useful for subjective risk anal­
yses which deal with human error or social risk. There are 
myriad problems in obtaining numeric input data. 15 Non­
numeric input data are easier to obtain and allow the use of 
structural risk analysis techniques that force the disclosure of 
assumptions in the input data. 

Tree-based risk analysis has recently been made available in 
computer systems, making sensitivity analysis (asking "what 
if' questions) much easier and inexpensive than with many 
other systems. 

A TREE-STRUCTURED MODEL FOR ONE 
POTENTIALLY VULNERABLE SYSTEM-A 
DEPOSITORY FINANCIAL SYSTEM 

A simple model which treats separately paper, "old electron­
ic" (wire transfers, etc.), and electronic funds transfer trans­
actions of a depository system is shown in Figure 1. Figure 2 
treats that depository system as a subsystem of a financial 
system involving a number of financial institutions. Figure 3 
treats the world as a system composed of several interrelated 
financial systems. 

Obviously the model here is simplified; in particular, the 

Paper 
Transfers 

Depository System 
for 

Funds Movement 

Old 
Electronic 
Transfers 

Electronic 
Funds Transfers 

(EFT) 

Figure I-Tree structure of a depository system for funds movement 



464 National Computer Conference, 1982 

Figure 2-Possible tree structure of a financial system 

Financial 
System 
Nation 1 

World Financial System 

Financial 
System 
Nation 2 

Financial 
System 

Nation N 

Figure 3-Possible tree structure of the world financial system 

dotted lines in Figure 4 indicate just some of the large flows 
of information which constitute threats and which must be 
taken into account in any risk analysis but which are not 
considered here. In addition, we do not address here (al­
though a larger tree could) non-operational problems such 
as potential limited blockade against the import of spare parts 
for computers. 13 Nevertheless, we hope our simplified model 
bears enough resemblance to reality to highlight basic con­
cepts and that other tree-based models can be suggested for 
societal institutions so that tree-based risk analysis can be 
used in assessing the vulnerabilities of these institutions. 

EXAMPLE RISK ANALYSES OF THE FINANCIAL 
SYSTEM 

We now consider the financial system model outlined above 
and use it to evaluate vulnerability risks for a "low risk" 
scenario and a "high risk" scenario. The estimates given are 
meant to be illustrative only--each reader can supply his or 
her own. We are only attempting to give examples of how risk 
analysis can be used to evaluate the potential vulnerabilities of 
financial systems; we make no claims about the validity of the 
specific data or computations used. 

Financial 
System 
Nation 1 

Financial 
System 
Nation 2 

Financial 
System 
Nation 3 

Figure 4-Detailed tree structure for simplified model of world financial 
system. (Broken lines are not part of the tree structure; they indicate 

significant interdependencies.) 

Low Risk Scenario 

Figure 5 illustrates the low risk scenario. Here we consider 
the relative weights (or importance) of the financial systems of 
Nation 1, Nation 2, and Nation 3, respectively, as LOW, 
HIGH, and LOW (with respect to the risk associated with the 
higher level World Financial System). 

At the bottom level of Figure 5, the likelihood of failure and 
severity of failure for the various subsystems are input data, 
and risks computed from these are shown in the top half of 
some boxes in Figure 5. Risks for subsystems can also be 
estimated; these are shown in italics in the top half of some 
boxes in Figure 5. Given this data, which is estimated or 
computed from input data, risks for higher level subsystems 
can be derived. 4,14 Derived risks for (the higher level sub­
systems of) Figure 5 are shown in CAPITAL LETTERS in the 
top half of some boxes in Figure 5. Details on possible risk 
computation methods are given in Schmucker;14 in essence, 
we consider some of these analogous to weighted sums, but 
using nonnumeric data. 

In this "low risk" scenario, the systems with the highest 
associated risks are the financial systems of Nation 1 and 
Nation 3. 

Higher Risk Scenario 

Risks computed using slightly different data (the weights of 
the subsystems of the Depository System of Nation 2 have 



Weights; 

Weights: 

Weights: 

Likelihood 
of failure: 

Severity 
of loss: 

Medium 
to High 

Low 

Medium Hiah Medium Medium Medium Medium Medium 

Medium Low Medium Medium Medium Medium Medium 

Figure 5-Financial system low risk scenario 

been juggled, and the severity of a loss due to the EFf sub­
system has been changed from "LOW" to "HIGH") are 
shown in Figure 6. Given this scenario, the system with the 
highest associated risk is now the financial system of Nation 2, 
and within it, the greatest contributing subsystem is the EFf 
subsystem. 

Weights: 

Weights: 

Weights: 

Likelihood 
of failure: 

Severity 
of loss: 

Medium 
to High 

Low 

Medium High Medium Medium Medium Medium Medium 

Medium High Medium Medium Medium Medium Medium 

Figure 6-Financial system higher risk scenario 

Impacts of Information System Vulnerabilities 465 

INTERCONNECTION OF INFORMATION SYSTEMS 
AND JOINT VULNERABILITY 

Due to the complexities of real-world systems, the subsystems 
are interdependent (as shown by the dotted lines in Figures 4, 
5, and 6). A well-publicized failure in one EFf system may 
subtly influence vulnerabilities in other EFf systems (for ex­
ampie, by inviting attempts against similar systems). If, in 
turn, there is a relatively large number of successes of ex­
ploiting vulnerabilities in a number of EFf systems, this may 
affect the depository system of a country. Our simple model 
above does not reflect many relationships; for example, it 
does not show the effects of an increase of vulnerabilities in 
one country on vulnerabilities in another country. 

We've shown in the preceding pages how one can structure 
a simplified model of the world financial system as a tree and 
separately evaluate the risks to it and to each nation's financial 
subsystem. We can also insert our world financial system of 
Figure 4 into a larger World Information System (Figure 7). 
After weights and estimates of severity and likelihood are 
added to Figure 7, we can perform a sensitivity analysis to 
determine the one or two most critical subsystems. Then we 
can focus our efforts to protect the overall system by strength­
ening the most critical subsystems using non-technical and 
technical safeguard methods. 

Financial 
Subsystem 

Telephone 
Subsystem 

Electronic 
Mail 

Subsystem 

Criminal 
Justice 

Information 
Subsystem 

Air Traffic 
Control 

Subsystem 

Figure 7-World information system 

AMELIORATING SECURITY PROBLEMS IN 
COMPUTER SYSTEMS 

Other 
Information 
Subsystem 

We can fairly easily determine the greatest contributors of risk 
and then assign safeguards at the appropriate places in a sys­
tem's tree. Applying appropriate countermeasures (for exam­
ple, adding additional procedural and administrative controls) 
might transform the risk indicators of Figure 6 to those of 
Figure 5. 

In addition, one can always use countermeasures which are 
external to the system under discussion: additional legal safe­
guards, an improved physical security program to deter 
threats, additional training of auditors to detect variances 
from the norm, etc. Preventive action can take a number of 
forms in computer systems, but the reader should keep in 
mind that the majority of computer security problems are not 
resolved by technical security measures such as those we are 
discussing here. Rather, they are resolved by the more tradi­
tional non-technical solutions: physical security, legal and ad­
ministrative restrictions, and policies and procedures. These 



466 National Computer Conference, 1982 

non-technical methods are generally well known to the mana­
gerial and audit community. 6 Because technological security 
measures are less commonly known, we shall here mention a 
couple of the most useful. Many more are described in much 
more detai1.7 ,8,18 

SOME TECHNOLOGICAL COMPUTER SECURITY 
MEASURES 

Computer systems can identify and authenticate users by var­
ious methods. The use of an identification number or a user's 
name together with a computer account number and a pass­
word is typical. Computer systems can also control access by 
levels. Top managers, for example, can be granted access to 
more information than lower level personnel. Computer sys­
tems can also differentiate based on category (need to know); 
users having only a need for financial data can be prevented 
from access to medical data. When attempts to access infor­
mation in computer systems are denied, a log of information 
about the attempt can be recorded for later analysis. 

Another method of protection is the use of cryptography 
for storage and transmission of information. Plaintext infor­
mation is encrypted by a transmitting device. The encrypted 
message, or ciphertext, is transmitted across a relatively in­
secure medium (such as a communication line) to a receiving 
device. Only if the human sender and the human receiver 
possess the same (secret) digital key is the information intel­
ligible to the receiver (Figure 8). Otherwise, only unin­
telligible ciphertext is seen. 

User 
A 

Figure 8--Cryptographic system 

User 
B 

One possible cipher is now a U.S. national standard,\I man­
dated for use by all civilian applications of the U.S. Govern­
ment which require cryptography and supplied as hardware by 
several U.S. manufacturers. Another possible cipher tech­
nique is public key cryptography. 10 It also has the capability of 
transmitting signatures in such a way that it is very difficult for 
someone to send a message and then later disavow it. 

DESIGN PRINCIPLES FOR COMPUTER SECURITY 

There are some generally accepted principles to follow in the 
secure design of computer systems. Two of the most important 
are early critical review and user acceptability. 

1. Early critical review 
Exposing the frailties of a system to a number of bright 
people during the planning stages will facilitate cor-

rections before the system is implemented; it is better to 
have bugs discovered early by invited commentators 
rather than later on by intruders. 

2. User acceptability 
The human interface must be simple, natural, and easy 
to use; if not, users will bypass it, thus rendering the 
security system ineffective. 

SOME WORRISOME QUESTIONS 

System designers and policy makers should ask some ques­
tions before committing themselves to any new technological 
systems. The answers will not always be ea~y to find, but the 
questions will not go away. The following are examples of 
such questions: 

• How can we balance the risks society may encounter 
against the benefits it may receive, under conditions 
where failure rates appear to be relatively low, but poten­
tial losses may be high? 

• How can society retain the option to end its dependence 
on a particular technology if it has unanticipated, un­
desirable effects? How can it avoid becoming "locked in" 
to the use of an information system forever? 

• How can society provide alternatives to persons choosing 
not to use or live under a given system? 

ACKNOWLEDGMENTS 

Discussions with Fred W. Weingarten of the U.S. Congress, 
Office of Technology Assessment (OTA) and Information 
Policy, Inc., and with Zalman Shavell of OTA were very 
helpful in developing some of these concepts. Hans Peter 
Gassman provided some of the initial inspiration for writing 
this by inviting an earlier paper on the topic for a workshop 
sponsored by the Organization for Economic Cooperation 
and Development. Kathy Hoffman ruthlessly pointed out un­
necessary jargon. However, any responsibility for conceptual 
or other errors is solely that of the author. 

REFERENCES 

1. Sweden, Ministry of Defence, The Vulnerability of the Computerized 
Society-Considerations and Proposals, 1980. 

2. U.S. Congress, Office of Technology Assessment, Computer-Based Na­
tional Information Systems; Technology and Public Policy Issues, Sep-
tember 1981. . 

3. U.S. National Bureau of Standards, Guidelines for Automatic Data Pro­
cessing Risk Analysis, FlPS PUB 65, August 1979. 

4. Hoffman, L. J. and L. A. Neitzel. "Inexact Analysis of Risk." Computer 
Security Journal, Vol. 1, No.1 (Spring 1981), Hudson, Mass. 

5. Meadows, C. Identifying the Greatest Contributor to Risk in a Tree Model. 
The George Washington University, Department of Electrical Engineering 
and Computer Science, Research Report GWU-EECS-81-09, May 1981. 

6. Martin, James. Security, Accuracy, and Privacy in Computer Systems, En­
glewood Cliffs, N.J.: Prentice-Hall, 1973. 

7. Hoffman, L. J. Modern Methods for Computer Security and Privacy, Engle­
wood Cliffs, N.J.: Prentice-Hall, Inc., 1977. 

8. Fernandez, E. G., R. C. Summers, and C. Wood. Database Security and 
Integrity, Reading. Mass.: Addison-Wesley Publishing Co .. 1981. 

9. U.S. National Bureau of Standards, Data Encryption Standard FlPS PUB 
46. Washington. D.C. 1977. 



10. Hellman, M. E. "An Overview of Public Key Cryptography." IEEE Com­
munications Society Magazine, November 1978, pp. 24-32. 

11. Denning, D. E. "Are Statistical Data Bases Secure?" AFIPS Conference 
Proceedings of the National Computer Conference (Vol. 47) 1978, pp. 
525-530. 

12. Denning, D. E., and J. Schlerer. "A Fast Procedure for Finding a Tracker 
in a Statistical Database." ACM Transactions on Database Systems (Vol. 5) 
No.1, March 1980, pp. 88-102. 

13. Tengelin, U. "The Vulnerability of the Computerised Society." in Pro­
ceedings of the High Level Conference on Information, Computer, and 
Communications Policies for the 80's, Organization for Economic Cooper­
ation and Development, Paris, 1980, pp. 359-377. 

14. Schmucker, K. "Fuzzy Sets, Natural Language Computations and Risk 
Analysis." The George Washington University, Department of Electrical 
Engineering and Computer Science, Research Report GWU-EECS-81-1O, 
May 1981. 

15. Okrent, D. (Ed.). "Risk-Benefit Methodology and Application: Some Pa­
pers Presented at the Engineering Foundation Workshop." September 

Impacts of Information System Vulnerabilities 467 

22-26,1975, Asilomar, Calif., School of Engineering and Applied Science, 
University of California, Los Angeles. Report UCLA-ENG-7598 (NTIS­
PB-261920), December 1975. 

16. Hoffman, L. J. "Tree-Based Risk Analysis Using Inexact Estimates." Re­
port GWU-IIST-81-14, Department of Electrical Engineering and Com­
puter Science, The George Washington University, Washington, D.C., 
June 1981. 

17. Zadeh, L. A., K. S. Fu, K. Tanaka, and M. Shimura (Eds.). Fuzzy Sets and 
Their Applications to Cognitive and Decision Processes. New York: Aca­
demic Press, 1975. 

18. Denning, Dorothy. Cryptography and Data Security. Reading, Massachu­
setts: Addison-Wesley, 1982. 

19. Okrent, D. "Risk-Benefit Evaluation for Large Technological Systems." 
Nuclear Safety (Vol. 20) No.2, March-April 1979, pp. 148-164. 

20. Lowrance, W. w. Of Acceptable Risk: Science and The Determination of 
Safety. Los Altos, Calif.: William Kaufmann, Inc., 1976. 

21. Rowe, W. L. An Anatomy of Risk, New York: John Wiley and Sons, 1977. 





Uniform help facilities for a cooperative user interface 

by PHILIP J . HAYES 
Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

ABSTRACT 

This paper describes the design of the help and explanation component of a user­
friendly operating system command interface called COUSIN. The facility can pro­
vide two kinds of information: (1) static descriptions of the various subsystems that 
can be invoked, their parameters, and the syntax that must be used; (2) dynamically 
generated descriptions of the state of the current interaction, why that state has 
arisen, and what the user's options for action are. Both types of information are 
presented in the same way through a network of small text frames connected by 
semantically motivated links in the style of the ZOG system. Frames containing 
static information are generated automatically for each subsystem from a declar­
ative description of the subsystem which is also used by COUSIN for its other 
services, including spelling and grammar correction and interactive error resolu­
tion. Dynamically generated frames are incorporated temporarily into the static 
network with semantic links appropriate to the current command context. 

469 





Uniform Help Facilities for a Cooperative User Interface 471 

INTRODUCTION 

The COUSIN (COoperative USer INterface) project at 
Carnegie-Mellon University is engaged in a wide-ranging pro­
gram of research1

,2,3,4,5 aimed at producing interactive com­
mand interfaces that appear to their users more friendly and 
cooperative than most presently available interfaces and are 
thus less frustrating and more productive to use. This research 
includes work on flexible, error-correcting parsing, interactive 
error resolution, and the topic of this paper: interactive help 
facilities. The following paper presents the design and ratio­
nale for the help facility that we are currently implementing 
for use with the COUSIN interface. 

The COUSIN help facility provides explanations of two 
kinds: 

• Static explanations: Descriptions of the aspects of the 
system that do not normally change during the course of 
a terminal session, such as what subsystems are available 
through the interface, what are their parameters, what is 
their syntax; what is their purpose, and similar aspects. 

• Dynamic explanations: Information dependent on the 
immediate context of the request, such as what the user's 
current options for action are, what is the last command 
performed, what the interface expects the user to do 
next, how the interaction came to be in its present state, 
and related information. 

COUSIN distinguishes these types of explanation because of 
the way they are generated: the static explanations are pre­
stored and displayed on demand, whereas the dynamic expla­
nations must' be generated on the fly. However, since this 
distinction is not likely to be of great concern to the user, a 
design goal of COUSIN is that the two types of explanation be 
presented in as uniform and integrated a way as possible. 
Integration is particularly important if a dynamic explanation 
(e.g., what commands are currently available) leads the user 
to request a static explanation (e.g., the syntax for one of the 
available commands). 

By far the most common way to provide online help is to use 
canned text messages. Such messages are either written into 
the system by the system designer specifically for interactive 
use, as in the SOS editor,6 or extracted by an indexing scheme 
from an online version of the system manual, as in the RdMail 
electronic mail system7 or the CMULisp system. 8 This ap­
proach is susceptible to two problems: first, the blocks of 
canned text may be too long and ill-structured, so that the user 
must search through irrelevant material to get to the informa­
tion actually needed; and second, the blocks of text may be 
insufficiently linked or cross-referenced, so that the user may 

be unable to locate the needed information even if he has 
found a related piece of information.9 To avoid these prob­
lems, a second design goal for the COUSIN help facility is to 
present information in fine-grained chunks that are heavily 
interlinked and cross-referenced. 

The help and explanation facility for COUSIN satisfies the 
two design goals mentioned above by following an approach 
similar to that of the ZOG menu-selection system,1O also de­
veloped at CMU. ZOG allows its user to traverse a network 
of small (one-display terminal screen) text frames linked to­
gether in an arbitrarily complex way by semantically mo­
tivated iinks. Each frame consists of a text part and a menu of 
links (whose descriptions themselves often convey informa­
tion). Selecting one of the links causes the display of the frame 
pointed to by the link. COUSIN'S help and explanation facility 
consists of a similar network of text frames connected by 
mnemonically named semantic links; the frames are of vari­
able size, but usually contain less than a screenful of informa­
tion. This arrangement clearly satisfies the requirement that 
the help information be available in small-grained chunks and 
allows for a set of interconnections rich enough to make infor­
mation related to that of the current frame easy to obtain . 
Moreover, it provides a convenient way of integrating static 
and dynamic help. The static help can be represented as a 
prestored frame network, and the dynamic help can be ex­
pressed through frames that are constructed and linked into 
this static network on the fly. This makes the presentation of 
static and dynamic help uniform and allows the dynamic ex­
planations to provide convenient access to related parts of the 
static network. 

A further advantage of the ZOG approach for COUSIN is 
that the static explanation net can be generated automatically 
from information already required by COUSIN for other grace­
ful interface functions. Briefly, COUSIN requires a declarative 
description of each subsystem with which it is used. These 
subsystem descriptions contain, among other things, details of 
the subsystem's parameters, their types, whether they are 
optional, and the syntax used to express them. Using this 
information, COUSIN can accept commands from the user, 
check them for validity, fill in defaults, correct some errors 
and ambiguities, interact with the user to correct the others, 
and finally transmit the corrected command to the underlying 
system. More important for present purposes, COUSIN can use 
the same information, supplemented by text strings to explain 
the purpose of subsystems and their parameters, to construct 
a fine-grained and highly interconnected static explanation 
network for the subsystems concerned. The following sections 
discuss the construction and structure of this static expla­
nation network and examine how dynamic explanation frames 
can be generated and linked into it on the fly. 



472 National Computer Conference, 1982 

AUTOMATIC CONSTRUCTION OF STATIC 
EXPLANATION NETWORKS 

This section describes the structure of the static help offered 
by the COUSIN interface; i.e., the explanations COUSIN can 
give about the subsystems it provides an interface to, their 
invocation syntax, their parameter types and structure, and 
related matters. We also describe how these static explana­
tions are constructed automatically from the declarative sub­
system description databases from which COUSIN also obtains 
the information it needs to provide its input checking and 
correction services. Generating the static help frames auto­
matically enables the subsystem designer to provide a struc­
tured set of online documentation for the subsystem with little 
incremental effort. The designer needs to construct a sub­
system description in any case to use COUSIN'S other services. 
To produce the help documentation, he merely needs to add 
some text fields to the subsystem description to indicate the 
purpose of the subsystem and its various parameters, and the 
rest can be done by COUSIN. We believe that the effort in­
volved in producing documentation in this form is far less than 
that involved in producing documentation with the same con­
tent by hand. Moreover, the resulting documentation will 
have a considerably more uniform structure, both within a 
single subsystem and, more important, across a wide range of 
subsystems. Glasner and Hayes 11 give details of the way this 
approach was employed to produce online documentation for 
an ancestor of the present COUSIN interface, and Fenchel12 has 
used similar techniques to generate user-oriented descriptions 
automatically from a parser's grammar. 

Before examining the form of the explanations COUSIN gen­
erates, we should first look at the structure of the subsystem 
descriptions from which they are generated. One of the appli-

[SubsystemName: czarina 
Schema: [ 

al ignment: [FillerType: SelectionSet 
Set: (vertical rotated) 
Default: vertical 
SynType: FlaggedOption BinaryFlag: r 
Description: "determines whether the printing will be in 

standard orientation on the page (vertical), 
or rotated 90 degrees (rotated)" 

Summary: [rotated: "prints parallel to the short 

] 

side of the paper" 
vertical: "prints parallel to the long 

side of the paper" 

copies: [FillerType: Integer LowerBound: 1 
Default: 1 
SynType: Option Marker: c 
Summary: "prints <integer> copies" 
Description: "determines how many copies will be printed" 

] 
font: [FillerType: String 

Default: Gacha10 
SynType: Option Marker: f 
Summary: "uses font specified by <string>" 
Description: "determines the font used to print ascii files" 

] 
tobeprinted: [FillerType: File 

Number: + 
SynType: Argument 
Explanation: "a list of files to be printed" 

] 
] 

Syntax: [Format: OptsArgs 
OptionTag: - OptionJuxtaposition: on 
ArgumentOrder: (tobeprinted) 
CommandName: cz] 

Explanation: "prints the specified files on the Dover, 
converting ascii to press format if necessary." 

Figure 1-An example subsystem description 

cations of COUSIN is to provide a command-level interface to 
the UNIX operating system on a VAX 111780; i.e., to provide 
an alternative to the standard Unix shell. As described above, 
COUSIN requires each subsystem, in this case each Unix com­
mand, to have a declarative subsystem description. Figure 1 
shows an abbreviated subsystem description (there are actu­
ally many more optional parameters) for the "cz" command, 
used in our department to print files on the Dover, a local 
hard-copy output device. 

The details of this notation are not important for present 
purposes. It is enough to note that the "Schema" indicator 
introduces a property list whose indicators ("alignment," 
"copies," etc.) name the parameters, optional and required, 
of cz, and whose corresponding values give more detailed 
information about the types, defaults, and related matters 
concerning those parameters. As mentioned previously, this 
information, together with the "Syntax" property, is used by 
COUSIN to provide input checking and correction on the syn­
tax and parameter values of invocations of cz. 

The same information in conjunction with the "Explana­
tion," "Description," and "Summary" fields can also be used 
to generate a tree-structured net of explanation frames de­
scribing cz at varying levels of detail, corresponding to differ­
ent levels of the tree. The root of the tree, for instance, is a 
brief description of the purpose and calling syntax of cz, 
shown in Figure 2. 

COMMAND cz (czarina) 

USAGE cz [options] tobeprinted+ 

PURPOSE prints the specified files on the Dover, 
converting ascii to press format if necessary. 

LINKS 1. opt ions 
2. tobeprinted - a list of files to be printed 
3. Uni~ syntax - general 

Figure 2-Root description frame for cz 

If, after reading this text frame, the user decides more 
information is needed, he can select one of the links, which 
will result in the display of another frame. The "Unix syntax" 
link leads to a manually constructed frame explaining the 
general style of Unix syntax. The tobeprinted link leads to the 
frame shown in Figure 3. From this frame, the user can obtain 
the general syntax for files (from another hand-constructed 
frame), if that is what he needs. Taking the "options" link 
from the root frame would lead to a list of options, as shown 
in Figure 4. 

Taking the "rotated" link from this frame would lead to the 
frame shown in Figure 5. 

ARGUMENT tobeprinted - a list of files to be printed 

NUMBER one or more 

DEFAULT none 

SYNTAX filel ... filen 

LINKS 1. file syntax - general 

2. notation 

Figure 3--Frame for tobeprinted parameter of cz 



Uniform Help Facilities for a Cooperative User Interface 473 

SU!ll1lary of the options available with cz 
(Unix abbreviated syntax in parentheses) 

LINKS 1. rotated (-r) _ 
prints parallel to the short side of the paper 

2. copies <integer> (-c <integer» 
prints (integer> copies 

3. font (string> (-f (string» 
uses font specified by (string> 

Figure 4--Frame for optional parameter of cz 

PARAMETER al ignment - determines whether the printing will be in 
standard orientation on the page (vertical). 
or rotated 90 degrees (rotated) 

FILLER one of {vertical rotated} 

DEFAULT vertical 

SYNTAX rotated (-r) 
prints parallel to the short side of the paper 

vertical 
prints parallel to the long side of the paper 

Figure 5--Frame for alignment parameter of cz 

Along with the specific links mentioned above, each frame 
has links that allow the user to return to the previous frame, 
go to the root of the present tree of frames, and obtain expla­
nations of the notation being used or of the organization of the 
help system in general. There is no space here to give details 
of the program used to generate the static help frames shown 
above, but comparison between the subsystem description 
and the frames should convince the reader that only a rela­
tively straightforward rearrangement of the information in the 
subsystem description is necessary. 

A complete static help facility for COUSIN is obtained by 
applying the frame-generation process to the subsystem de­
scriptions of each subsystem that can be invoked through 
COUSIN. A set of trees of text frames results, with the tree 
nodes linked together in ways illustrated previously. The static 
help network is completed by hand-generated auxiliary 
frames that provide general information about syntactic con­
ventions and about the organization and notation of the help 
system itself. 

The user obtains the display of a static help frame by giving 
the name of the frame as a parameter to the help command. 
The name of the root frame for a subsystem is the same as the 
name of the subsystem; therefore "help cz" will result in the 
display of the first frame shown above. Frames below the roots 
of the trees are named incrementally according to the links 
that should be followed to get to them; thus the last frame 
shown above is called cz.options.alignment and may be 
accessed directly by this name as well as by following links 
from,the cz base frame. Of course, when frames go out of a 
subsystem tree, this results in a frame having more than one 
name; thus cz.tobeprinted.file is also called file.syntax. 

DYNAMICALLY GENERATED EXPLANATIONS 

Besides the network of static help frames, the COUSIN help 
facility can also display dynamically generated help frames to 
give the user contextually dependent help. The kinds of ques­
tions these frames are designed to answer include the follow­
ing: What is the current state of the interaction, what can I do 

now, what does the system expect me to do, how did the 
interaction get into this state? The dynamically generated 
frames are of exactly the same form as the static frames and 
will normally have links to the static network. Static and dy­
namic explanations thus appear uniform and integrated to the 
user. 

Currently, dynamic frames are generated in only one kind 
of situation: when the user makes a request for heip without 
giving the name of a static help frame. When this happens, 
COUSIN constructs a frame containing the following informa­
tion: 

1. The current state or mode of the interaction. 
2. Why the interaction is in this state. 
3. A list of actions the user is likely to want to take. 
4. Links to other frames that allow the user to find out 

about the complete range of options available. 
5. Links to frames describing contextually relevant sub­

systems and aspects of subsystems. 

A frame of this sort is put together out of canned text tem­
plates, one for each of the various components; variables in 
the template are filled in by contextually appropriate tokens. 
An example will make this clearer. 

Suppose the user gives the command 

cz -c 2 rotated foo.press 

to the main command level of COUSIN. The command is to 
print two copies of foo.press in 90-degree rotated mode. Sup­
pose also that the user does not have read permission on 
foo.press. COUSIN prints out the message: 

no read permission for foo. press 
envedit) 

where the second line is a prompt for the environment editor. 
For present purposes, we can regard an environment as a set 
of parameter/value pairs for a subsystem invocation. When an 
error in a command line is detected, COUSIN makes up an 
environment from the command, then enters the environment 
editor to allow the user to alter the problematic parameters 
without having to retype the rest. Now suppose that the user 
in this case is unsure of what is happening and so makes a 
nonspecific request for help by typing "?" or "help." Follow­
ing the recipe listed above, COUSIN then constructs the help 
frame shown in Figure 6. Note how the LINKS section gives 
more detail about the command the user is most likely to want 
to use, as well as pointers to the other commands available. 
The other links are to relevant frames in the static network. 

You are in environment editing mode through which you can change the 
value of slots in the current environment, which was constructed from: 

cz -c 2 rotated foo.press 

You are in this mode because "foo.press" does not satisfy the 
requirement that the "tobeprinted" parameter of cz be a readable file. 

LINKS 1. correct - environment editor cO!ll1land to cycle through and 
change incorrect slots 

2. othe r env ironment ed i t i ng commands 
3. environments - general information 
4. cz 
5. tobeprinted parameter of cz 
6. fi les 

Figure 6-A dynamically constructed help frame 



474 National Computer Conference, 1982 

CONCLUSION 

This paper has described the design of the help and expla­
nation facility that we are currently implementing for the 
COUSIN operating system command interface. COUSIN will 
provide online help and explanations through display of text 
frames connected in a network by semantically motivated 
links in the style of the ZOG lO system. Most of the frames 
containing information that does not normally change over 
the course of a terminal session can be generated automat­
ically from declarative representations of the various subsys­
tems to which COUSIN interfaces. These declarative subsystem 
descriptions are necessary for other aspects of COUSIN'S oper­
ation but must be supplemented by a number of text fields to 
provide good help frames. In addition to this static help net­
work, COUSIN will provide dynamically generated, contex­
tually sensitive explanations about the current state of the 
interaction. These dynamic explanations can be assembled 
out of predefined templates into the same text frame form as 
the static help and temporarily linked into the static network 
so that the help system as a whole appears consistent and 
uniform to the user. 

ACKNOWLEDGMENTS 

A program written by Pedro Szekeley demonstrated the 
feasibility of constructing the static help network auto­
matically from subsystem descriptions. 

This research was sponsored by the Defense Advanced Re­
search Projects Agency (DOD), ARPA Order No. 3597, 
monitored by the Air Force Avionics Laboratory under Con­
tract F33615-78-C-1551. The views and conclusions contained 
in this document are those of the authors and should not be 
interpreted as representing the official policies, either ex­
pressed or implied, of the Defense Advanced Research 
Projects Agency or the U.S. government. 

REFERENCES 

1. Ball, J. E., and P. J. Hayes. "Representation of Task-Independent Knowl­
edge in a Gracefully Interacting User Interface." Proceedings of the 1st 
Annual Meeting of the American Association for Artificial Intelligence, Stan-
ford University, August 1980, pp. 116-120. Obtainable from American 
Association for Artificial Intelligence, 445 Burgess Drive, Menlo Park, CA 
94025. 

2. Carbonell, J. G., and P. J. Hayes. "Dynamic Strategy Selection in Flexible 
Parsing." Proceedings of the 19th Annual Meeting of the Association for 
Computational Linguistics, Stanford University, June 1981, pp. 143-147. 

3. Hayes, P. J. "A Construction Specific Approach to Focused Interaction in 
Flexible Parsing." Proceedings of the 19th Annual Meeting of the Associ­
ation for Computational Linguistics, Stanford University, June 1981, pp. 
149-152. 

4. Hayes, P. J. "Anaphora in Limited Domain Systems." Proceedings of the 
Seventh International Joint Conference on Artificial Intelligence, Vancouver, 
1981, pp. 416-422. Obtainable from American Association for Artificial 
Intelligence, 445 Burgess Drive, Menlo Park, CA 94025. 

-S. Hayes, P. J., and G. V. Mouradian. "Flexible Parsing." Proceedings of 
the 18th Annual Meeting of the Association for Computational Linguistics, 
Philadelphia, June 1980, pp. 97-103. 

6. Carnegie-Mellon University, Computer Science Department. Son of Stop­
Gap (SOS). Originally developed at Stanford AI Lab; the help facility was 
added at CMU. 1978. 

7. Carnegie-Mellon University, Computer Science Department. RdMail 
Message Management System. 1980. 

8. Carnegie-Mellon University, Computer Science Department. TOPS 
LISP. 1978. 

9. Hayes, P. J., J. E. Ball, and R. Reddy. "Breaking the Man-Machine 
Communication Barrier." Computer, 14 (1981), pp. 19-30. 

10. Robertson, G., A. Newell, and K. Ramakrishna. "ZOG: A Man-Machine 
Communication Philosophy." Technical Report, Computer Science De­
partment, Carnegie-Mellon University, August 1977. 

11. Glasner, I. D., and P. J. Hayes. "Automatic Construction of Explanation 
Networks for a Cooperative User Interface." Technical Report, Computer 
Science Department, Carnegie-Mellon University, 1981. 

12. Fenchel, R. S. "Integral Help for Interactive Systems." Technical report 
UCLA-ENG-8051, Computer Science Dep't., UCLA, 1980. 



Natural-language help in the Consul system 

by WILLIAM MARK 

USC/Information Sciences Institute 
Marina del Rey, California 

ABSTRACT 

If we use the model of asking an expert, it is fairly clear what users want from a help 
system: a service that tells them how to do something they want to do. But current 
help systems aren't like this. They can tell the users about system capabilities, but 
not in relation to what they want to do. Most help systems are simply databases of 
online documentation-system manuals, not system experts. Like system manuals, 
using them to figure out how to do something or to figure out what went wrong is 
a last resort-when no one else is around. 

Providing real expert help requires reasoning in terms of models of what the user 
wants to do and what the system can do. These models also make it possible to 
provide facilities for natural-language understanding and generation. Thus, uSers 
can deal with the system in much the same way that they deal with a human expert: 
by asking questions and receiving advice in English. 

These ideas are being tested in the Consul system, a research prototype currently 
under development at the USC Information Sciences Institute. 

475 





1. WHAT IS HELP? 

Users of an interactive system need help whenever they en­
counter an obstacle that prevents them from performing a 
task. They may need to find out how to do something (How 
do I get rid of the messages Smith sent me yesterday?), how to 
describe an object (What has to be in a message?), or why 
something unexpected occurred (What happened to the mes­
sage that was on my screen?). This need for help may be 
expressed by the system rather than by users, as when a user 
runs into an error condition (You can't forward a message you 
have composed). The point is that the need for help is a 
feature of users' conceptual framework: it expresses the dif­
ference between their state of knowledge and their expecta­
tion of how to specify a task to be performed by the system. 

Users' conceptual framework may be very different from 
the system's. Even though the question How do I get rid of the 
messages Smith sent me yesterday? makes perfect sense to a 
user, it may not relate directly to anything in a mail system 
whose "messages" always reside in a central database and are 
never sent to (and can never be deleted by) users (e.g., [SIG­
MA 79]). The user's problem must be mapped into the system 
framework before it can be solved. Then, since the user may 
not understand the solution in system terms, it must be 
mapped back into an answer in terms of the user's framework. 

2. CURRENT HELP MECHANISMS 

Let's contrast how this is done in the two currently existing 
interactive help mechanisms: asking a system expert and using 
an online help system. When a user asks a system expert for 
help, the expert mentally translates the user problem into the 
system frame~ork, decides what the user must do, and then 
translates back into the user's terms in order to explain it to 
the user. Given the question How do I get rid of the messages 
Smith sent me yesterday? the expert (1) realizes that the user 
actually wants to delete the citations (records) of a particular 
set of messages from the mailbox; (2) knows that the system 
has a command that can filter citations in mailboxes by sender 
and date and a command for deleting lists of message cita­
tions; and (3) tells the user how to invoke the two commands 
in sequence to achieve the desired result. 

Current online help systems operate in a very different 
manner (for a discussion, see RelIes and Price3

). They contain 
documentation of system features (which can be thought of as 
precomputed mappings from the system framework to the 
user framework), usually indexed in terms of what the system 
can do, not what the user can do with the system. In other 
words, the user is responsible for translating need for help into 
retrieval requests (or menu selections) in order to access the 
system's documentation database. This often makes it difficult 

Natural-Language Help in the Consul System 477 

for the user to get to the information wanted (he/she might 
type "? message" and get a lot of irrelevant information; 
he/she might have to wade through a list of system commands 
and guess that "delete" is the one wanted; and so forth). Once 
the user finds a relevant piece of documentation, he/she may 
not understand how it relates to the problem (he/she may 
discover that the delete command takes "a list of messages" 
and not realize that filters can be used to produce that list). 

This points up two shortcomings of current online help 
systems: 

• No explicit representation of the user's framework (the 
user can't express the problem, but can only search for 
possibly relevant documentation) . 

• No flexibility in mapping questions into answers (even if 
the user could express the problem, it may cut across the 
precomputed mappings stored in the help database). 

There is evidence3
,5 that these shortcomings are sufficient to 

discourage most users from using online help at all. 
In the Consul system we are trying to overcome these prob­

lems by building knowledge into the system-models of what 
the user wants to do and what the system can do-and provid­
ing help by reasoning in terms of these models. The goal is to 
allow the user to be able to deal with the system in much the 
same way he/she deals with a human expert: by asking ques­
tions and receiving advice in English. 

3. HELP IN THE CONSUL SYSTEM 

The Consul system2 is based on a representation of user and 
system knowledge in a central knowledge base (see Figure 1). 
This knowledge includes a model of what users want to do 
with interactive systems, a model of what interactive systems 
can do, and a set of mapping rules for translating between the 
two frameworks. When a particular interactive service like a 
mail system is added to Consul,l the knowledge base (includ­
ing the mapping rules) is particularized to take into account 
the distinctive features of the service (this process is discussed 
in the next section). 

Service Implemen1er 

Figure 1-The Consul system 



478 National Computer Conference, 1982 

The system's activity consists of mapping descriptions in 
user terminology into system terminology and, in the case of 
help requests, back into user terminology. The process begins 
with a request from the user, expressed in natural language. 
The request is parsed and represented as user terminology in 
Consul's knowledge base. It is then mapped into system ter­
minology, allowing Consul to determine whether it is a re­
quest for help or a system command. If it is a request for help, 
the appropriate information about system features (in system 
terminology) is isolated. This information is then mapped 
back into user terminology, and finally into English to provide 
the answer. If a request that Consul originally interprets as a 
system command cannot be executed, it is automatically rein­
terpreted as a request for help. This process can be illustrated 
in terms of the four help interactions mentioned in the first 
section: 

How do I get rid of the messages Smith sent me yesterday? 
As mentioned above, responding to this request requires 
mapping of the notion of messages in the user framework into 
message citations in the system framework. Consul produces 
this mapping by first finding that its model of the mail system4 

does not allow the user to delete messages directly, thus pre­
venting the request from being taken at face value. It then 
finds that it has a mapping rule that translates user statements 
about doing things to objects into statements about doing 
things to summaries of those objects (reflecting the fact that 
users often say things like "show me a list of my files" when 
they really want a directory listing, a list of summary informa­
tion about files). This mapping rule translates the original 
request into a request to delete a list of message summaries. 
This can then be mapped into a sequence of the mail system's 
actual operations for filtering and deleting message citations. 
Examination of these operations reveals that they (col­
lectively) require a user mailbox and a set of filters-in this 
case, a sender and a date-as arguments. This information is 
in fact the answer to the user's question, but it must be 
mapped into user terminology before actually being displayed 
to the user. The user terminology in the knowledge base is 
checked to see if there are constructs corresponding to those 
found in the system framework. In this case there are, and an 
English response is generated: "Lists of messages for deletion 
can be specified by any combination of selectors such as 
sender, range of dates, and message numbers, as in 'Delete 
the messages from Smith I received yesterday. '" 

What has to be in a message? In this example, the term 
message can be taken at face value. That is, message in the 
user world is taken to refer to message in the mail system 
world as well. The mail system's representation of a message 
is therefore examined for required fields, which are collected, 
and, as before, mapped back into corresponding user terms to 
provide a response to the user: "Messages must have a valid 
addressee and usually have a subject and body of text." 

What happened to the message that was on my screen? This 
request refers to an event (something "happening" to a partic­
ular message); Consul must therefore examine its history 
records. It first determines which message was most recently 
displayed on the user's screen, then looks for all of the events 
that involved that message since it was displayed. Many things 
could have "happened" to that message since it was displayed 
(e.g., other users could have received pointers to it in the 

central database), but few of these events would have been 
noticed by the user. The system must compare each event 
involving that particular displayed message with the events of 
the user world. Those that have significance in the user world 
are collected, mapped into their corresponding user termi­
nology, and presented in the response: "I had to take it off the 
screen temporarily to show the list of messages you re­
quested. " 

You can't forward a message you have composed. This help 
interaction is not requested by the user; it is generated by the 
system in response to a user request to forward a particular 
message (e.g., Forward this message to Jones.). Initially, the 
request is mapped into system terms, and Consul recognizes 
it as a command for system action. Let us assume that the 
message involved is one that the user has just composed, not 
one that he/she has received. The mail system will not forward 
composed messages. This is reflected in the Consul system by 
an inability to map the supposed command into an actual mail 
system execution sequence. Consul therefore knows that it 
must generate a help response. It compares the request (as 
mapped into system terms) with the forward function the user 
was trying to execute, thus finding the differences between the 
request as stated and the required form of the arguments of 
forward. These differences are presumably what prevented 
the command from being invoked in the first place. In this 
case, Consul discovers that the forwarding function in the mail 
system requires a "transmitted" message, while the message 
in the request is of type "draft." It can map this difference 
back into user terminology to generate the response shown 
above. 

But in many cases (including this one), Consul can go fur­
ther in responding to errors. If Consul can find system func­
tions similar in intent to the one the user was trying to execute, 
it can use them as targets and find differences just as before. 
This allows it to suggest alternatives that accomplish the user's 
goal. In this case, the system discovers that send as well as 
forward could accomplish the user's presumed intent of get­
ting a particular message to a particular user. Therefore, when 
the user makes his/her erroneous forwarding request, Consul 
actually generates the more complete help response, "You 
can't forward a message you have composed. You can send it 
to Jones instead. " 

4. ACQUIRING AND MAINTAINING THE HELP 
INFORMATION 

To provide all this knowledge-based help, a lot of specific 
information about mail systems and how they are used must 
somehow be put into the machine. In fact, a major issue for 
all interactive help systems is how the necessary help informa­
tion gets into the machine and how it is kept up to date in the 
face of system changes. The approach taken in the Consul 
system is to build in a general model of interactive services 
and how they are used, including a model of how users specify 
commands and ask for help. This general model is then used 
to solicit specific help information from the programmer of 
each actual service. 

A programmer of a new service (e.g., the mail system) 
enters each program into Consul through a dialogue-oriented 
acquisition aid.6 The acquirer uses Consul's model of inter-



active systems to ask the programmer how a program fits into 
the system knowledge base. A dialogue ensues as the acquirer 
asks the programmer questions in terms of its model and the 
programmer answers in terms of the program. For example, in 
acquiring the "forward" program, the acquirer will ask what 
in the program corresponds to the system model of the "des­
tination" of a forwarding operation. The programmer will 
reply that it is the "mailbox" whose owner is the user specified 
as the "receiver" argument of the operation. The acquirer 
then checks to make sure that mailboxes are legal destinations 
according to its model, that they can be owned by users, and 
so on, until it is sure that the programmer's version of "desti­
nation" fits the model in the Consul knowledge base. If it does 
not, the acquirer pursues the dialogue until it discovers how 
"mailbox" relates to something that is legal in its model. In 
this way, Consul comes to understand each new program in 
terms of its knowledge base. The acquirer will not allow the 
program to be part of the Consul system until it sees how it fits 
into both the system and the user framework. Fitting into the 
user framework usually requires the construction of mapping 
rules, also done automatically during the acquisition dialogue. 

Once acquisition is accomplished, Consul has all the infor­
mation it needs to construct the necessary help responses. 
Since it knows about message forwarding in general-what it 
does, how users ask about it, what can go wrong with their 
requests-and it has learned how the particular forwarding 
operation of the new mail system fits into this scheme, it 
knows how to handle user requests for help and how to gener­
ate comprehensible error explanations. Moreover, every time 
a program or data structure is changed, the acquirer is auto­
matically reinvoked, thus insuring that the knowledge base is 
always up to date. 

5. CONCLUSIONS 

The Consul system is an experiment in providing a natural­
language interface, including natural language help, to users 

Natural-Language Help in the Consul System 479 

of interactive systems. It currently handles only a small part of 
a single interactive service-the mail system described in this 
paper. Much work remains to demonstrate its feasibility in 
cost and execution speed in a real working environment con­
sisting of varied users and services. 

ACKNOWLEDGMENT 

This research is supported by the Defense Advanced Re­
search Projects Agency under Contract No. DAHC15 72 C 
0308, ARPA Order No. 2223. Views and conclusions con­
tained in this paper are the author's and should not be inter­
preted as representing the official opinion or policy of 
DARPA, the U.S. Government or any person or agency con­
nected with them. 

REFERENCES 

1. Lingard, Robert. "A Software Methodology for Building Interactive 
Tools." Proceedings of the Fifth International Conference on Software 
Engineering, 1981. 

2. Mark, William. "Representation and Inference in the Consul System." 
Proceedings of the Seventh International Joint Conference on Artificial 
Intelligence, BCAI, 1981. 

3. RelIes, Nathan, and Lynne Price. "A User Interface for Online Assis­
tance." Proceedings of the Fifth International Conference on Software 
Engineering, 1981. 

4. Stotz, R., R. Tugender, D. Wilczynski, and D. Oestreicher. "SIGMA: 
An Interactive Message Service for the YJlitary Message Experiment." 
AFIPS Proceedings of the National Computer Conference (Vol. 48), 
1979. 

5. Stotz, R., D. Wilczynski, S. Finkel, R. Lingard, D. Oestreicher, L. 
Richardson, and R. Tugender. SIGMA Final Report: Lessons. Informa­
tion Sciences Institute, Technical Report ISIIRR-81-97, May 1981. 

6. Wilczynski, David. "Knowledge Acquisition in the Consul System." 
Proceedings of the Seventh International Joint Conference on Artificial 
Intelligence, BCAI, 1981. 





Programs as data for their help systems 

by ELAINE A. RICH 
The University of Texas at Austin 
Austin, Texas 

ABSTRACT 

The goal of this research is to develop ways of representing the knowledge available 
to a help system in such a way that the system can actually reason with the knowl­
edge rather than being restricted to simply retrieving and presenting stored answers 
to a restricted and anticipated class of questions. One kind of information that is 
useful to such an intelligent help system is knowledge of how the underlying system 
operates. This knowledge is contained in the code for the system. By exploiting 
system code as part of the help database, many problems of inconsistency between 
programs and their documentation can be avoided. In our initial investigations of 
this problem, we are representing the system code as a set of productions that are 
easier to manipulate than is code in most standard languages. As we develop 
techniques for answering questions by reasoning with knowledge about the system, 
we become increasingly able to answer the growing variety of questions that will 
occur as the language interface to a help system becomes more flexible. 

481 





INTRODUCTION 

As complex software systems become more and more widely 
used by a larger and more heterogeneous group of users, it 
becomes increasingly important to provide, along with the 
systems themselves, good interactive help facilities. But as the 
size of a system grows, so too grows the size of the task of 
building the database to be used by its help facility. And 
building the database initially is only a small part of the prob­
lem. As the underlying system changes, the help database 
must also be maintained so that it always corresponds to the 
current version of the system. This is a large, boring, and all 
too often ignored task. A major goal of my research in build­
ing help facilities is to explore ways in which the task of 
building a database specifically for a help facility can be min­
imized by exploiting the underlying system itself as a major 
part of the required knowledge base. Using the system code 
as the help facility database guarantees that the two will al­
ways correspond. 

A second reason for building a help facility based on the 
underlying system itself, rather than on a body of stored text 
that is fed to users on demand, is that a wider variety of user 
questions can be handled. If prestored text is used, all the 
questions to which the system will be able to respond must 
have been anticipated at the time the text was created so that 
an appropriate answer can be written. But if answers can be 
computed from the code of the system itself, this is not neces­
sary. So, for example, questions such as "What is the differ­
ence between a and b?" can be answered by looking at what 
happens for a, looking at what happens for b, and comparing 
the results. An answer can then be generated that is based on 
that comparison. This flexibility becomes increasingly im­
portant as we move toward natural-language help systems in 
which the superficial flexibility of the system is high, leading 
users to expect comparable flexibility in the actual power of 
the system. 

To explore the issues raised in the design of this sort of help 
facility, I have begun building a help system for the document 
formatter Scribe.2 Scribe is a sufficiently complex program 
that most users never learn all of it. Thus a help system for 
Scribe will need to be able to handle a wide range of questions 
from a broad class of users, ranging from novices to experts. 
As discussed in the following sections, the approach we are 
taking to answering user questions by referring to the system 
code makes it possible to tailor the responses generated to the 
individual needs of all these users. 

ANSWERING USER QUESTIONS 
FROM SYSTEM CODE 

Although it is true that not all the kinds of questions that 
people will want to be able to ask a help facility can be an­
swered by examining the system code, a great many of them 

Programs as Data for Their Help Systems 483 

can be, particularly if the code is well structured. There are 
three basic categories of questions whose answers can be de­
rived from the code for a system: 

1. The user gives a description of a result and wants to 
know what causes that result to appear. A few examples 
of this kind of question are as follows: "Why is my paper 
coming out single-spaced?" and "How can I get the page 
numbers printed at the bottom of the page?" As these 
examples show, sometimes result-description questions 
occur because an undesirable (or perhaps surprising) 
result has occurred and users are curious about the rea­
son. Other times these questions describe a desired re­
sult, and users want to know what they can do to get it. 
In either case, the way to answer the question is to find 
the place in the code where the described result is gen­
erated. Then look to see what conditions must be satis­
fied for that particular code to be executed. 

2. The user gives a description of a set of circumstances and 
asks what would happen if they occurred. A few exam­
ples of this kind of question are as follows: "What will 
happen if I change the reference format to alphabetic?" 
and "How does Scribe float figures?" As these examples 
show, circumstance-description questions occur both 
when users are curious about what will happen if they do 
some new thing and when they want to find out exactly 
how Scribe performs a function in which they are inter­
ested. The way to answer this type of question is to find 
the place in the code that corresponds to all the specified 
conditions being met. Then look to see what action is 
performed. Depending on the level of detail appropriate 
for the answer, either the action can be described as a 
single action, or the lower-level procedures that com­
pose it can be described. 

3. The user gives two descriptions and asks for the differ­
ence between them. An example of this sort of question 
is "What is the difference between the itemize and the 
e~umerate environments?" This kind of question is an­
swered by searching the code to find out what happens 
in each of the two circumstances given. Those answers 
are then compared, and the dissimilar parts are reported 
as the answer. 

By using these three mechanisms, a variety of user ques­
tions can be answered easily from the system code, provided 
that the structure of the code is uniform and corresponds well 
to the structure of the operations being performed. 

REPRESENTING A PROGRAM AS A SET OF 
PRODUCTION RULES 

There are two ways that one could build a complex system and 
the help facility for that system so that both use the same 



484 National Computer Conference, 1982 

code. One is to write the code for the system in the con­
ventional way and then to write a help facility question an­
swerer that can exploit that code. Scribe is written in Bliss, so 
for this experiment this approach would mean building a ques­
tion answerer that reasons about Bliss code. The second ap­
proach is to develop a new notation for writing the system 
code and then to build both an interpreter for that system and 
a question answerer that manipulates it. I have chosen the 
latter path, for several reasons, including the following: 

1. Bliss allows unconstrained use of global variables and 
side effects. This means that merely on the basis of a 
static examination of a particular code fragment it is not 
possible to guarantee much about the behavior of that 
fragment. 

2. Bliss is not a typed language. This means that it is not 
possible to tell simply from looking at a piece of code 
what kind of object is being operated on. Since a ques­
tion answerer will need to be able to give responses that 
describe what pieces of code are doing, it is important 
that it have access to information about the types of the 
objects being manipulated. 

In addition to the restrictions that need to be put on the 
language in which code is written if that code is to serve as the 
basis for a question answerer, there are other limitations that 
need to be put on the way that code is written. 

Often code is written with deeply nested conditional state­
ments. To determine the exact set of circumstances under 
which a particular fragment of code will be executed, it is 
necessary to search up several levels and collect all the condi­
tions that lead down the relevant path to the code. This will 
be a common operation for the question answerer; so to make 
its job easier, code should be written with conditions flattened 
so that all necessary conditions immediately precede the code 
they guard. 

The question answerer must be able to answer questions at 
a variety of levels of detail. Broad questions should not be 
answered at the lowest level of detail. To make this possible, 
the code should reflect a top-down decomposition of the be­
havior of the system. This will make it possible for the ques­
tion answerer to select the appropriate level of decomposition 
to answer each individual question. 

The question answerer will generate answers that describe 
the operation of units of the program. Since people can only 
comprehend fairly small units at a time, it is important that the 
code be highly modular, each module corresponding to a 
comprehensible set of operations. 

The only way that the question answerer will know that 
some intermediate results have a meaning that can be dis­
cussed, whereas others do not, is for the important results to 
be marked in the code. This suggests that function compo­
sition should be limited to a few levels and that the results of 
these compositions should be assigned names that correspond 
to their function in the task domain. 

To make it easy to write code that lends itself well to use by 
a help facility question answerer, I have designed a production 
system language in which rules describing a system's perfor­
mance under a variety of conditions can be written. The rules 
correspond to a top-down decomposition of the system. Each 
rule consists of a left-hand side describing the conditions that 

-1 
Dialogue 

Maintainer 

3 
Question 

....-7 51 Modeler 

Figure 1-The components of a flexible interactive help facility 

6 

must be satisfied for the rule to fire and a right-hand side 
describing the actions that are performed if the rule fires. For 
example, one of the top-level rules describing the behavior of 
Scribe is 

(PROCESS#FILE X : FILENAME) • 
(OPEN#FILE X) 
(FOREACH C: CHARACTER IN X (PLACE# C» 
(CLOSE#FILE X) 

This rule says that if you want to process a file x, then open 
it, process each character of it, and close it. 

This rule is simple. Its left-hand side consists only of the 
action that needs to be performed. Other rules have more 
complex left-hand sides reflecting the fact that the wayan 
action is performed may depend on a variety of factors. As an 
example, consider the following rule for placing an individual 
character in the output file: 

(PLACE#CHAR C : CHARACTER) 
(EQUAL C END#OF#LINE) 
(EQUAL FILEMODE FILL) • 

(DISCARD C) 
(PLACE#CHAR BLANK) 

This rule says that if the system is trying to place a character, 
the character is the end-of-line character, and the text is being 
formatted in fill mode (in which each output line is completely 
filled and input line breaks are ignored), then ignore the 
end-of-line character but send a blank to the output file. 

To experiment with code-based techniques of question an­
swering, I am recoding Scribe as a set of rules such as these. 
Meanwhile, Scribe still exists and runs as a Bliss program. But 
this same production rule language could also be used to 
define a new system so that the rules would also serve as the 
code for the system. All that would be required would be an 
interpreter (and probably also a compiler) for the rule-based 
language. 

THE OVERALL STRUCTURE OF THE 
HELP SYSTEM 

In order to turn the rule-based question answerer that has just 
been described into a useful and complete interactive help 
facility, a set of other components is necessary. Figure 1 shows 
what these components are and how they communicate with 
each other. 

The numbers in the figure indicate the information that 
passes between the components: 

1. A user question stated in English. 
2. A parsed form of the question. 



3. An interpretation of the question in light of known pat­
terns of dialogue structure (as described, for example, 
by Grice l

). For example, the question "Can I get Scribe 
to make an index for me?" would be interpreted as 
"How can I get Scribe to make an index?" 

4. The complete set of answers. 

5. An appropriate subset of the answers, chosen to match 
the individual user's current interests and state of 
knowledge. 

6. A response that makes correct references in the context 
of the current dialogue. 

7. A properly worded English response. 

Programs as Data for Their Help Systems 485 

The capabilities of each of the components of this system 
make possible a greater exploitation of the abilities of the 
others. For example, without the ability to compute the an­
swers to questions by using knowledge about how the system 
behaves rather than by simply retrieving pieces of stored text, 
knowledge about an individual user and how much detail 
he/she is interested in is often wasted. 

REFERENCES 

1. Grice, H. P. "Logic and Conversation." In P. Cole & J. L. Morgan (eds.), 
Studies in Syntax, Volume III. New York: Seminar Press, 1975. 

2. Reid, Brian. "Scribe: A Document Specification Language and Its Com­
piler." Ph.D. thesis, Carnegie-Mellon University, 1980. 





The implementation of a cryptography-based 
secure office system 

by CHRISTIAN MUELLER-SCHLOER 

Siemens Corporation 
Cherry Hill, New Jersey 

and 

NEAL R. WAGNER 
Drexel University 
Philadelphia, Pennsylvania 

ABSTRACT 

A cryptography-based secure office system is discussed, including design criteria 
and a specific implementation. The system is intended to be practical, simple, and 
inexpensive, but also highly secure. The implementation uses a hybrid scheme of 
conventional (DES) and public-key (RSA) cryptography. Randomly generated 
DES keys encrypt messages and files, and the DES keys themselves and a one-way 
hash of the messages are encrypted and signed by RSA keys. The system provides 
secure electronic mail (including electronic registered mail and an electronic notary 
public), secure two-way channels, and secure user files. Timestamps and a special 
signed file of public keys help decrease the need for an online central authority 
involved in all transactions. 

487 





INTRODUCTION 

This article discusses the design and experimental imple­
mentation of a secure data processing system for an office or 
similar organization. The basic design should be usable by any 
number of users (from one to thousands or more), and the 
hardware may be distributed. We have attempted to design a 
practical, simple, inexpensive system whose underlying meth­
od of implementation is transparent to users. However, the 
principal design goal has been security. We also wanted to 
limit the need for an online (i.e., "always-present") central 
authority. 

We visualize users each having access to a personal work 
station (PWS) , i.e., a station with local computing power. 
While in use the hardware of each PWS will be assumed 
secure, but no security is assumed for the connections be­
tween PWSs or for an individual PWS when not in use. Users 
are not limited to a single PWS, but may sign on at any 
convenient one. 

The system described here is intended as a supplement to 
the functions normally provided by operating systems and 
network managers. Our system provides the following basic 
functions: 

1. Secure electronic mail, including electronic registered 
mail and an electronic notary public (one or more users 
who can authenticate a signature, provide a timestamp, 
and save a copy of the message) 

2. Secure two-way communications channels (to give si­
multaneous interactive dialogue) 

3. A secure user file system 

Such a secure distributed system requires some use of 
cryptography. 1, 2 In order to achieve simplicity and low cost 
along with high security and ease of use, we used a hybrid 
system of conventional and public-key cryptography. 

FUNCTIONAL DESCRIPTION 

First we list the system's user-level security-related com­
mands, suppressing other commands needed for an electronic 
mail system, such as "SearchMailbox," etc. The commands 
are independent of the particular form of implementation 
(whether conventional, public-key or hybrid like ours), and 
the user need not know anything about cryptography. 

1. SignOn. (Input: Username, Password. Result: User is 
authenticated by the Password, and the PWS is initial­
ized and thereby dedicated to the user.) 

A Cryptography-Based Secure Office System 489 

2. Sign Off. (Input: None. Result: The PWS is dein­
itialized by overwriting sensitive areas and keys, etc.) 

3. NewUser. (Input: Username, Password. -Result: A new 
user is enrolled in the system with the password as the 
means of subsequent authentication.) 

4. UpdatePublicKey. (Input: Username, Password. Re­
sult: A new public and secret key pair is substituted for 
the old.) 

5. UpdatePassword. (Input: Username, New Password, 
Old Password. Result: A new password is substituted 
for the old.) 

6. SendSecure. (Input: Destination-name, File [i.e., a 
"message"]. Optional input: Intermediate-destination­
name, Request to register or notarize. Result: The file 
is timestamped, signed, and encrypted for the user 
whose name is Destination-name. In case of optional 
input, the file will first be routed to Intermediate­
destination-name for registration or notarization.) 

7. ReceiveSecure. (Input: Sender-name. Result: File 
from user implied by Sender-name is decrypted and 
authenticated. ) 

8. Register. (Input: Destination-name, Encrypted file. 
Result: The file is timestamped, signed, and 
forwarded. ) 

9. Notarize. (Input: Destination-name, Encrypted file. 
Result: The file is timestamped and signed, and a copy 
is retained before forwarding.) 

10. AcknowledgeSecure. (Input: Sender-name, Encrypted 
file. Result: The file is timestamped, signed, and sent 
back to sender. This is for use with registered mail.) 

11. OpenSecure. (Input: Destination-name. Result: A se­
cure channel is created for immediate interactive use.) 

12. CloseSecure. (Input: Destination-name. Result: The 
secure channel is closed.) 

13. SaveSecure. (Input: Filename. Result: The file is saved 
in the user's mass storage in a secure way.) 

14. RestoreSecure. (Input: Filename. Result: The saved 
encrypted file is made available as unencrypted clear­
text.) 

Initially, users must give the "NewUser" command with a 
password that they can remember. "NewUser" requires the 
physical presence of users at the central authority if authen­
tication that a username corresponds to a particular physical 
individual is desired. "SignOn" must be given with a password 
matching the usemame. Messages or files of any sort can be 
sent to other users with the "SendSecure" command and can 
be received with the "ReceiveSecure" command. Various en­
cryptions, decryptions, signatures, timestamps, and authen­
tication steps are built into these commands at a lower level, 
as described below. 



490 National Computer Conference, 1982 

OVERVIEW OF OUR IMPLEMENTATION 

In addition to the PWSs, our specific design uses a special 
component called the crytoprocessor (CP) to perform the 
various encryption/decryption functions, to store and gener­
ate keys, and to authenticate users. The CP is part of the 
PWS. We also use a special file called the public-key file 
(PKF). These public keys are signed with a network secret key. 
(The PKF also contains each user's secret key in encrypted 
form, as described later.) To replace the memorized username 
and password as entry to the CP, we can also use a data 
storage device called a personal data card. (Described in 
"Cryptographic Protection of Personal Data Cards," by C. 
Mueller-Schloer, submitted to the Seventh International Con­
ference on Computer Communication.) The system design 
allows the simultaneous use of CPs implemented in either 
hardware or software. A software CP would be less expensive, 
perform more poorly and offer lower security than one in 
hardware. For a production system, a hardware CP could be 
made difficult to modify (for example, it could be embedded 
in epoxy), and this should increase security considerably. 

Later sections describe the CP and the public-key file in 
more detail. Figure 1 gives a picture of these components. 

We have chosen to use the data encryption standard (DES)3 
for the bulk of the encryption/decryption and to use the RSA 
public-key cryptosystem4 for exchange of keys and signatures. 
DES is a natural choice because of its speed when imple­
mented by inexpensive special hardware. If DES did not seem 
secure enough, one could switch to triple DES encryptionS or 
to some other conventional system. 

It is clear that DES alone would suffice for the complete 
implementation,6 although with some considerable compli­
cations for key distribution and signatures. We have included 
public keys in a hybrid system because it places less burden on 
a central authority and allows more autonomy to users. We 
chose the RSA public-key scheme because it has been thor­
oughly studied and because of the symmetry between secrecy­
and signature-encryption in that system. If RSA ever proves 

USERN 
· • · 

COMMUNICATION 
NETWORK 

Figure 1-System overview 

SECURE 
AREA 

!WHEN PKF 
IS UPDATED I 

I 

PLAiN 
TEXT -- Co -
PORT , 

mn ·· .m1,mO 
DES 

CIPHER 
TEXT 
PORT . 

- .. 

CHECKSUM • (I, Cn' n) 

Figure 2-Checksum calculation (I = initialization vector, mo, m!, ... , 
mn = 56-bit blocks of message, co, cl , ... , Cn-I = 64-bit blocks of ciphertext) 

insecure, we could switch to some other secure public-key 
system. The RSA scheme is slow even with special hardware,7 
and that is why we use a hybrid approach. 

Because we wish to sign entire messages or files and yet 
want to apply the RSA signature only to a few blocks (to save 
encryption time), some sort of one-way hash functionS is re­
quired. We use the DES to convert any text to a single 64-bit 
result, which we call a checksum. The method is illustrated in 
Figure 2. Since 64 bits are used, it is not feasible (assuming 
DES secure) for an opponent to construct an alternate text 
with the same checksum as the given text. 9, 10 

THE PUBLIC KEY FILE AND ENROLLMENT 

The public RSA keys of all users are stored in a special public­
key file (PKF).l1 (Also described in "The Cryptoprocessor: 
Hardware for a High-Level Cryptographic Instruction Set," 
by C. Mueller-Schloer, in preparation.) This file is accessible 
for reading except when created or updated by a distinguished 
user called the central authority (CA). The CA first generates 
one pair of RSA public and secret keys, called the network 
public key (PK.N), and the Network Secret Key (SK.N). 
When a user U executes "NewUser," the CA receives the 
username, the user public key (PK.U), the user secret key 
(SK.U) encrypted under a random local DES key (Kloc), and 
a special codeword (CW) for recovering the DES key. The CA 
forms the checksum (CS) of everything, adds a timestamp 
(TS), and signs these two with the network secret key. Thus 
a PKF entry looks like this: 

Username, PK.U, <SK.U>Kloc, CW, {CS, TS}SK.N. 

(Here < .. , > is used for DES encryption and { ... } for 
RSA encryption.) When decrypted under PK.N, the precise 
format of the timestamp will serve to authenticate the entry. 

As long as the SK.N remains secure, it will not be feasible 
for anyone to generate fake PKF entries, since the decrypted 
checksum must match the checksum generated from the first 
part of the entry. The timestamp is the time the entry was 
made, or the time the PKF was reconstructed. This timestamp 



will prevent an old entry from being substituted for a current 
one. The time of each PKF reconstruction should be widely 
distributed; therefore each PKF entry must be timestamped 
no earlier than the overall timestamp. 

An opponent can create fake network secret and public 
keys and then create a whole fake PKF. This can be defeated 
by wide dissemination of the network public key. If the per­
sonal data card is available, each user will have his/her own 
copy of the network public key, supplied when he/she enrolls. 

Notice that we are not claiming for this system perfect secu­
rity in the face of the "pervasive deceit" described by Sim­
mons. 11 It is instead a practical approach. 

THE CRYPTOPROCESSOR 

As mentioned earlier, the cryptography functions of our sys­
tem are all concentrated in a component called the cryptopro­
cessor (CP). Initially, we implemented this component in soft­
ware, but we are now proceeding with a multibus compatible 
hardware implementation based on the Intel 8086 micro­
processor and a Western Digital DES chip. The CP performs 
the basic functions of encryption/decryption and key gener­
ation for both DES and RSA schemes. It provides a well­
defined, high-level, crypto-oriented instruction set that can­
not be modified from the outside and therefore helps prevent 
interference by an intruder. Certain sensitive data like pass­
words and keys are stored internally in CP and can be manip­
ulated only by using the CP's instruction set. (A command 
"OutputSecretKey," for example, does not exist!) Since RSA 
key generation on a microcomputer is relatively slow, it will 
occur as background activity in the CP. 

The cryptoprocessor has a protected memory section called 
the security status table (SST). The SST is mostly to be filled 
in at "SignOn" time, using the input username and password 
or, if available, the hardware personal data card (PDC). (See 
the next section.) The PDC and the CP hardware solution will 
be described in detail in subsequent papers ("Cryptographic 
Protection ... " and "The Cryptoprocessor ... ," both by C. 
Mueller-Schloer, cited previously). 

PROCEDURAL DETAILS 

We have tried to use simplified versions of standard protocols. 
In particular, we have chosen a public key file ll and time­
stamps13 instead of more elaborate protocols.6 

In most cases the timestamps on messages that are sent, 
received, and acknowledged will be relatively close in time, so 
both parties will agree on the time of a message. Timestamps 
on registrations or notarizations applied by a third party will 
serve to settle any disagreements. 

Let us go over the actions that occur at "Sign On" time. As 
Figure 3 shows, the PKF entry contains the username; the 
user public key (PK. U); the user secret key (SK. U), en­
crypted under a special Local DES key (Kloc); and a special 
codeword used to hide Kloc. The Local DES key is an xor 
combination of the codeword and the input user password, so 
an opponent with access to the PKF cannot recover Kloc and 
hence cannot calculate SK. U. It is important that we allow 
passwords of arbitrary length (and encourage long, easily-

A Cryptography-Based Secure Office System 491 

PKF ENTRY, 

PROCESSOR 

I 

CRYPTO 

SST ENTRY, 

INPUT 
USER 

PASSWORD 

Figure 3-Use of public key file entry at "SignOn" time to initialize security 
status table of the cryptoprocessor 

remembered ones), so Kloc is formed by first getting the 
checksum of the password and then xoring with the code­
word. The codeword itself is formed during the "Newuser" 
command by xoring the password checksum and Kloc. 14 Thus 

codeword = checksum xor Kloc, 

where Kloc is randomly chosen. Since xor is self-inverse, 

Kloc = checksum xor codeword. 

In case a hardware personal data card (PDC) is used, every­
thing is handled in the same way except that the SST informa­
tion originates from the PDC rather than the PKF. "SignOn" 
results in the work station's being temporarily dedicated to 
the user performing the operation. 

Now consider the "SendSecure" command. User U starts 
with a file F and destination name D. U generates a random 
DES key KT and forms < F> KT, the file F encrypted under 
KT. Then U signs and encrypts for D the DES key KT. Finally 
U forms CSl, the checksum of everything up to this point, 
adds a timestamp TS1, and signs this. Thus 

U - > D, <F> KT, { {KT}SK.U }PK.D, {CS1, TS1}SK.U 

is sent to D, where U - > D serves as cleartext routing 
information. 

In case the file is routed through a notary public N, N forms 
CS2, the checksum of everything, adds a timestamp TS2, and 
signs the result. The notary public N can also recover CS1 and 
check that it is the checksum of < F > KT. Thus N adds 

{CS2, TS2}SK.N. 

Finally the destination D can acknowledge by forming CS3, 
the checksum of everything received, and signing and en­
crypting this for U (along with a new timestamp TS3). Thus U 
receives back what N added on and 

{ {CS3, TS3}SK.D }PK.U. 

Of course there is no need for D to send back what U origi­
nally sent out. The notary public will keep a copy of what he 
added on, but not of the original encrypted file. Thus all 



492 National Computer Conference, 1982 

traffic is of a relatively small size except for the encrypted file 
itself. 

When a secure two-way channel is opened, the result is that 
a common DES key resides in the SSTs of the communicating 
stations. For key distributions public key encryption is used. 15 

The file security system uses the local DES key Kloc for file 
encryption/decryption. A highly secure registered mail system 
is under development. 

CONCLUSION 

We have designed and implemented an experimental secure 
communications system for a network of personal work sta­
tions. The underlying cryptographic mechanisms guarantee a 
high level of security but are totally transparent to the user. 
The functionality matches that of today's paper mail security 
procedures. The confinement of security-related processing to 
one hardware device (the cryptoprocessor) with a well­
defined high-level instruction set allows for higher speed and 
better protection of sensitive areas. The use of public-key 
cryptography limits the need for a heavily involved central 
authority. Other than publishing one network public key, no 
predistribution of keys is necessary. Users are not restricted to 
their own workstation but are assured full mobility in the 
network. 

ACKNOWLEDGMENT 

During part of this research the second author was supported 
by a grant from Siemens Corporation. 

REFERENCES 

1. Lagger, H., C. Mueller-Schloer, and H. Unterberger. "Security Aspects 
of Computer Controlled Communications Systems" (in German). 
Elektronische Rechenanlagen, 22 (1980), pp. 276-280. 

2. Denning, D. E. "Secure Personal Computing in an Insecure Network." 
Communications of the ACM, 22 (1979), pp. 476-482. 

3. "Data Encryption Standard." Federal Information Processing Standard 
(FIPS) Publication No. 46, National Bureau of Standards, January 1977. 

4. Rivest, R. A., A. Shamir, and L. Adleman. "A Method of Obtaining 
Digital Signatures and Public-Key Cryptosystems." Communications of 
the ACM, 21 (1978), pp. 120-126. 

5. Merkle, R. c., and M. E. Hellman. "On the Security of Multiple 
Encryption." Communications of the ACM, 24 (1981), pp. 465-467. 

6. Needham, R. M., and M. D. Schroeder. "Using Encryption for Authen­
tication in Large Networks of Computers." Communications of the ACM, 
21 (1978), pp. 993--999. 

7. Rivest, R. L. "A Description of a Single-Chip Implementation of the RSA 
Cipher." Lambda, 1 (1980), pp. 14-18. 

8. Merkle, R. c., and M. E. Hellman. "Hiding Information and Signatures 
in Trapdoor Knapsacks." IEEE Transactions on Information Theory, 
IT-24 (1978), pp. 525-530. 

9. Mueller-Schloer, C. "The Usage of DES-generated Checksums for Elec­
tronic Signatures." Internal Report CRT-81-TM-043, Siemens Cor­
poration, Cherry Hill, New Jersey, September 1981. 

10. Davies, D. W., and W. L. Price. "The Application of Digital Signatures 
Based on Public Key Cryptosystems." In J. Salz (ed.), Proceedings of the 
Fifth International Conference on Computer Communication, The Inter­
national Council for Computer Communication, 1980, pp. 525-530. 

11. Simmons, G. J. "Secure Communications in the Presence of Pervasive 
Deceit." In Proceedings of the 1980 Symposium on Security and Privacy. 
IEEE Computer Society, 1980, pp. 84-93. 

12. Merkle, R. C. "Protocols for Public Key Cryptosystems." In Proceedings 
of the 1980 Symposium on Security and Privacy. IEEE Computer Society, 
1980, pp. 122-134. 

13. Denning, D. E., and G. M. Sacco. "Timestamps in Key Distribution 
Protocols," Communications of the ACM, 24 (1981), 8, pp. 533-536. 

14. Wagner, N. R., "Practical Approaches to Secure Computer Systems," 
Technical Report UH-CS-81-3, Computer Science Department, University 
of Houston, Texas, April 1981. 

15. Popek, G. J., and C. S. Kline, "Encryption and Secure Computer 
Networks," Computing Surveys, 11 (1979), 4, pp. 331-356. 



Criteria for a standard command language based 
on data abstraction 

by DAVID BEECH 
Hewlett-Packard Company 
Palo Alto, California 

ABSTRACT 

A solution is offered to some fundamental problems that have thwarted previous 
efforts to develop a standard command language. The technical approach is based 
on the form of modularity provided by data abstraction, and this is introduced from 
the point of view of the end user, together with a discussion of the advantages and 
disadvantages that might be perceived at this level. This leads to the statement of 
a simple but stringent set of criteria for the inclusion of functional capabilities in a 
standard command language and the testing of various candidates against them. 
Some candidates are accepted and others rejected, resulting in an initial proposal 
for the scope of a standard command language that is small and simple enough to 
have a hope of success. 

493 





Do not multiply entities without necessity. 

William of Ockham (1285-1349). 

INTRODUCTION 

Command languages are at a crucial stage of their devel­
opment, with considerable pressure to define a standard com­
mand language, but a dearth of good proposals. Many users 
are becoming impatient for a uniform method of access as 
they are confronted with an ever wider variety of systems and 

, heterogeneous networks, and they very, reasonably hope that 
a standard command language will be a distinct improvement 
over existing command languages. Yet there have been com­
mittees working within the American National Standards In­
stitute since 1969 without evident success. Other national 
groups have engaged in preliminary skirmishes, CODASYL 
has tried its hand, and there is even a danger that the ADA 
infantry will aim to persuade us that what is good for em­
bedded military personnel is good for us too. Now the Inter­
national Standards Organization has been called upon to find 
a way of bringing order out of chaos. 

A dozen years with so little progress suggest that there are 
some fundamental problems that have not been properly ad­
dressed. It is the thesis of this paper that these problems can 
be attacked by m~ans that are sound in theory and viable in 
practice. Some surgery is required-or, more precisely, the 
application of Ockham's razor, the philosophical principle of 
conceptual economy. The result could be a standard com­
mand language that would make a rational start to providing 
uniformity for the user and would offer a framework within 
which more widespread standardization could evolve. 

Some of the fundamental problems besetting previous ef­
forts have been: 

t 

1. A lack of criteria for placing any bounds on the poten­
tially large set of commands that might be included as a 
defined part of the command language 

2. A lack of consensus about the detailed semantics of 
system functions to be invoked by commands 

3. The difficulty of making richness of system function 
comprehensible to the user 

4. The temptation to make command languages too much 
like programming languages 

Since some form of modularity holds promise as an ap­
proach to the solution of each of these problems, and data 
abstraction has been extensively developed as a means of 
achieving modularity in programming languages,l-4 this is the 
conceptual tool I shall employ. The operations that can be 
performed on a system will be modularized, i.e., partitioned 
into sets of operations that can be performed on different 
types of object, such as particular types of database system or 

Criteria for a Standard Command Language 495 

text editor. The command language will then provide for such 
operations to be invoked; but the definitions of their seman­
tics will reside within the various object types, whose potential 
for standardization becomes a set of separable questions. 
These should be addressed by specialists in their functional 
areas, who could most effectively be organized into distinct 
standards committees within a modular framework. 

This will lead to solutions to each of the problems listed 
earlier: 

1. Criteria will be proposed which limit the command lan­
guage itself to a handful of commands. 

2. Semantic controversies will then be kept within the con­
fines of particular types of object and need not always 
produce an outright winner; e.g., more than one type of 
database model may be offered. 

3. Modularity helps the user by reducing arbitrary com­
plexity to more comprehensible interactions within and 
between typesuf object. 

4. The command language will be deprived of general-pur­
pose programming capabilities; the implication is that 
programming languages must also be able to invoke the 
operations accessible from the command language. 

USER VIEWPOINT 

The data abstraction concept 

An intuitive way of describing data abstraction is that data 
are pictured as residing in black boxes that conceal their rep­
resentation. All that is known is the set of operations that may 
be applied to a particular type of black box, and the definition 
of the responses that will be returned (Figure 1). The re­
sponses may depend on previous operations, so one way of 
modeling this is to think of the black boxes as having states 
that may be changed by operations. 

How does this affect the command language user's view of 
a system? First, consider users of a conventional command 
language. They issue sequences of commands to one large 
black box; e.g., 

logon beech 
copy MCL MCL2 
edit MCL2 

compile MCL2 
run 

In this example the verbs are all distinct, since they are all 
being interpreted at the same level, as it were, by a single 
black box. This is the monolithic approach: the commands all 
belong to one language, symbolized by their being described 



496 National Computer Conference, 1982 

OPERATIONS RESPONSES 

Figure I-An abstract object 

in one massive manual. It is the degenerate case of data ab­
straction. 

I must emphasize that, for the purposes of this paper, I shall 
work with this verb-and-operands model of the essential infor­
mation in a command without attending to important, but 
secondary, questions of alternative representation via syn­
tactic sugaring, special keys, menus, prompting, and so forth. 

Some commands, such as "edit," probably put the user into 
a mode in which subsequent inputs are directed to the text 
editor rather than the command language processor, and 
these inputs may include a separate sublanguage of commands 
to be used at this deeper level until it is decided to return to 
the top level. Certainly I shall retain the concept that a com­
mand passes the user's input/output port to the operation 
being invoked, and I shall return to the topic of modes shortly. 
But this is still a restricted way of offering modularity, which 
is especially clumsy when issuing a single command to a partic­
ular component of a system, requiring three commands in all: 
to enter the mode, issue the useful command, and return from 
the mode. 

Suppose we call a black box an object and conceive of our 
outermost system object as being populated by interior ob­
jects that communicate with each other by means of oper­
ations and responses (Figure 2). Then we would achieve full 
flexibility if we could immediately name both an object and a 
particular operation to be performed on it, say with a qualified 
name of the form obj.op. Commands with certain simple 
names like "logon" might then be acted upon directly by the 
command language processor object, while those such as 
"mymail.read" would merely relay the "read" operation to 
the object "mymail," which might be my electronic mail sys­
tem. Definition of such a "read" command would then be the 
business of "mymail," not of the command language, and the 
name need only be unique among the operations of "mymail." 
It is as though the command language processor object of­
fered a "run" operation, which acted on any composite name 
to relay the specified command to (and response from) the 
specified object. 

Thus the visible difference to the command language user 
could be very slight, but even this much difference might be 
too great! If there were only one "read" operation available to 
(or normally used by) a particular user, why should it be 
necessary to qualify the name just for the sake of some prin­
ciple of modularity? This is a valid complaint, and I shall take 
it as a requirement for the naming scheme later that it should 
be possible, via controlled defaults or synonyms, to use single 
words to represent composite command names. 

We are now in a position to see how the designer of an 
object type may choose to offer its functions only within a 

special mode, or always by direct invocation from the com­
mand language (or from programs), or both ways. The modal 
approach would put only one operation, e.g., "mymail.start," 
into the definition of the object; this would then include in its 
semantics the possibility of a dialogue, including data inputs 
from the user that had the form of commands directed to the 
mailer in its private language. The direct approach would put 
the specific operations into the interface, and the two ap­
proaches could, if desired, be combined to allow equivalent 
function to be obtained by either means. 

Instances and names 

We envisage command languages as being merely users of 
operations that are defined and implemented in programming 
languages.s (Note that these programming languages do not 
even have to be abstract type languages. They must just be 
able to implement callable routines that provide the semantics 
desired of an abstract type.) An abstract type is used by cre­
ating one or more instances of the type and performing per­
mitted operations on these instances. 

We must consider here the important distinction be­
tween general languages of the abstract type (e.g., CLU,l 
ALPHARD,2 PLAIN3

), with potentially multiple instances of 
a type; and "module" languages (e.g. MODULA-24

), which 
are similar but permit at most one instance of a module. This 
affects the way that a language specifies the creation and 
naming of instances; and the naming, at least, is bound to be 
relevant to the command language user. With a module ap­
proach, there is no need to distinguish between the name of 
the module and the name of the instance, whereas with an 
abstract type a command must indicate the instance and not 
the type (e.g., "mymail" and not "mailectype"). I prefer the 
abstract type of approach as a more natural way of treating 
multiple instances than having multiple modules whose equiv­
alence (apart from name) has to be determined by inspection. 
However, the difference to most command language users 
would normally be negligible, since they would just know 
what names to apply to the objects they wanted to use without 
worrying how they were derived. 

LOGON 
RUN 
• • • 

NAME 
MANAGER 

COMMANDS RESPONSES 

ACCESS 
CONTROL 
MANAGER 

ETC. 

COMMAND 
LANGUAGE 
PROCESSOR 

Figure 2-A system populated by abstract objects 



Advantages and disadvantages 

I have already touched on the ways in which this form of 
modularity can work to the advantage of the user: in making 
large systems more comprehensible by dividing them into 
manageable pieces, in encouraging well-specified interfaces, 
and in providing a route to a useful initial standard rather than 
none at all. Beyond this, it will allow for experience to be 
gained with other types of object before deciding whether 
they are ripe for standardization. This will include ex­
perimentation with alternative ways of doing similar things, 
an approach that is much harder to manage in a monolithic 
language. 

It is time now to look for possible disadvantages. I have 
already stated that I intend to develop a naming scheme to 
make it possible to avoid the burden of name qualification. 
But, going below the syntax to the underlying modularization, 
what if the abstraction made by the system designer does not 
coincide with that which is most natural to the user? For 
example, commands to filer, editor, formatter, and photo­
composer types of object may appear to the user to be all 
operating on an object of type "document." The use of syn­
onyms will provide a superficial solution here, and this may 
often be sufficient. The simplest method is to replace all name 
qualification by single command names, so that the modu­
larity is no longer visible. The more ambitious method, that of 
introducing differently grouped name qualifications, could be 
just as easy as a matter of naming; but the transformation of 
the semantics to fit the new conceptualization could be a very 
difficult exercise. The net result is that one has to live to some 
extent with the structure of a given system in order to retain 
one's sanity. One can always do at least as well as with the 
monolithic description, and usually much better, but one can­
not easily produce arbitrary reconceptualizations. 

A slightly more discomfiting criticism of this form of ab­
straction is its inherent asymmetry. One object is essentially 
selected as the principal operand of an operation, and the 
others are passed to it in subsidiary roles. This is often a 
natural reflection of relative importance, but not always. If an 
operation is designed to transfer a piece of information from 
an object of type x to an object of type y, in which abstract 
type should it be provided? In principle, a new type could be 
constructed, say xy, containing all symmetrical operations on 
the types x and y. However, in practice the combinatorial 
requirement for such types, and, even worse, for instances of 
an xy object for each pair of instances of x and y, would count 
heavily against such a solution. This is not likely to be a major 
problem for command language users; but, where it might 
prove difficult to remember which type a particular operation 
was associated with, a better solution would be to offer the 
corresponding operation in the other type(s) also. 

Along a different line, a disadvantage of adopting an initial 
command language that is not all-inclusive is that "the good is 
the enemy of the best": it may delay or prevent the arrival of 
the universal command language. This ob}ection had to be 
included for the pleasure of refuting it, since the history of 
efforts to date supports the view that the search for an impres­
sively comprehensive command language is itself the principal 
agent of delay and appears capable of indefinitely delaying the 
production of anything whatsoever. 

Criteria for a Standard Command Language 497 

Finally, I shall surely be assailed for believing that it is 
sufficient for the command language to be able to perform 
operations on objects without also being able to construct 
procedures, to iterate and branch and declare its own vari­
ables, and generally to aspire to be a programming language. 
The defense here is that it is extremely difficult to design a 
good programming language, so the choice would be between 
a poor result and even longer delays; and that a new program­
ming language is not needed for the purpose of putting logic 
around commands--existing programming languages are al­
ready extensively known and supported and can generally 
serve quite well. Improvements in language and implementa­
tion may be necessary in some cases for interactive use and 
convenient access to system function, but the payoff will then 
be enormous in terms of the avoidance of artificial discon­
tinuities between what can be expressed in the command lan­
guage and what in the programming language. One method of 
embedding system function in programming languages has 
been discussed in detail elsewhere. 6 

Taking stock 

The results so far are mildly encouraging in improving 
comprehensibility, quite strong in delegating areas of dis­
agreement to particular abstract types and in establishing a 
boundary between command languages and programming 
languages, and far too successful (for some tastes) in limiting 
the function included in the command language per se. Every­
thing apart from "run" could be delegated to the abstract 
types, and this approach has been successfully embodied in 
the Lilith machine. 7 A command language standard with this 
single command in a suitable embodiment ought to be 
achievable, but it might be considered to miss an opportunity 
to introduce more widespread uniformity. Are there other 
operations which should not be left to designers of individual 
abstract types? If so, we should be prepared to admit them, 
and we accordingly propose slightly more generous criteria for 
inclusion of functional capability. 

CRITERIA FOR INCLUSION 

A particular functional capability should be considered for 
inclusion in a standard command language if and only if 

1. It provides one of the following: 
a. The means for a user to begin or end a session in 

which commands are issued to a system 
b. A general means of invoking operations conceived as 

acting on abstract types of object whose semantics 
are not defined within the command language 

c. Action which it is desirable to define uniformly for all 
or most abstract types accessible from the command 
language 

2. It is not already available in the command language, 
except perhaps with extreme inconvenience. 

We proceed now to consider some candidates for inclusion. 
Invocation has to be present, and we shall not attempt to deal 
here with questions of its syntax or treatment of operand 



498 National Computer Conference, 1982 

types. Otherwise, apart from LOGON and LOGOFF, we 
shall be dealing with functionality which is common to mul­
tiple abstract types. Operations will be named in capitals 
where they correspond to potential explicit commands in a 
command language. 

Possible ways of treating operations applicable to multiple 
types are 

• A recursive subtype structure (d. SIMULA8
), where the 

subtype inherits the operations of the parent type 
• A restricted two-level structure with all specific types 

known to the command language nested within a general 
object type 

• Separate abstract types, some of whose operations are 
implicitly involved in command language operations such 
as "run" 

The last method is selected for its simplicity and adequacy for 
our purposes. 

LOGGING ON and OFF 

The question of the inclusion of some form of LOGON and 
LOGOFF has been prejudged in its favor by one of the cri­
teria. The reason for this strong line is the importance of 
enabling users to get started in a simple, standard way rather 
than receiving a disastrous first impression of the complexity 
and idiosyncrasies of computer systems. Symmetrically, but of 
less importance, users should be able to take their leave with­
out embarrassment. 

However, it is necessary to cater to the spectrum from the 
one-person computer that does not require any identification 
of the user to the highly protected system that has elaborate 
and specialized authorization tests. This can be done by allow­
ing some systems to make LOGON and LOGOFF optional 
but requiring all to recognize them. The semantics of 
LOGON will include optional prompting for other forms of 
authorization if necessary, and LOGOFF will allow for some 
implementation-defined cleanup. 

LOGON interacts with access control (see below) in that 
before it is performed (in systems that require it) only HELP 
and LOGON are available. The semantics of LOGON allow 
it to give the user some initial access rights, obtained from a 
"user authorization" object. It also interacts with naming (see 
below) in establishing an initial name space for the user. 
LOGOFF reverts to the HELP or LOGON situation. 

Help 

A uniform method of seeking help should be available to 
command language users so that they do not need too much 
recursive help in using this facility. The HELP command ad­
dressed to the "command language processor" object will 
sometimes produce information directly related to that ob­
ject, e.g., how to logon; or influenced by that object, e.g., 
what menu of commands is available to the user at a given 
point; or even customized by that object as a result of forming 
an intelligent model of the user during previous interactions. 
But much of the information desired will be about the oper-

ations that may be invoked on other abstract types, and these 
types will be required to include "help" operations which may 
be invoked by the command language processor in order to 
support its uniform helpfulness. This does not preclude the 
direct invocation of these "help" operations, or indeed the 
provision of other more specialized kinds of help for particu­
lar abstract types. 

Creation and destruction 

Creation and destruction are the most fundamental oper­
ations common to different object types, serving as a prereq­
uisite for, or veto on, all other operations on an object. Do 
they satisfy our criteria? The answer is clearly "yes" if uni­
formity is interpreted loosely and "no" if it is taken strictly. 
The major problems are with the widely differing parameter­
ization of creation for different object types and the varying 
semantics of destruction of types of objects that may be shared 
or may cause cascading destruction of other objects. 

We propose that CREATE and DESTROY be grudgingly 
admitted, with uniformity in the names of the commands and 
in their interaction with the naming and access control of the 
objects they deal with; but that they allow for type-dependent 
parameters and semantics beyond this. 

Naming 

The "run" operation must be able to resolve names of oper­
ations on any abstract type and possibly names being passed 
as operands. Its semantics become very weak if this resolution 
is system-defined, and it would be helpful to users of different 
systems to have a common method of name qualification and 
aliasing to overcome the need for names to be unique system­
wide (or networkwide). The earlier requirement for synonyms 
and default name qualification can be satisfied by this more 
general approach, which we accept as satisfying the criteria. 

We therefore postulate an abstract type "Name Manager" 
(NM), with an operation "resolve" implicitly used by the com­
mand language "run" and an operation "name" used by ab­
stract types when intended names are passed to them in a 
"create" operation. A particular instance of an NM is associ­
ated with a user in the "user authorization" object, and it 
provides the initial name environment after a successful 
LOGON. Otherwise, the NM behaves like any other object 
accessible from the command language, and explicit oper­
ations on it may be invoked in the normal way. The NM 
abstract type can be defined to correspond to a conventional 
directory structure, i.e., a tree with additional links to make 
it a network, since there seems to be reasonable consensus 
that this is a satisfactory model. The set of explicit operations 
could be RENAME, REMOVE, EQUATE, and EXPAND 
(applied to an incomplete, possibly ambiguous, name). 

Access control 

If a system supports any form of access control, it is de­
sirable to apply it as a uniform scheme across all types of 
object for it to be effective; so this appears to be another 



strong prima facie candidate. With the data abstraction mod­
el, it is attractive to base access control on subsetting the 
permitted operations of the abstract types, with other refine­
ments that we cannot pursue here. A similar approach is 
proposed to that used for naming: a "check access" operation 
is implicitly used by the command language "run," and other 
operations on the "Access Control Manager" (ACM) are ex­
plicitly available for direct invocation. 

A system that does not wish to support access control can 
appear to the user as one that allows all operations except the 
explicit operations on the ACM. It can then use its normal 
optimized implementation, rejecting the ACM operations but 
not checking anything else. 

We therefore admit access control to the command lan­
guage, with explicit operations that could be GRANT and 
REVOKE. 

Accounting 

Accounting is another function relevant to all types of ob­
ject. It could be treated similarly to naming and access con­
trol, since command language actions implicitly use system 
resources, and explicit operations could be provided that were 
directed to the "accounting manager" object. However, the 
latter operations might not be very widely accessible, and 
there is little consensus about the best way of charging for 
consumption of resources. Therefore, the decision proposed 
here is that the semantics of the command language actions 
should allow for system-defined accounting to be performed 
and that the command language should treat any accounting 
manager as an ordinary object about which it has no special 
knowledge. 

Concurrent invocation 

In the absence of a consensus on good language for concur­
rent invocation, we propose an interim treatment until suit­
able forms can take their rightful place alongside synchronous 
invocation in the command language. Particular types of con­
currency manager might exist in different systems, with op­
erations like START an operation on some other object, 
ENQUIRE_StATUS, and WAIT. An alternative approach, 
available with programming languages that offer concurrency 
and that support access to the desired operations on objects, 
is to invoke a processor of such a programming language and 
express the concurrency requirements in its language. 

CONCLUSION 

I have discussed the applicability of data abstraction to com­
mand languages and arrived at the view that it provides a good 

Criteria for a Standard Command Language 499 

conceptual structure for issuing commands to operate on dif­
ferent types of object, leaving the initial definition and im­
plementation of object types to fully-fledged programming 
languages. 

The modularity inherent in this approach suggested some 
stringent criteria that could be applied to reduce to soluble 
proportions the problems of designing a potential standard 
command language. Applying these criteria, we admitted oniy 
the following commands: 

• "Run" the operations on instances of abstract types 
• LOGON and LOGOFF 
• HELP 
• CREATE and DESTROY 
• Implicit "resolve" and "name", and certain explicit com­

mands, to a name manager 
• Implicit "check access", and certain explicit commands, 

to an access control manager 

This is not to deny the possibility of or need for standard­
ization of other system functions. On the contrary, it would 
encourage the timely and efficient consideration of such 
matters by experts working within a modular structure of 
separate committees, some of which already exist. 

ACKNOWLEDGMENTS 

Meetings of IFIP Working Group 2.7 have provided a helpful 
environment for the development of these ideas. 

REFERENCES 

1. Liskov, B., R. Atkinson, T. Bloom, E. Moss, C. Schaffert, R. Scheifler, 
and A. Snyder. CLU Reference Manual. Lecture Notes in Computer 
Science, 114. Berlin: Springer-Verlag, 1981. 

2. Wulf, W. A., R. L. London, and M. Shaw. "An Introduction to the 
Construction and Verification of Alphard Programs." IEEE Trans­
actions on Software Engineering, SE-2(1976), 4. 

3. Wasserman, A. I., D. D. Sheretz, M. L. Kersten, R. P. van de Riet, 
and M. D. Dippe. "Revised Report on the Programming Language 
PLAIN." ACM SIGPLAN Notices, 16 (1981), 5. 

4. Wirth, N. MODULA-2. Eidgen6ssische Technische Hochschule, 
Zurich, March 1980. 

5. Beech, D. "What is a Command Language?" In D. Beech (ed.), 
Command Language Directions. Amsterdam: North-Holland, 1980. 

6. Beech, D. "Modularity of Computer Languages." IBM United Kingdom 
Laboratories, TR 12.190, October 1980. 

7. Wirth, N. "Lilith: A Personal Computer for the Software Engineer." 
Proceedings of 5th International Conference on Software Engineering, 
1981, pp. 2-15. 

8. Dahl, 0.-1., K. Nygaard, and B. Myhrhaug. "The SIMULA 67 Com­
mon Base Language." Norwegian Computing Center, Oslo, 1968. 





Integration of bottom-up and top-down contextual knowledge 
in text error correction 

by SARGUR N. SRIHARI, JONATHAN J. HULL, and RAMESH CHOUDHARI 
State University of New York at Buffalo 
Amherst, New York 

ABSTRACT 

This paper presents an efficient method for the integration of two forms of con­
textual knowledge into the correction of character substitution errors in words of 
text: bottom-up knowledge in the form of character transitional probabilities and 
top-down knowledge in the form of a dictionary. The method is a modification of 
the Viterbi algorithm-which maximizes string a posteriori probability by using 
character confusion and transitional probabilities-so that only legal strings are 
output. The algorithm achieves its efficiency by using a trie structure representation 
of a dictionary in the search process. An analysis of the computational complexity 
and the results of experimentation with the approach are presented. 

501 





I. INTRODUCTION 

Computer correction of errors in text is important for flex­
ibility in communication between computers and people. The 
capabilities of present commercial machines for producing 
correct text by recognizing words in print, handwriting, and 
speech are very limited. For example, most optical character 
recognition (OCR) machines are limited to a few fonts of 
machine print or to text that is handprinted under certain 
constraints; any deviation from these constraints will produce 
highly garbled text. Moreover, human beings perform better 
than these machines by at least an order of magnitude in error 
rate, although human performance when perceiving a letter or 
phoneme in isolation is only comparable to that of commercial 
machines. This is due to human knowledge of contextual fac­
tors like letter (or phoneme) sequences, word dependency, 
sentence structure and phraseology, style, and subject matter 
as well as associated skills such as comprehension, inference, 
association, guessing, prediction, and imagination, all of 
which take place very naturally during the process of reading 
and hearing. 

It is clear that programs that are able to correct errors in 
text need to be able to use contextual knowledge about the 
text as well as knQwledge about the likely sources of textual 
errors. A number of programs for using some form of con­
textual knowledge in text error correction are described in the 
literature. Among these one can discern two basic ap­
proaches: those that are data-driven, or bottom-up, and those 
that are concept-driven, or top-down. 

Data-driven algorithms for text error correction proceed by 
refining successive hypotheses about an input string. Exam­
ples of such an approach are those that use a statistical repre­
sentation of contextual knowledge--e.g., a Markovian model 
of text source, which consists of a set of tables representing 
the probability of occurrence of a letter, given that a set of 
letters have occurred previously. 

Concept-driven algorithms proceed with an expectation of 
what the input string is likely to be and proceed to fit the 
data to this expectation. Examples are algorithms that use 
implicit or explicit representations of dictionaries, syntax, 
and semantics. 

In what follows we describe an algorithm that effectively 
merges a bottom-up refinement process based on the use of 
transition probabilities with a top-down process based on 
searching a trie-structure representation of a dictionary. The 
algorithm is applicable to text containing an arbitrary number 
of character substitution errors, such as that produced by 
OCR machines; thus the method excludes character deletion, 
insertion, and transposition errors that a typographical error 
correction algorithm needs to consider. 

Text Error Correction 503 

II. VITERBI ALGORITHM 

The Viterbi algorithm (VA) is a method of computing the 
most probable word that could have caused the observed 
word. This probability is computed by taking into account the 
probabilities of confusion between letters and the proba­
bilities of cooccuring n-grams. 

Let the observed word be X = XoXl ... XmXm+l where Xo 
and Xm + 1 are the delimiters of the m-Ietter word. The proba­
bility that a word Z = ZOZI ... ZmZm+l could have caused X 
is expressed by using Bayes decision theory as 

P(Z/X) = [P(X/Z)*P(Z)]/P(X) 

where P(X/Z) is the probability of observing X when Z is the 
true word, P(Z) i~ the a priori probability of Z, and P(X) is 
the probability of string X. Since P(X) is independent of Z, 
the word Z that maximizes P(Z/X) can be determined by 
maximizing the expression 

G(X/Z) = log P(X/Z) + log P(Z). 

Storing the P(X/Z) distribution in memory is impractical 
because of the large number of combinatorial possibilities for 
X and Z. If we assume conditional independence among 
Xo,Xb ... , Xm + b then 

m+l 
log P(X/Z) = 2: log P(X/Zi). 

i=O 

According to this assumption, the observed letters are inde­
pendent of each other, which is valid for printed text but not 
necessarily so for cursive script. The probability P(X/Zi) is the 
probability of observing letter Xi when the true letter is Zi, 
which is called the confusion probability. 

If we assume that words are generated by an nth-order 
Markov source, then the a priori probability P(Z) can be 
expressed as 

where P(Zk/Zk-n ... Zk-l) is called the nth-order transitional 
probability, i.e., the probability of observing Zk when the 
previous n letters are Zk-n ... Zk-l' 

In the case of n = 1, 

P(Z) = P(Zm+l/Zm) ... P(ZtfZo)*P(Zo) 

and the word Z with maximum a posteriori probability is one 
that maximizes 

m+l 
G1(X,Z) = 2: log P(X/Zi) + log P(Z/Zi-l) 

i=l 



504 National Computer Conference, 1982 

nodes. The cost of a path is then the sum of all the edge and 
NEXT node values in the path. 

Some generalizations of the VA have used either a fixed 
number of alternatives that is less than 26, called the modi­
fied Viterbi algorithm (MVA). 1 or a variable number 

AL T of alternatives2 - for each' Zk. 'These alternatives can be 

Figure I-Trie structure representation of the dictionary A, AN, AND, 
ANN, ANNOY, BAD, BADE, BADGE, DAY, DID, FAD, FAN, FAR­
Each node has a 5-bit word-length indicator array and word termination is 

indicated by a quote mark. 

where it is assumed that P(XoIZo) = P(Xm+t/Zm +1) = 1, i.e., 
the delimiter symbol is perfectly recognized. In the case of 
n = 2, the corresponding expression is 

m+l 
Gz(X, Z) = 2: log P(X/Zi) + log P(Z/Zi-ZZi-l), 

i=l 

where 

The VA is a method of finding the word Z that maximizes 
Gi (X, Z) without having to compute all 26m possible Gi 
(X,Z). The method is based on a dynamic programming for­
mulation, which leads to a recursive algorithm. Essentially, if 
Lj , j = 1, ... 26, represents the jth letter ofthe alphabet, then 
max[Gi(Xl ... Xk, Zt ~ .. Zk-lZk = L j )] over all possible val-
ues of Zl ... Zk-l can be computed trivially if we know the 26 
values corresponding to max[Gi(Xl ... Xk-t. Zl .. . 
Zk-ZZk-l = Lr )], r = 1, ... , 26 over all possible values of Zl .. . 
Zk-2. This formulation reduces the complexity of the algo­
rithm to 0(262), which is superior to 0(26m), required by the 
exhaustive search. The algorithm can be viewed as a shortest­
path algorithm through a directed graph of 26 x m nodes, 
called a trellis. The negative of the log transitional proba­
bilities is associated with the edges of the treHis, and the 
negative log confusion probabilities are associated with the 

determined by the letters that have the highest confusion 
probability. 

III. THE TRIE 

In contrast to the usual lexicographical organization such as 
that used in a desktop dictionary, several alternative struc­
tures have been described. 3 The decision to use such an alter­
native is based on the search strategy of the text manipulation 
algorithm and the memory available. 

One of the ways to represent a dictionary and the one used 
here is the trie. The trie and its variations are discussed at 
length by Knuth,4 and text enhancement systems that use it as 
their basis are described by Muth and Tharps and by Kashyap 
and 00mmen.6 

The trie considers words to be ordered lists of characters, 
elements of which are represented as nodes in a binary tree. 
Each node has five fields: a token, CHAR; a word-length 
indicator array of bits, WL; an end-of-word tag bit; and two 
pointers labeled NEXT and ALTERNATE. 

A node is a NEXT descendant if its token follows the token 
of its father in the initial substring of a dictionary word. It is 
an ALTERNATE descendant if its token is an alternative for 
the father's, given the initial substring indicated by the most 
immediate ancestor, which is a NEXT descendant (see Figure 
1). Without loss of generality it is required that the lexical 
value of the token of each ALTERNATE descendant be 
greater than that of its father. The end-of-word bit is set if its 
token and the initial substring given to reach the token com­
pose a complete dictionary word. The mth bit of the word­
length-indicator array is set if the token is on the path of an 
m-letter word in the trie. 

If a dictionary has been given as a trie, with fields initialized 
as above, the following function determines whether the char­
acter ch in a word X of m characters follows an initial substring 
given by a pointer p to the first possible character following 
this substring. 

Function ACCESS-TRIE (var p : ptr; ch : char) : boolean; 
begin 

if (p = nil) or (pA. CHAR> ch) or (pA .WL[m] = 0) 
then 

else 
ACCESS-TRIE: = FALSE 

if (pA .CHAR = ch) 
then 

begin 

end 
else 

p: = pA .NEXT; 
ACCESS-TRIE : = TRUE 

ACCESS-TRIE: = ACCESS-TRIE 
(pA . ALTERNATE , ch) 

end; (* ACCESS-TRIE *) 



A version of this function will be used with the proposed 
bottom-up and top-down algorithm. It is interesting to note 
that the maximum number of recursive calls for any given 
initial substring is 25. If it were assumed that for all positions 
in any string the possible letters were uniformly distributed 
over all 26 possibilities, the average number of calls would be 
12.5. This assumption is clearly unreasonable because of the 
nature of the trie and the English language itself. For exam­
ple, with "AMPLIFYIN" as an initial substring, there is only 
one possibility for the tenth position. This characteristic is 
reflected in the experimentation discussed in Section VI 
where the average number of alternatives for all nodes in a 
sample trie was 1.62. 

IV. DICTIONARY VITERBI ALGORITHM 

The MVA is a purely bottom-up approach, whose per­
formance may be unacceptable. For example, in experi­
mentation with the MV A, 7 the best overall word correction 
rate was 46% when second-order word-length and position­
independent (WLPI) statistics were used and 20% when first­
order WLPI statistics were used. For an efficient contextual 
postprocessing system, this performance must be improved. 
One approach to the problem is to use top-down contextual 
information, in the form of a dictionary of allowable input 
words, to aid the bottom-up performance of the MVA. 

One such method, known as the predictor-corrector algo­
rithm,S uses an extension ofthe Bledsoe-Browning9 approach. 
Given a word output by the MV A, it computes a score for the 
word. A constrained search and computation procedure is 
then carried out over the dictionary. This is a two-part meth­
od, in which the use of dictionary information is distinct from 
processing by the MVA. In this section an algorithm is pro­
posed that integrates dictionary information with MVA pro­
cessing. The resultant dictionary Viterbi algorithm (DVA) 
offers the advantages of a dictionary method in terms of leg­
ibility of output and correction rates but shows no increase in 
order of complexity from the MV A. 

The formal statement of the text enhancement procedure 
based on the DVA follows. 

The Algorithm 

repeat 
GETWORD(X); (* Read next word X *) 
DICTIONARY-VITERBI(X, Z); 
WORD-OUT(Z); (* Output word Z *) 

until end-of-file; 

The procedure DICTIONARY-VITERBI, stated below, is 
for the case of a first-order Markov assumption and a fixed 
number of alternatives, d, for each letter. This is similar to the 
MV A and is performed to allow comparison of the complexity 
of the two algorithms. 

Symbols and data structures 

Ll ... Lz6 represent symbols A ... Z, and the delimiter 
symbol is \1J. 

Text Error Correction 505 

C is a vector of d real numbers called the cost vector. 
Q is a vector of d pointers into the trie, initially the root. 
S is a vector of d character strings called the survivor vector. 
X = Xl ... Xm is the input character string. 
Z = Zl ... Zm is the output character string. 
A is a d x m matrix of alternatives whose columns are la­

beled Al ... Am. 

Primitive functions 

MAX(al ... ad, u) returns the maximum of {al ... ~}, and 
the index of the maximum in u. 
CONCAT(s,Lj ) concatenates character L j at the end of 
string s. 

Procedure DICTIONARY-VITERBI(XI ... Xm, Zl ... Zm); 
(*given an m-Ietter string X = Xl ... Xm as input, 

produce an m-Ietter string Z = Zl ... Zm as output*) 
begin 

end; 

INITIALIZE (A) ; 
DICTIONARY-TRACE (A, C, Q, S, Xl ... Xm); 
Z : = SELECT(A, C, S); 

Procedure INITIALIZE selects the d most likely alterna­
tives for each letter of the input word. This is done by choos­
ing those d letters for which the sum of the log-confusion and 
log-unigram probabilities is greatest. 

Procedure DICTIONARY-TRACE, which follows, re­
turns a set of character strings in Vector S whose costs are 
defined by Vector C. 

Procedure DICTIONARY-TRACE (A , C, Q, S, Xl ... Xi); 
begin (*C1, Sl, Q1, Q2 are local vectors of d 

elements*) 
if i > 1 th~n begin 

DICTIONARY-TRACE (A , C, Q, S, Xl ... Xi-I); 
C1 : = C; Q1 : = Q; 
Sl : = S; Q2 : = Q; 
for j : = 1 to d do begin 

for k : = 1 to d do begin 

end 

if ACCESS-TRIE(Q1(k), Ai(j) 
then gk : = C1(k) + log P(X;lAi(j) 

+ log P(Ai(j)/Ai-l(k» 
else gk : = -inf end; 

C(j) : = max (gl, ... ,gd, u); 
Q(j) : = Q1(u); 

if (C(j) < > -inf) 
then S(j) : = CONCAT(Sl(u), Ai(j) 
else S(j) : = null; 

Q1 : = Q2; 
end; 

else begin (*i : = 1 *) 
for j : = 1 to d do 

if ACCESS-TRIE (Q(j), AI(j» 
then begin 

C(j) : = log P(XI/AI(j» 
+log P(Al(j)J1;); 

S(j) : = Al (j); end 



506 National Computer Conference, 1982 

end; 

else begin C(j) : = -inf; Q(j) : = nil; 
SO) : = null; end; 

end; (*DICTIONARY-TRACE *) 

Function SELECT returns the most likely word by consid­
ering the cost of the transition from the final symbol to the 
trailing delimiter ~ when the cost vector C and the survivor 
vector S are used. If all the values in C are equal to minus 
infinity, X is rejected and a null value is returned. 

The integration of the dictionary into the Viterbi algorithm 
is done in Procedure DICTIONARY-TRACE by maintaining 
a vector of pointers into the trie. Each element corresponds to 
a survivor string. At each iteration of the k loop the kth 
element of this vector is passed to ACCESS-TRIE. If the 
corresponding initial substring concatenated with the letter 
indicated by the j index is a valid dictionary string (ACCESS­
TRIE is true), the probability calculation is carried out. A 
weight of minus infinity is given to this alternative when a false 
value is returned in order to preclude the possibility of non­
dictionary words being considered. At some iteration in the j 
loop, if all attempted concatenations fail to produce a valid 
dictionary string, the survivor for the corresponding node and 
its pointer are assigned null values. For some value of i, if all 
survivors are null, the input word is rejected as uncorrectable. 
This may happen when less than 26 possibilities are consid­
ered for each letter, but it will never happen when all candi­
dates are allowed. This phenomenon is discussed in Section 
VI. 

A variation of the DV A would be to use the pointer to the 
node that corresponds to the alternative chosen at the last step 
as a substitute for the explicit maintenance of survivor strings. 
If the trie included son-to-father pointers, this pointer would 
allow a path to be traced from the indicated node back to the 
first level of the trie to retrieve the output string. This would 
yield storage economy when the number of nodes was less 
than the number of locations required for the survivor strings 
because of the additional pointer required at each node. 

The above algorithm considers a fixed number of d alterna­
tives for each letter of the input string. A modification of the 
algorithm to include a variable number of alternatives is as 
follows. Within procedure INTIALIZE only letters for which 
the sum of the log-confusion and log-unigram probabilities is 
greater than an a priori threshold value t are chosen as alter­
natives. 

V. COMPUTATIONAL COMPLEXITY 

The complexity of the MV A derived by Shinghal and 
Toussaine will be used to show the additional computation 
of the DVA. Only the general case of n > 1 and 1 < d < 26 will 
be discussed here. The overall computation requirement of 
the DVA can be expressed as a function of nand d, as shown 
in the following: 

D(n, d) = Da(n, d) + Dp(n, d), 

where Da(n, d) is the requirement for the selection of alterna­
tives and Dp(n, d) is the requirement for the path tracing. 

Since the selection of alternatives remains the same as in the 
MVA, 

min(26-d, d) 

Da(n, d) = 26n + n 2: (26 - j). 
j=l 

Path tracing involves two steps. Step 1 is the path tracing 
itself and step 2 is the evaluation of the last letter to blank 
transition. A trie look up ,- is defined as the number of com­
parisons necessary in a call to ACCESS-TRIE. An addition 
and comparison are defined to equal one unit of computation. 

Step 1 requires: 

units, 

which is an upper bound occuring when all trie look-ups are 
successful. 
Step 2 requires: 

(2d - 1) units. 

Therefore, 

Dp(n,d) = d2 (n - 1) (,- + 3) + d(,- + 1) + (2d - 1). 

Therefore, the complexity of the DVA is: 

min(26-d,d) 

D(n,d) = 26n + n 2: (26 - j) + d2 (n - 1)(,- + 3) 
j=l 

+ d(,- + 1) + (2d - 1). 

The complexity of the MVA 1 is: 
min(26-d,d) 

V(n,d) = 26n + n 2: (26 - j) + 3d2 (n -1) - nd 
j=l 

+ (2d -1). 

Comparison of V(n,d) and D(n,d) shows no change in or­
der of complexity, with both expressions increasing linearly as 
a function of n and quadratically as a function of d. The 
experimentally derived value of the average number of alter­
natives at a trie node of 1.62 suggests only an increase in the 
coefficient of d2

• 

VI. EXPERIMENTAL RESULTS 

To determine the efficiency and performance of the DVA and 
to compare this with the MVA, a data base was established 
and experiments were conducted. 

English text in the Computer Science domain (Chapter 9 of 
Artificial Intelligence, P.R. Winston, Addison-Wesley, 1977) 
containing 6372 words was entered onto a disc file. Unigram 
and first order transition probabilities were estimated from 
this source. A model reflecting noise in a communications 
channel was used to introduce substitution errors into a copy 
of this text and confusion probabilities were estimated from 
this source. The same probability tables were used for all 
experiments. 

A dictionary of 1724 words containing 12231 distinct letters 
was extracted from this text and a trie was constructed for use 
by the DVA. There were 6197 nodes in the trie and the aver-



age number of alternates for all nodes was 1.62. The fre­
quency histogram of alternate path lengths is extremely 
skewed, with 4805 nodes having no alternatives but itself (path 
length 1) and 701, 240, and 128 nodes having alternate path 
lengths of 2, 3, and 4, respectively. 

An example of input and output text to the DVA follows: 

IF WE LOOI AT WHAT HAS PRODUSED LO­
MPUTER IMTELLIGENCE QO FAR, WE SEE MULTI­
PLE LAMERS, EACH OF WHICH RESTS ON PRIM­
ITIVES OF THE NAXD TAYFR DOWM, FORMINC A 
HIERARCFICAL STRUCTURE WITH A GREAT DEAL 
INTERPOSED BETWEEN THE INTELLIGENT PRPH­
VEM AND THE TRANSISTORS WHICH ULTIMATELU 
SUPPODT IT. ALL OF THE CGMPLEXITU OF ONE KE­
VEL IS SUMMARIZFD ABD DISTILLED DOWN TO A 
BES SIMPLE ASOMIC NOTIONS WHICH AZE THE 
PRIMITIVES OE THE NEXT LAMER UP. BUT WITH 
SO MUCH INSULATIOP, IT CCNNOT POSSMBLY BE 
THAT THE DETAILFD NATURE OF THE LGWER 
LEVELS CAN MATTER TO \VHAT HAPPENS AFOXE. 

IF WE LOOK AT WHAT HAS PRODUCED ******** 
INTELLIGENCE SO FAR, WE SEE MULTIPLE LAY­
ERS, EACH OF WHICH RESTS ON PRIMITIVES OF 
THE NEXT ***** DOWN, FORMING A HIER­
ARCHICAL STRUCTURE WITH A GREAT DEAL IN­
TERPOSED BETWEEN THE INTELLIGENT PRO­
GRAM AND THE TRANSISTORS WHICH ULTI­
MATELY ******* IT. ALL OF THE COMPLEXITY OF 
ONE LEVEL IS SUMMARIZED AND DISTILLED 
DOWN TO A BUT SIMPLE ATOMIC NOTIONS WHICH 
ARE THE PRIMITIVES OF THE NEXT LAYER UP. 
BUT WITH SO MUCH INSULATION, IT CANNOT POS­
SIBLY BE THAT THE DETAILED NATURE OF THE 
LOWER LEVELS CAN MATTER TO WHAT HAPPENS 
ABOVE. 

The output was produced by the DVA using a fixed number 

Text Error Correction 507 

of alternatives with the depth of search set at 6; LOMPUTER, 
TAYFR, and SUPPODT were rejected; and BES was er­
roneously corrected to BUT instead of FEW. Rejections 
could be eliminated by increasing the depth of search, because 
a dictionary word could be located that could not be located 
previously because of the constrained nature of the trellis. 

The performances of the DV A and the MV A were mea­
sured by the percentage of garbled words corrected when both 
algorithms were run on the same piece of text. A fixed and 
variable number of alternatives were used in both cases. 

To contrast the complexity of the DVA and the MVA, a 
fixed number of alternatives was used for both algorithms, 
and the CPU time required to process a fixed input text was 
used for comparison. The same program was used in all cases, 
the only differences being those necessary to implement the 
particular version of the algorithm. 

The results of applying the algorithm to the entire random 
sample of garbled text (of 6372 words) are summarized in 
Table I. Time figures are CPU seconds on a CDC Cyber 174. 
The DV A in all cases performed significantly better than the 
MVA without a dictionary: the best-case correction rate for 
the DVA was 87%; the corresponding figure for the MVA was 
35%. To minimize the cost it is necessary to choose the min­
imum value of the depth of search (d) or the minimum thresh­
old (t) that give the optimum correction rate. These were 
found to be 8 and -11, respectively. While the time require­
ment at optimum performance for the DV A differed by about 
a factor of 1.7 from the MVA, it is interesting to note that the 
best performance for the DV A in the variable-alternatives 
case was achieved at a cost significantly less than that using a 
fixed number of alternatives. 

To show the effects of differing levels of contextual informa­
tion on performance at the optimum parameter settings, the 
DV A was run with only top-down information by setting all 
transition probabilities equal; and the MVA was run without 
the trie, thus using only the bottom-up information provided 
by the transition probabilities. The correction rates were 82% 
and 35%, respectively-both less than the 87% provided by 
the combination approach. 

TABLE I-Results of application of algorithm to entire random sample of garbled text 

Fixed Number of Alternatives Variable Number of Alternatives 

DVA MVA DVA MVA 

d % corr. time (sees.) % corr. time (sees.) % corr. time (sees.) % corr. time (sees.) 

1 770 1 732 -2 0 473 0 463 
2 39 853 23 767 -3 0 491 0 479 
3 61 946 29 808 -4 0 517 0 490 
4 74 1085 33 858 -5 0 522 0 496 
5 81 1256 34 916 -6 11 527 8 496 
6 85 1474 35 989 -7 44 593 23 500 
7 86 1754 35 1082 -8 76 803 33 614 
8 87 2122 35 1175 -9 83 1025 35 695 
9 87 2536 35 1287 -10 85 1239 35 769 

-11 87 1668 35 819 
-12 87 1668 35 915 
-13 87 1669 35 922 



508 National Computer Conference, 1982 

VII. CONCLUSIONS 

A new algorithm for text enhancement has been presented 
that merges processing by the Viterbi algorithm with dictio­
nary information stored in a trie. The resuits of experi­
mentation with this algorithm were described; they show a 
correction rate significantly greater than counterparts of the 
algorithm that do not use a dictionary. An expression for the 
complexity of this algorithm has been derived and compared 
with that of one of its counterparts; it shows no increase in the 
order of complexity due to the addition of the trie. Because of 
its superior performance, this algorithm is suggested as a low­
level word hypothesization component in a system focusing 
global contextual knowledge on the text enhancement 
problem. 

ACKNOWLEDGMENT 

This work was supported in part by National Science Founda­
tion Grant IST-80-10830. We wish to thank Addison-Wesley 
for permission to use portions of Artificial Intelligence, by 
P.R. Winston, in the experimentation. Thanks are also due to 
C.T. Chen for the program to build the trie structure from its 
word list. 

REFERENCES 

1. Shinghal, R., and G. T. Toussaint. "Experiments in Text Recognition with 
the Modified Viterbi Algorithm." IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 1 (1979), pp. 184-192. 

2. Doster, W., and J. Schurman. "An Application of the Modified Viterbi­
Algorithm in Text Recognition." Proceedings of International Conference 
on Pattern Recognition, Miami, Florida, December 1-4, 1980. Piscataway, 
New Jersey: IEEE Computer Society, 1980. 

3. Peterson, J. L. "Computer Programs for Detecting and Correcting Spell­
ing Errors." Communications of the ACM, 23 (1980), pp. 676-687. 

4. Knuth, D. E. Sorting and Searching. The Art of Computer Programming, 
vol. 3. Reading, Massachusetts. Addison-Wesley, 1973. 

5. Muth, F. E., and A. L. Tharp. "Correcting Human Error in Alpha­
numeric Terminal Input." Information Processing and Management, 13 
(1977), pp. 329-337. 

6. Kashyap, R. L., and B. J. Oommen. "An Effective Algorithm for String 
Correction Using Generalized Edit Distances." Information Sciences, 23 
(1981), pp. 123-142. 

7. Srihari, S. N., and J. Hull. "Experiments in Text Recognition with the 
Binary N-Gram and Viterbi Algorithms." SUNYAB/CS Technical Report 
184, Department of Computer Science, State University of New York at 
Buffalo, July 1981. 

8. Shinghal, R., and G. T. Toussaint. "A Bottom-up and Top-down Ap­
proach to Using Context in Text Recognition." International Journal of 
Man-Machine Studies, 11 (1979), pp. 201-212. 

9. Bledsoe, W. W., and J. Browning. "Pattern Recognition and Reading by 
Machine." In L. Uhr (ed), Pattern Recognition. New York: Wiley, 1966, 
pp. 301-316. 



DIALOGUE: Providing total terminal independence* 

by DAVID VASKEVITCH 
Standard Software Limited 
Toronto, Ontario 

ABSTRACT 

A software tool, called DIALOGUE, makes application programs completely 
terminal-independent so that they can be used from both formatted screens and 
character mode terminals. The independence is achieved by providing programmers 
with a high-level record definition language for describing the data. This language 
isolates the programmer from the details of terminal interaction so they can be 
automatically handled in the most appropriate fashion at execution time. 

To support various terminal types most effectively, DIALOGUE may generate 
a different interface for each brand of terminal. A unique aspect is its typewriter 
interface which supports character mode terminals so that they are indistinguishable 
(to the application) from formatted screen terminals. Devices such as light pens and 
OCR readers are also supported. . 

Copyright 1981, Standard Software Limited, Toronto, Ontario, Canada. Permission granted to publish in AFIPS 
Conference Proceedings, 1982 National Computer Conference. 

509 





1.0 INTRODUCTION 

In a transaction-oriented environment, formatted screen ter­
minals offer the potential of a user interface superior to that 
which has been historically possible. 

Special control characters and escape sequences must be 
sent from the computer to the terminal to take advantage of 
screen formats. 

This raises several issues: 

1. Writing programs to support a formatted screen is tech­
nically complex. 

2. Terminals made by different vendors are incompatible 
with each other. 

3. Older terminals and hard-copy terminals do not support 
screen formats. 

The result is that using formatted screens is complex, locks 
the user into particular equipment, and renders existing termi­
nals useless. 

A software tool, called DIALOGUE, solves the problems 
associated with formatted screens by doing the following: 

1. Providing a high-level interface that makes it easy for the 
applications programmer to develop user interactions 
that use screen formats. 

2. Supporting a variety of formatted screen terminals so 
that no lock-in takes place. 

3. Supporting character mode terminals so that the applica­
tion cannot distinguish them from screens, ensuring that 
any application can be accessed from any terminal. 

2.0 THE RECORD DEFINITION LANGUAGE 

The central concept in DIALOGUE is that transactions are 
described in terms of records and that the description occurs 
at a high enough level of abstraction that the details associated 
with terminal support are concealed. Later, DIALOGUE can 
take a record description and decide how best to interact with 
a user based on the facilities at the user's terminal. 

A record definition consists of two components: 

Form: The form definition describes the fields making 
up the record, along with "decorations," such 
as titles that make the record more under­
standable. 

Commands: Associated with every form is a set of com­
mands representing the valid actions for a user. 
A form may be associated with several com­
mand sets over time (one at a time). DIA­
LOGUE does not actually execute the com-

DIALOGUE: Total Terminal Independence 511 

mands; it uses them to establish valid function 
keys (at a screen) and signals the application 
when a command has been entered. 

2.1 Describing Records 

An example of a record definition is shown below. Several 
key points will be of interest to most readers: 

Fields: The most important elements in the record are 
fields. Each field has a "prompt" and a "value" 
and various other optional qualifiers. 

Edit Checks: Both alphabetic and numeric fields are sup­
ported, along with various other edit checks and 
transformations (such as shifting to upper case, 
e.g., SHIFTED). 

Groups: Fields may be grouped for users' convenience. 
On the screen, groups of fields are surrounded 
by boxes (when possible). On the typewriter 
special commands allow groups of fields to be 
skipped in one step. 

Syntax: The definition language is free format. Special 
care was taken to make statements self-iden­
tifying so that delimiters, such as semicolors, 
are not required. All keywords may be abbrevi­
ated as long as they are unique. 

One of the key design criteria for the definition language 
was that it be easy to use for both programmers and end users. 
In this way, record definitions could serve as part of the design 
interface between an end user and an analyst. The use of 
English words and the simple syntactic rules have helped 
make this possible. (See Figure 1.) 

2.1.1 Automatic positioning 

When describing a form to DIALOGUE, the programmer 
does not need to specify where the fields and titles are to be 
placed on the screen. DIALOGUE will automatically posi­
tion the fields so that they look good to the human eye-a 
tricky proposition. 

The rules used to layout the form consist of a set of heuris­
tics dealing with the eye's tolerance for misalignment along 
vertical sight lines. The rules work completely about 80% of 
the time; and when they do not work, usually only one or two 
fields need to be adjusted. Naturally, the programmer can 
override DIALOGUE for one or more fields at any time. 

Automatic positioning is important for three reasons: 

• Terminal independence-Different-size screens (e.g., 



512 National Computer Conference, 1982 

FORM 'MAILFORM' (Comments are enclosed in brackets). 
TEXT 'MAILING LIST QUERY' CENTER UNDERLINE. 
GROUP 'IDENTIFICATION' CENTER 

FIELD 'SURNAME' ALPHA 20 MANDATORY SHIFTED 
FIELD 'NAME' ALPHA 15 
FIELD 'INITIALS' ALPHA 3 

GROUPEND 
GROUP 'ADDRESS' CENTER INVERSE BLINK (A STANDOUT). 

FIELD 'CITY' ALPHA 20 NOCLEAR 
FIELD 'STATE' ALPHA 20 NOCLEAR 
FIELD 'COUNTRY' ALPHA 20 NOCLEAR 

SELECT 'CANADA USA' 
GROUPEND 
FIELD 'AGE' NUMERIC 2 RANGE 20 . .45 
END 

COMMANDS 'MAIL' 
NAME 'ADD' KEY 1 KEY 9 EXPLANATION "Add record to 
database" 
NAME 'QUERY' KEY 2 POINTER EXPLANATION "Retrieve 
record" 
NAME 'END EXIT QUIT LUNCH' KEY 3 NOREAD EXPLA­
NATION "End of Program" 

END 

Figure I-A sample record 

24 X 132 and 33 x 80) may contain similar amounts of 
information and yet require totally different screen lay­
outs. In addition, the presence or absence of boxes and 
display attribute characters may require differing field 
positioning from one terminal to another. 

• Programmer productivity-Calculating field positions is 
time-consuming, tedious, and error-prone. Furthermore, 
the addition or deletion of a field may make it necessary 
to reposition all subsequent fields. 

• User readability-Not having to specify x and y coordi­
nates makes a form definition easier to read (and write) 
for the end user. 

On balance, of course, automatic positioning is effective 
only if it does produce good-looking forms; and experience 
has shown that it does. 

2.2 Commands and Function Keys 

Given a form definition, a transaction can still not be com­
pleted until the user enters a command signaling the applica­
tion that a record is ready to be processed. Commands are 
defined in sets. An example of a command set was shown as 
part of the "Mailform". Command sets may be written as part 
of a total transaction definition (Form and Commands) or 
separately. When written separately, the Form and the Com­
mand set become associated by application-level subroutine 
calls at execution time. 

At a screen, a command becomes associated with one or 
more function keys (e.g., QUERY = F1 or F9), while at a 
character mode terminal the command is invoked by name 
(e.g., "QUERY"). 

3.0 THE SCREEN INTERFACE AND DEVICE 
INDEPENDENCE 

At a formatted screen DIALOGUE interprets the record 

definition automatically to generate a form on the screen 
based on the capabilities of the terminal. In providing this 
degree of device independence two key design principles were 
followed: 

• GREATEST COMMON MULTIPLE-One way to sup­
port a variety of devices involves the lowest-common­
denominator approach-i.e., support only features 
found on all terminals; the more terminals handled this 
way, the fewer the features supported. DIALOGUE 
takes the opposite approach: an honest attempt is made 
to support all the useful features found on each type of 
terminal. In large part, this is possible because the 
Record definition language leaves most of the decisions 
about form presentation to DIALOGUE. 

• FEATURE INDEPENDENCE-Programmers should 
not be able to build feature dependencies into applica­
tions .. Thus, when a feature is supported that is not uni­
versally present on terminals, it is always supported in 
such a way that applications are not restricted by the 
absence of the feature. A particularly striking example is 
given later in the discussion of pointers. 

3.1 Display Enhancements, Edit Checks, and Boxes 

The visible appearance of the form on the screen is estab­
lished through a series of control characters and escape se­
quences which call on various features found in the terminal. 
These features include 

Display 
Enhancements: 

Edit Checks: 

Boxes: 

Pages: 

Fields (and other areas) may be high­
lighted by using display enhancements, 
such as INVERSE VIDEO, DIM, UN­
DERLINE, SECRET, BLINKING. 
These may be used alone or in combina­
tion, and they may be used to show a field 
in its normal state (e. g., the "blanks" in 
a form) or to flag errors (e.g., BLINK­
ING). When available, unusual enhance­
ments, such as color, may be used as well 
(e.g., flag a field in RED). Installations 
may choose the best enhancements for 
each terminal type to take advantage of 
its features. 
When possible, the terminal is asked to 
enforce edit checks directly, reducing the 
load on the computer and providing the 
user with more immediate feedback. 
However, if the terminal does not sup­
port an edit check, or supports it incom­
pletely, it does not matter, because 
DIALOGUE will perform it instead. 
When supported by the terminal, boxes 
are always drawn around groups of fields. 
When available, vector drawing and re­
peat instructions are used to draw the 
boxes faster. 
Multiple pages of memory are automat­
ically used to store forms for reuse. This 



3.2 Function Keys 

feature can substantially improve re­
sponse time in multiform transactions. 

On a formatted screen, the function key is normally the 
user's only way of signaling the computer (normal keys typed 
at the keyboard update the screen without going through the 
communications interface). The current command set, estab­
lished by the application, determines which function keys are 
valid at any point. 

When a valid function key is pressed, DIALOGUE per­
forms all its edit checks and flags any fields that do not pass. 
If this occurs, the user must correct the flagged fields and pick 
a function key again. To provide an escape mechanism, the 
programmer may establish "NOREAD" keys (e.g., END). 

Once a record passes the edit checks, it is sent back to the 
application, along with a signal indicating which key was 
pressed. The default signal for a given command is the num­
ber of the first key specified (e.g., ADD = 1, QUERY = 2, 
END = 3). 

3.3 Pointers: Light Pens and Touch-Sensitive Screens 

A pointer is a device that selects a position on the screen 
and signals the computer. The signal is essential to the defini­
tion, since otherwise the computer would have no way of 
distinguishing selected positions from intermediate ones. 
Light pens, touch sensitive screens, joysticks and mice are all 
examples of pointers. 

DIALOGUE supports the pointer by treating it as a form 
of function key-a strange definition at first. In the example, 
the QUERY command could be signified by a pointer (or by 
Key 2). 

Normally, when a function key is depressed, DIALOGUE 
makes the position of the cursor available to the application, 
along with the record and the signal. When a pointer is used, 
the position of the pointer is returned instead. Except for the 
fact that the user must position the cursor separately before 
pressing the function key, there is no difference between the 
pointer and tYle key. 

Thus, when available, the pointer is supported fully; but 
otherwise the function keys may be used instead, and the 
application does not distinguish the two cases (although it can 
if necessary). 

4.0 THE TYPEWRITER INTERFACE 

Any terminal that is not supported as a formatted screen is 
considered to be a typewriter by DIALOGUE. Typewriters 
include 

1. Hard-copy terminals 
2. Dumb screens (e.g., glass teletypes, word processors, 

etc.) 
3. Screens operating at speeds too low for forms (e.g., 300 

baud) 
4. Screens not currently supported in forms mode 

DIALOGUE: Total Terminal Independence 513 

Users may also choose to run in typewriter if they prefer it. 
The typewriter proceeds by prompting the user for each 

field (in a fashion familiar to any timesharing user). It should 
be immediately obvious that this process alone provides func­
tional equivalence to the screen, because the end user can 
enter all the fields in a record using both interfaces (typewriter 
and screen). Further, the application cannot distinguish be­
tween the two interfaces: in either case it reCeiveS a complete, 
edit-checked data record. 

The typewriter interface must do more than provide a 
means for entering data; it must allow the user to quickly and 
easily modify previously entered fields, as would be possible 
on the screen. Furthermore, it must allow the user to request 
a formatted display of his/her context (the record) and provide 
facilities for expert users to speed up their interaction. The 
mechanism used to accomplish this is the typewriter com­
mand. 

4.1 Typewriter Commands 

DIALOGUE's typewriter interface allows the user to enter 
a command at any time. Commands are distinguished from 
field values by an installation-defined unique character, typi­
cally the period. Special care is taken to ensure that this char­
acter can still be used in other contexts (e.g., entering num­
bers) , since otherwise it would be impossible to choose a 
character without conflict. 

Commands are divided into two categories: internal (or 
DIALOGUE) commands directed to DIALOGUE, and ap­
plication (or external) commands that provide the user with 
function keys. 

Help facilities allow the user to see a list of commands 
(internal, external, or both) and ask for an explanation of 
each. The previous example showed how explanations are 
specified for application commands. Commands may always 
be abbreviated as long as the abbreviation is unique within the 
current command set. 

4.1.1 Typewriter Commands 

A set of approximately 35 commands provides the user with 
complete facilities for examining and modifying records as 
and after they are entered. For example, when receiving an 
error message, the user can display the entire record (e.g., 
DISPLAY), modify a field (e.g., MODIFY SURNAME), 
and then reenter the record using an application command. 

Special provision is made for the first-time user, who may 
not know any commands. First, the programmer can desig­
nate a default application command which is used if the user 
simply enters all the fields in a record and "falls off the end. " 
Second, if one or more fields are then flagged, DIALOGUE 
will cycle the user through the flagged fields showing him the 
value in each (e.g., SURNAME (WASHINGTON) - ). The 
user can keep the value or replace it by typing in a new one. 
When the user has cycled through all the flagged fields, the 
record is re-entered for him/her. Thus the user need not know 
commands or have to reenter the entire record for one mis­
take. 



514 National Computer Conference, 1982 

4.1.2 Advanced Commands 

Several advanced facilities can make the typewriter inter­
face uniquely efficient for expert users: 

Automatic 
Responses: 

Resequencing: 

Typeahead: 

If a field does not change, the user can 
establish an automatic response with the 
"remember" command (e.g., REMEM­
BER SEATTLE). Once an automatic re­
sponse is set up, the associated field liter­
ally disappears from the transaction so 
that the user no longer needs to deal with 
it. 
Using a single command (DETOUR), 
users can rearrange the sequence of fields 
to please themselves. The application still 
sees the original record and field se­
quence. 
DIALOGUE's typeahead feature allows 
the user to anticipate any number of 
fields and enter their values, all at once, 
separated by commas (e.g., WASHING­
TON, GEORGE, H). Once a field is an­
ticipated by the user, its prompt is sup­
pressed. This allows very terse input, 
since the user can enter any amount of 
information at any time. Typeahead may 
cross record and program boundaries. 

4.2 Relative Efficiency 

Although formatted screen mode is always easier to use, 
typewriter can actually be more efficient for the expert user 
because 

1. Extraneous or constant fields can be totally suppressed 
with automatic responses. 

2. Input may occur in any sequence as a result of detours. 
3. Multiple records can be entered at one time using type­

ahead. 

One net result of the efficiency of the typewriter is that expert 
users may use it in preference to block mode. This ensures 
that screen formats can be designed for ease of use, knowing 
that the typewriter is there for experts. 

5.0 ALTERNATE INPUT DEVICES 

A variety of devices may be attached to a terminal, allowing 
input alternatives to the keyboard. These include OCR 
wands, bar code readers, magnetic-stripe readers, and voice 
recognition units. These are essentially "field input" devices 
that can cause one field at a time (typically) to be entered and 
are known as readers. 

DIALOGUE allows a field to be designated as READ­
ABLE. If a form contains a readable field, the reader can be 

used if present; otherwise the keyboard is used. If only one 
field is readable, reader input is always placed there. If several 
fields are readable, the cursor position is used to determine 
where to place a reader input. 

This scheme allows readers to be used when present with­
out either requiring their presence or requiring special appli­
cation code. A particularly interesting scenario can even be 
imagined involving both a touch-sensitive screen (a pointer) 
and a voice recognition device (reader). 

6.0 USING DIALOGUE 

To the programmer DIALOGUE has three major com­
ponents: 

Forms: 

Commands: 

Subroutines: 

Form definitions are usually written in 
edit files. These files are then referenced 
by name in the application. This degree 
of separation allows simple form changes 
to be made without even recompiling the 
application. 
In addition, form definitions may also be 
generated programmatically by the appli­
cation. 
Although usually written as part of the 
form definition, command sets may be 
established separately. 
The subroutine gives the programmer 
control over the transaction. Most of the 
subroutines have self-explanatory names; 
the key ones are listed below: 

SETUPFORM (editfilename) 
READRECORD (data-area) 
WRITERECORD (data-area) 
ERROR (fieldname, message) 
MESSAGE (message) 

Other routines provide explicit cursor 
control and other detailed functions used 
less frequently than those above. Great 
care was taken to ensure that most work 
could be done with fewer than 10 sub­
routines. 

A particularly attractive aspect of DIALOGUE is its 
natural-language structure. It appears equally attractive 
to programmers in COBOL, FORTRAN, Pascal or even 
BASIC. Unlike many other terminal handlers, DIALOGUE 
has no bias toward anyone language. 

7.0 CONCLUSION 

DIALOGUE has been running in a commercial environment 
on the TANDEM computer for about two years and has been 
very successful there. Over 20 terminal types are supported, 
and both screen and typewriter mode are in active use. Both 
end users and programmers seem to like DIALOGUE, and 
the concept of terminal independence has proved workable. 



The star user interface: an overview 

by DAVID CANFIELD SMITH, CHARLES IRBY, and RALPH KIMBALL 
Xerox Corporation 
Palo Alto, California 

and 
ERIC HARSLEM 
Xerox Corporation 
EI Segundo, California 

ABSTRACT 

In April 1981 Xerox announced the 8010 Star Information System, a new personal 
computer designed for office professionals who create, analyze, and distribute 
information. The Star user interface differs from that of other office computer 
systems by its emphasis on graphics, its adherence to a metaphor of a physical 
office, and its rigorous application of a small set of design principles. The graphic 
imagery reduces the amount of typing and remembering required to operate the 
system. The office metaphor makes the system seem familiar and friendly; it reduc­
es the alien feel that many computer systems have. The design principles unify the 
nearly two dozen functional areas of Star, increasing the coherence of the system 
and allowing user experience in one area to apply in others. 

515 





INTRODUCTION 

In this paper we present the features in the Star system with­
out justifying them in detail. In a companion paper, 1 we dis­
cuss the rationale for the design decisions made in Star. We 
assume that the reader has a general familiarity with computer 
text editors, but no familiarity with Star. 

The Star hardware consists of a processor, a two-page-wide 
bit-mapped display, a keyboard, and a cursor control device. 
The Star software addresses about two dozen functional areas 
of the office, encompassing document creation; data pro­
cessing; and electronic filing, mailing, and printing. Docu­
ment creation includes text editing and formatting, graphics 
editing, mathematical formula editing, and page layout. Data 
processing deals with homogeneous databases that can be 
sorted, filtered, and formatted under user control. Filing is an 
example of a network service using the Ethernet local area 
network. 2

,3 Files may be stored on a work station's disk (Fig­
ure 1), on a file server on the work station's network, or on a 
file server on a different network. Mailing permits users of 
work stations to communicate with one another. Printing uses 
laser-driven xerographic printers capable of printing both text 
and graphics. The term Star refers to the total system, hard­
ware plus software. 

As Jonathan Seybold has written, "This is a very different 
product: Different because it truly bridges word processing 

Figure I-A Star workstation showing the processor, display, keyboard and 
mouse 

The Star User Interface: An Overview 517 

and typesetting functions; different because it has a broader 
range of capabilities than anything which has preceded it; and 
different because it introduces to the commercial market rad­
ically new concepts in human engineering.,,4 

The Star hardware was modeled after the experimental 
Alto computer developed at the Xerox Palo Alto Research 
Center. 5 Like Alto, Star consists of a Xerox-developed high­
bandwidth MSI processor, local disk storage, a bit-mapped 
display screen having a 72-dot-per-inch resolution, a pointing 
device called the mouse, and a connection to the Ethernet. 
Stars are higher-performance machines than Altos, being 
about three times as fast, having 512K bytes of main memory 
(vs. 256K bytes on most Altos), 10 or 29M bytes of disk 
memory (vs. 2.5M bytes), a 101/2-by-131/2-inch display screen 
(vs. a lOh-by-82-inch one), 1024 x 808 addressable screen 
dots (vs. 606 x 808), and a 10M bits-per-second Ethernet (vs. 
3M bits). Typically, Stars, like Altos, are linked via Ethernets 
to each other and to shared file, mail, and print servers. Com­
munication servers connect Ethernets to one another either 
directly or over phone lines, enabling internetwork commu­
nication to take place. This means, for example, that from the 
user's perspective it is no harder to retrieve a file from a file 
server across the country than from a local one. 

Unlike the Alto, however, the Star user interface was de­
signed before the hardware or software was built. Alto soft­
ware, of which there was eventually a large amount, was de­
veloped by independent research teams and individuals. 
There was little or no coordination among projects as each 
pursued its own goals. This was acceptable and even desirable 
in a research environment producing experimental software. 
But it presented the Star designers with the challenge of syn­
thesizing the various interfaces into a single, coherent, uni­
form one. 

ESSENTIAL HARDWARE 

Before describing Star's user interface, we should point out 
that there are several aspects of the Star (and Alto) architec­
ture that are essential to it. Without these elements, it would 
have been impossible to design a user interface anything like 
the present one. 

Display 

Both Star and Alto devote a portion of main memory to the 
bit-mapped display screen: lOOK bytes in Star, 50K bytes 
(usually) in Alto. Every screen dot can be individually turned 
on or off by setting or resetting the corresponding bit in 
memory. This gives both systems substantial ability to portray 
graphic images. 



518 National Computer Conference, 1982 

Memory Bandwidth 

Both Star and Alto have a high memory bandwidth-about 
50 MHz, in Star. The entire Star screen is repainted from 
memory 3~ times per second. This 50-MHz video rate would 
s\vamp most computer memories, and in fact refreshing the 
screen takes about 60% of the Alto's memory bandwidth. 
However, Star's memory is double-ported; therefore, refresh­
ing the display does not appreciably slow down CPU memory 
access. Star also has separate logic devoted solely to refresh­
ing the display. 

Microcoded Personal Computer 

Both Star and Alto are personal computers, one user per 
machine. Therefore the needed memory access and CPU cy­
cles are consistently available. Special microcode has been 
written to assist in changing the contents of memory quickly, 
permitting a variety of screen processing that would otherwise 
not be practical. 6 

Mouse 

Both Star and the Alto use a pointing device called the 
mouse (Figure 2). First developed at SRI/ Xerox's version 
has a ball on the bottom that turns as the mouse slides over a 
flat surface such as a table. Electronics sense the ball rotation 
and guide a cursor on the screen in corresponding motions. 
The mouse is a "Fitts's law" device: that is, after some practice 

Figure 2-The Star keyboard and mouse 

The keyboard has 24 easy-to-understand function keys. The mouse has two 
buttons on top. 

you can point with a mouse as quickly and easily as you can 
with the tip of your finger. The limitations on pointing speed 
are those inherent in the human nervous system. 8,9 The mouse 
has buttons on top that can be sensed under program control. 
The buttons let you point to and interact with objects on the 
screen in a variety of ways. 

Local Disk 

Every Star and Alto has its own rigid disk for local storage 
of programs and data. Editing does not require using the 
network. This enhances the personal nature of the machines, 
resulting in consistent behavior regardless of how many other 
machines there are on the network or what anyone else is 
doing. Large programs can be written, using the disk for 
swapping. 

Network 

The Ethernet lets both Stars and Altos have a distributed 
architecture. Each machine is connected to an Ethernet. 
Other machines on the Ethernet are dedicated as servers, 
machines that are attached to a resource and that provide 
access to that resource. Typical servers are these: 

1. File server-Sends and receives files over the network, 
storing them on its disks. A file server improves on a 
work station's rigid disk in several ways: (a) Its capacity 
is greater-up to 1.2 billion bytes. (b) It provides backup 
facilities. (c) It allows files to be shared among users. 
Files on a work station's disk are inaccessible to anyone 
else on the network. 

2. Mail server-Accepts files over the network and distrib­
utes them to other machines on behalf of users, employ­
ing the Clearinghouse's database of names and ad­
dresses ( see below). 

3. Print server-Accepts print-format files over the net­
work and prints them on the printer connected to it. 

4. Communication server-Provides several services: The 
Clearinghouse service resolves symbolic names into net­
work addresses.1O The Internetwork Routing service 
manages the routing of information between networks 
over phone lines. The Gateway service allows word pro­
cessors and dumb terminals to access network resources. 

A network-based server architecture is economical, since 
many machines can share the resources. And it frees work 
stations for other tasks, since most server actions happen in 
the background. For example, while a print server is printing 
your document, you can edit another document or read your 
mail. 

PHYSICAL OFFICE METAPHOR 

We will briefly describe one of the most important principles 
that influenced the form of the Star user interface. The reader 
is referred to Smith et al. 1 for a detailed discussion of all the 
principles behind the Star design. The principle is to apply 
users' existing knowledge to the new situation of the com­
puter. We decided to create electronic counterparts to the 
objects in an office: paper, folders, file cabinets, mail boxes, 
calculators, and so on-an electronic metaphor for the phys­
ical office. We hoped that this would make the electronic 
world seem more familiar and require less training. (Our ini­
tial experiences with users have confirmed this.) We further 
decided to make the electronic analogues be concrete objects. 



Star documents are represented, not as file names on a disk, 
but as pictures on the display screen. They may be selected by 
pointing to them with the mouse and clicking one of the 
mouse buttons. Once selected, documents may be moved, 
copied, or deleted by pushing the MOVE, COPY, or DE­
LETE key on the keyboard. Moving a document is the elec­
tronic equivalent of picking up a piece of paper and walking 
somewhere with it. To file a document, you move it to a 
picture of a file drawer, just as you take a piece of paper to a 
physical filing cabinet. To print a document, you move it to a 
picture of a printer, just as you take a piece of paper to a 
copying machine. 

Though we want an analogy with the physical world for 
familiarity, we don't want to limit ourselves to its capabilities. 
One of the raisons d' hre for Star is that physical objects do not 
provide people with enough power to manage the increasing 
complexity of their information. For example, we can take 
advantage of the computer's ability to search rapidly by pro­
viding a search function for its electronic file drawers, thus 
helping to solve the problem of lost files. 

THE DESKTOP 

Every user's initial view of Star is the Desktop, which resem­
bles the top of an office desk, together with surrounding fur­
niture and equipment. It represents a working environment, 
where current projects and accessible resources reside. On the 
screen (Figure 3) are displayed pictures of familiar office ob­
jects, such as documents, folders, file drawers, in-baskets, and 
out-baskets. These objects are displayed as small pictures, or 
icons. 

You can "open" an icon by selecting it and pushing the 
OPEN key on the keyboard. When opened, an icon expands 
into a larger form called a window, which displays the icon's 
contents. This enables you to read docuplents, inspect the 

Figure 3-A "Desktop" as it appears on the Star screen 

This one has several commonly used icons along the top, including documents to 
serve as ''form pad" sources for letters, memos and blank paper. There is also an 
open window displaying a document. 

The Star User Interface: An Overview 519 

contents of folders and file drawers, see what mail has arrived, 
and perform other activities. Windows are the principal mech­
anism for displaying and manipulating information. 
- The Desktop-surface is displayed as a distinctIve grey pat­
tern. This is restful and makes the icons and windows on it 
stand out crisply, minimizing eye strain. The surface is or­
ganized as an array of I-inch squares, 14 wide by 11 high. An 
icon may be placed in any square, giving a maximum of 154 
icons. Star centers an icon in its square, making it easy to line 
up icons neatly. The Desktop always occupies the entire dis­
play screen; even when windows appear on the screen, the 
Desktop continues to exist "beneath" them. 

The Desktop is the principal Star technique for realizing the 
physical office metaphor. The icons on it are visible, concrete 
embodiments of the corresponding physical objects. Star 
users are encouraged to think of the objects on the Desktop 
in physical terms. You can move the icons around to arrange 
your Desktop as you wish. (Messy Desktops are certainly 
possible, just as in real life. ) You can leave documents on your 
Desktop indefinitely, just as on a real desk, or you can file 
them away. 

ICONS 

An icon is a pictorial representation of a Star object that can 
exist on the Desktop. On the Desktop, the size of an icon is 
approximately 1 inch square. Inside a window such as a folder 
window, the size of an icon is approximately Y4-inch square. 
Iconic images have played a role in human communication 
from cave paintings in prehistoric times to Egyptian hiero­
glyphics to religious symbols to modern corporate logos. 
Computer science has been slow to exploit the potential of 
visual imagery for presenting information, particularly ab­
stract information. "Among [the] reasons are the lack of 
development of appropriate hardware and software for pro­
ducing visual imagery easily and inexpensiVely; computer 
technology has been dominated by persons who seem to be 
happy with a simple, very limited alphabet of characters used 
to produce linear strings of symbols."l1 One of the authors has 
applied icons to an environment for writing programs; he 
found that they greatly facilitated human-computer commu­
nication. 12 Negroponte's Spatial Data Management system 
has effectively used iconic images in a research setting. 13 And 
there have been other efforts. 14,15,16 But Star is the first com­
puter system designed for a mass market to employ icons 
methodically in its user interface. We do not claim that Star 
exploits visual communication to the ultimate extent; we do 
claim that Star's use of imagery is a significant improvement 
over traditional human-machine interfaces. 

At the highest level the Star world is divided into two classes 
of icons, (1) data and (2) function icons: 

Data Icons 

Data icons (Figure 4) represent objects on which actions are 
performed. All data icons can be moved, copied, deleted, 
filed, mailed, printed, opened, closed, and have a variety of 
other operations performed on them. The three types of data 
icons are document, folder, and record file. 



520 National Computer Conference, 1982 

Figure 4---The "data" icons: document, folder and record file 

Document 

A document is the fundamental object in Star. It corre­
sponds to the standard notion of what a document should be. 
It most often contains text, but it may also include illustra­
tions, mathematical formulas, tables, fields, footnotes, and 
formatting information. Like all data icons, documents can be 
shown on the screen, rendered on paper, sent to other people, 
stored on a file server or floppy disk, etc. When opened, 
documents are always rendered on the display screen exactly 
as they print on paper (informally called "what you see is what 
you get"), including displaying the correct type fonts, multiple 
columns, headings and footings, illustration placement, etc. 
Documents can reside in the system in a variety of formats 
(e.g., Xerox 860, IBM OS6), but they can be edited only in 
Star format. Conversion operations are provided to translate 
between the various formats. 

Folder 

A folder is used to group data icons together. It can contain 
documents, record files, and other folders. Folders can be 
nested inside folders to any level. Like file drawers (see be­
low), folders can be sorted and searched. 

Record file 

A record file is a collection of information organized as a set 
of records. Frequently this information will be the variable 
data from forms. These records may be sorted, subset via 
pattern matching, and formatted into reports. Record files 
provide a rich set of information storage and retrieval 
functions. 

Function Icons 

Function icons represent objects that perform actions. Most 
function icons will operate on any data icon. There are many 
kinds of function icons, with more being added as the system 
evolves: 

File drawer 

A file drawer (Figure 5) is a place to store data icons. It is 
modeled after the drawers in office filing cabinets. The or­
ganization of a file drawer is up to you; it can vary from a 
simple list of documents to a multilevel hierarchy of folders 

Figure 5-A file drawer icon 

containing other folders. File drawers are distinguished from 
other storage places (folders, floppy disks, and the Desktop) 
in that (1) icons placed in a file drawer are physically stored 
on a file server, and (2) the contents of file drawers can be 
shared by multiple users. File drawers have associated access 
rights to control the ability of people to look at and modify 
their contents (Figure 6). 

Although the design of file drawers was motivated by their 
physical counterparts, they are a good example of why it is 
neither necessary nor desirable to stop with just duplicating 
real-world behavior. People have a lot of trouble finding 
things in filing cabinets. Their categorization schemes are fre­
quently ad hoc and idiosyncratic. If the person who did the 
categorizing leaves the company, information may be per­
manently lost. Star improves on physical filing cabinets by 
taking advantage of the computer's ability to search rapidly. 
You can search the contents of a file drawer for an object 
having a certain name, or author, or creation date, or size, or 
a variety of other attributes. The search criteria can use fuzzy 
patterns containing match-anything symbols, ranges, and 
other predicates. You can also sort the contents on the basis 
of those criteria. The point is that whatever information re­
trieval facilities are available in a system should be applied to 

Figure 6---An open file drawer window 

Note that there is a miniature icon for each object inside the file drawer. 



the information in files. Any system that does not do so is not 
exploiting the full potential of the computer. 

In basket and Out basket 

These provide the principal mechanism for sending data 
icons to other peopie (Figure 7). A data icon placed in the Out 
basket will be sent over the Ethernet to a mail server (usually 
the same machine as a file server), thence to the mail servers 
ofthe recipients (which may be the same as the sender's), and 
thence to the In baskets of the recipients. When you have mail 
waiting for you, an envelope appears in your In basket icon. 
When you open your In basket, you can display and read the 
mail in the window. 

Any document, record file, or folder can be mailed. Docu­
ments need not be limited to plain text, but can contain illus­
trations, mathematical formulas, and other nontext material. 
Folders can contain any number of items. Record files can be 
arbitrarily large and complex. 

Figure 7-ln and Out basket icons 

Printer 

Printer icons (Figure 8) provide access to printing services. 
The actual printer may be directly connected to your work 
station, or it may be attached to a print server connected to an 
Ethernet. You can have more than one printer icon on your 
Desktop, providing access to a variety of printing resources. 
Most printers are expected to be laser-driven raster-scan xero­
graphic machines; these can render on paper anything that 
can be created on the screen. Low-cost typewriter-based 
printers are also available; these can render only text. 

As with filing and mailing, the existence of the Ethernet 
greatly enhances the power of printing. The printer repre­
sented by an icon on your Desktop can be in the same room 
as your work station, in a different room, in a different build-

Figure 8--A printer icon 

The Star User Interface: An Overview 521 

ing, in a different city, even in a different country. You per­
form exactly the same actions to print on any of them: Select 
a data icon, push the MOVE key, and indicate the printer icon 
as the destination. 

Floppy disk drive 

The floppy disk drive icon (Figure 9) allows you to move 
data icons to and from a floppy disk inserted in the machine. 
This provides a way to store documents, record files and fold­
ers off line. When you open the floppy disk drive icon, Star 
reads the floppy disk and displays its contents in the window. 
Its window looks and acts just like a folder window: icons may 
be moved or copied in or out, or deleted. The only difference 
is the physical location of the data. 

Figure 9-A floppy disk drive icon 

User 

The user icon (Figure 10) displays the information that the 
system knows about each user: name, location, password 
(invisible, of course), aliases if any, home file and mail serv­
ers, access level (ordinary user, system administrator, help/ 
training writer), and so on. We expect the information stored 
for each user to increase as Star adds new functionality. User 
icons may be placed in address fields for electronic mail. 

User icons are Star's solution to the naming problem. There 
is a crisis in computer naming of people, particularly in elec­
tronic mail addressing. The convention in most systems is to 

Figure lO-A user icon 



522 National Computer Conference, 1982 

use last names for user identification. Anyone named Smith, 
as is one of the authors, knows that this doesn't work. When 
he first became a user on such a system, Smith had long ago 
been taken. In fact, "D. Smith" and even "D. C. Smith" had 
been taken. He finally settled on "DaveSmith", all one word, 
with which he has been stuck to this day. Needless to say, that 
is not how he identifies himself to people. In the future, peo­
ple will not tolerate this kind of antihumanism from comput­
ers. Star already does better: it follows society's conventions. 
User icons provide unambiguous unique references to individ­
ual people, using their normal names. The information about 
users, and indeed about all network resources, is physically 
stored in the Clearinghouse, a distributed database of names. 
In addition to a person's name in the ordinary sense, this 
information includes the name of the organization (e.g., Xe­
rox, General Motors) and the name of the user's division 
within the organization. A person's linear name need be 
unique only within his division. It can be fully spelled out if 
necessary, including spaces and punctuation. Aliases can be 
defined. User icons are references to this information. You 
need not even know, let alone type, the unique linear repre­
sentation for a user; you need only have the icon. 

User group 

User group icons (Figure 11) contain individual users and/ 
or other user groups. They allow you to organize people ac­
cording to various criteria. User groups serve both to control 

Figure ll-A user group icon 

access to information such as file drawers (access control lists) 
and to make it easy to send mail to a large number of people 
(distribution lists). The latter is becoming increasingly im­
portant as more and more people start to take advantage of 
computer-assisted communication. At Xerox we have found 
that as soon as there were more than a thousand Alto users, 
there were almost always enough people interested in any 
topic whatsoever to form a distribution list for it. These user 
groups have broken the bonds of geographical proximity that 
have historically limited group membership and commu­
nication. They have begun to turn Xerox into a nationwide 
"village," just as the Arpanet has brought computer science 
researchers around the world closer together. This may be the 
most profound impact that computers have on society. 

Calculator 

A variety of styles of calculators (Figure 12) let you perform 
arithmetic calculations. Numbers can be moved between Star 
documents and calculators, thereby reducing the amount of 
typing and the possibility of errors. Rows or columns of tables 
can be summed. The calculators are user-tailorable and exten­
sible. Most are modeled after pocket calculators-business, 
scientific, four-function-but one is a tabular calculator simi­
lar to the popular Visicalc program. 

Figure 12-A calculator icon 

Terminal emulators 

The terminal emulators permit you to communicate with 
existing mainframe computers using existing protocols. Ini­
tially, teletype and 3270 terminals are emulated, with addi­
tional ones later (Figure 13). You open one of the terminal 
icons and type into its window; the contents of the window 
behave exactly as if you were typing at the corresponding 
terminal. Text in the window can be copied to and from Star 
documents, which makes Star's rich environment available to 
them. 

Figure 1>-3270 and 1TY emulation icons 

Directory 

The Directory provides access to network resources. It 
serves as the source for icons representing those resources; 
the Directory contains one icon for each resource available 
(Figure 14). When you are first registered in a Star network, 



Figure 14--A Directory icon 

your Desktop contains nothing but a Directory icon. From 
this initial state, you access resources such as file drawers, 
printers, and mail baskets by opening the Directory and copy­
ing out their icons. You can also get blank data icons out of the 
Directory. You can retrieve other data icons from file draw­
ers. Star places no limits on the complexity of your Desktop 
except the limitation imposed by physical screen area (Figure 
15). The Directory also contains Remote Directories repre­
senting resources available on other networks. These can be 
opened, recursively, and their resource icons copied out, just 
as with the local Directory. You deal with local and remote 
resources in exactly the same way. 

Figure 15---The Directory window, showing the categories of resources 
available 

The important thing to observe is that although the func­
tions performed by the various icons differ, the way you inter­
act with them is the same. You select them with the mouse. 
You push the MOVE, COPY, or DELETE key. You push the 
OPEN key to see their contents, the PROPERTIES key to see 
their properties, and the SAME key to copy their properties. 
This is the result of rigorously applying the principle of uni­
formity to the design of icons. We have applied it to other 
areas of Star as well, as will be seen. 

WINDOWS 

Windows are rectangular areas that display the contents of 
icons on the screen. Much of the inspiration for Star's design 

The Star User Interface: An Overview 523 

came from Alan Kay's Flex machine17 and his later Smalltalk 
programming environment on the AltO.18 The Officetalk 
treatment of windows was also influential; in fact, Officetalk, 
an experimental office-forms-processing system on the Alto, 
provided ideas in a variety of areas. 19 Windows greatly in­
crease the amount of information that can be manipulated on 
a display screen. Up to six windows at a time can be open in 
Star. Each window has a header containing the name of the 
icon and a menu of commands. The commands consist of a 
standard set present in all windows ("?" , CLOSE, SET WIN­
DOW) and others that depend on the type of icon. For exam­
ple, the window for a record file contains commands tailored 
to information retrieval. CLOSE removes the window from 
the display screen, returning the icon to its tiny size. The "?" 
command displays the online documentation describing the 
type of window and its applications. 

Each window has two scroll bars for scrolling the contents 
vertically and horizontally. The scroll bars have jump-to-end 
areas for quickly going to the top, bottom, left, or right end 
of the contents. The vertical scroll bar also has areas labeled 
Nand P for quickly getting the next or previous screenful of 
the contents; in the case of a document window, they go to the 
next or previous page. Finally, the vertical scroll bar has a 
jumping area for going to a particular part of the contents, 
such as to a particular page in a document. 

Unlike the windows in some Alto programs, Star windows 
do not overlap. This is a deliberate decision, based on our 
observation that many Alto users were spending an inordinate 
amount of time manipulating windows themselves rather than 
their contents. This manipulation of the medium is overhead, 
and We want to reduce it. Star automatically partitions the 
display space among the currently open windows. You can 
control on which side of the screen a window appears and its 
height. 

PROPERTY SHEETS 

At a finer grain, the Star world is organized in terms of objects 
that have properties and upon which actions are performed. A 
few examples of objects in Star are text characters, text para­
graphs, graphic lines, graphic illustrations, mathematical sum­
mation signs, mathematical formulas, and icons. Every object 
has properties. Properties of text characters include type 
style, size, face, and posture (e.g., bold, italic). Properties of 
paragraphs include indentation, leading, and alignment. 
Properties of graphic lines include thickness and structure 
(e.g., solid, dashed, dotted). Properties of document icons 
include name, size, creator, and creation date. So the proper­
ties of an object depend on the type of the object. These ideas 
are similar to the notions of classes, objects, and messages in 
Simula20 and Smalltalk. Among the editors that use these 
ideas are the experimental text editor Brav021 and the experi­
mental graphics editor Draw, 22 both developed at the Xerox 
Palo Alto Research Center. These all supplied valuable 
knowledge and insight to Star. In fact, the text editor aspects 
of Star were derived from Bravo. 

In order to make properties visible, we invented the notion 
of a property sheet (Figure 16). A property sheet is a two­
dimensional formlike environment which shows the proper-



524 National Computer Conference, 1982 

Figure 16-The property sheet for text characters 

ties of an object. To display one, you select the object of 
interest using the mouse and push the PROPERTIES key on 
the keyboard. Property sheets may contain three types of 
parameters: 

1. State-State parameters display an independent proper­
ty, which may be either on or off. You turn it on or off 
by pointing to it with the mouse and clicking a mouse 
button. When on, the parameter is shown video re­
versed. In general, any combination of state parameters 
in a property sheet can be on. If several state parameters 
are logically related, they are shown on the same line 
with space between them. (See "Face" in Figure 16.) 

2. Choice-Choice parameters display a set of mutually 
exclusive values for a property. Exactly one value must 
be on at all times. As with state parameters, you turn on 
a choice by pointing to it with the mouse and clicking a 
mouse button. If you turn on a different value, the sys­
tem turns off the previous one. Again the one that is on 
is shown video reversed. (See "Font" in Figure 16.) The 
motivation for state and choice parameters is the obser­
vation that it is generally easier to take a multiple-choice 
test than a fill-in-the-blanks one. When options are 
made visible, they become easier to understand, remem­
ber, and use. 

3. Text-Text parameters display a box into which you can 
type a value. This provides a (largely) unconstrained 
choice space; you may type any value you please, within 
the limits of the system. The disadvantage of this is that 
the set of possible values is not visible; therefore Star 
uses text parameters only when that set is large. (See 
"Search for" in Figure 17.) 

Property sheets have several important attributes: 

1. A small number of parameters gives you a large number 
of combinations of properties. They permit a rich choice 
space without a lot of complexity. For example, the char­
acter property sheet alone provides for 8 fonts, from 1 to 
6 sizes for each (an average of about 2), 4 faces (any 

Figure 17-The option sheet for the Find command 

combination of which can be on), and 8 positions rela­
tive to the baseline (including OTHER, which lets you 
type in a value). So in just four parameters, there are 
over 8 x 2 X 24 X 8 = 2048 combinations of character 
properties. 

2. They show all of the properties of an object. None is 
hidden. You are constantly reminded what is available 
every time you display a property sheet. 

3. They provide progressive disclosure. There are a large 
number of properties in the system as a whole, but you 
want to deal with only a small subset at anyone time. 
Only the properties of the selected object are shown. 

4. They provide a "bullet-proof' environment for altering 
the characteristics of an object. Since only the properties 
of the selected object are shown, you can't accidentally 
alter other objects. Since only valid choices are dis­
played, you can't specify illegal properties. This reduces 
errors. 

Property sheets are an example of the Star design principle 
that seeing and pointing is preferred over remembering and 
typing. You don't have to remember what properties are avail­
able for an object; the property sheet will show them to you. 
This reduces the burden on your memory, which is particu­
larly important in a functionally rich system. And most prop­
erties can be changed by a simple pointing action with the 
mouse. 

The three types of parameters are also used in option sheets. 
(Figure 18). Option sheets are just like property sheets, ex­
cept that they provide a visual interface for arguments to com­
mands instead of properties of objects. For example, in the 
Find option sheet there is a text parameter for the string to 
search for, a choice parameter for the range over which to 
search, and a state parameter (CHANGE IT) controlling 
whether to replace that string with another one. When 
CHANGE IT is turned on, an additional set of parameters 
appears to contain the replacement text. This technique of 
having some parameters appear depending on the settings of 
others is another part of our strategy of progressive disclo­
sure: hiding information (and therefore complexity) until it is 



needed, but making it visible when it is needed. The various 
sheets appear simpler than if all the options were always 
shown. 

COMMANDS 

Commands in Star take the form of noun-verb pairs. You 
specify the object of interest (the noun) and then invoke a 
command to manipulate it (the verb). Specifying an object is 
called making a selection. Star provides powerful selection 
mechanisms, which reduce the number and complexity of 
commands in the system. Typically, you exercise more dexter­
ity and judgment in making a selection than in invoking a 
command. The ways to make a selection are as follows: 

1. With the mouse-Place the cursor over the object on the 
screen you want to select and click the first (SELECT) 
mouse button. Additional objects can be selected by 
using the second (ADJUST) mouse button; it adjusts the 
selection to include more or fewer objects. Most selec­
tions are made in this way. 

2. With the NEXT key on the keyboard-Push the NEXT 
key, and the system will select the contents of the next 
field in a document. Fields are one of the types of special 
higher-level objects that can be placed in documents. If 
the selection is currently in a table, NEXT will step 
through the rows and columns of the table, making it 
easy to fill in and modify them. If the selection is cur­
rently in a mathematical formula, NEXT will step 
through the various elements in the formula, making it 
easy to edit them. NEXT is like an intelli!!ent steo kev: 
it moves the selection between semantically mea~ingfui 
locations in a document. 

3. With a command-Invoke the FIND command, and the 
system will select the next occurrence of the specified 
text, if there is one. Other commands that make a selec­
tion include OPEN (the first object in the opened win­
dow is selected) and CLOSE (the icon that was closed 
becomes selected). These optimize the use of the 
system. 

b I 
_U"IT ''''''D''ROP~RTlt:q J':')NfIRM f"'\l1 ':i1AN,~el 

Figure 18-The Find option sheet showing Substitute options (The extra 
options appear only when CHANGE IT is turned on) 

The Star User Interface: An Overview 525 

The object (noun) is almost always specified before the 
action (verb) to be performed. This makes the command in­
terface modeless; you can change your mind as to which object 
to affect simply by changing the selection before invoking the 
command.23 No "accept" function is needed to terminate or 
confirm commands, since invoking the command is the last 
step. Inserting text does not require a command; you simply 
make a selection and begin typing. The text is piaced after the 
end of the selection. A few commands require more than one 
operand and hence are modal. For example, the MOVE and 
COPY commands require a destination as well as a source. 

GENERIC COMMANDS 

Star has a few commands that can be used throughout the 
system: MOVE, COpy, DELETE, SHOW PROPERTIES, 
COPY PROPERTIES, AGAIN, UNDO, and HELP. Each 
performs the same way regardless of the type of object se­
lected. Thus we call them generic commands. For example, 
you follow the same set of actions to move text In a document 
as to move a document in a folder or a line in an illustration: 
select the object, move the MOVE key, and indicate the 
destination. Each generic command has a key devoted to it on 
the keyboard. (HELP and UNDO don't use a selection.) 

These commands are more basic than the ones in other 
computer systems. They strip away extraneous application­
specific semantics to get at the underlying principles. Star's 
generic commands are derived from fundamental computer 
science concepts because they also underlie operations in pro­
gramming languages. For example, program manipulation of 
data structures involves moving or copying values from one 
data structure to another. Since Star's generic commands em­
body fundamental underlying concepts, they are widely appli­
cable. Each command fills a host of needs. Few commands are 
required. This simplicity is desirable in itself, but it has anoth­
er subtle advantage: it makes it easy for users to form a model 
of the system. What people can understand, they can use. Just 
as progress in science derives from simple, clear theories, so 
progress in the usability of computers depends on simple, 
clear user interfaces. ' 

Move 

MOVE is the most powerful command in the system. It is 
used during text editing to rearrange letters in a word, words 
in a sentence, sentences in a paragraph, and paragraphs in a 
document. It is used during graphics editing to move picture 
elements such as lines and rectangles around in an illustration. 
It is used during formula editing to move mathematical struc­
tures such as summations and integrals around in an equation. 
It replaces the conventional "store file" and "retrieve file" 
commands; you simply move an icon into or out of a file 
drawer or folder. It eliminates the "send mail" and "receive 
mail" commands; you move an icon to an Out basket or from 
an In basket. It replaces the "print" command; you move an 
icon to a printer. And so on. MOVE strips away much of the 
historical clutter of computer commands. It is more funda­
mental than the myriad of commands it replaces. It is simulta­
neously more powerful and simpler. 



526 National Computer Conference, 1982 

MOVE also reinforces Star's physical metaphor: a moved 
object can be in only one place at one time. Most computer 
file transfer programs only make copies; they leave the origi­
nals behind. Although this is an admirable att~mpt to keep 
information from accidentally getting lost, an unfortunate 
side effect is that sometimes you lose track of where the most 
recent information is, since there are multiple copies floating 
around. MOVE lets you model the way you manipulate infor­
mation in the real world, should you wish to. We expect that 
during the creation of information, people will primarily use 
MOVE; during the dissemination of information, people will 
make extensive use of COPY. 

Copy 

COPY is just like MOVE, except that it leaves the original 
object behind untouched. Star elevates the concept of copying 
to the level of a paradigm for creating. In all the various 
domains of Star, you create by copying. Creating something 
put of nothing is a difficult task. Everyone has observed that 

;:ii is easier to modify an existing document or program than to 
write it originally. Picasso once said, "The most awful thing 
for a painter is the white canvas .... To copy others is neces­
sary. ,,24 Star makes a serious attempt to alleviate the problem 
of the "white canvas," to make copying a practical aid to 
creation. Consider: 

• You create new documents by copying existing ones. 
Typically you set up blank documents with appropriate 
formatting properties (e.g., fonts, margins) and then use 
those documents as form pad sources for new documents. 
You select one, push COPY, and presto, you have a new 
document. The form pad documents need not be blank; 
they can contain text and graphics, along with fields for 
variable text such as for business forms. 

• You place new network resource icons (e.g., printers, file 
drawers) on your Desktop by copying them out of the 
Directory. The icons are registered in the Directory by a 
system administrator working at a server. You simply 
copy them out; no other initialization is required. 

• You create graphics by copying existing graphic images 
and modifying them. Star supplies an initial set of such 
images, called transfer symbols. Transfer symbols are 
based on the idea of dry-transfer rub-off symbols used by 
many secretaries and graphic artists. Unlike the physical 
transfer symbols, however, the computer versions can be 
modified: they can be moved, their sizes and proportions 
can be changed, and their appearance properties can be 
altered. Thus a single Star transfer symbol can produce a 
wide range of images. We will eventually supply a set of 
documents (transfer sheets) containing nothing but spe­
cial images tailored to one application or another: peo­
ple, buildings, vehicles, machinery. Having these as 
sources for graphics copying helps to alleviate the "white 
canvas" feeling. 

• In a sense, you can even type characters by copying them 
from keyboard windows. Since there are many more 
characters (up to 216

) in the Star character set than there 
are keys on the keyboard, Star provides a series of key-

.board interpretation windows (Figure 19), which allow 
you to see and change the meanings of the keyboard 
keys. You are presented with the options; you look them 
over and choose the ones you want. 

Figure 19-The Keyboard Interpretation window 

This displays other characters that may be entered from the keyboard. The 
character set shown here contains a variety of common office symbols. 

Delete 

This deletes the selected object. If you delete something by 
mistake, UNDO will restore it. 

Show Properties 

SHOW PROPERTIES displays the properties of the se­
lected object in a property sheet. You select the object(s) of 
interest, push the PROPERTIES (PROP'S) key, and the ap­
propriate property sheet appears on the screen in such a pos­
ition as to not overlie the selection, if possible. You may 
change as many properties as you wish, including none. When 
finished, you invoke the Done command in the property sheet 
menu. The property changes are applied to the selected ob­
jects, and the property sheet disappears. Notice that SHOW 
PROPERTIES is therefore used both to examine the current 
properties of an object and to change those properties. 

Copy Properties 

You need not use property sheets to alter properties if there 
is another object on the screen that already has the desired 
properties. You can select the object(s) to be changed, push 
the SAME key, then designate the object to use as the source. 
COPY PROPERTIES makes the selection look the "same" 
as the source. This is particularly useful in graphics editing. 
Frequently you will have a collection of lines and symbols 
whose appearance you want to be coordinated (all the same 
line width, shade of grey, etc.). You can select an the objects 
to be changed, push SAME, and select a line or symbol having 



the desired appearance. In fact, we find it helpful to set up a 
document with a variety of graphic objects in a variety of 
appearances to be used as sources for copying properties. 

Again 

AGAIN repeats the last command(s) on a new selection. 
All the commands done since the last time a selection was 
made are repeated. This is useful when a short sequence of 
commands needs to be done on several different selections; 
for example, make several scattered words bold and italic and 
in a larger font. 

Undo 

UNDO reverses the effects ofthe last command. It provides 
protection against mistakes, making the system more forgiv­
ing and user-friendly. Only a few commands cannot be re­
peated or undone. 

Help 

Our effort to make Star a personal, self-contained system 
goes beyond the hardware and software to the tools that Star 
provides to teach people how to use the system. Nearly all of 
its teaching and reference material is on line, stored on a file 
server. The Help facilities automatically retrieve the relevant 
material as you request it. 

The HELP key on the keyboard is the primary entrance into 
this online information. You can push it at any time, and a 
window will appear on the screen displaying the Help table of 
contents (Figure 20). Three mechanisms make finding infor­
mation easier: context-dependent invocation, help references, 
and a keyword search command. Together they make the 
online documentation more powerful and useful than printed 
documentation. 

• Context-dependent invocation-The command menu in 
every window and property/option sheet contains a"?" 
command. Invoking it takes you to a part of the Help 
documentation describing the window, its commands, 
and its functions. The "?" command also appears in the 
message area at the top of the screen; invoking that one 
takes you to a description of the message (if any) cur­
rently in the message area. That provides more detailed 
explanations of system messages. 

• Help references-These are like menu commands whose 
effect is to take you to a different part of the Help mate­
rial. You invoke one by pointing to it with the mouse, just 
a-s you invoke a menu-command. The writers of the ma­
terial use the references to organize it into a network of 
interconnections, in a way similar to that suggested by 
Vannevar Bush25 and pioneered by Doug Engelbart in his 
NLS system.26

,27 The interconnections permit cross­
referencing without duplication. 

• The SEARCH FOR KEYWORD command-This com­
mand in the Help window menu lets you search the avail­
able documentation for information on a specific topic. 
The keywords are predefined by the writers of the Help 
material. 

The Star User Interface: An Overview 527 

Figure 20-The Help window, showing the table of contents 

Selecting a square with a question mark in it takes you to the associated part of 
the Help documentation. 

SUMMARY 

We have learned from Star the importance of formulating the 
user's conceptual model first, before software is written, rath­
er than tacking on a user interface afterward. Doing good user 
interface design is not easy. Xerox devoted about thirty work­
years to the design of the Star user interface. It was designed 
before the functionality of the system was fully decided. It was 
designed before the computer hardware was even built. We 
worked for two years before we wrote a single line of actual 
product software. Jonathan Seybold put it this way: "Most 
system design efforts start with hardware specifications, fol­
low this with a set of functional specifications for the software, 
then try to figure out a logical user interface and command 
structure. The Star project started the other way around: the 
paramount concern was to define a conceptual model of how 
the user would relate to the system. Hardware and software 
followed from this.,,4 

Alto served as a valuable prototype for Star. Over a thou­
sand Altos were eventually built, and Alto users have had 
several thousand work-years of experience with them over a 
period of eight years, making Alto perhaps the largest proto-



528 National Computer Conference, 1982 

typing effort in history. There were dozens of experimental 
programs written for the Alto by members of the Xerox Palo 
Alto Research Center. Without the creative ideas of the au­
thors of those systems, Star in its present form would have 
been impossible. On the other hand, it was a real challenge to 
bring some order to the different user interfaces on the Alto. 
In addition, we ourselves programmed various aspects of the 
Star design on Alto, but every bit (sic) of it was throwaway 
code. Alto, with its bit-mapped display screen, was powerful 
enough to implement and test our ideas on visual interaction. 

REFERENCES 

1. Smith, D. c., E. F. Harslem, C. H. Irby, R. B. Kimball, and W. L. 
Verplank. "Designing the Star User Interface." Byte, April 1982. 

2. Metcalfe, R. M., and D. R. Boggs. "Ethernet: Distributed Packet Switch­
ing for Local Computer Networks." Communications of the ACM, 19 
(1976), pp. 395-404. 

3. Intel, Digital Equipment, and Xerox Corporations. "The Ethernet, A Lo­
cal Area Network: Data Link Layer and Physical Layer Specifications 
(version 1.0)." Palo Alto: Xerox Office Products Division, 1980. 

4. Seybold, J. W. "Xerox's 'Star.''' The Seybold Report. Media, Pennsyl­
vania: Seybold Publications, 10 (1981), 16. 

5. Thacker, C. P., E. M. Mc~reight, B. W. Lampson, R. F. Sproull, and D. 
R. Boggs. "Alto: A Personal Computer." In D. Siewiorek, C. G. Bell, and 
A. Newell (eds.), Computer Structures: Principles and Examples. New 
York: McGraw-Hill, 1982. 

6. Ingalls, D. H. "The Smalltalk Graphics Kernel." Byte, 6 (1981), pp. 
168-194. 

7. English, W. K., D. C. Engelbart, and M. L. Berman. "Display-Selection 
Techniques for Text Manipulation." IEEE Transactions on Human Factors 
in Electronics, HFE-8 (1967), pp. 21-31. 

8. Fitts, P. M. "The Information Capacity of the Human Motor System in 
Controlling Amplitude of Movement." Journal of Experimental Psy­
chology, 47 (1954), pp. 381-391. 

9. Card, S., W. K. English, and B. Burr. "Evaluation of Mouse, Rate­
Controlled Isometric Joystick, Step Keys, and Text Keys for Text Selection 
on a CRT." Ergonomics, 21 (1978), pp. 601-613. 

10. Oppen, D. c., and Y. K. Dalal. "The Clearinghouse: A Decentralized 
Agent for Locating Named Objects in a Distributed Environment." Palo 
Alto: Xerox Office Products Division, OPD-T8103, 1981. 

11. Huggins, W. H., and D. Entwisle. Iconic Communication. Baltimore and 
London: The Johns Hopkins University Press, 1974. 

12. Smith, D. C. Pygmalion, A Computer Program to Model and Stimulate 
Creative Thought. Basel and Stuttgart: Birkhauser Verlag, 1977. 

13. Bolt, R. Spatial Data-Management. Cambridge, Massachusetts: Massachu­
setts Institute of Technology Architecture Machine Group, 1979. 

14. Sutherland, I. "Sketchpad, A Man-Machine Graphical Communication 
System." AFlPS, Proceedings of the Fall Joint Computer Conference (Vol. 
23), 1963, pp. 329-346. 

15. Sutherland, W. "On-Line Graphical Specifications of Computer Proced­
ures." Cambridge, Massachusetts: Massachusetts Institute of Technology, 
1966. 

16. Christensen, C. "An Example of the Manipulation of Directed Graphs in 
the AMBIT/G Programming Language." In M. Klerer and J. Reinfelds 
(eds.), Interactive Systems for Experimental and Applied Mathematics. New 
York: Academic Press, 1968. 

17. Kay, A. C. The Reactive Engine. Salt Lake City: University of Utah, 1969. 
18. Kay, A. C., and the Learning Research Group. "Personal Dynamic Me­

dia." Xerox Palo Alto Research Center Technical Report SSL-76-1, 1976. 
(A condensed version is in IEEE Computer, March 1977, pp. 31-41.) 

19. Newman, W. M. "Officetalk-Zero: A User's Manual." Xerox Palo Alto 
Research Center Internal Report, 1977. 

20. Dahl, O. J., and K. Nygaard. "SIMULA-An Algol-Based Simulation Lan­
guage." Communications of the ACM, 9 (1966), pp. 671-678. 

21. Lampson, B. "Bravo Manual." In Alto User's Handbook, Xerox Palo Alto 
Research Center, 1976 and 1978. (Much of the design and all of the imple­
mentation of Bravo was done by Charles Simonyi and the skilled pro­
grammers in his "software factory.") 

22. Baudelaire, P., and M. Stone. "Techniques for Interactive Raster Graph-
ics." Proceedings of the 1980 Siggraph Conference, 14 (1980), 3. 

23. Tesler, L. "The Smalltalk Environment." Byte, 6 (1981), pp. 90--147. 
24. Wertenbaker, L. The World of Picasso. New York: Time-Life Books, 1967. 
25. Bush, V. "As We May Think." Atlantic Monthly, July 1945. 
26. Engelbart, D. C. "Augmenting Human Intellect: A Conceptual Frame­

work." Technical Report AFOSR-3223, SRI International, Menlo Park, 
Calif., 1962. 

27. Engelbart, D. c., and W. K. English. "A Research Centerfor Augmenting 
Human Intellect." AFlPS Proceedings of the Fall Joint Computer Confer­
ence (Vol. 33), 1968, pp. 395-410. 



MFS: a modular text formatting system 

by JAMES D. MOONEY 
West Virginia University 
Morgantown, WV 

ABSTRACT 

This paper presents the design goals and architecture of the Modular Formatting 
System, currently being developed at West Virginia University. MFS applies to 
formatters the principles of separation of function used in many successful program 
systems. A small central kernel forms the basis for a family of formatting systems, 
tailored to specific applications and environments. 

MFS is intended to support a wide spectrum of applications drawn from the 
experience of commercial composition, word processing, and research systems. It 
does not rely on any specialized terminal or input source characteristics. Output 
devices from line printers through high resolution typesetters are handled in a 
uniform manner. Users can exercise detailed control over document appearance, or 
work exclusively with styles predefined through macros. 

529 





INTRODUCTION 

Computer-aided composition of documents is an application 
which has developed rapidly since the early report prepa­
ration systems such as RUNOFF1

; programmed photo­
composers from such companies as Star Parts, Photon, 
Compugraphic, Harris, and Mergenthaler; and mainframe 
formatting systems such as PAGE-l. 2 Each of these lines has 
produced many more advanced descendants. TROFF3 is a 
powerful formatter in the RUNOFF family. Commercial sys­
tems now automate almost all the composition tasks of com­
plete books or newspapers. Research systems such as TEX4 

and SCRIBES have arisen which provide ambitious solutions 
to complex composition problems. The development of 
"word-processing" systems has made a new mode of inter­
active document preparation available in many environments, 
such as business offices, where it would not have been con­
sidered before. 

As the notion of using a computer to prepare documents 
becomes more accepted and ubiquitous, many such systems 
are entering new environments where their full potential is 
only gradually discovered. It is characteristic that users will, if 
possible, apply this potential to tasks not thought of when the 
system was first acquired. New categories of documents may 
be processed; new, more sophisticated output devices may be 
obtained, and a variety of more (or less) powerful terminals 
may be added as text entry and editing becomes a more dem­
ocratic process. 

Expansion of the use of document preparation systems 
brings many persons into contact with the system who will use 
it only if use is extremely easy and natural, and few special 
codes or procedures need to be learned. At the same time, 
familiarity brings increased demands; and many users, once 
content with a typewritten product, develop the discernment 
of professional typographers. While taking full advantage of 
the automatic processing available from a powerful formatter, 
they may also want hairline control of the document's final 
appearance, and of the formatter's behavior in various spe­
cific situations. 

These considerations demonstrate the need for a document 
processing system which, over its lifetime, can deal with a 
considerable diversity of input and editing mechanisms, target 
output devices, applications, and user demands for flexibility 
or convenience. Some existing systems are quite flexible along 
some of these dimensions, but no system known to the author 
appears to be sufficiently general in all ways. The Modular 
Formatting System (MFS) is an attempt to address this need. 

DESIGN ISSUES AND GOALS 

The overall objective of MFS is to synthesize the essential 
capabilities of previous formatting systems in a concise and 

MFS: A Modular Text Formatting System 531 

modular system which can be adapted to a great variety of 
applications and environments. MFS establishes four specific 
goals of generality: input source independence, target device 
independence, support for a wide spectrum of applications, 
and user-selected levels of flexibility or convenience. Each of 
these goals will be discussed below. 

Input source independence· 

Many formatting systems are limited to use with specific 
terminal types. This is true especially of word processors, 
which are most often supplied by the terminal vendor. In 
contrast, many user environments will progress from a few 
simple terminals to many diverse input sources as their system 
usage evolves. 

The likely variations in input source characteristics include 
coding format and degree of interactivity. The coding con­
ventions of any particular terminal can be mapped into a 
standard form such as ASCII by an input module matched to 
the terminal. If the original input includes graphic information 
such as specific fonts, special characters, or spacing, this infor­
mation also must be converted to a suitable command stream 
by the input module. 

Like other software systems, the early document processing 
programs were all designed to process complete marked-up 
documents in batch mode. The rise of screen-oriented editors 
with some formatting capabilities (word processors) parallels 
the rise of the interactive user interface. In this environment, 
users can modify their documents incrementally, and see im­
mediate results from their formatting instructions. 

On the other hand, interactive computing has not made 
popular such tools as incremental (interpretive) compilers, 
except for very simple languages and programs. Most com­
piling is still performed on complete programs without inter­
action. A similar pattern exists for document formatting. 
Editing programs insert and delete text, and perhaps carry out 
simple line filling incrementally. More elaborate formatting, 
often requiring knowledge of a wide context, is invoked by 
distinct commands on well-defined units of text. 

A further impediment to interactive document creation oc­
curs since there is most often a mismatch between the abilities 
of the terminal and the target output device to represent text. 
Some applications target very simple printers, and some ter­
minals have high-resolution, bit-mapped displays, but in most 
cases the terminal can only approximate the final output ap­
pearance. This approximately processed text, while useful as 
a proof reference, may be more difficult to work with than the 
original, marked-up document. 

For these reasons, MFS can be viewed essentially as oper­
ating on a batch of input, which may be digested in its entirety 
before output is produced. It should not, however, ignore the 



532 National Computer Conference, 1982 

possibility that it was invoked interactively. Decisions may 
arise in processing, such as questionable line breaks or hyphe­
nation, meaningless commands, or impossible typographic sit­
uations. Where appropriate, the relevant modules of MFS 
should be able to query the user for a solution to these 
problems. 

Target device independence 

Only a few existing formatters (e.g. SCRIBE) are com­
fortable with a full spectrum of output devices. TEX relies on 
a variety of special characters and use of its own fonts, and is 
not easily mapped down to simpler devices. TROFF drives a 
single sort of typesetter, and has a separate version, NROFF, 
for simple printers. Word processors know little of mUltiple 
fonts and precise spacing control. The limitations of vendor­
supplied systems are evident. 

A major goal of MFS is to be able to drive a wide class of 
output devices, making full use of their typographic capabili­
ties, and to defer the choice of device as much as possible 
while processing. 

The simplest devices are those of the "line-printer" class 
with a single character font and fixed character and line 
spacing. Advanced printers, phototypesetters, etc. may pro­
vide many fonts, precision spacing, and other variables. For 
much routine text processing the simplest printers are ade­
quate, and they are heavily used. But advanced devices are 
appearing side by side with line-printers in a growing number 
of environments. The choice of device for each job is then a 
matter of taste and economics. 

A user who works with a variety of target devices will prefer 
to view them through a common formatter, controlled by a 
uniform coding mechanism. 

In most processing, the user will have in mind a specific 
target device and configuration when the document is pre­
pared. Indeed, character selection and many creative format 
decisions must usually be made in view of the capabilities of 
the output device. However, in some applications a docu­
ment's life cycle will go beyond immediate printing on a single 
device. It may be printed from time to time on several devices; 
it may be distributed to various sites to be printed in a variety 
of environments; it may be printed on an unexpected device 
if the intended target is unavailable. In these situations it is 
generally acceptable to reprocess the source document 
through the formatter with the actual target specified; but it 
may not be acceptable to require manual re-editing of the 
document. 

These considerations impose the following requirements on 
MFS: 

1. It should be able to access all foreseeable capabilities of 
the various devices for character selection, transforma­
tion, positioning, etc. 

2. It should allow the user to prepare documents for a 
virtual target not necessarily bound to any single real 
device. 

3. It should, like SCRIBE, try to provide a reasonable 
interpretation if the specified characters or processing 
functions are not available on the specified device. 

Further, it should not be necessary (as in TEX) to specify 
characters in a way which depends on their grouping within 
the output device. Users should be free to work with virtual 
fonts, character groupings formed for the convenience of the 
application. 

Wide spectrum of applications 

The primitive functions available through various for­
matters vary widely, directly affecting the class of application 
problems which can be addressed. Many recent formatters 
offer valuable solutions to complex problems, e.g. math for­
mula layout, compiling indexes and bibliographies, etc. At the 
same time, capabilities which have proven invaluable in com­
mercial composition have not been carried through to newer 
systems. Word processors may offer interesting interfaces to 
data processing functions, _ yet never address many typo­
graphic needs. 

All of the possible capabilities serve ultimately to define 
mappings from input strings (text and command information) 
to output strings (character specifications and positions). 
However, many of these mappings are highly context depen­
dent. A principal goal of MFS is to identify a set of primitive 
functions which support as large a consistent set of capabilities 
as possible, and to provide these functions in the MFS kernel. 

The following is a partial list of capabilities which have been 
proven usefui by various formatting systems. Preserving these 
capabilities has significant implications for a formatter archi­
tecture. Syntactic issues, which have less impact, are con­
sidered in the next subsection. 

Line breaking and justification 

For some typographers, the best justification algorithm is a 
very personal matter. We may consider a single line or entire 
paragraphs in making decisions. Excess space may be distrib­
uted among word breaks and between letters using various 
strategies. There should be provision for overriding "quad 
spaces" before, after, or within any text, and for filling these 
spaces with characters which may need to meet some criteria 
for alignment. 

Hyphenation 

Good hyphenation is highly subjective, and the algorithm 
must be variable. Technical and geographic words may have to 
be added to the dictionary for specific jobs. Different lan­
guages require entirely different approaches, occasionally 
within the same job. This need is recognized in most commer­
cial systems, while research systems have treated even simple 
hyphenation as an afterthought. 

Multiple environments 

Ability to save and switch the prevailing collection of for­
matting parameters is necessary for clean merging of inter­
mixed text such as footnotes. This facility exists in most sys­
tems only in a limited or specialized form. 



Deferred input sequences 

It is often necessary to specify a sequence of commands or 
text to be deferred until some typographic condition occurs, 
e.g., after 6 inches of text. This ability, found to some degree 
in most commercial systems, supports picture cuts, running 
heads, floating tables, and other important structures. The 
deferred input mechanism is found in limited form in TROFF, 
and missing from TEX and SCRIBE. 

Deferred output 

The ability to save text after processing, for insertion into 
the output at a later point, is the software analog of "cut and 
paste." This function, important for footnotes, floating tables, 
etc., is well developed in the "diversions" of TROFF and the 
"boxes" of TEX. 

Text measurement 

The ability to preprocess text to determine its dimensions or 
other characteristics before output is a special case of De­
ferred Output. These measurements may be needed for prob­
lems such as footnote fitting, large initial capitals, vertical 
justification, etc. Many systems provide only the ability to 
determine the width of a short string. 

Numeric variables 

Various capabilities are made possible by use of numeric 
variables (normal~y integer) which can be set or tested and 
manipulated with simple arithmetic. Examples are numbering 
of pages and other text items, or setting conditions which will 
be tested. 

Readable state variables 

As a special case of numeric variables, it is valuable to be 
able to detellmine and test parameters of the current ty­
pographic context, such as current coordinates on the output 
page. 

Special displays 

Various applications have requirements to allow manipu­
lation of specialized display material in a convenient and ap­
propriate manner. Examples are mathematical formulas as 
addressed by TEX, and layout of advertising copy which is a 
major concern of commercial systems. 

Multilingual support 

A comprehensive formatter must address the specialized 
needs of specific languages. Problems not arising in English 
text may include setting right to left (Arabic) or top to bottom 
(Chinese); very large alphabets; positioning accents and 

MFS: A Modular Text Formatting System 533 

building up characters from parts; or hyphenation which mod­
ifies the resulting partial words. 

Transformation systems 

Many formatters include specialized subsystems which 
( eventually) generate output text after digesting various kinds 
of input information. Examples include the bibliographies 
and indexes of SCRIBE and the numerical calculations of 
some word processors, as well as number-to-string con­
versions and assorted manipulations of the date and time. 
Some of these functions require knowledge of the typographic 
context, and cannot be viewed as preprocessors. 

Conditionals 

In general a conditional is a transformation system yielding 
a logical value instead of an output string. This value may be 
used to select between two different well-defined input 
sequences. 

Graphic material 

Some output devices are able to generate graphic images as 
well as text characters. A formatter is not likely to contain a 
picture definition facility; but it should be able to accept pic­
ture descriptions in which the primitives known to the output 
system, whether dots, vectors, or higher subpictures, are pre­
sented as special characters. The resulting graphics may be 
mixed with text; and interaction with systems such as PIC6

, 

as preprocessors or transformation systems, should be a 
possibility. 

User-selected flexibility and convenience 

The user's wishes for an ideal view of the system include 
various tradeoffs. Flexibility, convenience, error tolerance, 
economy of input, and readability of marked-up text are all 
desirable characteristics which cannot be maximized at the 
same time. Markup may be desired to be independent of the 
output device, or to take advantage of features of a particular 
output device. To meet these needs the user interface should 
be easily customized. 

A part of this interface is the domain of the input or editing 
system rather than the formatter; and advanced input systems 
may hide much markup and generate it automatically in any 
required format. However, the formatter needs to be con­
cerned with the flexibility of the interface presented to very 
simple input systems. 

The basic approach to meeting these needs is to provide a 
flexible, low-level command language and a powerful macro 
facility. The command language alone provides all possible 
direct control of formatting details, while the macro facility 
makes possible selected levels of abstraction culminating in a 
minimum-markup, non-procedural language such as GML. 7 

Both TROFF and TEX provide good examples of powerful 



534 National Computer Conference, 1982 

command and macro systems, but neither meets all of the 
following desirable requirements: 

1. The complete set of input characters which will have 
special meaning, such as command prefixes, should be 
user-selectable. It should be possible to keep the number 
of such characters extremely small. 

2. All names for commands, macros, variables, etc. should 
be user-selectable. The range of possible names should 
run from single characters to long, descriptive names. 

3. Command and macro arguments, or the range of text 
affected, may consist of a single character or many lines 
of input. Any range should be selectable by suitable 
bracketing. Commands should be acceptable anywhere 
regardless of input line endings. 

4. The user or application should be able to dynamically 
define virtual fonts, complete mappings from input text 
characters into the set of presumably available output 
characters. This mapping should include both single in­
put characters and strings (named characters, ligatures, 
etc. ). It should hide any differences in the actual access 
mechanism for the selected character set. 

5. The significance of spaces and line endings in the input 
text should be consistent and intuitive in any context. 

In addition, to support a modular organization of the docu­
ments themselves there should be a nestable inclusion mecha­
nism for the component files of the input text. This mecha­
nism should make use of string variables to avoid embedding 
system-dependent file names in the document itself. 

SYSTEM ARCHITECTURE 

The MFS architecture is designed as a small, central kernel 
interacting with a collection of processing modules. Like the 
kernel of an operating system, the MFS kernel is intended to 
provide only essential, primitive support functions while mak­
ing few restrictions on possible processing mechanisms. This 
organization is shown in Figure 1. 

The division of the system into modules provides a clear 
separation of functions, isolating capabilities that may be in­
dependently varied. The hyphenation system may be replaced 
without impact on the rest of the system. Similarly, MFS may 
be transported to a different computing system with changes 
only in isolated modules. 

INPUT 
SOURCES 

Figure I-Modular formatting system architecture 

The system kernel is responsible for control, sequencing, 
and storage. Input, initially from the standard source, is ac­
cepted by the input translator and passed to the kernel as a 
sequence of primitive commands. This input may include 
macro text to be deferred until a given condition occurs. The 
kernel will store the text and flag the appropriate internal 
variables. When a change to the required condition occurs, 
the saved macro will be rerouted through the input translator. 

The received text is then "justified" in the context of the 
current environment. The kernel maintains a collection of 
named control records representing the environments, which 
can be switched on request. The information in these records 
includes format control parameters, current state descriptors, 
and user-controlled variables. Some information also remains 
in a global environment which is not switched. 

The justification module constructs lines, determining line 
endings and processing various spacing parameters. Several 
algorithms of varying sophistication may be selected. The ex­
tent to which a single algorithm can be parameterized, and the 
degree to which this module can be unbound from the kernel, 
are subjects of current investigation. 

Transformation systems are handled as distinct modules 
using a standard interface. They are viewed as collections of 
special commands which can accept arguments and insert text 
into the processing stream. Mechanisms such as indexing can 
thus be "piggybacked" onto MFS even if they were not 
planned in the original design. 

The operating system interface module provides the only 
link to the underlying computing system, enhancing porta­
bility. Input and output routines, file name translation, date 
and time, and current invocation environment and options are 
all processed through this module. 

The MFS output is a sequence of character selection and 
positioning codes in a device-independent format. However, 
processing at any time is done with the expectation of a partic­
ular output device and configuration. Characters are accessed 
with the understanding that they will be available on the actual 
output. In addition to character tables, a device table is used 
to determine significant characteristics of the output device. 
The minimum spacing increments are provided, for example; 
if these are coarse, it may be preferable during justification to 
round values at every stage of calculation. The ability of the 
output mechanism to back up, horizontally or vertically, may 
affect the processing strategy. 

In a given environment, current output may be routed di­
rectly to the output stream or saved in a buffer. The deferred 
outputs may then be placed in the output stream at a later 
stage, perhaps with offset to a different position. 

The output file, perhaps at a later time, is processed by an 
output translator which assembles coding for the particular 
output device, and generates the physical copy. 

CONCLUSION 

We have presented an architecture for a text formatting sys­
tem, MFS, which is currently being developed at West Vir­
ginia University. The MFS design is more flexible than known 
current systems. It covers a wide range of applications al­
though the program modules may be compact. Any of a wide 



range of output devices can be driven with suitable translators 
and tables. Device characteristics are not built into the 
formatter. 

A system with this architecture would enhance the inter­
changeability of document files and would be especially useful 
in environments where diverse applications may exist and a 
variety of output devices may be available over a period of _ 
time. 

In addition, due to its modularity, MFS will serve as a test 
bed in which different hyphenation algorithms, command lan­
guages, etc., may be tried and compared. With other aspects 
of the formatter held constant, the effects of changes in a 
particular subsystem can be more easily studied. 

MFS: A Modular Text Formatting System 535 

REFERENCES 

1. Saltzer, J. E. "Runoff." In P. A. Crisman (ed.), The Compatible Time­
Sharing System. Cambridge, Massachusetts: MIT Press, 1965. 

2. Pierson, J. Computer Composition using PAGE-i. New York: Wiley­
Interscience, 1972. 

3. Ossanna, J. F. NROFFITROFF User's Manual. Compo Sci. Tech. Rep. No. 
54, Bell Laboratories, 1977. 

4. Knuth, D. E. TEX and MET..A.FONT: New Directions in Typesetting. Bed­
ford, Massachusetts: Digital Press, 1979. 

5. Reid, B. K., and J. H. Walker. SCRIBE Introductory User Manual. Pitts­
burgh, Pennsylvania: UNILOGIC, 1980. 

6. Kernighan, B. "PIC-a Language for Typesetting Graphics." ACM SIG­
PLAN Notices, 16 (1981), pp. 92-98. 

7. Goldfarb, C. F. "A Generalized Approach to Document Markup." ACM 
SIGPLAN Notices, 16 (1981), pp. 68-73. 





MANAGEMENT ISSUES/ 
DECISION SCIENCE SUPPORT SYSTEMS 





Complex business systems: a strategy for success 

by NAOMI LEE BLOOM 
American Management Systems, Incorporated 
Arlington, Virginia 

ABSTRACT 

This paper deals with the development of complex business systems from two 
perspectives: (1) What role must be played by the project manager and other 
members of the project team to ensure a cost-effective and timely solution to the 
right business problems; and (2) What project organization and management tech­
niques can be used to facilitate communications and decision-making among the 
project team, users, data center personnel, and other project participants. 

539 





INTRODUCTION 

Complex systems do more than automate existing procedures. 
Such systems introduce new approaches to decision-making, 
force changes in job descriptions and in the organization it­
self, combine many separate (often organizationally distinct) 
tasks into a single black-box process, and challenge the busi­
ness's rules-of-thumb with accessible, manipulatable data. For 
example, even a very large payroll system generally replicates 
once manual payroll calculations. However, a human resource 
management system might identify prospective management 
trainees by a complex weighting of their education and experi­
ence rather than by the personality traits so often used by 
human selectors. 

When complex systems are installed, the organization is 
bombarded with change. Some changes-new forms, new re­
ports, and a new chart of accounts-can be easily digested 
after proper training. But other changes must be antici­
pated-those such as widely different inventory levels pro­
duced by economic order quantity/reorder point systems or 
greatly changed hiring patterns produced by affirmative­
action-based applicant tracking systems. Digestion of these 
types of changes requires corporate actions with a long lead 
time--e.g., building a new warehouse (or leasing excess 
space). 

Although complex systems are often cost-justified on the 
basis of cost displacements, e.g., elimination of x payroll 
clerks, these displacements rarely occur. These systems are 
more properly viewed as opportunities for improved revenue 
streams, an enhanced quality of work life, greater pro­
ductivity by the existing staff, and better decision-making. A 
primary benefit of an order-entry system that drives pro­
duction schepuling is that customers more frequently have 
their requirements met on time. In today's competitive busi­
ness climate, complex systems can mean the difference be­
tween survival and failure. 

Large-scale (translate: complex) business systems projects 
have not been singled out in our industry for their over­
whelming successes. Cost and schedule overruns, organiza­
tional disruptions, user alienation-all these and many more 
problems have plagued our efforts to develop complex man­
agement information and decision support systems. When 
such a project succeeds, and I've been fortunate enough to 
have been associated with several such successes, it's worth 
documenting who did what to whom (and when, and how) and 
why it worked. 

This paper deals with complex systems from two perspec­
tives: 

• What roles must be played by the project manager and 
other members of the project team to ensure that the 
system successfully solves the right business problem in 

Complex Business Systems 541 

the most cost-effective and timely manner? (The roles of 
users and operations are discussed by Cox! and Jackson.2 

• What project organization and management techniques 
can be used to facilitate communications and decision­
making among the project team, users, data center per­
sonnel, and other project participants? 

SYSTEM LIFE CYCLE 

Each system progresses through a similar series of major 
steps, or phases. Once the content of each phase and their 
interrelationships are understood, the roles of project par­
ticipants can be defined for each phase and a framework-can 
be created for the effective planning and control of informa­
tion systems projects. 

To simplify integration of our three papers on complex 
business systems projects, we have adopted as a common 
terminology the AMS system life cycle (see Figure 1), which 
is divided into five phases: * 

1. Concept Definition (Figure 2)-The model of the system 
that will solve the stated business problems is developed. 

2. System Design (Figure 3)-The specifications from 
which the system will be built are prepared. 

3. System Development (Figure 4)-The system design is 
transformed into programs and procedures, and it is 
demonstrated that the system meets the design specifica­
tions, working successfully in a controlled environment. 

4. System Implementation (Figure 5)-The system is 
brought into operation in the production environment. 

5. System Support (Figure 6)-Ongoing support is pro­
vided for production operations and system modifica­
tions, and enhancements are made over time. 

In this approach, a complete picture of the entire system is 
developed from the very beginning-its business purpose, 
scope, structure, technical environment, costs, and benefits. 
As the development proceeds, the picture depicted in the 
concept definition becomes clearer and more focused as each 
piece is defined in increasing detail. But each of these detailed 
views ties in harmoniously with the overall framework envi­
sioned in the concept. Thus, later development tasks are less 
likely to diverge from the main theme of the system. Further, 
this approach emphasizes both the business and technical as­
pects of a system from the outset of the life cycle. 

In the concept definition phase the basic framework or mod­
el of a system is developed that will meet the user's business 

*The life cycle phases and project management techniques presented in this 
paper were developed by and are proprietary to American Management Sys­
tem, Inc. (1981), 1777 North Kent Street, Arlington, VA 22209 



542 National Computer Conference, 1982 

AMS SYSTEM UFE CYCLE 

CUENT 

AMS 

CURRENT 
SYSTEM 

STANDARD 
SOFTWARE 

USER 

Figure l-AMS system life cycle 

objectives. The model synthesizes the elements of the new 
system-its aesthetics, scope, functional capabilities, organi­
zational and budgetary constraints, and technology like an 
architectural model of a building. The system concept docu­
ment provides an overview of the total system and shows how 
its various elements fit into a unified, workable solution to the 
user's needs. 

The goals of the system concept are to evaluate the need for 
a systems solution to a management or business problem; 
provide the context in which informed decisions can be made 
on the numerous policy and procedural issues that must be 
worked out before the new system can be developed; and 
provide a road map to guide the activities of subsequent devel­
opment phases. 

In the system design phase the system model developed 
during concept definition is used to produce specifications for 
the system. This blueprint includes not just program designs, 
but all the components of and considerations affecting the 
new system, such as hardware and software configurations, 
user and operations procedures, implementation plans, and a 
detailed work plan for the subsequent phases of the system 
development effort. 

In the system development phase the specifications devel­
oped in the system design are used to build a system that 
performs all the specified functions. The complete system is 
demonstrated to work in a controlled environment. At the 

completion of this phase, all developed programs, jobstreams, 
databases, and user and operations procedures are thoroughly 
tested by the project team. The computer and telecommuni­
cations facilities are installed, and the system is ready for 
implementation in the user's operating environment. 

In the system implementation phase the new system is in­
stalled for the first time in the user's operating environment. 
At the completion of this phase, user personnel will have been 
trained to operate the new system, and the system will have 
been turned over to the production operations staff. 

In the systems support phase the project team may provide 
supplemental expertise and resources to assist in operating 
the system and in evaluating and implementing modifications 
and enhancements. During this phase, ongoing efforts are 
directed at ensuring that the system meets performance objec­
tives, software problems are repaired, and necessary enhance­
ments are made to adapt the system to changing user 
requirements. 

PROJECT MANAGEMENT PHILOSOPHY 

Large and complex projects require strong and steady man­
agement for successful completion. Project management is an 
ongoing process that spans the system life cycle; it is a difficuit 
process that involves the creation and management of a com-



Complex Business Systems 543 

CONCEPT DEFINrr/ON 

SYSTEM 
CONCEPT 

Figure 2-Concept definition 

pletely new organization to produce something that has never 
before been built. This section describes the keys to our man­
agement style: 

• Effective project management is substantive manage­
ment, not mere administration. The project manager di­
rects the development of the business and technical solu­
tion to the user's problems. The project manager must 
have a professional level of knowledge in all areas of 
system development and should be an expert in some of 
these areas. The manager's involvement with the sub­
stance of the project is the best assurance of a high­
quality product. 

• There must be a forum for discussing the numerous de­
sign issues that arise on any project and for resolving 
them so that decisions are clearly understood and carried 
out. We have found that a weekly team leaders' meeting, 
run by the project manager, is an effective mechanism for 
uncovering and resolving issues. These meetings foster 
close communication between the teams, reducing inter­
face problems. 

• Our approach to status reporting also supports our phi­
losophy of active, substantive leadership. We use simple 
forms that show task and deliverable status in a graphic 
manner and measure completion in unambiguous terms 
of complete or incomplete. If work in one area should fall 

behind schedule, we take corrective action to facilitate 
completion of the problem task, to resolve issues holding 
up progress, and to shift resources to areas not affected 
by the late deliverable. We find our reports to be more 
useful for project control than many computerized tools 
based on detailed PERT charting or critical path manage­
ment, although the latter are useful in initial planning. 
The system development process is flexible by nature. 
Many sequence dependencies that would be assumed in 
a PERT chart are soft; a task can often be started before 
its precedents are completed. We take advantage of this 
flexibility to work around problems. 

• Finally, close coordination with the user is essential to 
our approach. The project manager plays a key role in 
the user design, reviews deliverables with the user, 
follows-up on user commitments, and keeps the user 
aware of the project's status. 

PROJECT ORGANIZATION AND ROLES 

While project organizations vary greatly in size and in team 
responsibilities, our large projects tend toward a standard 
structure as follows: 

• Project Staff-The business analysts, technical analysts 
and programmer analysts who make up the project staff 



544 National Computer Conference, 1982 

are the backbone of the project. It is the staff's hard 
work, ability and enthusiasm that ultimately determine 
the success ofthe project. On medium and large projects, 
the staff is organized into teams of 3 to 10 professionals, 
each with a team leader. Teams are the basic working 
unit. A large project might have one team devoted to the 
programming of each major subsystem; a team devoted 
to testing; another team devoted to user documentation, 
procedures, and training; and a team working to prepare 
the production processing environment. 

• Project Manager-The project manager takes day-to-day 
responsibility for all aspects of the project. The project 
manager takes the lead in working with users, in making 
design and major technical decisions, and in managing 
the quality and timeliness of project work. In the devel­
opment and implementation phases, project manage­
ment is usually a full-time job; in earlier phases, the 
manager may have other tasks, depending on the size of 
the team. The project manager is also responsible for 
planning, status reporting, and other administrative 
work. On larger projects, a project administrator may be 
assigned to free the manager from the details. 

• Project Supervision and Review-At AMS, the project 
supervisor is a senior line manager, usually a vice presi­
dent, who has overall project responsibility. The project 

supervisor reviews deliverables, provides input on sub­
stantive issues, takes the lead role in contract nego­
tiations, and works closely with key users on manage­
ment issues. All projects are formally reviewed on a reg­
ular basis by AMS corporate managers. Project reviews 
enable top management to communicate past experience 
to the project management, to exchange ideas on new 
approaches, to provide inputs at key decision points, and 
to detect and help respond to potential problems. 

Based upon my own experiences, selecting a thoroughly 
competent project manager is one of the two most critical 
factors in helping to ensure a successful project; top manage­
ment support and commitment is the other. To be effective, 
the project manager must have: 

1. Substantive, expert knowledge of the project's business 
(translate: user) objectives; 

2. Considerable delegated authority (or access to users or 
sponsors with authority) to commit user, data processing 
and external resources to the project; 

3. Enough business experience to assess for the user when, 
how and in what ways the organization's current policies 
and procedures will change as a result of the project; 

4. Sufficient technical (translate: computer) expertise to 

SYSTEM DESIGN 

Figure 3-System design 

Draft 
design 



Complex Business Systems 545 

SYSTEM DEVELOPMENT 

SYSTEM 
DESIGN 

DEVELOPED 
SYSTEM 

Figure 4-System development 

manage a software development effort and to plan for, 
define and monitor changes t6 the operating environ­
ment; 

5. Excellent people management skills, for the project will 
involve the active participation of staff ranging from 
entry-level clerical personnel to senior management; 

6. The abil~ty to move the project forward in the face of 
conflicting user requirements, insurmountable technical 
"glitches," contractual headaches, and all the other 
problems that will arise; and 

7. The maturity to accept responsibility for problems while 
according the project team credit for successes. 

OTHER ROLES 

Successful projects are those which satisfy the properly nur­
tured business expectations of their sponsors (translate: users) 
and can be reliably operated by their inheritors (translate: 
data center personnel). In order to help ensure success, the 
project team must therefore include user and data center 
perspectives. The papers by Cox! and lackson2 address the 
roles of users and data center personnel throughout the sys­
tem life cycle. 

KEEPING IT ALL MOVING FORWARD 

While there are no sure-fire management techniques that will 
compensate for a "just average" project team, even a really 
excellent team must operate in an orderly, well-documented 
manner. Effective project management requires a standard­
ized approach to the basic management functions of or­
ganizing, planning, and controlling the project. This section 
describes approaches and techniques developed by AMS for 
carrying out each of these basic functions. 

Organizing the project team is not a one-time effort. The 
project organization must be adapted to the changing avail­
ability of specific personnel, including user and data center 
personnel. Real people have skills and experience levels that 
never exactly match a theoretical organization; therefore, the 
actual project organization will be molded around the re­
sources that are assigned. In addition, each phase of the sys­
tem life cycle requires a different mix of skills, and, on long 
projects, there is usually some planned and some unforeseen 
turnover. Maintaining a viable project organization in the face 
of all these changes is a major task for the project manager. 

Planning also occurs continuously throughout the system 
life cycle. Our planning approach includes three tasks: 

1. Near the conclusion of each phase, develop a plan for 
the next phase which includes the tasks, milestones, and 



546 National Computer Conference, 1982 

budget. At the same time, develop or adjust the high 
level plan, which contains the approximate costs and 
schedule for the remainder of the project; 

2. At the start of each phase, or at the start of each task 
area in larger projects, develop a detailed plan of task 
assignments and intermediate milestones for internal 
progress monitoring. Typically, these more detailed 
plans are done by the team leaders, helping to ensure 
their commitment to meet goals to which they and the 
project manager have agreed. 

3. Revise plans and forecasts as work proceeds. It is essen­
tial to maintain an up-to-date plan and realistic forecasts 
of actual completion dates at all times. Changes in the 
system features, the project staff, or their assignments 
must be reflected in the plan. The forecast for the com­
pletion of milestones and for the project as a whole must 
be revised to reflect both changes in the plan and actual 
team performance. Team leaders usually update their 
task level forecasts on a weekly basis. 

The manager's day-to-day involvement with the team's 
work is the fundamental means of controlling quality and 
progress. Nevertheless, a set of orderly processes is necessary 
for coordination and control. The project manager performs 
the following control tasks: 

• Monitor and report project status. We use a standard set 
of project management reports which we have found to 

be highly effective in monitoring overall project status. A 
Project Task Plan shows the status of individual tasks. A 
Deliverables Schedule shows deliverables by week and 
pinpoints any that are late. A Milestone Chart provides a 
high-level visual display of the schedule, of any late deliv­
erables, and of upcoming deliverables that may be late 
because of a late start or slow progress. Finally, a 
Planned/Actual/Projected Staff Utilization Report tracks 
actual hours against plan by task area. We use this report 
to maintain a current forecast in each area. 

• Conduct team leader meetings. Every week, a team lead­
er meeting is held to report on progress or problems, 
review deliverables, assign action items, and resolve is­
sues. The meetings always have a published agenda and 
minutes. On small projects, a team meeting is generally 
substituted. 

• Conduct client/user status meetings. We review the 
project status with the key client/user on a regularly 
scheduled basis. These meetings serve the purpose of 
informing the user of the status of deliverables and re­
solving any management issues. Meetings are attended 
by the user manager or managers, the project manager, 
frequently the project supervisor, and team leaders or 
members as appropriate. These meetings normally have 
an agenda, handouts, including status reports, and 
minutes. 

SYSTEM IMPLEMENTATION 

Tested 
software 

DEVELOPED 
SYSTEM 

Figure 5--System implementation 

PRODUCTION 
SYSTEM 



Complex Business Systems 547 

SYSTEM SUPPORT 

Reporfsand 
Inquiries 

PRODUCTION 
SYSTEM 

Figure 6-System support 

• Conduct walkthroughs. Deliverables for all phases are 
reviewed, or walked through, internally and with the 
user. Internal walkthroughs are held as needed, and 
are typically attended by the team member's immedi­
ate manager, one or two other team members, and the 
project manager. These walkthroughs prevent any piece 
of work from proceeding too far without review. User 
walkthroughs are the key to ensuring that the system 
meets the user's business needs. Comprehensive user 
walkthroughs are major task areas in the concept and 
design phases. They are usually attended by the project 
manager, the team leader, the team member primar­
ily responsible for the deliverable being reviewed, and 
the users whose responsibilities are related to the 
deliverable . 

• Conduct project reviews. As mentioned above, project 
reviews are held regularly to ensure the input of top-level 
AMS managers into the quality, substance, and progress 
of the project. 

CONCLUSION 

There is no magic formula for ensuring a successful outcome 
for a complex business systems project. However, I believe 

that the probability of success can be substantially enhanced 
by doing the following: 

1. Rigorously defining the responsibilities of all partici­
pants during each phase of the project in terms of spe­
cific, tangible deliverables; 

2. Reducing miscommunication and/or documentation del­
uge through well-structured, formally recorded weekly 
team leader meetings; 

3. Managing the expectations of users and developers alike 
by explicit resolution of design issues and constraints; 
and 

4. Selecting a capable project manager with strong, sub­
stantive knowledge of the project's business objectives. 

REFERENCES 

1. Cox, David A. "The Role of Data Center Personnel in the Development of 
a Large-Scale Business System." AFIPS, Proceedings of the National Com­
puter Conference (Vol. 51), 1982, pp. 

2. Jackson James E. "The Role of the User at Standard Oil Company (Indi­
ana) in ~he Development of Large-Scale Business Systems." AFIPS, Pro­
ceedings of the National Computer Conference (Vol. 51), 1982. 





The role of the user at Standard Oil Company (Indiana) 
in the development of large-scale business systems 

by JAMES E. JACKSON 
Standard Oil Company (Indiana) 
Chicago, Illinois 

ABSTRACT 

Over the past 15 years Standard Oil (Indiana) has been involved in the development 
and implementation of a number of major computer-based business systems. Con­
current with this, Standard management has organized the users of these systems 
into a structure that provides for their effective participation in the development 
process. This structure, which consists of user management, user representatives, 
and the end user, recognizes that each of these groups has specific roles to play 
during the system development project life cycle. This paper will examine these user 
groups and their respective roles. The emphasis will be on identifying the key areas 
of user involvement that are necessary for the successful development and imple­
mentation of large-scale business systems. 

549 





The Role of the User in Large-Scale Business Systems 551 

INTRODUCTION 

At Standard Oil (Indiana), management recognizes that for 
user organizations to achieve the greatest benefit from large­
scale business systems it is essential that the user assume an 
active role in their development, implementation, and oper­
ation. This role requires that user organizations clearly grasp 
their role versus that of Standard's Corporate Information 
Services Department, which has overall technical and project 
leadership responsibility. Additionally, management recog­
nizes that the user who is to effectively execute his/her role 
must be organized to participate efficiently. This philosophy 
is intended to ensure that, when large systems are im­
plemented, they address the real requirements of operating 
personnel. 

A fundamental concept in user participation in system de­
velopment is that during the course of the systems effort there 
is a recurring series of activities requiring user involvement. 
This paper will discuss these activities and the associated role 
played by the user. Before doing this, it will first address the 
structure of the user organization as it relates to major systems 
development. 

THE USER 

User participation in systems development is structured 
around three groups-user management; departmental, or 
user representatives; and the end user. This organization 
exists to ensure that the right business systems will be built to 
address operating needs, that systems will be built in a cost­
effective manner, and that major systems can be developed 
and implemented in a way that minimizes disruption of end 
user operations. The following is a discussion of the roles 
played by these groups to achieve these objectives. 

User management is defined as senior management at the 
departmental level. Each operating subsidiary maintains an 
information systems development steering committee chaired 
by a fairly high-level user. (In the case of Amoco Oil, for 
instance, this person is the vice-president of planning and 
administration.) This steering committee is responsible for 
defining the aims, philosophy, and business goals of the or­
ganizations represented. Underlying this philosophy is the 
recognition that effective management of an organization re­
quires good information systems. A key role of user manage­
ment, then, is to identify how well existing business systems 
are supporting existing as well as future operating needs. 

User representatives, typically members of steering commit­
tees, represent their specific departments on major systems 
efforts throughout the system life cycle. Their responsibilities 
include representing their department in determining and 
evaluating the requirements and constraints of the new sys-

tem. They are particularly valuable in placing relative values 
on the requirements and constraints and prioritizing the vari­
ous projects. 

User representatives have the authority to draw upon mem­
bers of end user organizations in the development process. 
However, this end user involvement is carefully planned and 
staged by user representatives so that there is a minimum of 
disruption to the end user's operation. 

User representatives bring management and the end user 
into the system lif~ cycle at the appropriate times. Basically, 
this is done to obtain their concurrence that the true business 
problem is being addressed and that the economics of the 
project are still valid. 

End users are departments involved in the inputs, pro­
cessing, and/or outputs of the production system. At Amoco 
Oil, which is a subsidiary company, typical end users are the 
Marketing, Manufacturing, and Transportation Departments. 

USER INVOLVEMENT IN THE SYSTEM 
DEVELOPMENT LIFE CYCLE 

Up to this point I have outlined the structure of the user 
organization as it relates to major system development. Next 
I win examine the roles of the three user groups in more 
detail. This will be done within the five phases of the system 
project life cycle: concept definition, system design, system 
development, system implementation, and system support. 
To guide this discussion, I have identified key points requiring 
the involvement of one or more of the user groups. (See Table 
I, "Points of User Involvement.") The following is a dis­
cussion of user responsibilities for these various points. 

Project Request 

At Standard, project requests for a major systems effort 
originate from a steering committee made up of user manage­
ment and departmental user representatives. These requests 
are in the form of a feasibility study. In initiating a feasibility 
study, the user states the proposed objectives of the project, 
the economic justification for the project, and which depart­
mental user representatives as well as end users will need to 
participate in the study. The feasibility study initiates the first 
phase of the system life cycle, concept definition. 

Concept Definition 

In concept definition a model of a system that will meet the 
user's current and future business objectives is developed. 
Included in this model are the elements of the new sys­
tem, which are its scope, functional capabilities, organization 



552 National Computer Conference, 1982 

TABLE I-Points of user involvement 

User User End 
management representative user 

Project request X X 

Concept definition phase 
Refine objectives and X X 

constraints for model 
Review modei for approvai X X X 

System design phase 
Prepare forms and reports X X 
Prepare user procedures X 
Design conversion software X X 

and procedures 
Prepare detailed project plan X X X 

System development phase 
Test the system X 
Prepare user documentation X 
Develop training plan X X 

System implementation phase 
Conduct acceptance testing X X 
Implement conversion X X 

procedures 
Conduct training X X 
Begin production operations X 
System turnover X X X 

System support phase 
Operate the system X 
Analyze operations X 
Implement changes X X 

and budgetary constraints, and technology. At Standard 
this is formally referred to as the project definition and 
authorization. 

User involvement in concept definition includes refinement 
of system objectives and constraints, identification of gross 
system benefits, and review of the system model for possible 
approval. 

The user representative, with the assistance of the end user, 
identifies hislher department's requirements and constraints in 
terms of the inputs, processing, and outputs that will be im­
posed on the new system model. In this effort the user-not 
the Information Services department-must be the final au­
thority on the requirements. 

Once the model has been developed, the user representa-, 
tive presents the model to the end user to obtain concurrence 
that the proposed system model satisfies end user require­
ments. The user representative then presents the model to the 
steering committee for approval to proceed into the system 
design phase. 

The System Design Phase 

In this phase user involvement focuses on a number of 
activities that will result in the development of detailed spec­
ifications from which the system will be built. Essentially, 
these activities are to refine the model developed in the con­
cept phase. 

Specifically, the user representative has responsibilities in 

the development of forms and reports, the preparation of user 
procedures, the design of conversion software for data codes, 
and the preparation of a detailed project plan to control the 
system development phase. Much of this involvement is to 
ensure that the evolving detail design is consistent with user 
requirements. Here the user must be watchful that the design 
of the Information Services department does not incorporate 
features that, though interesting, are not really needed. On 
the other hand, the user should not back away from the stated 
requirements merely because Information Services says they 
would be too difficult to implement. The user should also be 
careful that the design proposed by Information Services 
is sensitive to the user's dynamic environment and is flex­
ible enough to allow the user to function without constantly 
having to make programming changes. 

With respect to specific responsibilities, both the user rep­
resentative and the end user are involved in the preparation, 
review, and approval of all forms and reports. 

In the preparation of user procedures, the user representa­
tive identifies at what points the end user will have interaction 
with the new system. In addition, end user responsibilities at 
these various points are identified. From this identification, 
the user re,presentative ensures that provision is made for 
appropriate user manuals. 

In the design of conversion software and procedures, the 
user representative reviews and approves the conversion 
methodology for system files and databases prior to the cut­
over to a production system. This is reviewed with the end 
user to ensure that he/she concurs with the conversion strat­
egy and has adequate resources when the conversion is made. 

The detailed plan identifies the cost and timing attaching to 
the system development phase. The user must require that 
this plan, developed under the direction of Information Ser­
vices, be comprehensive and in sufficient detail to allow for 
meaningful monitoring of system development progress. The 
user representative reviews this plan with user management 
and the end user to secure their approval to proceed into the 
system development phase. 

System Development 

The purpose of the system development phase is to realize 
in practice the system documented in the system design phase. 
Key user representative activities in this phase relate to system 
testing, preparing end user documentation, and developing a 
training plan. Generally, end user involvement in this phase is 
minimal. However, where the new system represents a radical 
change, the end user should be exposed to key systems con­
cepts through training. This early exposure to the new system 
can significantly lessen the "cultural shock" the end user 
might experience in the implementation phase. At the end of 
this phase the new system will be installed in a production 
environment and will be available for end user acceptance 
testing. 

In the system test the user representative participates as a 
member of the system test team, which has the responsibility 
for executing and evaluating the system test and, when com­
pieted, declaring the system ready for acceptance testing. 

In the preparation of user documentation, the user represen-



The Role of the User in Large-Scale Business Systems 553 

tative reviews user procedures for technical correctness. As 
part of this he/she makes an effort to make these procedures 
as user-friendly as possible-i.e., remove the computerese. 

In the development of a training plan the user representative 
works with the end user to identify a limited number of people 
who will be involved in acceptance testing. The strategy here 
is to have end users involved in acceptance testing and conduct 
the final training for their groups. 

System Implementation 

The system implementation phase brings the system into 
operation for the first time in the end users' real environment. 
Going into this phase, the new system has been tested to the 
satisfaction of the user representative. Key areas of user in­
volvement in this phase are acceptance testing, conversion 
procedures, training, start of production operations, and sys­
tem turnover. At the conclusion of this phase the new system 
will have been implemented in the end user department(s). 

In acceptance testing the end user has an opportunity to 
assure that the new system will coincide directly with the 
design and expectations of his department( s). Since one of the 
primary purposes of acceptance testing is to allow the end user 
to "fine tune" user procedures, the user should require that 
Information Services have rough drafts of all user manuals at 
the start of acceptance testing. 

The primary role of the end user in conversion is to verify 
the accuracy and completeness of created databases. The de­
partmental user representative(s) will support the end user as 
needed in this effort, but responsibility for it rests with the end 
user. 

The end users who were involved in acceptance testing will 
train appropriate personnel in their respective organizations. 
Experience has shown that the commitment to and acceptance 
of a new system is greater when the end users are trained by 
personnel from within their department who are knowledge­
able in the new system. 

There are a number of methods that can be used in be­
ginning production operations-e.g., straight turnover and 
phased turnover. The method used depends on a variety of 
factors. Howe-ver, the success of whichever method is selected 
will depend on how effectively the end user has participated 
in acceptance testing, conversion, and training. These activ­
ities are geared toward giving the end user operational experi­
ence before production operations begin. 

Once production operations have stabilized to the point 
that early results indicate that the new system is running 
smoothly, the system can be turned over to the end user. 

Before this turnover the departmental user representative re­
views the system with management and the end user to review 
results of initial production operations and to ensure that end 
user staffing requirements are sufficient to support the oper­
ation of the new system. 

Life Cycle System Support 

The concern of the user organization for the new system 
does not end at the date of turnover. One can be sure, even 
if the system developed is near perfect, that within a short 
time after turnover the first questions will arise. The system 
support phase gives recognition to this circumstance. In this 
phase the user has responsibilities in the operation of the 
system, in analyzing operations, and in implementing 
changes. 

In the operation of the system, end user responsibilities 
include data preparation, entry and error correction, system 
administration report distribution, and production trouble­
shooting. The impact of production troubleshooting will vary 
directly with the flexibility of the system design. The user can 
save much inconvenience and expense by reviewing the de­
tailed design of Information Services from this perspective in 
the system design phase. 

The end user is responsible for analyzing operations by 
analyzing system performance, error rates, procedural prob­
lems, etc. Where appropriate, the end user, working through 
the departmental user representative, will need to initiate 
system tuning and maintenance requests. 

When maintenance requests have been completed, the end 
user, supported by the user representative, is responsibie for 
implementing changes. This involvement includes acceptance 
testing, training end user personnel, and conversion of data­
bases. These activities are similar to user involvement in the 
implementation phase, but on a smaller scale. 

SUMMARY 

This paper has examined the role of the Standard Oil user in 
large-scale business systems development. The intent has 
been to identify the key areas of user involvement that are 
necessary for the successful development and implementation 
of such systems. These key areas have been discussed within 
the life cycle of the system. 

In addressing this involvement, particular attention has 
been given to the structure of the user organization-manage­
ment, the user representative, and the end user. 





The role of data center personnel iri the 
development of a large-scale business system 

by DAVID A. COX 
Selective Service System 
Washington, D.C. 

ABSTRACT 

The purpose of this paper is to identify the role that data center personnel should 
play in the early phases of the development cycle and to highlight special areas of 
concern in the later phases of the development cycles. In order to provide a frame­
work which will encompass the majority of situations, I have chosen to describe the 
role of data center personnel in the context of the systems life cycle of a large-scale, 
complex business system. It is hoped that the result of this paper will be to define 
a role for operations personnel that is as visible and influential in the early stages 
of the systems development life cycle as it is during the implementation stage. 

555 





Data Center Personnel in a Large-Scale Business System 557 

INTRODUCTION 

Historically, data center personnel are asked to provide hard­
ware, system software, and personnel support for new systems 
even though they have not had the opportunity to participate 
in the early stages of the system development cycle. The lack 
of participation by data center personnel in the early stages of 
development can have a significant impact on the implemen­
tation stage of the development cycle and can cause project 
completion dates to slip, costs to escalate, and the quality of 
the final product to be reduced. 

The purpose of this paper is to identify the role that data 
center personnel should play in the early phases of the devel­
opment cycle and to highlight special areas of concern in the 
later phases of the development cycles. In order to provide a 
framework which will encompass the majority of situations, I 
have chosen to describe the role of data center personnel in 
the context of the systems life cycle of a large-scale, complex 
business system. It is hoped that the result of this paper will 
be to define a role for operations personnel which is as visable 
and influential in the early stages of the systems development 
life cycle as it is during the implementation stage. 

It is important to note that the system development process, 
while straightfonvard by definition, is in practice a very com­
plex iterative process. The best analogy of this process is to 
compare the solving of a business problem to that of peeling 
an onion. As each layer of the problem is "peeled" away and 
examined, it reveals more problems which need to be solved. 
As each layer of the problem is removed, examined, and 
solved, the best approach to solving the business problem 
becomes increasingly apparent. 

The continual "peeling" away of the problem means that 
the same type pf analysis must be performed several different 
times, each at a different level of detail. It is this continual 
refinement in the analysis process that when properly exe­
cuted, results in the successful installation of a system that 
truly solves the business problem. 

DEFINITIONS 

For purposes of the system development process, the term 
data center personnel should include the following: 

1. Hardware/system software specialist-a person who un­
derstands the interrelationships of the hardware/oper­
ating system currently in place and those available in the 
market place today; and, their ability to support new 
hardware needs. 

2. Telecommunications specialist-an individual who can 
perform the network analysis necessary to determin~ the 
optimal telecommunications design and develop a work-

able design within resource and technology constraints. 
3. Procedural specialist-an individual who understands 

and can identify the processes required to handle excep­
tions, correct errors, and schedule production efforts. 

4. Procurement specialist-an individual who can identify 
the procurement cycle, lead times and costs for each new 
system component, and lead the procurement effort. 

For purposes of this paper the system life cycle consists of 
the following five major phases: 

1. Concept definition-the model of the system that will 
solve the stated business problems is developed. 

2. System design-the specifications from which the system 
will be built are prepared. 

3. System development-the System Design is transformed 
into programs and procedures, and it is demonstrated 
that the system meets the design specifications by work­
ing successfully in a controlled environment. 

4. System implementation-the system is brought into op­
eration in the production environment. 

S. System support-ongoing support is provided for pro­
duction operations and system modifications, and en­
hancements are made over time. 

Concept Definition 

In the Concept definition phase, the basic system frame­
work (its aesthetics, scope, functional capabilities, organiza­
tion and budgetary constraints, and technology) is developed. 
Like an architectural model of a building, the system concept 
document provides an overview of the total system and shows 
how its various elements fit into a unified, workable solution 
to the business needs of the organization. 

The goals of the system concept are to evaluate the need for 
a systems solution to a business problem, provide the context 
in which informed decisions can be made on the numerous 
policy and procedural issues that must be worked out before 
the new system can be developed, and provide a "road map" 
to guide the activities of subsequent development phases. 

During this phase there are many activities taking place that 
as independent activities do not directly affect data center 
personnel. However, when viewed in the aggregate, these 
activities have a major impact on the operations area of the 
data center. The primary mission of data center personnel 
during this phase is to determine the feasability of the system 
concept from a technical standpoint given the real world con­
straints of available technology (hardware, telecommunica­
tion, and software) and the impact of the new system on the 
support and operation of existing data systems. This role is 
critical to the long-term viability of the project, since the 



558 National Computer Conference, 1982 

system concept described by the user/project manager very 
rarely exists in a pure form that is either readily available in 
the existing system or is a transparent addition to existing 
facilities. Rather, the solution must be molded to fit the tech­
nology available to the data center either through adaptation 
of existing systems or through procurement of new systems. 
Therefore, the data center personnel must know as much 
about the goals of the system as the design team if they are to 
be able to find alternate architectures that can be made to fit 
the requirements of the new business system. 

Selecting a hardware and system software architecture 
which can meet specific requirements with only a conceptual 
system design in place is a difficult, yet necessary chore. The 
key issue is to determine if the new application can fit into 
existing hardware, or whether system upgrades or new com­
puters must be procured to handle the new workload. 

The data center team must concentrate on specific tasks 
that must be performed in parallel with the system concept 
tasks being performed by the business and system analysts. 
These tasks are described more fully below. 

1. Establish policy guidelines for service levels, system life, 
and operational requirements. 
In defining the service orientation of the new system, the 
operation team needs to know if the system is to be 
user-oriented or production-oriented. A production­
oriented system will use as much of the capacity of a 
machine as possible through prior planning of produc­
tion workloads, whereas a user-oriented system must be 
geared to provide a high level of response and service 
even under unplanned peakload conditions. This differ­
ence in service requirements will have a dramatic effect 
on the sizing of the eventual system, since a user-ori­
ented system will require more resources than a produc­
tion-oriented system. The level of service must be ex­
pressed in quantitative terms, such as transactions per 
minute in a batch system or response time in seconds in 
an online system. 
Once the service orientation has been fully defined, the 
system life and general requirements for an operational 
window (i.e., 1st year, 1 shift per day; 2nd year, 2 shifts 
per day; 3rd year, 24 hours per day operation) must be 
defined. Ohce these items are defined, the team will 
have the basic parameters necessary to evaluate the im­
pact of the current and planned production on the cur­
rent hardware/system software facilities. 

2. Identify the present workload. 
Unless the decision has been made to use a new com­
puter system exclusively for the new application, the 
processing characteristics of the current workload must 
be fully understood. Quantification of this workload will 
include physical requirements (Le., disk space, telecom­
munication support, etc.) and processing requirements 
by application type. The analysis should include require­
ments over the system life of the application, peak load 
requirements and the service level requirement for each 
application (i.e., user vs. production). 

3. Forecast future workloads. 
Forecasting the workioad of the new system is an iter­
ative process and may require the development of sev-

eral alternative system models and the preparation of 
workload estimates for each of these production models. 
At this stage, the models developed will be described at 
a high level, with general descriptions of cost and capac­
ity requirements. Examples of alternative models may 
include: (a) a centralized database system with online 
terminals used for updating and file query and all edits 
done on the host computer; (b) a centralized database 
system with remote intelligent terminals accessing the 
central database on a dial-up basis and most editing done 
on the terminal; and (c) a distributed database system 
with remote terminals hooked to distributed processors 
and high-speed data links to the central computer. 

General workload estimates must be developed for each of 
these alternative models. These estimates should be detailed 
enough to identify the following: 

1. Volume of transactions per node in the system model 
2. Volume of mass storage required 
3. Network patterns and approximate cost 
4. Service level required 
5. Production window requirements 
6. Phased growth of transactions over time 

By applying workload levels to each system model, each 
node (i.e., terminal, CPU, storage, etc.) in the system archi­
tecture can be sized and cost with a nominal level of precision 
(±20%). 

This system workload data will be analyzed and presented 
to the user/project manager in a report which describes the 
alternative architectures by their costs, benefits, disadvan­
tages, procurement lead times, and impact on existing sys­
tems. The project team must then select the basic system 
architecture to be used as the basis for subsequent design 
efforts. The system architecture decision must be made early 
on in the planning process, since the procurement cycle (spec­
ification development, evaluation of bids, delivery time, ini­
tial installation, hardware test, system software installation, 
system software test) for a new system may take anywhere 
from 6 to 36 months, depending on system complexity and 
manufacturer lead times. The information regarding lead 
times for procurement must be incorporated into the system 
concept so that the concept that is approved by top manage­
ment can be delivered on time. 

System Design 

In the system design phase, the system model developed 
during the concept definition phase is used to produce specifi­
cations for the system. This "blueprint" includes not just pro­
gram designs but all the components of and considerations 
affecting the new system, such as hardware and software con­
figuration, user and operations procedures, implementation 
plans, and a detailed work plan for the subsequent phases of 
the system development effort. 

Specific Activities include the following: 

1. Specify system functions 
2. Design system architecture 



Data Center Personnel in a Large-Scale Business System 559 

3. Define forms, reports, and screens 
4. Design software and databases 
5. Design conversion software and procedures 
6. Design test environment 
7. Develop detailed operational concept 
8. Prepare detailed project plan 
9. Review and revise design 

10. Prepare procurement documents for hardware and sys­
tem software 

There are several key activities where the data center per­
sonnel must take the lead. These include developing detailed 
estimates of the system workload, preparing technical specifi­
cations for the hardware and systems software required to 
meet the application needs, identifying the telecommunica­
tions network to be used for the system, and preparing the test 
environment for system development. In order to complete 
these types of activities, the operations personnel must per­
form the same type of analysis that was required during the 
concept definition phase. The primary effort will be to evalu­
ate alternative equipment/system software configurations that 
will support the system architecture approved in the concept 
definition phase. 

In addition, the workload estimates will be more detailed 
and will result in estimates that have a much greater level of 
precision than those developed during the concept definition 
phase. The results of this analysis will be used as the basis of 
the procurement documents that must be developed for the 
acquisition of the hardware and systems software. 

The level of specificity required for procurement docu­
ments will vary depending upon the nature of the procure­
ment. If the procurement is to be fully competitive (i.e., any 
vendor may qualify-IBM, Univac, Honeywell, etc.), the 
specifications that are prepared must be functional and not 
vendor-specific. However, if the solicitation is designed to 
augment existing equipment or be compatible with existing 
equipment, the specification can, and should be, much more 
detailed and be system-specific. 

In the fully competitive procurement, the analysis that pro­
vides system-specific specifications must be performed after 
the vendor is selected. Because this activity is in the critical 
path, having to wait for the procurement decision can delay 
implementation times. Once the system-specific specifications 
are developed (either before or after the procurement), the 
balance of the operations activities in the system design phase 
can be planned by the data center personnel. These activities 
include developing a test environment and planning the instal­
lation of system software for the new system. In the case of 
augmentation to an existing system, it may also require plan­
ning for the conversion of existing systems to new system 
software and modifying production schedules to accommo­
date the development efforts of the new system. 

System Development 

In the System development phase, the specifications devel­
oped in the system design phase are used to build a system 

that performs all of the specified functions, and the completed 
system is demonstrated to work in a controlled environment. 

The activities performed during this phase by data center 
personnel are classic operations activities. The specific tasks 
will be driven by the implementation plan but, in general, 
include the generation of new executive and systems software 
modules, preparing new operating procedures for test and 
evaluation, and providing special support for the development 
team. At the completion of this phase, all developed pro-

• I 

grams, Jobstreams, databases, and user and operations pro-
cedures are thoroughly tested by the project team. The com­
puter and telecommunications facilities are installed, and the 
system is ready for implementation in the user's operational 
environment. 

System Implementation 

In the System implementation phase, the new system is in­
stalled for the first time in the user's operational environment. 
At the completion of this phase, all personnel will have been 
trained to operate the new system. 

In the case of large network terminal-based systems, the 
time involved in the physical installation of equipment can be 
very lengthy, since there are many pieces of equipment to be 
installed in many different locations. This task is made even 
more complex because the installation must be coordinated 
with the vendor, the telephone company, the user, the build­
ing managers for electrical connections, and the training team 
which must train all of the users on the terminals as they are 
installed. 

In addition to the tasks involved in training and equipping 
users, the new workloads caused by adding new users will 
have an effect on the data center operation. Invariably, this 
activity will cause some imbalance in the system that was 
previously unplanned and that will require modifications to 
the installation schedule. These variances in schedules and 
unexpected problems must be fully coordinated with the 
project team in order to ensure that the implementation effort 
is continuing on schedule. 

The orderly transition to the new system is the most im­
portant part of the development cycle from the users view­
point, and every effort must be made to ensure success. Very 
often at this stage of the project, the development team is 
tempted to start working on a new project and ignore the final 
phase of implementation. As a result, the data center support 
team is called on to provide an increased level of support to 
solve start-up problems. It is critical that the data center team 
have members of the development staff available to catalog 
and help solve problems as they arise during this stage, since 
the users can best identify deficiencies which need to be cor­
rected in subsequent release of the system software. 

System Support 

In the System support phase, ongoing efforts are directed at 
ensuring that the system meets performance objectives, soft-



560 National Computer Conference, 1982 

ware problems are repaired, and necessary enhancements are 
made to adapt the system to changing user requirements. 

During this phase, which lasts for the system life, a key 
responsibility of the operations area is to monitor system 
usage and performance. The statistical data gathered serve 
two purposes. First, the results should be compared to the 
performance requirements defined in the system concept and 
design phase to determine if the original goals are being met. 
Second, the data should be accumulated to determine the 
operating characteristics of the system so that in the future, 
when other "new systems" are proposed, the operating data 
are available as input into the concept definition phase of the 
next system. 

SUMMARY 

If a major automated business system is to be successfully 
installed, it is imperative that all members of the development 
team play an active role in all phases of the development cycle. 
Only through rigorous compliance to the team concept can all 
members of the development team share the same vision of a 
system that starts as a "gleam in the eye" of a user and ends 
up as a complex, highly sophisticated data processing system. 

By being involved in the early stages of the development 
cycle, the data center team can provide the hardware and 
system software support necessary to turn the user's idea into 
a working reality. 



What life? What cycle? 

by NICHOLAS ZVEGINTZOV 
Staten Island, New York 

ABSTRACT 

The traditional system life cycle model does not portray the life of a system, nor is 
it a cycle. An alternative model is described that portrays the modification cycle of 
the system and the detailed activities of making a change. Implications are drawn 
for maintenance, development, and the education of software engineers. 

561 





THE NOT-LIFE NOT-CYCLE 

During the 1970s the phrase system life cycle came to be 
widely used to describe the stages of growth of an applications 
system. For a while the phrase was almost a fad or a buzz 
word. As Glass and Noiseux say in their Software Maintenance 
Guidebook: 2 

At a recent computing conference, discussion of the so-called 
computing life cycle became a standing joke. Every presenter of 
every paper showed a viewfoil or a slide containing his or her 
graphic version of the concept. Toward the end of the day, one 
wag referred to his as the "obligatory software-Hfe-cycle chart"! 

These charts had the basic form of Figure 1, in which a 
system comes into being by being elabor"ated or made con­
crete in a sequence of phases and finally is installed and enters 
an operation and maintenance phase. The exact number and 
names of the phases sometimes varied, but the basic structure 
remained the same. The arrows were generally downward to 
indicate the management constraint that each phase must be 
frozen before the next is started, although sometimes feed-

Goals 

1 
RrQUirements 

TSign 

Code 

1 
Install 

I 
I 
I 
I 

Operation and Maintenance 
I 
I 
I , 

Figure l-"Life cycle" 

What Life? What Cycle? 563 

back arrows were added to indicate that this was not always 
possible to enforce (Figure 2). 

A Finnish version3 even offers a more elaborate pattern of 
feedback (Figure 3). 

Popular though this model is, there are two objections to 
calling it a life cycle: 

1. It does not portray the system's life. 
2. It is not a cycle. 

First, it portrays only the creation, development, or youth 
of a system, and does not include its adulthood-the pro­
ductive phase of its life. It is as vague about the operation and 
maintenance phase as a teenager is about life after marriage. 

Second, it is a linear path or progression from goals to 
operation and maintenance; and it does not, as a cycle must, 
in some sense return to its own beginning. In borrowing the 
term life cycle from biology, the originators of this model 
failed to borrow its central concept, the tracing of the or­
ganism from its embryonic origin to the adult state in which it 
originates and nurtures the embryo of a new individual. 

Goals 

( ! 
Requirements 

( ! 
crgn 

Code 

( ! 
Install 

" I I I 
I I I Operation and Maintenance 
\ I 
\ I 
\ I 

" 
Figure 2-"Life cycle" with feedback 



564 National Computer Conference, 1982 

1 
Goals 

Requirements 

Design 

Code 

Install 
.... , 

I 
I 
I 

Operation and Maintenance 
I 
I 
I 
t 

Figure 3-Finnish "life cycle" 

Thus this model is misnamed if it is regarded as a model of 
the system life cycle. It is, in fact, a model of the development 
path of a system-in fact, as I shall show in this paper, of part 
of the development path. Nevertheless, it has had great popu­
larity, since, even misnamed and partial as it is, it helps to 
illuminate and analyze (and hence make controllable) a sig­
nificant and expensive portion of the system's life. Can we 
supplement it by finding an equally illuminating model of the 
rest of the life of the system? 

THE MODIFICATION CYCLE 

The first step is to use the clue given in the name of the last 
phase of the development model-operation and mainte­
nance. There are two terms here, representing two activities. 
The system does its job (operation), and it undergoes mod­
ification (maintenance). A relatively small part of this modifi­
cation consists of repair; the rest consists of changed or en­
hanced function. (Readers who doubt this about software 
systems are referred to the Lientz and Swanson and U.S. 
General Accounting Office questionnaire studies.4

•
7

) 

The general categories of such changes, for organizations as 
well as for computer systems, are as follows: 

1. New, changed, or deleted functions 
2. Adaptation to environmental changes (legal, financial, 

political) 
3. Consolidation, reorganization, routinization 
4. Turnover of staff, equipment, resources 

A simple model of the cyclic incorporation of such changes 
is portrayed in Figure 4. During the system's operation, its 
constituents (owners, managers, operators, users) assess its 
performance. On the basis of this assessment, they generate 
requests for change related to their own interests. These, after 
political tradeoffs and the commitment of resources, become 
modifications of the system. These modifications affect the 
system's performance, which the constituents assess, and the 
cycle continues. 

Assess 
Performance 

Modifications 

Figure 4-The change cycle 

This model is cyclic and does deal with the adult life of the 
system. The developmental model can be grafted onto it to 
form what I call the starting gate model, because development 
appears as a one-time initiation, after which the system con­
tinues infinitely around the cyclic track (Figure 5). 

This model, though better than the last, is still inadequate 
as a portrayal of the life cycle. In particular, the cyclic part of 
the model appears impoverished and undifferentiated com­
pared to the richness of structure shown on the developmental 
starting gate. Have the developmental stages of goals, re­
quirements, design, and code anything to tell us about the 
modification of existing systems? Certainly. Although they do 
not appear as developmental stages, they are the analytic 
framework we need for comprehending (and therefore con­
trolling) an existing system. With this hint, we can proceed to 
fill in the detail of the modification cycle. 

LEVELS OF DESCRIPTION 

Why is development performed in stages? Simply because the 
gap between goals and code is too great to be crossed in a 
single intellectual leap. Therefore the process is converted 
into a chain of stages chosen so that the gap between each 
stage and its successor can be crossed. 

Clearly, the same problem exists in understanding existing 
systems. The gap between high-level performance and low­
level implementation is too wide to be crossed in one leap. 
The leaps must be narrowed by interposing various inter­
mediate layers to aid understanding; these are the levels of 
description. 



Goals 

+ 
Requirements 

+ Design 

+ 
Code 

+ Install 

Assess 
Performance 

Modifications 

Figure 5-The starting gate model 

The levels of description are alternative and simultaneously 
correct descriptions of an existing system from different per­
spectives. In general, a higher-level description answers the 
"Why?" question for a lower, a lower answers the "How?" 
question for a higher, and the levels of description roughly 
correspond to levels of management. Each level has a charac­
teristic vocabulary appropriate to the people who deal at that 
level, and each level contains motivating information not di­
rectly derivable from any other level. Thus the levels contain 
information-hiding decisions in the sense used by Parnas,5,6 
and they correspond to the "knowledge domains" found by 
Ruven Brooks in documentation.1 

In Figure 6 the levels of description are shown under an 
existing system; the stages of development are shown under a 
desired system; and labels are given to equivalent levels, 
stages, and management roles. (This particular example is of 
a system of a scale large enough to match the major oper­
ations of the organization, and therefore its goals reach as 
high as the chief executive officer; but there are many systems 
with more modest goals reaching less high in the hierarchy.) 

1. PERFORMANCE/GOALS/CEO: "We (need to) have 
an inventory control system for our warehouses and 
distributors. " 

2. CAPABILITIES/REQUIREMENTSN-P: "I (need to) 
control the regional warehouses at .... " 

What Life? What Cycle? 565 

EXISTING SYSTEM DESIRED SYSTEM MANAGEMENT 

Performance Goals CEO 

• + 
Capabilities Requirements V-P's 

• + 
Functions Design Middle Management 

+ + 
Code Code Une Management 

Figure 6-Levels, stages, management roles 

3. FUNCTIONS/DESIGNIMIDDLE MANAGEMENT: 
"I (need to) have staff, procedures, and equipment to 
handle picking, shipping, reordering, charging .... " 

4. CODE/CODEILINE MANAGEMENT: "I (need to) 
have terminals and display/update software for my fork­
lift operators .... " 

On both the Existing and the Desired sides the levels 
(stages) describe (define) the same system, but there are two 
differences in the way that they relate to each other. 

First, the levels of description exist simultaneously-they 
represent the state of the system as viewed today at different 
levels of management. By contrast, a desired system goes 
through the stages of development in sequence. This differ­
ence contrasts the actuality of an existing system with the 
futurity of a desired system. 

Second, the identity of the levels of description is imposed 
from below, whereas the identity of the stages of development 
is imposed from above. The managers of an existing system 
must und~rstand it, warts and all. If a higher-level description 
does not accurately abstract a lower-level one, it must be 
revised. By contrast, a desired system is described in terms of 
intention. If a later stage does not accurately implement an 
earlier one, it is reworked until it does. This is why the arrows 
are upward on the Existing side and downward on the Desired 
side. 

The levels of description have brought into the analysis of 
an existing system the richness of detail found in the devel­
opment model. How do these levels interact with the change 
process to give a model of the modification process? 

HOW TO MAKE A CHANGE 

The stages of making a change are as follows: 

1. Understand the request. 
2. Transform the request to a change; the change is the 

goal. 
3. Specify the change: choose cut-line and patch. 
4. Develop the patch. 
5. Test. 
6. Install. 

The first stage in making a change is to understand the 
request. A request is a description of a new system, phrased in 



566 National Computer Conference, 1982 

terms of the existing system and in the vocabulary of a level 
of description: 

"Computerize inventory!" 
or 

"Get ready for the new Denver warehouse.'" 
or 

"Put lIO devices on the forklifts." 
Understanding a request (Figure 7) requires (a) under­

standing the system via its levels of description, and (b) run­
ning the request down the levels of description until it finds a 
place where it makes a difference. 

EXISTING SYSTEM 

Performance 

Capabilities 

Functions 

Code 

(---------------------~ 
I 
I 
I 
I 
I 
I 
I 

Figure 7-Understand the request 

One may assume that the request "Computerize inven­
tory!" affects the system even at the level at which the CEO 
views it. However, the request "Get ready for the new Denver 
warehouse" would cause only minor changes in a high-level 
document that observes that "All regional warehouses are 
computerized .... " Going lower still, the request "Put lIO 
devices on the forklifts" does not affect the CEO or the V-Ps, 
but only the regional managers and below. Thus the process 
of understanding a request is a process of working down the 
levels of description to find the highest level affected. 

TRANSFORM THE REQUEST TO A CHANGE 

The second stage in making a change is to transform the re­
quest to a change (Figure 8). The action here is to apply the 
request to the description of the existing system and derive an 
alternative description of a desired system, i.e.: 

1. Given the existing inventory system, what would a com­
puterized one be? 

2. Given the existing computerized system, what would one 
be that includes the new Denver warehouse? 

3. Given the existing in-warehouse system, what would one 
be that includes I/O devices on the forklifts? 

At the point at which the request becomes a change, the 
system begins to bifurcate: above it there is no distinction 
between existing and desired, below it there is one. Closing 
this bifurcation is the goal of the change process. (Note that 
this goai is usuaHy at a ievei much lower than the goais of the 
overall system.) 

EXISTING SYSTEM DESIRED SYSTEM 

Performance I (-------~ 
Capabilities U 

r
~'------------------------------~. Change 

Functions 

Code 

Figure 8--Transform the request to a change 

SPECIFY THE CHANGE: CUT-LINE AND PATCH 

The third -stage in making a change is to specify the change; 
this involves choosing the cut-line and the patch (Figure 9). 
The cut-line is existing code or procedures which must be 
changed; the patch is new code or procedures. In the follow­
ing simple example, the cut-line is the sentence from IF to 
PERFORM SECTION-ELSE, and the patch is SECTION-Y. 

EXISTING CODE 
IF INPUT="X" 

THEN PERFORM SECTION-X 

ELSE PERFORM SECTION-ELSE. 

SECTION-X. (TEXT) 

SECTION-ELSE. (TEXT) 

CHANGED CODE 
IF INPUT="X" 

THEN PERFORM SECTION-X 

ELSE IF INPUT="Y" 

THEN PERFORM SECTION-Y 

ELSE PERFORM SECTION-ELSE. 

SECTION-X. (TEXT) 

SECTION-Y. (TEXT) 

SECTION-ELSE. (TEXT) 

Choosing the cut-line is the major intellectual challenge in 
making a change. The cut-line has less code than the patch, 
but it has greater complexity, since it derives complexity from 
its intimate interaction with the complexity of the main sys­
tem. The designer has two aims in choosing the cut-line: 

1. Minimize the impact of the cut-line on the existing 
system. 

2. Isolate the patch from sources of variability in the exist­
ing system. 

It is important to minimize the impact of the cut-line, be­
cause it directly affects the fabric of the existing system. In 
changing a system, as in surgery, the major challenge is not 
causing the desired alteration in the organism, but avoiding 
undesired alterations. 

EXISTING SYSTEM DESIRED SYSTEM 

Performance 

Capabilities 

Fun~::: ~I=-=========11 
t t 

Cut-Une Patch 

Figure 9--Specify the change 



It is important to isolate the patch from sources of vari­
ability in the existing system because the patch is a piece of 
free-standing code, possibly of considerable size, and its de­
velopment may be a development project of considerable 
scope. To give this project the best chance of succeeding, it is 
desirable to isolate it as far as possible from other ongoing or 
incidental changes of the host code. Thus the correct choice of 
the cut-line is what enables the specifications of the patch to 
be frozen. 

FINAL PHASES OF THE CHANGE 

In fact, develop the patch is the fourth stage of making a 
change (Figure 10). This is where the classic life cycle, i.e. the 
development path, is an appropriate model. The project has 
a frozen goal: code to implement the new requested function. 
It also has frozen specifications, namely, to fit with the chosen 
cut-line. The design, code, and unit test ofthe patch therefore 
proceeds according to the development path model. 

The fifth stage of making a change is to test it. This is done 
by inserting the patch at the cut-line and testing the new 
system in parallel with the old. The main tests are these: 

1. Test for the enhanced functions of the patch ("Do we 
have what was requested?") 

2. Test for degraded functions at the cut-line ("Have we 
lost what we had before?") 

3. Regression test 

EXISTING SYSTEM DESIRED SYSTEM 

Performance 

Capabilities r --
Goal 

Functions t 
Requirements 

Code - t 
I Design 

t 
1 Code 

1 + 
Cut-Line Patch Development 

Figure 10-Deveiop the patch 

The sixth and final stage of making a change is to install 
it-insert the tested patch at the tested cut-line and remove 
the old system and the entire scaffold of the change process. 
Then the changed system becomes the existing system, and 
the modification cycle begins anew (Figure 4). 

The stages of the change cycle are portrayed together in 
Figure 11, which may be regarded as a detailed expansion of 
Figure 4. We propose that together they supply a more ade­
quate model of the system life cycle. 

CONCLUSIONS 

The purpose of a model is to disassemble a complex process 
into its component parts so as to aid in the assignment of 

What Life? What Cycle? 567 

EXISTING SYSTEM DESIRED SYSTEM 

performante I !r--------e>-­
Capabilities W 

+ • Goal 
Functions , t R,equirements 

Code Design 

t~--------------------Jooe • Cut-Line 

Figure ll-Details of the change cycle 

• Patch 

resources, the training of novices, the specialization of roles, 
and so on. The model given in this paper has already proved 
fruitful in explaining on a theoretical basis some of the things 
that maintenance managers do--for instance, the philosophy 
of the big patch, or the quick and dirty fix. But, beyond that, 
it has implications for development and for software en­
gineering education. 

In the model the development path from goals to instal­
lation-the entire classic life cycle as presented at the start of 
the paper-is seen as a model of patch development, which is 
just a part of the change cycle, which in turn is subordinate to 
the modification cycle of the entire system. A similar subordi­
nation is seen in Van Horn's recent model of "evolutionary 
software development,,,8 but it is not reflected in any of the 
curricula or textbooks for software engineers. Yet such a sub­
ordination has profound implications for the staffing, esti­
mating, or teaching of software development. 

Most development projects are not, in fact, the creation of 
something entirely new-they are creations of a replacement 
for a relatively small section of a relatively larger system. They 
are, in fact, patch developments. But, under this model, patch 
development entails also the analysis of the larger system, the 
transformation of a request into a change, the specification of 
the change via the choice of cut-line and patch, and a con­
trolled turnover. In this context, patch development is rather 
a small part of the problem. In fact, the choice of the cut-line 
is seen as the major design challenge, since it provides the 
frozen goal that is the idealized prerequisite for the classic 
development model. 

Yet patch development is the only model currently being 
taught to software engineers; the other aspects of system mod­
ification are only learned from on-the-job experience or ap­
prenticeship. If the analysis in this paper is correct, it gives 
theoretical support to the view widely held by managers that 
software engineers do not come out of school well prepared 
for the realities of their job. 

ACKNOWLEDGMENTS 

I would like to thank my colleagues J. Cris Miller and Michael 
Lyons, and our students in the course Software Maintenance: 
Tools, Techniques, and Management Strategies, for pushing 
and pulling me through the painful process of clarifying this 
model. 



568 National Computer Conference, 1982 

REFERENCES 

1. Brooks, R. "Using a Behavioral Theory of Program Comprehension in 
Software Engineering." IEEE Computer Society, 3rd International Confer­
ence on Software Engineering, Atlanta, 1978, pp. 196-201. Silver Spring, 
MD: IEEE Computer Society, 1978. 

2. Glass, R. L., and R. A. Noiseux, Software Maintenance Guidebook. Engle­
wood Cliffs, New Jersey: Prentice-Hall, 1981. 

3. Kerola, P., and P. Freeman. "A Comparison of Lifecycle Models." IEEE 
Computer Society, 5th International Conference on Software Engineering, 
San Diego, 1981, pp. 90--99. Silver Spring, MD: IEEE Computer Society, 
1981. 

4. Lientz, B. P., and E. B. Swanson. Software Maintenance Management-A 
Study of the Maintenance of Computer Application Software in 487 Data 
Processing Organizations. Reading, Massachusetts: Addison-Wesley, 1980. 

5. Parnas, D. L. "On the Criteria To Be Used in Decomposing Systems into 
Modules. Communications of the ACM, 15 (1972), pp. 105~1058. 

6. Parnas, D. L. "On the Design and Development of Program Families." 
IEEE Transactions in Software Engineering, SE-2, (1976), pp. 1-9. 

7. U.S. General Accounting Office. Federal Agencies' Maintenance of Com­
puter Programs: Expensive and Undermanaged. U.S. General Accounting 
Office, AFMD-81-25, February 26, 1981. 

8. Van Horn, E.C. "Software Must Evolve." In H. Freeman and P. M. Lewis, 
II (eds), Software Engineering. New York: Academic Press, 1980. 



LANGUAGE AND 
DATABASE PROCESSING 





Data model processing 

by MATIHEW B. KOLL, W. TERRY HARDGRAVE, and SANDRA B. SALAZAR 
National Bureau of Standards* 
Washington, D.C. 

ABSTRACT 

The Data _Model Processor (DMP) is an interactive tool for defining and evaluating 
data models. It is based on Positional Set Notation, a formalism for uniform repre­
sentation of data modeling objects. The DMP allows the user to enter a set­
theoretic description of a data model's structures and a definition of the model's 
primitive operations based on positional set operations. Based on the data model 
definition, the DMP then emulates a database management system (DBMS) imple­
menting that data model. It allows the user to play various roles associated with a 
DBMS, such as database definer and end user. 

This paper gives an overview of the DMP and discusses its foundations, namely, 
Positional Set Notation and a Positional Set Processor. It traces an example showing 
how the DMP has been used to model the relational data model. (Hierarchical and 
,network models have also been implemented on the D~IP.) Future applications of 
the DMP are considered. 

*This paper is a contribution of the National Bureau of Standards and is not subject to copyright. 

571 





INTRODUCTION 

The study of "data models" is an important aspect of database 
management technology. A data model is defined here as a 
collection of data structures plus a collection of primitive 
operations used for database management. Each database 
management system (DBMS) may be viewed as an imple­
mentation of some underlying data model. While three data 
models are most widely discussed, many others have been and 
continue to be proposed. 1 

More rigorous definition of and comparisons among data 
models are needed. Better selection and use of DBMS's could 
result from improved understanding of the various data mode 
els' strengths and weaknesses, and from detailed specification 
of their structures and operations. A simple, general vehicle 
for formal analysis of data models could be a valuable tool. 
Such a tool may aid in database conversion and translation as 
well. 

The Institute for Computer Science and Technology 
(ICST), within the National Bureau of Standards, is charged 
with establishing federal standards for database management 
systems. To support this effort, ICST is interested in devel­
oping a more structured approach to the analysis of data 
models. The Abstract Database Models project at ICST has 
developed and implemented the Data Model Processor 
(DMP), a software package for formal specification and anal­
ysis of data models and their implementations. 

The first prototype DMP was recently completed and has 
been used to study the behavior of a relational, a tree­
structured, and a network-structured data model. A signifi­
cant feature of the DMP is that it not only provides for a 
common definition language for various data models, but that 
it allows each data model definition to be implemented by 
emulating a DBMS embodying that data model (as shown in 
Figure 1). 

This paper describes the DMP and how it may be used. First 

PARAMETRIC 

DESCRIPTION 

OF DATA MODlL 

DMP EMULATES 

DBMS IMPLEMENTATION 

DB ACCESS REQUESTS 

Figure l-Overview of DMP 

DMP GENERATES 

SAME RESULTS AS 

ACTUAL DBMS 

Data Model Processing 573 

we give an overview of the DMP. Then we discuss its founda­
tions, namely, Positional Set Notation2 and the Positional Set 
Processor.3 Positional Set Notation (PSN) is a set-theoretic 
notation that enables uniform representation of the data 
structures for various data models. The Positional Set pro­
cessor (PSP) is a sophisticated tool for manipulating (e.g., 
storing, retrieving, combining) positional sets (p-sets). Next, 
we show how the DMP can be used to define and emulate 
DMBS's implementing the relational data model. Finally, we 
discuss planned and potential applications of the DMP. 

THE DATA MODEL PROCESSOR 

Overview 

The Data Model Processor (DMP) is an interactive tool for 
defining, testing and evaluating data models. It has been im­
plemented in the C programming language under UNIX and 
runs on either a PDP-ll/45 or LSI-ll/23. The DMP accepts 
formal definitions of the structures and operations of a data 
model from the user. It also aliows the user to define and 
manipulate various features of an implementation of that data 
model (i.e., a DBMS). As described in Figure 1, after the 
DMP has been given the specifications for defining and imple­
menting a DBMS for some data model, it then emulates that 
DBMS. 

The DMP recognizes the following different human roles 
involved in the life cycle of a DBMS: 

1. Data Model Definer (DMD) 
2. DBMS Implementer (DI) 
3. Database Definer (DBD) 
4. Access Definer (AD) 
5. Database Populator (DBP) 
6. Query/Access Language Definer (QLD) 
7. Data Transformation Definer (DTD) 
8. Data Manipulator (DM) 

The DMP first presents the user with the master menu of 
roles. The user may play any role, provided that the prerequi­
site roles have been fulfilled. The dependencies between roles 
are shown in Figure 2. Dotted lines indicate that the lower role 
may, but does not always, depend on the higher role. 

User Roles in the DMP 

The Data Model Definer (DMD) is the most important role 
in the DMP. The activities of the other roles are structured by 



574 National Computer Conference, 1982 

Figure 2-Dependencies among roles 

information provided by the DMD. For example, the data­
base definition and population phases consist entirely of filling 
in structures previously outlined by the DMD. 

The DMD role is divided into the following four sections: 

1. Declaring the basic CONCEPTS of the data model 
2. Outlining the P-SETS used to represent the concepts 
3. Identifying the SOURCES of values to populate the sets 
4. Defining the primitive OPERATIONS allowed on the 

p-sets 

In order to define a data model, the DMD must use PSN to 
define the structures (i.e., p-sets) that will be manipulated by 
the data model. The DMD outlines p-sets using the TEM­
PLATE command, discussed below (see Figure 3). These p­
sets represent the basic concepts of the model (e.g., relations, 
trees). These structures are usually partitioned into two class­
es: data definition structures and occurrence structures. How­
ever, the DMD has substantial flexibility in these definitions. 
Note that the DMD is the only role requiring knowledge of 
PSN. 

In addition to the stored structures, the DMD must define 
the primitive operations to manipulate these structures. These 
operations become available to the Data Manipulator (DM), 
Ouery Language Definer (OLD) and Access Definer (AD). 
Currently, operations are written in the C programming lan­
guage. As seen in the example below, the operations consist 
mainly of calls to PSP operations. 

The DBMS Implementor (DI) completes those aspects of 
the data model that were not completely specified by the 
DMD. The term "implementation" has a substantially differ­
ent meaning in the DMP context than in its traditional con­
text. Implementation, in its traditional sense, is automatic 
because structures are completely specified in PSN, and most 
or all operations are completely specified by the DMD. Ex­
cept for defining the elementary sets (e.g., integers, 
character-strings), the DI is allowed to define only the sets 
and pmcedures which have been explicitly designated to the 
DI by the DMD. Such designated sets and procedures would 

TEMPLATE 

PSP 

PRIMITIVE 
OPERATIONS 

QUERY 
LANGUAGE 
PARSER 

Figure 1-Architecture of DMP 

be those needed for implementation but not considered part 
of the data model definition (e.g., valid names). 

The Database Definer (DBD) enters the data definition for 
some databases. For each concept designated in the SOURCE 
section to be populated by the DBD, the DMP prompts the 
DBD to provide values to populate the p-set(s) representing 
that concept. The DMD provides the "outline" for the p-set 
with the TEMPLATE statement; the DBD provides the 
values to fill in the p-set. 

The Access Definer (AD) proceeds in the same manner as 
the DBD. The AD populates p-sets which were outlined in 
the P-SETS section and designated (in the SOURCE section) 
for population by the AD. He assigns users to user classes, 
and defines a perspective (e.g., view, subschema) of the data­
base for each class. Access control mechanisms and granu­
larity vary with the data model and implementation. 

The Database Populator (DBP) proceeds in the same man­
ner as the DBD and AD. Traversing the appropriate tem­
plate, the DMP prompts the DBP to populate each p-set 
designated for DBP population in the SOURCE section. 
These filled-in p-sets (usually the actual database) are stored 



as files and are manipulable by the DMP primitive operations 
(through the PSP). 

The Query/Access Language Definer (QLD) enters tables 
to define the syntax and semantics of a query or access lan­
guage. These tables are inputs to the Query Processor (OP), 
an augmented macro processor. 4 QP accepts the specification 
of the: syntax of the language in a tabular form that is remi­
niscent of SNOBOL-like programming languages. This tech­
nique is different in one simple but significant way: a 
mechanism is provided to pass information from the syntactic 
grammar to the primitive operations specified in semantic 
tables. This allows the study of a single syntax that has multi­
ple semantic interpretations. 

The Data Transformation Definer (DTD) is the only role 
that has not yet been implemented. We expect that role to be 
similar to the QLD. The DTD will enter tables and/or pro­
grams based on PSP operations in order to define mappings 
between different implementations or data models. 

The Data Manipulator (DM) may use the primitive oper­
ations or a language defined by a QLD to manipulate the data 
in a populated database. The nature of the session with the 
DM depends to a large extent on the language of the data 
model that has been defined. The DMP asks the DM to enter 
his user-id, the model, implementation and database, and the 
language he will use so it can link to the appropriate parser. 
Commands issued by the DM are then passed to that parser 
(probably QP), which then executes the designated primitive 
operation(s), which, in turn, execute PSP commands, return­
ing the response (edited if necessary) back to the DM. 

Foundation 

The DMP uses PSN for representing the various data mod­
els' data structures and the PSP for manipulating those struc­
tures. We provide here a brief description of PSN; more detail 
is available elsewhere. 2 The essence of PSN is the recursive 
definition of the p-set: 

s = [xi@pi ... J 

where the xi are either atoms (i.e., numbers or character­
strings), or p-sets; 
and the pi (Position IDentifiers-PIDs) are either atoms, or # 
(the null PID). 
[] = the null p-set. 

The xi are the elements of the p-set; the pi are the positions 
of their membership. The pi occurring in a p-set need not be 
unique. A pair, xi@pi, is called a duplex. The duplexes within 
a p-set are unordered; a p-set may be thought of as a set of 
ordered pairs. 

There is a mapping from p-sets, s, to mathematical sets, s', 
such that: 

s = [xi@pi ... ] =? s' = {< x,p > ... }. 

That is, for each p-set there exists a corresponding set of 
ordered pairs. 

P-sets are used to model data modeling objects. The three-

Data Model Processing 575 

level relationship among data modeling objects, p-sets, and 
mathematical sets is shown in Table I. 

TABLE I-Representing objects in PSN 

Data Modeling 

{Jones,30} 
<Jones, 30> 
Name Age 
Jones 30 

PSN 

[Jones@#,30@#] 
[Jones@l,30@2] 

Mathematics 

{ < Jones,# > , < 30,# > } 
{<Jones,l >, <30,2>} 

[Jones@Name,30@Age] { < Jones,Name >, 

< 30,Age > } 

The PSP is an access mechanism used to manipulate these 
objects. The PSP is actually a collection of about 40 operators 
for manipulating p-sets, each of which may be called indepen­
dently at the UNIX shell level or as a subroutine. While the 
PSP provides many of the features of a DBMS, it is NOT a 
DBMS, lacking such important features as a data definition 
facility. Unlike most access methods, however, it has a very 
powerful query facility. Also, while most access methods exist 
for performance improvement and convenience, the PSP ex­
ists to allow precise specification and manipulation of mathe­
matical objects. 

PSP operations can be broken into four functional groups. 
The Classical Set Operations include union, intersection, car­
dinality, etc. When applied to positional sets, they are anal­
ogous to the traditional set operations. 

The Positional Set Operations provide the user with the 
following basic database functions: retrieving, updating, add~ 
ing, and deleting. Some of these operations resemble those 
available in relational query languages. In particular, there is 
a RANGE command for linking range variables with p-sets 
and a CREATE command which performs functions anal­
ogous to the SELECT, PROJECT and JOIN found in re­
lational algebra. There are additional operations to return the 
(classical) set of elements or the (classical) set of PIDs for a 
p-set and to distribute a PID over a classical set (that is, to 
un-nest a nested set): 

Three other operations of this group are noteworthy: (1) 
TEMPLATE, (2) POPULATE, and (3) CONFORM. As 
seen in Figure 3, they play key parts in the DMP. TEM­
PLATE allows the user to specify a template and a set of 
constraints that defines a class of p-sets. That is, templates are 
a kind of metalanguage for p-sets. POPULATE traverses a 
template and prompts the user to enter values at the appropri­
ate PIDs. CONFORM is a predicate that compares a p-set to 
a template and set of constraints. It returns true if the p-set is 
structured according to the rules given in the template and if 
the values within the p-set conform to the specified 
constraints. 

Some data models (e.g., CODASYL) require the manipu­
lation of sequences. To take advantage of the ordering within 
sequences, the PSP has Sequence Operations that allow ma­
nipulation of sequences as a special form of positional sets. 
For example, special insert and delete operations renumber 
sequences after changing their contents. 

The Utility Operations (e.g., copy, print) provide additional 
capabilities needed for use in an interactive environment. 



576 National Computer Conference, 1982 

SAMPLE APPLICATION 

This section shows annotated excerpts from application of the 
DMP to the relational data model. The full definition and 
exercising of an implementation of the relational model, 
which has been recently completed, is too long to include 
here. We also omit details of data model processing for hier­
archical and network models for lack of space. We hope that 
the segments shown will help explain how the DMP works. 

The relational definition shown is not meant to represent 
THE definition, but rather, is designed to show one possible 
definition of the relational model that is generally consistent 
with common understanding.5

, 6, 7 

Where possible, system output is given in lower case and 
user input in upper case, with comments enclosed by "/*" and 
"* /". Wavy lines indicate that a portion of the interaction IS 
omitted. In some cases, additional comments are inserted for 
clarification. 

******************* data model processor******************* 
version 1.3 

select option: D MD 
enter name of model: RELATIONAL 

concept definition section 
declare concepts ('$END' to terminate): 

> REP DEF DOMAINS WITH DOM-DEF; /* 
> REPRESENT DOMAIN DEFINITIONS WITH 
> THE P-SET "DOM DEF" * / 
> REP DEF RELATIONS WITH REL-DEF; /* 
> REP-:-RELATION DEFS WITH "REL-DEF" */ 
> REP OCC RELATIONS WITH REL-OCC; /* 
> REP-:-RELATION OCCURRENCES WITH 
> "REL-OCC" */ 
> $END 

p-set definition section 
enter p-sets: 

/\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ 
\/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ 

The next section defines templates and constraints for re­
lation definitions and occurrences. 

/\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ 
\/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ 

> /* SETTING UP RANGE VARIABLES FOR USE 
> IN CONSTRAINTS * / 

> RG RD IS REL-DEF /* RANGE OF RD IS REL-
> DEF */ 
> RG RDA IS RD.A-D-PAIRS /* RDA RANGES 
> OVER THE P-SET STORED AT THE PID 
> "A-D-PAIRS" NESTED WITHIN THE P-SET 
> CURRENTLY POINTED TO BY RD */ 
> RG RO IS REL-OCC; 

> TEMPLATE REL-DEF = [[RN@NAME,ADP-
> TPL@A-D-PAIRS]@# ... ] 
> /* "# ... " INDICATES THAT THE PRECEDING 
> ELEMENT'S STRUCTURE WILL BE 
> REPEATED */ 
> WHERE 
> ISA -C RN /* RN IS AN INTEGER * / 
> CD REL-DEF = CD CR WITH (RD.NAME) 
> /* THE CARDINALITY OF REL-DEF 
> EQUALS THE CARDINALITY OF REL-DEF 
> PROJECTED ONTO NAME - I.E., REL 
> NAMES ARE UNIQUE * / 
> TEMPLATE ADP-TPL = [[AT@ATTR,K@KY-
> PRT,D@DOM]@# ... ] 
> WHERE 
> ISA -C AT /* AT IS A CHARACTER-STRING */ 
> CD CR WITH (RD. NAME, RDA.ATTR) = 
> CD CR WITH (RD.NAME, RDA.ALL) 
> /* ATTRIBUTE NAMES ARE UNIQUE 
> WITHIN A RELATION */ 
> ISIN K '{YES ,NO}' , 
> ISIN D DOM-NAM; /* DOM-NAM IS A SET OF 
> DOMAIN-NAMES SPECIFIED ELSE-
> WHERE */ 

> TEMPLATE REL-OCC = [[RN@NAME,RR-
> TPL@RELATION]@# ... ] 
> WHERE 
> ISA -C RN, 
> CD REL-OCC = CD CR WITH (RO.NAME), 
> TEMPLATE RR-TPL = [[V@P(J) ... ]@# ... ] 
> WHERE 
> ISIN P(J) ATTF RN, /* ATTF RETURNS 
> THE ATTRS LISTED IN REL-DEF FOR 
> A GIVEN RELATION */ 
> INCLUDE V (DOMF N P(J» /* EACH VALUE 
> IS IN THE DOMAIN PAIRED WITH ITS 
> ATTR * 

/\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ 
\/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ 

The next section shows the definition of one primitive 
operation. 

/\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ 
\/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ 

primitive operations definition section 
enter operations: 

> GLOBAL PROCEDURE REMOVE R 
> /* REMOVE R 
> ** REMOVES THE RELATION REL FROM 
> ** REL-OCC AND REL-DEF 
> ** PARAMETERS: 
> ** REL- > RELATION NAME 
> */ 
> # include "primops.h" 
> REMOVE R(REL) 
> char *REL; 
> { 



> char buff[512]; 
> expsp("RL Xl"); 
> expsp("RG Xl IS REL-OCC"); 
> expsp("RL X2"); 
> expsp("RG X2 IS REL-DEF"); 
> expsp(stringf(buff, 
> "CR Z WITH "(Xl.ALL)" WHERE "(Xl.Name 
> - = '%s')"" ,REL»; 
> expsp( "CP Z INTO REL-OCC"); 
> expsp(stringf(buff, 
> "CR Y WITH "(X2.ALL)" WHERE "(X2.Name 
> - = '%s')"" ,REL»; 
> expsp("CP Y INTO REL-DEF"); 
> expsp("DE Z"); 
> expsp( "DE Y"); 
> } 
> $END 

The next sections show the population of relation defini­
tions and occurrences. The p-sets produced are shown in tabu­
lar form in Figures 4 and 5. 

/\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\\//\ 
\/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ 

select option: DBD 
enter name of model: RELATIONAL 
enter implementation: ICST 
enter database name: TOY 
enter RELATIONS: 
populating "RELATIONALIICSTfTOY/REL-DEF" 

[$file, $end, or (cr)]: 
# [$e, $f, or (cr)]: 

NAME: EMP 1* "NAME" IS SYSTEM PROMPT-
"EMP" IS USER RESPONSE *1 

A-D-PAIRS [$e, $f or (cr)]: 
#[$e, $f or (cr)]: 

ATTR: NAME 
KY-PRT: YES 
DOM: NAME-DOMAIN 

# [$e, $f, or (cr)]: 
ATTR: SALARY 
KY-PRT: NO 
DOM: DOLLARS 

# [$e, $f or (cr)]: $E 
# [$e, $f, or (cr)]: 

NAME: SALES 
A-D-PAIRS [$e, $f or (cr)]: 

# [$e, $f or (cr)]: 
ATTR: DEPARTMENT 
KY-PRT: YES 
DOM: DEPT-DOMAIN 

#[$e, $f, or (cr)]: 
ATTR: ITEM 
KY-PRT: YES 

Data Model Processing 577 

DOM: ITEM-DOMAIN 
# ]$e, $f or (cr)]: $E 

/\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ 
\/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ 

/\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ 
\/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ 

select option: DBP 
enter name of model: RELATIONAL 
enter implementation: ICST 
enter database name: TOY 
enter RELATIONS: 
populating "RELATIONALlICSTfTOY IREL-OCC" 

[$file, $end, or (cr)]: 
# [$e, $f, or (cr)l: 

NAME: EMP 
RELATION [$e, $f, or (cr)]: 

# [$e, $f, or (cr)]: 
PID P(l): NAME 
NAME: MORGAN 
PID P(2): SALARY 
SALARY: 24000 
PID P(3): $E 

# [$e, $f, or (cr)]: 
PID P(l): NAME 
NAME: LEWIS 
PID P(2): SALARY 
SALARY: 26000 
PID P(3): $E 

# [$e, $f, or (cr)]: $E 
# [$e, $f, or (cr)]: $E 

end of database population 

/\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ 
\/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ 

At this point, the DM can manipulate the database directly 
via the primitive operations. 

/\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ 
\/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ 

select option: DM 
enter user-id: MATT 
enter model: RELATIONAL 
enter implementation: ICST 
enter database: TOY 
enter name of query language 

(primops if using primitive operations): PRIMOPS 
enter command ($END to terminate): 
1* PRINT THE NAME AND SALARY FOR ALL EM­
PLOYEES MAKING MORE THAN 25000; USE THE 
FORMAT "EMP FMT" (DEFINED ELSEWHERE) *1_ 
c> PRINT R EMP E E.ALL "E.SALARY > 25000" 
EMP FMT; 
EMP- JYAM~_t-SALARY-L 

1...!-EWIS ___ ~6oo0 -1_ 
c> $END; 

end of manipulation 
************************************************************ 

select option: E 
end of data model processor session 



578 National Computer Conference, 1982 

REL-DEF NAME I A-D-PAIRS 
ATTR I KY-PRT DOM 

---------- ------------ -------- ------------

-:::------I~~~~~~~~~~~~I~~~~:~~~ ~~~~~~~~~~: 
1-::~::----I~~i~~~~:~:~~I~~~~~~~~I~~i~~~~~~~~1 

Figure 4-Populated REL-DEF 

PLANS 

Until very recently, the chief concern of this research had 
been the construction of the DMP. Now that it is operational, 
we can tum our attention to applications and experiments. 
Work will continue on the DMP to incorporate the DTD role, 
improve the DMP's performance (the current version is quite 
inefficient), and modify it as necessary for future applications 
and experiments. 

The three data models that have already been implemented 
on the DMP served as targets during the DMP's development. 
The relational model used was a synthesis of the features of 
the major academic and commercial relational DBMS's.7 The 
network model definition is fairly consistent with the specifi­
cations of ANSCIX3H2.8 The tree-structured model used is 
TDMS,9 a forerunner of System 2000, widely used in the 
federal government. Being able to model the structures and 
operations of these data models is a good indication of the 
DMP's power and generality as a data model modeling tool 
(or meta-modeler). It may be insightful to attempt to model 
some other existing and proposed data models. 

REL-OCC NAME RELATION 
NAME SALARY 

EMP MORGAN 24000 
------------ ------------

LEWIS 26000 

Figure 5-REL-OCC populated with the EMP relation 

Query processing is an area in which we have done some 
experimentation4 and plan to do more. The completeness of 
the set of primitive operations defined ~or a data model can 
only really be tested by trying to map query languages onto 
the operations. Future experiments may include mapping 
several relational query languages (e.g., SQL, QUEL, QBE) 
onto one set of primitive operations, implementing different 
semantic approaches for TDMS,9 and mapping a relational 
query language onto CODASYL primitive operations. 

Other work on mapping may be conducted within the scope 
of the DTD role. One idea is to use the DMP to develop 
database conversion strategies. While large conversions 
would not actually use the DMP, the DMP could provide a 
framework for design, formal definition, and preliminary test­
ing of transformations. 

Another use of the DMP will be implementing and evalu­
ating data model specifications. Such work would be along the 
lines of that mentioned above using the ANSC/X3H2 specifi= 
cation of a network-structured data model. In attempting to 
formally define and implement an abstract specification, 
anomalies can often be discovered at an early stage. 

The DMP may be of some practical value in the process of 
selecting a DBMS. A potential buyer may be able to use the 
DMP to help define his requirements and to evaluate prospec­
tive systems. 

Finally, the DMP has pedagogical value. It allows one to 
explore a wide variety of data models and query languages in 
an experimental environment. A library of data model speci­
fications available for teaching and modification on an experi­
mental basis could be maintained. 

ACKNOWLEDGMENTS 

The products of the Abstract Database Models project, in­
cluding this paper, represent a group effort. We would like to 
thank several individuals for their contributions: Steve Nor­
man, Jerry Herstein, Tony Marriott, and Chuck Haas for 
implementing the DMP; Gary Sockut, Sabrina Saunders and 
T. C. Ting for their work in applying (and debugging) the 
DMP; and Joe Naputi, George Skillman, Ed Beller, and Tam­
my Kirkendall for giving the PSP the strength to carry on. 

REFERENCES 

1. Kerschberg, L., A. Klug, and D. C. Tsichritzis. "A Taxonomy of Data 
Models." In P. C. Lockemann and E. J. Neuhold (eds.), Systems for Large 
Data Bases. Amsterdam: North Holland, 1977. 

2. Hardgrave, W. T. "Positional Set Notation." To appear in Advances in 
Database Management, Vol. 2. New York: Heyden and Sons, 1982. 

3. Hardgrave, W. T. and S. B. Salazar. "The Positional Set Processor: A Tool 
for Data Modeling." National Bureau of Standards NBSIR 81-2302, Wash­
ington, DC, 1981. 

4. Hardgrave, W. T., M. B. Koll and S. B. Salazar. "Query Translation and 
Processing." National Bureau of Standards NBSIR (in progress), Washing­
ton, DC, 1982. 

5. Date, C. J. An Introduction to Database Systems. Reading, MA: Addison­
Wesley, 1977. 

6. Ullman, J. D. Principles of Database Systems. Potomac, MD: Computer 
Science Press, 1980. 

7. Final Report of ANSIIX3ISPARC DBS-SG Relational Task Group. 
CBEMAlX3/Secretariat, Washington, DC, 1981. 

8. Draft Proposed American National Standard for a Data Definition Lan­
guage for Network Structured Databases. CBEMA/X3/Secretariat (ANSc/ 
X3H2), Washington, DC, 1981. 

9. Hardgrave, W. T. "Ambiguity on Processing Boolean Queries on TDMS 
Tree Structures: A Study of Four Different Philosophies." IEEE Trans­
actions on Software Engineering, Se-6 (1980), 4, pp. 357-372. 



Automatic database system conversion: schema revision, data 
translation, and source-to-source program transformation 

by BEN SHNEIDERMAN 
University of Maryland 
College Park, MD 

and 

GLENN THOMAS 
Kent State University 
Kent, OR 

ABSTRACT 

Changing data requirements present database administrators with a difficult prob­
lem: the revision of the schema, the translation of the stored database, and the 
conversion of the numerous application programs. This paper describes an auto­
matic database system conversion facility which provides one approach for coping 
with this problem. The Pure Definition Language and the Pure Manipulation 
Language have been designed to facilitate the conversions specified in the Pure 
Transformation Language. Two conversions and their effect on retrievals are 
demonstrated. 

579 





INTRODUCTION 

Contemporary database management systems isolate the 
users from changing physical implementation strategies, but 
offer little assistance when logical structures must be modi­
fied. Several research projects have been directed at automat­
ing part or all of the database system conversion process. A 
complete strategy for coping with requirement changes would 
have to aid in the revision of the schema, translation of the 
stored database, and conversion of the application programs. 

Data translation research at the University of Michigan has 
begun to include work on database conversion (Navathe and 
Fry, i976/9 Swarthwout, Deppe and Fry, 197728), by classi­
fying possible schema transformations for a network struc­
tured database and by specifying architectures for a conver­
sion system. 

The IBM Research group at San Jose, which developed the 
EXPRESS system (Shu et aI., 197723) for data translation, 
recognized that this powerful system was a natural basis for 
developing program conversion aids. Housel's paper (1977)16 
showed how CONVERT operations could be used as a query 
language as well as for describing schema transformations. He 
demonstrated a set of rules which enabled schema trans­
formations described in CONVERT to be applied to CON­
VERT queries. 

At the University of Florida, CONVERT transformations 
were applied to relational schemas and SEQUEL queries (Su 
and Liu, 1977,26 Su and Reynolds, 1977,27 and Su, 197624). 
Dale and Dale (1976, 197713,14) at the University of Texas 
studied program preserving transformations for the tree struc­
tured data model. Gerritsen and Morgan (1976)15 dealt with 
a class of network schema transformations by dynamically 
translating prpgram statements to match the revised schema. 
Navathe (1980)18 examined transformations on schema dia­
grams which were related to the entity-relationship model and 
Sakai (1980?O suggested some transformations during logical 
design in the relational model. Shneiderman (1978)22 pro­
vided a framework for research in network schema transfor­
mations and Taylor et al. (1979)29 identified problem areas 
and offered several directions for research. Jacobs (1980)17 
described automatic conversion in the context of his database 
logic which provides a formal mathematical foundation for 
database systems. 

AUTOMATIC CONVERSION IN THE PURE 
DATABASE SYSTEM 

The Pure Database System was designed to facilitate schema 
changes which call for database translation and application 
program conversion. For example, changing a two-level 
schema structure, such as division records owning employee 

Automatic Database System Conversion 581 

records, to a three-level structure, where division records own 
department records which in turn own employee records, gen­
erally requires special purpose translation programs to re­
structure the database and hand-written revisions to modify 
application programs. Using Pure Transformation Language 
(PTL) operators, database administrators can specify trans­
formations which automatically generate a new schema, 
stored database, and application programs. The execution of 
the target application programs operating on the target data­
base should produce output identical to that produced by 
the source application programs· operating on the source 
database. 

Our Pure Definition Language (PDL) and Pure Manipula­
tion Language (PML) blended elegant high-level relational 
ideas with lower-level network concepts to produce a data 
model conducive to automatic transformation. Our goals were 
to ensure input/output equivalence where possible, minimize 
host language interactions, provide integrity assurance for the 
transformations, offer useful and effective definition and 
manipulation languages, and construct a convenient set of 
transformations. Although more efficient transformations are 
feasible, we felt that generality, modularity, simplicity, prova­
bility, and integrity assurance were more important criteria. 
The effectiveness of the PDL and PML and the utility of the 
PTL must be verified through field testing or controlled ex­
periments with manual alternatives. 

Refinements, extensions, and alternatives are easy to gen­
erate, but we felt the need to limit our focus and demonstrate 
a complete workable system. The PDL and the PML have 
been implemented using the XPL compiler-compiler to gener­
ate UNIVAC DMS-1100 code which is then executed through 
normal procedures. The PTL processor is more complex since 
it requires the preparation of a new schema, the generation of 
programs to restructure the database, and the revision of pos­
sibly hundreds of application programs embedded in host lan­
guage code. Furthermore, before a transformation is carried 
out, the stored database must be examined to ensure that 
integrity constraints are satisfied and the application pro­
grams must be parsed to verify that the transformation is 
possible. 

Although great care and effort was devoted to constructing 
a set of transformations at an appropriate level, we recognize 
alternative approaches. Higher level transformations (Su and 
Lam, 197925) would capture more "semantic" constructs, but 
a greater number of transformations might be needed to ac­
commodate database administrator (DBA) needs. Lower 
level transformations might be easier to implement and prove 
correct, but would be complicated to use. Feedback from 
users and experience seems essential to help choose the most 
convenient approach. 



582 National Computer Conference, 1982 

PURE DEFINITIONS AND MANIPULATIONS 

Like the CODASYL DBTG approach, the Pure schema has 
a collection of record types and set types. There is a singular 
record type, SYSTEM, which is the starting point for all 
searches. Each record type may be the owner and member of 
several set types but the schema graph must be acyclic. Within 
a set instance the record instances are in ascending order by 
the set keys. The simple schema shown in Figure la might be 
defined by the following Pure Definition statements: 

SCHEMA NAME IS students. 
RECORD SECTION. 

RECORD NAME IS stu. 
FIELDS ARE. 

sno PIC 9(6). 
sname PIC X(25). 

END RECORD. 

RECORD NAME IS crs. 
FIELDS ARE. 

cno PIC 9(4). 
title PIC X(60). 
grade PIC X(3). 

END RECORD. 

END RECORD SECTION. 

SET SECTION. 
SET NAME IS sys-stu. 
OWNER ISE SYSTEM. 
MEMBER IS stu. 
SET KEY IS (sno). 
END SET. 

SET NAME IS stu-crs. 
OWNER IS stu. 
MEMBER IS crs. 
SET KEY IS (cno). 
END SET. 

END SET SECTION. 
END SCHEMA. 

In this schema student records (stu) are in ascending order by 
student number (sno) and contain the student name (sname). 
Each student record owns a set of course records (crs) which 
are kept in ascending order by course number (cno) and con­
tain a course title and grade. 

The current design for the Pure Manipulation Language 
assumes embedding in a host language such as COBOL. The 
FIND statement specifies a search through the database and 
the creation of a train (an ordered collection of record identifi­
ers, each of which uniquely specifies a database record) satis­
fying an access path expression. For example, to find the 
course records in which a student named 'JOE' received a 
grade of 'A' we might write: 

FIND (CiS: SYSTEM, sys-stu, stu(sname 
crs (grade = 'A'». 

'JOE'), StU-CiS, 

The target record type, crs, must be somewhere along the 
path expression which follows the colon. The path expression 
starts at the SYSTEM record and foHows sets and records 
through the database. Records may have boolean expressions 
to qualify field names within a record and the path expression 
may traverse sets in forward and reverse order. 

The GET statement retrieves a single record of a train 
specified by its numeric position in the train, and places the 
record in a buffer area associated with the record type. By 
embedding the GET statement in a loop all the records in a 
train can be retrieved. The STORE statement inserts a record 
in the database and ensures that the record will properly 
participate in all sets in which it is an owner or member. The 
DELETE statement can be used to delete a single record or 
a train of records from the database. Deletion can only be 
made if the database structure is preserved and if all records 
would be reachable after the deletion. Three forms of the 
MODIFY statement have been included: replacement of non­
key field values in a record, alternation of key fields which 
effect set order only, and alteration of key fields which effect 
set membership. Improperly or incompletely specified mod­
ifications are not carried out. 

In summary, the Pure System blends the appeal of schema 
traversal using path expressions with the high level relational 
operations on collections of records. The network concepts of 
set ordering and explicit linkage have been combined with the 
relational notions of keys and tuple uniqueness. 

PURE TRANSFORMATIONS 

The 18 Pure transformations presented in Table I permit con­
version of a two-level schema to a three-level schema, factor­
ing of common fields from member to owner records, distribu­
tion of fields from owner to member records, manipulation of 
set key fields, introduction (and elimination) of sets, records 
and fields, and name changes. We first offer a general three 
dimensional categorization for transformations before infor­
mally presenting the Pure Transformation Language. 

The schema of Figure la allows queries of the form: "What 
grade did student X receive in course Y?" A possible trans­
formation would be to remove the field grade from the record 
type crs. This transformation is not information preserving 
because the new (target) schema does not contain all the 
information derivable from the old (source) schema. More 
generally a transformation is information preserving if all the 
information derivable from the source schema is derivable 
from the target schema. 

The second categorization dimension of data dependence 
may be illustrated by a user requirements change. Assume, 
DEPT records may own EMPLOYEE records which contain 
a field MGR identifying the employee's manager. A corpo­
rate policy change may require that all employees within a 
department be managed by the same individual. In this case, 
it is reasonable to move the MGR field to the DEPT record 
type. The FACTOR and ERASE transformation copies a 
field value from the members of a set to their common owner. 
Before the transformation may be allowed, each occurrence 
of the set type linking DEPT and EMPLOYEE occurrences 
must be examined to determine whether or not the source 



STU 

CRS 

CNO 

SYSTEM 

SYS-STU 
<SNO> 

SNO NAME 

STU-CRS 
<CNO> 

Add Field 
SNO PIC 9(6) 

To Record CRS. 
Add Field 

NAME PIC X(20) 
To Record CRS. 

STU 

SNO 
TITLE GRADE 

(a) 

Permute Key of Set SYS-STU 
From (SNO, CNO) to (CNO, SNO). 

Introduce Between Record SYSTEM and Set SYS-STU 
Record 

Record NAME is TEMP-REC. 
Fields are. 

CNO PiC X(4). 
TITLE PIC X(30). 

End Record. 
And Set 

Set NAME is TEMP-SET. 
Owner Record is SYSTEM. 
Member Record is TEMP-REC. 
Set Key is (CNO). 
End Set. 

With Source CNO of TEMP-REC = CNO of CRS. 
Factor and Erase Fields TITLE 

From Members of Set SYS-STU. 

SYSTEM 

TEMP-SET 
<CNO> 

TEMP-REC 

CNO TITLE 

SYS-STU 
<SNO> 

(d) 

SYSTEM 

(b) 

\ 

SYS-STU 
<SNO> 

NAME 

STU-CRS 
<CNG> 

Automatic Database System Conversion 

Distribute and Erase Fields NAME 
To Members of Set STU-CRS. 

Separate From Between 

CRS 

Record SYSTEM and Set STU-CRS 
Set SYS-STU 
And Record STU 
With Source SNO of CRS = SNO of STU. 

SYSTEM 

SYS-STU 
<SNO, CNO> 

583 

I eND I TITLE GRADE ISNol NAME 

(c) 

Remove Fields CNO, TITLE From Record CRS. 
Change NAME of Record 

From CRS to STU. 
Change NAME of Set 

From SYS-STU to CRS-STU 
Change Name of Record 

From TEMP-REG to CRS. 
Change NAME of Set 

From TEMP-SET to SYS-CRS. 

STU 

GRADE 

SYSTEM 

SNO 

(e) 

SYS-CRS 
<CNO> 

CRS-STU 
<SNO> 

NAME 

Figure I-Inversion of the student and course relationship 



584 National Computer Conference, 1982 

TABLE I-Categorization of pure transformations 

Information preserving 

Data independent Data dependent 

Not information preserving 

Data independent Data dependent 

Detach 
Factor fields 
Factor and 

Program 
independent 

Change name 
Add field 
Permute 
Distribute Fields 
Distribute and 

erase fields 
Introduce set record 
Introduce between 

Distribute set key 
Distribute and erase 

set key fields 
Introduce where 

erase fields 

Program 
dependent 

Append 

stored database satisfies this corporate policy. Should any 
occurrence of the set type linking DEPT and EMPLOYEE 
have two or more member record occurrences with different 
values for the field MGR, then the transformation fails. 
Transformations are data dependent if the source stored data­
base must be examined to determine whether or not current 
data values satisfy changing user requirements. Otherwise, a 
transformation is data independent. 

The final categorization dimension is program indepen­
dence. Should the field sname be removed from the Figure la 
record type stu, any source program referencing this field will 
have to be examined to determine whether it can be modified 
to run under the target schema or dropped from the set of 
programs accessing the stored database. While the conversion 
system can isolate such program dependencies, the database 
administrator is responsible for deciding on the correct action 
to be taken. Logical schema change. A transformation is pro­
gram dependent if the source programs must be examined to 
determine whether or not they can be modified to run under 
the target database system. Otherwise a transformation is 
program independent. 

CHANGE NAME, ADD FIELD, and REMOVE 
FIELDS allow the database administrator to change the name 
of any source set, record or field, add a new field to an existing 
record type, or remove a field from the definition of a record 
type. Of these, only REMOVE FIELDS requires program 
examination. The sequence: 

ADD FIELD f TO RECORD r. 
REMOVE FIELDS f FROM RECORD r. 

yields a target database system that is identical to the source 
database system. Hence, REMOVE FIELDS is the inverse of 
ADD FIELD. However, the reverse is not true because RE­
MOVE FIELDS destroys data values in the source database. 

The transformations APPEND, PERMUTE and DE­
TACH allow the database administrator to redefine the key of 
an existing set and logically reorder member record occur­
rences. APPEND adds a field as the least significant com­
ponent of a set key. While information preserving and data 
independent, APPEND requires DBA interaction to modify 

Remove fields 
Separate set 
Separate set record 
Separate from 

between 

storage paths involving the member record type. DETACH 
removes the least singificant set key field for some set. Each 
occurrence of the affected set must be examined to determine 
whether or not the resulting set key will uniquely identify the 
members. If it will not, DBA interaction is required to obtain 
the necessary uniqueness. APPEND and DETACH are in­
verses for each other when allowed. As illustrated by Figures 
lc and Id, PERMUTE redefines the left-to-right order of 
concatenation of set key fields. In addition to being informa­
tion preserving, data independent, and program independent, 
PERMUTE is the only Pure transformation that is its own 
inverse. 

The six DISTRIBUTE and FACfOR transformations al­
low for the copying of field values from owner to member 
records (DISTRIBUTE) or vice versa (FACfOR). For FAC­
TOR, this requires examining the source stored database to 
determine whether or not all members of each set occurrence 
share a common value for the field(s) being copied. When 
ERASE is specified, the field is set to the 'null' value after it 
has been copied. FACfOR and DISTRIBUTE are mutual 
inverses. 

INTRODUCE SET RECORD adds a record type and a set 
type owning this record type to the schema. This transforma­
tion has no effect of the stored database or the set of programs 
as no instanc~s of the new record type exist. SEPARATE SET 
RECORD is the inverse for INTRODUCE SET RECORD. 
When specified, all occurrences of the named record and set 
types are removed from the source database system. Because 
data values are lost, this is not an information preserving 
transformation. Thus, it has no inverse. 

INTRODUCE WHERE allows the definition of a new set 
type between two existing record types. The WHERE clause 
specifies a selection criterion to associate every member 
record occurrence with exactly one owner record occurrence. 
These are then made members of a set occurrence of the new 
set type whose owner is selected by the WHERE clause cri­
terion. SEPARATE SET is the inverse of INTRODUCE 
WHERE. Because this eliminates a path from the schema and 
destroys the information contained in this set type, this is not 
an information preserving transformation. 

The final pair INTRODUCE BETWEEN and SEPARATE 



FROM BETWEEN allow for transformations of the form 
illustrated by the schemata of Figures 1c and 1d where a new 
record and set type are introduced between an existing record 
and set type. A succession of INTRODUCE BETWEEN's 
may be employed to create a hierarchy within the schema 
while SEPARATE FROM BETWEEN may be employed to 
remove this hierarchy. 

PURE TRANSFORMATION EXAMPLE 

Figures 1 and 2 provide two examples of potential applications 
of an automatic database conversion system. The starting 
database in Figures 1a and 2a shows a collection of student 
records organized in ascending order by student number 
(sno). Each student record owns a collection of course records 
(crs) which are organized in ascending order by course num­
ber (cno). Figures 1b through 1e show successive transforma­
tion steps to convert the source schema into a target schema 
where courses own students. This conversion was called in­
version by Navathe and Fry (1976).19 

The example query shown earlier, Find the course records 
in which a student named 'Joe' received a grade of 'A', applies 
to the schema in Figure 1a: 

FIND (crs: SYSTEM, sys-stu, stu(sname 
crs(grade = 'A')). 

'JOE'), stu-crs, 

No program transformation is required for the schema in 
Figure lb. The DISTRIBUTE AND ERASE in Figure 1c 
requires the introduction of a boolean path expression in= 
volving the EXISTS predicate: 

FIND (crs: SYSTEM, sys-stu, 
stu (EXISTS (stu-crs, crs(sname 
stu-crs, crs(grade = 'A')). 

'JOE'))), 

The SEPARATE FROM BETWEEN transformation in 
Figure 1c allows a more compact path expression: 

FIND (crs: SYSTEM, sys-stu, crs (sname = 'JOE' and grade 
:::£ 'A')). 

The INTRODUCE BETWEEN transformation in Figure 
1d forces a longer path expression: 

FIND (crs: SYSTEM, temp-set, temp-rec, sys-stu, 
crs(sname = 'JOE' AND grade = 'A')). 

Finally, the name changes in Figure 1e induce a simple trans­
formation to the desired target query for the new schema: 

FIND (crs: SYSTEM, sys-crs, crs, crs-stu, 
stu (grade = 'A' AND sname = 'JOE')). 

Figures 2b through 2d show successive transformation steps 
to create a many to many relationship between student and 
course instances. Here again the paths expressions in FIND 
statements can be rewritten in an orderly way so that the same 
retrievals can be performed on the target database. Of course, 

Automatic Database System Conversion 585 

transformations to STORE, DELETE, and MODIFY state­
ments can present somewhat greater difficulty, but we feel 
that where a transformation is possible, our design supports it. 

Figures 1 and 2 show the effects of the transformation on a 
schema diagram, but the system is designed to take the actual 
code for the source schema and generate a target schema, to 
take the stored database and translate it to match the target 
schema, and to take the numerous application programs and 
convert them to run on the target schema. Of course, if infor­
mation is deleted during a transformation, some of the appli­
cation programs may not operate in the same way as they did 
before. The database administrator must decide if the results 
of such a conversion are acceptable. Whether the eighteen 
transformations we offer are convenient and provide enough 
power to be useful in commercial applications remains an 
open question. 

CURRENT RESEARCH DIRECTIONS 

Our fundamental goal has always been to create a research 
system which demonstrates the feasibility of automatic data­
base system conversion. We do not seek Pure Database Sys­
tem users, but rather hope that this work will inspire other 
designers to provide automatic database conversion facilities 
in their system architecture. 

We are currently trying to apply the ideas in the Pure Data­
base System to conversion in other data models and to conver­
sion across data models. Shneiderman and Thomas (1982)12 
describe 15 transformations for the relational model of data 
and suggest an architecture for an automatic conversion sys­
tem. Schema to sub-schema mappings can be defined with 
transformation operations (Thomas and Shneiderman, 
1980).4 We are also pursuing a formalization ofthese concepts 
so as to verify the correctness of a transformation, assess the 
range of our set of transformations, and uncover additional 
useful transformations. 

This work is relevant to standardization efforts currently in 
progress because we beleive that the ease of conversion 
should be a consideration for all database definition and ma­
nipulation languages. Secondly, a standards planning effort 
would be useful to coordinate and unify the diverse proposals 
for transformation facilities. 

ACKNOWLEDGMENTS 

Carl Fosler and Robyn Birckhead carried out the implemen­
tation ofthe PDL and PML. Nancy Sevitsky prepared a user's 
manual, Wayne Fuller assisted with the documentation, and 
Bonnie Zager provided administrative support. The Com­
puter Science Center, of the University of Maryland provided 
some of the computer resources for this project. National 
Science Foundation grant MCS-77-22509 provided partial 
support. We appreciate the comments of our colleagues Mi­
chael L. Brodie, Barry Jacobs, Edgar H. Sibley and the mem­
bers of the Database Program Conversion Task Group of the 
CODASYL Systems Committee, especially Stanley Su and 
Jim Fry. 



586 National Computer Conference, 1982 

SYSTEM 

( ') 

~TU 
<SNO> 

STU-CRS 
<CNO> 

CRS 

CNO TITLE GRADE 

(a) 

Introduce Between Record SYSTEM and Set 
CRS-GRADE Record 

Record NAME is TEMP-REC. 
Fields Are. 

CNO PIC X(4). 
TITLE PIC X(30). 

End Record. 
And Set 

Set NAME is SYS-CRS. 
Owner Record is SYSTEM. 
Member Record is TEMP-REC. 
Set Key is (CNO). 
End Set. 

With Source eNO of TEMP-REC = CNO of CRS. 

SYSTEM 

(c) 

Add Field 
SNO PIC 9(6). 
To Record CRS. 

Distribute Fields SNO 
To Members of Set STU·CRS. 

Introduce Set 
Set NAME is CRS·GRADE. 
Owner Record is SYSTEM. 
Member Record is CRS. 
Set Key is (CNO, SNO). 
End Set. 
Storage Path is SYSTEM, CRS-GRADE, 

CRS (CNO = CNO-ID and SNO = SNO-ID). 

SYSTEM 

(b) 

Factor and Erase Fields TITLE 
From Members of Set CRS-GRADE. 

Remove Fields TITLE From Record CRS. 
Change NAME of Record 

From CRS to GRADE. 
Change NAME of Record 

From TEMP-REC to CRS. 
Change NAME of Set 

From STU-CRS to STU-GRADE. 

SYSTEM 

(d) 

Figure 2-Transformation from a one-to-many to a many-to-many relationship 



PURE SYSTEM REPORTS 

1. Shneiderman, B., and G. Thomas. Automatic Database System Conversion 
I: Data Definition and Manipulation Facilities. Computer Science Technical 
Report Series TR-82, University of Maryland, College Park, Md., 20742 
(1979), 39 pages. (Submitted for pUblication.) 

2. Thomas, G., and B. Shneiderman. Automatic Database System Conversion 
II: A Transformation Language. Computer Science Technical Report Series 
TR-281, University of Mary!and, College Park, Md. 20742 (1979), 46 
pages. (Submitted for publication.) 

3. Shneiderman, B., and G. Thomas. "Path Expressions for Complex Queries 
and Automatic Database Program Conversion." Proceedings of the 6th Very 
Large Data Bases Conference. Montreal (1980), pp. 33-44. 

4. Thomas, G., and B. Shneiderman. "Automatic Database System Con­
version: A Transformation Language Approach to Sub-Schema Imple­
mentation." Proceedings of the IEEE COMPSAC '80 Conference, Chicago, 
(1980). 

5. Shneiderman, B., and G. Thomas, Pure Database System Report: A Trans­
formation Language Approach to Automatic Schema, Stored Data and Pro­
gram Conversion. Computer Science Technical Report Series TR-880, Uni­
versity of Maryland, College Park, Md. 20742 (1980), 91 pages. (Submitted 
for pUblication.) 

The Pure Language components defined by this reports are separately de­
scribed in: 
6. Shneiderman, B., and G. Thomas. Pure Definition Language Manual. Uni­

versity of Maryland, College Park, Md. 20742 (1980), 10 pages. 
7. Shneiderman, B., and G. Thomas. Pure Manipulation Language Manual. 

University of Maryland, College Park, Md. 20742 (1980), 30 pages. 
8. Shneiderman, B., and G. Thomas. Pure Transformation Language Manual, 

University of Maryland, College Park, Md. 20742 (1980) 50 pages. 

Other Pure System reports are: 
9. Fosler, C. Pure System XPL-DMSIlJOO Implementation Documentation. 

Computer Science Technical Report Series TR-872, University of Mary­
land, College Park, Md. 20742 (1980), 38 pages. 

10. Fosler, C. Pure PDL and PML Runstream and Examples. University of 
Maryland, College Park, Md. 20742 (1980), 32 pages. 

11. Sevitsky, N. Pure User's Manual. University of Maryland, College Park, 
Md. 20742 (1980), 52 pages. 

12. Shneiderman, B., and G. Thomas. "An Architecture for Automatic Re­
lational Database System Conversion." ACM Transactions on Database 
Systems (June 1982.) 

REFERENCES 

13. Dale, A. and N. Dale. "Main Schema-External Schema Interaction in 
Hierarchically Organized Data Bases." Proc. ACM SIGMOD Conference, 
1977 pp. 102-110. 

Automatic Database System Conversion 587 

14. Dale, A., and N. Dale. "Schema and Occurrence Structure Trans­
formations in Hierarchical Systems." Proc. ACM SIGMOD conference 
(1978). 

15. Gerritsen, R. and H. L. Morgan. "Dynamic Restructuring of Databases 
with Generation Data Structures." ACM National Conference 1976, pp. 
281-286. 

16. Housel, B. "A Unified Approach to Program and Data Conversion." Proc. 
3rd Very Large Data Bases Conference, Tokyo (1977). 

17. Jacobs, B. "Applications of Database Logic to Automatic Program Con­
version." Submitted for publication. 

18. Navathe, S. B. "Schema Analysis for Database Restructuring." ACM 
Transactions on Database Systems, 5 (1980), pp. 157-184. 

19. Navathe, S. B., and J. P. Fry. "Restructuring for Large Databases: Three 
Levels of Abstraction. ACM Transactions on Database Systems 1 (1976), 
pp. 138-156. 

20. Sakai, H. "Entity-Relationship Approach to the Conceptual Schema De­
sign." Proceedings of the ACM SIGMOD Conference, 1980, pp. 1-8. 

21. Shu, N., B. Housel, R. W. Taylor, S. Ghosh, and V. Lum "EXPRESS: A 
Data Extraction, Processing, and Restructuring System." ACM Trans­
actions on Database Systems 2, (1977) pp. 134-174. 

22. Shneiderman, B. "A Framework for Automatic Conversion of Network 
Database Programs Under Schema Transformations." Third Jerusalem 
Conference on Information Technology (J. Moneta, ed.) Amsterdam: 
North-Holland, 1978. 

23. Shu, N. c., B. C. Housel, and V. Y. Lum. "CONVERT: A High Level 
Translation Definition Language for Data Conversion." Communications 
of the ACM, 18 (1975), pp. 557-567. 

24. Su, S. Y. W. "Application Program Conversion Due to Database 
Changes." Proc. 2nd International Conference Very Large Data Bases, 
Brussels, Belgium (September 1976). Amsterdam: North-Holland, 1976, 
pp. 143-158. 

25. Su, S. Y. W., and H. Lam. "Transformation of Data Traversals and Oper­
ation in Application Programs to Account for Semantic Changes in Data­
bases." Department of Computer and Information Sciences, University of 
Florida, Gainesville, Florida, 1979. 

26. Su, S. Y. W., and B. J. Liu. "A Methodology of Application Program 
Analysis and Conversion Based on Database Semantics." Proceedings of 
the ACM SiGMOD Conference, 1977, pp. 75-87. 

27. Su., S. Y. W., and M. J. Reynolds, "Conversion of High-Level Sublanguage 
Queries to Account for Database Changes." AFIPS, Proceedings of the 
National Computer Conference (Vol. 47), 1978, pp. 857-875. 

28. Swarthwout, D. E., M. E. Deppe, and J. P. Fry. "Operational Software for 
Restructuring Network Databases." AFIPS, Proceedings of the National 
Computer Conference (Vol. 46), 1977, pp. 499-508. 

29. Taylor, R. W., J. P. Fry, B. Shneiderman, D. C. P., Smith, and S. Y. W. 
Su, "Database Program Conversion: A Framework for Research." Pro­
ceedings of the 5th Very Large Database Conference. Available from ACM, 
New York, 1979. 





Fair timestamp allocation in distributed systems 

by SAID K. RAHIMI 
Honeywell Corporate Computer Sciences Center 
Bloomington, Minnesota 

and 

WILLIAM R. FRANTA 
University of Minnesota 
Minneapolis, Minnesota 

ABSTRACT 

Many researchers have addressed the problem of uniquely identifying updates in a 
distributed database system in the literature.1

,5,6,7,11 Primitiv~ identification schemes 
that generate globally unique update IDs have also been suggested. These IDs are 
usually used as priority among updates as well. When used as such, these schemes 
do not distribute priority evenly across the nodes. This paper presents a numbering 
scheme that generates unique update IDs and, if used as a priority scheme, is fair. 

589 





1. INTRODUCTION 

Many authors have addressed the problem of global identifi­
cation of updates in a distributed database system. 1,5,6, 7,10,11 

To solve the problem, these researchers have suggested prim­
itive ID generation schemes that globally identify all updates. 
Almost all these suggestions assume an ID to be a combina­
tion of two parameters: a local physical-clock parameter to 
provide for local identification and node numbers to provide 
for global identification. Thomas' algorithm for concurrent 
update problem of distributed database systems11 assumes 
that an update ID number is a combination of a node number 
and readings of a physical clock at that node at the time of 
update generation. (Our model of a distributed system con­
sists of a set of cooperating nodes connected by a commu­
nication facility.) Physical clocks, kept at every node of the 
system, tend to require resynchronization periodically. If 
physical clocks are skewed with respect to one another or run 
at different rates, certain anomalies may occur. 11 To solve the 
synchronization problem, Lamport5 has suggested a rather 
expensive mechanism to resynchronize drifted clocks. 

Away from physical-clock problems, these schemes are able 
to generate globally unique identification numbers for up­
dates. The ID numbers generated are also used as priority 
numbers among updates.7

, 11 A priority scheme as such does 
not distribute priority evenly across the nodes. The reason is 
the fixed node number assignment that biases the priority 
among updates from different nodes. 

Section 2 explains the update numbering schemes and their 
problems. To solve some of the problems, Section 3 presents 
the MOD numbering scheme. This scheme is solely based on 
the use of logical clocks and therefore does not have the 
problems associated with physical clocks. If ID numbers gen­
erated by this scheme are used as priority, one can be sure that 
this priority scheme is fair. The MOD numbering scheme 
achieves fairness by dynamically changing the node numbers. 
The problem associated with varying node numbers and a 
solution to this problem are also presented. 

2. UPDATE NUMBERING SCHEMES/PROBLEMS 

An update ID number is generated and assigned to an update 
by the initiating node at the time of update generation. It is 
assumed that each node has a logical clock (instead of a phys­
ical clock in similar schemes). A logical clock at a node simply 
counts the number of updates generated at that node. This 
means that a logical clock at a node is incremented by 1 for 
every update generated at that node. Another update at a 
node cannot be generated before the clock at that node is 
incremented (it is assumed that all logical clocks are set to 0 
at the system initiation time). Using the logical-clock readings 

Fair Timestamp Allocation in Distributed Systems 591 

(LCR) at every node, therefore, solves the problem of locally 
identifying the updates and orders the updates by their gener­
ation. This, on the other hand, does not provide for global 
identification of updates, because LCRs at different nodes 
may be the same. 

To ensure a global identification, node numbers are used as 
the second part of update IDs. It is assumed that the N nodes 
of the system are uniquely numbered 0 to N -1. If NN is node 
number, the tuple (LCR, NN) is a unique ID throughout the 
system. Two IDs, IDi = (LCR;,NNi) and IDj = (LCRjNNj ) 
are said to be different (IDi :f= IDJ if and only if LCR :f=LCRj 
or NN;:f= NNj . 

It is easy to show that for any two different updates i and j 
with ID; = (LCR;, NNi ) and IDj = (LCRj,NNj ), IDi :f= IDj. To 
see this, suppose updates i and j are generated at the same 
node; i.e., NNi = NNj • According to the above discussion, 
LCR has to be incremented after it is read for one update, and 
hence LCRi :f= LCRj. If the updates are from two different 
nodes, then NN; :f= NNj, which implies that IDi :f= IDj • 

ID numbers are used in two different ways: for identi­
fication and for priority purposes. 

The uniqueness property of update IDs, generated this 
way, gives us confidence in using these tuples as identification 
of updates. When used as priority, however, this scheme 
raises some questions. Note that priority here is concerned 
with ordering conflicting updates and does not have anything 
tQ do with user-defined or external priority. For two updates 
i and j it is usual to say 

update i is of equal priority to update j if ID; == IDj , 

update i is of higher priority than update j if ID; < IDj , 

and 
update i is of lower priority than update j if IDi > IDj • 

Since there are two different elements (LCR and NN) consti­
tuting each update ID, there are two possible ways of defining 
relations =, >, and < for two updates i and j: 
First, 

IDi = (LCRi ,NNi ) 

and 
IDj = (LCRj,NNj ) 

which means that 

IDi = IDj if and only if LCR; = LCRj and NNi = NNj , 
IDi > IDj if and only if (LCRi > LCRj ) or (LCR i = LCRj and 
NN; >NNj ) 

IDi < IDj if and only if (LCR; < LCRj ) or (LCR = LCRj and 
NNi<NNj ), 



592 National Computer Conference, 1982 

as used in Rosenkrantz et al.,9 Thomas,l1 and Traiger et al. 12 

A priority scheme is said to be fair if it distributes priority 
evenly among the updates from different nodes. A scheme 
that gives high priority to updates from one node all the time 
is not fair. 

As far as priority is concerned, the scheme given above is 
fair if different nodes are generating updates at a close rate or 
if LCRs are not skewed. To see this, suppose that a node is 
generating updates at a much higher rate than the other 
nodes. Soon the LCR at this node becomes much greater than 
LCRs at the other nodes. Therefore, updates generated at this 
node get the lowest priority among the updates generated in 
the system. Some authors have suggested means of controlling 
this situation by proposing synchronizing LCRs,5,12 which 
tends to be expensive. 
Second, 

which means that 

ID; = IDjif and only if NN; = NNj and LCR = LCRj1 
ID; > IDj if and only if (NN; > NNj) or (NN; = NNj and 
LCR > LCRj) , 
ID; < IDj if and only if (NN; < NNj) or (NN; = NNj and 
LCR < LCRj). 

This scheme solves the problem of skewed clocks but has 
another potential drawback. Since in this scheme dominance 
is given to node number NN, all updates generated from the 
node numbered N - 1 have lower priority than updates from 
the node numbered N - 2, updates generated at Node N - 2 
have lower priority than updates from Node N - 1, ... , and 
updates from Node 1 have lower priority than updates from 
Node O. According to the above definition, this scheme is not 
fair either. To solve the fairness problem of this scheme, we 
suggest the MOD numbering scheme. 

THE MOD NUMBERING SCHEME 

As before, the MOD numbering scheme assumes that the 
nodes of the system are numbered 0 to N - 1 at system ini­
tiation time. Since the problems mentioned above stem from 
fixed node numbers, the MOD scheme suggests that the node 
numbers be changed periodically and dynamically, as follows: 

New NN = (old NN + 1) MOD N 

which means that Node 0 becomes 1 and Node 1 becomes 2, 
... , and node number N - 1 becomes O. Changing the node 
numbers this way solves the problem of having a biased prior­
ity scheme but creates the problem of having two or more 
updates with the same ID numbers. For example, assume that 
the LCR at Node 2 is 4 and the LCR and Node 3 is 5. This 
means that Node 3 has already generated an update num­
bered (3,4). Now assume that Node 2 changes its node num­
ber to 3. The very next update generated at this node will also 
be numbered (3,4). 

This problem can be solved by using a node sequence num-

Node flO 

SN!NN 

Node #1 

SN!NN 

Node #2 

SN!N~ 

~~ode 113 

SN!NN 

01 DZ~O] 

12~13 1 

o 0 

Z :~: : : 1 : : 

4 0 

5 1 

4 1 

5 2 

Lowest priority 
after each set of 
node number changes 

Figure l-SN!NN for a 4-node system 

ber, SN, as a third part of the update ID numbers. Using SN 
concatenated with NN, update ID numbers become 

ID = (SN!NN ,LCR) 

where ! denotes concatenation. 

SN is set originally to 0 at each node and is incremented each 
time the node changes its node number. 

Figure 1 shows SN!NN for a system of four nodes for the 
first five node number changes. The dominant factor in this 
scheme is SN!NN; i.e., for two updates i and j with 
ID; = (SN;!NN;, LCR) and IDj = (SNj!NNj, LCRj), 

ID; = IDj if and only if SN; !NN; = SNj !NNj and 
LCR = LCRj, 
ID; > IDj if and only if (SN; !NN; > SNj !NNj) 
or 
(SN;!NN; = SNj!NNj and LCR > LCRj), 
IDi < IDj if and only if (SN; !NN; < SNj !NNj) 
or 
(SN; !NNj = SNj !NNj and LCR; < LCRj). 

To show that IDs generated this way are unique, it is sufficient 
to show that SN!NN for any given node is unique over the 
system. To do this, we have to show that for any two nodes i 
and j at any time either SN; =1= SNj or NN; =1= NNj. 

Suppose SN j !NNi = SNj !NNj for two different nodes i and 
j. This means that SN j = SNj and NNi = NNj. Let us assume 
that SN; = SNj = s, which is the number of times that these 
nodes have changed their numbers (see definition of SN). If 
the node number of node i at the system initiation time is ni 
and the node number of node j at the system initiation time is 
nj, then 

NNi = (ni +s) MOD N 

and 
NNj = (nj +s) MOD N 



If NNi is to be equal to NNj , then 

(ni + s) MOD N = (nj + s) MOD N 

The only way that this equality can hold is that if 

ni + s = nj + s + KN for K~O 
or if 

ni = nj + KN 

Since 0 :5 ni < Nand 0 :5 nj < N (see initial numbering of the 
nodes), the only value that K can have is 0, and therefore 
ni = nj, which contradicts the fact that all nodes are uniquely 
numbered at the system initiation time. Hence ni i= nj, which 
means NNi i= NNj or SN j !NNj i= SNj !NNj • 

Note that besides being unique, SN!NN, generated as 
above, evenly distributes priority among the nodes of the 
system. In Figure 1, Node 3 (at the first row) has the highest 
SN!NN, whereas after the first node number change its 
SN!NN drops to the lowest (at the second row). Node 2, which 
had the second highest SN!NN at the beginning, will have the 
highest SN!NN after the first change (second row). Figure 1 
shows how the highest SN!NN or lowest priority is passed 
from one node to another in a round-robin fashion. 

There are two ways of initiating the node number changes. 
The first scheme calls for a timer at each node. A node 
changes its node number, according to the above scheme, 
when its interval timer expires. At this time the timer is reset 
and the sequence number is also incremented. The problem 
with interval timers is similar to the problem with physical 
clocks. To avoid this problem the second scheme can be used. 
In this scheme every node changes its node number after it 
generates .Y (a predefined integer number of) updates. The 
problem with this scheme is that lightly loaded nodes change 
their numbers more slowly than heavily loaded nodes. The 
tradeoffs between the two schemes must be investigated with 
regard to a specific application. 

After a node changes its number, the LCR at that node can 

Node /f0 

SN!NN,LCR 

Node #1 

SN!NN,LCR 

Node #2 

SN!NN,LCR 

Node #3 

SN!NN,LCR 

002 J 012~ 022 032~ 
001\/011,/ 021)/031' 

003J 013~ 023~ 033J 

_______________ ~!~1_".11"_'!.'91_!!'! ________________ ~-

(111'1/121)/131t ~'O'~ 
112.1 122 132 102, 
113l 123l 133~ 103~ 

---------------------------------------~-----------------
Node numbers change here 1 

Increased ID 
numbers 

(Decreased priority) 

Figure 2-SN!NN ,LCR for a 4-node system with M = 3 and LCR restart 

Fair Timestamp Allocation in Distributed Systems 593 

Node #0 Node #1 Node #2 

SN!NN,LCR SN!NN,LCR SN!NN,LCR 

001 011 021 

002 012 022 

111 121 101 

112 122 102 

A improper 
.- ~N_r~s~t 

221 021 201 211 

222 022 202 212 

proper 
B ~N_r~s~t .. 

301 001 311 321 

302 002 312 322 

Figure 3---Resetting SNs 

be reset to 1 without threatening the local ordering of updates 
from the same node. This is necessary because otherwise 
LCRs may become undesirably large. Figure 2 shows some of 
the update ID numbers generated for a system of four nodes 
when each node changes its NN after generating M = 3 up­
dates. This figure shows that updates generated froJI? the same 
node are numbered in order of their generation. Therefore, 
even though LCRs are reset for each node number change, 
the local ordering is still preserved. 

SNs similar to LCRs can grow large (although at a slower 
rate) and therefore require periodic resetting. Resetting SNs 
has to be done so that the properties of uniqueness, local 
ordering, and total relative ordering of the MOD numbering 
scheme are preserved. One has to be careful about when to 
reset a nodal SN. Since NNs and LCRs change in a circular 
manner, it is possible to generate two or more updates with 
the same ID when SNs are reset carelessly. 

An example of a three-node system that changes a node's 
number after the node generates two updates is given in Fig­
ure 3. This figure shows that if SN of node number 0 is reset 
to 0 at Point A, the very next update generated at this node 
is numbered (0!2,1), which was first assigned to another up­
date by Node 2 (first row, last column of Figure 3). In order 
to avoid this (and possible message transfer for synchroni­
zation), Node 0 can wait and attempt to reset its SN at Point 
B. There are two important properties associated with Point 
B. First, at this point, the new node number of every node is 
tpe same as its original number assigned at the system ini­
tiation time (0 for Node 0, etc). Second, if resetting is done at 
this point, the only possible conflicts are local conflicts: Node 
o might generate ID = (0l0,1), which was first generated by 
this node. This property eliminates the need for message 
transfers and synchronization with other nodes. Therefore, 
resetting SNs at this point will not cause uniqueness destruc­
tion of IDs if each node is only assured that all updates it has 
generated since its last SN reset are finished and out of the 
system. This might delay the numbering of updates if all pre­
vious updates are not finished. Considering the facts that each 
update is executed in a finite period and that resetting of SNs 



594 National Computer Conference, 1982 

does not occur very often, the delay is not substantial. Note 
that SNs can be reset independently for each node and do not 
have to be reset for all nodes at the same time. Note also that 
resetting a SN at a node means starting IDs from the lowest 
possible number at that node. As far as the local ordering of 
updates is concerned, this does not matter, because all pre­
vious updates at this node are out of the system when resetting 
occurs. 

A virtual ring among the nodes and a token circulating in 
this ring, similar to the scheme explained in Lelann,6 can also 
be used instead of the numbering scheme presented above. In 
this scheme a token (or a sequencer [Reed8

]) is circulating in 
a prespecified virtual ring among the nodes of the system. The 
token is given a token round number, TRN, that is set to 0 at 
system initiation time and is incremented for each complete 
rotation of the token in the ring. A node will change its node 
number every time it receives the token. The TRN'is attached 
to update ID numbers instead of SNs; i.e., 

ID = (TRN!NN,LCR) 

This scheme also provides for a unique identification and a 
fair priority scheme among the updates. One drawback to this 
scheme is the problem of token loss, which may occur if a 
node that has the token fails. Loss of the token, even though 
soluble,6 can delay the numbering procedure and hence con­
tribute to delay in the execution of the updates. Link failures 
can cause similar problems. The MOD numbering scheme, on 
the other hand, does not require communication among the 
nodes to generate timestamps. This means that link failures 
do not affect timestamp generation. As far as node failures are 
concerned, a node can fail without interrupting other nodes' 
timestamp generation. After a node recovers, it can resume its 
timestamp generation where it left off. Because of the prob­
lem associated with the scheme using circulating tokens, it is 
preferable to use the MOD numbering scheme for numbering 
the events (updates) in a distributed system. 

In summary, the scheme has four properties: 

1. IDs generated using this scheme are unique. 
2. For a given node, update IDs increase monotonically, 

and therefore updates generated from a node preserve 
the order of their generation (local ordering). 

3. As discussed above, priority of nodes changes in a 
round-robin fashion and is not pre-fixed. 

4. Control is local and therefore communication cost is 
low. 

CONCLUSION 

A numbering scheme that generates globally unique update 
IDs has been presented. The scheme dynamically changes the 
node numbers; this change results in an even distribution of 
priority across the nodes. The scheme does not require phys­
ical clocks and therefore avoids all the problems associated 
with synchronizing them. The MOD numbering scheme could 
be employed by update algorithms I.

7
,9,1l in place of numbering 

schemes using fixed node numbers and physical clocks. This 
is expected to improve the performance of these algorithms. 

REFERENCES 

1. Bernstein, P. A., J. B. Rothnie, N. Goodman, and C. A. Papadimitriou, 
"The Concurrency Control Mechanism of SDD-1: A System for Distrib­
uted Data Bases (The Fully Redundant Case)." IEEE Transactions on 
Software Engineering, SE-4, (1978). 

2, Date, C. J, "An Introduction to Database Systems." Addison-Wesley, 
Reading, Massachusetts, 1977. 

3. Everest, G. C. "Concurrent Update Control and Database Integrity." In 
J. W. Klimbie and K. L. Koffeman (eds.), Database Management. Am­
sterdam: North-Holland, 1974, pp. 241-268. 

4. Eswaran, K. P.; J. N. Gray, R. A. Lorie, and 1. L. Traiger. "The Notions 
of Consistency and Predicate Locks in a Database System." Communica­
tions of the ACM, 19 (1976). 

5. Lamport, L. "Time, Clocks, and the Ordering of Events in a Distributed 
System." Communications of the ACM, 21 (1978). 

6. Lelann, G. "Algorithms for Distributed Data-Sharing Systems Which Use 
Tickets." Proc. Third Berkeley Workshop on Distributed Data Base and 
Computer Networks. University of California. Berkeley, CA, August 
1978. 

7. Rahimi, S. K., and W. R. Franta, "A Posted Update Approach to 
Concurrency Control in Distributed Data Base Systems." Proc. 1st Inti. 
Conf. on Distributed Computing Systems, IEEE, Oct. 1979. 

8. Reed, D. P. "Naming and Synchronization in a Decentralized Computer 
System." Ph.D. thesis, Department of Electrical Engineering, Massachu­
setts Institute of Technology, September 1978. 

9. Rosenkrantz, D. J., R. E. Steams, and P. M. Lewis, II. "System Level 
Concurrency Control for Distributed Database Systems." A CM Trans­
actions on Database Systems, 3 (1978). 

10. M. Stonebraker. "Concurrency Control and Consistency of Multiple 
Copies of Data in Distributed INGRES." 3rd Berkeley Workshop on 
Distributed Data Management, 1978. 

11. Thomas, R. H. "A Majority Consensus Approach to Concurrency Control 
for Multiple Copy Databases." ACM Transactions on Database Systems, 
4 (1979). 

12. Traiger, I. L., J. N. Gray, C. A. Galtieri, and B. G. Lindsay. 
"Transactions and Consistency in Distributed Data Base Systems." IBM 
Report RJ2555 (33155), May 1979. 



Data abstraction for Pascal programmers 

by VISWANATHAN SANTHANAM and JOHN R. POTOCHNIK 
Wichita State University 
Wichita, Kansas 

ABSTRACT 

Lack of data abstraction facilities in Pascal is a serious shortcoming for a language 
whose principal aims include "teaching programming as a systematic discipline." In 
this paper, a scheme is presented to implement data abstraction in Pascal using a 
limited form of the class structure defined in Concurrent Pascal. The class structures 
are translated to equivalent (sequential) Pascal constructs with the help of a prepro­
cessor whose design is also described. 

595 





INTRODUCTION 

Use of abstraction techniques to improve program reliability 
and programmer productivity can be traced back to early 
computer languages such as FORTRAN. Subroutines and 
functions of most algorithmic languages represent abstraction 
of operations. However, it is only in the past decade or so that 
programming language constructs have been devised to ex­
tend the idea of abstraction to data as well as operations in a 
unified manner. The term data abstraction has been applied to 
implementation-independent characterization and usage of 
data. Among the languages that provide data abstraction ca­
pabilities are MODULA,1 Concurrent Pascal/ and Ada. 3 

Most notable among the recent programming languages 
that do not support data abstraction is Pascal6-a language 
that is growing in use, especially among small computer users 
and educators. The reason for this omission is perhaps related 
to the desire on the part of its architect4 to keep the language 
simple. Whatever the reason, the absence of even a rudi­
mentary form of data abstraction capability has to be termed 
a vacuum in the language. This paper describes a scheme that 
will fill this vacuum. 

Interestingly, most languages that currently support data 
abstraction also support concurrent programming, leading a 
casual observer to believe that data abstraction somehow nat­
urally belongs in the realm of concurrent programming. The 
coincidence is largely due to the fact that the need for orderly 
sharing of data between concurrent processes naturally leads 
to centralizing such data and related operations. Though there 
is no particular need for hiding the implementation details to 
make this sharing work, it turns out to be relatively easy to 
add this quality to the notion of centralization. The con­
current data- (or resource-) sharing facilities are termed 
monitors 1,2; the sequential abstraction facilities are termed 
classes. 2,5 

This work presents a data abstraction facility for (sequen­
tial) Pascal users. The Pascal language is extended to include 
a form of class structure similar to that of Concurrent Pascal. 
However, unlike Concurrent Pascal and other extensions of 
Pascal that provide similar capabilities (see Steensgard­
Madsen,S for example), there is no need in this approach for 
a special compiler or operating environment to compile or 
execute a program. We present the design of a "preprocessor" 
that will translate the extensions to suitable constructs in se­
quential Pascal. This approach has the advantage of being 
applicable to existing Pascal systems. The source-to-source 
translation approach has the additional pedagogical value of 
illustrating a moderately simple technique to realize data ab­
straction in languages that do not support such a facility. 

EXTENSIONS 

The central theme of our approach is to extend sequential 
Pascal to include classes. A preprocessor will then accept 

Data Abstraction for Pascal Programmers 597 

programs in this extended ianguage and translate them to 
equivalent programs in the standard language. The first exten­
sion is the introduction of a new type called class. Its syntax 
and semantics are essentially the same as those in Concurrent 
Pascal, with minor variations: 

type CLASSNAME = class [«formal parameters»]; 
<class block> 

where the optional formal parameters serve to instantiate (ex­
pand) the class for a specific application. For example, 

type STACK = class(ELEMTYPE, MAXSIZE); 

would allow us to define a generic class type for a variety of 
different element types and stack sizes. The preprocessor will 
treat these parameters like macro parameters, replacing them 
with the texts of the corresponding actual parameters when 
the class block is expanded. 

The class block is similar to an ordinary subprogram block 
in Pascal, with a few differences. Any function or procedure 
within a class block may be designated as an entry function or 
procedure. The syntax for this extension is defined by 

procedure entry PROCNAME [«formal parameters> )]; 

and 

function entry FUNCNAME [«formal parameters»]: 
FUNCTYPE; 

For example, 

function entry POP: ELEMTYPE; 

Entry subprograms must be local subprograms within the class 
and not be nested deeper. The visibility (scope) of such sub­
programs is the same as that of the class block itself. 

The statement part of a class block consists of an initial­
ization sequence with this syntax: 

begin init 
<statement sequence> 

end; 

Defining a class type allows the programmer to declare class 
variables of that type. This is done by a var statement, as is 
done for declaring any other variable: 

var <variable name list> : CLASSNAME [«actual 
parameters> )]; 

The actual parameters, if any, textually replace the corre­
sponding formal parameters in the class block when the latter 



598 National Computer Conference, 1982 

program EXAMPLE( INPUT, OUTPUT); 

type STACK :: c1ass( ELEM'l'YPE, !!..AXSIZE ); 
type STKTABLE "" acray[l •• MAXSIZE] of ELEMTYPE; 
var PTR: INTEGER; 

STK: STKTABLE ; 
function entry EMPTY: BOOLEAN; 
begin 

EMPTY :- PTR<l 
end; 
function entry FULL: BOOLEAN; 
begin 

FULL := PTR>MAXSIZE 
end; 
procedure entry PUSH( OBJ: ELEMTYPE ); 
begin 

if not FULL then begin 
PTR :- SUCC(PTR); 
STK[PTR] :"" OBJ 
end 

end; 
function entry POP: ELEMTYPE; 
begin 

if not EMPTY then begin 
POP := 5TK[PTR]; 
PTR := PRED(PTR) 
end 

end; 
begin init 

PTR := a 
end; 

var 51, S2: 5TACK( INTEGER, 100 ); 
I: INTEGER; 

begin (* MAIN PROGRAM *) 
while (not EOF) and (not 51.FULL) do begin 

READLN( 1 ); 
Sl.PUSH( i ) 
end; 

while not Sl.EMPTY do 
S2.PUSH( 51. POP ) 

end. 
Figure I-An example of data abstraction using class 

is instantiated. Thus it is possible to declare several distinct 
classes from a single type definition. For example, 

var SI: STACK(INTEGER,100); 
SR: STACK(REAL,200); 

sets up an integer stack and a real stack of different sizes from 
the same class type STACK. 

Operations on class variables are restricted to those defined 
by entry subprograms in their class types. Invocations of these 
operations appear in the form of procedure and function calls 
qualified by the class variable name. For example, SI.PUSH 
( -401 ) invokes the PUSH operation (an entry procedure) 
within the class type of SI. 

To illustrate these extensions and their role in data abstrac­
tion, an example of a complete program is shown in Figure l. 
The program contains the definition of a class type called 
STACK. Two parameters, ELEMTYPE and MAXSIZE, will 

allow different instantiations to be derived from this single 
generic definition. The class block includes several definitions 
and declarations that are private entities within the class 
block. They represent the implementation details of the ab­
stract data type STACK. There are four entry subprograms 
within the class block. They represent the predefined opera­
tions on the STACK that are available to the creators of 
STACK-type variables. They enclose the implementation de­
tails of the respective operations, as any subprogram does. 
The initialization sequence for the class consists of setting the 
stack pointer PTR to zero. 

The main program includes a declaration for two integer 
STACKs, each capable of holding up to 100 elements. The 
statement part of the program reads integers from the input 
and pushes them on Sl stack until it gets full or the input is 
exhausted. Then, the elements are transferred from Sl to S2 
one at a time. 

Though the class construct described in this section is simi­
lar in most respects to that of Concurrent Pascal (see Hansen2 

for an extensive discussion on the nature and use of classes), 
there are some important differences. Both systems allow 
parameters to be specified in a class definition, but for differ­
ent purposes. Also, in Concurrent Pascal, class variables have 
no special restrictions on where they may be defined or how 
they may be used. In our system, they may not be part of a 
larger data structure, such as an array or a record, nor may 
they be passed as parameters to subprograms. These latter 
restrictions are necessary for circumventing the limitations of 
Pascal and difficulties of translation. 

PREPROCESSOR 

The definition of a class type is treated by the preprocessor as 
a macro-definition. The macro itself is expanded (instanti­
ated) only when a variable of that class type is declared. 
During the expansion the actual parameters replace the cor­
responding formal parameters in the class definition. This 
substitution alone will not yield an acceptable Pascal program. 
Several other transformations are needed, and those are de­
scribed in this section. 

A class block has a dual function. In most respects it is like 
any subprogram block enclosing private definitions of con­
stants and types and declarations of variables and sub­
programs. However, there are some key exceptions to this 
similarity rule. Entry subprograms are not strictly private to 
the class block; they are callable from blocks that declare 
variables of that class type. (These latter blocks are called host 
blocks.) This is in contrast to the usual visibility rules of 
Pascal. Additionally, variables declared within the class block 
cannot be treated like ordinary local variables, because they 
are to be allocated when the host block is entered and retained 
throughout the lifetime of the host block. In other words, 
their creation and destruction must coincide with the creation 
and destruction of variables in the host block. But their vis­
ibility is to follow the usual block structure rules. 

There seems to be no simple way to accommodate the dual 
characteristics of a class block in Pascal. Our approach is to 
strip the class block of its enclosing property but retain the 
privacy of identifiers defined within it by transforming them to 



unique identifiers that do not conflict with those in the host 
block. The transformed definitions (constants, types) and 
declarations (variables, subprograms) are added to the re­
spective groups in the host block. Of course, there is no need 
to transform names that are locally defined within the sub­
programs in a class block, because their uniqueness is guaran­
teed by the usual scope rules of block structure. 

The above scheme nicely solves the dichotomy of entry 
subprograms. Type and constant definitions are also handled 
adequately by this transformation. However, variables and 
labels of the class block must be handled somewhat 
differently. 

Variables in the class block represent actual data structures 
required to implement the abstract data type. Each class vari­
able declared in the host block would require its own set of 
these data structures. For example, 

var Sl, S2: STACK(INTEGER,20); 

declares two distinct variables of the abstract type STACK. If 
STACK is implemented by using a linear array in the class (as 
in the example of Figure 1), the expansion of the class defini­
tion must result in two distinct arrays. This is achieved in our 
scheme by introducing into the host block one set of class 
block variables for each class variable declared in the host 
block (see Figures 1 and 3 for an example). The name trans­
formation technique will ensure that there are no conflicts in 
the host block. 

The duplication of class block variables could lead to other 
duplications during the instantiation of a class. For example, 
a subprogram in the class block may reference a class block 
variable. This could mean that we need to duplicate such 
subprograms, making one copy for each class variable de~ 
clared in the host block. This could be costly if there are 
several such subprograms and/or they are lengthy. Our ap­
proach avoids such duplication by eliminating any direct refer­
ence to class block variables within a subprogram. Instead, all 
data structures of the class block are passed as reference (var) 
parameters to each subprogram. Though it may not be neces­
sary to pass all data structures to all subprograms, this simple 
scheme avoids the need for scanning the subprograms to de­
termine which data structures are needed. In addition to mod­
ifying the subprogram definitions, instances of calls to these 
subprograms are also modified by adding a corresponding set 
of actual parameters. In the case of calls originating in the host 
block, the additions consist of class block variables associated 
with the specific class variable qualifying the call. For calls 
within the class block, the additions consist of the same names 
as those added to all subprogram headers. (See Figures 1 and 
3 for examples.) 

The initialization sequence of the class block is transformed 
into a special procedure. This procedure is invoked once for 
each class variable in the host block by including suitable calls 
at the top of the statement part of the host block (see Figures 
1 and 3 for example). The name for this special procedure is 
derived from the class name so as to avoid conflicts, and all 
class block variables are passed by reference to this procedure 
as well. If there are any labels declared in the original class 
block, they must refer to statement labels in the initialization 
sequence. Therefore, the class block label declarations, if any, 

Data Abstraction for Pascal Programmers 599 

Figure 2-The preprocessor phases 

are added to this new procedure, rather than to the host 
block, without any transformations. 

The preceding set of transformations applies to a single list 
of class variables encountered in the host block. Each such list 
would cause the class definition to be expanded according to 
the same rules. An example of this situation is depicted in 
Figure 4, which is discussed in the next section. At this time, 
there are no provisions in our approach for avoiding redun­
dant generation of identical subprograms (under different 
names) when a declaration of the form 

var Sl: STACK(INTEGER,lOO); 
S2: STACK(INTEGER,50); 

is encountered. 
As the reader may have noted by now, the transformations 

required to generate standard Pascal constructs equivalent to 
the class structure cannot all be achieved in one pass. For 
example, when a class variable declaration triggers an in­
stantiation of the class type, several new definitions and decla­
rations may be added to the host block. Not all these additions 
can be placed at one point in the host block. The constant 
definitions, for example, must be added to others that may be 
defined in the host block. Since constant definitions must 
precede variable declarations in Pascal, the preprocessor 
would have to backtrack to make the additions in the right 
place. To avoid these potentially costly backtracks, the pre­
processor design presented here works in two phases (see 
Figure 2). The first phase takes the original program (with 
classes) as input and produces a modified source file and an 
update file. The modified source file consists of the original 
source file with two major differences: (a) the class type defi­
nitions, if any, have been removed; (b) all identifier trans­
formations and other simpler transformations (such as exten­
sion of the parameter lists of class block subprograms and 



600 National Computer Conference, 1982 

program EXAMPLE ( INPUT, OUTPUT ); 

type STACKUSTKTABLE = array(l •• lOO] of INTEGER; 
var Sl#PTR, S2#PTR: INTEGER; 

SlfISTK, SltISTK: STACK/lSTKTABLE; 

I: INTEGER; 

function STACK/lEHPTY( var STACKflpTR: INTEGER; 
var STACKUSTK: STACK#STKTABLE ): BOOLEAN; 

begin 
STACKiIEMPTY := STACKtlpTR<l 

end; 
function STACKfiFULL( var STACK#PTR: INTEGER; 

var STACKfISTK: STACK#STKTABLE ): BOOLEAN; 
begin 

STACK#FULL := STACK#PTR>lOO 
end; 
procedure STACK#PUSH( var STACK#PTR: INTEGER; 

var STACK#STK: STACK#STKTABLE; OBJ: INTEGER ); 
begin 

if not STACK#FULL(STACKiIPTR, STACK#STK) then begin 
STACK#PTR := SUCC(STACK#PTR); 
STACK#STK[STACK#PTR] := OBJ 
end 

end; 
function STACK#POP( var STACK#PTR: INTEGER; 

var STACK#STK: STACKi/STKTABLE ): INTEGER; 
begin 

if not STACK#EMPTY(STACK#PTR, STACK#STK) then begin 
STACK#POP := STACKiISTK[STACK#PTRJ; 
STACK#PTR := PRED (STACKifPTR) 
end 

end; 
procedure STACK/IINIT( var STACKifPTR: INTEGER; 

var STACK#STK: STACK#STKTABLE ); 
begin 

STACru/PTR : = a 
end; 

begin 

STACru/INIT( Sl#PTR, Sl#STK ); 
STACK#INIT ( S2#PTR, S2#STK ); 

while (not EOF) and (not S TACKU FULL (Sl#PTR, Sl#STK» do begin 
READLN( I ); 
STACK#PUSH( Sl#PTR, Sl#STK, I ) 
end; 

while not STACK#EMPTY(Sl#PTR, Sl#STK) do 
STACK#PUSH( S2#PTR, S2#STK, STACK#POP(Sl#PTR, Sl#STK) ) 

end. 
Figure 3--Translation of program in Figure 1 

their invocations) are in place. The update file consists of texts 
to be inserted at selected points in the host block. Each update 
is keyed for random access by a special marker. A copy of the 
marker is placed in the modified source file where the corre­
sponding text is to be inserted. The points within the host 
block where potential insertions may take place are only a 
few: 

4. Subprogram declarations 
5. Top of statement part 

The design of the output files from the first phase of the 
preprocessor minimizes the complexity of the second phase by 
reducing its function to one of scanning the modified source 
file, sequentially looking for markers, and merging in the 
corresponding text from the update file. The advantage, of 
course, is that the merging phase needs to have no knowledge 
of the syntax of Pascal. The overall design of the preprocessor 
is depicted in Figure 2. 

1. Constant definitions 
2. Type definitions 
3. Variable declarations 



program TWOQS(OUTPUT); 
type QUEUE z class (ELEHTYPE,QSIZE) ; 

type QTABLE - arrayll •• QSIZE] of ELEKTYPE; 
var Q: QTABLE; 

HEAD, TAIL: INTEGER; 
function entry EMPTY: BOOLEAN: 
begin . 

EMPTY := (HEAD-O) and (TAIL-O); 
end; 
function entry FULL: BOOLEAN; 
(* deta.ils omittee *) 
procedure entry ENTER( E: ELEMTYPE ); 
begin 

if n9t FULL then begin 
TAIL :- SUCC(TAIL mod (QSIZE-l»; 
Q[TAIL] :- E 
end 

end; 
function entry. REI«)VE: ELEHTYPE; 
(* details omitted *) 
begin init 

HEAD .:- 0; 
TAIL :- 0 

end; 

var QI: QUEUE( INTEGER, 20 ); 
QR.: QUEUE( REAL, 20 ); 

begin (* TWOQS *) 
while not QR. EMPTY do 

QI.ENTER( TRUNC(QR.REI«)VE) ) 
end. 

(a) Program before translation (with class). 

program TWOQS(OUTPUT); 
type Ql#QTABLE - array[l..20) of INTEGER; 

Q2IQTABLE z array[l..20] of REAL; 
var QlIQ: QlIQTABLE; 

QI#HEAD, QI#TAIL: /INTEGER; 
QR#Q: Q2#QTABLE; 
QR#HEAD, QR#TAIL: INTEGER; 

(* the following subprograms result from QI instantiation *) 
function QliIEMPTY( var Ql#Q: Ql#QTABLE; 

var QII/HEAD, Qll/TAIL: INTEGER): BOOLEAN; 
begin 

QlIEMPTY :- (QlIHEAD~O) "nd (Ql#TAIL~O); 
end; 
function Ql':FULL( vaT Ql#Q:, Q.lCQTABLE; 

var Qll/HEAD, QliITAIL: INTEGER): BOOLEAN; 
(* details omitted *) 

Data Abstraction for Pascal Programmers 

procedure Ql#ENTER( var QliQ: QUQTABLE; 
var Ql#HEAD, QII/TAIL: INTEGER, E: INTEGER); 

begin 
if not QlIFULL(Ql#Q, QI#HEAD, Ql#TAIL) then begin 

QlITAIL := SUCC( QlITAIL mod (20-1) ); 
QlIQ QHTAIL :z E 
end 

end; 
function Ql#REMOVE( var QIIIQ: QlIQTABLE; 

var Q1#HEAD, QIIiTAIL: INTEGER): INTEGER; 
(* details omitted *) 
procedure QUINIT( var Q1#Q: QUQTABLE; 

var QlIHEAD, Ql#TAIL: INTEGER); 

begin 
Ql#HEAD :~ 0; 
Ql#TAIL := 0 

end; 

(* the following subprograms result from QR instantiation *) 
function Q2#EMPTY( var Q2#Q: QUQTABLE; 

var Q2IHEAD, Q2ITAIL: INTEGER): BOOLEAN; 

begin 
Q2#EMPTY := (Q2#HEAD=O) and (Q2IITAIL~O); 

end; 
function Q2IFULL( var Q2IQ: Q2IQTABLE; 

var Q211HEAD, Q2I1TAIL: INTEGER): BOOLEAN; 
(* details omitted *) 
procedure Q2#ENTER( var Q2#Q: Q2IQTABLE; 

var Q2i/HEAD, Q2/1TAIL: INTEGER, E: REAL); 

begin 
if not Q2#FULL(Q2IQ, Q2I1HEAD, QUTAIL) then begin 

Q2#TAIL := SUCC( QUTAIL mod (20-1) ); 
Q2i1Q Q2#TAIL := E 
end 

end; 
function Q2I1REl1OVE( var Q211Q: Q2I1QTABLE; 

var Q21/HEAD, Q2#TAIL: INTEGER): REAL; 
(* details omitted *) 
procedure Q2l1!NIT( var Q211Q: Q2I1QTABLE; 

var Q2#HEAD, Q2nTAIL: INTEGER); 

begin 
Q211HEAD := 0; 
Q2UTAIL := 0 

end; 

begin (* TWOQS *) 
QHlINIT( OI#Q, QI#HEAD, QIIiTAIL ); 
Q2IJINIT( QRIIQ, QRIlHEAD, QRITAIL ); 
while not Q2I1EMPTY(QR#Q,QR#HEAD,QR#TAIL) do 

Q111ENTER (QIIIQ ,QIDHEAD ,QliTAIL, 
TRUNC( Q2IREMOVE(QUQ,QR#HEAD,QRII'!'A1L) » 

end. 

(b) Translation of program in (a) 

601 

Figure 4--An example of two instantiations of the same class 

EXAMPLES 

A set of three graduated examples is presented in this section 
to illustrate the use of class structures, their translation, and 
the translation process itself. 

In the first example, the abstract data type STACK of Fig­
ure 1 is revisited. The translation of the EXAMPLE program 
appears in Figure 3. For the sake of better readability, the 
name transformations are shown as concatenations of com­
ponent names from which they are derived. For example, 
STACK#PTR stands for a unique name to be derived from 
STACK and PTR. In practice, such concatenation may be too 
simplistic to avoid conflicts. Nevertheless, by placing some 
restrictions on the use of special characters (such as #), it 
should be possible to retain a level of readability in the "pro­
duction" translation comparable to that of the translations 
shown here. 

The new additions to the host block EXAMPLE due to the 
instantiation of the class STACK by the declaration of Sl and 
S2 are enclosed in boxes for easy identification. The type 
name STACK#STKTABLE, for example, comes from the 
type definition for STKTABLE in STACK class. It is noted 
that in the type definition for STACK#STKTABLE and 
throughout the remainder of the class the formal parameters 

ELEMTYPE and MAXSIZE have been replaced by the actu­
al parameters INTEGER and 100 respectively. 

Each local subprogram of the class block has been extended 
to include the data structures originally defined as variables in 
the class block. The actual parameters list of external calls to 
these subprograms has been extended to include the asso­
ciated variables. For example, Sl.PUSH(I) in the original 
program has been translated to STACK#PUSH(Sl#PTR, 
Sl#STK,I). Sl#PTR and Sl#STK are the variables associ­
ated with the abstract data item Sl. 

Procedure STACK#INIT is a new procedure created from 
the initialization sequence of the class block. It too has a 
formal parameter list of original class block variables added to 
its header. At the top of the statement part of the host block 
are two new statements, one each to invoke-this procedure for 
Sl and S2. 

Figure 4 shows a second example involving two distinct 
instantiations of the same class. Two important features of the 
preprocessing step are borne out by this example. Each in­
stantiation (one for QI and another for QR) generates its own 
set of additions to the host block. It is not sufficient, there­
fore, to employ just the class name QUEUE to transform 
class block names. For example, if we generated 
QUEUE#QTABLE from QTABLE for the first instantia-



602 National Computer Conference, 1982 

prograll DRIVER; 
conat lSAHFILESIZE - 1000; 
type ASSOCKEMOR'! - c 1& 88 (ASSOCELE!fl"!PE) ; 

canst HAXIIASHINDEX c 97; 
type ASSOCTABLE ~ array[O •• HAXllASHINDEXl of ASSOCELEMTYPE; 

INDEXSET - set of O •• HAXHASHINDEX: 
var ASSOC: ASSOCTABLE; 

EMPTY, DELETED: INDEXSET; 
function entry LOCATION( A:ASSOCELEMTYPE ): INTEGER: 
(* delatils omitted *) 
(* other entries of ASSOCMEMORY class go here *) 

begin init 
DELETED :- [J: 
EMPTY := [0 •• MAXHASHINDEXl 

end; 

(* type *) lSAHlfILE - class(KEYTYPE, DATATYPE, FILESIZE); 
type DATAFILE - file of DATATYPE; 
var KEYS: ASSOCHEHORY(KEYTYPE); 

RECS: DATAFILE; 
procedure entry READ(K:KEYTYPE: var R: DATATYPE: var FOUND: BOOLEAN); 
var RECNO: INTEGER: 
begin 

RECNO :-KEYS. LOCATION(K): 
FOUND :- RECNO <> -I: 
if FOUND then b~gin 

end; 

SEEK( RECS, RECNO ); 
GET(RECS); 
R :- RECSt 
end 

(* other entries of lSAHFILE class go here *) 
begin init 

(* details O1IIitted *) 
end; 

var F: ISAMFILE(MYKEYTYPE, MYRECTYPE, ISAMFILESIZE): 
K: HYKEYTYPE: 
R: MYRECTYPE: 
FOUND: BOOLEAN; 

begin 
READLN(K); 
F.READ( K, R, FOUND ); 
if FWND then DISPLAY(R) 
else WRITELN( 'No such key' 

end. 

(a) Program before translation (with classes). 

procedure DRIVER; 
canst ISAHFILESIZE = 1000; 

!S#AS#HAXHASHINDEX : 97; 
type IS#ASIASSOCTABLE E array [0 •• I SIAS#HAXHASHINDEX 1 of MYKEYTYPE; 

ISIAS#INDEXSET = set of 0 •• IS#AS#HAXHASHINDEX; 
ISIDATAFILE = file of MYRECTYPE; 

var FlKEYS#ASSOC: IS#AS#ASSOCTABLE; 
F#KEYSf~, FIKEYSIDEI .. ETED: ISitAS#INDEXSET; 
F#RECS: IS#DATAFILE; 
K: HYKEYTYPE; 
R: MYRECTYPE; 
FOUND: BOOLEAN; 

function IS#AS#LOCATION( var IS#AS#ASSOC: IS#AS#ASSOCTABLE; 
var IS#AS#EMPTY, ISIAS#DELETED: IS#ASIINDEXSET; A: MYKEYTYPE): INTEGER; 

(* details omitted *) 
(* other entries of ASSOCMEMORY class go here *) 
procedure IS#AS#INIT( var IS#ASifASSOC: IS#ASIIASSOCTABLE; 

var IS#ASIEMPTY, IS#AS#DELETED: ISIASIlIlIDEXSET ); 
begin 

Is/AS#DELETED := [J; 
ISIAS#EMPTY := [0 •• IS#ASIHAXHASHINDEXJ 

end; 

procedure IS#READ( var ISIIKEYS#ASSOC: IS#ASIASSOCTABLE; var ISIKEYSIEMPTY, 
IS#KEYS#DELETED: ISIAS#INDEXSET; var IsiRECS: ISIDATAl'ILE; 
K: MYKEYTYPE; var R: MYRECTYPE; var FOUND: BOOLEAN); 

var REGNO: INTEGER; 
begin 

RECNO := IS#ASHLOCATlON( ISIKEYSIASSOG, IS#KEYSIEMPTY, IS#KEYS#DELETED, 
K ); 

FOUND : = RECNO <> -1; 
if FOUND then begin 

end; 

SEEK( IS#RECS, REGNO ); 
GET( IS#REGS ); 
R := IS#RECS+ 
end 

(* other entries of ISAMFILE class go here ,o) 

procedure IS#INIT( var ISIKEYSIASSOC: I SHASIASSOCTABLE; var IS'KEYSIEMPTY, 
IS#KEYSIDELETED: IS#AS#INDEXSET; var ISHREGS: IS#DATAFlLE ); 

begin 
IS#ASIINIT( IS#KEYS#ASSOC, ISIKEYS#EMPTY, ISIKEYS#DELETED ) 
(* details omitted *) 

end; 

begin 
IS#INIT( F'KEYS'ASSOC, F# KEYS' EMPTY • F#KEYS#DELETED, F#RECS ); 
READLN( K }; 
IS#READ ( F#KEYSIASSOC, F'KEYSIEMPTY. FIKEYS#DELETED, FIRECS, 

K, R, FOUND ); 
if FWND then DISPLAY(R) 
else WRITELN( 'No such key' ) 

end. 

(b) translation of program in (a). 

Figure 5-An example of nested class instantiations 

tion, it would conflict with the name to be generated during 
the second instantiation. In our preprocessor, this situation is 
handled by using a sequence number (in conjunction with the 
class name) to generate unique names for each instantiation. 
Thus, the first instantiation would yield the type name 
QUEUE1#QTABLE (abbreviated as Q1#QTABLE in Fig­
ure 4), and ~he second instantiation would yield 
QUEUE2#QTABLE (Q2#QTABLE in the figure) for the 
original name QTABLE. 

The second point illustrated by this example is that amount 
of translated code increases rapidly when several instan­
tiations are invoked from a single class definition. Not all of 
this increase can be avoided. For example, the procedures 
Q1#ENTER and Q2#ENTER, though similar at the surface, 
deal with distinct types of data elements (INTEGER and 
REAL). In some cases (e.g., Q1#EMPTY and Q2#EMP­
TY), however, our scheme does yield mUltiple copies of virtu­
ally the same subprogram. The avoidance of this subtle form 
of duplication would require more extensive analysis of the 
original class definition than provided for in our preprocessor. 

The third example (Figure 5) shows two classes, ASSOC­
MEMORY and ISAMFILE, defined in the same block, 
DRIVER. An instance of the ISAMFILE class is created by 
the declaration of the variable F in DRIVER. This causes 

variables F#KEYS and F#RECS to be added to DRIVER 
block. But F#KEYS is itself a class type (ASSOCMEMORY) 
variable. Thus, F#KEYS generates F#KEYS#ASSOC, 
F#KEYS#EMPTY, and F#KEYS#DELETED in its place. 
This kind of secondary instantiation is not handled any differ­
ently in our preprocessor than the single level case. Concep­
tually, the outermost class variables are instantiated first, giv­
ing rise to an intermediate program. This program is then 
processed as before to eliminate class variables from the new 
variables, and so on. This conceptual view will help explain 
the double transformation of certain original names in the 
translation, e.g., LOCATION to ISAMFILE#ASSOC­
MEMORY#LOCATION (abbreviated as IS#AS#LOCA­
TION). In practice, the secondary instantiations can be 
achieved without a second pass over the text. This is done by 
processing all declarations (variables and subprograms) stem­
ming from the instantiation of a class at the time that they are 
being added to the host block as if they were originally part of 
the host block. 

CONCLUSION 

We have presented here a technique for implementing data 
abstraction in Pascal using a limited form of the class structure 



provided in Concurrent Pascal. The class structures are trans­
lated to equivalent (sequential) Pascal constructs using a pre­
processor whose design is also presented. The abstract data 
types supported by this source-to-source translation scheme 
are somewhat limited, chiefly because of the limitations of 
Pascal and a desire on our part to keep the translation simple 
and straightforward. Abstract data items may not be passed as 
parameters to subprograms, because this would have involved 
passing a variety of resources--data structures, procedures, 
and functions-as parameters in the translation, not all of 
which are supported in common implementations of Pascal. 
We have limited abstract data items from being part of a larger 
data structure, such as an array or a record, in order to sim­
plify the task of translation as well as maintain a closer corre­
spondence between the original and the translated programs. 
Even with these limitations, the scheme presented will permit 

Data Abstraction for Pascal Programmers 603 

a Pascal programmer to define and use sophisticated abstract 
data types, such as the index file type illustrated here, with 
only a small cost for preprocessing. 

REFERENCES 

1. Wirth, N. MODULA: A language for modular mUltiprogramming. Soft­
ware Practice and Experience, 7 (1977), pp. 3-35. 

2. Brinch Hansen, P. The Architecture of Concurrent Programming. En­
glewood Cliff, N.J.: Prentice-Hall, 1977. 

3. Reference manual for the Ada programming language: U.S. Dept. of De­
fense, July 1980. 

4. Wirth, N. "The Programming Language Pascal." Acta Informatica, 1 
(1971), pp. 3~3. 

5. Steensgaard-Madsen, J. "A Statement-Oriented Approach to Data Ab­
straction." ACM Transactions on Programming Languages and Systems, 3 
(1981), pp. 1-10. 

6. Jensen, K., and N. Wirth, Pascal: User Manual and Report. 2nd ed. New 
York: Springer-Verlag, 1978. 





SPIRIT -III: an advanced relational database machine 
introducing a novel data-staging architecture with 
Tuple Stream Filters to preprocess relational algebra 

by NORIYUKI KAMIBAYASHI 
Hiroshima University 
Hiroshima, Japan 

and 
KAZUO SE~ 
Mitsubishi Electric Corporation 
Amagasaki, Japan 

ABSTRACT 

This paper proposes an advanced architecture of the relational database machine 
(RDBM), named SPIRIT-III, which is basically organized into a three-level mem­
ory hierarchy with a sophisticated data-staging and preprocessing architecture for 
executing relational algebra. SPIRIT-III aims at totally improving both 110 and 
CPU processing boundary problems and has two major architectural features. One 
is the introduction of the relational-data base-oriented data-staging mechanism, 
called the look-ahead data-staging mechanism, which can optimally schedule data 
movement in the memory hierarchy. The other is to attach refined preprocessing 
mechanisms for relational algebra operations to data transfer lines connected be­
tween each memory stage. When a relation stages up or down in the memory 
hierarchy, these preprocessing mechanisms can function to select tuples and attri­
butes needed by a query and to arrange the relation for parallel processing. SPIRIT­
III provides three basic preprocessing filters, called as a whole the Tuple Stream 
Filter: the tuple selector, the attribute selector, and the grouping filter, imple­
mented with a hash function, which rearranges an original relation and groups the 
relation into subrelations. The operation of this grouping filter is the primitive 
preprocessing operation for executing Join and Projection. Then, without the over­
head of interprocessor communications, each microprocessor can execute relational 
algebra operations to a few subsegments assigned to it in parallel. Therefore, 
SPIRIT-III can perform Join and Projection operations by 0 (NIL) (L = number 
of microprocessors), whereas the early RDBMs required 0 (N x NIL). The pro­
posed SPIRIT-III, which includes features from data-staging architecture to re­
lational algebra execution architecture under the total concept, is the most powerful 
RDBM based on the state of the art. 

605 





1. INTRODUCTION 

The relational model l proposed by E. F. Codd is based on the 
set theory and has the advantages of simplicity, data indepen­
dence, and symmetry of access. These features make it possi­
ble to provide nonprocedural query languages and high-level 
user interface. This tends to enhance the usability and the 
intelligence of database management systems. When one tries 
to implement a relational database system on a von Neumann 
type of general-purpose computer, there are crucial prob­
lems, such as poor capacity of data transfer and inefficient 
relational operation. Thus, the need to develop a relational 
database machine (RDBM) has emerged. The primary aims 
in designing RDBMs are to improve the execution time of 
sophisticated relational algebra operations such as Join and 
Projection and to reduce the cost of data transfer between the 
database stores (DBS) and the p~mary processing subsystem. 

However, it has been very difficult to solve both the two 
major problems in one try. Because traditional RDBMs 
aimed at improving the efficiency of relational operations, 
these machines had restricted ability from the viewpoint of 
total relational database processing and could not provide the 
harmonized mechanism that would reduce the burdens of 
both data staging and relational operations. 

We discuss the dilemma that system designers face in devel­
oping practical RDBMs, taking an example of RAp3,4 proj­
ects. The RAP project, well known as a pioneer of RDBM, 
based on the concept of logic-per-track, employs architecture 
on which the associative processing mechanism is added on a 
fixed-head disk, used as DBS to transfer the final results of a 
query to the host. It has been noted, however, that RAp3 has 
difficulty in supporting efficiently such complicated set manip­
ulations as Projection and Join, and also in handling large 
databases because of its restriction on the capacity of DBS. In 
RAP.2,4 therefore, the processing subsystem is separated 
from DBS and the moving head disk is employed as DBS. This 
approach is realistic in regard to background, such as tech­
nical maturity and possibility, and is advanced from the view­
points of (1) implementing RDBMs based on the state of the 
art and (2) the need to support large databases. Bottlenecks 
of data access and transfer, however, still exist in such 
RDBMs. Thus it is important to solve the problem of the cost 
of large data staging at the system architectural level. 

In this paper, in order to develop realistic RDBM that 
copes with this problem, we propose an advanced architecture 
of the relational database machine, named SPIRIT-III. It is 
basically organized into a three-level memory hierarchy 
(MH): primary work memory (PWM), staging buffer (SB), 
and database store (DBS). SPIRIT-III aims at totally solving 
both I/O and CPU boundaries, which are key problems in 
implementing RDBMs. It consists of three cooperative sub-

SPIRIT-III 607 

systems and has two major architectural features. One is the 
introduction of the relational-data base-oriented data-staging 
mechanism which can contribute to the optimal scheduling of 
data access and transfer between each two levels of the memo­
ry hierarchy. The other is to attach refined preprocessing 
mechanisms of relational algebra operations to data transfer 
lines connected between each two levels of the memory hier­
archy. When a relation stages up or down from DBS or PWM 
to SB, these preprocessing mechanisms can function to select 
the tuples and attributes to be staged up and to arrange the 
relation for parallel processing. SPIRIT-III provides three 
basic preprocessing functions. Two of these are the tuple se­
lector, filtering only tuples to match retrieval conditions; and 
the attribute selector, repacking only attributes needed by 
executing a given query. Because these functions, which select 
only attributes and tuples required by the query, contribute to 
reducing the data to be staged up and to saving the space of 
upper-level memory, SPIRIT-III can enhance both the 
throughput of data staging in the data staging subsystem 
(DSS) and the execution efficiency of relational operations in 
the relational processing subsystem. In addition to these fil­
tering functions, SPIRIT-III incorporates a grouping filter, 
proposed by the authors, into each stage of memory hier­
archy. In streaming a relation on data lines connected be­
tween each two memory stages, this grouping filter groups the 
relation into subrelations. This grouping operation is the 
primitive of executing heavy relational operations, such as 
Join and Projection. In practice, this grouping filter can be 
implemented with a hash function. Microprocessors of RPS 
can execute postoperations associated with relational algebra 
operations to a few sub segments assigned to each of these in 
parallel without the overhead of interprocesser (subsegment) 
communications. The relational algebra execution architec­
ture of SPIRIT-III is composed of two stages. One stage, 
prepared in the DSS, contributes to selecting only necessary 
tuples and attributes and to arranging an original relation for 
parallel processing. The next stage in RPS parallel environ­
ment is responsible for performing the postoperations on the 
grouped subsegment. The postoperations include duplicate 
elimination within the sub segment and concatenation oper­
ation between tuples within the sub segment of relation Rand 
tuples within the sub segment of relation S. Both sub segments 
are filtered by the same hash function. 

Therefore, SPIRIT-III can obtain the time performance 
o (NIL) in performing Join and Projection operations 
(L = number of microprocessors and N = cardinality of a 
relation); whereas the first-generation RDBMs 3,4,5,8 required 
o (N x N) and the second-generation machine7 realized 
o (N x NIL). 

We now view several architectural approaches to RDBM 
and discuss them. The first-generation RDBM attempted to 



608 National Computer Conference, 1982 

TFC Tuple Stream Filter Controller 
DSS Data Staging Subsystem 
RPS Relational Processing Subsystem 
Ti Transaction i 
DTi Data of Transaction i 
ISS Integrated System Scheduler 

TSF : Tuple Stream Filter 
PPi. : Process Pool i 
CP : Coordination Processor 
RPi : Replacement Processor i 
SPi-i+1 : Staging Processor i-i+1 
RPi-i+1 : Replacement Processor 1-i+1 
SQ1-i+1 : Staging Queuei-H1 

Figure l-ConceptuaI system architecture of SPIRIT-III 

directly process the stored relations with parallel architectures 
using microprocessors. Because of direct processing to origi­
nal relations, which are generally unsorted, the first-genera­
tion RDBMs could not gain a desirable performance; and the 
time complexity of this type of machine was O(N x NIL) in 
executing Join and Projection operations. On the other hand, 
the second-generation RDBMs attempt to make it possible to 
process Join and Projection operations by a VLSI algorithm 
with O(N). The basic concept of the second-generation 
RDBM is to employ two-step processing mechanisms. In the 
first step, a sort operation to an original relation is performed; 
in the next step, the sorted relations are handled. The first 
step, implemented by using a VLSI processor, can sort 
N -tuple relations by means of an algorithm with O(N) time 
complexity. In the next step, Projection and Join operations 
on the sorted relations are essentially sequential algorithms 
and are out of harmony with parallel processing. This avoids 
introducing parallel architectures in the second step. SPIRIT­
III is the third-generation RDBM, which copes with the lim­
itation of the second-generation RDBM. 

The proposed SPIRIT-III, which handles problems from 
the data staging architecture to the relational algebra exe­
cution architecture under the total concept, is the most prac­
tical and powerful RDBM based on the state of the art. 

2. BASIC SYSTEM ARCHITECTURE OF SPIRIT-III 

2.1 System Architecture 

Figure 1 shows the conceptual system architecture of 
SPIRIT-III, which is composed of the three major subsys­
tems: the integrated system scheduling subsystem (ISS), the 
data-staging subsystem (DSS), and the relational database 
processing subsystem (RPS). 

In SPIRIT-III, a three-level memory hierarchy is intro­
duced to enhance staging throughput of data 13. The memory 
hierarchy consists of three types of memories, such as the 
primary work memory (PWM) for database microprocessors, 
the staging buffer (SB) as a disk cache, and the database store 

(DBS), composed of moving arm disks. SPIRIT-III incorpo­
rates refined preprocessing architecture, for efficient execu­
tion of relational operations, and advanced data-staging 
architecture into the memory hierarchy. These architectures 
cooperate to improve the throughput of data staging and the 
efficiency of set level operations. 

ISS is responsible for scheduling the process execution in 
RPS and data staging in DSS according to the proposed poli­
cy,1O called ISR, for Integrated process and data Scheduling in 
Relational database environments. The ISR policy integrates 
the data-driven process-scheduling policy in RPS environ­
ment and the look-ahead data-staging policy8, 10 employed by 
DSS (described in Section 4). ISS also coordinates the actions 
of the other two subsystems. To be concrete, when a trans­
action arrives at the system, ISS registers the processes used 
by the transaction to the process pool and registers the data 
access request for the processes of the transaction to the data 
staging pool. DSS can schedule the sequence of data staging 
out of accordance with the predefined execution sequence of 
a transaction in normal mode. When all data required in 
executing a process are staged up to the memory of RPS, ISS 
changes the state of this process in the process pool to the 
executable state. Then, according to the policy of data-driven 
process scheduling, RPS executes the process under a multi­
transactions environment. This scheduling strategy is based 
on the property of the high flexibility of the execution se­
quence of the relational algebra tree. The introduction of the 
ISR policy, minimizing the total data-staging cost, leads to the 
realization of a high-performance RDBM. 

DSS optimally schedules data staging between each two 
memory hierarchies in order to minimize the total cost of data 
staging, which is defined as the cost of data access and transfer 
between storage devices in the memory hierarchy. DSS com­
prises three types of functional processors: the coordination 
processor (CP), the staging processors (SP), and the replace­
ment processors (RP). These functional processors cooperate 
to schedule data staging in the memory hierarchy. 

RPS is composed of multiple high-performance micropro­
cessors. This subsystem can perform postoperations for rela­
tional algebra to each of the subsegments that has been 
already arranged for parallel processing in DSS. A typical 
postoperation is the link operation, which actually concate­
nates tuples within the subsegment in relation R and tuples 
within the sub segment in relation S. In this case, both the 
subsegments roughly are grouped through the grouping filter 
with the same hash function associated with joining at­
tributes. The other postoperation of RPS is duplicate elimina­
tion within each subsegment which roughly is grouped 
through the grouping filter with the hash function for the 
attribute required by a Projection. Therefore, if different sub­
segments are assigned to different microprocessors in RPS, 
these microprocessors can simultaneously process the sub­
segment assigned to them without the overhead of inter­
processor communication. This forms the ideal environment 
for parallel and asynchronous processing. This two-stage 
architecture for performing relational algebra can coordinate 
the data-staging strategy and can obtain the execution time 
complexity o (NIL ) in the case of Projection and Join, though 
the other RDBMs can realize O(N x NIL) execution time 
complexity. 



(a) The First Generation RDBM 
* Direct Parallel Architecture * 

L 

UP l 

UP2 

ur 
UPR, 

Database Store Database Processors 

Performance = TT[O(N/P)] + PT[O(N 2/L)] 

(b) The Second Generation RDBM 
* Pipeline Architecture * 

Sort Processor 

Performance = TT[O(N)] + SORT-T[O(N)] + PT[O(N)] 

(c) The Third Generation RDBM 
* Two-Stage Pipeline and Parallel Architecture * 

Grouping Filter 
with Hash Function 

UP l 

UP 2 

UP 3 

UPR, 

Database Store Database Processors 

Performance = TTl [OeN/p)] + TT 2 [O(N}] + PT[O(N/L)] 

TT Transfer Time P: Number of Parallel Data 
Transfer Lines 

PT Processing Time L: Number of Microprocessors 

Figure 2-Comparison between SPIRIT-III architecture and other RDBM 
architectures 

2.2 The Two-stage Execution Architecture of 
Relational Algebra 

This section describes an advanced two-stage relational 
algebra execution architecture employed by SPIRIT-III. First 
of all, we discuss the following two architectures introduced 
by the conventional RDBMs. 

1. First-generation architecture. The relational algebra exe­
cution architectures are employed by first-generation RDBMs 
such as DIRECT,5 RAP,3 RAP-2,4 and SPIRIT-I. 8 The archi­
tectural feature is the direct execution of original and un­
ordered relations. These architectures, implemented by a 
multimicroprocessor configuration, attempt to handle directly 
unordered relations in executing relational operations in par­
allel. This makes it possible to improve the execution time of 
search operations 0 (NIL) by multiple processors. The search 
operation is the most primitive suboperation of relational al­
gebra. Therefore, simple relational operations such as Selec-

SPIRIT-III 609 

tion and Restriction can be executed in o (NIL) time. Howev­
er, this type of architecture faces the difficulty of improving 
the execution time complexity O(N x N) of Join and 
Projection operations. Figure 2(a) shows the basic approach 
to processing relational operations supported by the early 
days' RDBMs. 

2. Second-generation architecture. Second-generation ar­
chitecture7 uses the two-step process in executing relational 
algebra. In the first step, original relations that are read from 
the database store are searched and sorted by the dedicated 
VLSI processor. This processor, composed of many elemen­
tary cells, takes O(N) time in performing the sort operation 
and selects the tuples that satisfy a given predicate. Next, in 
the second step, the primary database processor can handle 
Projection and Join operations to the presorted relations by 
the sequential algorithm with O(N). Therefore, the best time 
performance that we can achieve for Projection and Join oper­
ations by means of this type of architecture is totally O(N). 

Figure 2(b) illustrates the basic concept and performance of 
the presorting method introduced by the second-generation 
RDBM. The performance of the second-generation RDBM is 
superior to that of the first-generation RDBM. 

3. Third-generation architecture. SPIRIT-III is designed as 
a third-generation RDBM, which should enhance the capabil­
ities of both relational algebra execution and data staging 
under an integrated concept. The real performance of the 
RDBM depends on the efficiency of relational operations and 
the throughput of data staging in the memory hierarchy. 

SPIRIT-III employs two-stage architecture for executing 
relational algebra. Two-stage architecture is realized by using 
three major filtering functions. The filtering functions are 
implemented by the simple processor, called the Tuple Stream 
Filter (TSF). SPIRIT-III has three types of TSF. These TSFs 
are attached to all data lines connected between each two 
levels of the memory hierarchy. 

Figure 2( c) shows the basic concept of manipulating re­
lational algebra operations. The major difference between 
SPIRIT-III and the second-generation RDBM is the function 
adopted in the first stage. The second-generation RDBM 
adopted the sort function. However, this concept leads to 
being faced with the practical implementation issues of the 
dedicated VLSI sort processor with execution time perfor­
mance O(N). One of the implementation issues is the diffi­
culty of developing a sort processor that can support the pro­
cessing of any relation size, any relation cardinality, and any 
tuple length in the same fashion. The other is the inefficiency 
of postoperation to the presorted relation in Projection and 
Join, because the algorithm of the postoperation is essentially 
sequential and is not fit for parallel architecture. The third­
generation RDBM, SPIRIT-III, is more advanced, because 
the architecture can support the processing of any size and 
cardinality of relation and any tuple length in the same man­
ner and also manipulate the preprocessed relation in parallel 
without any overhead. Moreover, this architecture is very 
suitable for coordinating a data-staging subsystem introducing 
a memory hierarchy. 

In this paper, we propose the powerful and flexible two­
stage architecture, which uses the filtering functions em­
bedded in each stage of memory hierarchy. 



610 National Computer Conference, 1982 

(a) Tuple Selection Function 

{CITY} -----.... 

Attributes to be grouped 

S 

(c) Tuple Grouping Function 

{STATUS, 
CITY} 

(b) Attribute Selection Function 

relation S (Supplier) 

S# SNAME STATUS CITY 

51 Smith 20 London 
52 Jones 10 Par~s 
53 Blake 30 Paris 
54 Clark 20 London 
55 Adams 30 Athens 

Figure 3-Functions of Tuple Stream Filters 

The proposed three filtering functions, as shown in Figure 
3, are the following: 

1. The tuple selector function: This function is realized by 
the Selecting Tuple Filter (STF) , as shown in Figure 
3(a), which is one type of TSF. This function is the most 
primitive that selects the tuples that satisfy a given pred­
icate. By means of this function, the most important 
relational operations, such as Selection and Restriction 
can be completely achieved. ' 

2. The attribute selector function: This function is realized 
by the Selecting Attribute Filter (SAF) , as shown in 
Figure 3(b), which is one type of TSF. This function can 
filter the attributes needed by the next relational oper­
ations to be fired and repack each tuple, including items 
of only necessary attributes. This function performs a 
relational algebra operation, such as Projection, exclud­
ing duplicate elimination. This function contributes to 
saving work space and results in enhancing the perfor­
mance of executing the relational algebra operations. 

3. Segment-grouping function: This function is the key idea 
of SPIRIT-III architecture and is realized through the 
grouping filter, as shown in Figure 3( c). This grouping 
function is the most primitive suboperation of relational 
algebra operations, such as Projection and Join. This 
function groups input relations into subrelations. Next, 
in the case of Projection, each microprocessor of RPS 
performs a postoperation that is a complete duplicate 
elimination. RPS can process the assigned subrelation in 
parallel without the overhead of interprocessor commu­
nication. (The overhead of interprocessor communica­
tion degrades performance.) In the case of Join, each 
microprocessor of RPS handles the postoperation that is 
a concatenation of tuples in relation R and tuples in 
relation S. RPS can perform this link operation between 

tuples in subrelation Ri and tuples in subrelation Si' both 
of which are grouped through the same filtering function 
with each of the joining attributes, because this grouping 
function guarantees that both subrelations contain same 
value items of joining attributes. Tuple grouping filters, 
realizing this function with a refined method of hash 
function, are appended to all data transfer lines linked 
between each stage of the memory hierarchy system in 
SPIRIT-III. Therefore, if all data need this preprocess, 
the data are grouped through the filter in passing on data 
lines in the memory hierarchy before the data are staged 
up to primary database microprocessors. 

Without any overheads resulting in poor performance, 
SPIRIT-III, which can efficiently process set level relation 
operations, is the most powerful and practical machine de­
signed on the basis of the state of the art. 

3. RELATIONAL ALGEBRA EXECUTION 
ARCHITECTURE 

3.1 Tuple Stream Filter 

We have designed the following functional Tuple Stream 
Filters, as shown in Figure 3, which should be incorporated in 
the DSS. 

1. The Selecting Tuple Filter (STF): This filter functions to 
yield a "horizontal" subset of a given relation, that is, a 
subset of tuples within input relation that satisfy a speci­
fied predicate. Figure 3(a) illustrates the symbol and 
function of the selecting tuple filter. This filter can per­
form the same relational algebraic operations such as 
Selection and Restriction, when tuples stream through 
STF. 

2. The Selecting Attribute Filter (SAF): This filter func­
tions to yield a "vertical" subset of input relation, that is, 
that subset obtained by selecting specified attributes, 
provided that the filter does not eliminate duplicate tu­
ples within attributes selected. This filter can perform to 
repack items of specified attributes in a tuple into a new 
tuple without duplicate elimination. This filter is shown 
in Figure 3(b). 

3. Tuple Grouping Filter (TGF): This filter functions to 
yield subrelations (subsegments), each of which is a sub­
set of an input relation, which consists of tuples includ­
ing the same specified attribute item. In practice, TGF is 
implemented by using the hash mechanism in SPIRIT­
III. Figure 3(c) displays the symbol and function ofTGF. 
Figure 4 shows a two-stage relational architecture using 
tuple stream filters embedded in the DSS. 

3.2 Relational Algebra Processing 

In this section, we explain processing methods of typical 
relational algebra operations. 

1. Selection processing: Selection operation is the simplest 
but most important operation of relational algebra. In 



Relational Database 
Processing Subsystem 

SAF 

STF 

TGF Tuple Grouping Filter 
SAF Selecting Attribute Filter 
STF Selecting Tuple Filter 

Data Staging Subsystem 

Figure 4-Two-stage relational algebra execution architecture with Tuple 
Stream Filter 

SPIRIT-III, most Selection operations are performed 
while tuples are passed through TSFs attached on data 
channels in the memory hierarchy. This means that the 
execution time of Selection is actually overlapped with 
the data transfer time. Therefore, in SPIRIT-III, it is not 
necessary to consider Selection processing time in order 
to measure the total performance, because most Selec­
tions are performed while relations stream on data chan­
nels. Restriction is performed on the basis of the same 
method. 

2. Projection processing: The Projection operator contains 
two major operations, which are to select specified attri­
butes or a given relation and then to eliminate duplicate 
tuples within attributes selected. The first operation is 
completely performed through ASFs. Therefore, the 
processing time for the first operation of most Pro­
jections is overlapped with the data-staging time. TGF is 
responsible for performing the function to partition a 
relation into subrelations. TGFs distributed in DSS can 
roughly group an input relation into subrelations, using 
the hash mechanism, while original relations are passed 
through TGFs. Then each microprocessor for postopera­
tion in RPS can eliminate completely duplicate tuples 
within the grouped subrelation assigned to it. In this case, 
the processing time associated with the hash function can 
be made very short by using specialized hardware. 6 

Moreover, if TGF groups the relation composed of N 
tuples and K specific values into M sub segments, and the 
number of microprocessors in RPS is L, each grouped 
subsegment j contains (N / M) tuples and a few 
(Kj = KIM) specific values. This makes each micro­
processor execute the grouped sub segment assigned by 

SPIRIT-III 611 

the algorithm with time complexity 0 (Nj(Kj + 1)12), 
provided that Nj is the number of tuples within the 
grouped subsegment and Kj is the number of unique 
items in sub segment j. The best time performance of 
Projection that SPIRIT-III can achieve is near 0 
(Nj = NIM). This two-stage mechanism succeeds in gain­
ing the time performance 0 (Nj = N 1M) for most 
Projections in principle. This performance is extremely 
superior to the performance 0 (N x (K + 1)/(2 xL)) 
achieved by early RDBMs and the performance 0 (N) 
by the second-generation RDBM. 

3. Join processing: Join is the key operation guaranteeing 
the flexibility and powerful capability of the relational 
model, but it is the most important operation that must 
be solved by the system designer. SPIRIT-III can per­
form the Join operation using the same mechanism for 
Projection. We can explain the equi-Join processing 
mechanism by giving an example: Relation R and re­
lation S stage up from database store to staging buffer; 
Relations Rand S are grouped into Subrelations {R j }, {Sj} 
through TGF over joining attributes R.A and S.A. 
Therefore, sub relations Rj and Sj consist of tuples con­
taining the same items within the joining attributes R.A 
and S.A. Because the processing time associated with 
this grouping function is overlapped with the data-staging 
time, the processing time to group a relation into sub­
relations through TGF can be ignored. This advantage 
results in reducing the processing time of Join. More­
over, in the next stage, SPIRIT-III employs the subseg­
ment allocation strategy that both the grouped sub rei a­
tions Rj and Sj are assigned to the same microprocessor of 
RPS. In case of equi-Join, each microprocessor can per­
form the actual concatenation of tuples between the 
grouped subsegments Rj and Sj without the access to 
other subrelations Rj (i 4- j). This capability can make 
possible an ideal parallel, asynchronous processing envi­
ronment, which contributes to a remarkable enhance­
ment of the time performance of postoperations associ­
ated with Join in the second stage. In order to evaluate 
the time complexity of Join processing in the SPIRIT-III 
environment, we assume the following: 

1. Relations Rand S contain Nr and Ns tuples, re­
spectively. 

2. TGF groups them into M subrelations by each of 
the joining attributes R.A and S.A. 

3. Each subrelation is exhibited as Rj and Sj, respec­
tively. 

4. Rj and Sj include a few unique items within each 
joining attribute that are exhibited as Krj and Ksj , 
respectively. 

In case of equi-Join processing, the processing time re­
quired in the first stage in DSS is actually hidden within data 
transfer time in the memory hierarchy. In the second stage, if 
both Rj and Sj subrelations are assigned to the work space of 
the same microprocessor in RPS, each microprocessor can 
concatenate between tuples of Rj and tuples of Sj in parallel 
without the overhead of interprocessor communication. In 
this case, the processing time complexity of the second stage 
in RPS is 0 ((Nsj (Ksj+ 1 )KrJ/2) or 0 ((Nrj (Krj+ 1) Ksj)/2). In 



612 National Computer Conference, 1982 

o : Projection 

D : Selection 

(a) Relational Algebra Tree 
Representation of Query (1) 

d::J 'SNAME" 

~ {SNAME} 

SP 

{cl Query {ll Representation 
US1:,.g Tuple Stream Functions 

: Join 

: Implicit Join 

: Projection without eliminating 
duplicate tuples 

(b) Optimized Relational Algebra 
Tree Representation of Query (1) 

: Elimination of tuples 

: Concatination of tuples 

: TUple Grouping Filter 
(Function) 

: Selecting Attribute Filter 
(Function) 

~ : Selecting TUple Filter 
(Function) 

Figure 5-Representation of relational algebra execution sequence in 
SPIRIT-III environment 

practice, this time complexity is nearly 0 (Nr; Xu) or 0 
(Nr; x v) because Kr; and Ks; are much less than Nr; and Ns;, 
respectively. 

This means that SPIRIT-III succeeds in executing equi-Join 
with time complexity 0 (Min (Nr; = Nr/K, Ns; = Ks/K). The 
relational algebra architecture employed by SPIRIT-III is 
very superior to the first-generation architecture of time com­
plexity 0 (N x N/L) and the second-generation architecture 
of time complexity 0 (N). 

3.3 An Optimized Relational Algebra Execution Mechanism 
Using Tuple Stream Filters 

In this section we explain an optimized relational algebra 
tree execution mechanism utilizing Tuple Stream Filters 
attached on data transfer channels in the memory hierarchy. 
We describe the proposed two-stage relational algebra exe­
cution architecture in detail, using the following query as an 
example. 

Query 1: "Get supplier names for suppliers in London who 
supply part P2" 

It is assumed that a sample relational model consists of two 
relations: S (the SUPPLIER relation, composed of four attri­
butes: S#, SNAME, STATUS and CITY) and SP (the 
SUPPLIER-PART relation, composed of three attributes: 
S#, P#, and QTY). 

In this case, Query 1 may be expressed in SEQUEL as 
follows. 

SELECT SNAME 
FROMS 
WHERE CITY = "London" and S# IS IN 

(SELECT S# 
FROM SP 
WHERE P# = "P2" ) 

The SEQUEL compiler directly translates Query 1 into the 
relational algebra tree representation, as shown in Figure 5a. 
However, the relational algebra tree representation shown in 
Figure 5b is not always the most efficient execution sequence. 
We can translate this relational algebra tree into the more 
efficient execution sequence tree, according to the optimiza­
tion policy proposed by Smith. 2 Figure 5b shows the opti­
mized relational algebra tree from the query of Figure 5a. It 
is beneficial to move Selection operations as far down the tree 
as possible using such transformations. This is because the 
Selection operations reduce the number of tuples to be pro­
cessed by subsequent operations. Any reduction is particu­
larly advantageous when Join and Projection operations occur 
later. There are also benefits to be gained by moving Pro­
jection operations down a query tree. Projection operations 
decrease the width of tuples and, due to the elimination of 
duplicate tuples, may also decrease the number of tuples in a 
relation. Each of the new Projection operations perform se­
lecting attributes needed by subsequent operations and does 
not eliminate the duplicate tuples input relation. Therefore, 
this transformation remarkably increases the efficiency of ex­
ecuting Query 1. 

Next, the optimized relational algebra tree of the Query 1, 
as shown in Figure 5b, is smoothly translated into the exe­
cution procedure with the tuple stream filters of SPIRIT-III, 
as shown in Figure 5c. 

The relational algebra execution architecture of SPIRIT-III 
harmonizes with the execution sequence expressed by the 
optimized relational algebra tree and can powerfully support 
this optimization concept. 

3.4 Implementation Architecture 

Figure 6 illustrates an implementation architecture of the 
proposed SPIRIT-III. SPIRIT-III employs large-capacity 
moving head disks with a track-in-parallel read/write mech­
anism as database stores, and a number of VLSI random­
access memory chips as a staging buffer, which is used as a 
disk cache and tuple clustering memory. 

This track-in-parallel read/write mechanism makes it possi­
ble to remarkably reduce the data transfer time between SB 
and DBS and to efficiently filter the relations that stream on 
parallel transfer lines. 

Double-loop configuration is introduced as the inter­
connection of banks of SB and microprocessors of RPS. Each 
of the grouped subrelations in each bank of SB is allocated to 
a corresponding microprocessor through the double loops. 

Figure 7 illustrates the detailed interconnection of the stag­
ing buffer and the Tupie Stream Filter. Tne Tuple Stream 
Filter Controller (TFC) issues the filtering conditions to each 



POM : Post-Operation Microprocessor 
TSF : Tuple Stream Filter 
~PSC : RPS Controller 

RPS 

rn 
POM #n ~~~--~/ 

o 0 0 

SPIRIT-III 613 

~ __________ ....::D....::S'--=S'--_______ ~) 

DBS #n 

, 
,i----"")'~---~ DBS #1 

'-----~~~~=-~~-+~----~~--------------~~~~:~s~~P--~~-_~;~~~-~~·~~~:I~~lqiliD~~~b~~:C~~~I~-parallel 
Read/Write Mechanism Query 

Host 

Figure 6-System architecture of SPIRIT-III 

Tuple Stream Filter. TGF receives the grouping function and 
attribute IDs to be grouped. 

The retrieval conditions of Selection and Restriction are set 
to the STF by the TFC, and Selecting attribute IDs are sent to 
the ASF. 

As shown in Figure 6, TGF appends the sub segment num­
ber to the tuple when the tuple is passed through TGF, and 
then the staging buffer management processor actually clus­
ters the tuples, using the attached sub segment number. 

4. DATA STAGING ARCHITECTURE 

4.1 Basic Concept and Implementation of ISR Policy 

The look-ahead data staging policy depends on the follow­
ing three properties of relational database environments: 

1. Possibility of complete recognition of all data used by a 
transaction: The expression of query is nonprocedural, 
and the relations that are used by a transaction are de­
clared explicitly. 

2. Homogeneity of pages in a relation: Based on set theory, 
each page in a relation is operated equivalently. 

3. High flexibility of execution sequence: Execution se­
quence of each leaf of a query that is expressed in the 
relational algebra tree has little restriction. 

From properties 1 and 3, DSS can schedule data staging 
with the original strategy, taking physical environment such as 
storage device characteristics into consideration. Property 2 
guarantees that there is no useless data transfer. 

The example transaction shown in Figure 8 helps to explain 
the detail of the look-ahead data staging and the data-driven 
process scheduling. 

The cost of a seek operation is the most expensive cost in 
RDBM that employs a moving head disk with the tracks-in­
parallel read/write mechanism as DBS. In a conventional sys­
tem, data staging is performed according to the execution 
sequence of a transaction: thus in this example, the data stag­
ing is performed in the order of A, B, C, and D, out of 
accordance with the data arrangement on the disk. As a re­
sult, the cost of data staging is high. 

On the other hand, RDBM employing the look-ahead data­
staging mechanism performs the data staging with the strategy 
of minimizing data access cost: thus in this example, data 
staging is performed in the order D, A, B, and C, according 
to the data arrangement; and as a result, the cost of the data 
staging is minimized. 

Because of data-driven process scheduling, Pil becomes ex­
ecutable when both A and B are staged up to the processor 
memory, Pi2 becomes executable when C is created by Pil , Pi3 

becomes executable when F is created by P,2, and Pi4 becomes 
executable when G is created by Pi3 because D has already 
been staged up. Finally, Pi5 becomes executable when H is 
created by Pi4 • Staged up by the look-ahead data staging 



614 National Computer Conference, 1982 

from 
Relational 
Processing 
Subsystem 

• 
:Jr--~ I .. -1r-,~ staging Buffer Management Processor 

~--:r1 f-----t I 

Attributes 
to be hashed 

f-~-----f' • 
I I I 
I I I 
I I,) 
L__ J, 

TSF 

------1 
~-·-I---1' I 

• I · : I 
I 
I 
I 

SAF 
I I 

• I I I 
I I 
I : 

TF: 
I I 
I ) 

-,.£.' 

fl~----('" I' I I 
I I ........ : : J 
I :: L_ ~' 
L I SF 

TSF 

---:~ 

f----·( : 

_J.'" 

I 

• I 
I 
• I • 
• • 1 __ -, 
I • 
I I 
I I 
I I 
I I 
I I : ; 
J L_ 

Bank #1 

.. ," 

Staging Buffer 

Database Store with tracks-in-parallel 
Read/Write Mechanism 

Retrieval 
Condition 

TSF Tuple Stream Filter 
TFC Tuple Filter Controller 
TGF Tuple Grouping Filter 
SAF Selecting Attribute Filter 
STF Selecting Tuple Filter 

Figure 7-Construction of staging buffer with Tuple Stream Filter 

mechanism, D stays until Pi4 is completed by the processing 
subsystem. At peak activity, data like D increase in each level 
of the memory hierarchy. If staging based on the same strat­
egy is continued, the processor memory will be filled with only 
this data. In this situation, the data replacement in the pro-

B C 

I><J JOIN 

D RESTRICTION 

D. PROJECTION 

I NPUT OUTPUT 

Pil ft,B E 
Pi2 C F 
Pi) E,F 
Pi' D,G H 
PiS H RESULT 

Query (relational algebra tree) 

Figure 8--0utline of look-ahead data staging and data-driven process 
scheduling 

cessor memory is needed in order to continue the execution of 
the processor even if the data replacement causes overhead. 
To avoid the overhead, it is necessary to change the strategy. 
To realize this, DSS must distinguish the data required by an 
executable process (active data) from the data required by an 
unexecutable process (inactive data). 

The DSS takes the following two actions: 

1. Sort the staging requests in staging classes. 
SCI: Class of stage up (SU)-request issued by active 

data 
SC2: Class of SU-request issued by inactive data 
SC3: Class of stage down (SD)-request 

2. Classify the memory blocks in MHi+ 1 into replacement 
states based on replacement cost. 

RSI: State of block occupied by data issuing SCI 
request 

RS2: State of block occupied by data issuing SC2 re­
quest and having no copy in MHi 

RS3: State of block occupied by data issuing SC3 
request 

RS4: State of block occupied by data issuing SC2 re­
quest and having its copy in MHi 

RS5: Otherwise 



Utilizing this information and mechanism, data stagings 
between each level can be executed synchronously. In addi­
tion, the optimal scheduling, taking physical environment into 
consideration, is performed at each level. Thus, the look­
ahead data-staging policy attains high performance of data 
staging in the relational database environment. 

To achieve the maximum advantage of data staging, the 
processing subsystem should use data-driven process sched­
uling in addition to DSS using the look-ahead staging mech­
anism. 

4.2 Architecture of a Look-ahead Data Staging Subsystem 

The data staging subsystem based on the ISR policy is dif­
ferent from the conventional memory management system in 
regard to management policy of data transfer. In the con­
ventional memory management system, every reference by 
process is directed to the processor memory and causes data 
transfer among levels of memory hierarchy if the data do not 
exist in the processor memory; therefore the degree of free­
dom in scheduling the sequence of data transfer is strongly 
restricted. On the other hand, in DSS, all data transfers are 
scheduled by the independent strategy in each level of memo­
ry hierarchy; therefore, to enhance the capability of data stag­
ing, it is necessary to construct DSS that can asynchronously 
perform data staging between each level. As a result, DSS is 
composed of multiple processors, as shown in Figure 1. 

(1) The Coordination Processor (CP) 

The coordination processor (CP) functions as the interface 
to ISS and coordinates the processors that schedule the se­
quence of data staging between levels of the memory hier­
archy. For example, the CP registers stage up-requests issued 
by data used by the transaction in the data-staging pool into 
relevant staging queues as a transaction arrives at the system. 
To accomplish this operation, the CP requires all RPs to 
search requested data in the memory hierarchy. The coordi­
nation processor also registers stage up-requests (or stage 
down-requests) into the staging queue of higher (or lower) 
levels when SP completes the data staging. 

(2) The Staging Processor (SP) 

The staging processor SP(i,i+1) manages data staging be­
tween MHz" and MH i+1, using the staging queue SQ(i, i+1). All 
staging requests between MHi and MH(i+1) are put into 
SQ(i,i+1) by CPo The SP(i,i+1) selects the staging request to be 
served according to the algorithm. lO After this operation, 
SP(i, i+1) requires RPi (or RP(i+1) to select the blocks to be 
replaced. The required scheduling policy for each SP is differ­
ent from other SPs. Generally, the functions of SP fully de­
pends on the storage devices of memory hierarchy. 

The operations of a moving head disk consist of Seek, 
Search, and Transfer operations. The systems employing a 
moving head disk with a tracks-in-parallel read/write mech­
anism tend to increase the effect of seek time on total VO 
processing time. Therefore, MINIMUM ACCESS COST 

SPIRIT-III 615 

DATA ofthe SP(O, 1) in the algorithmlO is selected by using the 
disk-scheduling algorithm that could minimize seek time. 

In most conventional systems, the FCFS (first come, first 
served) policy is employed as the disk scheduling policy how­
ever, to enhance the efficiency of the Seek operation, SSTF 
(shortest seek time first), SCAN, and CSCAN (circular 
SCAN) policies have been developed and proposed. The im­
portant nature of disk scheduiing poiicy, except the FCFS 
policy, is that as the number of VO requests increases, so does 
the efficiency of the operation. 

This suggests that DSS employing the look-ahead data­
staging mechanism pulls out the maximum effect of disk­
scheduling policy, except the FCFS policy, because all SU 
requests of transaction data are registered en bloc to the data­
staging pool when a transaction enters RDBM. 

(3) The Replacement Processor (RP) 

The replacement processor for the staging buffer manages 
by using the memory map table (MMT). The memory map 
table contains the information of every block in every blank of 
the staging buffer: the identifier and the replacement state of 
the data stored in the block. When SP(i, i+1) (or SP(i-1, i) re­
quests RPi to select the block to be replaced, RPi searches the 
block to be replaced in the order of blocks in RS5, RS4, RS3, 
and RS2. If there are only RS1 blocks, RP keeps SP(i, i+1) (or 
SP(i-1, i) waiting until any block becomes a replaceable state. 

Our performance evaluationlO by computer simulations 
shows that the proposed architecture improves both system 
throughput and response time of transaction. 

5. CONCLUDING REMARKS 

This paper has proposed an advanced architecture of the 
relational database machine, named SPIRIT-III, which is ba­
sically organized into a three-level memory hierarchy with 
sophisticated data-staging architecture and preprocessing 
architecture for relational algebra. The memory hierarchy 
system is composed of work space of primary database pro­
cessors, a staging buffer as the intelligent disk cache, and 
moving arm disks as the database store. 

SPIRIT-III aims at totally improving both VO and CPU 
processing boundaries, which are key problems in implement­
ing RDBMs; it has two major architectural features. One is 
the introduction of the relational-database-oriented data­
staging mechanism, called the look-ahead data-staging mech­
anism, which can optimally schedule data access and transfer 
in the memory hierarchy. The other is that it attaches refined 
preprocessing mechanisms for relational algebra operations to 
data transfer lines connected between each two levels of 
memory hierarchy. When a relation stages up or down in the 
memory hierarchy, this preprocessing mechanism can func­
tion to select tuples and attributes and to rearrange original 
relations for parallel processing. SPIRIT-III provides three 
basic preprocessing functions. Two of these are the tuple se­
lector, filtering only tuples to match retrieval conditions; and 
the attribute selector, repacking only attributes needed by 
executing a query. In addition to these filtering functions, 
SPIRIT-III incorporates the grouping filter proposed by the 



616 National Computer Conference, 1982 

authors into each stage of the memory hierarchy. The oper-
. ation of the grouping filter is the primitive preprocessing oper­
ation for executing Join and Projection. In practice, the 
grouping filter implemented with hash function rearranges 
original relations and decomposes these into subsegments. 
Without the overhead of interprocessor communication, each 
database microprocessor can execute postoperations of re­
lational algebra to a few subsegments assigned to it in parallel. 
The postoperations include duplicate elimination within the 
subsegment and concatenation operation between tuples 
within the sub segment in relation R and the tuples within the 
subsegment in relation S. Each subsegment is clustered by the 
same hash function while the original relation stages up. 

Therefore, SPIRIT-III can smoothly perform Join and 
Projection operations by 0 (NIL), whereas the early 
RDBMs required O(N x NIL). The proposed SPIRIT-III 
covering from data-staging architecture to relational algebra 
execution architecture under the integrated concept is one of 
the most practical and powerful RDBMs based on the state of 
the art. 

ACKNOWLEDGMENTS 

The authors gratefully acknowledge Professor H. Aiso of 
Keio University for his encouragement and valuable advice. 
They also thank members of the Mind group of Keio Univer­
sity for their valuable discussion and members of Ichikawa 
Laboratory of Hiroshima University for their encouragement. 

REFERENCES 

1. Codd, E. F. "A Relational Model of Data for Large Shared Data Banks." 
Communications of the ACM, 13 (1970), pp. 377-397. 

2. Smith, T. M., and P. Y. Chang. "Optimizing the Performance of a 
Relational Algebra Database Interface." Communications of the ACM, 18 
(1975), pp. 568-579. 

3. Schuster, S. A., F. A. Ozakarahan, and K. C. Smith. "RAP-An Asso­
ciative Processor for Database Management." AFIPS Proc. NCC, 44, 
(1975), pp. 379-388. 

4. Schuster, S. A., H. B. Nguyen, F. A. Ozakarahan, and K. C. Smith. 
"RAP.2-An Associative Processor for Database and Its Applications," 
IEEE Transactions on Computers, C-28 (1979), pp. 446-458. 

5. Dewitt, D. J. "DIRECT-A Multiprocessor Organization for Supporting 
Relational Database Management Systems." IEEE Transactions on Com­
puters, C-28 (1979), pp. 395-406. 

6. Bobb, E. "Implementing a Relational Database by Means of Specialized 
Hardware." ACM Transactions on Database Systems, 4 (1979), pp. 1-29. 

7. Tanaka, Y., Y. Nazuka, and A. Masuyama. "Pipeline Searching and 
Sorting Modules as Components of a Data Flow Database Computer." 
Proceedings of the IFIP-80, pp. 427-432. 

8. Kamibayashi, N., H. Kato, Y. Kiyoki, H. Ozawa, K. Seo, and H. Aiso. 
"SPIRIT: A New Relational Database Computer Employing Functional­
Distributed Multi-Microprocessor Configuration." Proceedings of the First 
International Conference on Distributed Computing Systems, (1979), pp. 
757-771. 

9. Kiyoki, Y., N. Kamibayashi, K. Tanaka, and H. Aiso. "Design and 
Evaluation of a Relational Database Machine Employing Advanced Data 
Structures and Algorithms." Proceedings of the 8th International Sym­
posium on Computer Architecture, 1981, pp. 407-423. 

10. Seo, K., N. Kamibayashi, A. Minematsu, and H. Aiso. "A Look-Ahead 
Data Staging Architecture for Relational Database Machines." Proceed­
ings of the 8th International Symposium on Computer Architecture, 1981, 
pp. 389-406. 

11. Teorey, T. J., and T. B. Pinkerton. "A Comparative Analysis of Disk 
Scheduling Policies." Communications of the ACM, 15 (1972), pp. 
177-184. 

12. Brice, R. S., and S. W. Sherman. "An Extension of the Performance of 
a database manager in a virtual memory system using partially locked 
virtual buffers." ACM Transactions on Database Systems, 2 (1977), pp. 
1%-207. 

13. Law, S. Y., and S. E. Madnick. "Properties of Storage Hierarchy Systems 
with Multiple Page Sizes and Redundant Data." ACM Transactions on 
Database Systems, 4 (1979). pp. 345-367. 



Data language requirements of database machines 

by DAWEI LUO 
Harbin Institutes of Technology 
Harbin, China 

DAOZHONG XIA 
Shanghai Shipbuilding Technology Research Institute 
Shanghai, China 

and 

s. BING YAO 

University of Maryland 
College Park, Maryland 

ABSTRACT 

The selection of a proper set of operations for a database machine has a great 
influence on the performance of the overall system. In this paper, we will discuss 
the data ianguage requirements of database machines. The data language for a 
proposed relational database machine is presented. Methods for supporting hier­
archical and network interfaces using a relational database machine language set are 
introduced. The relative performance for data access using relational and network 
interfaces is compared through the evaluation of cost functions. It is shown that the 
support of a network interface in a relational database machine is feasible, but 
expensive. 

617 





1. INTRODUCTION 

The development and application of database technology has 
made a great impact on data processing. It has made possible 
the sharing of common data resources and relieved the end 
user's burden of managing the data. The data independence 
provided by many database systems has made the mainte­
nance of program and data more effective. 

The advantages of database systems have encouraged the 
growth of the size and complexity of many database system 
applications. In many applications the efficiency and re­
liability of the system are becoming problems. A database 
management system is a fairly complex piece of software. It 
competes with other application programs for memory and 
computing resources. It also requires a certain effort for 
maintenance. 

Database machines have been proposed as hardware solu­
tions to these problems. The objective is to offload database 
management functions from the host computer to a specially 
designed, dedicated back-end computer whose sole function 
is to maintain the database and process database requests. A 
database machine interfaces with the front-end host computer 
through a high-level-language interface. By fixing such an 
interface, a database machine can communicate simulta­
neously to mUltiple host computers. Depending on the size 
and complexity of a system, the host computer could be a 
mini- or a microcomputer, or even, in some situations, an 
intelligent terminal. 

To permit a database machine to communicate with various 
types of front-end processors, it is important to select a proper 
language interface. The front-end processors may vary in pro­
cessing capabilities, type of applications, or even data models. 
This paper reports the development of a database machine 
language interface intended to support multiple types of pro­
cessing effectively. 

The end user interface in the host computer usually consists 
of a terminal handler, a communication processor, and a lan­
guage parser and translator. The major function of the host 
computer is to translate end user queries into the database 
machine language, send it to the database machine, receive 
results from the database machine, and finally organize and 
display the result. Depending on the application, it is gener­
ally accepted that user interfaces to database systems can be 
functionally classified into three categories: 

1. Self-contained query language. The end user requests are 
formulated directly in a query language and are trans­
lated into the database machine language for further 
processing. 

2. Predefined commands. Certain frequently processed 
transactions can be predefined and stored. The end user 

Data Language Requirements of Database Machines 619 

simply activates a stored command and supplies a few 
required parameters. The predefined command can be 
stored in the host computer or in the database machine 
in an internal form. The advantage of this approach is 
that a stored command can be compiled only once and 
is therefore more efficient. However, this gives the data­
base machine an additional burden of recompiling the 
stored commands when the access paths are changed by 
database reorganization. 

3. Embedded query language. Transactions written in a 
host language, such as FORTRAN or COBOL, may 
access the database by using embedded queries. A lan­
guage preprocessor replaces the embedded queries with 
procedure calls to a run-time system, which sends the 
embedded queries to the database machine during trans­
action execution. Alternatively, the embedded queries 
can be preprocessed and stored in the database machine 
as predefined commands. During execution the trans­
action simply activates appropriate stored commands 
through calls to the run-time system. The tradeoff be­
tween these two approaches is similar to that of the 
stored commands. 

It is clear that the self-contained query language interface is 
the most fundamental, and it is the focus of this paper. Our 
design for the database machine language interface is based 
on a previous experience of implementing a SEQUEL (SQL) 
interface2

,9 for a rational database machine. 6
,7 Although both 

the query language and the database machine are based on the 
relational data model, discrepancies in their detailed opera­
tions have made the implementation nontrivial. Next section 
discusses the general database machine language require­
ments for effective query languages implementation. The two 
sections following the next section consider issues for the im­
plementation of hierarchical and network interfaces for data­
base machines. 

2. DATABASE MACHINE LANGUAGE 
REQUIREMENTS 

Database applications have many varieties. They differ in type 
of operations and data models. A database machine cannot 
possibly support all these access requirements directly. It is 
only feasible to provide a basic set of operations from which 
other operations can be derived. To select a proper set of 
operations, several requirements must be satisfied: 

1. Completeness. The set of operations should be, in somt. 
sense, complete. This means that all the operations per­
formed on the database can be derived from the basic set 
of operations in a straightforward manner. Otherwise, 



620 National Computer Conference, 1982 

some database operations will have to be performed in 
the host processor, thus making the system less effective. 

Codd3 has shown that relational algebra is equivalent 
to relational calculus and has defined the notion of re­
lational completeness. A query language is said to be 
complete if it can perform all the relational calculus 
operations. The completeness discussed here is not lim­
ited to the relational completeness. By completeness we 
mean the ability to perform all database operations ef­
fectively. Such completeness property is difficult to de­
fine formally, as data models and data languages are still 
continuously being developed. New data models and 
data languages are constantly being proposed, and it 
is difficult to make a list of all possible database oper­
ations. On the other hand, it seems reasonable to base 
the completeness requirements on the ability of per­
forming all operations found in present database 
systems. 

2. Efficiency and flexibility. Although most of database 
operations can be supported by a minimum set of basic 
operations, the performance of some of the operations 
can be greatly improved if a slightly larger set of basic 
operations is used. Appendix A provides some examples 
to illustrate the relative inefficiency of processing some 
derived operations by using a small set of basic oper­
ations. Some of these derived operations can be very 
easily implemented in the database machine. 

3. High-level operations. The objectives of using a high­
level-language interface are to suppress the irrelevant 
details of storage and access path information. This is 
appropriate, since the storage and access paths aspects 
are handled exclusively by the database machine. There 
are two principal advantages: (a) A high-level interface 
makes the processing in the front-end processor much 
simpler; (b) A high-level interface minimizes the num­
ber of communications between the front-end processor 
and the database machine and thus reduces the commu­
nication overhead. 

4. Extensibility. Database machines should provide facili­
ties for defining new operations. The new operation can 
be defined in terms of existing ones and included in the 
database machine as a stored command. These stored 
commands can be defined by the front-end processing 
system or by the end user. 

A database machine language could be defined on the basis 
of a particular data model, such as the relational, hierarchical, 
or network model. In view of the above requirements, we 
have chosen to base the proposed database machine language 
on the relational data model. The advantage of the relational 
model is its simplicity and high level of operation. In fact, it 
is not surprising to see that most of the recently developed 
database machines are based on relational data models. 

Typical relational data languages, however, do not have 
sufficient operations to implement the operations of other 
data mode~s efficiently. Our design enhances the basic rela­
tional interface by additional operations that we feel are nec­
essary in order to build an efficient interface for multiple data 
models. The proposed set of operations is given in Appendix 
B. We have investigated the problem of supporting several 

important languages, including the following: 1
,4,8,1O,1l,12 (1) 

Relational: QUEL, SQL, QBE; (2) hierarchical: DLl1 (IMS), 
FQL; and (3) network: DML (DBTG). 

Table I shows the database management language require-
ments for these query languages. 

Table I-Database management language requirements for various 
query languages 

operation operand result OUEL SOL OBE DLil FOL DBTG 

1) project relation relation V V V V V V 
2) select relation relation V V V V V V 
3) order relation relation V V V V V V 
4) group relation relation V V V V V V 
5) unique relation relation V V V V V V 
6) select relation tuple V V V V 

get next 
7) union two relation V V V 

relations 
8) subtract V V V 
9) intersect V V V 

10) join V V V V 
11) join tuple V V 

get next 
12) aggregate relation value V V V V V V 

function 
13) delete relation relation V V V V V V 

14) insert relation, relation V V V V V V 
tuple 

15) update relation relation V V V V V V 

16) assign relation relation V V V V 

the following operations are for expanding select condition: 

1) contains 

2) does not 
contain 

3) equal 
4) in 

5) not in 

two boolean 
relations 

tuple, boolean 
relation 

V V 

V V 

V V 
V V 

V V 

V 

V 

V 
V 

V 

3. THE DATA LANGUAGE FOR A HIERARCHICAL 
DATABASE 

Two problems must be addressed when developing a hier­
archical data language for a relational database machine. The 
first is to transform a hierarchical data structure into relations; 
the other is to transform the operations on the data into the 
basic operations. We will illustrate these transformations by 
using as an example a hierarchical data language. 

FQL is a form language for the manipulation of data stored 
in a hierarchical database. 8 A hierarchical file containing 
nested repeating groups can be represented by a form, which 
is also called an unnormalized relation. More precisely, a 
form can be defined as follows: 

F = R(K,A. {F}) 



where 
K is the set of key attributes 
A is the set of non-key attributes 
Fi = R (K,Ai, {Rj }) are repeating groups which are also 
forms, defined recursively 

Example 1. 
A DEPARTMENT form can be illustrated as in Figure 1. 
The hierarchical schema given on the top of the form can 

also be represented as follows: 

DEPARTMENT (DD#,DNAME,CLERK(CE#,CAGE), 
ENGINEER (EE#,EAGE, -
EXPERIENCE (ED# ,DATE») 

where DD# is the key attribute of the form and CLERK, 
ENGINEER, and EXPERIENCE are repeating groups. 

DEPARTMENT 

ENGINEER 
CLERK 

DOt DNAME EXPERIENCE 
EEl EAGE 

CE I CAGE EDI DATE 
==== ===== ====== ===== ====== ------ ===== ====== 

1 1978 
101 25 110 25 

-2- 19"79 
1 Car ~ ~ 

3 1'9'77" --- -- 115 35 
103 35 -2- 19"79 

-- --- --- -2- --ms 

2 Ship 

201 1~1'20 1_3°_1 1 11979 1 
202 30 1 1976 

--- -- 125 35 -2- --ms 
203 34 

-1- 19"79 

Figure 1-A department form 

In order to provide an FQL interface to a relational data­
base machine, it is necessary to represent forms as relations. 
The following algorithm to perform this transformation is well 
known: 

Algorithm 1 (Codd 3
) 

Decomposition of a form into relations. 
INPUT: A form F = R (K,A, {F;}) 
OUTPUT: A set of equivalent relations R, R, Rj , ••• 

METHOD: For each repeating group, define a relation con­
sisting of the repeating group's key and nonkey attributes and 
the key attributes of all its parent repeating groups. There­
fore, 

for F we have R(K,A), 
for Fi we have R(If,Ki,Ai), 

and in general, for Rij . .. k we have 

Data Language Requirements of Database Machines 621 

Example 2 
The form in Example 1 can be decomposed into the follow­

ing four relations: 

DEPARTMENT( DD#, DNAME) 
CLERK (DD#,CE#, CAGE) 
ENGINEER( DD#,EE#, EAGE) 
EXPERIENCE( DD# ,EE# ,ED#, DATE) 

The extensions of the relations are given in the Figure 2. 
We will now show the transformation of an FQL query to 

relational queries. An FQL query can be defined as follows: 

SELECT Ph ... , Pk 

FROM F = R (K,A, {Fi }) 

WHERE < condition> 

Here PiS are attribute names in the form F and < condition> 
is specified in the following: 

< condition> :: = < condition> AND < condition> I 
< condition> OR < condition> I 
NOT < condition> I ( < condition> ) I 
< elementary phrase> 

< elementary phrase> :: = 
R.a op v I{R.a}usopS I 
R1.a1 op R2.a21 {R1.a1}ul sop {R2.a2}m 

op :: = < I :5 I = I =1= I 2: I > 
sop :: = C I c; I == I d I ::> 
a is an attribute, 
R is a repeating group which contains a, 
U is a parent repeating group of R, 
{R.a}u represents a set of values of a group by U, 
v is a value, 
S is a constant set. 

Our strategy is to translate the FQL query into an equiv­
alent relational query on the decomposed relations. After the 
relational query is executed, the resulting relation is then 
transformed into a form using a special database machine 
instruction. 

Algorithm 2 
Translation of an FQL query. 
INPUT: a form query Qf 

Qf = { SELECT: Ph ... , Pk 

FROM F = R(K,A,{F;}) 
WHERE < condition> } 

OUTPUT: a result form Fr 
METHOD: 
(1) Construct a query on the decomposed relations:* 

SELECT Ph ... , Pk 

FROM R h R2, ••• , Rm 
WHERE < link condition> 

AND < projection condition> 

*For better readability, we use a SEQUEL-like syntax to describe the relational 
query. The translation of this query into the proposed database machine lan­
guage is obvious. 



622 National Computer Conference, 1982 

DEPARTMENT ENGINEER 

t=~~!=I=~~!==I=~!~~== 

1~~~~~I~~~i~~I~~~~~~ 
2 120 30 

CLERK 
2 125 35 

DOt CEt CAGE 

1 101 25 EXPERIENCE 

1 102 28 DOt EEt EDt DATE 

1 103 35 1 110 1 1978 

2 201 25 1 110 2 1979 
------ -------

2 202 30 1 115 3 1977 

2 203 34 1 115 2 1979 

1 120 2 1978 

1 120 1 1979 

1 125 1 1976 
------ ------ -------

1 125 2 1978 

1 125 1 1979 

Figure 2-Decomposed relations 

The relations R 1, R2, ••• , Rm are the decomposed relations 
referenced in the < condition> of the FQL query. Since we 
use the same name for the repeating groups and the decom­
posed relations, this mapping is straightforward. 

Two types of relations are included in the FROM list: (1) 
select relation-relations required to perform the < link 
condition>; and (2) target relation-relations required to 
perform the < projection condition>. The < link condi­
tion> is the joins created by the decomposition of a form into 
relations. Let Kx indicate the key of relation x and Kxy indi­
cates the intersection of the keys of relations x and y. The 
select relations and < link condition> are derived from Ta­
ble II. 

TABLE II-Select relations and < link condition> 

FQL 
< condition> 

R.a op v 
{R.a}u sop S 

R.a op S.b 

{R.a}u sop {S.b}w 

select 
relations 

R 
V, R 

R, S 

R, S, V, W 

<link 
condition> 

R.a op v 
R.Ku = u.Ku 

AND {R.a group by Ku} sop S 
R.KRS=S.KRS 

AND R.a op S.b 
R.Ku = V.Ku 

AND S.Kw=W.Kw 
AND u.Kuw=W.Kuw 
AND {R.a group by Ku} 
sop {S.b group by Kw} 

The < projection condition> are the joins between the 
target relations and certain select relations. Let Z denote a 
target relation. The < projection condition> are derived as 
shown in Table III: 

TABLE III-Projection condition 

FQL < condition> 

R.a op V 
{R.a}u sop S 
R.a op S.b 

{R.a}u sop {S.b}w 

< projection condition> 

R. K RZ = Z. K RZ 

U.Kuz = Z.Kuz 
R. KZRS= Z. KZRS 

AND S. KZRS= Z. KZRS 
U. Kzuw = Z. Kzuw 

AND W. Kzuw = Z. Kzuw 

(2) Execute the transformed query and obtain a result re­
lation Bf . 

(3) Group Bf into form using the keys of RbR2' ... , Rm. 

4. THE DATA LANGUAGE FOR THE NETWORK 
APPROACH 

• 

To support a DBTG interface on a relational database ma­
chine, it is essential to solve the following two problems: 14 

1. Transformation of DBTG data structures into relational 
data structures. 

2. Transformation of DBTG data manipulations into que­
ries for the database machine language. 

The network data structure of a DBTG system is more 
complex than the hierarchical approach. It has two basic con­
structs: RECORD type and SET type. A RECORD type is a 
hierarchical structure consisting of data items and repeating 
groups. It is similar to the concept already detailed in the 
previous section. The SET type represents links among 
RECORD types. Each SET consists of an OWNER record 
type and one or more MEMBER record types. This is typi­
cally implemented in DBTG as a pointer chain (one direction 
or binary direction) that starts from one owner instance and 
links up all member instances. In a relational database ma­
chine, SET types can be removed by a normalization pro­
cedure similar to Algorithm 1. Any data access traversing a 
SET instance can be performed by an equivalent join1oper­
ation on the common attributes of the OWNER relation and 
the MEMBER relation. To make this operation possible in 
general, however, it is necessary to introduce an attribute in 
the MEMBER relation to represent the rank of each record 
within a SET instance. 

The performance of the data access can be enhanced by 
additional data structures. It was indicated in Yao13 that three 
types of additional storage organizations can be defined: (1) 
Indexing--defining a tree structure to provide random access 
to records in a relation, (2) linking-defining a pointer chain 
similar to that of the SET implementation, and (3) cluster­
ing-stOiing the member records of a set close to its owner. In 
another proposal, an index structure is designed to store or-



dered (owner, member) pairs of set instances. 5 All of these 
data structures may be employed in a relational database ma­
chine to enhance data access performance. The use of these 
features, a database design problem, obviously depends on 
system tradeoffs and their availability in a particular database 
machine. 

Example 1 

Given a DBTG data structure for a supplier-parts database 
(Figure 3). 

Record types: 
S(S#,SNAME,STATUS,CITY) 
P(P#,PNAME,COLOR,WEIGHT,CITY) 
SP(DATE,QTY) 

Set types: 
S-SP 
P-SP 

The following equivalent relations may be created: 

S(S# ,SNAME,STATUS,CITY) 
P(P#,PNAME,COLOR,WEIGHT,CITY) 
SP(S# ,P# ,DATE,QTY ,SRANK,PRANK) 

The following additional data structures can also be created: 

UNIQUE CLUSTERING INDEX INDS ON S# OF S 
UNIQUE CLUSTERING INDEX INDP ON P# OF P 
LINK S-SP FROM S(S#) TO SP(S#) 

ORDER BY P# 
LINK P-SP FROM P(P#) TO SP(P#) 

ORDER BY S# 

Figure 3-A supplier-parts DBTG database schema 

• 

The data manipulation language of DBTG system is a pro­
cedure-oriented language. Its operands are RECORD and 
SET instances. The operations on a hierarchical RECORD 
type (i.e., RECORD that contains repeating groups) have 
been discussed in the previous section. The transformation of 
SET traversal operations is given in Table IV. 

Data manipulation using a back-end database machine re­
quires additional communication time between the host and 
the back end. A data traversal interface can be very ineffective 
because of the number of times communications are initiated. 
Although the additional communication cost is unavoidable in 
this type of data access, it can be significantly reduced if 

Data Language Requirements of Database Machines 623 

TABLE IV-The transformation of SET traversal operations 

DML of DBTG system Database Machine Operation 

MOVE 'New York' TO CITY IN S SELECT S.ALL 
FIND ANY S USING CITY IN S FROM S 

WHERE S.SNAME = 'New York' 

FIND <position> SP WITHIN S-SP SELECT NEXT SP.ALL 
FROM S, SP 

FIRST WHERE S.S# = SP .S# AND 
NEXT S.SRANK = <position> 

WHERE <position> = PRIOR 
LAST 
N-TH 

FIND OWNER WITHIN S-SP SELECT NEXT S.ALL 
FROM S,SP 
WHERE S.S# = SP.S# 

MOVE 'pI' TO P# IN SP SELECT NEXT SP .ALL 
FIND SP WITHIN S-SP CURRENT FROM SP 

USING P# IN SP WHERE SP.P# = 'pI' 
GROUP BY SP.S# 

MOVE 'Sl' TO S# IN S 
GET SP 

ADD 20 TO STATUS IN S 
MODIFY S 

CONNECT SP TO S-SP 

DISCONNECT SP FROM S-SP 

SELECT NEXT SP .ALL 
FROM SP 
WHERE S# = 'S1' 

UPDATE S 
SET S.STATUS = S.STATUS + 20 

UPDATE SP 
SET S.SRANK= 

MAX (S.SRANK) + 1 
GROUP BY SP.S# 

UPDATE SP 
SET S.SRANK=O 

enough buffer space is provided in the back-end and host 
systems. 

To consider the relative costs of SET traversal operations, 
let us define a few basic access cost equations. The following 
figure shows the two communication links in a hostlback-end 
system. 

HOST .. • BACKEND • • DISK 
f g 

The transmission cost between the host and the back-end can 
be represented by 

f(x) = (Cl + C2* w) * [xlb] + r*x 

where x is the number of bytes transferred, b is the buffer size, 
[xlb] is the number oftransmissions required, w is the average 
waiting time, C2 is the number of packets sent in each trans­
mission, Cl is the transmission overhead, and r is the trans­
mission speed. In our implementation of a host interface using 
a 9600.:baud connection, the parameter values are Cl = 20, 
C2 = 4, w = 20 ms, and r = 0.83. 

The transmission time between the back -end and the disk 
can be similarly estimated: 

g (y ) = wd * [ylb] + yls 



624 National Computer Conference, 1982 

where y is the number of bytes transferred, wd is the average 
disk access time, and s is the disk transfer rate. For 1 MB disk 
transfer rate, s = 1000 byte/ms. wd is assumed to be 50 ms. 

We further assume that the SET type has an OWNER 
record type 0 and one MEMBER record type M. The record 
size of 0 is p, the record size of M is q, and the mapping 
between owner and member is l:n. In a relational system the 
time required to access all the member records for a given 
owner record can be estimated by 

tl(p,q) = to + f(P) + f(n*q) + g(p) + g(n*q) (1) 

where to is the communication initiation time, assuming 
to = 863 ms, p = 128b, q = 256b. In the case of DBTG SET 
traversal, one owner and one member record are transmitted 
each time. The transmission time required is therefore: 

t2(p,q) = to + n* (f(P) + f(q) + g(p) + g(q)) (2) 

Assuming that the buffer size in the back-end is b. Since 
there are a total of n records of size q to be accessed, the 
number of times the disk must be accessed is m = (n*q)lb. 

The transmission times required for each access are illus­
trated as follows: 

1st: f(P) + f(q) + g(p) + g(b) 
2nd: f(P) + f(q) + g(p) + 0 

mth: f(P) + f(q) + g(p) + g(b) 
m +lth:f(P)+f(q)+g(P)+O 

The total time required is therefore 

t3(P,q) = to + n* if, (P) + g(p) + f(q)) + m*g(b) (3) 

The results of these cost equations are plotted in Figures 4 
and 5. It is evident that the relational data access is much more . 
efficient (see tl). Network data access without using a buffer 
can be very inefficient, since multiple accesses are required. 
The curve t2 gives the access cost without buffer and t3 gives 
the access cost with a 256-byte buffer. Figure 5 shows the 
sensitivity of access time to various buffer sizes. It is in­
teresting to note that even the worst case of relational data 
access is still far better than the best case of network data 
access. Therefore the support of a network data model inter­
face on a relational database machine is feasible, but rela­
tively inefficient. 

v. CONCLUSION 

The choice of a data model and set of operations for a data­
base machine has a great effect on the efficiency of its user 
interface implementation. Such data models and interfaces 
must be carefully determined during the initial design stage. 
A properly designed database machine language will make it 
feasible and efficient in supporting multiple data languages. 

This paper has presented a set of database machine lan­
guage requirements. These requirements are based on our 

t I Buffer = 256 B 

80 

60 

40 

20 

o 20 40 60 80 n 

Figure 4--Comparison of relation and network data access 

experience in implementing the XQL system as a user inter­
face to a database machine. The XQL system provides the 
SEQUEL query language, menu system, interactive form 
processor, and report writer. Host language interface is pro­
vided by imbedding SEQUEL statements in application 
programs. 

The algorithms for supporting hierarchical and network in­
terfaces by using a relational database machine are intro­
duced. The relative performances for supporting relational 

60 

40 

20 

o 20 40 60 80 

Figure 5-Comparison of the buffer size influence to 
relation and network data access 

256 

n 



and network user interfaces are compared. Our analysis 
shows that it is possihle to support multiple user interfaces by 
using a relational database machine. The support for a net­
work user imerface is less efficient when compared with the 
relational approach. The performance can be improved by 
providing additional buffer space. However, even with a very 
large buffer size, the performance of the network user in­
terface is still significantly worse than that of the relational 
interface. 

APPENDIX A 

If the set of basic operations in the database machine is not 
sufficient, it can sometimes be difficult to support certain data 
language. Examples are provided here of our implementation 
of the system XQLlIDM based on a database machine. For 
better readability, we use a QUEL-like language to describe 
the object database machine language code. 

Example 1 

XQL: select name 
from Employee 
where salary > 2000 
minus 
select name 
from Department 
where manager = "D. Smith" 

The object code: 
range of e is Employee 
retrieve into TempI (e.name) 
where e.salary > 2000 

range of d is Department 
retrieve into Temp2(d.name) 
where d.manager = "D. Smith" 

range of t1 is TempI 
range of t2 is Temp2 
delete t1 
where t1.name = t2.name 

retrieve( t 1. name) 

destroy TempI 
destroy Temp2 

This query can be more efficiently handled, if the database 
machine has set operations. 

Example 2 

XQL: select name 
from Employee 
where departno not in 

select departno 
from Department 
where manager = "D. Smith" 

Data Language Requirements of Database Machines 625 

The object code: 
range of e is Employee 
retrieve unique into Templ(e.departno) 

range of d is Department 
retrieve unique into Temp2( d.departno) 
where d.manager = "D. Smith" 

range of t1 is TempI 
range of t2 is Temp2 
delete tl 
where tl.departno = t2.departno 

retrieve( e. name) 
where e.departno = tl.departno 

destroy TempI 
destroy Temp2 

This query can be more efficiently handled if the database 
machine can support a set operation in search conditions. 

APPENDIX B-A PROPOSED SET OF OPERATIONS 
FOR THE RELATIONAL DATABASE MACHINE 

1. Projection: Project (at, ... , ap ) from R 
where ai is an attribute name of the relation R. The 
result is a new relation obtained from R by deleting 
from each tuple all attributes not listed in (at, ... , ap ). 

\Ve note that after the elimination of some attributes 
from R, the new relation may contain duplicated 
tuples. 

2. Selection: Select from R where <condition> 
Here the <condition> is a Boolean predicate which 
specifies the search condition. Each term in the predi­
cate contains an arithmetic comparison operator and 
two operands that are' constants or attribute names of 
R. The terms in the predicate are linked together by the 
logical operators AND, OR, and NOT. The result is a 
new relation which consists of all tuples from R satis­
fying the given <condition>. 

3. Selection of next tuple: Select next from R where 
<condition> 
Same as 2 except only one tuple is returned. When a 
relation is ordered this tuple is the one logically next 
to the last selected tuple. The first execution of this 
operation returns the first tuple in R satisfying 
<condition> . 

4. Ordering: Order R by a 
Where a is an (or a set of) attribute name of the relation 
R. The result is a new relation containing all the tuples 
from R sorted on the attribute (set) a. 

5. Grouping: Group R by a 
Where a is an (or a set of) attribute name of the relation 
R. The result is a new relation containing all the tuples 
from R "grouped" on the values of the attribute (set) a. 
This is useful when aggregate functions are to be per­
formed. 

6. Unique: Unique R 



626 National Computer Conference, 1982 

Relation is sorted on its key and tuples with identical 
keys are removed. 

7. Union: Runion S 
The relations Rand S are identically defined. The re­
sult is a new relation containing all tuples from both R 
and S. 

8. Subtraction: R subtract S 
Rand S again must be identically defined. The result is 
a new relation containing all tuples that are in R but not 
in S. 

9. Intersection: R intersect S 
Rand S again must be identically defined. The result is 
a new relation containing all tuples that are in both R 
and S. 

10. Joining: R join S where <condition> 
Each term in the join <condition> is of the form (a op 
b) where a is an attribute name of R, b is an attribute 
name of S, and op is an arithmetic comparison oper­
ator. The result is a relation containing all possible 
concatenations of tuples from Rand S satisfying the 
given <condition>. 

11. Get next join tuple: R join next S where <condition> 
The join is defined as before. The result returned is the 
next tuple from the join result. 

12. Aggregate functions: F (R.a) 
F is one of the aggregate functions: average, sum, min, 
max, count. The function is performed on the column 
a of the relation R. The result returned is a single scaler 
quantity. If the relation is grouped, then the aggregate 
function is performed for each group. 

13. Delete: Delete from R where <condition> 
All the tuples from R satisfying the condition are 
deleted. 

14. Insert tuple: Insert T into R 
The tuple as given in T is inserted into the relation R. 

15. Update: Update <list> in R where <condition> 
<list> is a list of update actions. Each action is of the 
form Ai = Ui where Ai is an attribute name of Rand Ui 

is the new value to be assigned. The update list is per­
formed for all tuples satisfying the given <condition>. 

16. Assignment: S : = R 
The action is to store R into database as a new relation 
named S. 

The following operations are for expanding select condi­
tion. The result of these operations is a Boolean value that can 
be served as a condition. 

1. Contains: R contains S 
Rand S are two relations of arity k. The result is True 
if all tuples in S are tuples in R, False otherwise. 

2. Does not contain: R does not contain S 
Rand S are two relations of arity k. The result is True 
if there is any tuple in S is not tuple in R, False other­
wise. 

3. Equal: R equals to S 
The result is True if Rand S have the same tuples, False 
otherwise. 

4. In: T is in R 
R is a relation, T is a tuple. The result is True if there 
is a tuple in R equal to T, False otherwise. 

5. Not in: T not in R 
The result is True if there is no tuple in R equal to T, 
False otherwise. 

These operations are the most common ones. The database 
machine should contain all of these operations. On the basis 
of these operations, the queries expressed in most data mod­
els can be easily handled. 

REFERENCES 

1. M. M. Astrahan, et al. System R: Relational Approach to Database Manage­
ment. ACM Trans. on Database Systems 1:2, June, 1976. 

2. D. D. Chamberlin, et al. SEQUEL 2: A Unified Approach to data Defini­
tion, Manipulation, and Control. IBM J. Res 20:61976. 

3. E. F. Codd. Relational Completeness of Data Base SUblanguages. Data 
Base Systems, Courant Computer Science Symposia Series, Vol 6. 1972. 

4. C. J. Date. An Introduction to Database Systems. Third Edition Addison­
Wesley Publishing Company, 1981. 

5. T. Haerder. Implementing a Generalized Access Path Structure for a Re­
lational Database System. ACM Trans. Database Systems, 3:3, Sept. 1978. 

6. Britton-Lee Inc. IDM 500 Intelligent Database Machine 1980. 
7. Software Systems Technology, XQLlIDM System Reference Manual, Ver­

sion 1.0, Jan. 1982. 
8. D. Luo, andS. B. Yao. Form Operation By Example-LanguageforOffice 

Information Processing. Proc. ACM-SIGMOD International Conference 
on Management of Data, 1981. 

9. SQLlDS Reference Manual 1981. 
10. M. Stonebraker, et al. The Design and Implementation of INGRES ACM 

Trans. on Database Systems, 1:3, Sept. 1976. 
11. J. D. Ullman. Principles of Database Systems. Computer Science Press, 

1980. 
12. J. Woodfill, et al. INGRES Reference Manual, Version 7, April, 1981. 
13. S. B. Yao. Optimization of Query Evaluation Algorithms. ACM Trans. on 

Database Systems, 4:2, June 1979. 
14. R. H. Katz and E Wong. Decompiling CODASYL DML into Relational 

Queries. ACM Trans. on Database Systems, 7:1, March 1982. 



Performance analysis of database join processors 

by FU TONG 
Chongquing University 
Chongquing, China 

and 

S. BING YAO 
University of Maryland 
College Park, MD 

ABSTRACT 

The architecture and performance of a two-dimensional join processor for rela­
tional databases are introduced in this paper. The performance of several recently 
proposed join processor designs is also analyzed. The processing time (perform­
ance) and hardware complexity (cost) of these different join processor approaches 
are compared in detail. The result shows that the two-dimensional join processor 
array has the best performance/cost ratio among the design approaches considered. 

627 





1. INTRODUCTION 

In a relational database system, the data manipulation oper­
ations usually involve selection, projection, and join oper­
ations. One of the most important operations in query pro­
cessing is the join operation. It is usually the most costly 
operation to perform. The efficiency of the join operation has 
a determining effect on the system performance. Because of 
its importance, the join operation has been a subject of in­
tensive study in the development of a relational database sys­
tem. To maximize the join performance, query optimization 
algorithms have been developed to determine the most effec­
tive access path. 15-17 While these methods do prove to be 
effective in the content of conventional computer systems, a 
closer look at the nature of the join operation reveals the 
opportunity for concurrent operations. Using appropriate 
hardware and system organization, the concepts such as paral­
lel processing and pipe lining could be applied to greatly en­
hance the performance of the join operation. This new ap­
proach has become feasible with recent advances of hardware 
technology. It is now possible to design specialized processors 
to perform complex, dedicated functions. 

Several designs for processing the join by hardware have 
been proposed. These include Kung's systolic array;5 De­
Witt's MIMD machine DIRECT,3 Hsiao's DBC,9 Wah and 
Yao's DIALOG,14 and CAFS.8 Among these special join pro­
cessor designs, only the systolic array, DBC, and DIALOG 
processors are specifically designed for VLSI implementation. 
Let us briefly examine and compare these design approaches 
(see Figure 1). 

1. The systolic array Jom processor is basically a one­
dimensional processor array. The two relations to be 
joined are piped into the array from two opposite direc­
tions. The two pipelines move in synchrony, one step for 
each time unit. Join processing takes place when values 
of records from different relations meet in a join pro­
cessor element. The number of processors required in 
the systolic array is twice the number of records in the 
larger relation to be joined. An alternative method is to 
load the smaller relation and pipe only the larger one. In 
this case, the number of processors required is equal to 
the number of record.s in the smaller relation. 

2. The join processor array in DBC is arranged in a circular 
fashion. One of the relations to be joined is partitioned 
and loaded into the memories of the join processors. 
The keys of records are stored in an associative memory, 
while the records are stored in a hash table. After initial 
loading is complete, the other relation to be joined is 
piped into the join processors. Each processor compares 
the join values associatively and, if successful, accesses 

Performance Analysis of Database Join Processors 629 

R 

\ , 
'\ 

"-

1.11 

a. "Systolic" array 

J 

'" "". '01 

" 

'" 

'" ", 

CTL 

I 
I 

M· I 

./ 
.; 

/ 
I 

/ 

b. Join Processor in DBC 

Control Logic 

\ 
I 
I 

s 

R 

~--------~------------------------------s 
Sequ~nc~ of Bits from the Selection Processing Module 

c. Bit-sliced associative join processor 

Figure 1-Various VLSI join processor designs 



630 National Computer Conference, 1982 

the records in the hash table; then it propagates the 
record into the next processor. 

3. In the bit-sliced associative join processor of DIALOG, 
the join values from one of the relations to be joined are 
stored in a bit-sliced associative memory. Records of the 
other relation are compared with the contents of the 
associative memory in bit slices. The bit-sliced associa­
tive memory can be viewed as a one-dimensional array 
of processors. 

All the previous designs of join processors are, in fact, 
variations of one-dimensional processor arrays and are based 
on pipe lining or a serial processing mechanism. In this paper, 
the design of a two-dimensional join processor array will be 
introduced. The one-dimensional array designs are viewed as 
special cases representing a row from a two-dimensional ar­
ray. While most of the proposed join processors claim to have 
linear processing time, a careful inspection of their design 
shows significant performance differences. The object of this 
paper is to analyze these different approaches, using a unified 
framework and parameters in order to gain insight into the 
nature of join processing. 

We begin by defining the join operation. The join of two 
relations Rand S can be expressed by 

R tXJ S = {(r,s) I r eR, s eS, r.Ai 8 s.Bj } 
F 

where F is a logical expression on the attributes of relations R 
and S, i.e., 

F = Fl··· Fk ••• Fq 
Fk = A i 8Bj 

Where Ai and Bj are the join attributes of the relations Rand 
S respectively, 8 represents one of the following arithmetic 
comparison operators: <, ~, =, =1=, ~, >. 

Example: Consider the two relations: 

EMPLOYEE( EMP, 
Carter 
Smith 
Todd 
Wang 

DEPT# ) 
1 
1 
2 
3 

DEPARTMENT( DEPT#, LOCATION) 
1 NY 
2 DC 
3 DC 

To make a list of all employees and their working locations, we 
must perform the following join: 

EMPLOYEEt><lDEPARTMENT 
(EMP, DEPT#, LOCATION ) 
Carter 1 NY 
Smith NY 
Todd 2 DC 
Wang 3 DC 

Conventionally there are two basic approaches to evaluate 
a join:1s 

1. Nested loop. Each S -record is compared with all the 
R-records on all q join values. This operation, in fact, 
p~rforms a Cartesian product of the two relations. 

2. Ordered merge. The records in both relations are or­
dered on the join values by either sorting or indexing. 
Records in both relations are then scanned and com­
pared in one pass. 

Although the second method appears to make fewer record 
accesses, there is an added cost for sorting and/or maintaining 
indices. Furthermore, during the ordered merge, if multiple 
records from both relations contain a matching join value, a 
Cartesian product of these records must be performed. This 
step is usually performed using a nested loop method. 

The sequential evaluation of a nested loop is very ineffi­
cient. Assume that the number of Boolean terms (i.e., the 
number of comparison value-pairs from Rand S) in F is q and 
the number of tuples (i.e., records) in Rand S are m and n 
respectively. The number of operations required for se­
quential evaluation of a nested loop is 

This can be greatly improved by parallel join processors. In 
principle, the nested loops can be realized with a three­
dimensional join processor architecture, in which there is one 
dedicated m*n processor matrix assigned for each of the q 
terms in F. In practice, however, there are seldom situations 
where many pairs of attributes are involved in F (i.e., q is 
small). Thus in our analysis we will consider only one- and 
two-dimensional join processor array architectures. We will 
show that a nested loop algorithm can be realized by specially 
designed hardware having a very high processing speed. 

The following section presents a design of a two­
dimensional join processor array. An analysis of alternative 
join processor approaches is given in Section 3. The one­
dimensional join processor array is considered as a row of the 
two-dimensional join processor array. In Section 4, the 
performance/cost index of these different approaches is esti­
mated and compared. 

2. THE ARCHITECTURE OF A TWO-DIMENSIONAL 
JOIN PROCESSOR 

a) Organization of the Processor Matrix 

As mentioned above, if the number of tuples in the two 
relations are m and n respectively, the complexity of this 
operation is proportional to m * n. If we divide the two 
relations into x and y subrelations respectively and process all 
of the subrelations in parallel, as shown in Figure 2, the com­
plexity of the join operation can be reduced to (m * n )/(x * y). 

The architecture of the join processor array is shown in 
Figure 3. There are four components of the system: the inter­
nal buffer storages for partitioned- key values from the re­
lations Rand S; the processors which compare the key values 



P11 P12 
R:~ __ ~-L~ __________ ~ 

PxY] I 

5y 

Figure 2-The join processor matrix 

read from the buffer storages; the output buffer storages 
which store the addresses (or pointers) of the matched tuples; 
and controVtiming logic which issues the micro operation sig­
nals. Each of the four components, except the controV 
timing logic, is in turn composed of a set of identical cells. 
The highly regular structure makes it a candidate for VLSI 
implementation. 

When processing the join, only the join values (attributes) 
in records from relations Rand S need to be compared for a 
match. Therefore, only these specified values need to be 
stored in the internal buffer memories RBi, sand SBj , s (Fig­
ure 3). The processors Pijs in Figure 2 are simply a set of 
comparators that compares one byte of x values from RBiS 
with one byte of y values from SBjs in parallel. The results of 
comparison are indicated by the flag registers FijS. Usually a 
value may have a length of many bytes. 

Instead of concatenating and storing the joined records 
directly in the output buffer B (Figure 3), only the addresses 
(or pointers) of the joined records are stored. The final join 
result can be constructed using these pointers. These two 
processes can be pipelined to gain efficiency. 

Now let us describe briefly how the JP-matrix (Figure 3) 
works. Before the join processor is activated, the two re­
lations (files) are accessed through the data filter. l1 The 
selected/projected records are stored in the system buffer, and 
the corresponding key values are stored in the internal buffers 
RB's/SB's respectively. At the same time, other initial pa­
rameters such as the beginning (head) addresses of the two 
selected relations R/S in the system buffer (HAR/HAS), the 

Figure 3--The architecture of a two-dimensional join processor 

Performance Analysis of Database Join Processors 631 

record length (LRR/LSR), the key value length (LVR/LVS), 
the number of records in the selected relation (#R, #S), and 
the constants x and yare input into the JP. 

As soon as the initialization of the JP is done, the join 
processor is started by the "start" signal from the system 
controller. The first phase of the join process is to read out the 
first set of key value pairs from the RB 's and SB 's and broad­
cast them to the comparator matrix aiong the x- and y-in­
ternal data busses respectively (refer to Figure 3). The x 
R -values are compared with y S -values in x*y comparators 
simultaneously. 

The second phase assembles the result of the join. If there 
exists at least one nonzero flag in a row of the flag-matrix, say 
the (i, j)-th bit in Figure 4, the address of the record corre­
sponding to the key value read from RBi must be stored along 
with the address of the corresponding S -record into the out­
put buffer B i • If more than one flag are nonzero, then their 
corresponding record addresses must also be stored. On the 
other hand, an all-zero row indicates failure in matching, and 
no result is formed. 

F 

1 

2 

x 

1 2 

B 1 

B B 

B B 

1 1 

J y 

B 1 

B B 

1 B 

B B 

Figure 4-The flag matrix of a 2-D join processor 

r0"""-

- B1 
f--

- B2 
f--

r--
~ Bl 

f== 

r--
~ ax -

The comparison of the next set of S -values (with the same 
set of R-values) takes place immediately after the resultant 
flag-matrix is accessed and the first set of matched records 
addresses are stored in the output buffers. This two-phase 
process repeats until all the S -values stored in each SB are 
exhausted. The same process is then repeated for all the R­
value sets. The detailed algqrithm for performing the join is 
given in Appendix A. 

b) Performance Evaluations 

The actual time required for the join process depends on 
the following factors: 

1. The basic parameters such as m, n, x, y, etc. 
2. The expectation of the number of matched records, E 
3. Memory access time 
4. Word length of the memories 
5. Initialization overhead 
6. Terminating overhead 



632 National Computer Conference, 1982 

Suppose that we neglect the last two factors and consider only 
the time interval from the beginning of the join operation to 
the end of the matched record address output operation. We 
will first estimate the processing time Tb required for match­
ing one set of R - and S -records. This will be used sub­
sequently to compute the total join processing time. The basic 
join processing time Tb consists of two sub-intervals (refer to 
Figure 5): 

1. The time required to compare the key-value pairs and 
get the comparison result, Te 

2. The time required for computing the addresses and write 
into the output buffer, Ta 

A .... _______ _ 

Figure 5-The scheduling of a 2-D join processor 

Assume that a pair of Ie-byte values can be compared in one 
clock period tep. Assume further that the times required to 
generate a set of addresses of the compared records and to 
store them in the output buffer are both equal to tep. The basic 
processing time is 

(1) 

where 

is the time required to compare a value of Iv bytes in a Ie bytes 
comparator and get the comparison result, ytep is the time 
needed for generating the addresses of y S -values in se­
quence, and Etep is the expected time needed for storing E 
matched addresses (among the y addresses generated) into B. 

The expectation for y S -values matching with one R -value, 
E, may be estimated as follows. Assume that the total distinct 
values in join attribute domain is k. The value of k depends 
on the property of the attribute and usually can only be esti­
mated. For a particular join value in a R -tuple, the probability 
for it to match one of the y selected join values of the S -tuples 
is 11k. The expectation of the number of successful matching 
in y join values is, therefore, 

E = ± 1*1. =l 
j=l k k 

(2) 

The processing time required for one iteration which com­
pares all S -values with one set of R -values is simply nly repe-

titions of Tb • The total join processing time is therefore mix 
this single iteration: 

m (n ) m*n (Iv ) T2 = - - Tb = -- - + y + E t 
J X Y x*y lc ep (3) 

Substituting E from expression (2), we have 

mnlv mn ( 1) 
1j2 = xylc tep + X 1 + k tcp (4) 

3. ANALYSIS OF ALTERNATIVE JOIN PROCESSOR 
APPROACHES 

In this section several join processor designs are reviewed, and 
equations for estimating the performance for each design are 
derived. These equations will be used as the basis for the 
performance comparison. 

a) One-dimensional Processor Array with Broadcasting 

Each row of the two-dimensional join processor matrix de­
fines a one-dimensional join processor array. Figure 6 shows 
that only the S relation is partitioned into N subrelations. Join 
values of the R relation stored in the R buffer are broadcasted 
to the processors Ph P2, ••• , PN for parallel comparison. 

The basic processing time Tb can also be estimated by using 
expression (1), in which parameter y now represents the total 
number of processors. If we denote the total number of paral-

lel processors by N, the total processing time, Tj is simply rr;; 
repetitions of the basic cycle: 

r---------------------, 
I I 
I 

I 
I S81 
I 

SB2 581 

------ , 
I 
I 

san I 

I L _____________________ ~ 

Figure 6-Architecture of a one-dimensional join processor 

b) One-dimensional Processor Array with Pipelining 

(1) Systolic join processor arrayS 

The general organization of this approach can be repre­
sented by the organization shown in Figure 7. Suppose we 
only consider the join values to be processed. The R -values 



fin flJ 

f13 f22 f31 
f12 f21 
fll 

SRS 
f.., 

f(_1)(n-2) f.(n-1) 

Figure 7-Architecture of a "systolic" array 

are first loaded in the shift registers SRR. The S -values are 
then piped through the processors via the shift registers SRS. 
The join results, which are produced after comparing the i-th 
S-value with the j-th R-value, are indicated by iij' 

The processing time required is tp=tr+ts+tcn where tr is the 
time required for preloading all the R -values, ts is the time 
required for piping all S -values, and Ttr is the time required to 
test the result f;j' s and produce the join result. Assuming 
ttr>ts, if the S -value piping is overlapped with the result pro­
cessing, the join processing time is now 

(6) 

where ti is the time required for inputing the first S -value into 
the S shift registers. Usually ti is much smaller than tr or ttr. 

(2) Join processor of DBC 

The architecture of the join processor proposed by the 
DBC project9 can be illustrated in Figure 8. The S relation 
(i.e., the source relation) is partitioned into N subsets. Each 
S record is entered into a hash table (i.e., A memories) by the 
values in associative memory am. After all the S records are 
in place, the R records are piped through the N processors. 

Figure 8-Architecture of a DBC join processor 

Performance Analysis of Database Join Processors 633 

The join values of R are compared with those stored in am's. 
It a match is found, the corresponding record is retrieved from 
A memories and output to the C memories. 

Conceptually this method is identical to the systolic array. 
The implementation difference is that an associative memory 
is used for join value matching, and a hash table is used for 
record storage. The R records are allowed to enter into all of 
the processors simultaneously. This could cause implementa­
tion difficulties if many processors are to be integrated on a 
single VLSI device. 

The processing time required for this join processor can be 
estimated by the following formula: 

Tjd=N (tb + tam +ta) +n (tb+tam ) + (~)t (7) 

where ta, tb, tam are the access times for the A, B, and associa­
tive memory respectively. The size of the result relation is 
given by nr • The hashing function efficiency is e. 

4. PERFORMANCE EVALUATIONS 

Let us first investigate the average processing time required by 
each of the four different join processor designs. Their hard­
ware complexity will be investigated next. Finally, we 
will estimate their performance/cost ratio, based on these 
calculations. 

a) Processing Time 

In order to compare alternative designs in a common frame­
work, we will make several assumptions. The two relations to 
be joined are assumed to have the same size of m records. The 
maximum length of a record is Ir bytes, and the maximum 
length of an attribute value is Iv bytes. All the join processing 
operations are synchronized by the same system clock period 
tep. For example, in a one- or two-dimensional join processor, 
if we assume that the buffer memory access time is one clock 
period tep, the time t1 required for reading one R -value and N 
S -values and obtaining the comparison results is 

(8) 

where Ie is the length of the comparator. The first term is for 
the access and comparison of a join value in Ie-byte units. The 
second term is for getting the result of the comparison. Fur­
ther, we use the symbol W z for denoting the word length of 
memory z. 

The analysis of the join processing time given in the pre­
vious section is now summarized as follows: 

I-D array: 

(9) 

2-D array: 



634 National Computer Conference, 1982 

systolic array: 

r 2] 
Tjs = l (m + 1) (8/v) + m 2 + a ~ tcp (11) 

where the vaiue of a depends on whether the join resuit 

records are to be concatenated (a = 2 ~) or only the ad-
Wr 

dresses of the joined records are to be produced (a = 2). 
DBC join processor: 

(12) 

where h > 1 is the hashing overhead, which depends upon the 
hashing circuit and associative logic being used. 

If we assume all the memories except the am have the same 
word length, Wa and e = 1, then we have: 

(13) 

Based on the equations (9) through (13), and taking one of 
the parameters as the variable we will compute and compare 
the performance of these four design approaches. We first 
consider the join processing time as a function of N, the 
number of processors. After simplification of the equations, 
we have: 

(14) 

(15) 

(16) 

(17) 

where A, B, C, D, and G are constants readily derived from 
the system parameters using equations (9) through (13). 

Next, let us consider the join processing time as a function 
of m, the size of the relations to be joined. Again we can 
simplify the equations as follows: 

Tjl = C1m 2 

Tj2 = C2m 2 

Tjs = C3m2 + C4m + Cs 
Tjd = C6m2 + C7m 

(18) 
(19) 
(20) 
(2/) 

where C's are constants determined by the join processor 
system parameters. 

Suppose we have the following parameters: length of record 
Ir = 512 bytes, length of value Iv = 64 bytes, length of address 
word Wad = 18 bits, system clock period tcp = 0.25 microsec., 
and consider in worst case, k = 2, length of comparators in 
1-D and 2-D processor arrays Ic = 2 bytes. Furthermore, as­
sume the word lengths of A, B, C memories in DBC join 
processor are all equal to 8 bytes, the word length of the 
associate memory is 16 bytes, and the hash function efficiency 

e = 1. In systolic array, we assume that only the pointers to the 
matched records are stored. Based on these parameters, it is 
easy to calculate the sets of constants A, B, C, D, G, and Ci 

(i = 1, ... 7). The calculated results ofthe functions Tj = feN) 
and Tj = f(m) for the investigated join processor designs are 
shown in Figures 9 and 10 respectively. 

Tj uS 

10 7 

T· = f(N) I 
J m =1024 

5 

----- 6 ----------~----

I I I I 
102----~4--~-1~6----6~4--~2-5~6---1-0~2-4---N-

1-1-0 JP 
2-2-0 JP 
3-"systolic" array 
4-0BC JP 
5-0BC JP, input values 

output pointers 
6-2-0 JP, using associative memories 
Figure 9-Join processing time vs. number of parallel processors (m = const) 

Since systolic array requires the number of processors to be 
at least the size of the smaller relation, it is expected that the 
processing time is independent of the number of processors, 
N, as shown in Figure 9. For fixed relation size (e.g., 
m = 1024), the processing time for the other designs decreases 
rapidly with increasing N. The rate of decreasing slows down 
when N 2:: 32 in the case of the one-dimensional join processor 
array (curve 1 in Figure 9). No apparent improvement is no­
ticed when N reaches 256 or greater. 

The DBC join processor is the slowest for small relations 
and a small number of processors. Its performance improves 
when more processors are used. For a fixed number of pro­
cessors, say N = 64, and small relations, DBC and systolic 
array join processors are worse than one-dimensional and 
two-dimensional arrays. However, for a very large relation 
size, they become faster than the one-dimensional array, be­
cause a large number of processors are working simulta­
neously. In any case, the two-dimensional array has the best 
performance. 

If we assume that the DBC join processor also works on 
join values instead of the entire records and producing result 



101~~~4~48~1~6~3-2-64~-1~28--~5-1~2~-2-0~4-8~-a-1~9-2~m 

1-0JP 
2-2-0 JP 
3-"systolic" array 
4-0BC JP 
5-0BC JP, input values 

output pointer.s 
6-2-0 JP, using associative memories 

Figure 10-Join processing time vs. size of relation (N = const) 

pointers instead of the result relation, its performance index 
should be greatly improved (curve 5 of Figures 9 and 10). The 
high speed is due to the use of associative memories. Obvi­
ously associative memory can be used also for the one- and 
two-dimensional designs. 14 The performance of the two­
dimensional design using associative memories is shown in 
curve 6 of Figures 9 and 10. 

It is apparent that the join processing times increase in 
proportion to the square of the relation size m for all four 
approaches. It was claimed by Menon and Hsia09 that Tjd is a 
linear function. Our result show's that Tjd also has exponential 
characteristics, because nn the result relation size, is actually 
proportional to m 2. 

We also note that since the join processor must obtain its 
input from the relations stored in secondary storage, its per­
formance is limited by the retrieval time for the relations R 
and S. If we assume these times to be Ts and Tr respectively, 
the actual join processing time must be greater than the sum 
of these two terms, i.e., 

(22) 

b) Hardware Complexity 

To estimate the relative cost of the different join processor 
approaches, it is reasonable to compare the total amount of 
equivalent memory cells. The largest amount of components 
required is for the buffer memories and the processor array. 

Performance Analysis of Database Join Processors 635 

The complexity of the controllers is almost the same for these 
four different designs. With these assumptions, we can derive 
the hardware complexity of the four designs. The following 
equations are derived in terms of total amount of memory 
cells (including those memory cells contained in the pro­
cessors), Q, as the index of hardware complexity. 

One-dimensional join processor array: 

QI = 8*lv(m + m) + 2*Wad(N + 1) + 8*lc(2N + 1) 
= 16*lv*m + (16*lc + 2wa)N + (8*lc + 2wa) (23) 

Two-dimensional join processor array: 

Q2 = 8*lv(m + m) + 2*Wad(N + VN) + 8*lc(N + 2 VN) 
== 16*lv*m + (8*lc + 2wa)N + (16*lc + 2wa) VN (24) 

Systolic array: 

Qs = 3* 8*lv*m + 8*lv*m + m*m 
= 32*lv*m + m 2 

DBC join processor: 

m 2 

Qd = 8*lr*m + f* 8*lr*m + Wam*m + 8lrT 

= 8lrm( 1 + f +~) + 8wamm 

= 8lrm 2 + 8[lr(1 + f) + wam]m 

(25) 

(26) 

where the lr and Iv are the lengths of record and join value in 
bytes respectively. The width of the associative memory word 
in bytes is W am' and 0 < f < 1 is the percentage coefficient for 

Q bits 

10
10 

10
9 

1-1-0 JP 

Q = f(N) 

-------------- - - - 5 
4--------------------------

5---------------------------

_________________ 6 
------- - -- ----- ---3 

6--------------------------­
----------- - -- ---1.2 3-------------------------

1.2------------

2-2-0 JP 
3-"systolic" array 
4-0BC JP 
5-0BC JP, input values 

output pointers 
Figure ll-Number of memory cells vs. number of parallel processors 



636 National Computer Conference, 1982 

the B memory capacity, which takes into account the speed 
matching between the input and output of the B memory.9 

Figures 11 and 12 show the number of memory ceiis Q 
required by each design as a function of Nand m respectively. 
As shown in Figure 11, the complexities are almost indepen­
dent of N for constant m. On the other hand, Figure 12 shows 
that the complexities are proportional to m 2 for constant N. 
Both figures show that the complexity of one- and two­
dimensional designs are less than other designs. 

a 
bits 

1-1-0 JP 

Q= f(m)1 

2-2-0 JP 
3-"systolic" array 
4-0BC JP 

N =64 

.- ------' 

5-0BC JP input values 
output pointers 

.---
6._------

6-0BC JP, based on the A, B memories sizes given in 
reference 9 

Figure 12-Number of memory cells vs. size of relations 

We note that the complexity estimation for the DBC join 
processor does not include the A memory overflow capacity. 
The DBC join processor design is so costly that even if we 
eliminate the cost of the C memory, it still has the highest 
hardware complexity due to the use of associative memories 
and hashing. 

c) Performance/Cost Ratio 

Using the equations developed above, we can compare the 
performance/cost ratio of the four design approaches. The 
calculated results are shown in Figures 13 and 14 with constant 
N or m values respectively. The result of computation indi­
cates that the two-dimensional join processor array has the 
most favorable performance/cost characteristics. The per­
formance/cost indices for the four designs, under the same 
parameters of N = 64 and m = 1024, are listed in Table I. 

l/T··Q= f NI J m = 

1-1-0 JP 
2-2-0 JP 
3-"systolic" array 
4-0BCJP 

4 

5-0BC JP, input values 
output pointers 

16 64 

1 

256 1024 N 

Figure 13--Performance/cost ratio VS. number of parallel processors 
(m = const) 

1 ITjoQ 

1 
l/sec.k:bit 

1-1-0 JP 

128 

2-2-0 JP 
3-"systolic" array 
4-0BC JP 

1/T"O=f(m)1 
J N=64 

256 512 1024 2048 4096 m 

5-0BC JP, using values and pointers 
6-0BC JP, based on the processing time and A, B 

memories sizes given in reference 9 
Figure 14--Performance/cost ratio VS. size of relations (N = const) 



Table I-Performance/cost indices of join processors 

Approach Pfm/cost (l/sec· Kbit) 

2-D Array 
1-D Array 
systolic 
DBCJP 
DBC JP* 

4850.10-6 

1440.10-6 

495.10-6 

1.2.10-6 

330.10-6 

*Using values and pointers instead of entire records. 

5. CONCLUSIONS 

In this paper we have analyzed several approaches for the join 
processor design. The proposed join processors can be classi­
fied into three categories: (1) one-dimensional array with 
pipelining, (2) one-dimensional array with broadcasting, and 
(3) two-dimensional array. Our analysis shows that the two­
dimensional array approach has significant advantages in 
terms of both processing speed and hardware complexity. In 
addition, the two-dimensional array processor has a simple 
organization. The regularity of this design also makes it suit­
able for VLSI implementation. A small-scale experimental 
VLSI chip has already been implemented. The experi­
mentation of a more complete join processor array is being 
planned. 

The join processor reported here is an integral part of a 
database machine which also contains a hardware data filter 
that performs selection functions, and a database operating 
system. Analysis and performance of the experimentai ma­
chine will be reported elsewhere. 

APPENDIX A 

The join processor requires initialization before it is started. 
The system must transfer the following parameters to the 
corresponding internal registers: 

1. Starting address of the selected file R in system buffer 
area, HAR 

2. Starting address of the selected file S in system buffer 
area, HAS 

3. Number of records in file R, #R 
4. Number of records in file S, #S 
5. Length of R-record, LRR, in bytes or words 
6. Length of S -record, LSR, in bytes or words 
7. The relational join operator, op, op 
8. Length of selected R-value, LVR 
9. Length of selected S -value, LVS 

10. Partition constants for Rand S, i.e., x and y 

All the initial parameters are transmitted through the data bus 
under the control of the system controller. 

Suppose file R and file S contain m and n records re­
spectively. The join processor performs [mix] * [nly ] iterations 
of the basic value-matching process. 

The algorithm shown in Appendix Figure 1 describes the 
iterations in more detail. 

Performance Analysis of Database Join Processors 

PROCEDURE JOIN ( rvalue, svalue ) 

CONST INTEGER: m, n, x, y; 
VAR INTEGER: i, j, countf, countv, countr, counts, rvalue, svalue; 
VAR BOOLEAN: start, stop, F, F(i), error, zero; 
MEMO REGISTER: LRR, LSR, LVR, LVS, HAR, HAS, RAddr, SAddr, OP, Cl, 

C2, JR, is, X, Y; 
MEMO BUFFER: B(i), RE(i), SB(j); 

1* initializat:on *1 
LRR ;= length of R-recorci 
LSR : = length of S-r ecord; 
HAR := head address of file R in system buffer area; 
HAS := head address of file S in system buffer area; 
OP := comparison operator code; 
LVR : = length of selected R-value; 1* LVR must equal to LVS, 

otherwise, it is recognized 
as error */ 

LVS : = length of selected S-value; 
iR : = number of records in R; 
is : = number of records in S; 

:= Xi 
:= y; 

BEGIN 1* start the join process *1 
RAddr := HAR; 
SAddr := HAS; 
countv: = -LVR .;. 1; 1* complement of LVR '1 
countr::::: -[mix] + 1; 
counts:= -[n/y] .;. 1; 

IF error = true THEN stop ELSE 
WHILE countr != 0 00 1* (mix) R-iteration control *1 

BEGIN 1* the S-iteration *1 
WHILE counts != 0 DO 1* (n/y) S-iteration control *1 

countf := 0; 
WHILE county ! = 0 DO 

BEGIN 1* enter the 1st phase, broadcasting the R­
and S-values byte- or word-wise *1 

END 

Cl := BR; 
C2 := BS; 
countv ::::: countv - 1; 

F : = Clop C2; 1* set the flag-matr ix according to the 
result of comparison *1 

637 

county : = -LVR .;. 1 1* recover the value length counter *1 
IF F = true THEN 1* check the entire flag-matrix *1 

END. 

END 

1* enter the 2nd phase: check each row of 
the flag-matrix, performing and storing 
the addresses of the matched records *1 

IF F(i) = true THEN 
BEGIN 1* check flag and store address iteration *1 

B(i) := RAddr (i); 

END 

FOR countf = 0 UNTIL Y - 1 
1* check the flag-matrix one column at a 

time, store the addresses of the matched 
S-records *1 

IF F(i,j) != 0 THEN 
B (i) : = SAddr; 

countf := countf .;. 1; 
SAddr := SAddr + LSR; 

counts ::::: counts - y; 

RAddr (1) := RAddr (y) .;. LRR; 1* produce the next set of R-record 
addresses *1 

countr := countr - X; 

Appendix Figure 1 

REFERENCES 

1. Babb, E. "Implementing a Relational Database by Means of Specialized 
Hardware." ACM TODS, Vol. 4, No.1, Mar. 79, pp. 1-29. 

2. Banerjee, J., and D. K. Hsiao. "Concepts and Capabilities of a Database 
Computer." ACM Trans. on Database Sys., Vol. 3, No.4, Dec. 1978. 

3. DeWitt, D. J. "DIRECT-A Multiprocessor Organization for Supporting 
Relational Data Bases Management Systems." IEEE Trans. on Computers, 
Vol. C-28, No.6, June 1979. 

4. DeWitt, D. J., and W. I. Madison. "A Performance Evaluation of Data­
base Machine Architectures." 7th International Conference on VLDB, 
Cannes, France, Sept. 9-11, 1981. 

5. Kung, H. T., and P. L. Lehman. "Systolic (VLSI) Arrays for Relational 
Database Operations." ACM SIGMOD, 1980. 

6. Leilish, H. 0., G. Stiege, and H. Ch. Zeidler. "A Search Processor for 
Database Management Systems." IEEE, 1978. 

7. Luque, E., J. J. Ruz, A. Ripell, and A. Bautista. "Database Concurrent 
Processor." IEEE, 1979. 

8. V. A. J. Maller. "The Content Addressable File Store-CAFS." ICL Tech 
J., Nov. 1979, pp. 265-279. February 1981. 

9. Menon, M. J., and David K. Hsiao. "Design and Analysis of a Relational 
Join Operation for VLSI." Report, Dept. of Computer and Information 
Science, The Ohio State University, Feb. 1981. Vol. 1, No.3, September 
1976. 

10. Stanley, Y., W. Su et al. "Database Machines and Some Issues on DBMS 
Standards." NCC, 1980. 



638 National Computer Conference, 1982 

11. Sheng, Y. Z., F. Tong, and S. B. Yao. "Data Filter-A Relational Selection 
Processor." Tech. Report, Database Research Laboratory, V niversity of 
Maryland, College Park, MD 20742, October 1981. 

12. Tong, F., and S. B. Yao. "Design of a Two-Dimensional Join Processor 
Array." 6-th Workshop on Computer Architecture/or Non-Numerical Pro­
cessing, Hyeres, France, June 1981. 

13. Tong, F., and S. B. Yao. "Logicai Organization of Two-Dimensional Join 
Processor Matrix." Technical Report, Database Research Laboratory, 
Vniv. of Maryland, College Park, MD 20742, 1981. 

14. Wah, B. W., and S. B. Yao. "DIALOG-A Distributed Processor Organi­
zation for Database Machines." AFIPS Press, Vol. 49, 1980. 

15. Yao, S. B. "Optimization of Query Evaluation Algorithms." ACM TODS, 
4, 2 (June 1979). 

16. Wong, E., and K. Yousseffi. "Decomposition-A Strategy for Query Pro­
cessing." ACM Transactions, Database Systems 1,3 (1976), pp. 223-241. 

17. Blasgen, M. W., and K. P. Eswaran. "Storage Access in Relational Data­
bases." IBM Systems Journal, 4 (1977), pp. 363-377. 



Evaluating database management systems 

by EDWARD DAVIDSON 
General Electric Company 
Philadelphia, Pennsylvania 

ABSTRACT 

This report documents a methodology developed and used for the evaluation and 
selection of database management software. The basic methodology can be used in 
the evaluation of other types of software. The report describes the step-by-step 
process and provides an extensive discussion of the definition of evaluation and 
selection criteria. The report will be of most use to first-time evaluators, but may 
also be of use to more experienced personnel. 

639 





BACKGROUND AND SCOPE 

In the course of conducting an evaluation of several candidate 
database management software packages with the objective of 
selecting one of them for a particular application, it was noted 
that there were no clear and concise guides available to assist 
novice evaluators in this type of task. With the rapid changes 
in computer technology and the decline of hardware costs, 
more and more applications will be turning to database man­
agement systems. It was felt that a guide to the evaluation of 
database management systems would be of great use to the 
many organizations that will be faced with the task of select­
ing a software package for a particular environment or 
application. 

This guide has been written for first-time evaluators; how­
ever, more experienced personnel may find some useful infor­
mation presented. It is not meant to be the sole source of 
information needed to conduct thorough evaluations. Rather, 
it presents a sequence of events, suggestions of sources of 
information, and a set of evaluation criteria that should be 
augmented or amended as necessary to suit particular envi­
ronments or applications. In some cases, the evaluation crite­
ria present alternative conditions and possible implications of 
each alternative. 

ENVIRONMENT IDENTIFICATION 

Prior to selecting candidate database management systems for 
evaluation, a determination must be made as to the operating 
environment in which the software will be used. This environ­
ment includes both the computer hardware and the specific 
operating system installed or to be installed. Consideration 
must also be taken of possible subsequent installations of the 
system (i.e., second-site or distributed processing environ­
ments). Will all installations involve the same hardware and 
operating system? Some database management software 
packages, especially those marketed by the hardware vendors 
themselves, may be limited to one specific type of hardware or 
operating system, while other packages will run on a wide 
variety of systems. Although the single-environment package 
may solve the current need, it may limit future growth or 
dispersion of the application. 

CANDIDATE SELECTION 

Once the operating environment has been established, it is 
possible to select one or more database management software 
packages for evaluation. There are several sources of informa­
tion that can be used to determine which packages are avail­
able for the appropriate operating environment. 

Evaluating Database Management Systems 641 

1. Datamation is a monthly magazine on data processing 
that contains excellent articles on database technology 
as well as other computer-related topics. Each issue has 
a particular theme and some issues are devoted to data­
base management systems. This publication frequently 
has product surveys (software in general, including data­
base management systems, or specific types of software 
only, such as only database management systems). 
About two years' worth of the publication should be 
scanned for surveys and other pertinent articles. This 
magazine is popular with data processing personnel and 
should be widely available. 

2. Computerworld is a weekly newspaper of data-proces­
sing information. In addition to product advertising, this 
publication has articles describing new product releases 
and enhancements or problems affecting other products 
as well as articles of general interest related to database 
technology. 

3. Datapro Reports, found in many data-processing shops 
or technical reference libraries, contain articles on data­
base techniques and general database topics, as well as 
articles on or reviews of specific systems. In addition to 
synopsis reviews on specific software packages, there are 
charts of comparisons between several similar systems. 
The product reviews are the results of Datapro surveys 
of product users and, depending on the number of re­
spondees, pertinent or meaningful information mayor 
may not be complete. Not all products are included; 
however, most of the popular, established packages are 
represented. 

4. Interface is a quarterly publication, primarily available, 
and used, for vendor advertising. There are several edi­
tions, one of which contains database management sys­
tems. There is also an edition devoted to minicomputer 
software. With this publication, most of the popular 
database management systems can be compared briefly 
on relative features and price, vendors' addresses and 
other contact information can be determined, and pro­
motional literature can be requested through reader­
service cards. 

5. Micro-Mini Systems is a monthly publication of interest 
to micro and minicomputer environments. During the 
past year, they have reviewed a number of database 
management systems for the mini and micro 
environments. 

In addition to utilizing the publications described above, 
information on possible candidates may be provided by the 
personal experiences of the organization's staff members or 
from the hardware vendors, who may be able to provide a list 
of software which runs on their equipment. 



642 National Computer Conference, 1982 

Upon compilation of the list of candidate software, each 
software vendor should be requested to send its promotional 
literature, which can give an overview of the features of the 
package. In addition, vendors may offer, and should be re­
quested, to send a copy of the appropriate user's andlor tech­
nical manuals, which can be used to evaluate exactly how easy 
or difficult it is to use the package, how specific features work, 
the quality and depth of the documentation (how easy will it 
be for data processing personnel to use the manuals effec­
tively, how much training will be required, and so on). Some 
vendors may submit or loan the material free of charge and 
some may invoice the organization for the manuals. However, 
there should be no need to purchase any materials until the 
final selection is made. Upon completion of the evaluation, all 
unneeded documentation should be returned to the vendors 
concerned, suitable for resale, or else purchased from the 
vendor. 

Vendors should be asked to supply a copy of the latest 
annual report (if they are publicly held companies) or a de­
scription of the company with some financial information that 
can be used to evaluate the growth and stability of the vendor. 
If it is felt to be important, the vendor may be asked whether 
there is any litigation in progress that might affect the product 
under evaluation. 

DETERMINING SOFIWARE REQUIREMENTS 

Before the evaluation process can begin, operational and 
functional requirements that the database management soft­
ware must satisfy should be documented. The requirements 
will be used to select, categorize, and order according to 
priority the specific evaluation criteria that will be used to 
review each candidate package. 

The requirements may cover one or more of the following 
categories (some specific requirements for a particular appli­
cation may not be covered in this document but should be 
included as necessary): 

1. Portability-on what computer hardware and under 
what operating systems must the software run? What is 
the timeframe for implementation on different hardware 
or operating systems? On what other hardwarel 
operating system might the software run in the future? 

2. Flexibility-what flexibility features must the software 
have? Integrated data dictionary? Integrated query lan­
guage? Dynamic generation or deletion of keys, user 
views, access privileges? Variable-length records? Must 
the software support multiple users at one time? Multi­
ple databases? Distributed processing? Batch and on­
line users concurrently? 

3. Security-what level of data security is required? File? 
Field? Will it be necessary to restrict access to specific 
data according to the values of one or more fields (i.e., 
user A is limited to data for his department only)? Some 
database management systems provide that level of 
securitY-"security by value"-in the definition of user 
views, while other packages restrict access to the field 
level, so that if a user is granted access to a field. he has 
access to all values of the field. Certain applications, 

such as personnel or payroll, may need to restrict some 
users to specific portions of the database. Most applica­
tions will not need this level of security. 

4. Recoverability-is it required, or desired, that the data­
base management software provide the capability for 
transaction journaling, before-image or after-image 
journaling, or system check pointing? Must the software 
provide automatic recovery (automatically restore the 
database to a certain level based on a checkpoint file or 
journal file when the system is brought back up) or is it 
acceptable to require the intervention of programmers 
or operators to restore the database? Some DBMS soft­
ware packages do not provide recovery features at all, 
relying only on system or user recovery procedures. 

5. High Order Language (HaL) Interface-will the appli­
cation require access to the database from HOLs (i.e., 
COBOL, FORTRAN, PL-1, C, etc.)? Which lan­
guages? How complex will the access keys be (i.e., mul­
tiple fields, etc)? The HaL call procedures for some 
database management systems are more restrictive or 
less flexible than others. Some applications may have 
access requirements that include accessing data in more 
than one file at one time. 

6. Performance-is software response time critical? What 
is the maximum desired response time for a query? Up­
date? Will the application be primarily used for database 
maintenance (update, preplanned reporting) or will it be 
used mostly for ad hoc queries or random retrievals? Is 
data storage critical? Some database software systems 
will make optimum use of online storage by compressing 
multiple blanks, zeros, or empty fields. For extremely 
large databases, depending on the operating environ­
ment, space utilization may be critical. 

After the specific requirements have been determined, they 
should be prioritized according to their importance to the 
success of the application. If some requirements have alterna­
tive implementation possibilities (i.e., good recovery pro­
cedures are required, preferably automatic but we could live 
with semi-automatic procedures as long as ... ), the alterna­
tives should be prioritized. 

When the prioritized requirements have been documented, 
they should be used to develop a prioritized list of criteria 
which will be used in the evaluation of the candidate systems. 
One requirement may result in several specific criteria. The 
following section lists some possible criteria with potential 
implications of alternative implementations. 

EVALUATION CRITERIA 

The items listed below represent possible areas of concern in 
the evaluation of database management systems. These crite­
ria are not intended to be a complete list and are not 
presented in any particular order. These items, and any others 
that organization staff members may suggest, and any that 
may be imposed directly by the requirements, should be re­
viewed for applicability to the system requirements. Where 
alternative implementations are possible, a determination 
should be made as to which implementation is appropriate for 



the application, or the order of preference if more than one 
might be appropriate. Items that have no bearing on the spe­
cific requirements may be discarded, or may be used to futher 
evaluate or compare several possible candidates that satisfy 
the required criteria. These optional criteria might be con­
cerned with vendor reputation and support, level and quality 
of documentation, or features that are not currently required 
but may be of concern for future, as yet unplanned, applica­
tion development activities. 

Performance Features 

1. Does the software optimize multikey retrievals? Some 
database management software will determine the short­
est path to the data described by the combined keys by 
analyzing the number of records qualifying for each key 
and selecting the shortest access parth. Other software 
packages will analyze records based on the order of the 
keys expressed in the query or call statement. De­
pending on the number of records qualifying for each 
key, one technique may result in better performance 
than the other. These concerns apply mainly to re­
lational database management systems. Network-type 
software depends on imbedded pointers in the data, 
although some network systems are developing rela­
tional-type query languages that allow some level of 
optimization. 

2. Does the software run in the "native" mode or in the 
"compatibility" mode on the particular computer sys­
tem? Native mode processing is the most efficient, tak­
ing advantage of the hardware and system software fea­
tures of the host system. It is usually written or compiled 
in the assembler language of the host system. Under 
"compatibility" mode the host system emulates another 
operating system in order to run the software. Emu­
lation can have a significant detrimental impact on 
performance. 

3. If two or more applications or users attempt to access the 
same record at exactly the same time, what level or type 
of lockout occurs, if any? Can two or more users access 
the same record simultaneously for "read-only" or 
"browsing"? Some software allows only one user access 
to a record, regardless of the type of operation per­
formed. Other packages will allow a user to hold a 
record during an update operation to prevent any other 
user's accessing it for updating but will permit other 
users to read or browse the held record. In applications 
that may have many simultaneous access attempts for 
browsing and updating the same record, this could affect 
the response time for some of the users. Some vendors 
use the term "multi-threading" to describe this feature. 

4. Does the database management software allow simul­
taneous batch and interactive applications? Is there a 
software limit to the number of simultaneous users or 
applications? 

5. What are the software limitations, if any, with regard to 
the number of databases supported by one copy of the 
software? Are there any limitations to number of files 
per database, number of records per file, number of 

Evaluating Database Management Systems 643 

bytes per record, number of bytes per database, and so 
on? Certain applications with large data requirements 
may find specific software packages too restrictive or 
limited with regard to the amount of data that can be 
handled. 

6. Will the vendor provide a copy of the database manage­
ment software, or allow access to a C9PY, for bench­
marking? Will there be a charge for this? Will the vendor 
provide any assistance in the benchmarking set-up or 
execution? If benchmarking of the software is not possi­
ble or feasible for an organization, attempts should be 
made to obtain benchmark results or reports from other 
customers who have perform~d benchmarks. Although 
the specific controls of the current evaluators cannot be 
tested, pertinent performance information may be de­
rived from these reports. 

7. Must the database be taken off-line or out of productive 
use to perform any or all database administration func­
tions such as defining a new field, expanding a field's 
size, defeting a field, assigning a new key, or granting or 
revoking access provileges? Some database management 
software allow many of the database administration 
functions to be dynamic and have no impact on exe­
cuting applications, except for those directly affected by 
the specific changes. Other packages require database 
utility programs to run with exclusive access and control 
of the database, some requiring the database to be 
dumped and restored prior to restarting the applica­
tions. This could have significant impact on environ­
ments where there is constant, heavy activity on the 
system. Alternative solutions to this problem could be 
to have database modifications performed during peri­
ods of little or no application usage (nights, weekends, 
or holidays) or prescheduled downtime for database 
maintenance. 

8. If the software provides for the compression/ 
decompression of repeated blanks, zeroes, and null­
value fields, is the feature optional? How is the per­
formance affected by invoking the option? 

Data Dictionary 

1. Does the software have an integrated data dictionary? If 
so, is the data dictionary active or passive? Most data­
base management systems provide some sort of data 
dictionary. The more sophisticated packages have dictio­
naries that control all access to the data for the users and 
database administrator. This arrangement allows all ac­
cess to a particular piece of data to view the data consis­
tently, eliminates the need to have data definition state­
ments in each program, standardizes the names of each 
field, and controls access to the database, file, and/or 
field level. Some of these also are used to store precoded 
queries and user views. Passive data dictionaries record 
some information about the data for documentation pur­
poses but exert no control over access to the data. 

2. Can data dictionary information be modified without 
affecting active users? Some data dictionary software 



644 National Computer Conference, 1982 

allow fields to be added to the file or database definition, 
or information about currently defined fields to be mod­
ified, without restricting the use of the database to active 
users. The changes are made dynamically. Other data 
dictionary soft\Xlare provides dataq,ase maintenance util~ 
ities that must be run with complete control of the data­
base. Some database management systems require that 
the database be unloaded and reloaded after certain 
types of changes in or additions to the data dictionary. 
Other packages can handle changes with little or no 
impact on the physical database or existing data. 

3. Is the data dictionary used to control the compression of 
multiple blanks, zeroes, and/or null-value fields? Some 
database management systems that offer data-com­
pression features allow the data-compression option at 
the field level to be controlled by parameters in the data 
dictionary. In other software, compression is mandatory 
for all data or not allowed at all. 

Recovery Features 

1. Does the database management software contain any 
integrated recovery features at all? Some database 
software rely entirely on the operating system's backup 
and recovery features to protect the database. The 
more sophisticated systems provide some level of check­
points, transaction journaling, before-image journaling, 
or after-image journaling, or a combination of these 
options. 

2. If recovery is provided for, are the recovery procedures 
automatic? Following a crash, some database software 
will automatically restore the database through the last 
successfully completed transaction as soon as the system 
is brought back up. Other database systems will require 
operator or programmer action to restore the database, 
possibly application by application, from journal and 
checkpoint files. If specific personnel are required to 
restore the database, delays to production could be ex­
perienced if the personnel are not immediately available 
following a crash. 

Flexibility Features 

1. Does the software support concurrent processing by 
multiple interactive users or by interactive and batch 
applications? Some packages do not allow more than 
one application or user at a time. Others may have a 
limit to the number of active users or applications that 
can process concurrently. The design and potential us­
age of an application may require the capability to sup­
port several, if not many, concurrent users. 

2. What is the format of the High-Order Language (HOL) 
interface ("call") and what languages does the software 
interface with? Does the software provide preprocessors 
for the applicable languages to translate and create the 
specific calls to imbed in the high-order language pro­
grams or does the programmer have to code each call 

directly in the program? Different packages provide dif­
ferent facilities. The most sophisticated packages allow 
the coding of English-like statements in the application 
program with subsequent preprocessors converting the 
query."type statements into the appropriate calls. This 
permits more productive coding by the programmers. 
Other packages allow query-type statements to be 
passed in call statements. The remainder of the packages 
require some type of control blocks to be defined, and 
control block parameters to be coded by the pro­
grammer. Of the last category, some packages will allow 
more complex key structures to be used in the access 
calls than in other database systems. As it can be seen, 
the method and format of the call structure may have an 
impact on the complexity, flexibility, and efficiency of 
the calls. 

3. Does the software allow complex or concatenated keys 
in queries and HOL calls? Some packages allow the use 
of complex keys in both interactive queries and through 
calls from HOL programs. Other software packages are 
very limited in the access keys allowed in either query or 
call modes, although usually the call mode is the more 
restrictive. The ability to code very explicit access keys 
may be important in some applications. The use of com­
plex keys may be limited by the database architecture 
employed by specific packages; many hierarchical and 
network database systems use simpler keys requiring the 
programmers to "navigate" the database for the desired 
data. 

4. Can key fields and user views be created and deleted 
dynamically? Can new data items be defined to the data­
base dynamically? In environments where the data re­
quirements are continually changing, it may be advan­
tageous to be able to expand the database, create and 
delete keys, and create, modify, and delete user views 
without having to restrict the use of the database or 
require the database to be unloaded and reloaded. 
Other applications, where the data requirements are 
static, may not need these features. Some of the newer 
packages allow for these dynamic operations and some 
of the more established packages are developing these 
capabilities. 

5. Does the software permit the accessing of multiple data­
bases and/or files in one access attempt (commonly 
called "joining")? Some software can only access one 
database at a time. Some packages restrict queries and 
calls to one database file at a time, requiring multiple 
queries or calls to satisfy complex retrieval requests. 
Other packages permit multiple-file access in a single 
query or call, simplifying the access procedure and in­
creasing the flexibility of the system. 

6. On what hardware does the software run? Some pack­
ages, especially those developed or marketed by a spe­
cific hardware vendor, may be restricted to the vendor's 
own hardware. Packages developed by software houses 
that do not construct hardware may run on almost every 
computer system available in certain classes of system. 
The current and future hardware configurations on 
which an application may run place constraints on the 
specific packages that should be considered for a specific 



evaluation. A related question is whether the software 
runs in native mode or compatibility (emulation) mode 
on the hardware on which it runs. 

7. Does the software have currently, or have planned for 
future implementation, features that will enhance future 
application development by the organization? Has the 
vendor demonstrated a capacity for, or is the vendor 
committed to, keeping the product current with ad­
vances in database technology? Some of the database 
management software packages stabilize as they mature, 
and although they may satisfy current requirements they 
may not be able to support substantial future growth. 
Other products, as they mature, implement features that 
reflect the advances in technology since the original im­
plementation. Organizations that expect substantial in­
creases in the number, size, and complexity of database 
applications using the same software, may want to con­
sider the vendor's future plans for the software. 

8. What "user-friendly" features does the software provide 
to reduce the application-development effort and permit 
less skilled and nontechnical personnel to make effective 
use of the data? Some features to be considered include 
screen generation facilities, integrated query languages, 
integrated report writers, "HELP" commands accessible 
interactively, and meaningful error and diagnostic mes­
sages. While these features may not be used for initial 
selection and rejection of candidate packages, they may 
be considered when comparing closely similar systems to 
determine which is more "friendly" and easy to use. 

Security Features 

1. At what level is data security provided by the software? 
Some products provide security to the database of file 
level only. If you have access to the file, you have access 
to all data in the file. Other products provide access 
restrictions to the field level through user views. Still 
other products can provide security based on the value of 
specific fields. This is called "security by value." An 
example would be to restrict a user to viewing data for 
only one department, or to prevent a manager from 
viewing data for employees earning more than he or she 
does. Although not widely needed, this feature may be 
important in some applications. 

2. Can access privileges be granted and/or revoked dynam­
ically? In some environments, it may be advantageous to 
be able to modify access privileges instantaneously, 
without interfering with active users. Some applications 
may require access authorizations to be established or 
deleted on short notice or on a frequent basis. For those 
environments, this feature would be useful. 

Vendor Support and Reputation 

The items listed below, while most likely not constituting 
reasons to initially select or reject a particular candidate pack­
age, may be used to rank otherwise similar packages and can 

Evaluating Database Management Systems 645 

be used to identify potential areas of concern for products that 
otherwise fully meet all other selection criteria. 

1. Does the vendor have a good reputation for responding 
to requests for information, dealing with reported prob­
lems with the software, and providing technical support 
of the software? This information can be obtained by 
iriterviews with current or past users of the software or 
through software surveys conducted by data-processing 
periodicals such as Datapro, Datamation, and Comput­
erworld. 

2. Are current users of the software satisfied with the per­
formance of the software? Are they satisfied enough 
with the product to acquire other software produced by 
the same vendor? During interviews with the current 
users, comments may be made or solicited that will 
indicate whether the product is worth recommending to 
others, whether the product has lived up to its ex­
pectations, and whether the customer has enough faith 
in the quality of the vendor's product to use other soft­
ware from the same vendor. Some users, after acquiring 
a product, find out that it does not function as expected 
but have gone too far into development to discontinue 
use of the product; they have to modify their design to 
fit the product, which is not the ideal way to go. An 
isolated complaint should not cause undue alarm, but 
similar comments from several users about the same 
product should be considered significant. 

3. Does the vendor provide a "hot line" for report­
ing problems with the product operation? Many ven­
dors provide this service. Some have toll-free numbers, 
some operate twenty-four hours a day, including week­
ends. For applications that operate during nonbusiness 
hours, a twenty-four hour hot line may be an important 
consideration. 

4. Are the software technical and user manuals clearly 
written, with adequate examples and illustrations? One 
significant area where products vary is in the quality of 
the documentation. Some otherwise excellent products 
have poorly written documentation, which greatly in­
creases the effort required to learn and use the software 
effectively. Many application-development staffs do not 
have large training budgets and work under tight time 
constraints. To maximize the development effort, the 
staff should be able to quickly find and understand the 
information needed in the documentation, without hav­
ing to constantly call the vendor's technical staff for 
interpretation or explanation. Sample programs and 
routines, as well as examples of individual instructions, 
provided where the instructions are described, greatly 
improve the usefulness of the documentation. 

5. Does the vendor supply small test databases with the 
installation of the product? Some vendors supply one or 
several test files with a small number of records to be 
used by the acquiring organization for training and ex­
perimenting with the data without having to define and 
load its own test data. This arrangement greatly speeds 
up training in the use of the product and allows a rapid 
review and evaluation of many software features and 
procedures. Some vendors also provide canned routines 



646 National Computer Conference, 1982 

or scenarios to be used with the test database to demon­
strate features. 

6. Does the vendor have a procedure for notifying all 
users, on a regular basis, of reported problems and 
solutions or of the status of unresolved items? Some 
vendors conscientiously keep all users informed about 
the problem status of their product. Other vendors will 
respond to a reported problem directly to the reporting 
organization so that many organizations may experi­
ence the same problem without knowing that the prob­
lem may be global in nature and without knowing a 
workaround that might avoid the problem altogether. 

7. Does the vendor provide installation support? If so, is 
it necessary, and at what cost? Some database manage­
ment systems can be installed by the user by simply 
loading one or more files from a tape supplied by the 
vendor. Other packages require more technical support 
to install. Some vendor installation support is provided 
in the cost of the package, and some is available on a fee 
basis on top of the purchase price. 

8. Does the vendor supply, or provide for, customer edu­
cation and training in the use of the product? Is there 
any other training available that is related to the prod­
uct? Some vendors have excellent training and edu­
cation programs, not only in the elementary use of the 
software but in advanced techniques, internals, design, 
and so on. For other software, all education beyond a 
brief introduction to the software comes from manuals 
on a do-it-yourself basis. For organizations with small 
staffs and a need for rapid productivity, the customer 
training programs may be a critical factor. 

9. Are enhancements and modifications to the products, 
either for product error correction or for the addition of 
new features, accomplished by user-installed zaps or 
patches, or by a complete replacement of the software? 
There is potential in user-installed zaps, especially 
where routines have to be coded in, for errors to be 
made because of poor documentation or human error. 
There is faster installation and less likelihood for error 
if a whole module is replaced with a new copy provided 
on tape directly from the vendor. 

10. What is the cost of the various acquisition arrangements 
(buy/lease)? Are quantity discounts available? Are 
execute-only copies available? The acquiring or­
ganization should review the prices for the various op­
tions with regard to the features offered by the product, 
the support available, and the reputation of the vendor 
and product. A more expensive product is not neces­
sarily a better product. 

11. What is the cost of a maintenance agreement? What is 
the term of the maintenance agreement? Exactly what 
is provided for in the maintenance agreement? Differ­
ent vendors provided different periods and levels of 
support. 

12. Does the vendor provide additional features and capa­
bilities to current users as enhancements to the existing 
software under the maintenance agreement, or are the 
features released as new products at additional cost? 
Some vendors are beginning to release additional fea­
tures as add-on, extra-cost products. Before the 

purchase/lease/maintenance agreements are signed, it 
should be fully understood what the vendor's position is 
on this. 

13. Is there any indication of problems, including litigation, 
that might affect future use of the product? This may be 
discernible from the company's annual report or may be 
asked directly of the vendor. Make sure you get all of 
the details, including the vendor's position, and follow 
up where possible to check the results of the action. It 
might be wise to have an alternative plan in the event 
the software is affected after acquisition. 

EVALUATING CANDIDATE SYSTEMS 

When the system requirements and evaluation criteria have 
been defined and prioritized, and upon receipt of the litera­
ture and documentation requested of the vendors, the evalu­
ation and review of specific products can begin. 

It might be advantageous to develop some form of docu­
mentation that summarizes the specific requirements, evalu­
ation criteria, and features desired of the software so that 
appropriate notes and comments can be made as information 
on each product's capabilities becomes known. Also, a form 
may be developed for use when contacting users of each sys­
tem, specifying questions or points of concern to be discussed 
with the user. and providing a place for recording the user's 
responses. These types of forms will standardize the informa­
tion gathered during the evaluation and simplify the sub­
sequent decision. Examples of these types of forms are shown 
in Figures 1, 2, and 3. 

There is no specific method of evaluating the vendor litera­
ture and documentation. Since vendors do not stress the fea­
tures or capabilities they do not provide, it will be necessary 
to identify those features and capabilities they do provide and 
infer that others are not provided. If in doubt, contact the 
vendor representative. Many vendors provide a brief technical 
summary of the software features in addition to the more 
detailed technical material. The summary will indicate what 
the software can do, but may not explain how it does it. The 
summary is frequently a sales brochure; it should not be used 
as the sole source of information about a product unless the 
vendor is unable or unwilling to provide additional informa­
tion, in which case that product should be eliminated from 
further consideration. 

The documentation for each product should be reviewed for 
information relating to the specific requirements or criteria. 
This review may be accomplished in several passes of the 
literature, each delving deeper and deeper into the technical 
aspects of the data structure, commands, command sequence 
and structure, utility functions and features, and so on. 

The first pass should attempt to identify those products that 
clearly are lacking in one or more criteria or requirements. A 
decision can be made to eliminate those products entirely or 
make allowances or exceptions for the lack of compliance. 
The object of these reviews is to gradually weed out software 
products that clearly do not satisfy the requirements. It may 
be that none of the candidate systems can match all of the 
requirements, and a decision may have to be made to relax or 
revise the requirements, develop an in-house system entirely, 



USER PROOO::T CRITI~E (Sample Form) 

PRODUCT REVIEW 

Produc;t Name: ____________ _ 

Application USes: ___________________ _ 

Co~etive Products COnsidered: _______________ _ 

Has Product Performed as Expected: ___ _ 

I 

Reason for Selection: 

Comments: ______ _ 

Col1lllents on Ease of Use: _________________ _ 

Performance: _________________ _ 

Installation/Loading: ______________ _ 

utility Programs/Functions : ____________ _ 

Data Dictionary: _______________ _ 

RestartiRecovery/Security: ____________ _ 

update Transactions: ______________ _ 

Retrieval Transactions: _____________ _ 

Data Base Reorganization: ____________ _ 

Data Base Capacity: ______________ _ 

Technical Documentation: _____________ _ 

User Documentation: ______________ _ 

Additional COl1lllents: __________________ _ 

Would you Recommeno Proouct : __ 

VENDOR REV lEW 

Vendor Name: ____________________ _ 

Has Venaor Provided SATISFACTORY Installation Support: _______ _ 

Timely Technical Support: _____ _ 

Responsiveness to Your Requests: ___ _ 

Training/Eaucation: _______ _ 

Documentation: _________ _ 

Aaditional Comments: __________________ _ 

Would You Purchase Aaditional Software from this Vendor: ______ _ 

1 ReportIng COmpany: ___________________ _ 

I Contact:_________ Pnone: _______ _ 

I Environment: _________ Date PaCkage Acquireu: __ _ 

Figure 1-User product critique (sample form) 

or develop a workaround for those requirements which cannot 
be satisfied by the software. 

Through the increasingly detailed review of the documen­
tation, it may be possible to eliminate some products and 
group others together by the features provided or techniques 
employed. It is then necessary to evaluate the competing 
products on how they handle certain conditions or situations 
and on their vendor support, quality of documentation, and 
other sUbjective criteria. Where one product does not surpass 
all the others on these subjective criteria, a decision should be 
made about how to rate the criteria. 

Unless one product clearly surpasses all others in the major­
ity of the criteria, there may be several candidates remaining 
after this review. At this point, it may be advantageous to 
arrange for demonstrations of the software by the vendor, or, 
if it can be arranged, for benchmarking the candidates. 

Although benchmarking is the best method, it may not be 
feasible. Some vendors will provide a copy of their software 
free of charge for a limited time for this purpose, while other 
vendors may impose a fee. Other vendors may give the or­
ganization access to the software at the vendor's site or at 
another customer's site at a time when the software is not in 
active use by other users. One must define the benchmark 
criteria, develop and package tests for use on the benchmark 
system, and schedule the time and personnel required for the 

Evaluating Database Management Systems 647 

PROOU::T FEATURES SUl+lARY (Sample Form) 

I "STEM '1M" 
COST: I VENDOR: 

SINGLE SITE/CENTRAL CONTROL 

I 

REP: 
TEL: 

MJL TI-SITE 

MAINTENANCE CONTRACT 

DATA DICTIONARY: 

RESOURCE RE(~·1TS: 

H)ST LANGUAGE INTERFACE(S): DATA BASE LOADING PROCEDURE 

TRAINING/EDUCATION AVAIL: 

SYSTEM DOClM:NTAT ION/MANUALS: 

SYSTEM FEATURES: DATA COWRESSION REORGANIZATION PROCEDURE -
USER QUERY LANGUAGE -
USER APPLICATION LANGUAGE - TRANSACTION LOGGING - SECURITY FIELD FILE - BACK-UP/RECOVERY FEATURES ADDING FIELDS - RESTART/RESTORE FEATURES - UTILITIES -
INTERACTIVE PROCESSING -
BATCH PROCESSING - SOURCE CDOE PROVIDED/AVAILABLE -

EASE OF USE: 

CAPACITY: FILES I OPTIMUM FILE ORGANIZATION: 
RECORDS 
BYTES ALTERNATE DRGANI2ATIONS: 
KEYS/DESCRIPTORS 

FILE ACCESS METHOD: 

OTHER USERS: _ __ NUMBER OF INSTALLATIONS 

REFl 

REF2 

VENDOR SUPPORT CRITIQUE: 

Figure 2-Product feature summary (sample form) 

tests. In some cases the vendor will conduct or assist in the 
testing. The results of the benchmark tests can be used to rank 
the candidates tested. 

If benchmarking is not feasible, owing to time, cost, or 
personnel availability, it may be possible to evaluate the soft­
ware by attending a demonstration of the software by the 
vendor. Although not as precise as benchmarking, the 
demonstrations may illustrate some interesting features of, or 
facts about, the system. What is the response time exhibited 
during the canned demonstrations? Although subject to the 
type, size, and load of the machine during the test, certain 
trends may be noticed. Did the demonstrator need reference 
manuals in order to conduct the demonstration? If so, it may 
indicate that the system is complex or difficult to use, since 
usually the vendor puts its best available personnel on the 
system to make a good impression. 

In addition to observing the canned demonstration, it 
would be advantageous to be prepared with a small database 
definition (perhaps five fields) that you can ask to have de­
fined and installed while you watch. This will let you see 
exactly what is required to accomplish the task, and will allow 
you to create some of your own data to test on the system. The 
same database definition can be used with each vendor and a 
measure of comparative complexity may be determined. 

The vendors of the leading candidate packages should be 



648 National Computer Conference, 1982 

EVALUATION CRI TERlA BY PROOU::T -SlM4ARY (Sample Form) 

I 
PROOU::T NAIoE 

. EVALUATION CRITERIA 
ACCEPTllS..E1 UNJICCEPTIIBLEI PLAtf£D FDfl I 

PRIDfllTY AVAILIlBLE i UNAVAILIlBLE ~UTlflE IWLE. 

HIGH-ORlJER LAN.::UPGE INTERFACE 

INTEGlATED DATA DICTIDNARY 

INTEGlATED QUERY LANGUAGE 

DYNAMIC KEY DEFINITION I 

DYiIlDIMI C ADDI TIDN OF DATA ITEMS 

(J'TIMIZED DATA STORAGE (COtof'RESSION) 

(J'TIMIZED Iot.ILTI-KEY ACCESS FEATlRES 

Iot.Il TI-HREACED ACCESS 

FULL Y AUHl-lATED RESTART /RECOVERY 
FEATlflES 

HIGH QUAlITY DOClJ.ENTATION 
(TECHHCALIUSER) 

GOOD DATA SECURITY FEATLflES 

OPERATES IN C~RENT AND FUTURE 
ENVIROrKNTS 

HIGH DEGlEE OF DATA It«PENDENCE 

DBA UTILITIES 

!-OT -LINE FDfl PROELEM-REPORTING 

COSTS FOR LEASEIMAINTENANCE 

~ - . ~293a/ .058a/""'9 

Figure 3--Evaluation criteria by product summary 

asked to provide the names and telephone numbers of several 
customers of their products. Some vendors may be unwilling 
or unable (because of customer requests for confidentiality) to 

SOLICIT 
PRODUCT 
DOCUMENTATION 

SURVEY 
PRODUCT 
REVIEWS 

DEFINE 
EVALUATION 
CRITERIA 

REVIEW 
PRODUCT 
DOCUMENTATION 

divulge the information. In any case, remember that the 
names supplied will most likely be those of their most satisfied 
customers and meaningful or pertinent negative comments 
may not be made. These users should be asked to comment on 
the performance of the product, whether the product has 
performed as expected, the effort required and problems ex­
perienced in installing the product, feature performance, and 
the support of the vendor in answering questions and re­
solving problems. Even the most satisfied customer may have 
some negative comments about specific features. Similar com­
ments from several customers may indicate inherent prob­
lems, which can then be discussed with the vendor. The cus­
tomers' responses should be documented for future reference. 

At this point, sufficient information should be available for 
the selection of one database management system for the 
application. If selection is still not possible, the evaluating 
criteria should be reviewed, made more explicit, or expanded 
to allow for further refinement and elimination of candidates 
until one product is considered suitable for acquisition. The 
Evaluation Procedure Flow is illustrated in Figure 4. 

POST-SELECTION TASKS 

Following the selection of a particular product, materials de­
veloped or acquired during the evaluation process should be 
reviewed, discarded, or filed, as appropriate, for further refer­
ence. If possible, the results of the study and supporting ma­
terials should be centrally filed and made available to other 
internal users as the need arises. Any materials, documen­
tation, and manuals on temporary loan from a vendor should 
be returned in a condition suitable for resale, or should be 
purchased from the vendor. 

MAKE 
INITIAL 
RECOMMENDATIONS 

RUN 
SELECTED 
BENCHMARKS 

REVISE 
RECOMMENDATION 
IF WARRANTED 

Figure 4--Evaluation procedure flow 



Performance study of a dual CDC Cyber 170/750 system* 

by M. SEETHA LAKSHMI and TOM W. KELLER 
The University of Texas at Austin 
Austin, Texas 

ABSTRACT 

A performance study of a dual CDC Cyber 1701750 system is presented. The 
purpose of the study was twofold: to predict the maximum number of interactive 
users the system could satisfactorily support and to predict the effect of changes in 
workload and configuration. Two noteworthy aspects of the study are the use of a 
detailed event trace system to parameterize and validate the model and the use of 
a very-high-Ievel simulation language. The results of the study, including the accu­
racy of predictions and the feasibility of the approach, are presented. 

*This work was supported in part by Control Data Corporation Grant 80T02. 

649 





1.0 INTRODUCTION 

The backbone of the University of Texas at Austin academic 
computing facilities is a pair of CDC Cyber 1701750s running 
under a locally developed operating system, UT-2D. The dual 
Cyber system configuration features two loosely coupled 
CPUs sharing all peripherals. One mainframe presently sup­
ports an interactive workload in excess of 180 logged-on users; 
the other mainframe is devoted to a sizeable batch workload. 
The configuration is presented in Figure 1. 

The system has evolved to its present state by a series of 
upgrades. The original CDC 6600 and CDC 6400 systems 
were replaced by the two CDC Cybers in 1979. The present 
configuration is at maximum capacity in central memory, pe­
ripheral processors, and electronic semiconductor memory 
(ESM, being used as a very fast swapping storage). A signifi­
cant upgrade was replacing the older 7154-model disk control­
lers with 7155-model controllers, resulting in a smaller num­
ber of controllers and higher effective bandwidth. Another 
upgrade was the fourfold increase in the storage capacity of 
the fast-swapping storage. The existing configuration is be­
lieved to be balanced with respect to the existing workload. It 
was necessary to determine the effective saturation capacity of 
the interactive mainframe and to determine where impro~le-­
ments could be made in configuration or operating system 
tuning to increase the saturation limit. 

Interactive System Batch System 

Figure l-Configuration of the dual Cyber system 

Dual CDC Cyber 1701750 System 651 

The first goal of this study was to predict the performance 
of the system when the configuration was upgraded. In June 
1981 four CDC 7154 disk controllers were replaced by three 
CDC 7155 disk controllers. We wished to study the effect, on 
I/O throughput and disk controller use, of reducing the num­
ber of disk controllers. The second goal was to determine at 
what level the currently available computation power could 
support the steadily increasing interactive workload. This sec­
ond question effectively reduces to estimating the number of 
interactive users beyond which the response time for the inter­
active users becomes unacceptable. 

We first constructed a model capturing the essential fea­
tures of the configuration of the system (before June 1981) 
accurately. The model is parameterized with the data mea­
sured from the real system. Further, we validated the model 
by comparing the performance obtained from the model with 
the measured values. We consider the credibility of the model 
established if the model results differ no more than 10% from 
the measured results. 

The model and its parameters were then altered to reflect 
the system and workload changes. The performance of the 
altered model is projected as the future system performance. 

In Section 2 we give a brief overview of the system under 
study and the model obtained for it. The parameters for the 
model and the validation results are described in Sections 3 
and 4. The predictive experiments and an analysis of the re­
sults can be found in Section 5. Section 6 presents the conclu­
sions derived from this study and suggestions for optimizing 
expected future performance. 

2.0 SYSTEM DESCRIPTION 

The older configuration of the system that was modeled is 
shown in Figure 1. It consisted of two Cyber 1701750s, a 
shared Extended Core Storage (ECS) system, and a shared 
disk subsystem. The two-mainframe system is symmetrical. 
Each of the Cyber machines has 262K 60-bit words of main 
memory, 20 peripheral processors (PPs) , and 24 channels. 
Both the CPUs can access ECS where interactive swap files 
and coordination information for both interactive and batch 
jobs are being kept. The shared-disk subsystem has 20 disk 
spindles (12 CDC 844s and 8 CDC 885s) and a total of 6 
controllers (4 CDC 7154s and 2 CDC 7155s). An access path 
can be established between any machine and a disk spindle via 
a channel and a controller. A schematic of the interconnec­
tions between disks, controllers, and channels appears in Fig­
ure 2. A channel remains connected to the disk through a 
controller throughout a disk access; there is no seek-read/ 
write overlap. 

The dual Cyber system runs under the control of the UT-2D 
operating system. In the normal mode of operation one of the 
CPUs (CPU-A) is used exclusively by the interactive users, 



652 National Computer Conference, 1982 

o Channels 

~ Controllers 

B Disks 

Figure 2-Disk system interconnection 

and the other CPU (CPU-B) is dedicated to the batch work­
load. The scheduling policy for the interactive system favors 
truly interactive and I/O-bound jobs over CPU-bound jobs. 
Interactive jobs are swapped to ECS (or to disk when ECS is 
full) when in the user think state. Some of the swapped jobs 
migrate from ECS to disk. 

When the user hits a carriage return, the job waits in a ready 
queue until the memory scheduler initiates a swap-in from 
ECS (or disk) to main memory. The job is then scheduled for 
a CPU burst. It remains in the main memory until it has 
completed its CPU and I/O requirements or until it is pre­
empted by a higher priority job, at which time it is swapped 
out to ECS. While resident in the main memory it alternates 
between the CPU queue and the I/O queues. 

In the disk subsystem the 844 disks contain local files and 
permanent (archival) files for both batch and interactive jobs. 
One of the 885 disks is used to store the swap files for both 
types of jobs; the other 885s contain local files, permanent 
files, and system files. Each disk has two controllers (a pri­
mary and a secondary) associated with it. Each of the control­
lers is in turn connected to two channels (one from each 
Cyber). The disk I/O scheduler works as follows: When a disk 
request arrives, it first checks to see whether the primary 
channel associated with the disk is available. If it finds the 
primary channel busy, then it checks the associated secondary 
channel. When it finds both the primary and secondary chan­
neis busy, it waits in a queue for the first channel (primary or 
secondary) that becomes free. 

2.1 MODEL REPRESENTATION 

The conceptual model we use is an extended version of the 
one developed by Atwood and Yu, 1,5 whose primary goal was 
to analyze the disk I/O workload. 

A queueing network model of the system is given in Figure 
3. It consists of two independent closed queueing networks 
(representing the interactive and batch systems) that interfere 
with each other at the disk controller level. The service time 
of the Rollin/Rollout server in the queueing network repre­
sentation includes the time spent waiting for the scheduler to 
initiate a swap as well as the actual transfer time. This server 
is modeled as a delay node; i.e., there is no queueing associ­
ated with this node. In our first modeling attempt we have not 
considered the memory contention and the peripheral pro­
cessor contention (PPs perform the actual I/O transfers). We 
model the batch system by a closed queueing network, with a 
fixed degree of multiprogramming. In practice the degree of 
mUltiprogramming is not fixed, since jobs arrive at and depart 
from the batch system. 

One of the objectives of this study was to predict the effect 
of changing the disk subsystem configuration. The nature of 
the disk system interconnection and the scheduler precludes 
the use of any exact analytical solution technique for solving 
the model. Hence we rely upon a simulation approach. The 
model is written in a queueing network simulation language, 
PAWS,4 which has powerful features to accurately model the 
intricacies of the disk subsystem. The PAWS model also lends 
itself to parametric analysis of the system. 

3.0 MODEL PARAMETERS 

An event trace monitor incorporated in the operating system 
records the occurrences and duration of each event in the 
system onto a tape. 2 These event sequences are later reduced 
to useful statistics and histograms by the data reduction pack­
age EVENTD. 3 The parameters for the model are derived 
from the data recorded on two trace tapes (one for each 
machine) during the same period of time. These data are 
assumed to be representative and hence are used for parame­
terizing the model. The major parameters required by the 

o 
o 

o o 

Figure 3-Queueing network model of the system 

... ........ . 

Disk 

Subsystem 



no of interactive users 120 

batch system degree of mul tiprogrammir.g 

service times «(1]s): 
Interacti ve system 

CPU 
Tape (9-tr&lck) 
Rollin 
Rollout 
TTY think time 
Disk 1/0 time :844 

Swap disk time 
Batch system 

CPU 
Tape (9-track) 
Rollev 

:885 

Disk TIO time :844 
:885 

Branching probabilities 
CPU to ROLL-OUT 
CPU to TAPE I/O 
CPU T0 DISK I/O 
ROLL-OUT to Dl::;K 

21.0 
32.0 

232.0 
43.0 

17000.0 
28.0 
29.0 
86.0 

interacti ve 
0.144 
0.087 
0.768 
0.27 

27.0 
211.0 
8.9 

35.0 
211.0 

116.0 

Figure 4--Parameters for the model 

b-ctch 
0.0158 
0.27 
0.714 
1.0 

(obtained from trace tapes recorded on Feb. 18, 1981, at 14:10) 

model are the mean user think time, mean CPU burst time, 
mean disk, rollin and rollout service times, probability of 
accessing different disks, and similar parameters. The histo­
grams produced by EVENTD help in determining the distri­
bution and discipline for various servers in the model. In the 
first iteration all servers are assumed to have a first-come-first­
served discipline with an exponential service time distribu­
tion. The values of different parameters are listed in Figure 4. 

4.0 MODEL VALIDATION 

The metrics used for validation purpose are the mean CPU 
utilization, mean channel utilization, channel hold time, con­
troller hold time, mean disk throughput, and interactive user 
mean response time. The values recorded by EVENTD and 
those obtained from the model are reported in Table I. It can 
be observed from Table I that most of the model results are 
within satisfactory (10% tolerance) agreement with the mea­
sured values. Only the interactive user response time predic­
tion differs significantly from the measured value. This is pri­
marily due to the difference in definition of the response time, 
as represented in the model and as reported by EVENTD. 

From the measured data we see that the CPUs (with greater 
than 95% use) are the principal bottleneck of both the inter­
active and the batch systems. The model reported that the 
mean queue length at the CPU (at 93%) plus the number of 
jobs in the I/O system is of the order of 8.5. This gives us the 
average number of jobs occupying the central memory at any 
time. The Cyber system allows at most 13 control points, and 
so at most 13 active jobs may be simultaneously resident in the 
main memory. Since the CPU becomes a bottleneck before 
the effect of the limited number of control points can be felt, 
we conclude that not including the memory contention in the 
model does not affect its credibility. In addition, our assump­
tions for service time distributions (exponential) and disci­
plines (FCFS) appear to be reasonable. 

Dual CDC Cyber 170175P System 653 

TABLE I-Validation results 
(data from trace tape recorded on Feb. 18) 

1nteracti ve batch 

nieas. s1m. meas. sim. 

CPU ut1l. .973 .936 .971 .988 

Total channel ut1l. :844 1.097 .980 .932 .900 

:885 .643 .638 .362 .380 

Avera[~ ch3nnel u·· il. .282 .262 .218 .2111 

Controller hold time: 844 30.940 30.130 38.260 37.140 

:885 119.1140 47.800 112.580 110.570 

Controller wai t time: 844 8.328 7.300 7.605 7.400 

:885 9.656 8.930 12.400 13.010 

Channel hold time :8411 39.260 37.290 115.860 114.1100 

:885 59. lOa 57.510 511.980 57.290 

Disk I/O rate 35.380 311.190 25.800 25.1190 

Swap disk rate 3.540 3.480 1.202 1.356 

Tape I/O rate 4.030 3.980 9.5';7 9.740 

Rollout rate 6.6114 6.300 .558 .542 

Interacti ve user response time: 

measured 1.453 sec. 

simulation 1.800 sec. 

5.0 PREDICTION EXPERIMENTS 

5.1 Change In Configuration 

First an attempt is made to predict the performance of the 
system when the four controller (CDC 7154) configuration 
(Figure 3) is replaced by a three controller (CDC 7155) config­
uration as shown in Figure 5. The CDC 7155 controllers allow 
the effective transfer rate to be increased by a factor of 2; the 
disk seek time and positioning time are not altered. 

At the same time as the controllers were replaced, the 
one-half million words ECS (swap storage unit) was upgraded 
to two million words of Electronic Semiconductor Memory 
(ESM). With this fourfold increase in the amount of available 
swap storage, we expected that a job would never be rolled 
out to the disk. This has been verified by measurement. This 
is reflected in the model by making the probability of the 
ROLLOUT TO DISK transition zero. 

Table II shows the expected performance of the system with 
the modified disk configuration. Table III compares the mean 
holding time and throughput of the controllers of the system 
under the old configuration with those obtained for the system 
with the new configuration. As one would expect, the total 
throughput of the controllers associated with the 844 disks has 
not changed. The absence of disk roll-in/roll-out is reflected in 
the reduced throughput of the controllers associated with the 
885 disks. The controller hold time has decreased in the new 
configuration. This is because the transfer rate of the 844 disks 
has doubled and there are no disk roll-inlroll-out requests 
from the interactive system. 



654 National,Computer Conference, 1982 

o Channels 

~ Controllers 

tJ Disks 

Figure 5-New disk system configuration 

5.2 Change In Workload 

In the second experiment we increase the mean number of 
interactive users in the system until complete saturation of the 
system can be observed. The model is used to predict the 
response time of the interactive users when the number of 
interactive users is increased from 120 to 300. In Figure 6 we 
have plotted the expected mean response times against th~ 

TABLE II-Expected performance of the system with the 
modified disk system 

Interacti VI! batch 

Cpu util. .943 .993 

Total channel util. : 844 .824 .715 

:885 .287 .351 

Controller hold time : 844 24.750 28.700 

:885 30.380 45.280 

Channel hold time : 844 30.860 35.5'10 

:885 36.330 50.140 

Disk 1/0 rate 34.600 25.600 

Swzp disk rate 0.000 1.560 

Tape I/O rate 3.900 9.900 

Rollout rate 6.500 .644 

TABLE III-Comparison of disk system performance 
(old configuration vs new configuration) 

ne.l config. old config. 

Total disk I/O throughput 

interacti ve 34.600 34.190 

batch 25.600 25.490 

Swap disk throu~hput 

interacti ve 0.000 3.480 

batch 1.560 1.356 

Total throughput of the 

cont!"ollers :844 46.800 46.620 

:885 14.900 17 .890 

Average Controll er 

holding time : 844 26.230 33.330 

:885 37.180 45.550 

number of interactive users. The model for this experiment 
included the new disk system configuration and the increased 
swapping storage capacity. Other parameter values were un­
altered; they were the same as the values used for the valida­
tion run. The response time curve with a mean CPU burst 
time of 21.1 msec is the performance projection under these 
circumstances. This curve shows an almost linear dependence 
of the mean response time on the number of interactive users 
(N) for any value of N greater than 120. This is to be expected, 
since we are already dealing with a saturated (CPU) system. 

A closer look at the detailed breakdown of the CPU service 
time requirements of the interactive users revealed that there 
are a few jobs that are highly CPU-bound and contribute to as 
much as 24% of CPU use. In the real system these CPU­
bound jobs receive CPU service only when there are no short 
interactive jobs present in the CPU queue. That is, the short 
interactive jobs have higher priority than the compute-bound 
interactive jobs. 

28.0 

'0 
24.0 (lJ 

~ 
(lJ 

E 
20.0 i= 

(lJ 
(/) 
c 
0 16.0 c. 
(/) 
(lJ 

a::: 
(lJ 12.0 > 
t5 
~ 
(lJ 8.0 :£ 
c co 
(lJ 4,0 
~ 

120 150 200 250 300 

Number of Users 

Figure 6-Expected mean response time vs. number of users 



The priority discipline at the CPU inherent in the physical 
system is not implemented in the model. Due to the nature of 
the priority discipline, we expect the impact of the compute­
bound jobs to diminish in the system as the number of inter­
active users increases, thus reducing the mean CPU burst 
time. We examined various trace tapes to observe the trend in 
CPU burst time (Table IV). In 15 trace tape data the mean 
CPU burst time ranged from 11.8 msec to 23.3 msec. We saw 
that even the presence of a few highly CPU-bound, interactive 
jobs significantly increased the mean CPU burst time. 

From the data used for parameterizing the validation model 
we estimated the CPU burst time after eliminating one CPU­
bound job (which never performed any I/O during the entire 
trace period) to be 16 msec. More simulation runs were made 
with the new mean CPU burst time of 16 msec. We observe 
that, as expected, the system can support a larger number of 
interactive users before the response time significantly 
degi"ades. 

TABLE IV-Mean CPU burst time from various trace tapes 

trace tape date CPU burst (ms) no. of users 

2/10/81,14:26: 11 23.3 117 

2/18/81 , 14: 10: 06 21.1 121 

7/1/80, 15:01:43 16.8 125 

2118/81,15:11:48 21.9 125 

6/24/80,14:411: 14 16.6 134 

7/29/80,10: 10: 43 11.8 136 

5/12/81,10:19:58 18.6 144 

5/9/81, 16: 17: 110 18.6 1118 

5/12/81,13:01:55 20.2 152 

10/29/80,15:50:3 15.4 153 

7/8/80, 15:22:30 15.7 154 

7/15/80,15: 16:29 17.8 202 

11/2/79,14: 06: 08 13.1 211 

10/8/80,14:34: 12 12.7 267 

6.0 CONCLUSION 

Many capacity planning decisions were made as a result of this 
study. From the study we concluded that the system bottle­
neck for both the interactive and batch mainframes was the 
CPU. When the number of interactive users was increased in 
the model from 120 to 300, there was no significant increase 
in the contention for the disk systems. As a consequence, no 
additional controllers are expected to be procured. Projects to 
improve the performance of the disk system have been 
postponed. 

Dual CDC Cyber 1701750 System 655 

Performance improvement efforts now focus on increasing 
the fraction of the saturated "interactive" CPU available to 
the users. At the time of this writing, changes in memory 
scheduling policies were being made to reduce the system 
overhead load on the CPU. Additional changes in the oper­
ating system to shift functions from the CPU to the PPs are 
anticipated. A study is under way to examine the feasibility of 
shifting some of the interactive load to the batch mainframe 
during prime shift, at the expense of batch responsiveness. 
The feasibility of upgrading the CPUs from 1701750s to 
1701760s is also being investigated. 

A number of conclusions regarding the measurement and 
modeling tools were also reached during this study. The event 
trace facility was repeatedly used to track performance under 
a steadily increasing workload. The resolution of detail avail­
able by the use of this technique is excellent. Detailed data on 
the behavior of the disk subsystem was necessary because of 
the interactions of the two mainframes at the individual drive 
level. Many modifications to the event trace reduction facility 
were made to provide the statistics necessary to drive the 
simulation model. The ability to enhance the performance 
measurement system to meet specific modeling requirerrlents 
greatly increased the speed and scope of the study. 

Our experience in the study showed the value of using a 
high-level computer-oriented modeling language. Using the 
PAWS modeling language reduced the coding effort of the 
model by more than two orders of magnitude from an equiva­
lent FORTRAN model. Numerous test runs against alternate 

, service time distributions and priority schemes were made 
possible by the ease with which the model could be changed. 

ACKNOWLEDGMENTS 

We are indebted to W. Jones ofthe Computation Center staff, 
who has enhanced the event trace reduction facility to make 
available the detailed parameters necessary for this study; and 
to G. Smith, also of the Computation Center staff, who sig­
nificantly enhanced the event trace recording system. 

REFERENCES 

1. Atwood, J. W., and K.-c. Yu. "An Empirical Study of a CDC 844-41 
Disk Subsystem." To appear in Performance Evaluation, 1, 4, or 2, 1 
(1981). 

2. Howard, J. H., and W. M. Wedel. "The UT-2D Operating System Event 
Recorder." Technical Report TSN-37, University of Texas at Austin, 
Austin, Texas, 1974. 

3. Howard, J. H., and W. M. Wedel. "EVENTD: UT-2D Event Tape 
SummarylDump." Technical Report CCSN-38 (Revised), University of 
Texas at Austin, Austin, Texas, 1977. 

4. "PAWS 1.2 Performance Analysts Workbench System, Modelling Meth­
odology and User Manual." Information Research Associates, Austin, 
Texas, 1981. 

5. Yu, K.-C, "The Effect of System Configuration and File Placement on the 
Performance of a CDC 844-41 Disk Subsystem." Master's Thesis, Depart­
ment of Computer Science, University of Texas at Austin, Austin, Texas, 
1980. 





Computational lexicology: a research program 

by ROBERT A. AMSLER 

SRI International 
Menlo Park, California 

ABSTRACT 

Computational lexicology may be defined as the application of computers to the 
study of the lexicon. Taken in its broadest sense, it would be a multidisciplinary field 
involving the analysis of man-made dictionaries using computers to study their 
machine-readable text as well as a study of the computational linguistic content and 
organization of lexicons for use by natural-language processing programs. 

Computationallexicology is an emerging field of study for the 1980s being created 
by converging trends in other disciplines. This paper attempts to outline some of the 
applications that a knowledge of computational lexicology will facilitate and the 
possible means of extending such lexical knowledge. 

657 





REASONS FOR A COMPUTATIONAL LEXICOLOGY 
RESEARCH PROGRAM 

Computationallexicology may be defined as the application 
of computers to the study of the lexicon. Taken in its broadest 
sense, it is a multidisciplinary field involving the analysis of 
dictionaries written by human beings, using computers to 
study the machine-readable texts, as well as a study of the 
computational linguistic content and organization of lexicon 
for use by natural-language-processing programs. Using the 
term in this broader sense, I shall refer to the computational 
lexicology task aspects of computational linguistics, artificial 
intelligence, cognitive science, and information science that 
are concerned with the lexicon in computational processes. 

I see computationallexicology as an emerging field of study 
for the 1980s being created by converging trends in other 
disciplines. Two major reasons for the growth of computa­
tionallexicology are that computer typesetting is widely avail­
able and machine-readable texts of dictionaries are increas­
ingly available. These primary source materials have also 
appeared at a time when rapidly declining online disk storage 
costs and increased acceptance of interactive computation 
have given rise to natural-language-processing systems need­
ing access to sizable quantities of lexical information in real 
time. 

The rising volume of full-text sources, also a consequence 
of the increasing availability of computer typesetting, has ad­
ditionally placed a higher premium on the development of 
computational systems that can access textual information 
interactively. Full-text database management, advanced com­
putational linguistic processing systems, and other artificial 
intelligence applications are striving to encompass new do­
mains and larger text volumes to make full use of this in­
creased availability of text and interactive computation. For 
these reasons, computational lexicology has emerged as a 
discipline with both a considerable body of data to begin 
analyzing and a heightened motivation to provide structured 
lexical information for existing and future natural-Ianguage­
processing systems. 

Computationallexicology also seems to promise to reveal, 
in greater depth and detail than ever before possible, the 
structure and consequences of the organization of the lexicon. 
Interest in the lexicon from disciplines such as philosophy, 
linguistics, psychology, and anthropology has never been 
greater. By introducing computation into the study of the 
human organization of the lexicon in dictionaries, it has be­
come possible to make new observations and theories about 
the nature of very ancient and perplexing lexical problems. 
Computationallexicology sheds new light on the deep seman­
tic relationships involved in the process of defining, the nature 
of our ability to perform lexical disambiguation from context, 

Computational Lexicology: A Research Program 659 

and the connectivity of the mental lexicon. Our dictionaries, 
having evolved over a few centuries of effort, are now as much 
an artifact of our innate language abilities as they are a prod­
uct illustrating our civilization's view of the world. Study of 
the lexicon's organization can consequently reveal basic infor­
mation about the nature and organization of human knowl­
edge and of our civilization. 

Text Streams 

Whereas in the past computer technology was applied to 
solving natural-language information-processing problems for 
selected segments of textual data, many of which were specif­
ically rendered machine-readable by manual keyboarding, 
there will soon be more machine-readable textual data than 
can readily be processed by even the most efficient 
information-processing algorithms. One may soon be able to 
seek out and obtain machine-readable text in a specific do­
main by simply contacting a publisher or a text database ven­
dor instead of contemplating hand entry of the data. 

This new volume of text will offer us literally infinite "text 
streams" of information, and each new publication will be 
added as a tiny rivulet joining the river of new text data. Just 
as with a river, there will be opportunities to expioit this 
massive flow. The equivalent of dams can be set up to gather 
together large textual databases and control their release, 
generating information power through the passage of the text 
through text-processing programs. However, also as in the 
case of a river, since the flow is continuous, we must develop 
new methods of selectively sampling and extracting infor­
mation without trying to fully process every sentence that 
appears. 

There will be opportunities to gather information about the 
nature of the syntax and semantics of the language as well as 
opportunities to accumulate knowledge based on the content 
of the text processed. By establishing selective filters in text 
streams we can extract examples of linguistic phenomena we 
wish to study; by watching for certain content phenomena in 
syntactic patterns we can computationally parse, we can ex­
tract information from text streams as they pass. 

The text streams will comprise several types of flows. Some, 
such as electronic mail, will be primarily directed at a few 
users. They may be casually written, without always having 
subject headings or titles. The text styles used may approach 
spoken English more than formal written English, with new 
conventions, such as capitalization for emphasis and new ab­
breviations and signals in the text to represent mechanisms 
possible in human voice, but left out of written communica­
tion until now. 

Text streams will move at varying rates. Some, such as the 
news wire services, will flow 24 hours a day and emit millions 



660 National Computer Conference, 1982 

of words each .. month. Others will experience periodic flash 
flooding and only emit text as publications appear weekly, 
monthly, quarterly, etc. Among these will be the electronic 
journals, which are machine-readable copies of paper jour­
nals produced by publishers as a result of the computer type­
setting process. Finally, some text streams will be completely 
aperiodic, such as books and similar documents. Each of these 
will appear almost as a tidal wave and not be subjected to 
ordinary flow monitoring or processing, but each become a 
special processing task. 

Text streams can be monitored by various methods. Indi­
cators of the flow level and rate can be provided. Sampling to 
determine the content by subject matter or level of difficulty 
or for other purposes can be performed. Text streams can be 
filtered to extract different types of information, either to 
separate out unwanted text or to separate the constituents of 
the stream by category for different dispositions. Varying fil­
ters can provide some destinations of the text with high-level 
tables of contents and others with selected extracted sections. 
A text stream filter can be an arbitrary program that processes 
text information, monitors for certain types of data, and per­
forms other similar tasks. 

Problems Facing Computational Linguistic Systems in the 
1980s 

Computational linguistics has made vast gains over the pre­
vious two decades in parser design and grammar construction. 
Several successful systems for parsing database queries in or­
dinary English or directing robot operations and expert prob­
lem solving already exist. Nevertheless, computational lin­
guistics has not yet reached the point at which parsing can be 
performed over unrestricted input text. There are many rea­
sons for this. 

Although linguistics has entered the age of computation, 
the ultimate basis for any sophisticated computationallinguis-. 
tic technique is the computable knowledge accessible in the 
system's lexicon. The lexicon serves not only as the basis for 
the recognition vocabulary of any text-processing system, but 
as the indexed repository of the vast array of additional syn­
tactic, semantic, and pragmatic information upon which text­
processing algorithms are based. The scope of this informa­
tion for each lexical entry has been steadily increasing in both 
volume and complexity over the past decade. From simple 
feature-value lists, it has progressed to advanced nonplanar 
graph-theoretic representations and lexicons combining com­
putable code with stored information. 

All current natural-language systems use lexicon composed 
by hand. The number of person-years necessary to describe 
the tens of thousands of word senses required for processing 
unrestricted text cannot be completed by any individual re­
search project also concerned with building sophisticated soft­
ware to access this lexicon. This has led to a lexical plateau for 
computational linguistic systems that limits lexicon to a few 
hundred entries in most cases while researchers concentrate 
on improving the cleverness of the parsing algorithms and the 
grammatical coverage of the systems. What cannot be 
achieved by the application of cleverness is the lexical cov­
erage necessary to process text in the expanded domain of 

unrestricted English, which is inundating our electronic and 
magnetic media. 

Without concentrated effort on computational lexicology 
and lexicography, the progress of natural-language-processing 
systems toward production use in processing unrestricted En­
glish text or the extension of existing restricted-domain sys­
tems to new domains will be extremely slow. The time may be 
rapidly approaching when computational linguistics and lexi­
con building should be undertaken as part of separate re­
search tasks, studied independently. 

Progress in Computational Lexicology 

The previous two sections provide two motivations for 
working on computational lexicology: (1) the desirability of 
making use of new full-text sources and (2) the problem of 
increasing the size and detail of lexical entries for com­
putationallinguistic systems to the extent that they can begin 
to cope with the increased quantities of text provided by new 
full-text sources. In addition to these two motivations, the 
successful completion of analyses of the structure of two 
machine-readable dictionaries, the Merriam-Webster New 
Pocket Dictionary 1-3 and The Longman Dictionary of Con­
temporary English 15. 16 has promoted interest from com­
putationallinguistics itself in this type of study. Thus, there 
are also new methods available for studying machine-readable 
dictionaries. 

Computational lexicology seeks to understand the mean­
ings of words by accumulating information about their usages. 
This is the basic task performed by lexicographers when they 
accumulate citations to use as the basis for writing dictionary 
entries. Among the potential items of information which can 
be accumulated from examination of text are 

• Verbs with which a given noun is used 
• Nominal compounds in which a word occurs 
• Hyphenated forms of other combining forms in which 

words occur 
• Adjectives used with nouns 
• Morphological variants in which a word form occurs 
• Subject domains in which given terms appear 
• First occurrences of new word forms 
• The identification of defining contexts for new terms in 

free-running text 
• The assimilation of information about word forms from 

many separate text sources 
• Frequency data on the number of textual occurrences, 

with examples of infrequent phenomena as well as meth­
ods for recognizing such phenomena when they occur 

All of this lexical information can be gathered by examining 
machine-readable full-text sources, and it constitutes a new 
type of information gathering that is of interest to computa­
tional lexicology. 

RESEARCH IN THE ACQUISITION OF LEXICAL 
KNOWLEDGE 

The following program of research in the new area of com­
putationallexicology outlines several areas in which research 



could be performed to build an adequate knowledge of the 
requirements for natural-Ianguage-processing-system lexi­
cons. It is directed primarily at ways to use the computer to 
extract and organize lexical information, which can then be 
applied to natural-language-processing tasks. Our knowledge 
of the lexicon and its parameters is extremely deficient. 

Analysis of Machine-Readable Dictionaries As a Source of 
Lexical Knowledge 

Lexical knowledge derives from the analysis of the usages of 
words. Dictionaries are one form in which such analysis has 
traditionally been presented. Dictionaries are based on writ­
ten textual instances of word usage, called citations, which 
lexicographers organize into lexical entries that present the 
basic information about how such a word can be used in 
textual contexts. Typically, the information presented in an 
ordinary dictionary is limited to morphology (spellings, hy­
phenation points), pronunciation, etymology, and syntax 
(parts of speech, usage notes) with semantic information be­
ing given in informal fashion as part of the entry's definition. 
Certain dictionaries in the advanced learner's dass9 include 
semo-syntactic pattern codes in their lexical entries. 

Even in the cases where the semantic information is not 
codified by the publishers, but appears as part of the text of 
dictionary definitions, it is possible to apply advanced com­
putational processing to extract much data for potential text 
system use.2 

Building Lexical Knowledge from Full- Text Sources 

Second in importance as a source of lexical data to direct 
access to machine-readable dictionary texts is access to the 
raw data which form the basis for the construction of dictiona­
ries. This task can be approached in three ways. 

• First, one can interview human subjects and use a com­
puter to perform bookkeeping, cross-referencing and 
question-answering to solicit the needed information in 
an organized and systematic manner. 

• Second, one can attempt to extract dictionary definitions 
from text using fully automatic language analysis and 
seeking specific definition indicators in texts. 

• Third, one can use ordinary text and apply computational 
linguistic (morphological and syntactic parsing) and in­
formation science techniques (cluster analysis, co­
occurrence relationships, frequency counts) to gather 
and present the raw text to human lexicographers or 
experts for their assimilation and restructuring into for­
mal analyses of terminology. 

For the purposes of this paper, the term full-text source will 
be used to refer to any form of data which represents the full 
text of some document. This might be a publisher's photo­
typesetting tape containing the text of an article, chapter, 
book, or any other source. It may contain tables or figures 
such as would appear in the full text of the published source. 
Full-text sources will also include materials not intended for 

Computational Lexicology: A Research Program 661 

publication, such as mail messages; or word processor output, 
such as business correspondence. 

Among the more standard interpretations of full text is the 
notion of machine-readable bodies of text specifically assem­
bled for the study of language. Numerous efforts have been 
undertaken to assemble such bodies of text in many of the 
world's major languages. 

The task of assembling such a text requires careful planning 
so that the data selected will be useful to computationallexi­
cology. Simply obtaining a multimegabyte set of words by 
grabbing all the machine-readable sources available and 
merging them together hardly provides the basis for scientific 
observation of the nature of the language as a whole. Thus, 
ten million words of newspaper stories can be less useful than 
one million words of carefully sampled text taken from a 
variety of sources. In this regard, perhaps the most carefully 
prepared body of English is the one-million-word one pre­
pared by Francis and Kucera at Brown University from full­
text sources of 1961.7

,11 Additionally, a 5-megabyte body of 
English based upon third- to ninth-grade textbooks was 
prepared in 1969 by the American Heritage Publishing 
Company.4 

APPLIED COMPUTATIONAL LEXICOLOGY 

Although this paper is intended to support the case for basic 
research in computational lexicology, it is also worthwhile 
examining what would be some applications of such research. 

There is no limit to the number of areas in which computers 
are applied to processing natural-language text. To some de­
gree all these areas could be affected by developments in 
computational lexicology. Among the first to be affected 
might be fields that already have a considerable emphasis on 
the availability of words (e.g., spelling correction) or have 
established uses for lexicons (e.g., content analysis systems, 
mechanical translation systems, and word processing sys­
terns). One promising new area that might benefit would be 
full-text database retrieval. 14 

Spelling Correction 

Spelling correction is one of the most neglected aspects of 
natural-language system design. It is a stepchild of the sophis­
ticated computational linguistics systems designed within arti­
ficial intelligence and often regarded as a simple instance of 
"bells and whistles" to be added to a natural-language system 
after the fact. This situation is changing, because studies are 
beginning to show that of all the areas in which natural­
langauge systems fail, spelling correction (and unknown lexi­
con) are two of the most frequent causes of failures. In some 
systems spelling errors and unknown vocabulary may account 
for nearly 50% of all failures in system response. 21 

Spelling correction as a technique has recently become the 
topic of intensive, but largely unreported, research in the 
word processing field. IBM's DisplayWriter :;ystem offers a 
multilingual spelling correction capability, which, though 
originally thought to be a simple matter of checking lists of 
correctly spelled words, turned out to be a significant problem 



662 National Computer Conference, 1982 

when languages other than English were assumed to be cor­
rectable with the same algorithm as English. This is because 

. spelling correction depends greatly on suffix analysis in 
English, and these techniques do not work, for example, in 
German, where suffix information can be embedded inside 
agglutinated compound words. Thus, a knowledge ofthe mor­
phology of a language is necessary for performing multilingual 
spelling correction properly. 

In addition to morphological considerations, there are nu­
merous strategic variations in spelling correction algorithms 
that can have a significant impact on their performance. Cur­
rent spelling correction systems in wide use on the 
ARPANET generally make an assumption that there is only 
one error in a misspelled word. This assumption lends itself to 
a convenient and inexpensive correction algorithm which in 
effect considers every letter in the word except one to be 
correct (or considers there to be only one transposition of two 
letters). The consequence of this simple algorithm is that of­
ten dozens of possible corrections are offered for a single­
letter misspelling in a four-letter word, yet very little is done 
to help the user making two or more errors in spelling a 
15-letter word. "Internationalization" can readily be recog­
nized by English speakers even with several errors­
"innternattionalisation" contains nn for n, tt for t, and s for z, 
yet it is readily manually corrected. Finally, spelling cor­
rection is beginning to appear in the literature of computer 
science as both the theoretical basis and the necessity for it are 
becoming better recognized. IS, 19, 22, 23 

Computationallexicology will assist spelling correction de­
velopments in three ways. By surveying full-text sources, it 
will be able to provide information on the frequency of spell­
ing errors and their types. By amassing new lexicon, it will be 
able to provide spelling correction algorithms with improved 
data for their use-lexicon that will contain spelling forms 
from special subject domains as well as increased quantities of 
error-free lexical and morphological information (from pub­
lished dictionaries). Finally, by providing statistical informa­
tion on the frequencies of morphological and phonological 
forms, it may be possible to design better spelling correction 
algorithms. 

A note to the topic of spelling correction: Word hyphen­
ation is becoming a feature of some word processing systems. 
Word hyphenation is poorly understood and even more poor­
ly described in algorithmic form.20 Spelling correction lexi­
cons are logically the place to incorporate hyphenation data 
because of the savings in storage accompanied by inserting the 
hyphenation points into the spelling dictionary vs. having a 
separate lexicon for hyphenation. Thus the field of spelling 
correction may soon broaden its boundaries to become the 
field of word correction. It would involve not only repairing 
misspellings, but providing correct hyphenation information 
and perhaps additional capabilities such as checking for ab­
breviation consistency, checking for capitalization, foreign 
language transliteration, and even font changes (e.g., ital­
icizing foreign phrases). The work on the "Writer's Work­
bench" UNIX programs at Bell Labs 5,6,13,17 and the WORDS 
package offered by Houghton Mifflin (Houghton Mifflin, pri­
vate communication, 1981) appears to be leading in the direc­
tion of developing such computational tools for correcting 
words in text. 

Machine Translation 

The current state of the art in mechanical translation (MT) 
is extremely hard to assess. The field is charged with highly 
controversial claims, international rivalries, and a historical 
stigma. Despite these problems, one facet of mechanical 
translation does become clear. It depends on a massive 
lexicon. 

Although practitioners of MT may never resolve their argu­
ments over computational linguistic strategy or even systems 
design directions (machine-assisted vs. fully-automatic) it is 
possible to make advances in the necessary prerequisites for 
mechanical translation without entering into the fray (or at 
least without becoming locked in unresolvable battle). 

One of the conspicuous lacks in mechanical translation is 
the availability of an adequate lexicon. Naive MT consumers 
very often conceive of MT as a task involving a simple paired 
word list (or even worse, a multilingual word table) and an 
amazing and mysterious computational algorithm which can 
take this word list and use it to perform translations. In reality, 
the algorithms necessary for performing mechanical transla­
tion are within our reach today, but the grammar and lexicon 
these algorithms would require to provide flawless high­
quality mechanical translation are many years from attain­
ment. Linguists would readily admit that there does not exist 
a complete grammar of any major natural language. Lexi­
cologists will likewise explain that a complete lexicon, with all 
the grammatical information needed to perform MT, is no­
where to be found. 

Thus, unlike the naive view that the MT problem requires 
finding or building the marvelous algorithm, the actual task 
involves creating an adequately detailed description of a lan­
guage in terms of its syntactical possibilities and lexical seman­
tics. Computationallexicology is thus likely to be necessary in 
providing an MT system with its basis for operation. 

Retrieval without translation 

A very significant consequence of the increased availability 
of machine-readable full-text sources and the accompanying 
growing shortage of economical language translation capabil­
ity is that a high premium will be placed on determining 
whether a document is worth translating before its translation 
is undertaken. Thus full-text sources in foreign languages such 
as Russian, German, French, and Spanish will become readily 
available via satellite telecommunications, which could put a 
foreign newspaper on our doorsteps in a matter of hours after 
its publication in its native country. However, the translation 
of this text would require a major effort-one which would 
not be undertaken unless potential readers knew there was 
something of interest to them in the text that could justify the 
cost of translating. 

Therefore a situation is set up in which a full-text filtering 
system would be desired which operated directly on the for­
eign langauge full-text source material and rendered a judg­
ment about the content before sending such material to a 
translator. The only real indicator of the content of a docu­
ment that can be used without full grammatical parsing is an 
analysis based on the words used in the text. This in turn 
implies that a sophisticated lexicon will be the prerequisite to 
filtering untranslated foreign source material. 



REFERENCES 

1. Amsler, Robert A., and John S. White. Final Report for NSF Project 
MCS77-01315, Development of a Computational Methodology for Deriv­
ing Natural Language Semantic Structures via Analysis of Machine­
Readable Dictionaries. Technical Report, University of Texas at Austin, 
Linguistics Research Center, 1979. 

2. Amsler, Robert A. The Structure of the Merriam-Webster Pocket Dictio­
nary. PhD thesis, The University of Texas at Austin, December, 1980. 
Also appeared as CS Technical Report TR-I64. 

3. Amsler, Robert A. A Taxonomy for English Nouns and Verbs, pages 
133-138. Association for Computational Linguistics, Stanford Univer­
sity, June 29-July 1, 1981. Proceedings of the 19th Annual Meeting of 
the Association for Computational Linguistics, 1981. 

4. Carroll, John B., Peter Davies, and Barry Richman. The American 
Heritage Word Frequency Book. Boston: Houghton Mifflin, 1971. 

5. Cherry, Lorinda. "Computer Aids for Writers." SlGPLAN Notices, 16 
(June 1981), pp. 62-67. Special issue containing The Proceedings of the 
ACM SIGPLAN SIGOA Symposium on Text Manipulation held over 
June 8-10, 1981 in Portland, Oregon. 

6. Cherry, Lorinda. A Toolbox for Writers and Editors. pages 221-227. 
AFIPS, Houston, Texas, 1981. 

7. Francis W. N. Manual of Information to Accompany A Standard Sample 
of Present-Day Edited American English, for Use with Digital Comput- . 
ers. Providence, Rhode Island: Brown University, Department of Lin­
guistics, 1964. 

8. G. & C. Merriam Co. The New Merriam-Webster Pocket Dictionary. 
Springfield, Mass.: G. & c. Merriam, 1971. 

9. Hornby, A. S., E. V. Gatenby, and H. Wakefield. The Advanced 
Learner's Dictionary of Current English. London: Oxford University 
Press, 1971. 

10. Houghton Mifflin Company. WORDS. Advertising literature. Sep­
tember 1981. 

11. Kucera, Henry, and W. Nelson Francis. Computational Analysis of 
Present-Day American English. Providence, Rhode Island: Brown Uni­
versity Press, 1967. 

12. Procter, Paul, ed. Longman Dictionary of Contemporary English. Lon­
don: Longman Group, 1978. 

Computational Lexicology: A Research Program 663 

13. Macdonald, N. H., L. T. Frase, and S. A. Keenan. Writer's Workbench: 
Computer Programs for Text Editing and Assessment. Piscataway, New 
Jersey: Bell Laboratories 1980. Part of the documentation for the UNIX 
operating system. 

14. Mead Data Central. LEXIS, A Primer and LEXIS Quick Reference 
Manual. New York: Mead Data Central, 1980. 

15. Michiels, A., J. Mullenders, and J. Noel. Exploiting a Large Data Base 
by Longman. COLING 80, Tokyo, Sept. 30-0ct. 4, 1980. Proceedings 
of the 8th lnternationai Conference on Computationai Linguistics, 1980, 
pp. 374-382. 

16. Michiels, A. "Exploiting a Large Dictionary Data Base." PhD thesis, 
University of Liege, Belgium, 1981. 

17. Morris, R., and Lorinda Cherry. "Computer Detection of Typographic 
Errors." IEEE Transactions on Professional Communication, PC-18 
(1975) 54-64. 

18. Peterson, James L. Lecture Notes in Computer Science. Volume 96: 
Computer Programs for Spelling Correction. New York: Springer-Verlag 
1980. 

19. Peterson, James L. Computer Programs for Detecting and Correcting 
Spelling Errors. CACM, December 1980, 23(12), 676-687. 

20. Peterson, James R. Use of Webster's Seventh Collegiate Dictionary to 
Construct a Master Hyphenation List. AFIPS, Proceedings of the Nation­
al Computer Conference (Vol. 51), 1982. 

21. Sacerdoti and Bozena Thompson. Presentations at Naval Research 
Laboratory Workshop on Applied Computational Linguistics in Perspec­
tive, Stanford University, June 1981. 

22. Simmons, Robert F., and Robert A. Amsler. Modeling Dictionary Data. 
Computer Sciences Report 7, New York University, Courant Institute 
of Mathematical Sciences, Computer Science Department, 1975. 

23. Turba, Thomas N. "Checking for Spelling and Typographical Errors in 
Computer-Based Text." SIGPLAN Notices, 16 (1981), pp.1 51-60. 
Special issue containing The Proceedings of the ACM SIGPLAN SIGOA 
Symposium on Text Manipulation, symposium June 8-10, 1981, Port­
land, Oregon. 

24. Zamora, A. Automatic Detection and Correction of Spelling Errors in 
Large Data Bases. ASIS 10urnal31 (1978), pp. 51-57. 





Use of Webster's Seventh New Collegiate Dictionary to 
construct a master hyphenation list 

by JAMES L. PETERSON 
University of Texas 
Austin, Texas 

ABSTRACT 

A machine-readable form of Webster's Seventh New Collegiate Dictionary has been 
obtained. After substantial processing to understand the form and content of the 
dictionary and to correct residual typographical errors, we have begun the task of 
constructing a master word-hyphenation list based on this dictionary and other 
sources. Substantial problems can arise in preparing the master hyphenation list 
because of incompatible hyphenation definitions from various sources. Some statis­
tics are given. 

665 





Use of Webster's To Construct a Master Hyphenation List 667 

MOTIVATION 

Over the past decade an increasing number of documents 
have been prepared with the use of a computer. These com­
puter-based systems provide certain standard functions: in­
put, storage, editing, formatting, and output. Recently, how­
ever, a new function has been introduced: analysis. The idea 
is to have the computer analyze the text of the document to 
catch errors and improve the quality of the document. 

Many different types of analysis are possible. Perhaps the 
best known is spelling checking and correcting. 1 A large num­
ber of programs currently available will check each word in a 
document for correct spelling. This is generally done by pro­
viding a list of words that are correctly spelled. Any word 
in the document that is not in the list of correctly spelled 
words is a candidate misspelling and is flagged for the author's 
attention. 

Although the best-known form of document analysis is 
detecting spelling errors, it is far from the only form. The 
Writer's Workbench of PWB/UNIX2 provides several forms 
of document analysis, including readability indexes, wordi­
ness, punctuation, and style. More advanced forms of analysis 
would include checking grammar and syntax of documents. 3,4 

For all of these tasks two things are needed: an analysis 
algorithm and a suitable word list annotated with the needed 
properties of the words. 

In our case, we are trying to evaluate several different read­
ability formulas. 5 Many of these formulas involve counting the 
number of syllables in a word or sentence. Thus, we would 
like to be able to divide a word into its constituent syllables. 

Trying to find existing algorithms for splitting a word into 
syllables, we noticed that this is the hyphenation problem: 
given a word, where can that word be hyphenated? A word 
can be hyphenated only on a syllable boundary. Thus, if we 
can determine hyphenation points correctly, we can use that 
information to define syllable boundaries and hence the num­
ber of syllables. 

There are several published hyphenation algorithms,6,7 but 
they tend to be either very simple (and obviously not very 
good) or rather complex but of unknown validity. A study of 
hyphenation rules leads immediately to the conclusion that 
the only totally correct algorithm would be to look up the 
word in a word list annotated with hyphenation information.8 

At the same time, we are attempting to investigate the 
difficulty of checking grammar and syntax in English docu­
ments. We need to know, for each word, the possible parts of 
speech for that word, This, plus a partial English grammar, 
should allow us to create a syntax-checking program for En­
glish. A sentence with no parse in the grammar would be 
flagged for the author as a possible syntax error. 

In searching for a word list with part-of-speech and hyphen-

ation information, we discovered the machine-readable Web­
ster's Seventh New Collegiate Dictionary (W7).9 

WEBSTER'S SEVENTH NEW COLLEGIATE 
DICTIONARY 

W7 exists in a computer-readable form. This is not just a word 
list, but a copy of the entire dictionary, including definitions, 
cross-references, variants, synonyms, and so on. It consists of 
some 12,242,868 characters, with 68,766 main entries. 

The original dictionary was keyboarded onto the Q-32 com­
puter at System Development Corporation (SDC) for a proj­
ect headed by John Olney. 10 The dictionary was then heavily 
edited and moved onto an IBM 360. Tapes of this form, which 
were widely distributed, included a copy sent to the IBM T.J. 
Watson Research Center and further processed by C. Alber­
gao A copy of this was acquired by Robert Amsler. 11 We have 
acquired a copy of the dictionary from Amsler and have mod­
ified it in many minor ways. 

Figure 1 shows a sample of the dictionary file. Each line of 
the file has a character in Column 1 identifying the type and 
format of the line. Table I shows the number and meaning of 
each line type. 

Each line is composed of a number of fields. Fields are 
separated by a semicolon and are defined by their position. 
The first field of each line is the line type character (F, V, D, 
L, R, X, or S, as given above). The remaining fields depend 
on the type of the line. For example, the second entry on an 
F-line is a main-entry word, the fifth field has hyphenation 
information, and the seventh has part-of-speech information. 

Character Codes 

A major problem with the dictionary is its character set. 
First, the dictionary publisher did not feel constrained in use 
of characters, but chose whatever symbols best fit the pur­
pose. Second, the dictionary was originally encoded in an 
extended BCD (for the Q-32 computer), then translated into 
EBCDIC (for the IBM 360/370) and now has been translated 
into ASCII (for our PDP-11160). None of these character sets 
is completely compatible with the others, and none of them 
are sufficient to represent the variation found in the original 
printed dictionary. Hence an encoding scheme must be used 
to expand the set of representable characters. This expansion 
occurs in two independent directions: font information and 
special characters. 

We have represented font information by use of the square 
brackets in ASCII to surround any special font material. Five 
font types are recognized: (1) italic, (2) mini-caps, (3) bold, 
(4) subscripts, and (5) superscripts. Each is denoted by an 



668 National Computer Conference, 1982 

F;Charybdis; ;;33;n;; 
D;O;;;n;a whirlpool olf the SiciU:lll (,(J;Jstil 
personified by the ancients .is a fl'lllat" monstl!r 
F;chase;l;;;vb; ; 
D;l;a;;vt;to folluw ra~idly : !r~ini I'UI{SUE] 
D; 1 ;b; ;vt; [mini HUNT] 
D;l;c;;vt;to follow regularly or p,>rsistentlyll 
with the intention of att ract ing or ;11 luring 
L;2;;;[italic obs] 
D;2;;;vt;[mini HARASS] 
D;3;;;vt;to seek out 
D;4;a;;vt;to cause to depart :"Ie{< [mini liI?IVF] 
L;4;b;;[italic slang] 
D;4;b;;vt;to takv (ones"lf) of! 

D;l;;;vi;to chase an animal, IH!rSOll, or thing 
D; 2; ;; vi; [Glini RUSH], [mini H,\Sn:N] 
S; [bold syn] [mini PURSUE], [mini FOLLOW], [mini TRAIL] :11 
[mini CHASE] implies going swiftly dfter .I11d trying toll 
overtake sOr.lething fleeing or l"unning; [mild PURSUE] suggestsll 
a continuing effort to overtnke, reach, att;tin; [mini ~OLLnW]U 

puts less er.lphasis upon speed or int"nt to ov(,rlake and m,!y no til 
imply an awareness on the part of th(' learler that h(> isl! 
pursued; [mini TRAIL] may stress a following of tracks or'l 
traces rather than a visible obj~('t 
F;chase;2;; ;n;; 
D;l;a;;n;the act of chasing: [mini PURSUlT] 
D;l;b;;n;[mini HUNTING] -- used with [italic the] 
D;l;c;;n;an earnest or:- frenzied seeking nfter:- somC'thing desired 
D;2;;;n;something pursued 
D;3;a; ;n;a franchise to hunt within certain I imlt.; of land 
D;3;b;;n;a tract of unenclosed land used as a game preserve 
F;chase;3;;;vt; ; 
D;l;a; ;vt;to ornament (metal) by indentingll 
with a hammer and tools without a cutting edge 
D;l;b;;vt;to make by such indentation 
D;l;c;;vt;to set with gems 
D;2;a;;vt;[mini GROOVE], [mini INOEWr] 
D;2;b;;vt;to cut (a thread) with a chaser 
F;chase;4;; ;n;; 
D;l;;;n;[r:lini GROOVEi, [mini FURROW] 
D;2;;;n;the bore of a cannon 
D;3;a;;n;[mini TRENCH] 
D; 3;b; ;n;a channel (as in a wall) for sOIn('thi ng to# 
lie in or pass through 
F;chase; 5;;; n;; 
D;O;;;n;a rectangular steel or ir<Jn frame into whichll 
letterpress matter is locked for printing or plating 
X;fonn;;;4; 

Figure I-Sample of the dictionary file 

identIfying keyword immediately after the opening (left) 
square bracket, followed by a space, followed by the material 
to be in the defined font, followed by the closing (right) square 
bracket. For example, an italic was is represented as [italic 
was], a mini-caps AMBIENT is [mini AMBIENT] and a bold 
syn is [bold syn]. Superscripts and subscripts may be italic, 
mini-caps, or bold; and a few superscripted superscripts also 
occur, as in 6.24 {times} 10 [sup 10 [sup 10]]. 

The dictionary includes a large number of special symbols 
that are not representable in ASCII. These include all the 
Greek alphabet, the Hebrew alphabet, and many miscel­
laneous other special symbols. All special symbols which are 
not available in ASCII (and some that are) have been given 
representations by enclosing the name in braces, as: {degrees} 
(for a degree symbol), {times} (for multiplication represented 
by a small x), and {tau} (for the lower-case Greek letter tau). 

Each symbol name has been selected to exclude embedded 
blanks. Thus all characters between an opening right brace 
and its closing right brace are nonblank. Certain characters in 
ASCII (braces, brackets, question mark, exclamation mark, 
and so on) have also been represented as extended characters 
to allow the ASCII character to be used for other purposes 
(such as font and special character representation). They oc­
cur only infrequently (fewer than 100 times). 

ERRORS IN W7 

While processing W7 both to understand its contents and to 
put those contents into a usable form, we encountered a large 
number of errors. These errors were of several types: 

1. Merged illustrations. For example, under false the illus­
tration was ( ~ documents ~ teeth) and should have been 
< ~ documents) < ~ teeth). To correct this we searched 
for any line of the form ( ... ~ ... ~ ... ). 

2. Words containing letters with accents (236 entries). The 
accent field was wrong about half the time. The normal 
problem was that the accent was on the wrong letter. In 
these cases, the hyphenation information generally 
showed syllables that were two letters too long. 

3. Incorrect values in fields. We created a list sorted by 
frequency of the contents of each field (as listed in the 
appendix of Peterson I2

). These could then be examined 
for rare or inappropriate values; for example, a g in a 
numeric field, or a zero in an alphabetic field. 

4. Mismatched parentheses or brackets. We wrote a pro­
gram to simply count parentheses, braces, and brackets. 
Many were found to be mismatched. 

All these errors, once found and verified, were corrected by 
hand, using a text editor. 

A last form of error analysis was an attempt to find typo­
graphical errors. The approach was simple: we extracted a list 
of all unique words used in the dictionary definitions. This 
produced a list of 54,298 words. We compared this list with the 
list of all words defined in the dictionary (main entries, vari­
ants, or related words). This reduced our list to 20,292 words 
that were used in definitions but not defined. Many of these 
were derived forms of defined words: past tense, plurals, and 
so on. Doing some simple suffix analysis, we were left with 
about 8,000 words. Most of these were apparently Greek or 
Latin botanical or zoological names. Deleting those ending in 
'-ia' or '-ae' and all words in italics in the dictionary left a list 
of 2,821 words. 

These were checked by hand to produce a list of 903 incor­
rectly spelled words. We also found 54 words which were 
used, but not defined, such as Australasian, nubby, spon­
dunmene, seneschal. We also found a smaller list of words with 
with typographical errors in the main entry in the computer 
files. 

Of the 903 typographical errors, 543 were the result of a 
missing blank between two words. Of the remaining 360, 34% 
were a missing letter, 27% were a wrong letter, 20% were an 

Line type 

F 
V 
D 
L 
R 
X 
S 

TABLE I-Number and meaning of line 
types in W7 dictionary file 

Number Meaning 

68,766 First line, start for a new word 
9,957 Variant 

140,500 Definition, one per line 
11,990 Label 
19,123 Related word 
4,598 Cross-reference 

834 Synonym block 



Use of Webster's To Construct a Master Hyphenation List 669 

extra letter, and 13% were the result of transposed letters. 
The remaining errors were caused by two extra or two missing 
letters, or by transposing two letters around a third. The mid­
dle letter in this case was always a vowel. (For example, min 
would be typed nim . ) 

We also found 10 cases of typographical errors in the orig­
inal printed dictionary. It was interesting to follow these er­
rors through the various printings and editions of the 
Merriam-Webster dictionaries. Four errors were corrected in 
the 1970 printing of W7, one in the 1971 printing of W7, and 
one in the New Collegiate Dictionary; 13 and four errors re­
main in the most recent Collegiate: 14 

1. In bitch, doublecross should be double-cross. 
2. In vanity, knicknack should be knickknack. 
3. In drift, quantitive should be quantitative. 
4. In barranca, gulley should be gully. 

The first two errors are also in Webster's Third New Inter­
national Dictionary. 15 

CONSTRUCTION OF THE MASTER 
HYPHENATION LIST 

As mentioned before, each line in the dictionary is a sequence 
of fields, separated by semicolons. The fourth field on F­
cards, the second field on R-cards, and the second field on 
V-cards contain hyphenation information for their respective 
entries. The hyphenation information is a sequence of one­
digit numbers giving the number of characters between pos­
sible hyphenation points. As an example, a word such as 
devilish is hyphenated as dev-il-ish and would be encoded as 
323. The distance from the start of the word to the first hy­
phenation point is 3; the next syllable is of length 2; the last 
syllable is of length 3. The word ethnological, hyphenated as 
eth-no-log-i-cal, is encoded as 32313. 

The encoding of the distance between hyphenation points is 
one digit, from 1 to 9. If the distance exceeds 9, we continue 
with the upper-case letters (as with a hexadecimal represen­
tation). Thus A is 10, B is 11, Cis 12, ... , Z is 35. The most 
common lengths of syllables are 232, 322, and 223. 

The longest hyphenation encoding is 

pneumonoultramicroscopicsilicovolcanoconiosis; 
4222323423123222213 

pneu-mo-no-ul-tra-mi-cro-scop-ic-sil-i-co-ml-ca-no-co-ni-o­
sis 

There are five words with nine syllables each. 
While we were processing W7, we became aware of several 

word lists with hyphenation data. We were able to acquire 
copies of three of these: 

1. LONG, based on Longman's Dictionary of Contempo­
rary English 16 

2. RADC, from Rome Air Development Center 
3. IBM, from the Advanced Office Systems Laboratory of 

IBM 

Each of these word lists recorded hyphenation information in 
a different way, generally by an embedded hyphenation indi­
cator (either a hyphen, an equal sign, or a period). We con­
verted all of these to a uniform encoding based on the W7 
encoding. 

Each source was separately checked for accuracy. We 
started with the four files: W7, LONG, RADC, IBM. After 
putting these in a common format, each file was checked for 
acceptable forms of words: No internal blanks, no apostro­
phes, no numbers, no hyphens, and no foreign characters. 
Each file was checked to assure that every syllable had a vowel 
(except dirndl, Houyhnhnm, Niflheim, McCoy, McCarthy, 
and their derivatives). Each file was checked to identify cases 
where the same word might have multiple hyphenations. 

We then combined these lists in an attempt to create a 
master hyphenation list. Major advantages of this approach 
are the large set of words in the resulting list and the redun­
dant verification of the hyphenation information. 

One of the problems with hyphenation is that some spell­
ings have more than one hyphenation, depending on the 
meaning of the word. The differing hyphenations are a result 
of varying pronunciations, which are related to the source of 
the word or its part of speech. For example, project used as a 
noun is proj-ect, but used as a verb it is pro-ject. Differing 
meanings are the reason for the differing hyphenation of 'add­
er' (one who adds) and 'ad-der' (a type of snake); in both 
cases the word is a noun. A list of 187 of these words has been 
constructed. 

It is sometimes difficult to determine when a word has, in 
fact, multiple hyphenations. The word division supplement of 
the Government Printing Office Style Manual 17 lists 100 such 
words; the others were found while processing the various 
lists. However, one also finds anomalous situations such as, in 
W7, the varying hyphenation of footedness in slow-footedness 
(footed-ness) and flat-footedness (foot-ed-ness) or the vari­
ation in spoken and fair-spoken (spo-ken versus spok-en). 

In general, multiple hyphenations come in two forms: com­
patible and incompatible. If the hyphenation points of one 
hyphenation are a subset of those of another, the hyphen­
ations are compatible, and we choose the larger set of hy­
phenation points. Thus, the hyphenations footed-ness and 
foot-ed-ness are compatible, and we choose foot-ed-ness. 

When neither hyphenation is a subset of the other, the two 
are incompatible (such as spo-ken and spok-en), and other 
means must be used to resolve the differences. The simplest 
means would be reference to a universally accepted definitive 
source. However, no single source appears universally accep­
table. We have a list of 32 words for which W7 indicates one 
hyphenation and all our other sources indicate a different one. 

For words not on the list of known multiple hyphenations, 
multiple hyphenations may mean an error in at least one of 
the possible hyphenations. We initially had the following 
number of words in each file: 

W7 
LONG 
RADC 
IBM 

72,983 
20,506 
28,689 
70,,355 

If we combine all these files, we end with a list of 108,190 



670 National Computer Conference, 1982 

unique words, of which there are 2,011 whose hyphenation is 
in dispute. 

To resolve these disputes, we counted the number of times 
each hyphenation occurs in the combined files. Where two or 
three sources showed the hyphenation one way and only one 
source showed an incompatible hyphenation, the more com­
mon hyphenation was chosen. In cases in which two sources 
indicated one hyphenation and two indicated another, or in 
which only two or three sources included the word and each 
indicated a different hyphenation, we had to consider each 
word separately. 

At the moment we are attempting to get either of two 
additional sources: the word division list of the U.S. Govern­
ment Printing Office17 or the word-hyphenation list of the 
American Heritage Dictionary. 18 With either one of these we 
will have an odd number of hyphenation sources and hence 
may be able to use a strict majority rule to arrive at a defined 
hyphenation. 

An interesting side point is to examine the source of hy­
phenations deemed incorrect. The following list shows the 
number of hyphenations of words deleted by our selection 
procedure: 

LONG 
IBM 
W7 
RADC 

817 
316 
171 
120 

The high number of variant hyphenations from LONG un­
doubtably reflects the different pronunciation (and hyphen­
ation) resulting from British English. 

CONCLUSIONS 

We are still tying up minor loose ends in the W7 dictionary 
and our master hyphenation list. We have recently acquired 
the word frequency information of the American Heritage 
word frequency study19 and are proceeding to add that fre­
quency information to our hyphenation word list information. 
This will allow us to evaluate hyphenation algorithms and 
readability formulas in ways not previously possible. We will 
shortly be able to determine quantitatively the accuracy of 
various hyphenation algorithms with respect to both a giv-

en word list and the word list weighted by frequency. This 
will allow us to select appropriate algorithms for various 
situations. 

REFERENCES 

1. Peterson, J. L. "Computer Programs for Detecting and Correcting Spell­
ing Errors." Communications of the ACM, 23 (1980), pp. 676-687. 

2. Cherry, L. "A Toolbox for Writers and Editors." 1981 Office Automation 
Conference Digest, Houston, March 1981. Arlington, Virginia: AFIPS 
Press, 1981. pp. 221-227. 

3. Miller, L., G. Heidorn, and K. Jensen. "Text-Critiquing with the EPI­
STLE System: An Author's Aid to Better Syntax." AFIPS, Proceedings 
of the National Computer Conference (Vol. 50), 1981, pp. 649-655. 

4. Sager, N. Natural Language Information Processing: A Computer Gram­
mar of English and its Application. Reading, Massachusetts: Addison­
Wesley, 1981. 

5. McCallum, D., and J. Peterson. "Computer-Based Readability Indexes." 
In Preparation. 

6. Rich, R. P., and A. G. Stone. "Method for Hyphenating at the End of 
a Printed Line." Communications of the ACM, 8 (1965), pp. 444-445. 

7. Knuth, D. E. TEX and Metafont: New Directions in Typesetting, Bedford, 
Massachusetts: Digital Press, 1979. 

8. Reid, B. K. "Scribe: A Document Specification Language and Its Com­
piler." Technical Report CMU-CS-81-100, Department of Computer Sci­
ence, Carnegie-Mellon University, October 1980. 

9. Webster's Seventh New Collegiate Dictionary. Springfield, Massachusetts: 
G. & c. Merriam, 1%5. 

10. Reichert, R., J. Olney, and J. Paris. "Two Dictionary Transcripts 
and Programs for Processing Them. Volume I: The Encoding Scheme, 
PARSENT and CONIX." Technical Memorandum TM-39781001l00, Sys­
tem Development Corporation, Santa Monica, California, June 1969. 

11. Amsler, R. A. "The Structure of the Merriam-Webster Pocket Dic­
tionary." Technical Report TR-l64, Department of Computer Sciences, 
The University of Texas at Austin, December 1980. 

12. Peterson, J. L. "Webster's Seventh New Collegiate Dictionary: A Compu­
ter-Readable File Format." Technical Report, Department of Computer 
Sciences, The University of Texas at Austin, 1981. In Preparation. 

13. Webster's New Collegiate Dictionary. Springfield, Massachusetts: G. & c. 
Merriam, 1975. 

14. Webster's New Collegiate Dictionary. Springfield, Massachusetts: G. & c. 
Merriam, 1981. 

15. Webster's Third New International Dictionary of the English Language 
Unabridged. Springfield, Massachusetts: G. & c. Merriam, 1976. 

16. Longman Dictionary of Contemporary English. London: Longman 
Group, 1978. 

17. Word Division. Supplement to Government Printing Office Style Manual. 
7th ed. Washington, D.C.: U.S. Government Printing Office, 1976. 

18. The Word Book. Boston: Houghton Mifflin, 1976. 
19. Carroll, J. B. The American Heritage Word Frequency Book. Boston: 

Houghton Mifflin, 1971. 



Models, languages, and heuristics for distributed computing 

by ROBERT E. FILM AN 
Hewlett Packard 
Palo Alto, California 

and 

Indiana University 
Bloomington, Indiana 

and 

DANIEL P. FRIEDMAN 
Indiana University 
Bloomington, Indiana 

ABSTRACT 

We are interested in the issues surrounding computer problem solving in systems of 
loosely coupled processes. This paper is a compendium of ideas related to the 
software issues involved in programming distributed systems. We discuss two as­
pects of this problem: languages and models for distribution, and heuristics for 
organizing distributed systems. The second section of the paper discusses the nature 
of distributed languages and models, and presents a comparison of the attributes of 
several of the major proposals for distributed computing. The third section is a 
discussion of some heuristics for the organization of mUltiple-process systems. 

671 





INTRODUCTION 

The marvels of miniaturized silicon are leading to a world of 
cheap microprocessors. These microcomputers bring with 
them the hope of faster and cheaper versions of the con­
ventional, mainframe computer-an army of small automata, 
eager to increment and loop, ready to go out and solve our 
computing problems. However, as any manager of a large 
software project can assure you, a large collection of dumb 
computing agents does not add up to a working system. Mi­
croprocessors need to be told not only what to do, but how to 
do it. They need to cooperate and communicate in their pro­
cessing task; but their cooperation must not turn into a bu­
reaucracy, expending more energy on communication than on 
production. 

The next generation of computer architectures will provide 
users with not just one but many computers to perform their 
tasks. But improved computational productivity is not 
achieved by processing power alone. Along with multiple­
processor architectures must come the software facility to 
profitably use that computing power. We call such an inte­
grated, multiple-processor system a coordinated computing 
system. The integration we require in coordinated computing 
is not merely interprocessor communication, but interprocess 
cooperation. 

This paper discusses the issues surrounding computer prob­
lem solving in systems of loosely coupled processes. Toward 
this end, we have been studying models of communication, 
programming languages for distributed computing, and heu­
ristics for system organization. In this paper we present a 
compendium of ideas related to the software issues involved 
in achieving coordinated computing. We discuss two aspects 
of the coordinated computing task: languages and models for 
distribution and heuristics for organizing distributed systems. 
The second section of the paper discusses the nature of distrib­
uted languages and models and compares the attributes of 
several of the major proposals for distributed computing. The 
third section discusses some heuristics for the organization of 
multiple-process systems. These issues are discussed in great­
er detail in Coordinated Computing: Tools and Techniques for 
Distributed Software. 1 

MODELS AND LANGUAGES 

Requirements for Distribution 

Every programming language or model makes assumptions 
about its computing environment. A programming system for 
coordinated computing is no exception. Particularly impor-

Models, Languages, and Heuristics 673 

tant are the assumptions that such a system makes about the 
interface it provides the programmer: 

1. First, a distributed programming system has multiple, 
independent, concurrently computing processes or supports 
some activity that corresponds to doing many independent 
activities simultaneously. 

2. The processing elements must communicate (transfer 
information) between themselves, though there is a cost (time 
delay) associated with this transfer. A system that treats inter­
process communication as if it were free is a shared-memory, 
or tightly coupled, system. Such systems avoid many of the 
difficulties of distribution. 

3. No process should be able to perceive the global state or 
global time of the system. Once again, a system that shares 
too much information is not truly distributed. 

4. Communication should be directed: communications 
should have both a specific origin and a specific destination. 
This implies that (pseudo-) broadcast communication mech­
anisms are somewhat suspect. If a system wishes to use broad­
cast as a syntactic shorthand for a series of directed communi­
cations, then the cost of that broadcast shouid be proportional 
to the number of destinations. 

5. If a system has an expiicit notion of process, programs 
written in that system should be able to create processes 
dynamically. 

These criteria are software criteria, though they have their 
origins in the nature of physical computing devices. Our goal 
is to define a distributed software system to be the program­
ming equivalent of a multiple-processor hardware system, 
where the processors, though independent, share the work 
involved in some task. These restrictions are designed to limit 
discussion to languages and models that can support coordi­
nated problem solving on such systems. 

There are no mature software systems that exhibit our idea 
of distribution. Instead, several languages and models have 
been proposed for dealing with various aspects of distribution. 
We feel that these languages and models can be characterized 
by the choices they make in a multidimensional decision 
space. In this section we discuss the dimensions of that space 
and plot the location of our sample languages. 

Candidate Models and Languages 

Models are used to describe mathematical relationships. 
Programming languages are used to describe processing. 
Since the mathematical relationships involved in program­
ming and modeling a processing task are similar, some of our 



674 National Computer Conference, 1982 

examples have aspects of both programming language and 
model. 

Models are constructed to' explain and analyze complex 
system behavior. It is important that a model abstract out the 
"interesting" part of the system it is attempting to mode!. 
Models of concurrent systems usually specify some properties 
of the interprocess communication mechanism; they are then 
used to prove properties of the resulting systems. For exam­
ple, one can set up a model of the communication relation­
ships among processes and use it to analyze the efficiency of 
an algorithm; or one can set up a model of the information 
transfer among processes and use it to prove an algorithm's 
correctness. 

Informally, a computer language is a way of providing a 
sufficiently exact set of directions to a computer. Computer 
languages are characterized by their syntax and semantics. 
The syntax of a programming language defines the appear­
ance of the set of legal program strings. The semantics of a 
programming language specifies the effects of a particular 
syntactic structure. The details of a programming language 
syntax (such as the choices of keywords and punctuation) are 
unimportant (except for issues of human engineering). In­
stead, it is the semantic actions the programming language can 
take that interest us. 

There have been many proposals for models and languages 
for distributed processing. This paper contains a brief com­
parison of 11 of these proposals. We have selected what we 
feel is a representative sample of ideas from the important 
systems. Of these systems, we characterize four of these as 
pure models: Milne and Milner's "concurrent processes,,,2 
Fitzwater and Zave's "exchange functions,"3 and Lynch and 
Fischer's "shared variable" model4 and "data flow," by Den­
nis and by Arvind et al. 5,6* Typically, models for distribution 
describe only the communication relationships between pro­
cesses, without placing limitations on the architecture of the 
remainder of a system. 

Three of our examples are model-language hybrids: 
Hewitt's Actors,7 Friedman and Wise's frons,R and Hoare's 
Communicating Sequential Processes. 9 Hybrids specify more 
of the computing process than models but are not as compre­
hensive as languages. 

Our final four examples are programming languages: 
Brinch Hansen's Distributed Processes, \0 Feldman's PLITS, II 
Andrew's Synchronizing Resources,12 and the Defense De­
partment's Ada. 13 

Dimensions of Distributed Languages and Models 

Every designer of a model or language for distributed com­
puting chooses the facilities that that system will provide. In 
this section we identify several such dimensions and indicate 
where each model and language lies in the choice space. * * 
Table I examines the general goals and structure of each sys-

*Many workers have worked on data flow systems; there are important differ­
ences between the models they have developed .. Here we cite only a pair of 
references. The semantics of data flow models depends on which data flow 
model is used. Later comparisons wi!! develop this theme. 
**Other papers that have engaged in comparative discussion of distributed 
languages include Mohan,14 Rao,15 and a predecessor of this paper. 16 

TABLE I-Goals and structures 

(C) 
(B) Dynamic 

(A) Explicit Process 
Model Task domain Processes Creation 

Concurrent proc- Correctness Processes Dynamic, new 
esses, Milne & 
Milner 

Exchange func- Pragmatics (RS) Processes Static 
tions, Fitzwater 

& Zave 
Shared variable, Correctness, Processes Static 

Lynch & Fischer Analysis 
Data flow, Pragmatics Tasks 

Dennis; Arvind 
et al. 

Actors, Hewitt Pragmatics (AI), Processes Dynamic, new 
Correctness 

frons, Friedman Pragmatics, Tasks 
& Wise Correctness 

CSP, Hoare Systems, Processes Static 
Correctness 

Distributed proc- Systems Processes Static 
esses, Brinch 
Hansen 

PUTS, Feldman Pragmatics (AI), Processes Dynamic, new 
Systems 

Synchronizing Systems Processes Static 
resources, 
Andrews 

Ada, DoD Systems, Processes Dynamic, new, 
Pragmatics lexical 

tern, Table II examines aspects of intrasystem communica­
tion, and Table III examines the system perspective of the 
remaining dimensions. 

1. Task domain: the most dramatic differences between 
these languages and models appears in their choice of prob­
lem domain. The models are directed principally at mathe­
matical concerns, such as proofs of algorithm correctness 
(Correctness) and analysis of algorithmic complexity (Anal­
ysis). Some of these systems are concerned with issues of 
systems implementation (Systems). Some of the language 
proposals are pragmatic-their authors feel that the choice of 
constructs eases the task of programming distributed systems 
(Pragmatics). Two of our pragmatic systems have particular 
interest in programming problems from artificial intelligence 
(AI); one is principally concerned with the software engineer­
ing problem of requirement specification (RS). Many systems 
have features directed at several of these task domains. 

2. Processes: Most models and languages have an explicit 
process entity (Process). Others view tasks as the creatures of 
program execution, to be solved by the system as a whole, 
without keeping the notion of explicit, communicating pro­
cesses (Tasks). 

3. Dynamics: In any system the set of processes can either 
be statically determined at system generation (Static), or dy­
namically created during system execution (Dynamic). All of 
the systems studied that have dynamic process creation can 



allocate new processes; one can also generate them by the 
recursive, lexical expansion of program text (Lexical). Task­
based systems can, of course, dynamically create new tasks. 

Most languages that allow dynamic process creation restrict 
the new processes to a type determinable at system initiation 
(compilation). Some systems allow the creation of new vari­
eties of processes and tasks during execution (new). A system 
that creates new processes invariably provides names for (or, 
equivalently, pointers to) these new processes. These names 
can be passed around the process network, creating new com­
munication channels. Systems that rely on a static network of 
processes usually determine interprocess communication 
paths lexically. 

4. Synchronization: Systems with explicit processes choose 
between synchronous communication, where all communi­
cators must attend to every communication (Synch) and asyn­
chronous communication, where processes can begin a com­
munication and continue with other activities (Asynch). This 
is the difference between "call" and "send-and-forget." Fol­
lowing Ada, 13 we call the period of synchronization in commu­
nication rendezvous. 

5. Buffering: A system that supports asynchronous com­
munication can place a bound (Bounded) on the size of the 
communication buffer or can allow an unbounded (Un­
bounded) number of messages to be initiated. Systems that 

TABLE II-Communication 

(D) (F) (H) 
Synchro- rc\ Informa= (G) Syntactic-Conn. , ....... , 

Model nizat",n Buffering tion flow Control Sender Receiver 

Concur- Synch Bounded Bi-Sim 
rent pro-
cesses 

Exchange Synch Bounded Bi-Sim 
Func-
tions 

Shared Asynch Bounded Uni 
variable 

data flowa Asynch Bounded! Uni 
Unbounded 

Actors Asynch Unbounded Uni 
frons AsyIich n.a. Uni 
CSP Synch Bounded Uni 

Distrib- Synch Bounded Bi-Del 
uted 
processes 

PUTS Asynch Unbounded Uni 

Synchro- Asynchl Unbounded/ Bi-Del 
nizing 
resourcesc 

Synch Bounded Uni 

Equal Port Port 

Equal Port Port 

Equal Port Port 

Act-Pas Entry none 

Act-Pas Name none 
n.a. Port Port 
Act-Act Name Name 

I/O-G pattern-match 
Act-Act Entry none 

I-G, Pat 

Act-Actb Name sender 
Filter filter 

Act-Actd Entry Entry 
I-G, Ex-Sr 

Ada Synch Bounded Bi-Del Act-Act Entry Entry 
I-G, Tm-O 

aDifferent data flow models make different choices regarding infinite buffering. 
bPLITS processes can filter messages by sender or "transaction key." 
cSynchronizing resources supports both synchronous (call) and asynchronous 
(send) mechanisms. 
dSynchronizing resources can examine and sort calls before selecting which to 
serve. 

Models, Languages, and Heuristics 675 

TABLE III-Other Issues 

(L) 
(I) Supports 

Time & (J) (K) Shared 
Model Consciousness Fairness Failure Memory 

Concur. Proc. Rescindable Anti 
Offer 

Exch. Funct. Instantaneous Strong 
Time Outs 

Shared Var. Always Weak Supports 
Conscious 

data flow Reactive -n.a.-a 
IAnti 

Actors Reactive Weak 
frons Reactive Weak Convenient 

redundancy 
CSP I/O Anti 

Guardsb 

Dist. Proc. I-Guards Strong 
PUTS Always Strong 

Conscious 
Synch. Res. I-Guards Anti Supports 
Ada I-Guard, Strong Extensive Supports 

Time Outs mechanisms 

aSome data flow models are deterministic. In a deterministic system, fairness 
is irrelevant. 
bHoare's earliest proposals excluded output guards. Later works on CSP have 
included them. 

require synchronous communication have no use for un­
bounded message buffers; every message is processed when it 
is sent. 

6. Information Flow: In communication, information flow 
can be unidirectional (Uni) (from one process to another), 
bidirectional simultaneous (between processes only at the syn­
chronous time of communication) (Bi-Sim), or bidirectional 
delayed (where one process can compute a reply during ren­
dezvous) (Bi-Del). None of our models or language provides 
for bidirectional delayed communication where both pro­
cesses compute during rendezvous, though there is no the­
oretical reason to disallow it. 

7. Control: The communication process can be initiated by 
an active caller to a passive receiver (Act-Pas), by an active 
caller to an active receiver (Act-Act), or by two equal commu­
nicators (Equal). The receiver of a request sometimes has 
control over the order in which the requests are processed. In 
the languages and models studied, this control includes input 
and/or output guards (I/O-G), time Qut on lack of response 
(Tm-O), choice of certain classes of requests (Choice), pat­
tern matching on messages (Pat), and selective search and 
examination of all pending messages (Ex-Sr). 

8. Connection: Communicants can refer to a named port or 
channel that is external to all processes (Port), the name of 
process itself (Name), or a port within a called process (En­
try). The chart details the naming required of both the mes­
sage sender and the message receiver for systems that do not 
treat communicators equivalently. 

9. Time and consciousness: In synchronous communica­
tion, the process that initiates a communication may be forced 



676 National Computer Conference, 1982 

to complete that communication, or it may have some facility 
for aborting the communication (such as a time out). We say 
that a process activity that causes uninterruptable waiting is a 
loss of consciousness for a process. Languages and models 
sometimes provide mechanisms by which a calling process can 
regain control. These mechanisms include instantaneous time 
outs, time outs, input and output guards (I/O-Guards), input 
guards (I-Guards), and rescindable offers. A process that nev­
er loses consciousness is always conscious; a process that only 
awakens when invoked is reactive. 

10. Fairness: Systems can strive for fairness. Sometimes 
this notion of fairness is a weak fairness, the idea that every 
attempted action eventually gets its turn (Weak). Alterna­
tively, a system can specify a stronger notion of fairness, as­
serting that each process will get its "rightful" turn (Strong). 
Stronger fairness can usually be implemented with queues. 
On the other hand, a formalism may make no claims about 
fairness at all (Anti). 

11. Failure: Most models and languages treat processes as 
perfect computers and communication as invariably secure 
(Fail). Some of the systems have some mechanisms for dealing 
with process and communication failure. 

12. Shared Memory: Some of the systems have explicit 
shared-memory mechanisms, in addition to distributed ones. 

HEURISTICS FOR COORDINATION 

Incremental Computation 

Despite the paucity of failure mechanisms in our models 
and languages, any real system needs mechanisms to cope 
with failures. On the statement level, these mechanisms need 
to handle the disruptions of lost messages and failing pro­
cesses. On a more global level, a profitable organization of a 
distributed system may be performed, not as a sequential 
program, but as a set of computing "agents" who make 
progress toward solving subtasks. 

The idea of useful progress may seem a foreign notion. 
Most conventional programming languages are a-step-at-a­
time, imperative formulations. The validity of the successive 
steps is entirely dependent on the successful completion of the 
previous steps. However, there are other possible formu­
lations for expressing computable functions. Production sys­
tems (such as Newell's17) are one example. A production sys­
tem consists of two parts: a working memory and a set of 
productions. Each production has two pieces, a pattern and an 
action. When some part of the working memory matches the 
pattern of a particular production, that production fires, exe­
cuting its action. Actions are programs; they typically add 
elements to the working memory. Elements are never re­
moved from the working memory. Thus, the firing of a pro­
duction never makes another production's firing cease to be 
valid. One possible organization of a distributed system is a 
set of productions that communicate through a working 
memory. The "blackboard" of the Hearsay-II modeP8 is an 
example of such a central communication depository. 

Other examples of computing systems that make progress 
include theorem pruving19 and suspending evaluation in Lisp­
like systems. 8 In a theorem-proving system, the proof of a 

theorem does not invalidate the truth of any other theorem. 
A task expressed as a theorem to be proved can be worked on 
by many inference rules at the same time. In a suspending 
CONS system, tasks are created as the natural action of com­
putation. When a processing element finishes a task, it 
;'stings" that task with its value. 8 Sting is an interlock-free 
test-and-set primitive. If the particular object to be stung has 
already been stung (by someone else), the operation becomes 
a "no-op.·' Thus, if a swarm of processes are working on a 
problem, the first sting of the answer is permitted to succeed. 
Later stings have no effect; thus, the system exhibits func­
tional behavior throughout. 

Programming languages predicated on this idea of incre­
mental discovery can be more easily distributed than systems 
that require the standard sequentiality. 

Economic Models 

Distributed computing networks are not the only organiza­
tions that require internal cooperation and communication. 
Human economic activity shows both some of the same re­
quirements and some of the same goals as a distributed com­
puting network. There are some interesting parallels between 
human economic systems and potential organizational models 
for distributed systems. 

How are economies organized? One important dimension is 
centralization. In a centralized system, there is a master direc­
torate (node) that sets the goals of the system and divides the 
task into subpieces, with each subtask specified for a particu­
lar worker. When the task is modular and well defined, it is 
possible to organize a distributed system in tbis fashion. Effi­
ciency can be achieved in such a structure if the task is well 
understood, and the initial allocation of subgoals and re­
sources can be made to reflect this understanding. However, 
central planning does not lend itself well to ill-defined prob­
lems. Additionally, there may be a communication overload 
from the planning node to the workers while most of the 
communication ability of the system-between the working 
nodes-goes unused. 

It is only a small step from a fully centralized economy to 
a partially centralized (hierarchical) model. The central au­
thority defines the major tasks. These are parceled out to 
regional subauthorities, each of whom is allotted a resource of 
workers. This structure can be iterated. At the limit, it resem­
bles a corporate hierarchy tree. Hierarchical organization can 
respond well to local aberrations. However, its response to 
dramatic global changes is somewhat slower, because com­
mand must filter through several command layers. Hier­
archical systems are better matched to the physical distribu­
tion of the· world than systems based on pure centralized 
control. 

An alternative approach to processor organization is a 
laissez-faire economy. Each task has certain goals and an 
allocation of currency. Currency can be used to purchase 
processor power and to generate new tasks. When a task has 
exhausted its currency, it can appeal to its own source (bank­
er) for more. Its banker can then decide, on the basis of the 
resuits that the task presents, whether to grant that task more 
resources. The scheme can be applied recursively, to the 



banker's banker, and so forth, back to the resources of the 
human being who originated the request. Such a scheme lends 
itself to ill-defined tasks-ones where a promising line can be 
recognized but not necessarily generated-and to useful­
progress programming models. Though such systems are not 
fragile, there are difficulties both in focusing the organization 
in the presence of a rapidly changing environment and in 
terminating the activity of tasks that have ceased to be useful. 
A variation of this mechanism was used by the agenda priority 
schemes of Lenat. 2o Our development parallels a remark of 
Hewitt. 

One could also imagine distributed systems organized as 
mixed economies (partially centralized and partially free mar­
ket) or as indicative planned systems (with centralized goals 
and directives shaping a free-market economy.) 

Another proposal for organizing distributed computing is 
Smith's contract nets. 21 Processes that have subproblems 
broadcast their request to the other processes. A free process, 
or one that has particular knowledge about that task, "bids" 
to obtain the contract. Contract nets are a protocol; Smith 
does not elaborate on how particular tasks would be organized 
in the contract net approach. 

CONCLUSIONS 

Distribution promises inexpensive and efficient computation. 
To realize that promise, much work needs to be done both to 
define the right models for distribution and to select the ap­
propriate algorithms for apportioning computations among 
processes. 

ACKNOWLEDGMENTS 

We thank John Barnden, Jim Burns, Mitch Wand, and Dave 
Wise for comments on earlier drafts of this paper. Research 
reported herein was supported (in part) by the National Sci­
ence Foundation under grants numbered MCS77-22325, 
MCS79-04183, and MCS81-02291. 

REFERENCES 

1. Filman, R. E., and D. P. Friedman. Coordinated Computing: Tools and 
Techniques for Distributed Software. To be published by McGraw-Hill, 
New York, 1982. 

2. Milne, G., and R. Milner. "Concurrent Processes and Their Syntax." 
lournal of the ACM, 26 (1979), pp. 302-321. 

Models, Languages, and Heuristics 677 

3. Fitzwater, D. R., and P. Zave. "The Use of Formal Asynchronous Process 
Specifications in a System Development Process." Proceedings of the Sixth 
Texas Conference on Computing Systems, November 14-15, 1977. Austin, 
Texas: University of Texas at Austin, 1977. pp. 2B-21:2B-30. 

4. Lynch, N. and M. Fischer. "On Describing the Behavior and Imple­
mentation of Distributed Systems." Theoretical Computer Science, 13 
(1918), pp. 17-43. 

5. Dennis, J. B. "First Version of a Data Flow Procedure Language." In B. 
Robinet (ed.), Programming Symposium, Paris, April 9-11, 1974. Berlin: 
Springer, 1974, pp. 362-376. 

6. Arvind, K. Gostelow, and K. Plouffe, "The (Preliminary) ID Report: an 
Asynchronous Programming Language and Computing Machine." Tech­
nical Report 114, Department of Information and Computer Science, 
University of California, Irvine, May 1978. 

7. Hewitt, c., G. Attardi, and H. Lieberman. "Security and Modularity in 
Message Passing." Proceedings of the First International Conference on 
Distributed Computing Systems, Huntsville, Alabama, October 1-5, 1979. 
Long Beach, California: IEEE Computer Society, 1979, pp. 347-358. 

8. Friedman, D. P., and D. S. Wise. "An Approach to Fair Applicative 
Multiprogramming." In G. Kahn (ed.), Proceedings of International Sym­
posium on Semantics of Concurrent Computation, Evian, France, July 2-4, 
1979. Berlin: Springer, 1979, pp. 203-225. 

9. Hoare, C. A. R. "Communicating Sequential Processes." Commu­
nications of the ACM, 21 (1978), pp. 666-677. 

10. Brinch Hansen, P. "Distributed Processes: a Concurrent Programming 
Concept." Communications of the ACM, 21 (1978), pp. 934-941. 

11. Feldman, J. A. "High Level Programming for Distributed Computation." 
Communications of the ACM, 22 (1979), pp. 353-367. 

12. Andrews, G. "Synchronizing Resources." ACM Transactions on Program­
ming Languages and Systems, 3 (1981), pp. 405-430. 

13. Department of Defense. "Military Standard Ada Programming Lan­
guage." Dept. of Defense Standard MIL-STD-1815, December 1980. 

14. Mohan, C. "A Perspective of Distributed Computing: Models, Lan­
guages, Issues & Applications." Working Paper DSG-8001, Department 
of Computer Science, University of Texas, March 1980. 

15. Rao, R. "Design and Evaluation of Distributed Communication Primi­
tives." Technical Report 8(}-()4-01, Department of Computer Science, 
University of Washington, April 1980. 

16. Filman, R. E., and D. P. Friedman. "Inspiring Distribution in Distributed 
Computing." Technical Report 99, Computer Science Department, Indiana 
University, December 1980. 

17. Newell, A. "Production Systems: Models of Control Structures." In W. 
Chase (ed.), Visual Information Processing. New York: Academic Press, 
1972, pp. 463-526. 

18. Erman, L. D., F. Hayes-Roth, V. R. Lesser, and D. R. Reddy. "The 
Hearsay-II Speech-Understanding System: Integrating Knowledge to Re­
solve Uncertainty." ACM Computing Surveys, 12 (1980), pp. 213-254. 

19. Loveland, D. W. Automated Theorem Proving. Amsterdam: North Hol­
land, 1978. 

20. Lenat, D. B. "Automated Theory Formation in Mathematics." Pro­
ceedings of the 5th International loint Conference on Artificial Intelligence, 
MIT, Cambridge, Massachusetts, August 22-25, International Joint Con­
ferences on Artificial Intelligence, 1977, pp. 832-842. 

21. Smith, R. "The Contract Net Protocol: High-Level Communication and 
Control in a Distributed Problem Solver." Proceedings of the First Interna­
tional Conference on Distributed Computing Systems, Huntsville, Ala­
bama, October 1-5, 1979. Long Beach, California: IEEE, 1979, pp. 
185-192. 





Weakest environment of communicating processes 

by ZHOU CHAO CHEN 
Institute of Computing Technology, Academia Sinica 
Peking, China 

ABSTRACT 

As is well known, the concept of the weakest precondition! has played an important 
role in sequential programming. In this paper we introduce a similar concept for 
distributed programming. As far as partial correctness2 is concerned, given an 
overall specification of a distributed system and of a designated part of the system, 
we can find a minimum specification that must be met by the rest of the system in 
order that the whole system meet the overall specification. This minimum specifica­
tion is called the weakest environment of the first designated part with respect to the 
overall specification. In terms of weakest environment, a calculus for the partial 
correctness of processes with a master-slave communication mechanism is also 
given. 

679 





INTRODUCTION 

(P wp R) denotes the weakest precondition for partial cor­
rectness of program P with respect to postcondition R. (P wp 
R) identifies the minimum condition that must be satisfied by 
the machine state before the execution of P if the machine 
state after the successful execution of P is to satisfy R. Weak­
est precondition is an important idea in sequential program­
ming. It has been used as a semantics of sequential program­
ming languages, as a proving technique for the correctness of 
sequential programs, and also as a rigorous approach to devel­
oping sequential programs. 

This paper will define a similar concept for distributed pro­
gramming. In sequential programming the sequential oper­
ator " ; " takes a peculiar part in combining program segments 
into a program. The weakest precondition can be understood 
in the following way. Given an overall specification R of a 
program and a last segment P of that program, we may ask 
what is the minimum specification that must be met by the 
other segment of the program in order that the whole program 
meet its specification R. This is nothing other than (P wp R). 

Let P and Q be programs, and let R be an assertion of 
machine states. Let "P satisfies R" stand for "Starting from 
any initial machine state, if P terminates, then the resultant 
machine state satisfies R. " Then we can define (P wp R) as 
follows: (P wp R) is an assertion of machine states such that 
(Q; P) satisfies R iff Q satisfies (P wp R). 

In a communicating process, a process may be constructed 
from a group of parallel subprocesses. So the parallel combi­
nator II can combine subprocesses into a process even as the 
sequential operator does for sequential programming. 

Let P and Q be processes. Then (P II Q) is a process consti­
tuted by P and Q in parallel. P and Q regard each other as the 
environment within which they fulfill a certain task. Thus a 
similar question arises: Given a specification R of the overall 
task and a subprocess P, can we formulate a minimum condi­
tion that must be met by the environment of P in order that 
the process constituted by P and its environment can meet R? 
This minimum condition is called the weakest environment 
and is denoted as 

(P we R) 

So (P we R) is a specification such that (P II Q) satisfies Riff 
Q satisfies (P we R). 

In the following sections we give an answer to this question. 
The programming notation for communicating processes 

presented in the first section is oriented to the master-slave 
communication structure. In this structure communication oc­
curs only between a master and its slave. A master may have 
several slaves, but each slave belongs to only one master. A 

Weakest Environment of Communicating Processes 681 

master may serve a supermaster as its slave, and a slave may 
employ its own slaves as well. Of course it is not allowed that 
a slave is also a supermaster of its master in this rank system. 
The denotational semantics of the notation is given in the 
same way as it was in Zhou and Hoare. 2 

In Section 2, process predicate is used as specification lan­
guage. Process predicate is something like the channel predi­
cate of Zhou and Hoare, 2 but it uses a process name instead 
of a channel name. A process name stands for a message 
sequence that records all messages that have passed so far to 
(or from) the process of this name. 

In Section 3, a formal definition of weakest environment is 
introduced. Weakest environment identifies the minimum 
condition a master (or a slave) must meet in order to meet a 
given overall specification with its designated slave (or its 
designated master). 

A calculus for the partial correctness of communicating 
processes is also developed in terms of weakest environment 
in Section 4. 

The last section, Section 5, gives a proof of partial correct­
ness in this calculus. 

COMMUNICATING PROCESSES 

We briefly recall the programming notation of communicating 
processes and its denotational semantics in this section. 

A process is constructed from a group of subprocesses, 
intercommunicating on a network of master-slave structures. 
Communication is the atomic action of a process. 

For a process there are two different kinds of communica­
tions. One occurs between the process and its slaves, and the 
other one between the process and its master. Since a master 
can have several slaves, a process calls its slaves by their 
names. The pair s.e is used to denote a communication occur­
ring between a process and one of its slaves, where s is the 
name of the slave engaged in this communication and e is the 
value of the message being passed in this communication. But 
any process can have only one master; that is, the master of 
a process is unique to the process. Hence it is not necessary to 
use names to identify masters. The pair master.e is generally 
used to denote a communication between a process and its 
master, where master is a special name that is different from 
any slave name, and e is the value of the message in the 
communication. 

A communication is an atomic action of a process, so a 
finite sequence of communications is used to record the be­
havior of a process from its beginning up to some moment in 
time. Such a sequence of communications is called the trace of 
the behavior of a process. Finally, a process is defined as the 
set of all traces of its behavior. 



682 National Computer Conference, 1982 

Let us now take a buffer as an example, to show some 
possible traces of it. This buffer gets messages from its slave, 
!lamed servant, and provides its master with them: 

servant------, buffer -----... - master 

1. < > (empty sequence) records the behavior before it 
actually evolves. 

2. < servant. 3 > is a trace recording the behavior when it 
has input a message of value 3 from slave. 

3. < servant. 3, master 3> records the behavior when it 
has input value 3 and then output it. 

4. < servant. 3, servant. 4, master. 3, servant. 1, master. 
4> is another possible trace. 

The programming notation presented in the following is an 
applicative language including the basic constructs: output, 
input, alternation, naming, parallelism, and recursion. The 
semantics of processes is defined by a function ~[ . D that maps 
a process into its trace set. 

1.1 STOP 

The process STOP is one that communicates neither with its 
master nor with its slaves; i.e., 

1.2 Output 

Let z be a process name (a slave name or "master") and e 
be a message, and let P be a process. Then (z !e~P) is also 
a process, which just outputs e to Process z, and then behaves 
like P; i.e., the possible trace of (z !e~P) is headed by z.e, 
and the rest of the sequence is a trace of P. 

So ~ [z !e~PD = df {< > } U {z.eA tit E~ [PD}. 

1.3 Input 

Let z be a process name, x be a variable, and M be a 
message set, and let P(x) be a process for any x in M. Then 
(z ?x:M~P(x» is a process that first inputs any message x of 
type M from process z, and then behaves like P(x). 

Thus 

1.4 Alternation 

Let P and Q be processes. Then (PIQ) is a process that 
behaves either like P or like Q. 

~ [PIQD = df~[PD U ~[Qn 

1.5 Naming 

A process may employ another process as a slave by giving 
a slave name, say s, to the employed process. In this case the 
named process should be prepared to communicate with its 
master, which will call it by the name s. Thus, for synchroniza­
tion, the communication of the named process with its master 
(which has the form m.e) must be regarded as the same event 
as the communication of its master with the named slave 
(which has the form s.e). This can be realized by replacing 
each occurrence of m by an occurrence of s in the named 
process. 

Let P be a process, and let s be a slave name that does not 
occur in P. Then (s :P) is also a process, and 

~[S:PD=df~[PD [slm] 

where m is an abbreviation of master. 

1.6 Parallelism 

Let A be the set of names of slaves that Process P wants to 
communicate with, and let B be the set of names of slaves that 
Process Q wants to communicate with, where A n B = () 
(since no slave is allowed to serve more than one master). 
Suppose that P employs Q as its slave by giving Q a slave 
name, s, of A. Then (PII s :Q) is a new process, which is con-

AB 

structed by P employing Q as its slave. This new process has 
a new list of slave names that it still wants to communicate 
with: (A UB) -{s}. Thus, in (PII s:Q), each communication 

AB 

between P and its slave s must be synchronized by the commu-
nication between Q and its master. But each possible commu­
nication between (PII s: Q) and its master or its slaves in 

AB 

(A - [s]) can be made by P itself and has nothing to do with 
Q. The communication between (PII s:Q) and its slaves in B, 

AB 

which actually are slaves of Q, is still dominated by Q and has 
nothing to do with P. So the traces of (PII s:Q), before cancel­

AB 

ing s from the slave list, should be 

T = {tltE (A U B U {m})* & trA U {m} E ~[PD & 
tr B U {s} E ~ [s : Q D}, 

where m is an abbreviation of master, X* stands for all the 
finite sequences of communications prefixed by the process 
names in X, and t X stands for the sequence obtained from t 
by canceling all the communications prefixed by a process 
name out of X. Then canceling s from the slave list, which 
(PII s:Q) still wants to communicate with, can be realized by 

AB 

~[(PII s:Q)n = df {tl {s }ltET} 
AB 

where tl {s } is obtained from t by canceling the communication 
prefixed by s. Sometime we use TI {s} to stand for the right­
hand side. 



1.7 Recursion 

A process expression is an expression made by process 
variables (p, q, etc.) and the previous six operators. Then 
p 6. F (P) is a single recursion, where F(P) is a process ex­
pression induding process variable p. The expression 
p[i:S]~F(P) is a vector form of mutual recursion, where for 
any i e S, p[i] is a process variabie, and F(P )[iJ is a process 
expression including some of the process variables p U] (j eS). 

The process (or array of processes) defined by recursion 
p 6.F(p) (or p i:S 6.F(p» is the least fixed point of the 
recursion, denoted as ILP. F (or ILP[i:S].F). 

In Zhou and Hoare2 a partial order of trace sets has been 
defined by the inclusion relation of sets, and the limit of a 
monotonic sequence of trace sets has been defined as the 
infinite union of this sequence: 

lim ~[P;] = df U ~[PiD 
i 

Furthermore, we have also shown that all the operators are 
continuous. So the least fixed point of recursion can be de­
fined as 

~[ILP' FD = df ~ ~[Fn(STOP)D 

and ~[(ILP[i:S]. F)U]D = df ~ ~[(Fn(STOP»U]D (jeS). 

In what follows we always use p as an abbreviation of the 
least fixed point defined by recursion p 6. F(P); where it will 
not cause confusion. 

Example. A Matrix Multiplier 

To realize a multiplication for a matrix of three rows by a 
three-dimensional vector 

it is desirable to input three numbers at a time, and multiply 
these numbers simultaneously also. So an algorithm is sug­
gested as 

Row [1] 

Row [2] 

Row [3] 

Adder Master 

where each mUlt[i] (i = 1,2,3) inputs a number from its slave 
row[i] and multiplies it with v[i] (i = 1,2,3), then sends the 
result to its master adder. The process adder forms the sum as 
required and outputs it to its master. 
multiplier ~ 

Weakest Environment of Communicating Processes 683 

(( (adder II mUlt[I]: p [1]) II mUlt[2]: p [2]) 
AIBI A2B2 

II mUlt[3]: p [3]), 
where Bi = {row[i]}A3rr = 1,2,3), At = {mult[l], mUlt[2], 

mUlt[3]}, 
A2 = (At U Bt) - {mult[l]} and A3 = (A2 U B2) - {mult[2]}, 

and 

adder 6. mUlt[I]?x : NAT -"7mult[2]?y : NAT 
--"7mult[3]?z:NAT-"7master!(x + y + z~adder, 

p[i:l. .3]~ row [i]?x:NAT-"7master!(v[i]*x)-"7p[i]. 

SPECIFICATIONS 

We adopt process predicates as assertions. A process predi­
cate is a predicate with process names as free variables, where 
a process name denotes the sequence of messages commu­
nicated by the process of this name up to some moment in 
time. For example, let u and v be strings, and let u ::5 v mean 
that u is an initial segment of v. Then the assertion 

master::5 servant 
means that the message sequence communicated by a process 
to its master is a copy of the message sequence communicated 
by the process to its slave, called servant. This assertion should 
always be true of a buffer process that gets messages from its 
slave, servant, and provides its maser with them; therefore we 
can take it as a specification of the buffer process. 

Let P be a process and R (m, Zt, ... , zn) be a process pred­
icate with the free process variables master and Zi (i = 1, .. " 
n). Then we define P sat R as meaning that R is true of any 
possible behavior of P. Since we use a trace to record the 
behavior of P, the definition of P sat R is 

where t Z stands for a message sequence that is obtained from 
t by leaving only the communication of Process Z and then 
dropping the process name z to get a pure message se­
quence. (Note: tlz and tr{z} are different. The first is a se­
quence of messages, whereas the second is a sequence of 
communications. ) 

Thus, for example, we can hope that 

buffer sat (master ::5 servant), 

and 
multiplier sat Vie {I .. # m}. 

3 3 

mj = 2: v fj]* row fj],. & # m ::5 =1= row fj], 
j=t j=t 

where #t is the length of sequence t, and ti is the ith member 
of sequence t. 

One of the disadvantages of the process predicate is that we 
cannot use it to describe liveness of a process, just as partial 
correctness of a sequential program cannot deal with 
termination of a program. So process predicate, too, is only 
concerned with the partial correctness of a distributed 
program. 



684 National Computer Conference, 1982 

Let P be a process and {Zl' ... , zn} be the slave list of P. 
Then what is the most precise specification of P that we can 
define in terms of process predicate? This should be nothing 
but just all the possible message sequences to its master and 
slaves. Let P(m, Zlo •.. , zn) denote the required process 
predicate. Then 

n 

P(Xo, Xl, ... , Xn) = df3tE~[PH. xo=trm &Xi = trzi 
i=l 

This claim can be justified by the following theorem: 

Theorem. 
If P is a process of slaves {Zl, ... , zn}, and R is an assertion 

of process names {m , Z 1, ... , Z n}, then 

P sat R iff 'f/ Xo, ... , Xn 
P(xo, ... , xn)=>R(xo, ... , Xn) 

Proof. (=» Suppose P sat R; i.e., 

R(tfm, ... , trzn) 
is true for any t of ~ [PH. 

Then 

P (xo, ... , xn)=> 3 tE ~ [PH. xo=trm & Xl = t r Zi (def.) 
i=l 

=>R(xo, ... , xn) 
(¢:) Suppose 'f/Xo, ... , xn. P(xo, ... , xn)=>R(xo, ... , xn). 

Then for any tE~[PH, R(trm, ... , trzn) is true by the 
assumption, since P(trm, ... , trzn ) is true; i.e., (P sat R) is 
true. 

We now derive the structural formulas for process specifica­
tion. 

Theorems. 

2.1 STOP 

STOP is an inactive process, so it always leaves all commu­
nications with its master and slaves empty: 

STOP (m, Z) = m = < > & Z = < > 
n 

where Z stands for {ZI, ... , zn}, and Z = < > stands for & 
i=l 

Zi= < >. 
Proof. 

n 

STOP (xo, ... ,xn) =3 tE ~[STOPH. xo=t f m & 
i=l 

Xi=trZ j (def.) 
n 

= 3tE{ < > }. xo=t r m & Xl = t f Zi (1.1) 
i=l 

n 

= Xo = < > r m & Xi = < > r Zi 
i=l 

n 

= Xo = < > & Xi = < > . 
i=l 

STOP (m, Z) = STOP (xo, ... , xn) [m/xoJ [ZJXiJ ,:1 
=m=<>&Z=<>. 

2.2 Output 

The possible message sequence of (z! e---'>P) is empty (be­
fore its evolution), or has value e prefixed to the sequence of 
z, whereas the rest is from P. 

(Z! e---'>P)(m; Z) = STOP (m, Z) V (hd(z) 
= e & P(m, Z)[tl(z)/z]), 

where zE{m} U Z, and hd(t) stands for the first element of t 
and tl(t) is the tail of t; i.e., t =hd(t)l\tl(t). 
Proof. 

2.3 Input 

n 

xo=t fm &Xi = trzi (def.) 
i=1 

= 3JE({ < >} U {z.e I\tltE~[PH). 
n 

xo=t r m &Xi = t r Zi (1.2) 
i=l 

n 

= (xo = < > & Xi = < > ) V 
i=l 

3 tE~[PH. 

xo=z.e I\trm & 
i=l 

Xi = z.e I\trzi 

& Xi = tfZi &x = e 1\ (t fz) (say 
i*'i J J 

Z = Zj) 

= STOP (xo, ... , Xn) V 3 tE~ [PD. 
xo=t f m 

&Xi = HZi &hd(x) = e &tl(x·) i*j J J 

= t fZj 

= STOP(xo, ... , Xn) V (hd(xj) = e& 

P(xo, ... , tl(xj), ... , xn». 

(Z? X :M---'>P(x» is like (z! e---'>P) , except that the value 
prefixed to the sequence Z can be anyone of the set M. 

(Z? x:M---'>P(x»(m, Z) = STOP(m,Z) V (hd(z)EM 
&P(hd(z »(m,Z) [tl(z )/z J) 

where zE{m}UZ. 
Proof. Omitted; it is similar to the proof of 2.2. 

2.4 Alternation 

The possible message sequences of (P I Q) are the union of 
the message sequences of P and Q. (PI Q) (m, Z) 
= P (m, Z) vQ (m, Z). 
Proof. Omitted; it can be immediately obtained from the defi­
nition and (1.4). 



2.5 Naming 

(s :P) is derived from P by replacing m with s; i.e., 

where s e.Z. 
Proof. Omitted. 

2.6 Parallelism 

(s :P)(s , Z) == P (m, Z)[s 1m] 

(P II s :Q) is composed from P and Q by selecting the trace 
AB 

of P and the trace of Q in which the message sequence of P 
with respect to its slave s is the same one as Q with respect to 
its master. 

(PI/ s:Q)(m,Z) ==3s.P(m,A)&Q (s,B), 
AB 

where A nB =0, sEA, and Z =(A UB) -{s}. 

Proof. 
Suppose A = {Zb' .. , Zk, s} and B = {Zk+b"" Zn}. 

(~)(P " s :Q)(xo, ... , Xn) == 3tE~[P " s :Qll. 
AB AB 

n 

xo=tlm &Xi = tlZi 
i=I 

==3tE(TI{s}). 
n 

xo=tlm & Xi = t IZi 
i=I 

==3tET. 
n 

xo=trm &Xi =t rZi 

(def.) 

(1.6) 

i=I (by s EZ U {m}) 
==3tET,y. 

n 

xo=tlm &Xi = trzi &y = tis 
i=I 

k 

xo=ltim & Xi = tIIZi&Y = tis 
i=I 

(where tl = t IA U {m}) 

& (3 t2 E ~ [s : Q]. y). 
n 

y =t21S & Xi =t2lZi 
i=k+I 
(where t2 = ti B U {s}) 

== 3y. (3 tl E~[P].xo). 
n 

xo=tllm &Xi = ltiZi &y = tis 
i=I 

n 

y =t3 lm & Xi =MZi 
i=k+I 

(where t3 = t2 [mls]) 
== 3y.P(xo, ... , Xk, y) 

& Q(Y, Xk+lJ .. "xn) 
(¢:)3y.P(xo, ... , Xk, y) 

& Q(Yk, Xk+h ... , Xn) 
== 3y. (3 tIE~[P].xo). 

Weakest Environment of Communicating Processes 685 

k 

Xo=tI 1m & Xi = tlrzi 
i=I 

&y=tlrS) 
& (3 t2 E~ [Q]y). 

n 

y = t2 rm & Xi = MZi 
i=k+I 

== 3y. (3 tl E<;[P]. xo). 
k 

Xo=tlrm & Xi = tlrzi 
i=I 

&y=tlrS) 
& ( 3 t3 E ~ [s : Q ]. y ). 

n 

y =t31S & IXi =t3rzi 
i=k+I 

~3y. 3tE T. 
n 

(def· ) 

xo=t rm & Xi = tlZi &y = tis 
i=I 

(since tl rs = t3 rs = y, t can be obtained from tl and t3 by 
coordinating the identical subsequences tl IS and t3 rs and in­
terleaving the other subsequences of tl and t3.) 

2.7 Recursion 

== 3tE(T/{s}). 
n 

xo=t rm &x; = tiZi 
;=1 

== (P " s :Q)(Xo, ... , Xn). 
AB 

The possible message sequences of the least fixed point of 
p 6. P(P) are the infinite union of the message sequences of 
P\STOP). 

(j.1p.F) (m, Z) == 3n. pn(STOP) (m, Z) 

and 

(j.1p [i :S].F) [j] (m, Z) == 3n. F\STOP) [j] (m, Z) 

Proof. Omitted, since it can immediately be obtained from the 
definition and (1.7). 

WEAKEST ENVIRONMENT 

We now have got enough to give a formal definition of weak­
est environment. 

In designing a process with master-slave structure to meet 
an overall specification, we may choose the design of the 
master part of the process at first, and then inquire what is the 
minimum specification that must be met by the slave part of 
the process in order that the whole process meet the overall 
specification. The required specification is called the weakest 
environment of the designed master. 

Let R be an overall specification with free process variables 
m and Z, and let M be a process with slaves A, and 
A - Z = {s }. Let M we R denote a process predicate with free 
process variables sand Z - A, which represents the weakest 



686 National Computer Conference, 1982 

environment of M with respect to R; i.e. for any process S 
with slaves Z - A 

(M II s:S) sat Riff (s:S) sat (P we R) (Figure 1). 
A Z-A 

Figure 1 

The formal definition can be introduced from the theorems 
of Section 2 as follows. 

By the theorem in Section 2, since (M II s :S) has the 
A Z-A 

slave list Z, 

(M II s:S) sat R(m, Z) 
A Z-A 

iff 'Vm, Z.(M II s:S)(m, Z)=>R(m, Z). 
A Z-A 

But 

(M II s:S)(m,Z)==3s. M(m,A)&S(s,Z-A) 
A Z-A 

by Theorem 2.6. So 

(M II s :S) sat R (m, Z) 
A Z-A 

== 'Vm, Z. (3s. M(m, A) & S(s, Z - A» => R(m, Z) 
=='Vm, s, Z. (M(m, A)&S(s, Z -A)=>R(m, Z» 

(since s does not occur in R) 
== 'Vm, s, Z. S(s, Z - A)=>(M(m, A)=>R(m, Z» 

«B&C=>D) == (C=>(B=>D» 
== 'Vs, Z - A. S(s, Z - A)=>'Vm, A n Z. 

M (m, A )=>R (m, Z) 
(since A n Z does not occur in S) 

==s:S sat ('Vm, A n Z. M(m, A)=>R(m, Z» 
(since Theorem in Section 2 and 2.6). 

Thus M we R can be suggested to be 

'Vm, A n z. M(m, A)=>R(m, Z). 

Similarly, if we design the slave part of a process first, then 
we can inquire about the weakest environment of the slave 
with respect to an overall specification. 

Let R be an overall specification with free process variables 
m and Z, and let S be a process with slaves B, and 
A = (Z - B) U {s}. Let (s:S we R) denote the weakest envi­
ronment with free variables m and A such that for any process 
M with slaves A 

(M II s:S) sat Riff M sat (s:S we R) 
AB 

(Figure 2). 

Figure 2 

Similar reasoning applies; we can therefore suggest 

(s:S we R) as 'V B n Z. S(s, B)=>R(m,Z). 

In general for any process P with process names X and any 
assertion R with process variables Y, we define the weakest 
environment of P with respect to R as 

P we R = df 'V X n Y. P(X)=>R(Y). 

So P we R is a predicate of process variables X E9 Y, where 
X E9 Y = (X U Y) - (X n Y). 

If M is a process with process names m and A, and R is an 
assertion with process variables m and Z, then 

MweR 
== 'V ({m} U A) n ({m} U Z). M(m, A )=>R(m, Z) 
== 'Vm, A n z. M(m, A)=>R(m, Z) 

as suggested. 
If (s :S) is a process, where S has process names m and B, 

and s E B; R is an assertion with process names m and Z; and 
A = (Z - B) U {s}, then (s :S) has process names {s} U B, and 

(s:S) we R 
== 'V ({s} U B) n ({m} U Z). (s:S)(s, B)=>R(m, Z) 
== 'V B n Z. S(s, B)=>R(m, Z) (2.5) 

as suggested also. 
Hence the required theorem follows: 

Theorem 1. 

(M II s :S) sat R (m, Z) 
AB 

iff (1) M sat (S:s we R) 
or (2) (s :S) sat (M we R). 

where Z = (A - {s} ) U B. 
Proof. As given above. 

The intention to develop a calculus of the partial cor­
rectness of communicating processes in terms of weakest envi­
ronment is based on the fact that a process satisfies an asser­
tion iff the weakest environment of the process with respect to 
the assertion is a tautology. 

Theorem 2. 
If P is a process with process names X and R is an assertion 

of process variables X, then 

Proof. 
P sat Riff (P we R) == true 

P we R== "iX. P(X)::;'R(X) 
== P sat R 

(def. ) 
(Theorem of 2) 



PROOF RULES 

We now develop a set of structural rules for proving the 
theorems of the form of P we R . The validity of the proof rules 
is established by proving that each of them is consistent with 
the semantics. 

In what follows we use X to represent the process names 
mentioned by process P, and Y to represent the process vari­
ables of assertion R. 

4.0 General Rules (Healthiness Conditions) 

(a) (P we true) == true 
(b) P we false == false, provided P and false have same 

process names; i.e. X = Y 
(c) If R => T is a theorem, then 

(P we R )=>(P we T) 
(d) (V'y. P we R(y))==P we V'y.R(y), 

provided y is not a process variable and y does not occur in 
P freely. 
The proofs for their consistency: 

(a) P we true 
==V'X n Y. P(X)=>true (def.) 
==true. 

(b) If P and false have same process names X, then 
P we false == V'X. P(X)=>false (def.) 

== V'X. --..P(X) 

Since for any process P, the empty sequence is always 
one of its traces, i.e., P( < » == true, then 

P we false == V'X.--..P(X) 
== false. 

Actually, even if they mention different process names, 

(P we false)( < » 
== (V' X n Y .--..P(X))[ < > IX - Y] 
== false. 

Hence, in any case no process can satisfy (P we false). In 
this sense (P we false) is always equivalent to false. 

(c) P we R == V' X n Y. P(X)=>R(Y) (def.) 
=> V'X n Y. P(X)=>T(Y) (since R=>T) 
== P we T (def.) 

(d) V'y.PweR(y) ==V'y.V'xny. P(X)=>R(y,Y) 
= V'X ny. P(X)=>V'y.R(y, Y) 

(y is not free in P) 
= P we V' y. R (y) ( def. ) 

4.1 STOP 

STOP we R == V'X n Y. X = < > =>R(Y). 

Weakest Environment of Communicating Processes 687 

The proof for the consistency: 

STOP we R == V'X n Y. STOP (X)=>R(Y) (def.) 
== V'X n Y. X = < > =>R(Y) (2.1) 

4.2 Output 

(a) If z EX - Y, 
(z !e~P) we R 
== STOP we R & hd(z) = e=>(P we R) [tl(z)/z], 

where both STOP and P have the same process names X of 
(z ! e~P). 
The proof for its consistency: 

LHS== V'X n Y. (z ! e~P)(X)=>R(Y) (def.) 
== V'X n Y. (STOP(X) v (hd(z) 

= e &P(X)[tl(z)/z]))=>R(Y) (2.2) 
== V'xn Y. STOP(X)=>R(Y) & (hd(z) 

= e& P(X) [tl(z)/z ])=>R(Y) 
== (V'X n Y. STOP (X)=>R(Y)) & (hd(z) 

= e=>(V'X n Y. P(X) 
=> R (Y))[tl(z)/z]) 

(z E Y nX) 
==RHS (def.) 

(b) If z EX nY, then 

(z ! e~P) we R == (STOP we R) & P we R [eAz/z], 

where both STOP and P take X as their process names. 
The proof for the consistency: 

LHS == V'X n Y. (z! e~P)(X)=>R(Y) (def.) 
== V'xn Y. (STOP (X) v (hd(z) 

= e & P(X)[tl(z)/z]))=>R(Y) (2.2) 
== (V'X n Y. STOP (X)=>R(Y)) & V'X n Y. 

P(X) [tl(z )/z ]=>R (Y) [eAtl(z)/z] 
(when hd(z) = e, z = hd(zrtl(z) = eAtl(z)) 

== (V'X n Y. STOP (X)=>R(Y)) & V'X n Y. 
P(X) = R(Y)[eAz/z] 

(by renaming bound variable) 

==RHS 

4.3 Input 

(a) IfZEX-Y, 
(z?x:M~P(x) we R 

(def.) 

==STOP we R & hd(z)EM=>(P(x) we R)[hd(z)lx] 
[tl(z) Iz], 

where both STOP and P(x) still take X as their process 
names. 

(b) If z EX nY, then 
(z?x:M~P(x)) we R 
= STOP we R & V'x EM. P(x) we R[XAZ/z], 



688 National Computer Conference, 1982 

where both STOP and P (x) still have process names X. 

The proofs for their consistency are omitted, since these 
are similar to the proofs of (4.2). 

4.4 Alternation 

(P I Q) we R = P we R & Q we R, 

where P I Q, P, and Q mention the same process names. 
The proof for the consistency: 

LHS == "IX n Y. (P I Q) (X)~R(Y) 
== "IX n Y. (P(X) v Q(X»~R(Y) 
== "IX n Y. (P(X)~R(Y» & (Q(X)~R(Y» 
==RHS 

4.5 Naming 

If seX - Y and m EX, then 
(s:P) we R 

== (P we R[zlm])[slm] [mlz] 

(def.) 
(2.4) 

(def.) 

where z EX U Yand P has the set of process names X[mls]. 
The proof of the consistency: 

LHS == "IX n Y. (s:P)(X)~R(Y) 
== "IX n Y. P(X[mls])[slm]~R(Y) 

(def.) 
(2.5) 

== VX[mls]n Y[zlm]. P(X[mls])[slm]~R(Y) 
(since X n Y = X[mls] n Y[zlm]) 

== VX[mls]n Y[zlm]' 
P(X[mls]) [slm]~R(Y[zlm]) [mlz] 

== ("IX [mls] n Y[zlm]). 
P(X[mIs ])~R (Y[zlm]» [slm] [mlz] 

==RHS 
(since s E Y, m EX and z EX U Y.) 

(def.) 

4.6 Parallelism 

(P II s:Q) we R 
AB 

== P we (s: Q we R) 
==s:Q we (P we R), 

where P mentions process names {m} U A, and s : Q 
mentions {s} U B, and A n B = 0 and s € Y. 

Prove its consistency. Let X = (A - {s}) U B U {m}, which 
is the set of process names of P II s: Q). Then 

AB 

LHS == "IX n Y. (P II s:Q)(X)~R(Y) 
AB 

== "IX n Y. (3s.P(m, A) & Q(s, B»~R(Y) 
== "IX nY, s. P(m, A) & Q(s, B)~R(Y) 
== "IX nY, s. P(m, A)~(Q(s, B)~R(Y» 
==V({m}UA)(({s}UB)EBY). P(m,A)~ 

(def.) 

(2.6) 
(s Y) 

V ({s} U B) n Y. Q(s, B)~R(Y) 
(since ({m} U A) n ({s} U B) n y = 0) 

== P we (s: Q we R) 

We can prove the other equivalence similarly. 
Note that this rule shows that the weakest environment 

satisfies the usual axiom of composition as well as the weakest 
precondition. 

4.7 Recursion 

~p.F we R == "In. Fn(STOP) we R 

and (~p[i:S].F) U] we RU] == "In. Fn(STOP) U] we 
RU](j eS), where ~p.F and Fn(STOP) have same process 
names. 

The proof of the consistency is only given for single recur­
sion: 

LHS == "IX n z. (~p.F) (X)~R(Z) 
== "IX n z. (3 n. Fn(STOP) (X)~R(Z) 
== "IX n Z, n. Fn(STOP) (X)~R(Z) 

(def.) 
(2. 7) 

== "In. Fn(STOP) we R 
(since n does not occur in R) 

(def.) 

From (4.7) a useful structural induction rule follows: 

4.7.1 If 

T~(STOP we R) 

and for any process P 

(T~(P we R»~(T~(F(P) we R», 

then 

T~(~p.F we R), 

where STOP, P, and F(P) are supposed to have the same 
process names as ~p. F. 

The proof of the consistency for this rule can be obtained as 
follows: 

Start at T~(STOP we R), and repeat to use (T~(P we 
R»~(T~(F(P) we R». Then we can get for any n 
T~(Fn(STOP) we R). Thus T~V n. Fn(STOP) we R. 
Hence T~(~p.F we R) by (4.7). 

EXAMPLE 

We end this paper by showing a proof of the partial cor­
rectness of the matrix multiplier (see Section 1). We want to 
prove 

multiplier sat 3. . 
i 1.. # m . mi = j=lV J * row Ji 

3 

& # m # rowj 
j=l 

By Theorem 2 of Section 4 this proposition is equivalent to 



3 

(multiplier we Vi E{l.. #m}. mi = L vU]* roWU]i 
3 j=l 

& # m :5 # row UD == true, 
j=l 

where multiplier is a process with process names m and row 
U:l. . 3]. . 
Since 

multiplier ,6. ((( adder II mult[l]:p[l]) II mult[2]:p[2]) 
- AIB1 AzBz 

II mult[3]:p[3]), 
A 3B3 

3 

multiplier we Vi e{l.. # m}. mi = L vU] * rowUJ; 
3 j=l 

& #m:5 # rowU] 
j=l 

== adder we (mult[l]:p[l] 
we (mult[2]:p[2] 
we (mult[3]:p[3] 

3 

we Vi e{l .. #m}. mi = L vU] * rowU]; 
3 j=l 

& # m :5 # rowUD» 
j=l 

by (Parallelism). 
We now need four lemmas. 

Lemma 1. 

3 

Vi E{l. . # m}. mi = (L vU]* rowUJ; + mult[3]; 
j=l 

2 

& #m:5 # rowU] & #m:5 # mult[3] 
j=l 

3 

=?(mult[3]:p[3] we Vi E{l.. #m}. m; = L vU] * rowU]; 

Lemma 2. 

3 

& #m:5 #rowUD 
j=l 

j=l 

ViE{l.. #m}. mi = (v[l]* row[lJ; +mult[2J; + 

3 

mult[3];)& #m:5 # row[l] & #m:5 #multU] 
j=2 

=?(mult[2]:p[2] we Vi E{l. . # m}. m; = (± vU] * 
j=l 

2 

rowU]; = mult[3];) & # m :5 # rowU] 
j=l 

& # m :5 # mult[3D 

Lemma 3. 

3 3 

Vi E {I .. # m}. mi = L multUJ; & # m :5 # multU] 
j=l j=l 

=?(mult[l]:p[l] we Vi E {l. . # m}. m; = v[l] * row[l]; + 

3 

mult[21 + mult[3]; & # m :5 # row[l] & # m :5 # multUD 
j=2 

Weakest Environment of Communicating Processes 689 

Lemma 4. 

3 

(adder we Vi E{l. . # m}. mi = L multU]i 
j=l 

3 

& # m :5 # multUD == true 
j=l 

Let us only present the proof of Lemma 4, and let R stand 
for the assertion on the righthand side of the previous weakest 
environment. 
Proof. 
Adder is an abbreviation for the least fixed point of the 
recursion 

adder ,6. mult 1 ?x :NAT ~mult 2 ?y :NAT ~ 
mult3? z:NAT~m!(x +y +z~adder, 

and the process names which occur in adder are X = {mult[l], 
mult[2], mult[3], m}. 
Let us use (4.7.1) to prove this lemma. 
For (STOP we R == true it is trivial, since 

3 

STOP we R ==VX. m= < > & mult[j]= < >R (4.1) 
== true j=l (# < > = 0). 

Now assume (P we R) == true. Then 

But 

(mult[l]?x : NAT ~mult[2]?y : NAT ~mult[3]?z :NAT ~ 
m!(x +y +z~P)weR 
==STOP we R& \Ix ENAT. 
(mult[2]?y :NAT ~mult[3]?z : NAT ~ 

m!(x + y + z)~P)we R[x Amult[l]/mult[l]] 
(4.3 (b» 

== Vx eNAT. STOP we R[x Amult[l]/mult[l]] 
& Vy eNAT. mult[3]?z:NAT~m!(x + y + z~P 

we R [x A mult[l]/mult[l]] [y A mult[2]/mult[2]] 
(STOP we R == true and 4.3 (b» 

== Vx, y e NAT. STOP we R 
[x A mult[l]/mult[l]] [y Amult[2]/mult[2]] 

& Vz ENAT. m!(x + y + z~P 
we R[x Amult[l]/mult[l]] [y Amult[2]/mult[2]] 

[z A mult[3]1 mult[3] ] 
(STOP we R[x'mult[l]/mult[l]]==true and 

4.3 (b» 
= Vx, y, ENAT. STOP we R[x Amult[l]/mult[l]] 

[y Amult[2]/mult[2]] [z A mult[3]/mult[3]] 
& P we R[x Amult[l]/mult[l]] [y Amult[2]/mult[2]] 

[z Amult[3]/mult[3]] [(x + y + z) Amlm] 
(STOP we R[x Amult[1]/mult[1]][yA mult[2]/mult[2]] 

== true and 4.2 (b ». 

R[x Amult[l]/mult[l]] [y Amult[2]/mult[2]] [z Amult[3]1 
mult[3]] [(x + y + z) Amlm 
==R, and STOP we R [xAmult[l]/mult[l]] 
[y A mult[2]1 mult[2]] [z A mult[3]/ mult[3]] 
== true by (4.1), hence the previous proposition is equivalent 
to truth as required. 



690 National Computer Conference, 1982 

ACKNOWLEDGMENTS 

I am deeply grateful to Tony Hoare. The original idea of 
weakest environment appears in a joint work with him on the 
partial correctness of communication protocols,3 and the sug­
gestion for writing this paper also came from him. 

I also thank the Institute of Computing Technology, Chi­
nese Academy of Sciences, for awarding me two years' stay in 
the United Kingdom, which made possible the cooperative 
works I published with British scholars. 

REFERENCES 

1. Dijkstra, E. W. "Guarded Commands, Nondeterminacy, and Formal Deri­
vation of Programs." Communications of the ACM, 18 (1975), p. 8. 

2. Zhou, Chaochen, and C. A. R. Hoare. "Partial Correctness of Commu­
nicating Sequential Processes." In Proceedings of the Second International 
Conference on Distributed Computing Systems, April 1981. 

3. Zhou, Chaochen, and C. A. R. Hoare. "Partial Correctness of Commu­
nication Protocols." Paper presented at INWGINPL Workshop, "Protocol 
Testing--Tbwards Proving?" May 1981. 



Adaptive structuring of distributed databases 

by K. DAN LEVIN 
Tel Aviv University 
Tel Aviv, Israel* 
and 
The Wharton School 
Philadelphia, Pennsylvania 

ABSTRACT 

This paper reports the study of an adaptive strategy for allocating programs and 
data files in computer networks when only imperfect information on access request 
rates is available. The adaptive system is based on a set of computer procedures to 
collect access statistics, to estimate frequencies, to find optimal file assignment 
based on expected improvements in performance, and to redistribute the files over 
the network nodes. These computer modules are synchronized with each other in 
order to predict the best assignment policy on the basis of where access requests are 
expected to arise in the future; and as new information becomes available, the 
forecast is revised and the assignment policy adapts itself to the new information. 
Transition costs incurred by file transmission from one node to another are taken 
into account, and the decision to reassign files is triggered only when net gains can 
be realized. 

The paper also points out the departure from optimality due to the complexity of 
a multistage self-adapting system. Accordingly, a second-best solution is suggested. 

*This paper was written while the author was affiliated with the Department of Decision Sciences, The Wharton School, 
University of Pennsylvania. 

691 





I. INTRODUCTION 

The operating costs and the response time of a database 
shared by a community of users depend on its physical struc­
ture and usage patterns. Since usage patterns vary over time, 
a static physical structure may result in performance de­
gradation. Under these circumstances performance efficiency 
can be restored with the ability to choose a good database 
structure and to adapt this structure to changing re­
quirements. Many researchers have already recognized the 
importance of an adaptive capability, and some solutions 
applicable to centralized databases have been of­
fered.3--6, 10, 14, 15, 19,20 With growing interest in the per-
formance of distributed databases it is evident that such 
capability is especially important in that environment.7

,12 

Several models have been suggested for determining the 
optimal physical locations of files in distributed databases, 
both in a static environmene' 2, 9,12 and in a dynamic environ­
ment where usage patterns change over time. 8 The major 
deficiency is that perfect information on usage patterns was 
assumed in all these models. This is seldom the case in prac­
tical applications, where access request rates are not perfectly 
known in advance. In this case it is necessary to estimate these 
request patterns and to incorporate these estimates in the 
distributed database design. The purpose of this paper is to 
detail the various functions of an adaptive distributed-data­
base management system. Hammer's guidelines5 for self­
adaptive database design are adopted. Accordingly, the 
system includes an information-gathering module to collect 
statistics, an estimator module to estimate future access pat­
terns, a performance measure to evaluate different physical 
structures, and an optimization module to determine the 
optimal physical locations of files on the basis of expected 
performance improvements. Clearly, there are some costs as­
sociated with the physical redistribution of the database; 
therefore, the problem is to establish the optimal tradeoff 
between efficient system operation and reorganization costs. 

In Section A a performance measure for evaluating alterna­
tive physical database structures is described briefly. The per­
formance measure is formulated as a cost function to be min­
imized over the set of feasible distributed structures. This cost 
function, together with an efficient search procedure, defines 
the optimization model in our adaptive system. This model 
has been developed in OUf previous research/' 8, 9 both for 
static and time-varying access requirements. The parameters 
of the model-namely, the access request rates from each user 
to each program and file-are to be estimated in the estimator 
module, on the basis of data collected in the information­
gathering module. 

In Section B the estimator module is described and its sta­
tistical properties are investigated. The input requirements of 

Adaptive Structuring of Distributed Databases 693 

this module are defined in order to determine the structure of 
the information-gathering module. Implementation consid­
erations are discussed at the end of this section. 

Section C concludes the paper by pointing out the de­
parture from optimality when one takes into account the addi­
tional information on actual access requests that can be col­
lected as the system evolves. This possibility transforms the 
optimization problem to one of finding an optimal stochastic 
control-a problem which, in general, has infinite dimen­
sions. Realizing this complexity, some guidelines for second­
best solutions are suggested at the end of the paper. 

A. The Performance Measure and the Optimization Module 

The distributed database considered here is shared by a 
community of users interconnected through a computer com­
munication network. The network has N nodes and a data­
base consisting of F files and P programs. Every node in the 
network demands the services of some programs and files. 
This demand is generated through transactions originated in 
each node and falls into one of two classes, query traffic and 
update traffic. A transaction is first routed to its relevant 
program; from this program a query is transmitted to the 
nearest file copy while an update message is transmitted to 
every copy of the file. The rate of transactions originated at 
each node varies over time. It has been shown9 that the 
multiple-file problem can be decomposed into individual-file 
assignment problems, so we can proceed with the following 
notations: 

Aipt = query traffic from node i via program p at period t 

A'ipt = update traffic from node i via program p at period t 
Cj = communication cost per query unit from i to j 

C'ij = communication cost per update unit from i to j 
(h=storage cost at node k 
a = expansion factor for query message 
J3 = expansion factor for update message 

The expansion factors are included in the model because the 
length of the messages traveling between the programs and 
the data files differs from the length of the messages between 
the users' terminals and the processing programs. 

Throughout the paper subscript i indicates a user node, 
subscript j indicates a node where a program resides, and 
subscript k indicates a node where a file resides. In addition, 
p denotes the program index,p = 1, ... , P; andJ, Q, and U 
are sets of programs. These letters subscripted, e.g., Jp are 
sets of permissible nodes for program p (i.e., places where p 
can execute). 

Let Kt be the set of nodes where a copy of the file is stored 



694 National Computer Conference, 1982 

in period t. Let N be the set of nodes in the network, so that 
Kt ~ N for every t. 

It has been shown7
,8 that the costs associated with an arbi­

trary assignment for any given period, t, can be formulated as 

where 
q(Kt) = I pEQ Ii Aipt minjEQp (Cij + aminkEKtCjk) 

= communication costs of queries 
u(Kt ) = I pEU Ii A;pt minjEUp (C;j + I3IkEKt C;k) 

= communication cost of updates 
s(Kt ) = ~kEKt at 

Q = the set of query programs 
U = the set of update programs 

Qp = set of nodes at which query program p can be 
processed 

Up = set of nodes at which update program p can be 
processed 

With varying access request rates from period to period, it 
is conceivable that an optimal assignment at one period is 
nonoptimal in the next period. In this case it is not sufficient 
to optimize the cost function above, since reassignment costs 
have to be taken into account. These costs express the cost of 
transmitting the files (over the communication link) from an 
assignment in period t - 1 to its assignment in period t. 

Let b denote the number of messages to be transmitted 
when a file is assigned to a different location. 

Let d(Kt - 1 , K t ) denote the cost of reassigning the file from 
an initial assignment K t - 1 to an arbitrary assignment K t • Then: 

The term miniEKt_t Cj reflects the assumption that file trans­
mission is carried out in the most economical way. 

Thus, the resulting cost function to be minimized is: 

It was shown by Levin and Morgan8 that the same efficient 
branch and bound procedure that was suggested for the static 
model9 can be applied here. Furthermore, the inclusion of the 
reassignment cost tightens the bounds generated in the static 
model, and the search procedure for the problem above is at 
least as efficient as the one for the static model. 

When the estimator module generates estimates for the 
access requests in the next period, these estimates are used in 
evaluating the above function in the optimization module. If 
the resulting optimal assignment is different from the current 
assignment, the files have to be reassigned, since the reas­
signment cost has already been taken into account. 

B. The Estimator Module 

The optimization module described in Section A requires 
the input of the access request rates from users to files. When 
these request rates are known with certainty, a cost min­
imization is performed to determine the optimal assignment 
of files in the next period, taking into account the reor-

ganization cost. In most practical cases, the exact number of 
users' requests in the next period is unknown and can be 
treated as random variables. Since Aipt and A;pt are random 
variables, the associated cost G (Kt ) is in itself a random vari­
able. Under these circumstances the cost minimization objec­
tive should be modified. The most common approach in this 
case is to minimize the expected cost, i. e. , 

Find K; such that E[G(K;)] = Min {E[G(Kt)]}. 

A straightforward application of basic statistics results in the 
problem of estimating the expected request rates for each 
node, program, and file. These request rates can be estimated 
(following Hammer's approach5) by applying an exponential 
smoothing procedure that would be sensitive to changes in 
trends. 

Let 
- Aip (t) denote the access request rates realized in period t 

(the same procedure can be used for updates A;p (t)). 
- A/p(t) denote the corresponding estimated access request 

rates for period t. 
Let e(t) be an estimated trend factor to adjust the predic­

tion of access request rates for period (t + 1). 
And let -y and B denote the smoothing coefficients for ex­

ponential forecasting. 
Then the adaptive estimator module is defined by the fol­

lowing procedure: 
At the initialization step t = 0 observe Aip(O). 
Let 

Ai';(O) = Ai;(O) 
e(O) = 0 

At t = 1 set 
Ai.~(l) = -Y[Aip(l)] + (1- -Y)[Aip (0)] 

e(l) = B[AiP (1)] - (1- B)[Aip (0)] 
At t = 2 set 

Aip (2) = -y [AiP (2)] + (1 - -Y)[AiP (1) + e (1)] 
e (2) = B [AiP (2) - Aip (1)] + (1 - B) [e (1)] 

And for an arbitrary period t: 
Set 

Aip (t) = -Y[AiP (t)] + (1- -Y)[AiP (t -1) 
+ e(t - 1)] 

e(t) = B[AiP (t) - Aip (t -1)] 
+ (1 - B)[e (t - 1)] 

For this procedure the estimated access request rates for peri­
od t + 1 are 

Aip (t + 1 ) = Aip (t) + e (t ) 

with a prediction error defined by Aip (t) - Aip (t). 
The statistical properties of these estimates can be analyzed 

by formulating an underlying stochastic process that repre­
sents the adaptive nature of the estimator. 
Let 

Aip (t) * be the true mean of the random variable Aip (t). 
T)( t) be the trend change from period t -1 to period t 

(estimated by e(t). 



Aip (t) = Aip (t)* + Ut 

Aip (t)* = Aip (t - 1)* + 1") (t) 
1") (t) = 1") (t - 1) Vt 

where UI and Vt are time series with zero mean, constant 
variances ((J~, (J~), and covariances of all kinds: 

E(Ut ) = E(Vt) = 0 
E(Ut , Ur') = (J~ if t = t' 

= 0 if t = t' 
E(Vt, Vr') = (J~ if t = t' 

= 0 if t = t' 
E(Ut , V/) = 0 for all pairs (t, t') 

For this process, it was shown by Theil and Wage17 that the 
mean-square prediction error can be minimized by deter­
mining the smoothing coefficients 'Y and S as a function of the 
ratio of variances. Clearly, finding optimal values for 'Y and S 
requires estimates of the variances. However, a sensitivity 
analysis of the conseq,uences of error in estimating the vari­
ances ratio was performed by Nerlove and Wagell and showed 
relatively little sensitivity. Even a 50% error in estimating this 
ratio produces an increase of less than 1.5% in the mean 
square error achieved. This last result permits us to start with 
a rough estimate of the variances ratio, determine the values 
of 'Y and S, and update these coefficients when additional 
information is available. This information can be collected by 
recording the current mean-square prediction error, i.e., 

t 

Pe(t) = 2: [Aip (t) - Aip (t)y 
i=1 

Thus, the information items to be recorded and transferred 
from one period t - 1 to period tare Aip (t - 1), e (t - 1) and 
Pe(t - 1) for every node, program, and file. Since the data on 
access request rates can be most easily collected at the origi­
nating node, information-gathering modules should reside in 
each node. Storage requirements for these modules consist of 
three storage units (for the three information items) for each 
program and file accessed from the node. 

Similarly, the simplicity of the estimation process in terms 
of computation and storage favors a distributed organization; 
i.e., information of access request rates from each node 
should be performed locally. The advantages are twofold: 
estimation can be performed in parallel (whereas a centralized 
module would compute the estimates sequentially), and the 
volume of messages transmitted over the communication link 
is reduced. Only the revised estimates of access request rates 
have to be transmitted to the centralized optimization mod­
ule. This volume can be further reduced by filtering out rela­
tively small changes in the estimates. 

C. Departure from Optimality with a Multiperiod Adaptive 
System 

Sections A and B have detailed the components of a self­
adaptive distributed database design. Implicitly, we were 
dealing there with a one-period look ahead system. Changes in 
access request rates were identified and estimated for the next 

Adaptive Structuring of Distributed Databases 695 

period, then the physical distribution of files was changed in 
anticipation of the usage patterns of the next period. How­
ever, optimal assignment of files in a multi period planning 
horizon depends also on the access requests beyond the next 
period. This has already been shown in previous research,8 
where aT-period cost function has been developed for dy­
namic optimization of distributed databases; i.e., the global 
T-period cost function for any arbitrary T-period assignment, 
A, is given by 

T 

G(A) = 2: [C(Kt) + dt (Kt- 1, Kt)] 
t=1 

where file assignment at time 0 is given. The problem is to find 
that sequence of file assignments A * that will minimize the 
global T-period costs, 

G(A *) = min G(A) 

For this problem assignment, decisions should be made in 
each period on the basis of the information available at that 
period. That information typically consists of realized values 
pertaining to the previous periods and expectations pertaining 
to future periods. Section B addressed the problem of finding 
K; such that 

E [G(K;)] = Min {E[G(Kt)]} 

However, for a multistage problem it is in general not optimal 
to adopt the following not uncommon procedure: at each 
stage j, compute the decisions that are optimal for Stages j 
through j + n on the basis of the information and expectations 
available at Stage j, enact immediately the subset of decisions 
that pertains to Stage j, and repeat the procedure at Stage 
j + 1. The departure from optimality is of course due to the 
fact that the decisions enacted at each stage ignore the possi­
bility of reconsideration at the ensuing stages-a possibility of 
which advantage can be taken. If a two-stage decision prob­
lem calls for a decision d1 , followed by an observation x, and 
then by a second-stage decision d2 , and if d;, d; solve 

Max E F(dl,d2 ,x) 
d 1, d 2 x 

then the following well-known inequalities illustrate both the 
desirability of reconsidering and the need to take that possi­
bility into account when choosing d 1 : 

Max E Max F(dl,d2 ,x) ~ E Max F(d;,d2 ,x) ~ E F(d;,d:,x) 
d 1 x d 2 x d 2 x 

In that case the multiperiod adaptive problem is one of 
finding the optimal stochastic control which is, in general, of 
infinite dimensions. The enormous complexity of constructing 
a self-adaptive, self-learning systeml6,18 forced the researchers 
to proceed with most restricting assumptions. When only one 
copy of each file is allowed to exist in the system at any given 
time, Segall13 was able to show (under additional restricting 
assumptions) that a "separation" property holds in the sense 
that the estimates of the states of the rates are sufficient 
statistics for the optimal control. 

In most practical situations redundant copies of the files 
exist in the network, and for these cases no generally applica-



696 National Computer Conference, 1982 

ble algorithm (for optimal control) has, to the best of my 
knowledge, yet been developed. A plausible second-best solu­
tion is to adopt the nonoptimal procedure: at each period t 

estimate the access request rates for periods t + 1, t + 2, ... , 
t + T; find the optimal assignment of files in the next T peri= 
ods; and assign the files in accordance with the recommended 
assignment for Period t + 1. Repeat that procedure at the end 
of Period t + 1 by reestimating the future access rates. The 
estimator module can generate access rate predictions for lead 
time t' = 1 to T by setting 

A/p (t + t') = A/p (t) + t'[e(t)] 

These access rates estimates for the next T periods can then 
be transmitted to the optimization module that would consist 
of the multiperiod dynamic optimization model. 8 

SUMMARY 

The cost and performance of operating a large shared distrib­
uted database are functions of its physical structure and usage 
patterns. The usage patterns are characterized by the access 
request rates from each user to each program and file. These 
access request rates vary over time in accordance with the life 
cycle of the database; thus, an optimal physical structure at 
one period is nonoptimal at another period. 

In this paper we have studied an adaptive strategy for aiio­
cating programs and data files in computer networks when 
only imperfect information on access request rates is avail­
able. The adaptive system is based on a set of computer pro­
cedures to collect access statistics, to estimate frequencies, to 
find optimal file assignment based on expected improvements 
in performance, and to redistribute the files over the network 
nodes. These computer modules are synchronized with each 
other in order to predict the best assignment policy on the 
basis of where access requests are expected to arise in the 
future; and, as new information becomes available, the fore~ 
cast is revised and the assignment policy adapts itself to the 
new information. Transition costs incurred by file trans­
mission from one node to another are taken into account, and 
the decision to reassign files is triggered only when net gains 
can be realized. 

We have also pointed out the departure from optimality due 
to the complexity of a multistage self-adapting system. Ac­
cordingly, a second-best solution is suggested. 

ACKNOWLEDGMENT 

Research for this paper was supported by the U.S. Office of 
Naval Research, ONR Grant N00014-75-C-0462. 

REFERENCES 

1. Chu, W. W. "Optimal File Allocation in a Multiple Computer System." 
IEEE Trans. on Computers, 10 (1969), pp. 885-889. 

2. Casey, R. G. "Allocation of Copies of a File in an Information Network." 
A FiPS, Second joint Computer Conference (Vol. 40), 1972, pp. 617-625. 

3. Hammer, M., and A. Chan. "Index Selection in a Self-Adaptive Data 
Base Management System." Proceedings of the 1976 ACM SIGMOD 
International Conference on Management of Data, Washington, D.C., 
June 1976, pp. 1-8. 

4. Hammer, M., and A. Chan. "Acquisition and Utilization of Access 
Patterns in Relational Data Base Implementation." In C. H. Chen (ed.), 
Pattern Recognition and Artificial Intelligence. New York: Academic Press, 
1976. 

5. Hammer, M. "Self Adaptive Automatic Data Base Design." AFIPS, 
Proceedings of the National Computer Conference (Vol. 46), 1977, pp. 
123-129. 

6. Kennedy, S. R. "The Use of Access Frequencies in Data Base Organiza­
tion." Ph.D. dissertation, Department of Operations Research, Cornell 
University, 1973. 

7. Levin, K. D., and H. L. Morgan. "Optimizing Distributed Data Bases: 
A Framework for Research." AFIPS, Proceedings of the National Com­
puter Conference (Vol. 44), 1975, pp. 473-478. 

8. Levin, K. D., and H. L. Morgan. "Dynamic Optimization Model for 
Distributed Data Bases." Operations Research, 26, (1978), pp. 824-835. 

9. Morgan, H. L., and K. D. Levin. "Optimal Programs and Data Locations 
in Computer Networks." Communications of the ACM, 20 (1977), pp. 
315-322. 

10. Morgan, H. L., and S. R. Kennedy. "An Adaptive File System." Tech­
nical Report No.4, Information Science Department, California Institute 
of Technology, 1972. 

11. Nerlove, M., and S. Wage. "On the Optimality of Adaptive Forecasting." 
Management Science, 10 (1964), pp. 207-223. 

12. Ramamoorthy, C. V., and B. W. Wah. "Data Management in Distributed 
Data Bases." AFIPS, Proceedings of the National Computer Conference 
(Vol. 48), 1979, pp. 667-680. 

B. Segall, A. "Dynamic File Assignment in a Computer Network." IEEE 
Transactions on Automatic Control, 21, (1976) pp. 161-173. 

14. Schneiderman, B. "Optimum Data Base Reorganization Points." Commu­
nications of the ACM, 16 (1973) pp. 362-365. 

15. Stocker, P. M., and P. A. Dearnley. "A Self Organising Data Manage­
ment System." In 1. W. Kimbie and K. L. Koffeman (eds.), Data Base 
Management. Amsterdam: North-Holland. 

16. Stratonovich, R. L. "Does There Exist a Theory of Synthesis of Optimal, 
Self-Learning and Self-Adaptive Systems?" Automat. Telemekh, 29 
(1968), pp. 83-92. 

17. Theil, H., and S. Wage. "Some Observations on Adaptive Forecasting." 
Management Science, 10 (1965), pp. 198-206. 

18. Tsypkin, Y. Z. "All the Same, Does a Theory of Synthesis of Optimal 
Adaptive Systems Exist?" Automat. Telemekh, 29 (1968), pp. 93-98. 

19. Tuel, W. G. "Optimum Reorganization Points for Linearly Growing 
Files." ACM Transactions on Data Base Systems, 3 (1978), pp. 32-40. 

20. Yao, S. B., K. S. Das, and T. J. Teorey. "A Dynamic Data Base 
Reorganization Algorithm." ACM Transactions on Data Base Systems, 2 
(1976), pp. 159-174. 



Distributed scheduling of resources on 
interconnection networks 

by BENJAMIN W. WAH and ANTHONY HICKS 
Purdue University 
West Lafayette, Indiana 

ABSTRACT 

In this paper, we have studied the distributed scheduling of resources on inter­
connection networks. The resource scheduling problem is different from the con­
ventional address mapping problem on interconnection networks because a request 
is not directed towards a particular destination address but to anyone of a pool of 
destination addresses for free resources. To design an algorithm with the minimum 
transfer of control signals, priority is associated with the scheduling of multiple 
requests. This is illustrated by the distributed cross-bar switch which has one signal 
line in each direction of a switch node. For complete asynchronous operation, more 
signal lines are needed. This is illustrated by the distributed Omega and binary 
n-cube networks. Each exchange box in the network operates independently to 
resolve conflicts. The performance of the distributed scheduling algorithm for the 
Omega and cube networks is compared against the optimal centralized scheduling 
algorithm which has about 1 % average blocking probability. The performance 
degradation is less than 20% in all cases. The theory of the design can be applied 
to other interconnection networks. 

*This research was supported by the National Science Foundation Grants ECS 80-16580 and ECS 81-05968. 

697 





Distributed Scheduling of Resources on Interconnection Networks 699 

1. INTRODUCTION 

The recent advances in large-scale integrated logic and com­
munication technology, coupled with the explosion in size and 
complexity of new applications have led to the development of 
parallel processing systems with a large number of general and 
special purpose processing units. An interconnection network 
is an essential element of a parallel processing system which 
interconnects processors and resources together. The function 
of the interconnection network is to route requests initiated 
from one point to another point connected on the net­
work.5,B,1l,14,15,17,21 The notable characteristics in these net-
works is that routing is done by addresses. That is, a request 
is initiated with a specific destination or a set of destinations 
and the requests are supposed to be routed to the correct 
destinations. Examples of these networks are the Banyan/ 
binary n-cube,t5 cube,tB perfect shuffle,z° flip/ Omega,l1 data 
manipulator,5 augmented data manipulator, 19 delta,14 and 
baseline.21 Examples of systems designed with interconnec­
tion networks are TRAC,17 STARAN,z C.mmp,z2 Numerical 
Aerodynamic Simulation Facility (NASF)1,4 and the Ballistic 
Missile Defense testbed. 12 

In general, an interconnection network routes requests 
from a set of source points to a set of destination points (they 
may coincide with each other). In a resource sharing inter­
connection network (RSIN), the destination points are identi­
cal (or sets of identical) resources to which requests or tasks 
can be delegated to. Examples of these resources are special 
purpose VLSI chips. In this respect, jobs initiated at source 
processors can be sent to anyone of the free resources of a 
given type at the destination. This is the important point that 
differentiates RSIN from interconnection networks using ad­
dress mapping. Another application is to map the set of desti­
nation points directly into the source points. In this case, we 
have a load balancing network which can re-balance the load 
in the system dynamically. RSIN can also be applied in data­
flow computers to distribute tasks to processing units. 

Since the system operates continuously, requests from 
source processors can be initiated at random times. At any 
time, a set of processors may be making requests and a set of 
resources are free. It is the function of a scheduler to set the 
RSIN in order to connect the maximum number of resources 
to the processors, that is, to have the maximum resource 
utilization. 

As an example, consider a 4 by 4 Omega network (see 
Figure 1). Assume processors 0, 1,2 are making requests and 
resources 0, 1, 2 are available. Processor 3 is not making a 
request and resource 3 is busy. Further, the network is com­
pletely free. * All the resources will be allocated if the follow-

*Processor 3 could have made a request earlier and have sent a job to resource 
3 in a block transfer mode. The network will, therefore, be free at the present 
time. 

PROCESSORS RESOURCES 

-t----+--- R2 

(a) Processor-resource mapping:{(O,I), 
All resources are allocated 

(1 ,0), (2,2)) 

(b) Processor-resource mapping: {(O,t) , (1,2). (2,3)} 
Only 2 of the resources are allocated 

Figure I-A RSIN using 4 by 4 Omega network 

RESOURCES 

ing processor~resource mappings are used: {(O,O), (1,1), 
(2,2)}, {(0,1), (1,0), (2,2)}, {(0,2), (1,0), (2,1} or {(0,2), (1,1), 
(2,0)}. But if the following processor-resource mappings are 
used: {(O,O), (1,2), (2,1)} or {(0,1), (1,2), (2,0)}, then a maxi­
mum of 2 resources can be allocated without blocking. This 
gives a resource utilization of 66%. A similar example can be 
generated for the indirect binary n-cube network. This illus­
trates that the scheduler must be designed properly to give the 
maximum resource utilization. 

The earliest study of RSIN has been done with respect to 
centralized computer systems. A uni-bus is used in a time­
shared fashion for connecting peripheral I/O devices to the 
CPU. Multiple time-shared busses have been used in the 
PLURIBUS minicomputer multiprocessor. 13 A cross-bar 
switch has been used in C.mmp22 although the network is 
mostly used in address mapping mode. This network permits 
full interconnection capability between any source and desti­
nation ports. As long as each source port addresses a unique 
destination port, there is no blocking in the network and all 
messages can be routed through the network simultaneously. 
The single or multiple busses is a source of bottleneck, and is 
the least expensive design. The cross-bar switch is the most 
expensive network but has the least degree of blocking. A 
compromise is to use a less expensive network than the cross­
bar switch that has a lower blocking probability than the single 
bus systems. This has been studied with respect to the Banyan 
network.9,16 In these studies, it is shown that when a processor 
makes a request for multiple resources, by allocating re-



700 National Computer Conference, 1982 

sources with smaller distance functions, the amount of net­
work blockage caused by the allocation of these resources is 
reduced.8 A tree network is proposed to aid the scheduler in 
choosing a resource to allocate. The tree network has a delay 
of 0(1og2n) in selecting a free resource (n is the total number 
of resources), and most notably, the scheduling of multiple 
requests is done sequentially. 

A few comments can be made about the previous studies. 
First, the scheduling algorithms are centralized. For mapping 
n requesting processors to n resources, the scheduling algo­
rithm has a worst case complexity of O(n *log2n). This com­
plexity depends on the number of requesting processors, 
which is practical when n is small or when requests are not 
very frequent. Second, for scheduling requests on inter­
connection networks with logarithmic delays such as binary 
n-cube, Banyan and Omega, no optical scheduling algorithm 
has been established. 

The objective of this paper is (a) to study the performance 
of distributed scheduling algorithms with a scheduling time 
that is independent of the number of requests made in the 
network but only dependent on the delay in the network and 
compare the performance against centralized scheduling algo­
rithms; (b) to design interconnection networks to support dis­
tributed scheduling. 

The basic assumption made in this study is that each pro­
cessor makes a request for one resource, although there may 
be multiple requests outstanding. The extension to the case 
when multiple resources are requested simultaneously is dis­
cussed in Section 5. Two types of request characteristics are 
identified. First, the resource requested by the processor must 
be continuously connected to the processor for the duration of 
the request. In this case, the RSIN may not be completely free 
when a set of new requests are initiated. Networks with log­
arithmic delays such as the Omega and binary n -cube may 
have a high blocking probability. A distributed cross-bar 
RSIN with no blocking is preferable in this case. This is dis­
cussed in Section 2. Second, requests are made in a block. 
transfer mode. That is, a free resource is connected to a 
requesting processor for a short duration of time. After the 
request is sent to the resource, the connection between the 
processor and the resource is broken. The resource will con­
tinue to service the task, and the processor is free to generate 
new requests in the future. In this case, the network is almost 
or completely free when a set of new requests is initiated. We 
present in Sections 3 and 4 the centralized and distributed 
scheduling of request on Omega and binary n -cube networks 
with the assumption that the network is completely free when 
a set of requests is initiated. The performance of partially busy 
networks is presented elsewhere. 23 

2. DISTRIBUTED SCHEDULING ALGORITHM FOR 
THE CROSS-BAR SWITCH 

We present in this section the design of a cross-bar switch to 
support distributed scheduling algorithms. The motivations 
behind studying cross-bar switches are that it is non-blocking 
and it is very suitable for VLSI implementation. It has been 
shown that cross-bar communication networks are favorable 
as compared to Banyan networks for VLSI implementation 
provided that the whole network is implemented on one chip. 6 

Figure 2 shows the overall structure of a cross-bar network. 
Processor i, 0 :5 i < n, initiates a request by sending a request 
signal to the switch along the i-th row. Resource j, 0:5 j < m, 
indicates that it is free by sending a resource signal along the 
j-th column. At cell C,j where there are request and resource 
signals, the switch is set on and data transfer can begin. The 
request signal is removed from any further cells along the i -th 
row. Similarly, the resource signal is removed from any fur­
ther cells along the j-th column. Each cell in the switch has 
enough intelligence to resolve the conflicts and to route the 
requests. There is a control latch in each cell to indicate the 
state of the switch. It is obvious that there is no centralized 
control for the routing of requests. 

Because requests can appear and disappear at any time, it 
is important that a change in request state for one processor 
does not affect the state of allocation of other processors. To 
illustrate this referring to Figure 2, if the request signal to cell 
C,j is removed, then the latch in C,j is reset and the resource 
becomes free. The resource signal will again propagate down 
the j-th column. Processor k may have made a request pre­
viously. Since resource j was busy, it tried to search for 
another resource and found one. The new resource signal 
passed along the j-th column should be ignored in cell Ck,j in 
order not to upset the state of a previous allocation. To solve 
this problem, we assume that the system operates in two 
modes: request mode and reset mode. In the request mode, 
processors can make requests for free resources. In the reset 
mode, processors can relinquish previously acquired re­
sources. This method degrades performance because requests 
and resets cannot operate concurrently. However, a single 
signal line suffices to indicate which mode is active. Other 
alternatives which allow concurrency in requests and resets 
include (a) the use of state saving latches in each cell and (b) 
the use of separate request and reset control lines. These 
alternatives require more hardware and will be investigated in 
the distributed Omega and binary n -cube networks. 

Referring to Figure 2(b), the inputs and outputs of cell C,j 
which connects processor i and resource j have the following 
meaning: 

X .. = {O 
1,1 1 

(request 
mode) 

X .. = {O 
1,1 

1 

(reset 
mode) 

processor i is not searching for a free resource 
processor i is searching for a free resource 

processor i does not want to change the state of 
allocation 
processor i wishes to relinquish the allocated 
resource 

X;,j always returns to 0 at the end of each mode 

y. = {O 
1,1 

1 

resource j is busy and cannot accept any 
request 
resource j is free and can accept a new request 

DI;-data line to send data from the i-th processor 



U) 

a:: 
o 
U) 

U) 

l1.J 
U 
o 
a:: 
CL 

• • • 

Distributed Scheduling of Resources on Interconnection Networks 701 

RESOURCES 

/ 
/ 

• •• 
--r­

/ 
/ 

/ ... 
• •• 

R m-l 

~ ........... -1 

1/ / 
V PROPAGATION 

I 
I 

I • / ./ • • • 
~ALS • • • 

I 
I /' 
I / 
V/ 

MODE 

x. . 
I ,J 

01 . 
I 

/ 

• •• 

I 
) 
I 

--r~~ __ 
to R 1 

I 
_ _ _ -L/ ~ __ ---.J 

to Rm- l 

(a) Structure of a cross-bar switch 

S. . 
I ,J 

C. . 
I ,J 

R. . 
I ,J 

~O. . Y. . 
I ,J 

CONTROL 
LATCH 

I ,J 

Y. +1 . 
I ,J 

00.+ 1 . 
I ,J 

(b) Structure of a cell 

x. .+ 1 
I ,J 

o I . 
I 

Figure 2-A cross-bar switch to support decentralized scheduling 



702 National Computer Conference, 1982 

DOi,j-data line for the j-th resource to receive data from the 
i -th processor 

switch is off; any request made by processor i 
is passed to the next cell, C,j+l 
switch is on; processor i is connected to re­
source j 

S,j Ri,j-the set/reset signal to the control latch in cell C,j 
MODE-controls the cell to be in request or reset mode. 
The input/output relationship of the control signals is shown 
in the truth table in Table I. 

In the request mode, the latch is set (Si,j = 1) if processor i 
is making a request and resource j is available. If resource j is 
not available (Yi,j = 0), then the request signal is passed to the 
next cell (Xi,j+l = Xi,j). The resource signal to the next cell 
(Xi+1,j) depends on the state of control latch in the cell. If 
Yi,j = 0, then Yi+1,j = O. If Yi,j = 1 and Xi,j = 1, then the con­
trollatch is set and Yi+l,j = O. Since the Xi,j signal returns to 
o at the end of the request mode, but the Yj,j signal may still 
be kept at 1, so Yi+1,j equals the output of the control latch 
(£;,j) when Xi,j = 0 and Yi,j = 1. For those processors which 
have made requests previously, the state of allocation is not 
disturbed in the current request mode and data transmission 
can continue. In the reset mode, if processor i issues a reset 
signal, all the control latches in row i of the switch are reset. 
The logic equations for the comrois and outputs are also 
shown in Table I. The design of cell C,j is shown in Figure 3. 

The boundary connections for the switch are as follows. 
Each Xi,m signal is connected directly back to Pi' Similarly, 
each Yn,j signal is connected back to Rj. Suppose Pi makes a 
request by setting Xi,o = 1 and it receives at the end of the 
request cycle, Xi,m = 1, this means that the request is not 
satisfied and Pi should resubmit its request in the next request 
cycle. Likewise, resource R j indicates that it is free by setting 
YO,j = 1. If at the end of the request cycle, Yn,j = 1, this means 
that the resource is not allocated and R j should send out the 
YO,j = 1 signal continuously. Otherwise, it will set Yp,j = 0 to 
indicate that it is allocated. 

Requests and resets are accepted at the beginning of the 
corresponding cycle. They are not accepted in the middle of 
a cycle because the next cycle cannot start until all the signals 
in the current cycle have settled. In each cycle, the signals 
propagate from the top left corner at 45° to the bottom right 
corner (Figure 2) on a wave-like motion. The maximum time 
for signal propagation is, therefore, proportional to n + m. In 
the request cycle, the maximum gate delays in each cell is 4 
because of two gate delays in the control latch. The maximum 
length ofthe request cycle is 4(n + m) gate delays. In the reset 
cycle, the maximum delay in each cell is 1 due to the mode 
control gate. The maximum length of the reset cycle is 
(n + m) gate delays. 

A final remark about the scheduling algorithm is that it is 
asymmetric. That is, it favors processors with lower index 
numbers. In order to design an algorithm that is symmetric 
and to allow requests and resets to be initiated dynamically, 
more control lines are needed. Resources that are available 

TABLE I-Truth table and control signals for cell C. j 

X,i 

o 
o 

Xj,j-,-)=Xi,jYi,j 

Y i+ 1,j = xj,j Yj,j Li ,} 

Si,j=Xi,j Yi,j 

Ri,j=O 

Inputs 

DOi,j= Li,J D1i + DOi+),} 

(a) Request mode 

X,j 

X i.j+l=X;,j 

Y i+ 1,j= Yi,j 

Sj,j=O 

Ri,j = Xj,j 

o 
o 

Inputs 

DO;,} = Li,j DI; + DOH,; 

(b) Reset mode 

o 
1 
o 

o 
1 
o 

Xi,j-'-) 

0 
0 
1 
0 

X i,}+l 

0 
0 

Outputs 

Yi+I.j Si.} R,j 

0 0 0 
Lj,j 0 0 
0 0 0 
0 0 

Outputs 

Y;+l,i Sj,j R,j 

0 0 0 
1 0 0 
0 0 

0 



Distributed Scheduling of Resources on Interconnection Networks 703 

x .. 
I ,J 

x .. 
I ,J 

REQUEST 

Y •. 
I ,J 

Y •• 
I ,J 

DO .. 
I ,J 

t10 D E --.,,..---------.+----+---.... -+-----+t 
x .. 1 I,J+ 

D \. 
I 

RESET 
MODE 

Y. 1 . 1+ ,J 

L .. 
I ,J 

L. . 
I ,J 

DO'+ 1 . 
I ,J 

Figure 3-A cell in the distributed cross·bar switch 

can send a pulse of a short duration along a column. Only 
processors that receive a pulse will be assigned the resource. 
In this sense, the pulse behaves like a token. When different 
resources issue tokens randomly, the algorithm is symmetric. 

3. CENTRALIZED RESOURCE SCHEDULING ON 
NETWORKS WITH LOGARITHMIC DELAYS 

In the remainder of this paper, we present the resource sched­
uling algorithms for interconnection networks with loga-

rithmic delays. Specifically, we study the Omega and binary 
n -cube networks and first establish the optimal scheduling 
algorithm of these networks. Based on the optimal behavior, 
we compare the performance degradation of other heuristics 
and the distributed algorithm. 

The Omegall and binary n-cube15 networks are chosen for 
their simplicity and versatility. The basic element in these 
networks is a 2 input, 2 output interchange box which allows 
a straight or a diagonal connection. For a network connecting 
N inputs to N outputs (N is a power of 2), there are log2N 

stages and ~* log2N interchange boxes. The delay in the net-



704 National Computer Conference, 1982 

work is therefore 0 (log2N). Figure 8 shows an example of an 
-Omega network with N = 8. 

The Omega network is equivalent to the binary n -cube 
network with the difference that it operates in the reverse 
direction. Using. these networks as RSINs, they are 

. statistically identical. The performance of these networks is 
evaluated by selecting a random subset of processors and 
resources and finding the maximum number of resource allo­
cations. If the Omega network can be rearranged into a binary 
n-cube network, then their performance as RSINs are identi­
cal. This rearrangement is exemplified in the Omega network 
in Figure 8. If Bo,t and Bl,1 are moved so that they are adjacent 
to Bo,3 and B1,3, and with proper relabeling of processors and 
resources, the Omega network is transformed into a cube 
network. In the following discussion, we will only present the 
result on the Omega network. The performance of the binary 
n -cube network is equivalent. 

(a) Optimal Scheduling Algorithm 

Simulation results presented in Franklin6 show that with 
N = 8, there is a message blocking probability of about 30% 
using address mapping. We show in this section that there is 
virtually no blocking when the Omega and binary n -cube 
networks operate as RSINs. 

The results are obtained by exhaustive enumeration over all 
the possible combinations of connections for a subset of re­
questing processors and free resources. Because of the large 
number of combinations, only networks with N = 8 can be 
studied. Even in this case, the total number of possible combi­
nations is slightly under 600 million. The large number of 
combinations is attributed to the fact that the order of con­
nections is important. For a set of i requesting processors and 
j free resources, there are il * jl possible ordered connections. 

A faster method is developed by observing that each box 
can be set in 2 states. With 12 interchange boxes, there are 
212 = 4096 states or possible connections. These 4096 possible 
connections are arranged into multiple trees so that the max­
imum number of connections can be found efficiently. Using 
this method, the enumerations were completed using 10 hours 
of CPU time and 64 K bytes of memory on a VAX 111780. 

A selected set of the simulation results are plotted in Fig­
ures 4 and 5 for the blocking probability and standard devi­
ation of processor allocations when the number of requesting 
processors equals the number of free resources. These results 
are based on the assumption that the network is completely 
free before the allocations. The average processor blocking 
probability is defined as: 

processor Number of allocated processors 
blocking = 

probability 
Number of requesting processors 

The blocking probability must be interpreted correctly. For 
example, if there are 4 processors and 2 resources, then at 
most 2 processors can be allocated resources and the min­
imum blocking probability is 50%. If there are 2 processors 
and 4 resources, the minimum blocking probability is 0%. 

It is seen that the blocking probabiiity and the standard 
deviation of processor allocations are very small. We can con-

.25 

00 .w~ R<l 
E: 
:i 

~ 
0 .15 
~ c-
o z 
i 
I.) 
0 
...l 

.10 
~ 
R<l 
0 
<: 
~ 

~ .05 

O.OL-----~--~~--~~----~----~--~~--~ 
1 2 3 4 5 6 7 8 

NO. OF REQ. PROC. ( = NO. OF FREE RES.) 

Figure 4-Blocking probability for resource allocations on Omega and Cube 
networks (N = 8) 

elude that with a good scheduling algorithm, the Omega and 
binary n -cube network serve almost equally as well as the 
distributed cross-bar switch for resource sharing. 

(b) Centralized Scheduling Heuristic 

As a comparison, we present a centralized heuristic and 
compare its performance against the optimal algorithm. Let 

PR = Set of requesting processors = {Pi, Pi;, Piii, ... PJ 
RA = Set of free resources = {R, R;, Rii' . . . Ry} 

We assume that the processors and resources in PR and RA are 
ordered by their index numbers. A parameter of the heuristic 

.80 
CENTRALIZED HEURISTIC 
(RETR Y = O,OMEGA & CUBE) 

CIl .70 z 
0 
E: 
~ .60 
0 
...l 

~ 
.50 d 

0 
~ c-

.40 
z 
0 

~ .30 > R<l 
0 
0 .20 
~ 
0 
z 
~ .10 
rn 

0.0 
2 3 4 5 6 7 8 

NO. OF REQ. PROC.( = NO. OF FREE RES.) 

Figure 5-Standard deviation of number of requesting processors allocated 
for Omega and Cube networks (N = 8) 



Distributed Scheduling of Resources on Interconnection Networks 705 

is the number of retries (0:5 RETRY:5 Y - 1). Supposed Pi 
fails to be connected to R j due to a blocked connection, then 
the heuristic successively retries the next set of RETRY free 
resources to see if a connection can be made. Whether a 
connection can be made within the fixed number of retries or 
not, the next processor in PR is always matched with the first 
free resources in RA immediately following the resource 
matched for the current processor. The heuristic, written in 
pidgin Algol, is shown in Figure 6. 

PROCEDURE cent_heuristic 

1* Assume that match (P 0' R.) is a boolean procedure whi ch 
returns TRUE if Po cln b~ connected to R 0 and FALSE 
otherwise. If TRUE is returned, the con~ection is actually made. 

*/ 

i-index of a requesting processor (i = • means there is no 
requesting processor) 

j - index of a free resource (j = • means there is no free resource) 

r - variable indicating the number of retries 

i=1; j=1; /* initialization */ 

WHILE (i ~ • AND j ~ .) DO 
BEGIN 

END 

done = FALSE; r=O; 

WHILE (NOT match (Po, Ro) AND done .EG. FALSE) DO 
BEGIN 1 J 
r = r+1; 
IF (r > RETRY) /* Test for # of retries */ 

THEN done = TRUE 
ELSE j + next free resource in R

A
; 

END; 

i + next requesting processor in P
R

; 
~N; next free resource in RA; 

Figure 6-Centralized heuristic for resource allocation 

To illustrate the heuristic, consider an 8 by 8 Omega net­
work with PR = {O, 3, 4, 5}, RA = {O, 1,3, 4} (see Figure 8), 

1. The algorithm connects Po to Ro and is successful. 
2. The algorithm connects P3 and Rl and is successful. 
3. The algorithm tries to connect P4 to R3, but is blocked. 

If RETRY = 0, then the algorithm connects Ps to R4 and is 
successful. 

If RETRY = 1, then the algorithm tries to connect P4 to R4 
and is successful. It continues to connect Ps to R3 and is 
successful. For this example, the resource utilization is 100% 
if RETRY ~ 1, otherwise, it is 75% for RETRY = O. 

The procedure match in Figure 6 has a complexity of 
0(log2N). (It is proportional to the number of stages in the 
network). The worst case complexity of the heuristic for x 
requesting processors and yfree resources (0 < x,y :5 N) is, 
therefore, O(N(RETRY + 1)log2N). If RETRY = 0, the heu­
ristic has complexity O(N* log2N). If RETRY = N - 1, the 
heuristic has complexity 0(N210g2N). 

Since the heuristic assumes a predetermined sequence of 
allocations and no backtracking is provided if a wrong deci­
sion is made, the heuristic is sub-optimal. The performance of 
the heuristic with RETRY = 0 and RETRY = 8 are shown in 
Figures 4 and 5. It is seen that the blocking probability is 

higher than the optimal case (around 7%). As the number of 
retries is increased, the blocking probability reduces. Further, 
the Omega and the binary n -cube networks have different 
performance on the centralized heuristic. This is due to the 
fact that the order in which resources are tried are different in 
the two networks. Although the Omega and binary n-cube 
networks seem to have identical performance for the central­
ized heuristic with RETRY = 0, the Omega network has 
worse performance when the number of processors and re­
sources are different. 

4. DISTRIBUTED RESOURCE SCHEDULING ON 
NETWORKS WITH LOGARITHMIC DELAYS 

The centralized scheduling algorithm has a high overhead 
when the number of processors and resources to be scheduled 
is large since every requesting processor has to be scheduled 
sequentially. In a distributed algorithm, all the requesting 
processors are scheduled in parallel. The resource scheduling 
overhead is, therefore, proportional to the delay time in the 
network (0(log2N» and independent of the number of re­
questing processors. 

The distributed algorithm is implemented by distributing 
the scheduling intelligence into the interconnection network 
so that there is no centralized control. Each exchange box can 
resolve conflicts and route requests to the appropriate desti­
nation. If a request is blocked, it will be sent back to the 
originating exchange box in the previous stage. Request 
routing is, thus, dynamic and all the exchange boxes operate 
independently. 

Before the algorithm is described, some symbols must be 
defined. The information paths for exchange box j in stage i, 
Bi,j, is shown in Figure 7. There are four types of signals, S, 
Q, J and D: 

S--carries information about the number of resources 
reachable from this link 

Q={~ 

J=/: 

a request of a free resource is made on this link 
otherwise 

a block has been detected in stages after the cur­
rent stage and the request along this link is 
rejected 
otherwise 

D-data transmission links 
RA-resource availability register which stores the number of 

resources reachable from an output terminal of Bi,j' 

For simplicity of representation, subscripts of symbols for 
signals incident upon and originating from Bi,j are set to be i,j. 
The index of the box that they are connected to is not included 
in the representation as a mapping function. There are four 
types of superscripts, UL (upper left), UR (upper right), LL 
(lower left) and LR (lower right) and they indicate the corner 
of the exchange box that the signal links are connected to. The 
distributed scheduling algorithm utilizes these signals to con-

• UL LL) h nect the data paths from the l - I-st stage (Di-1,j' Di-l,j to t e 
. (UR LR) 
l + I-st stage Di,j' Di,j . 

Consider a situation when the network is completely free, 



706 National Computer Conference, 1982 

Ul 
Si -1 ,j 

IJL 
Qi -1 ,j 

Ul 
J i -1 ,j 

UL 
°i -1 ,j 

LL 
°i -1 ,j 

LL 
Si -1 ,j 

LL 
Qi -1 ,j 

LL 
J i -1 ,j 

... ----

< > 
... 

.----

I I 
f4-----

I RA~R . I 1 ,j 

> 
B .• 

1 ,j 

> 

...-----

c;:J I,j 

- - - .. information path in the resource phase 

----I.~ information path in the request phase 

Bi ,j-EXchange box j in stage i 

=:::::::> data path 

RA - resource availability register 

UR 
S .. 

1 ,j 

UR 
Qj ,j 

J~R. 
I,) 

O~R • 
!,j 

LR 
S .. 
I,) 

Q~R • 
I,j 

LR 
J .. 
I,) 

Figure 7-The information paths of an exchange box in the distributed 
scheduling algorithm 

and there is a set of requesting processors and free resources. 
All the resource availability registers are set to be zero ini­
tially. We will generalize later to the situation in which re­
quests can be initiated dynamically. 

The algorithm consists of two phases. In the first phase 
(Resource Phase), information concerning the number of free 
resources is passed from the resource side to the processor 
side. Specifically, each resource that is free sends a "+ 1" 
along the S link to the exchange box connected to it. Referring 
to Figure 7, which shows exchange box Bj,j, the dashed lines 
represent the information flow in the resource phase. The 
exchange box receiving this information increments the corre­
sponding resource availability registers. It then adds the two 
numbers stored in the two resource availability registers and 
sends the result to the two exchange boxes connected in stage 
i - 1. Conceptually, the numbers Si~R and Si~R represent the 
number of resources reachable from the upper and lower 
output terminals of Bi,j' Therefore, the total number of re­
sources reachable from this box is S;~R + S;~R and this infor­
mation is passed to the two exchange boxes connected in the 
previous stage along links Si~~,j and Si~~,j' The delay for this 
phase is proportional to the number of stages of the network. 

As an example, refer to Figure 8. Suppose processors Po, 
P3, P4 and Ps are making requests and resources Ro, R}, R4 
and R5 are free. Resource availability information is passed 
from the resource side to the processor side starting with stage 
2. Box B2,0 receives" + 1" from Ro and R 1• Therefore, it passes 
a "+2" to boxes B 1,0 and B 1,1' Likewise, box B2,2 receives 
"+ I" from R4 and Rs and passes this information to boxes B1,2 

and B1,3. The propagation of this information is similar in 
stages 1 and O. At the end ofthe resource phase, Po, P3 , P4 and 
Ps know that there are 4 resources available. 

In the second phase (Request Phase), the network propa­
gates the requests from the processors to the resources. This 

uses the information that is obtained in the resource phase. 
The maximum total number of request and rejection signals 
pending in each exchange box is 2 since the exchange box can 
only make two connections at any time. For example, it is 
impossible to have t\VO rejection signals received together 
with a request signal, because in order for the rejection signals 
to be received, two request signals must have been received 
earlier. A new request cannot be received until the two pre­
vious requests have been rejected. Therefore, we can have 
anyone of the following six combinations of signals pending 
in an exchange box: 2 Qs, 2 Js, 1 Q and 1 J, 1 J, 1 Q, or no 
signal pending. 

When multiple signals are pending in a box, priority must 
be set to determine the order of servicing these requests. Two 
priority rules are used: 

(PI) For two request signals received (Qi~~,j = 1, Qi~~,j = 1), 
the request originating from the top input terminal 
(Qi~~,j) has priority over the other (Qi~~)' 

(P2) For one request and one reject signal received, the reject 
signal has priority over the request signal in service. 

In servicing a request or a reject, two service rules are 
applied. 

(SI) To service a request (Qi~~.j or Qi~~)' find a free output 
link where free resources can be accessed (contents of 
resource availability register is greater than zero). If both 
output links are free, then Sj~R is checked before S~R. If 
such an output link is found, the output link is marked 
busy so that no further request can be made along this 
link and a request is sent to stage i + 1. If the free output 
links do not lead to any free resources, a reject signal is 
sent from the original input terminal to stage i - 1. 

(S2) To service a reject (J;~R or J;~R), the corresponding re­
source availability register (RA;~R or RAj~R) is set to zero 
to indicate that no free resource is reachable from this 
output terminal. The output terminal is marked free and 
service rule (SI) is applied to search for another available 
output terminal where free resources can be reached. 

For the six possible input combinations of signals pending in 
B;,j' the sequence of priority and service rules applied is shown 
in Table II. 

If a request successfully reaches a free resource, the re­
source sends a "-1" along the S link to the exchange box 
connected to it. For exchange box B;,j receiving a "-k" 
(k = 1, 2, ... ) along the S link (Sj~R = -k or Sj~R = - k), if 
the content of the corresponding resource availability register 
is zero, then nothing is done. If not, the corresponding re­
source availability register is decremented and the "-k" in­
formation is passed to stage i-I along Sj~~ j and Sj~~ j' If both 

UR LR . (UR 'LR' Sj,j and S;,j are negatIve S;,j = - kl and Sj,j = - k2), then 

both RAiU,R and RA;L,U are decremented and" -(kl + k2)" is 
'UL 'LL . 

sent along Si-1,j and Sj-l,j to stage l - 1. 
Referring to the example in Figure 8, B1,1 in stage 1 receives 

two requests. Since only one output terminal leads to free 
resources, the request originating from BO,3 is rejected. This 



Distributed Scheduling of Resources on Interconnection Networks 707 

Vl 
cr:: 
o 
Vl 
Vl 
UJ 
c....; 
o 
cr:: 
(l. 

Stage o 

- __ Forwa rd path 

---- Backward path 

Vl 
UJ 
U 
cr:: 
::;) 
o 
<Jl 
UJ 
cr:: 

Figure 8-Example of Omega network with four requesting processors and 
four free resources (25% of requests are blocked and backtracked; 100% 

resource allocation; average delay = 4.67 units) 

request, subsequently, finds another route via BI ,3 and Bz,z to 
Rs. The average delay time is 4.67 units in this example (a unit 
is the time to pass through an exchange box). 

The algorithm described above does not preclude dynamic 
operation. In fact, requests can be initiated at random times 
and they will be routed to a free resource or be rejected. The 
operation of the exchange box can be completely asyn­
chronous. An accepted request is known to a processor when 
an acknowledgement is received along the data link. A re­
quest is rejected when a rejection signal is received by the 
processor along the J signal link. A rejected request can be 
retried later. 

The performance of the distributed algorithm is again 
plotted in Figures 4 and 5 and it is identical for the Omega and 
binary n-cube networks. It is seen that the blocking proba­
bility is less than 20% in all cases and compares favorably with 
the optimal algorithm and centralized heuristic. The standard 
deviation is approximately doubled as compared with the op­
timal case. The average delay time for a request to access a 
free resource or be rejected is shown in Figure 9. The delay is 
never greater than 4.2 units of time in which the delay through 
an exchange box is 1 unit. The delay time of the algorithm is 
dependent on the delay in the network and not on the number 
of requesting processors. 

TABLE II-Sequence of priority and service rules applied for the 
six possible combinations of signals pending in Bi,j 

Combinations of 
signals pending 

in 8 .. 
1,] 

2 Q 

2 J 

Q, 1 

Q 

a Q, 0 

Sequence of priority and 

service rules applied 

P1, S1, S1 

S2, S2 

P2, S2, S1 

S1 

S2 

no action 



708 National Computer Conference, 1982 

4.
25

1 

400~ 
>- 3.75 
<: 
...l 
(il 

Cl 3.50 ... 
0 
00 
Eo< 3.25 Z 
;:l 
(il 

P=l 
" <: 3.00 
0: 

~ 
<: 2.75 

2.25 '--_---'L....-_---I. __ --1. __ ---1... __ --L.. __ ......L..._---..I 

I 2 3 4 5 6 7 8 

NUMBER OF RESOURCES 

Figure 9--Average delay time for distributed algorithm in 8 by 8 Omega and 
binary n-cube networks (a unit is the time to pass through an exchange box) 

5. CONCLUSION AND EXTENSIONS 

In this paper, we have presented the scheduling of resources 
on interconnection networks. The resource scheduling prob­
lem is different from the conventional address mapping prob­
lem on interconnection networks because a request is not 
directed towards a particular destination address but to any 
one of a pool of destination addresses for free resources. A 
broadcast technique does not work effectively because it pre­
cludes other processors in making requests when one of the 
processors is making a request. Centralized scheduling algo­
rithms are inefficient because all the requesting processors 
must be serviced sequentially. A distributed scheduling algo­
rithm allows the scheduling of all the processors to be peI:­
formed in time proportional to the delay in the network. 

An interconnection network for resource sharing may oper­
ate in two ways. First, the network is "circuit switched" and 
the processor and resource are continuously connected for the 
duration of use. In this case, the network may be partially 
busy when a new request is initiated. To avoid excessive block­
ing, the network should provide conflict-free access even 
when other connections are present. A distributed scheduling 
algorithm is designed for the cross-bar switch and the imple­
mentation of a cross-bar switch cell is presented. Each cell can 
be implemented with 12 gates and a flip-flop when the data 
path is one bit wide. The cell is designed with the minimum 
number of signal lines. As a result, the scheduling algorithm 
is divided into two phases and the algorithm is asymmetric, 
that is, priority is induced into the scheduling of multiple 
requests. In order to allow the algorithm to operate in one 
phase, more signal lines are needed between adjacent cells as 
shown in the distributed Omega and binary n -cube networks. 
To remove the assymmetry in the scheduling, each resource 
can send a short pulse along the resource availability line. This 
pulse acts like a token and one of the requesting processors 
receiving this pulse will be allocated. When different re­
sources issue tokens randomly, the algorithm is symmetric. 

Second, the network is "packet switched" or operates in 
block-transfer mode. In this case, the resources are connected 
to the processors for a short duration of time and can relin­
quish the network after tasks are assigned. When a new set of 
requests are initiated, the network is almost or completely 
free. Networks with logarithmic delays are suitable for this 
application. An optimal centralized scheduling algorithm has 
been studied for the Omega and binary n -cube networks. It is 
shown that there is an average blocking probability of 1 % . 
This means that these networks have behavior close to the 
cross-bar switch for resource sharing in a block transfer mode. 

The centralized optimal algorithm has exponential time 
complexity. We studied, respectively, two centralized heuris­
tics (with time complexities O(N210g2N) and 0 (N olog2N)) 
and a distributed algorithm (with time complexity 0(1og2N)). 
In the distributed algorithm, each exchange box in the net­
work operates asynchronously and is responsible for resolving 
multiple requests directed to it. Resource availability informa­
tion is also passed along the network to the processors. The 
control of the network can be hardwired or micro­
programmed. The blocking probability increases as the time 
complexity decreases. In the worst case (distributed algo­
rithm), the blocking probability is around 19%. 

Several extensions can be included in the design. We discuss 
them briefly here. 

1. The resources connected on the network do not have to 
be identical. In a general system, there are multiple 
types of resources, each type is made up of a set of 
identical resources. The algorithms discussed have to be 
modified by identifying the type of resource requested 
by a processor and the type of resource available on a 
resource availability line. This can be done by sending a 
binary request code (instead of 1 bit) in the distributed 
algorithms. In the distributed Omega and binary n-cube 
networks, multiple resource availability registers have to 
be used in each exchange box. 

2. There is a tradeoff between the time complexity of the 
algorithm and the number of signal lines between two 
adjacent cells in the distributed RSINs. A one-bit data 
paths is assumed in the distributed cross-bar switch. In 
the distributed Omega and binary 11 -cube networks, par­
allel data paths are assumed. This can be reduced by 
appropriate multiplexing at the external chip interface 
level. 

3. The scheduling algorithms can be extended to the case 
when multiple resources are requested by a processor to 
operate in a broadcast mode. In the distributed cross-bar 
switch, a count can be sent with a request signal. Each 
time a free resource is allocated to this request, the count 
is decremented by one before it is sent to the next cell. 
In the centralized heuristic for the Omega and binary 
it -cube networks, request for mUltiple resources is ser­
viced by searching for a free resource and allocating it 
until the required number of resources are allocated. In 
the distributed Omega and binary n -cube networks, the 
exchange boxes are extended so that they can operate in 
broadcast mode. That is, an input terminal to an ex­
change box can be connected to the two output terminals 
simultaneously. The algorithm is modified to proceed as 



Distributed Scheduling of Resources on Interconnection Networks 709 

follows. A count K is sent with each request or reject 
signal. This count indicates the number of additional 
resources needed by the request or reject. Referring to 
Figure. 7, a request is sent to the upper request line 
(Qi~R) if the content of the resource availability register, 
(RAi~R), is greater than K. Otherwise, the request is 
sent along both the upper and lower request lines. Of 
course, if the content of any resource availability register 
is zero, a request is not sent along the corresponding 
request line. If (RAi~R) + (RAi~R) > K, that is, the re­
quest cannot be satisfied completely, then a reject signal 
with count = K - (RAi~R) - (RAi~R) is sent from the 
original input terminal to stage i-I to search for addi­
tional resources. It is also assumed in the generalized 
distributed algorithm, that the two priority rules (PI and 
P2) are followed. To avoid deadlock in the generalized 
distributed algorithm, a requesting processor should re­
linquish its allocated resources if it cannot find the re­
quired number of resources and resubmit its request 
again later. 

The distributed algorithm implemented in each exchange 
box does not preclude operation under the address mapping 
mode. Further, the theory underlying the design of the distrib­
uted Omega and binary n -cube networks can be applied to 
other interconnection networks such as the Banyan/ and 
Delta. 14 In these networks, the number of processors and the 
number of resources can be different. The performance will 
be evaluated in the future. Future studies also include the 
performance evaluation of the algorithm under dynamic 
operations. 

REFERENCES 

1. Barnes, G. H., and S. F. Lundstrom. "Design and Validation of a Con­
nection Network for Many-Processor Multiprocessor Systems." IEEE 
Computer, 14 (1981) pp. 31-41. 

2. Batcher, K. E., "STARAN Parallel Processing System Hardware," Proc. 
of AFIPS 1974 National Computer Conf., Vol. 43, pp. 405-410, May 1974. 

3. K. E. Batcher, "The Flip Network in STARAN," Proc. of 1976 Int'l Cont 
on Parallel Processing, Michigan, pp. 65-71, 1976. 

4. Burroughs Corp., Final Report, Numerical Aerodynamic Simulation Facility 

Feasibility Study, NASA Contractor Reports CR152284 and CR152285, 
Burroughs Corp., Paoli, PA, March 1979. 

5. Feng, T. "Data Manipulating Functions in Parallel Processors and Their 
Implications." IEEE Trans. Computer, Vol. C-23, No.3, pp. 309-318, Mar. 
1974. 

6. Franklin, M. A. "VLSI Performance Comparison of Banyan and Cross-bar 
Communication Networks." Proc. of Workshop on Interconnection Net­
works, pp. 20-28, Apr. 1980. 

7. Goke, L. R., and G. J. Lipovski. "Banyan Networks for Partitioning Multi­
processor Systems," Proc.1stAnnual Compo Architecture Cont, pp. 21-28, 
Dec. 1973. 

8. Goke, L. R., Banyan Networks for Partitioning Multiprocessor Systems 
Ph.D. Thesis, Univ. of Florida, 1976. 

9. Jenevein, R., D. Degroot and G. J. Lipovski. "A Hardware Support Mech­
anism for Scheduling Resources in a Parallel Machine Environment." Proc. 
of 8th Annual Symposium on Computer Architecture, pp. 57-66, May 1981. 

10. Kuck, D. J. "ILLIAC IV Software and Application Programming." IEEE 
Trans. on Comp., Vol. C-17, pp. 746-757, Aug. 1968. 

11. Lawrie, D. "Access and Alignment of Data in an Array Processor." IEEE 
Trans. Computers, Vol. C-24, No. 12, pp. 215-255, Dec. 1975. 

12. McDonald, W. C. and J. M. Williams, "The Advanced Data Processing 
Test Bed." Proc. of COMPSAC 78, pp. 346-351, March 1978. 

13. Ornstein, S. M., et aI., "Pluribus--A Reliable Multiprocessor." Proc. 
AFIPS 1975 National Computer Conference, AFIPS Press, Montvale, N.J., 
pp. 551-559, 1975. 

14. Patel, J. H. "Performance of Processor-Memory Interconnections for 
Multiprocessors." IEEE Trans. on Computers, Vol. C-20, No. 10, pp. 
771-780, Oct. 1981. 

15. Pease, M. C. "The Indirect Binary n-cube Microprocessor Array," IEEE 
Trans. on Computers, Vol. C-26, No.5, pp. 458-473, May 1977. 

16. Rathi, B. D., A. R. Tripathi and G. J. Lipovski. "Hardwired Resource 
Allocators for Reconfigurable Architectures," Proc. of 1980 International 
Conference on Parallel Processing, pp. 109-117, Aug. 1980. 

17. Sejnowski, M. c., et al. "Overview of the Texas Reconfigurable Array 
Computer." AFIPS Conference Proceedings, Vol. 49, pp. 631-642, 1980. 

18. Siegel, H. J., and R. J. McMillen. "The Cube Network as a Distributed 
Processing Test Bed Switch." 2nd Int'!. Cont on Dist. Compo Sys., pp. 
377-387, April 1981. 

19. Siegel, H. J., and R. J. McMillen. "Using the Augmented Data Manipu­
lator Network in PASM." IEEE Computer, Vol. 14, No.2, pp. 25-33, Feb. 
1981. 

20. Stone, H. "Parallel Processing with the Perfect Shuffle." IEEE Trans. on 
Computers, Vol. C-20, No.2, pp. 153--161, Feb. 1971. 

21. Wu, c., and T. Y. Feng. "On a Class of Multistage Interconnection Net­
works." IEEE Trans. on Computers, Vol. C-29, No.8, pp. 694--702, Aug .. 
1980. 

22. Wulf, W. A., and C. G. Bell. "C.mmp-A Multi-mini Processor." Proc. 
AFIPS 1972 Fall Joint Compo Cont, Vol. 41, AFIPS Press, Montvale, NJ, 
pp. 765-777, 1972. 

23. Hicks, A., Resource Scheduling on Interconnection Networks. M.S. Thesis, 
Purdue University, 1982. 





APPLICATIONS OF 
COMPUTING 





A microcomputer system for color video picture processing 

by YOSHIKUNI OKAWA 
Gifu University 
Gifu, Japan 

ABSTRACT 

A color picture processing system is proposed. It consists of a microcomputer and 
a color video recorder. A picture is taken by a portable videotape recorder and a 
camera on cassette tapes in the field and brought back to the laboratory where the 
processing computer is installed. 

The scenes are replayed on the videotape player on the monitor TV screen, from 
which signals are stolen by three A-D converters (one each for R, G, and B) and 
stored in the memory of the microcomputer. 

The software package provides several commands which make it possible to 
process images on the CRT screen by man-machine interaction. A functional de­
scription of the commands is stated in some detail. One example of the application 
of this system is briefly described. 

713 





1. INTRODUCTION 

A computing system to process color video pictures is de­
scribed. The system consists of (1) a 16-bit microprocessor, 
(2) a color videocassette tape player, (3) a color monitor TV, 
and (4) a color graphic display. 

We can record any scene onto videocassette tape by using 
a portable videotape recorder and a color TV camera. The 
scenes are replayed on the screen of a monitor TV. The signal 
voltages of red, green, and blue color components which drive 
the monitor TV are stolen and converted into three 8-bit 
digital signals and stored in the memory of the microcom­
puter. The scene will be processed digitally afterward by the 
software system provided by man-machine interaction. 

As an example of a possible application of the system, the 
efficiency of road signs is studied. Various colors of tapes are 
placed on roads. Scenes are recorded on cassette tape in the 
field, carried back to the laboratory, and processed by the 
computer. The numerical measure of the recognizability of a 
sign against its background is defined and computed for all of 
the recorded scenes. The best color and form of a guiding line 
is determined for each road condition. 

The cost of the proposed system is very low because micro­
processors and color video picture recorders and players are 
produced massively by modern industry. A portable video­
tape recorder and a TV camera give mobility to the picture 
processing computer system. This computer will become a 
powerful tool in the field of digital color picture processing. 

2. THE CONFIGURATION OF THE SYSTEM 

The system configuration is shown in the block diagram of 
Figure 1. The central processing unit is a microprocessor (Z-
8000) having 216 Kbyte of memory. A character display, a 
keyboard, a printer, and other usual computer peripherals are 
attached to the processor. 

The picture input device is either a videotape player or a 
color TV camera. If the TV camera is used as a picture-taking 
instrument, scenes within the laboratory room in which the 
computer system is installed can be processed by the system. 
We call this an online processing mode. 

For processing scenes outside the computer room, a combi­
nation of a TV camera and a portable videotape recorder is 
used. The outside scenes are recorded onto videocassette 
tapes. They are carried back to the computer room and re­
played in the videotape player, whose pictures are displayed 
on the color monitor television set. This is called a time­
freezing mode. Analogue signals are stolen from the driving 
circuit of the color television CRT tube. Red, blue, and green 

A System for Color Video Picture Processing 715 

voltages are converted into three 8-bit digital form, which is 
stored in the memory of the computer by means of a DMA 
controller. 

In the time-freezing mode, for example, we can stop the 
scene or replay it in slow motion. Although these capabilities 
originate from the intrinsic function of the videotape player, 
our picture processing system can make efficient use of them. 

3. THE COMMANDS OF THE CONTROL PROGRAM 

3-1. Image Sampling 

Picture processing, in general, proceeds in a conversational 
fashion. A regular command form is 
-..c a prompt character from the control program 

> a command character [,possible parameters] (CR). 
~--------,"" 

( a carriage return code 

Various commands provided in the control program are de­
scribed in the following: 

1. A command to set a sampling window in a picture plane: 

> W,SX,SY,NX,NY (CR) 

The four command parameters SX, SY, NX, and NY assign 
a rectangular region in a picture plane, as shown in Figure 2. 
The parameters are key-input in a hexadecimal form and 
stored in the RAM area of the memory. This region will be 
sampled later. 

2. A command to sample an image: 

> I (CR) 

The DMA controller is initialized and the image sampling 
is started by this command. One vertical line in a window is 
sampled in one frame of television pictures. Since there are 60 
frames in a second, the sampling time is calculated by 

NX 
t = 60 (second) 

In general, the sampling time is directly dependent on the 
conversion time of the A-D converters used. If the speed of 
A-D conversion is increased, the sampling operation can be 
completed within 1/60 second. 



716 National Computer Conference, 1982 

D 
00 0 

Color graphic 
display 

Microcomputer 
2-8000 ""ith 215 
K byte of memory 1<----1 

CRT disclay and 
keyboard and other 
peripherals 

Color Moni tor TV 

Figure I-The system configuration 

3-2. R, G, and B Display Commands 

tape reco!'"der 

Color 
TV 

The stored image must be called out from the memory and 
displayed on the screen of the color graphic display. The 
following commands are provided in the control program: 

(1) A command to erase the color graphic display screen. 

>E(CR) 

The screen of the graphic display is erased. 
(2) A command to display a cross-sectional figure of an 

image: As stated before, R, G, and B signais of an 
image are sampled in 8-bit digital form. That is, the 
representation at one picture element is 3 bytes in the 
computer. The color graphic display has only 8 colors (3 
bits) at each picture position. There is a significant gap 
between sampled image and displaying capability. We 
must design commands to overcome this difficulty. 

First, we cut a three-dimensional distribution of an 
image in two pieces and make a cross-sectional distribu­
tion of the image. Three two-dimensional display lines 
are enough to display the image, which is easily shown 
on the CRT screen of the color graphic display. The· 
command has the following form: 

> H,h,v,F(CR) 

where H is the command character, (h,v) indicates the 
starting point in a picture plane, and F is a Freeman 
code to specify cutting direction. One example of the 
displayed results is shown in Figure 3. The three height 
lines consist of red, green, and blue color dots. But 
at a picture element where at least two out of three 
colors have the same intensity level, colors other than 
red, green, and blue are displayed, since the dots are 
overlapped. 

(3) A command to display a thresholded picture: If the 
sampled red, green, and blue brightness levels are 
thresholded at each picture element, the resulting im­
age can be displayed on the screen of the color graphic 
display. The following command is provided for this 
purpose: 

> F,RT,GT,BT(CR) 

i 
SV 
J 

I [ NX . 

r Sampling window 

NY 

1 

Picture plane 

Figure 2-Sampling window 
(the picture in the window is taken into the computer memory) 

RT, GT, and BTare the threshold values in a hexadec­
imal form. Let us write sampled red, green, and blue 
brightness levels at a picture point (i,j) as R j , Gij, and 
B ij, respectively. Concerning the graphic display, if 
rij = 1, then a red spot is displayed on the (i,j) grid of 
CRT screen; and if rij = 0, a red spot does not appear 
at that point. The terms gij and bij can be defined in the 

Figure 3--An example of a cross-sectional display of an image 
(originally, red, green, and blue dots were displayed) 



No. 

1 
2 
3 
4 
5 
6 
7 

TABLE I-Standard color card used for the calibration 

Munsell color x y R G B 

7R 4.5/16.4 0.600 0.320 128 80 72 
4G 5.2/13.5 0.210 0.485 52 96 96 

5.5B 4.7/11.7 0.145 0.205 36 80 128 
1.5RP3.5/19.8 0.370 0.150 100 78 96 

4BG3.5/12.8 0.120 0.335 40 78 84 
7.5Y 8.5/13.9 0.450 0.500 160 120 64 

N9 0.310 0.316 112 112 112 

same manner. Then the action of the command can be 
stated as follows: 

If Rj > RT, then rij = 1, otherwise rij = O. 
If Gij > GT, then gij = 1, otherwise gij = O. 
If Bij > BT, then bij = 1, otherwise bij = O. 

It must be pointed out that the selection of the threshold 
values RT, GT, and BT changes the displayed figures. For 
example, if we set the threshold values very high, the image 
on the CRT screen becomes a black rectangle, whereas if we 
set the threshold low, a white rectangle will appear, regardless 
of the true shape and color of the object in the scene. 

3-3. Display on the CIE plane 

At this point we must consider the color transformation that 
will convert the measured color vector (Rj, Gij, Bij) into CIEs 
(Xij, Yij, Zij) at each picture element. The transformation 
equation can, in general, be written as 

[
XijJ' l' all a12 a13] [RijJ' 
Yij _ a21 a22 a23 Gij 
Zij - a31 a32 a33 Bij 

where akl (k, 1 = 1,2,3) is an element of the conversion matrix 
and must be determined experimentally. 

Munsell's standard color cards, listed in Table I, were 

(a) 

A System for Color Video Picture Processing 717 

placed before the TV camera one by one; and r~d, green, and 
blue values were sampled into the processor (R, G, and, B 
column of Table I). The Xij and Yij values of the color cards are 
read from the Japanese Industrial Standard (JIS 
Z8721-1958), which are listed in the x and y columns of Table 
1. If we write 

and 

(brightness assumption) 

then the conversion matrix is determined by the least-squares 
method. The result is written as 

[~ijJ _ [_ 0.46 -0.21 
Yij - 0.08 0.78 
2ij -0.04 -0.23 

_ 0.15] [Rj] 
0.36 Gij 
0.60 Bij 

y o :Munsell 

• : Least square fit 

.6 
G 

.4 I 
\8V W~ 

.2 B"- ~ 
X 

0 .2 .4 .6 .8 

Figure 4-Deviation of the least-squares fitted points from their true points 

(b) 

Figure 5-An example of color distributions on the elE's plane. 
(a) color distribution of a signal region; 

(b) color distribution of a background region. 



718 National Computer Conference, 1982 

Figure 6-Display of a color distribution of an image 
in the eIE's coordinate system 

whose transformational matrix is seriously affected by lighting 
condition. Because of the least-squares fitting, (Xij, Yij, Zij) 
do not lie exactly on (Xij. Yij, Zij). Their corresponding posi­
tion pairs are shown in Figure 4. Our control program can 
handle a picture in the CIE color coordinate system. A typical 
two of the provided commands are briefly described in the 
following: 

1. A command to display a distribution on the color plane: 
Figure 5 shows the resuiting dispiay of this command. 
The sampled Xij and Yij in a picture are plotted in the 
CIE's color plane. The command form is 

>K(CR) 

The six standard color points (R, Y, G, B, P, W) are 
displayed at their location by their color. 

2. A command to display the color frequencies: 
Let us define a color frequency as 

M N 

Al = L L 8 (Xij - k) 8 (y ij - 1) 
i=lj=1 

where 8(a) = 1, if a = 0, and 8(a) = 0, if a =1= 0. Its com­
mand fo~m is 

>J(CR) 

The J command displaysJkl on the CRT screen, as shown 
in Figure 6. 

4. ONE EXAMPLE OF APPLICATIONS 

We want, in general, to design a software package that can 
cover a wider area, but no software can be designed without 
a concrete objective, especially in its infancy. Our motive for 
designing this software package will be briefly explained in the 
following paragraphs. 

We are studying automatic guidance of an electrically 
driven vehicle. A TV camera sees guidelines on the floor. The 

microprocessor estimates the driving path and controls its 
trajectory. Experience has shown us that a monochromatic 
TV camera is not enough for recognizing objects in a real 
world: color seems to provide us with vital information. 

If we are to place guiding signs on the floor, there emerge 
several fundamental questions, such as what color is best for 
a sign, what form is best, and where to place the signs. 

Color distribution of a sign and its background are dis­
played on the color graphic dispiay (see Figure 5), using a 
command of the package. The background distribution is 
rather concentrated in the center region of the CIE plane. The 
signal has a long, thin distribution. We can define a measure 
S that indicates separability of a signal from its background, 
as 

where subscripts sand b indicate signal and background, re­
spectively, - is an average operation, and (]' is a standard 
deviation. If two distributions are well separated, then Stakes 
a large value. On the contrary, if the two are mixed, S be­
comes small. 

Now a thin tape is placed on the ground, and S is calculated. 
Then another tape is measured in the same manner. The tape 
with a larger S may be said to be more suitable for that 
background. Continuing like this, we can determine the best 
guiding signal for the specified background. 

5. CONCLUSION 

A new color picture processing system is introduced. It makes 
full use of recently advanced videotape recording technology. 
It gives mobility to a computer vision system. A software 
package for color picture processing has been coded and 
tested. It aims at an interactive processing of color image 
recorded on cassette tapes. 

Although the commands now available in the control pro­
gram cover only basic areas, they can be easily extended in 
any desired direction. If we consider the rapidly decreasing 
cost of microprocessors and videotape recorders, the pro­
posed system may be said capable of being constructed at a 
very low price. 

It is already concluded by the researchers that picture pro­
cessing by monochromatic images has met a severe limitation 
in its real applications, especially in object recognition. Hu­
man processes color images. If we drop the color factor in 
picture processing, then the computer can never equal human 
capability. It is unreasonable to want the same results from 
image processing by computers as by human vision without 
the essential information provided by color. 

But there are some problems in color picture processing. At 
least three times as much information must be stored in the 
memory as for black and white. The complexity of the re­
sulting processing program will increase rapidly. The control 
program package described herein will serve as a core for 
color image processing and thus contribute to expanding com­
puter power to a wider range of applications. 



The importance and futility of 
device independence in computer graphics 

by ANDERS VINBERG 
ISSCO (Integrated Software Systems Corporation) 
San Diego, California 

ABSTRACT 

Device independence in computer graphics refers to software that supports all 
graphics hardware devices. The economic reasons why device independence must be 
considered mandatory are reviewed in this paper. The ultimate futility of 
straightforward device independence, because of the widely differing characteristics 
of different devices, leads to a need for software that adapts intelligently to these 
characteristics-that has device intelligence. For good results we need not merely 
technical device intelligence, but also sensitivity to different applications. I coin the 
phrase layout intelligence for software that thus adapts the graph to the situation and 
show several examples. 

719 





WHAT IS DEVICE INDEPENDENCE? 

A device-independent graphics system is one that works with 
all graphics output devices. Note the stringency here: not "all 
models of a major vendor," or "all devices compatible with 
some popular device," not "many" or even "most" graphics 
devices, but all graphics devices. 

There are now commercially available graphics systems that 
offer device independence. It should be borne in mind that 
software products differ in degrees of support. Some are de:.. 
livered and guaranteed with device interfaces; others require 
the user to develop and modify device interfaces. In software, 
as everywhere else, there is no free lunch; you get what you 
pay for. 

What do we mean when we say that a graphics system 
"works with" all devices? Realistically, some changes will be 
needed when a new, previously unheard-of device is brought 
in. However, we can demand that these changes be kept from 
the end users. The graphics support staff should be able to 
modify the system, with minor effort, to support the device. 
But the instructions from the end users-the graph descrip­
tion, the source code, the English commands, the prompt 
responses, the touch or voice input-should produce a nearly 
identical graph on the new device with no change. 

WHY IS DEVICE INDEPENDENCE IMPORTANT? 

The hardware obsolescence argument 

As with the stock market and the weather in England, the 
only thing that can be said with certainty about graphics hard­
ware technology is that it will change in the future. Scores of 
hardware vendors bring better mousetraps to the market in a 
never-ending flow. 

It should be remembered that although providing device 
independence is a technical problem, the motivation for re­
questing it is an economic one. The economics of the situation 
indicate that the important effects of a technology change are 
those experienced by a large number of people. 

The effort of the support person is a cost, to be sure, and 
should be minimized; but it is the effort to adapt by all the 
end users (hundreds of end users, if graphics is a success) that 
may become prohibitively expensive and may prevent the 
organization from taking advantage of the new technology. 
Thus, by allowing end users to make a large investment in 
device-specific graph descriptions, an organization may paint 
itself into a corner and may end by being stuck with obso­
lete technology for a long time or facing an extremely costly 
conversion. 

Device Independence in Computer Graphics 721 

This means that when we specify that "the graph descrip­
tion should produce a nearly identical graph with no changes 
by the user," the phrase "no changes" is more important than 
"identical. " If the system modifies the graph slightly, this may 
be acceptable as long as the meaning is retained. But forcing 
all users to modify all their old programs or graph descriptions 
is unacceptable. 

This discussion has focused on one important reason for 
demanding device independence, which we can describe as 
"hardware obsolescence insurance." There is another reason, 
which has nothing to do with the future, but is still economic: 
previewing. 

The previewing argument 

Graphics CRTs are used for two kinds of applications: deci­
sion support graphics and preview of presentation graphics. 
Unlike decision support graphics, presentation graphics and 
report graphics rarely use CRTs as the final output medium; 
slides, overheads, and above all paper hard copy dominate. 
But, because of the low speed and high cost of most hard-copy 
devices, CRTs are preferred during the design phase, when 
several graph forms are being tried out to select the most 
effective. 

For this preview work, the most important requirements are 
that there be absolutely no changes to the graph descriptions 
and minimal changes to the graph. The preview must be a 
faithful reproduction of the final result, even if this means that 
it does not use well the characteristics of the previewing 
device. 

In summary, device independence is of critical importance, 
because most users will want to use several devices today and 
all users will want to be able to use new devices tomorrow. 
Since the software knowledge is now available, and since most 
graphics software today offers device independence at some 
level of support, any investment of money, effort, or training 
in device-dependent software today is indefensible and is sure­
ly the most fundamental mistake that can be made when mov­
ing into graphics. 

WHY IS DEVICE INDEPENDENCE ULTIMATELY 
FUTILE? 

Now for the bad news. Graphics output devices are sufficient­
ly different that a graph that looks good on one device may not 
loqk good on another. 

Note that we introduced a new concept here: what looks 
good. Previously we have talked about what can be done­
"Can the software system produce the same graph on all 
devices?" Now we question what should be done. 



722 National Computer Conference, 1982 

T -40 and T -41 not keeping pace 
with 500X series $8.6 

(sales in millions) $7.7 

_ T -40, T -41 models 
_ 500X series 

$3.2 

$1.8 

1977 '78 

$4.7 

'79 '80 '81 

Figure la-Graph well adapted to slide presentation 
(color simulated with grayscale) 

T -40 and T -41 not keeping pace 
with 500X series $8.6 

(sales in millions) $7.7 

_ T -40, T -41 models 
_ 500X series 

$3.2 

$1.8 

1977 78 

$4.7 

'79 '80 '81 

Figure Ib----Slide-adapted graph prod~ced with black-and-white device: 
illegible results because of hardware mismatch 

T -40 and T -41 not keeping pace 
with SOOX series $8.6 

(sales in mIIions) $7.7 

_ T -40, T -41 models 
_ 500X series 

$3.2 

$1.8 

$4.7 

1977 '78 79 

---- ._------_._-_._._----_.-

'80 '81 

Figure lc-ReplaCiement of solid-color fields with crosshatching: 
chart legible, but still not suitable for use in a report 

A basic example is illustrated in Figure 1. Figure 1a shows 
a very well-designed graph for use as a color slide or a color 
viewgraph. (Color is represented here as grayscale.) If this 
chart is copied onto a black-and-white device for reproduction 
as a report or handout, or if the color viewgraph is simply 
placed in a monochrome copier, Figure 1b results: a worthless 
chart, where the two data sets are indistinguishable, but very 
common. The minimum requirements for a black-and-white 
paper copy is that shade patterns are used to distinguish the 
data sets, as in Figure 1c. But the chart, which was designed 
for projection and hence viewing at a distance, looks amateur­
ish and childlike when copied on an 81h-inch-by-11-inch sheet 
of paper, viewed at a distance of about 10 inches. Figure 1d 
shows a better version of the chart-vertical page orientation, 
different typefaces, smaller annotation, more annotation. It is 
the same chart, but different. The chart has been tailored for 
two different applications, embodied by two different output 
devices. 

Note that the term output device may mean more than 
simply the graph production device. A color viewgraph and a 
black-and-white report illustration may both be produced on 
the same device? say one of the many desktop color pen plot­
ters available in the $5,000- to $lO,OOO-range today. The de­
vice that differs in this case is not the production device, but 
the presentation or reproduction device: an overhead 
projector versus a copying machine. 

T -40 and T -41 not keeping pace 
with "500X series. 
Gross revenue: u.s., Europe, Australia 
$Milfions (monthly exchange rates) 10r-----------------------------------, 

9 

8 

6 

5 

4 

3 

~ T-40, T-41 models 
_ 500X series 

Note: 500X series includes 5000 in 1977. 
5001 and 5005 from 1978. 5008 from 1980. 
and 5008/A in 1981. 
T -40 and T -41 includes Group I and Group H. 
and European models A4000 and A4100. 

$8.6 

Figure leI-Extensive redesign of chart to make it suitable for report use 



Q1, '82 sales volume 
by branch office 
Millions 

1%8 New Ym 
IIIIiIJ!I Kansas City 
l1li Los Angeles 
_ Seattle 

30.-------------------------------------~ 

20 

10 

o 
15 22 

JANUARY 
12 19 

FEBRUARY 
1982 

Figure 2a--Slide layout (color simulated with grayscale) 

Q1, '82 sales volume 
by branch office 
Millions 

rn8 New York 
I!IIII!l Kansas City 
_ Los Angeles 
_ Seattle 

30.-------------------------------------. 

25 

20 

15 

10 

5 

o 
15 •• 

JANUARY 
12 11 28 

FEBRUARY 
1982 

12 18 '8 

MARCH 

Figure 2b---Vugraph layout (color simulated with grayscale) 

The differing requirements of color and monochrome are 
obvious; the differing requirements of hard copy and 
projection are equally important but less generally recog­
nized. Many of today's output devices have idiosyncrasies that 
pose other difficulties, some obvious, others deeply technical. 

The low-resolution CRT devices so common today require 
simple, large annotation without frills to be legible. Some are 
also cell-oriented, able to place text only in some locations on 
the screen; for these devices, graphics elements must be ad­
justed to fit the text. Text may be available only in some sizes 
or orientations. All these need adaptation by the software. 

Other differences to be accommodated concern what hap­
pens when two graphics items occupy the same location: does 
one hide the other, do both shine through, do colors mix, and 
if so how--or do you get a smear? 

Device Independence in Computer Graphics 723 

All this, and much more, means that device independence 
is not the answer. What is needed is what I call device 
intelligence. 

Q1, '82 sales volume 
by branch office 
Millions 

~ New York 

~ Kansas City 

Il!II!l!l! Los Angeles 
_ Seattle 

30~-----------------------------------, 

25 

20 

15 

10 

5 

o 
8 15 22 29 

JANUARY 
12 19 26 

FEBRUARY 
1982 

12 19 26 

MARCH 

Figure 2c-Vertical report layout (note space for binding along left edge) 

Q1, '82 sales volume 
by branch office 
Millions 

~ New York 
S§ Kansas City 
I!IIllIII Los Angeles 
_ Seattle 

30.-------------------------------------, 

25 

20 

15 

10 

o 
16 22 

JANUARY 
12 19 

FEBRUARY 
19B2 

12 19 

MARCH 

Figure 2d-Horizontal report layout (note space for binding along top edge) 



724 National Computer Conference, 1982 

Q1, '82 aalea volume 
by branch off tce 
Millions 

_l'elll York 
_Kansas City 
_ Los Angeles 
_Seattle 

~,---------------------------------------~ 

20 

10 

o 
15 22 29 12 19 aD 

~ 
1982 

12 19 :111 

Figure 2e-Color CRT layout (color simulated with grayscale) 

Q1, '82 sales volu_ 
by branch off Ice 
Millions 

lID l'elll York 
l1li Kansas City 
_ Los Angeles 
_Seattle 

~,---------------------------------------~ 

20 

10 

o 
15 22 29 

J~ 

12 19 aD 

~ 
1982 

12 19 :111 

Figure 2f-Monochrome CRT layout 

GRAPHICAL VERSUS TECHNICAL DEVICE 
INTELLIGENCE 

Device intelligence means that the software adapts to the 
many peculiarities of the output device. 

The phrase is occasionally used in a narrow technological 
sense, referring merely to using the varying capabilities of the 
device. If the device can draw higher-level constructs, such as 
a circle, rectangle, dashed line, character, conic segment, or 
axis, or if it can fill in an area of certain shape, these functions 
can be offloaded from the host computer, and, more im­
portant, from the communications line. This means that if the 
software knows and adapts to the capabilities of the device, 
the graph is drawn faster. However, device intelligence in this 
technical sense does not mean that the graph is good or even 

Q1, '82 sales volume 
by branch office 

New York 
Kansas City 

G Los Angeles 
_ Seattle Millions 

30.--------------------------------------.30 

20 

10 

o,L.o"'-~ 

COMPANY CONFlOENTIAL 

12 11 

FEBRUARY 
1982 

./'· .... · .... · ...... ·_· .. · ........ ·1 20 

10 

Figure 3a-Locally modified slide layout (color simulated with grayscale) 

meaningful; it just means that the same ugly graph is drawn 
quicker. 

Speed is certainly important, and technical device intel­
ligence is a valuable first step (and one not trivially achieved: 
the complexities of the software needed to use fully all device 
functions, and emulate them fully when not present, are sig­
nificant). But to achieve good results we need graphical device 
intelligence. This means that the graph layout is adapted to 
the device characteristics: page orientation, annotation style, 
amount and size, and data set identification, are all affected. 
Therefore I will refer to it as layout intelligence. 

We remember from the discussion of the many possible uses 
for the common pen plotter that the choice of layout must not 
be determined only by the choice of production device. The 
intended application or intended reproduction device also af­
fect the ideal layout choice. When using a CRT device to 
design and preview a graph for eventual production and use as 

Q1, '82 sales volume 
by branch office 
Millions 

New York 
Kansas City 

c:.::-j los Angeles 
_ Seattle 

30.--------------------------------------. 

25 

20 

15 

10 

5 

COMPANY CONFIDENTIAL 

FEBRUARY 
1982 

------.,_ ... _--------,-

MARCH 

30 

25 

20 

15 

10 

5 

0 

Rgure 3b-Locally modified vugraph layout (color simulated with grayscale) 



Q1, '82 sales volume 
by branch office 

§s§ New York 

~ Kansas City 
m Los Angeles 
_ Seattle Minions 

3or---------------------------------~30 

JANUARY FEBRUARY 
1982 

COMPANY CONFIDENTIAL 

MARCH 

Figure 3c-Locally modified vertical report layout 
(note space for binding along left edge) 

a slide, we certainly want to see the slide layout faithfully 
rendered, even if the limitations of the CRT device may make 
some details of the chart ugly or even illegible. Thus, in this 
situation, "improvements".ofthe graph to make it fit the CRT 
would be detrimental. The layout intelligence must be driven 
both by device choice and explicit specification of intended 
use, desired use of colors, and other relevant factors. 

In an upcoming version of ISSCO's TELL-A-GRAF sys­
tem, for example, these choices may all be made auto­
matically with minimal specification. Let us look at an 
example. 

We have prepared a format description to allow TELL-A­
GRAF to read data from the COBOL files of the accounting 
programs and to select interesting data from it. We specify 
what information we want, and how we want to see it: 

DATA FILE IS "ACCIQ82". 
DATA FORMAT IS "SALES BY OFFICE". 
GENERATE A DATE AREA CHART. 

If we now specify 

LAYOUT IS SLIDE. 
DEVICE IS DICOMED MODEL D148C. 

we get the slide shown in Figure 2a. 

Device Independence in Computer Graphics 725 

If we specify 

LAYOUT IS VUGRAPH. 
DEVICE IS HP MODEL 7221. 

we get the viewgraph shown in Figure 2b. 
If we specify 

LAYOUT IS REPORT. 
DEVICE IS COMP80. 

we get the chart shown in Figure 2c. If we prefer a horizontal 
("landscape") page orientation for our report illustration, we 
can specify 

Q1, '82 sales volume 
by branch office 
Miens 

IilSS New York 
~ Kansas City 
IiIIiiI Los Angeles 
_ Seattle 

30 r------------------------------------, 30 

JANUARY 

COMPANY COtEDENTIAL 

FEBRUARY 
1982 

MARCH 

25 

20 

15 

10 

o 

Figure 3d-Locally modified horizontal report layout 
(note space for binding along top edge) 

Q1, '82 sail!s volulIII! 
by branch off iCI! 

Millions 

_ Neill York 
_ Kansas City 
_ Los ~9l!il!s 
_ Sl!attil! 

~~----------------------------------~ 

201-----------------------------: 

101---------:: 

o 

Figure 3e-Locally modified color CRT layout (color simulated) 



726 National Computer Conference, 1982 

Q1, '82 sal~s volu_ 
bu branch offjc~ 
Mill ions 

m r-e ... York 
III Kansas City 
_ Los ~g~I~$ 
_ ~attl~ 30r---------------------.30 

~~------------------.--------.--.----.. ----., 

10 1---------------: 

o 

Figure 3f--Locally modified monochrome CRT layout 

LAYOUT IS HORIZONTAL REPORT. 

to get the chart in Figure 2d. 
If we do not want a chart optimized for showing on a CRT 

screen, we specify 

LAYOUT IS CRT. 
DEVICE IS TEKTRONIX MODEL 4027. 

and get the graph shown in Figure 2e. Note that if the device 
is monochrome, the layout automatically adapts to being sen­
sible. With this specification: 

LAYOUT IS CRT. 
DEVICE IS TEKTRONIC MODEL 4025. 

Q1, '82 sales goals met 
Eastern regions dominate 
MIUions 

New York 
iOOII Kansas CIty 
_ Los Angeles 
_ Seattle 

30~--------------------------------~ 

1st Quarter Goal $24.3M 

20~------------------------~' 

10 r----------:7r 

12 .. 

FEBRUARY 
1982 

Figure 4-Slide customized for a particular message 
(color simulated with grayscale) 

.4M 
(12% 

we would get the graph illustrated in Figure 2f, since the 
system knows that the 4025 model has no color. 
All the variants shown represent the same data and are basic­
ally the same chart. Each variant is optimized for its intended 
use. 

This application intelligence allows even the casual user to 
get a really good graph by simply making five choices: 

1. Which data file to use ("DATA FILE" statement) 
2. Which information to retrieve from this data file 

("DATA FORMAT" statement) 
3. Which chart type to use ("GENERATE" statement) 
4. Which layout to use ("LAYOUT" statement) 
5. Which device to use ("DEVICE" statement) 

FLEXIBILITY RETAINED 

An important point must be added: all this automation is 
achieved without sacrificing flexibility and control over de­
tails. For example, assume that the organization has its own 
graphics standards that state that all area charts must have the 
following: 

• Tick marks pointing inward on the horizontal axis 
• Horizontal grid lines, no tick marks on the vertical axis, 

and a double verticai axis 
• The words COMPANY CONFIDENTIAL in the lower 

left comer 

These local standards can be entered into ·the system once 
and for all and will then apply to all subsequent area charts 
generated (unless explicitly overridden, of course). To specify 
these local standards, one enters: 

GENERATE AN AREA CHART 
X TICKS REVERSED. 
Y GRID, NO TICKS, DOUBLE AXIS. 
COMMENT "COMPANY CONFIDENTIAL". 
STORE DEFAULTS. 

If these standards had been stored, the six charts shown 
would have looked like the ones shown in Figure 3a through 
3f. Even so, the individual user can still customize the chart to 
make a special point, as shown in Figure 4. 

Thus, while preserving the basic flexibility of the software 
system, the layout intelligence gives the casual user the benefit 
of the accumulated experience of the graphics experts in­
volved in the design of these application-specific layouts. If 
you are an expert in something else, with no desire to become 
a graphics expert, this layout intelligence should prove a great 
boon through making the use of graphics more effective with­
out requiring you to reinvent the wheel of good graphics. 



Optimal three-dimensional flight 
control of a supersonic fighter 

by CHING-FANG LIN and KHAI LI HSU 
The University of Michigan 
Ann Arbor, Michigan 

ABSTRACT 

This paper discusses optimal three-dimensional flight control of a supersonic fighter 
through an onboard automatic guidance and control system. This system is simu­
lated to check the speed requirements of the algorithms to be solved before being 
implemented in real hardware. A very-high-speed digital computer is used for this 
time-critical simulation. In the simulation optimal trajectories are generated in real 
time, on line. Results obtained from the particular problem of a real4ime, online 
minimum-time supersonic chandelle with prescribed final point are displayed. 

727 





INTRODUCTION 

This paper discusses optimal three-dimensional flight control 
of a supersonic fighter through an onboard automatic guid­
ance and control system. The essential portion of this system 
consists of a fast computer system called the mission computer 
and another fast computer system called the flight control 
computer. The function of the mission computer is to gener­
ate real-time, online optimal trajectories; the function of the 
flight control computer is to track the trajectories generated 
by the mission computer. The automatic guidance and control 
system is simulated to check the speed requirements of the 
algorithms to be solved before implementing it in real hard­
ware. Naturally the simulation is very time-critical and there­
fore requires a very-high-speed computer to perform the sim­
ulation. In this paper, the computer used for this simulation 
is a very-high-speed special-purpose digital computer de­
signed specifically for time-critical, continuous system simu­
lation tasks. 

Simulation of real-time, online optimal trajectories of su­
personic flight has been discussed by Lin. 1

,2 In these refer­
ences, for each maneuver a family of trajectories is precal­
culated off line and stored in the mission computer. These 
trajectories are then generated in real time, on line, by the 
mission computer by table lookup. They are then checked by 
computer simulation to see if they can be adopted, in real­
time, online computation. If so, the flight control computer 
will track these optimal trajectories generated by the mission 
computer. However, a substantial computer memory space is 
required to store all these precalculated trajectories; there­
fore this approach creates a problem, since the mission com­
puter has a limited memory space. To avoid this problem, 
optimal trajectories in this paper are generated entirely in real 
time, on line, without table lookup. The particular problem of 
a real-time, online minimum-time supersonic chandelle with 
prescribed final point is used as an example in this paper. 
Several techniques are used to obtain real-time, online opti­
mal trajectories of this maneuver. They include (1) modeling 
of the aerodynamic and engine characteristics of a typical 
~ightweight, high-thrust-to-weight ratio supersonic fighter; (2) 
mtroduction of a set of dimensionless variables, which leads to 
general results for a whole class of vehicles having similar 
physical characteristics; (3) general properties of optimal tra­
jectories; and (4) use of the switching theory.3 

THEORETICAL ANALYSIS 

If the thrust is considered as nearly aligned with the velocity 
vector 11, then the motion of a point mass lifting vehicle over 
a flat nonrotating earth, with the assumption of symmetrical 
flight, is governed by the following set of nonlinear ordinary 
differential equations. 

Flight Control of a Supersonic Fighter 729 

x = V COS)! cos$ 

Y = V COS)! sin$ 

Z = V sin)! 

v = g( T ; D - sin)!) 

~ = ~ ( L ~S<l> _ COS)!) 

$ = gL sin <I> 
VW COS)! (1) 

In these equations, the position vector is composed of the 
longitudinal range X, the lateral range Y, and the altitude Z; 
and the velocity vector is composed of the speed V, the flight 
path angle )!, and the heading $. For turning flight, during a 
relatively short interval, we can neglect the mass flow 
equation and consider the weight as practically constant. The 
acceleration of the gravity g is assumed to be constant. The 
aerodynamic and propulsive forces are determined by the 
following relations 

L = 1/2P (Z)V2SCL 

D = 1/2 P (Z)V 2SCD 

T = ~Tmax(Z, M) 

(2) 
(3) 
(4) 

where p(Z) is the atmospheric density given as a tabular func­
tion, and 

(5) 

represents the thrust control parameter. For a parabolic drag 
polar, as function of the Mach number, we have 

CD = CDo(M) + K(M)CL 2 (6) 

where the zero-lift drag coefficient, CDo' and the induced drag 
coefficient, K, are functions of the Mach number. Because of 
the lift-drag relation, the flight is controlled by the lift coeffi­
cient CL which is equivalent to the angle of attack a, the bank 
angle <1>, and the thrust magnitude T. 

The Hamiltonian to the variation problem is 

H = PxV COS)! cos$ + PyV COS)! sin$ + PzV sin)! 

+ PVg(T ;D _ sin)!) + P-Y~( L ~S<l> - COS)! ) 

+ P g L sin$ (7) 
"'vw COS)! 

It is known that the problem has the integrals3 

H = Co, Px = C}, Py = C2, P", = CIY - C2X + C3 (8) 

The problems considered here are minimum time problems. 
Hence, for maximization of the Hamiltonian, Co> O. By using 
the Hamiltonian integral only two of the three remaining ad­
joint variables Pz , Pv and P-y need to be found. In vertical 
flight all three variables are involved, hence their presence 
imposes a difficulty in solving the optimization problem, the 



730 National Computer Conference, 1982 

same difficulty encountered in three-dimensional flight prob­
lems. As compared to the vertical flight, three-dimensional 
flight has two more variables, i.e., the lateral range Yand the 
heading \jJ, which may pose a problem in obtaining the optimal 
solution; however, the adjoint variables Py and PIjI associated 
with these variables have been found in Eqs. (8). In the case 
of horizontal flight, the adjoint variables Pz and P-y are not 
present, and the remaining adjoint variable Pv is given by the 
Hamiltonian integral. The problem is completely solved in the 
book by Lin. 3 

Since the aerodynamic and the engine characteristics are 
functions of the Mach number, it is convenient to use the 
following dimensionless variables: 

M = Y/a(Z), w = 2W/kp(Z)S (9) 

where a(Z) is the speed of sound and p(Z) is the ambient 
pressure. Both a(Z) and p(Z) are given as tabular functions; 
and w is the dimensionless wing loading, which is a function 
of the ambient pressure p, and is also a variable representing 
the altitude. For convenience of notation, we define 

CL * = YCoolK, E* = V2YKCoQ 
A = CdCL *, Trnax(M, w) = TrnaxlW (10) 

where E* is the maximum lift-to-drag ratio, which is a per­
formance characteristic; and A is the normalized lift coeffi­
cient, which can be considered a control variable for the lift 
control. The normalized lift coefficient is rescaled so that 
when A = 1, the lift coefficient is equal to the lift coefficient 
CL * for maximum lift-to-drag ratio. Note both E*(M) and 
CL *(M) are functions of the Mach number and that the max­
imum thrust-to-weight ratio Trnax(M, w) is a function of the 
Mach number as well as w. The lift control is bounded by an 
upper limit Arnax(M) that corresponds to CLmax(M). It is as­
sumed that CooCM), K(M), Trnax(M, w) and CLmax (M) are 
known functions of the Mach number. For numerical com­
putation, we use data of a supersonic fighter assembled in 
Lin/ but the same procedure applies to any other set of data. 
The three-dimensional turning flight is a difficult maneuver; 
hence we use the load factor n as a lift control variable to 
represent the angle of attack. The load factor n is equal to the 
dimensionless life force e defined as 

(11) 

where 
(12) 

The load factor n can also be used as a control variable to 
replace the normalized lift coefficient A, and it is an important 
parameter that can limit the flight domain. From Eq. (11), 
since A ::5 Arnax(M), the fl1ght domain is bounded by the curve 

(13) 

Hence, the load factor n is subject to the constraints 

. l- M2CLmax(M)] 
Inl ::5 nrnax = Inf. ns, w (14) 

where the constant value ns is a physiological/structural con­
straint and nrnax is the maximum permissible load factor, either 
for CL = CLmax or n = ns. This domain of flight may be further 
restricted by the line of maximum dynamic pressure 

M2<:2grnax _ S 
- kp - wwqrnax (15) 

and the line of maximum Mach number obtained by solving 
the equation dY/dt = 0 with T = Trnax such that 

1 ( n2) . 
Trnax = 2E* il +"K + sm-y (16) 

By using the notations introduced thus far, the Hamiltonian 
(7) becomes 

H = C1 Y cos-y cos\jJ + C2 Y cos-y sin\jJ + Pz Y sin-y 

+ Pvg[ ~Trnax(M, w) - 2~* (il + ~) - sin-y ] 

g gn sin</> + P-y-y (n cos</> - cos-y) + P",-y-- (17) 
cos-y 

In this formulation, the control variables are the thrust param­
eter ~, the bank angle </>, and the load factor n. The thrust 
parameter ~ and the load factor n are subject to constraints (5) 
and (14) r~srectively, and the bank ang~e </> is subject to the 
constramt 1<1>1::5 </>rnax. The </>rnax can be eIther a constant or a 
function of the state variables, depending on the problem 
considered. 

Regarding the thrust control, we consider the adjoint Pv, 
called the switching function. Then to maximize the Hamil­
tonian, if 

Pv> 0, ~ = 1 -Boost arc (B arc) 
Pv < 0, ~ = 0 -Coast arc (C arc) 
Pv == 0 for t d th t2] -Sustained arc (S arc) 

~ = variable (18) 

The optimum trajectory is a combination of boost arc (B arc), 
coast arc (C arc), and sustained arc (S arc). At the junction of 
the different thrust control arcs, Pv = O. For a junction be­
tween arcs, a C-B sequence is optimum if at the junc­
tion dPv/dt> O. For a reverse condition, a B-C sequence is 
optimum. 

The aerodynamic control consists of the bank angle </> and 
the load factor n. The optimal aerodynamic control can be 
obtained by using the technique of the domain of maneu­
verability presented by Lin. 3 First, whenever interior bank 
angle and interior load factor are used, we have 

P 
tan</>=--"'­

P-ycos-y 

2_L.1 p2+ '" A2E*2 ( P 2 ) 
n - y2 Pv2 -y cos2-y 

By applying Eq. (19) to Eq. (20), we have 

(19) 

(20) 

(21) 

If all Pv, P-y, and PIjI approach zero simultaneously, the in-



determination of <I> and n can be resolved by applying 
L'Hopital's rule, which leads to 

A 
tan <I> = B (22) 

~E*'B 
(23) n 

Co cos<l> sin'Y 

where 

A = V sin'Y (C2 cos$ - C1 sin$) 
B = Co cOS'Y - C1 V cos$ - C2 V sin$ (24) 

and <\> in Eq. (23) is obtained from Eq. (22). Second, when­
ever interior bank angle and boundary load factor are used, 
i.e., when the load factor is on its upper boundary as given by 
condition (14), the bank angle remains an interior bank angle 
as given by Eq. (19). Third, whenever boundary bank angle 
and interior load factor are used, i.e., when the bank angle is 
on the boundary <\> = <\>max, the corresponding interior load 
factor is given as 

= aE *. (p '" + P Ij.! Sin<l>max) (25) 
n VPv 'Y COS,+,max cOS'Y 

If all Pv, P'Y' and PIj.! approach zero simultaneously, the inde­
termination of n can be resolved by applying L'Hopital's rule, 
which leads to 

~E*' . 
n = -C . (A Stn<\>max + B cos<l>max) (26) 

oStn'Y 

where A and B are given in Eqs. (24). Fourth, whenever 
boundary bank angle and boundary load factor are used, the 
bank angle is on the boundary <p = <Pmax, and the load factor 
is on its upper boundary, as given by condition (14). 

An important condition as seen in the technique of the 
domain of maneuverability is that the interior load factor be 
used with B arc. In particular, while B arc can be flown with 
interior or boundary load factor, C arc and possibly S arc can 
be flown with only boundary load factor. From the above four 
arcs of the aerodynamic control, it is seen that the optimal 
aerodynamic controls are functions of the adjoint variables 
Pv, P'Y' and PIj.! associated with the velocity vector. Since PIj.! is 
known, the adjoint variables remaining to be found are Pv and 
P 'Y' Their differential equations are coupled with the equation 
of Pz . With the existing integrals (8), one of the three adjoint 
equations of Pv , P'Y' and Pz can be deleted. It is found that in 
order to save substantial computation time and to enhance 
real-time, online optimization, it is simpler to integrate the 
adjoint equations of Pv and P'Y and obtain the adjoint variable 
Pz from the existing integrals (8). From the Hamiltonian (17) 
we deduce the adjoint equations of Pv and P 'Y' For interior 
bank angle and interior load factor 

d~;v = _ Co + Pv g {~Tmax(2 - TmaxM) - 2 sin'Y 

1 [( n2) (n2) *. 4n2]} + 2E *. ~ - ~ CL *M - ~ +"X E M - T 

+ P'Y~V (ncos<\> - cos'Y) + PIj.! 2~nsin<\> 
cos'Y 

d! 'Y = C1 V sin'Y cos$ + C2 V sin'Y sin$ - Pz V cOS'Y + Pv g cOS'Y 

_ P g sin'Y _ P g n sin<\> sin'Y (27) 
'Y V Ij.! V cos2'Y 

Flight Control of a Supersonic Fighter 731 

In the above equations the Hamiltonian integral has been 
used for simplification, and the subscript M is defined as 

_ dlogy _M dy 
YM- dlogM-y dM (28) 

In Eqs. (27), ~ = 1, <I> is given in Eq. (19), and n is given in Eq. 
(21). For interior bank angle and boundary load factor, if 
n = ns, the adjoint equations are given in Eqs. (27) with n = ns 
and <\> is given in Eq. (19). If 

n = M2CLma,/w 

d~;v = -Co + Pvg{ ~Tmax(2 - TmaxM) - 2 sin'Y 

+ 2~ *. [ ( ~ - ~) CL *. M - (~ + ~) E *. M 

+ 2~2 CLmaxM]} - P 'Y ~(2 cOS'Y + n cos<\> CLmaxM) 

_ P gnsin<l>CL 
Ij.! V cOS'Y maxM 

dP'Y = C1 V sin'Y COS$ + C2 V sin'Y sin$ - Pz V COS'Y 
dt 

g sin'Y g n sin<\> sin'Y 
+ Pvgcos'Y - P'Y-V - PIj.! V cos2'Y 

In the above equations, 

n=M2CLmjw 

(29) 

and <I> is given in Eq. (19). For boundary bank angle and 
interior load factor, if <\>max is a constant, the adjoint equations 
are given in Eqs. (27) with ~ = 1 and <\> = <\>max, and n is given 
in Eq. (25). For boundary bank angle and boundary load 
factor, if n = ns, then for a constant <\>max the adjoint equations 
are given in Eqs. (27), with <\> = <\>max and n = ns. If 

n=M2CLmjw 

then for a constant <\>max the adjoint equations are given in 
Eqs. (29), with <\> = <\>max and n = M2CLmjw. 

In the most general case, the solution requires the estimate 
of five parameters Cl, C2, C3 and the initial adjoint variables 
PVo and P 'YO" This, coupled with the optimal switching from one 
control regime to another, constitutes the main difficulty of 
the problem. Success in obtaining the solution depends on the 
knowledge of the particular flight program considered. A 
very-high-speed digital computer is used for the computation. 
The total computing time for a single pass through the entire 
equations for optimal flight in three dimensions is approxi­
mately 457.5 microseconds. This shows that integration frame 
rate of up to 2186 per second can be accomplished. 

The computation of the general minimum time problem is 
greatly simplified by ruling out the sustained arc, which is not 
likely to be involved. A partial proof of the nonoptimality of 
this singular arc is as follows: The singular condition is charac­
terized by the contition Pv = 0, Pv' = 0 for a finite time inter­
val. As seen in Eqs. (20) and (25), this will require that n be 
on the boundary, unless P'Y = 0 and P Ij.! = 0 too. But this will be 
ruled out as follows: Along a sustained arc, the derivative of 
the equation Pv = 0 is taken, using the Hamiltonian integral 
under the singular condition 



732 National Computer Conference, 1982 

dPy = l{-co + P [2g (ncos<f> - cos-y) _ gcos<f> an] 
dt V -y V av 

+ P (2 g n sin<f> _ g sin<f> an)} = 0 (30) 
'" V cos-y cos-y av 

Thus from this equation it is clear that P -y =1= 0 and P", =1= O. 

If 

then 
anlaV = 0 

and Eq. (30) becomes 

dPy _ 1 [ 2g ( ) dt - V -Co + P -y V nmax cos<f> - cos-y 

+ P 2gnmaxSin<f>] = 0 
'" V cos-y 

(31) 

The variable thrust along a sustained arc is obtained by taking 
the derivative of this equation using the available singular 
conditions 

(32) 

where the term in parentheses is a function of the state vari­
ables and constants of integration. Since the order of the 
singular arc is q = 1, then according to the generalized 
Lengendre-Clebsch condition, a necessary condition for the 
optimality condition of the singular arc is that 

C 
gTmax <0 

o V2 - (33) 

This condition is not satisfied with Co> O. If n = M2CLm./W, 
Eq. (30) becomes 

1 [ g - V Co + P -y V (2 cos-y + n cos<f> CLmaxM) 

+ P g n sin<f> C ] = 0 
w V cos-y LmaXM (34) 

By taking the derivative of Eq. (34) using the available singu­
lar conditions, the equation for the intermediate thrust con­
trol is obtained in the form 

d2py 
de =A~Tmax+( ... )=O (35) 

where 

and the term in parentheses in Eq. (35) is a function of the 
state variables and constants of integration. According to the 
generalized Lengendre-Clebsch condition for the optimality 
of the singular arc, A 2: O. If CLmax is independent of the Mach 
number, the condition A 2: 0 is not satisfied. This is particu­
larly true for the case of maneuver at low Mach number. For 
any prescribed function CLmax(M), the condition A 2: 0 defines 
a small region in the state variable and adjoint variable space 
where singular arc can be optimal. 

With only B arc and C arc involved, the optimal thrust 
control is a combination of B arc and C arc. At the junction 
of a B arc and a C arc, Py = O. For continuity of the load factor 
this occurs either when n = ns or n = M2CLm./W, or P -y = 0 and 
P~. = o. If all Pv , P"y' and P ljI approach zero simultaneously, and 
the interior bank angle and interior load factor are used, then 
the indeterminations of <f> and n are given by Eq. (22) and Eq. 
(23), respectively. At this point, from the equation for Py in 
Eq. (30) with P-y = 0 and P", = 0, 

dPy = _ Co < 0 (37) 
dt V 

Hence the connection is from a B arc to a C arc. If all Py , P-y, 
and P", approach zero simultaneously, and the boundary bank 
angle and interior load factor are used, the indetermination of 
n is given by Eq. (26). At this point, from the equation for Py 

in Eq. (30) with P-y = 0 and P", = 0, Eq. (37) is true. Hence the 
connection is from a B arc to a C arc. If the discontinuity of 
the angle of attack is neglected, the switching is always at 
n = ns or n = M2CLma/w. If it is at n = ns, then a switching from 
a C arc to a B arc is optimal if at the switching point 
dPy/dt > 0, i.e., from Eq. (31), we have 

P 2g ( A.. ) P 2gnmaxsin<f> C 
-y V nmaxcos,+, - cos-y + '" V cos-y > 0 (38) 

For a switching from a B arc to a C arc the above inequality 
is reversed. If the switching is at n = M2CLm./W, then a switch­
ing from a C arc to a B arc is optimal if at the switching point 
dPy/dt > 0, i.e., from Eq. (34) we have 

Co + P -y ~ (2 cos-y + n cos<f> CLmaxJ 

+ P gnsin<f>C <0 
'" V cos-y LmaxM (39) 

This inequality is reversed for a switching from a B arc to a C 
arc. 

COMPUTATIONAL RESULTS 

The problem of minimum-time supersonic chandelle with free 
final longitudinal range X f and free final lateral range Y f is 
completely solved in real time, on line, by Lin.4 Instead of free 
final longitudinal and lateral ranges, as in Lin,4 this paper 
focuses on prescribed final longitudinal range X f and pre­
scribed final lateral range Yf. Furthermore, the final altitude 
is prescribed. Thus this problem is minimum-time supersonic 
chandelle with prescribed final point. This particular three­
dimensional turn can be analyzed in comparison with the 
trajectories on a horizontal and a vertical plane, as shown in 
Figure 1. 

Figure 1 gives a comparison of three 1800 turning maneu­
vers, i.e., the horizontal or level turn, the vertical turn or 
Immelman, and the chandelle. 5 These three turnings are use­
ful maneuvers in combat. In the figure, I, II, and III represent 
three different positions of the intruder's inbound. Consider 
a the offset point of our aircraft. The goal of all three turning 
maneuvers is to reach the attack cone, defined as any position 
to the rear of the target from which we can maneuver and 
overtake the target in the position of the weapon-firing 



III~ __ _ II 

o 
Figure 1-180° turns 

ranges. In general, the attack cone lies in the 5 to 7 o'clock 
position behind the target and at co altitude or slightly below 
the target altitude. Depending on the position of the in­
truder's inbound, an appropriate turning maneuver is chosen 
for interception. For example, if the position of the intruder's 
inbound is Location I, then the horizontal turning maneuver 
is used. This maneuver as shown in the figure is a turn to a 
heading. If the position of the intruder's inbound is Location 
II, the vertical turning maneuver needs to be performed to get 
to the attack cone. The verticai turning maneuver as shown in 
the figure is a particular vertical turn called the Immelman. If 
the position of the intruder's inbound lies between Locations 
I and II, e.g., in Location III in the figure, the appropriate 
tactical maneuver to choose is the chandelle, which is a three­
dimensional 1800 climbing turn. For simplification, in this 
paper we define the offset point as the position when the 
fighter arrives at Mach two and is ready to immediately ini­
tiate the minimum-time supersonic chandelle to reach the 
attack cone. The altitude of this position is referred to as the 
initial altitude of the offset point. 

In this problem we have the terminal conditions 

t=o,X=O, Y=O,Z=Zo, V=Vo,-Y=-Yo,t\J=O° (40) 

tf = min., X = Xf, Y = Yf, Z = Zf, Vf = free, -Yf = free, 
t\Jf = 1800 (41) 

Hence, we have the transversality conditions 

Co= 1, PVf=O, P'Yf=O (42) 

Since PVf = P 'Yf = 0, P.vf =1= 0, by continuity of the bank angle 
and load factor the last portion of the trajectory must be flown 
with boundary bank angle and boundary load factor. For 
nf = ns , if the terminal point is considered a switching point, 
then condition (38), with P'Yf = 0 at the final time, dictates a 

Flight Control of a Supersonic Fighter 733 

::E 

s­
O) 

..0 

o 3 6 '3 12 

Longitudinal Range X (km) 
2(a) 

2.0,----

5 1·5 
z 
.s::: 
u 
1'0 

::E 

1.2 +----------o 10 20 30 40 

Time (sec) 
2(c) 

1 BO J'l 0) 

~ 135 
t;J 
0) 

~ 90 
.,3-

;:;-. 

451/ 

c: 
:0 
1'0 
QJ 
:r: o ... 

0) 
0) 
s­
Ol 
0) 
-0 

90 

-& 45 
0) 

Ol 
c: 
< 
.:;,(. 

0 

c: 
~ 0 0 

10 20 30 40 

Time (sec) 
2(e) 

10 20 30 40 

Time (sec) 
2(g) 

10 20 30 40 

Time (sec) 
2(b) 

90 

o~~---------o 10 20 ~o 40 

Time (sec) 
2(d) 

0.9 
"'-' 
oC 
t;J 

·r-::;: ~ 
0) ......... 
3:1-

I 

.s.~ 0.5 
1"'-' 

"'-'1'0 
vi 0:: 

J 
::l 
s-

oC 
I- I 

0 10 20 30 40 

Time (sec) 
2(f) 

10 20 30 40 

Time (sec) 
2(h) 

Figures 2a-h-Minimum time supersonic chandelle 
with prescribed final point 

final C arc. If this resulting inequality reverses, the final arc is 
a B arc. For nf = M2CLmax/wf, if the terminal point is considered 
a switching point, condition (39) with P 'Yf = 0 at the final time 
dictates a final C arc. If this resulting inequality reverses, the 
final arc is a B arc. The problem in terms of C}, Cz, C3 , PVo ' 
and P 'Yo is a five-parameter problem. The five parameters Ct. 
Cz, C3 , Pvo and P 'Yo are to be selected to satisfy the final 



734 National Computer Conference, 1982 

conditions (41) and the transversality conditions (42). For the 
solution we guess Ct, C2 , C3 , PYo ' and P "1'0 and start the integra­
.tion of the state equations (1) and adjoint Eqs. (27) and (29), 
along with the use of the optimal thrust and aerodynamic 
control law . At the final heading \fIf = 1800

, the conditions on 
X = Xr, Y = Yf , Z = Zr, PYf = 0, and P "I'f = 0 are used to adjust 
the five unknown parameters CI, C2 , C3 , PYo ' and P "1'0' 

Figures 2a-2h show the results of the computation obtained 
by running a very-high-speed digital computer in real time, on 
line, using the supersonic fighter as the model. These results 
are obtained by using the example problem of minimum-time 
supersonic chandelle, turning from an initial point of Xo = 0 
km, Yo = 0 km, Zo = 8 km, with an initial Mach two, to a 
prescribed final point of Xr = 10.5 km, Yr = 9 km, Zr = 19 km 
for Trajectory 1, and Xr = 10.5 km, Yr = 8 km, Zr = 19 km for 
Trajectory 2. The constraints <l>max = 1.5 radians and ns = 4.5 
are imposed. The indetermination in evaluating the initial 
value of Pz when 'Yo = 00 is avoided by using initially a slightly 
positive value of 'Yo, since the trajectory has the tendency to 
start with a climb for a high initial Mach two. For the same 
prescribed final altitude Zr = 19 km and the same prescribed 
final longitudinal range Xr = 10.5 km, Trajectory 1 has a 

longer prescribed final lateral range Yr = 9 km and hence 
requires longer time to complete (tr = 40.1 seconds), whereas 
Trajectory 2 has a shorter prescribed final lateral range Yf = 8 
km and hence takes a shorter time to complete (tf = 38.8 
seconds). 

REFERENCES 

1. Lin, Ching-Fang. "Real-Time, On-Line Digital Simulation of Optimum 
Maneuvers of Supersonic Aircraft." Proceedings of the AIAA Computers 
in Aerospace III Conference, San Diego, October 1981. New York: 
American Institute of Aeronautics and Astronautics, 1981. 

2. Lin, Ching-Fang. "Real-TIme Simulation of Onboard Flight Control Micro­
computer System." Proceedings of the SCS Conference on Modeling and 
Simulation on Microcomputers, San Diego, January 1982. La Jolla, Califor­
nia: Society for Computer Simulation, 1982. 

3. Lin, Ching-Fang. Optimum Maneuvers of Supersonic Aircraft. Ann Arbor: 
The University of Michigan Publications, 1980. 

4. Lin, Ching-Fang. "Microcomputer Control Applications in Onboard 
Flight Control System." Proceedings of the IEEE Asilomar Conference on 
Circuits, Systems and Computers, Pacific Grove, November 1981. Los 
Alamitos, California: IEEE Computer Society, 1981. 

5. McCorkle, Burt. "Flight Path Optimization Method." Lockheed Report 
CA/GME 3044. 



Structured D-chart: A diagrammatic methodology in 
structured programming 

by C. JINSHONG HWANG 
Purdue University 
W. Lafayette, IN 

ABSTRACT 

The rules and principles of structured programming resemble the rules and prin­
ciples of good musicianship. Good programmer performance depends on both a 
competent programmer and the proper logic design methodologies. This paper 
presents a new diagrammatic methodology for such programming that accurately 
depicts the restricted control structures and their close correlation with natural 
thought process. A good programming style and coding indentation are the direct 
results of the use of structured D-charts. 

735 





1. INTRODUCTION 

During the 1970s the structured programming revolution pro­
duced several significant results: 

a. The principle of good programming was universally 
accepted. 5 

b. The use of restricted control structures and top-down 
programming were widely accepted methods. 6 

c. The flow chart was developed as a schematic depiction of 
restricted control structure specification of program log­
ic.7 The flow chart depictions are shown in Figure 1. 

Restricted Control Structure 

Sequential Structure 

Selective Control Structure 
(IF - THEN - ELSE) 

Repetitive Control Structure 
(DO - WHILE) 

Corresponding 
Flow Chart 

Figure I-Flow chart as a schematic depiction of restricted control structure 
specification of program logic 

The IF-THEN selective structure is a particular case of the 
IF-THEN-ELSE selective structure. The CASE structure is a 
generalized case of the selective structure. DO-UNTIL is an 
alternative repetitive structure. 

The rules and principles of structured programming re­
semble the rules and principles of good musicianship. A good 
musical performance depends on both competent musicians 

Structured D-Chart 737 

and proper instruments. The currently most popular instru­
ment for depicting program structure and logic is the con­
ventional flow chart described above. The controversies 
surrounding structured programming and the GOTO 
statemenf,4 pertain mostly to the use of such an instrument. 

The use of flow charts to depict program structure and logic 
can make it easier for a programmer to violate the single­
entry, single-exit rule for programs and program modules. 
The composition rules for flow charts make it possible to draw 
a chart, using lines that cross one another and move off in all 
directions. Flow charts are not very suitable for showing how 
structured algorithms closely reflect natural thinking and 
problem-solving processes. 

Other instruments introduced to represent structured pro­
gramming include pseudocode and the N assi-Shneiderman 
chart,S or something similar like the Chapin Chart.9 Pseudo­
code, however, is not a diagrammatic visual aid for designing 
program logic. The Nassi-Schneiderman chart does not indi­
cate the logic flow or progression in a clear, concise flow 
manner. All these instruments, of course, have their advan­
tages and disadvantages, but this article presents a new dia­
grammatic methodology for structured programming that ac­
curately depicts restricted control structures and their dose 
correlation with natural thought processes. Parallel with the 
structured D-charts presented herein, pseudocode win be 
used to express the meaning of structured D-chart in a disci­
plined, restricted narrative. The original idea for the D-chart 
appeared in Bruno and Steiglitz. 1 (The "D" in D-chart is in 
honor of Edsgar W. Dijkstra, who was one of the earliest 
proponents of structured programming.)3 Certain revisions 
for the idea of D-chart appeared in Denning and Denning.2 

This article presents a new revision of the D-chart, called the 
structured D-chart, which can be used by all levels of pro­
gramming students and professionals. The structured D-chart 
was developed by the author in fall 1978, and teaching experi­
ments using structured D-charts have continued for four 
years. At the end of this article, some results of these experi­
ments will be presented. The next section will present the 
composition of the structured D-chart with respect to control 
structures and the meaning of the symbols used in the 
structured D-chart. Section 3 will discuss the implementation 
of the structured D-chart in non-structured FORTRAN, 
COBOL, BASIC-PLUS, and PASCAL. In that section we 
shall see that the use of the structured D-chart is universally 
applicable to every kind of programming language. Section 4 
will describe the relationship between the structured D-chart 
and programming style. lO Section 5 will present some simple 
rules for using the structured D-chart. Section 6 will sum­
marize the advantages of the structured D-chart and provide 
a direct comparison between the structured D-chart and the 
flow chart. Finally, the results of the teaching experiments will 
be described. 



738 National Computer Conference, 1982 

2. STRUCTURED D-CHARTS AND RESTRICTED 
.CONTROL STRUCTURES 

2.1 Structured V-chart Symbols 

This section gives a detailed description of structured D­
charts by illustrating and explaining the symbols used to con­
struct them. Structured D-chart representation of control 
structures will be emphasized. 

Structured D-charts are made up of a limited set of special 
geometric symbols, corresponding to specific parts of a pro­
gram unit. These symbols and their meanings are as follows: 

An oval (D) indicates the starting and ending point for the 
program unit and a return to a main program from a sub­
routine. 

A parallelogram (0) indicates general input-output oper­
ations, the input, reading, and printing of data. 

A rectangle (0) indicates assignment and arithmetic oper­
ations, where the assignment of values and computation of 
arithmetic operations occur. 

A large dot shows the upper boundary or lower boundary 
of a selective control structure and designates the point at 
which this control structure begins or ends. All statements 
within this control structure will be executed, depending upon 
the status of a certain condition. Dots must appear in pairs to 
indicate one entrance into and one exit from the selectiv{~ 
control structure. 

Two or more arrows emanating from a large dot and di­
verging downward indicate the multiple alternate paths of a 
selective control structure. Each diverging arrow eventually 
converges into another dot which marks the end of the selec­
tive control structure. 

A small circle indicates the top boundary or delimiter of 
repetitive control structures and indicates at what point the 
repetitive control structure begins. All statements contained 
within a repetitive control structure are executed according to 
the status of specific condition. The circle 0 contains an 
alphabetic character to uniquely identify each repetitive con­
trol structure. 

A small triangle indicates the lower boundary or delimiter 
of repetitive control structures, showing at what point the 
repetitive control structure ends. The triangle .& contains an 
alphabetic character matching the character in the top delim­
iter 0 of the same repetitive control structure. 

An arrow is used to indicate the flow of the D-chart. In a 
repetitive structure, the flow should always be to the right and 
down. In a DO-WHILE repetitive control structure, the con­
ditions that determine the control structure flow will be writ­
ten directly above the horizontal arrow. 

DO WHILE 

J 
This figure indicates an interrupt exit from a repetitive con­

trol structure to the first executable statement immediately 
following the repetitive control structure 0. The alphabetic 
character in the circle 0 identifies the repetitive control struc­
ture from which the exit is to be made. 

< EXIT 8) 
A rectangle of broken lines indicates that the control struc­

ture causes an automatic increment. The auto-increment is 
part of the DO-FROM-TO control structure. (DO-FROM­
TO is an alternate form of repetitive control structure; see 
later in this section.) 

r------------., 
I I 
I I 
I I 
I I 
I I 
I I 
.... ------------1 

This block figure indicates that control is passed to a sub­
routine, procedure, or a block of program statements, located 
in a separate structured D-chart. It indicates a CALL to a 
subroutine. Subroutines end with an oval, indicating a RE­
TURN to the main program. 

This figure indicates an implied repetitive control structure 
for input or output from a collection of related data items in 
an array. 

I I 
A connector symbol indicates the continuation of the struc­

tured D-chart on another page. It should not be used for the 
branching of execution control. It is only used for the con­
nection of pages. One symbol at the end of the first page and 
another symbol at the beginning of the second page. Numer­
als inside the connection indicate the location of connection. 



2.2 Restricted Control Structures 

Sequential control is the simplest type of control structure: 
control goes from statement to statement in a straight unin­
terrupted line. The structured D-chart and pseudocode in 
Figure 2 show the flow of control in a sequential control 
structure. 

Sequential Control Structured D-Chart Pseudocode 
I 
I 
I 
I 

Statement-m 
Statement-n 

I 
I 
I 
I 

Figure 2-Flow of control in a sequential control structure 

After the execution of statement-m, the next sequential 
statement, statement-n, is executed, and so on for all state­
ments controlled by a sequential structure. 

2.2.2 Selective Control Structured D-Chart 

Selective control is more sophisticated than sequential con­
trol and affords the programmer more power and flexibility. 
Selective control is applicable in situations where a sequence 
of program statements is executed, depending upon the status 
of a specific condition. Selective control is identified by the 
use of IF-THEN, IF-THEN-ELSE, and CASE constructs 
within a program. The flow of logic indicated by the use of a 
selective control structure is illustrated by the structured D­
charts and pseudocode in Figures 3a, 3b, and 3c. 

In Figure 3a, after the execution of statement-m, the status 
of the condition is evaluated. If the status is TRUE, state­
ment-group is executed. If the status of condition is FALSE, 
statement-m is followed directly by statement-n. Statement-m 
and statement-n are executed regardless of the status of the 
condition. 

Case 1 IF - THEN 

Structured D-Chart Pseudocode 

Statement-m 
If Condition THEN Statement-Group 
Statement-n 

Figure 3a-Flow of logic in a selective control structure, Case 1 

Structured D-Chart 739 

In Figure 3b, after the execution of statement-m, the status 
of condition is evaluated. A status of TRUE causes the exe­
cution of statement-group-1, followed by the execution of 
statement-n. If the status is FALSE, statement-group-2 is 
executed, followed by statement-n. In either situation, 
statement-m and statement-n are executed. 

Case 2 IF - THEN - ELSE 

IF Condition THEN Statement-Group-1 
ELSE Statement-Group-2 

Statement-n 

Figure 3b--Flow of logic in a selective control structure, Case 2 

In Figure 3c, after statement-m is executed, the expression 
is evaluated. Assume the values of expression are positive 
integers between 1 and i. The line numbers are the statements 
or statement groups to which control is to be passed according 
to the integer value. In this example, if the value is 1, 
stagement-group-1 is executed, followed by statement-n. A 
value of 2 transfers control to statement-group-2. The value 
determines the flow of the program. Statement-m and 
statement-n are executed regardless of the value. 

Case 3 CASE Construct 

Statement-m 
CASE Expression 

Line-1 Statement-Group-1 
GOTO Line-n 

Line-2 Statement-Group-2 
GOTO Line-n 

Line-i Statement-Group-i 
Line-n Statement-n 

Figure 3c-Flow of logic in a selective control structure, Case 3 



740 National Computer Conference, 1982 

Case 1 DO WHILE 

Structured D·Chart 

Case 2 DO UNTIL 

Case 3 REPEAT UNTIL 

Pseudocode 

Statement·m 

DO WHILE Condition 
Statement·Group 

END·DO 

Statement·n 

Statement·m 

DO UNTIL Condition 
Statement·Group 

END-DO 

Statement-n 

Case 4 DO-FROM·TO 

Statement·m 

DO FROM Variable 
Statement·Group 

END·DO 

Statement·n 

Expr·1 TO Expr·2 STEP Expr·3 

Pseudocode for Language With REPEAT 

Statement·m 

REPEAT UNTIL Condition 
Statement-Group 

END-REPEAT 

Statement·n 

Pseudocode for Language Without 
REPEAT 

Statement-m 

Line·i Statement-Group 
IF Condition 

THEN Line·i 
ELSE Line-j 

Line·j Statement-n 

Figure 4-Structured D·charts and pseudocode for repetitive structures 



2.2.3 Repetitive Control Structured D-Chart 

The repetitive structure is the third type of control struc­
ture. The distinctive characteristic of a repetitive structure is 
that it causes a statement or group of statements to be exe­
cuted repeatedly, according to the value of a specified condi­
tion. There are four kinds of repetitive structures: the DO 
WHILE structure, where statements are executed repeatedly, 
while the logical value of the specified condition is TRUE; the 
DO UNTIL structure, where a group of statements is exe­
cuted repeatedly, until the logical value of the specified condi­
tion becomes TRUE; the REPEAT UNTIL structure, where 
the condition is checked at the end of the repetitive structure 
while the similar DO UNTIL structure checks the condition at 
the beginning of the structure; and the DO FROM-TO struc­
ture, where a group of program statements is executed for a 
specified number of times. The structured D-charts and pseu­
docode for these repetitive structures are as shown in Figure 
4, Cases 1-4. 

After statement-m is executed, the value of condition is 
evaluated. While the logical value of condition is TRUE, the 
statement-group is executed. As in the selective control struc­
ture, the statement-group in a repetitive control structure can 
be one or more statements. When the logical value of condi­
tion becomes FALSE, control is transferred to statement-n. 

The execution of statement-m is followed by the evaluation 
of the specified condition. Until the logical value of the condi­
tion becomes TRUE (i.e., while it is FALSE), the statement­
group is executed. When the logical value of the condition 
becomes TRUE, control is transferred to statement-n. 

The REPEAT UNTIL structure is a special case of the 
repetitive structure which is used to ensure that a given state­
ment or statement block within a repetitive structure \vill be 
executed at least once. Some programming languages do not 
provide a formal statement or set of statements to accomplish 
this task efficiently. REPEAT-UNTIL structure provides this 
special case of the repetitive structure. Despite its name, the 
REPEAT-UNTIL structure does not contain the UNTIL 
statement in most languages; it is made up of an IF-THEN­
ELSE selective structure. The structured D-chart and pseudo­
code for the REPEAT-UNTIL structure are as follows. 

After entering the loop and the execution of statement­
group, the conditional expression is evaluated. If the logical 
value is TRUE, the loop exits and statement-n is executed. A 
logical value of FALSE causes statement-group to be exe­
cuted again, thus creating a repetitive structure. This iterative 
process is repeated, until the logical value becomes TRUE, at 
which point the loop exits. The conditional expression is not 
evaluated, until statement-group has been executed for one 
time. This guarantees that statement-group will be executed 
at least once. In the DO-UNTIL control structure, on the 
other hand, the logical value is determined prior to the exe­
cution of the statement group contained in the repetitive 
structure. The REPEAT-UNTIL structure eliminates repeti­
tious code to guarantee one execution of a statement block. 
This special case of repetitive control structure can resolve the 
controversies over the proper use of the GOTO statement. 
The GOTO statement may be used if for the purpose of 
implementing REPEAT-UNTIL structure in a language with­
out REPEAT or for the error handling. 

Structured D-Chart 741 

After the execution of statement -m, the value of expr-1 is 
assigned to variable and statement-group is executed. The 
value of variable is then incremented by the value of expr-3 
and variable is evaluated to determine if it exceeds the value 
of expr-2. Statement-group is repetitively executed, until the 
value of variable becomes greater than the value of expr-2. At 
that point, control is transfered to statement-n. 

3. IMPLEMENTATION OF STRUCTURED D-CHARTS 

This section demonstrates the implementation of structured 
D-charts in programming languages such as nonstructured 
FORTRAN, COBOL, BASIC-PLUS, and PASCAL. The ex­
ample algorithm is the bubble sorting algorithm, which reads 
a set of numbers until an end of file marker is encountered, 
sorts the numbers in ascending order and prints the sorted 
result. The logic involves a combination of all three restricted 
control structures. The same structured D-chart (Figure 5) for 
the bubble sorting algorithm will be used to implement the 
algorithm in four different programming languages. Further-

DO FROM I = 1TON 
A~--------------~ 

Figure 5a-Bubble sorting algorithm 

more, the same structured D-chart can be implemented in 
assembly language.l1 The structured D-chart is applicable as 
a flow diagram for both structured and nonstructured pro­
gramming languages. 

4. STRUCTURED D-CHART AND PROGRAMMING 
STYLE 

Good programming style complements structured program­
ming by clearly representing control structures and their pur-



742 National Computer Conference, 1982 

PROGRAM SORT (INPUT, OUTPUT) 

VAR K, I, 
NUM . 

BEGIN 
N .- 10 

J, N, TEMP INTEGER 
ARRAY[l .. 10] OF INTEGER 

FOR J := 1 TO N DO READ (NUM[J]) 

K := N - 1 

WHILE K ::>= 1 DO 
BEGIN 
FOR 1:= 1 TO K DO 

BEGIN 

END 

IF NUM[Il ::> NUMCI+ll THEN 
BEGIN 
TEMP := NUM[I] i 

NUMCIl := NUMCI+ll 
NUM[I+l1 TEMP; 
END 

END i 

K K - 1 

FOR I - 1 TO N DO 
WRITELN (NUMCIJ) 

END. 

Figure 5b---Implementation in PASCAL 

100 DIM NUMSX(10X) 
110 
120 NX • lOX 
130 
140 FOR .JX .. IX TO N7. 
150 READ NUHSX(JX) 
100 NEXT ,JX 
170 
180 K7. - NX - 17. 
190 
200 WHILE KX >z 17. 
210 
220 FOR IX .. IX TO KX 
230 IF NUMSX(IX) <= NUMSX(I7.+17.) THEN 270 
240 TEMP X = NUMSX(IX) 
250 NUMSX( IX) .. NUMSX( IX+17.) 
200 NUMSX(IX+l7.) = TEMP X 
270 NEXT IX 
280 
290 K7. ~ KX - IX 
300 NEXT 
310 
320 FOR IX z IX TO NX 
330 PRINT NUMSX( IX) 
340 NEXT IX 
3:50 
360 DATA 823. 791. 768. 587. 456. 345. 268. 212. 123. 100 
370 END 

Figure 5c-Implementation in BASIC-PLUS 

poses. The structured D-chart not only clearly reflects natural 
thinking via restricted control structures, but also accommo­
dates the indentation requirements of program style in a very 
direct way. The use of indentation to indicate control struc­
tures in a program is one of the elements of good pro-

10 

20 

25 

30 

35 

40 

INTEGER I. J. N. K. NUM(10). TEMP 

OPEN (UNIT=l. NAME='TEST. OAT'. TYPE~'OLD'. READONLY) 

N = 10 

READ( 1. *) (NUM(J). ,J = 1, N) 

K = N - 1 

IF (K .LT. 1) GOTO 35 

D030I=1.K 

IF (NUM( I) . LE. NUM( 1+1» GOTO 30 
TEMP = NUM(I) 
NUM(I) = NUM(I+l) 
NUM(I+l) = TEMP 

CONTINUE 

K = K - 1 
GOTO 25 

DO 40 I = 1. N 
WRITE(7.*} NUM(I) 

CONTINUE 

CLOSE (UNIT=1, DISPOSE='SAVE') 

STOP 
END 

Figure 5d-Implementation in nonstructured FORTRAN 

gramming style. The degree of indentation depends upon the 
programmer, but the level of indentation should correspond 
to the level of the control structures within the program. The 
structured D-chart (Figure 6) illustrates what is meant by the 
level of a control structure. 

In structured programming, a level refers to a series of 
sequential statements. Whenever a series is broken by a con­
trol structure (DO WHILE, DO UNTIL, DO FROM-TO, 
IF-THEN or IF-THEN-ELSE) all subsequent statements be­
longing to that control structure are considered to be on an­
other level, and should be indented accordingly. All state­
ments of the same level should be indented the same number 
of spaces. For example, the pseudocode in Figure 7 corre­
sponds to the structured D-chart (Figure 6), and illustrates 
what the indentation should look like. 

Note that all statements of a given level are indented the 
same number of spaces. All Level 1 statements are not in­
dented, all Level 2 statements are indented 5 spaces, and all 
Level 3 statements are indented 10 spaces. If there were a 
Level 4, it would be indented 15 spaces, and so on for any 
other levels. The number of spaces of indentation for each 
level is up to the programmer, as long as it makes the structure 
clear. Compare the pseudocode with indentation (Figure 7) to 
pseudocode in Figure 8. Note how much easier the indented 
pseudocode is to read, how each control structure is more 
clearly defined, and how the structured D-chart is used to 
reflect the indentation levels of the programming style. The 
logic of this pseudocode is much harder to follow, because of 
the lack of indentation. The use of indentation is a very pow­
erful tool in the writing of clear and easy-to-read programs. 
The example in Figure 8 on control structure levels clearly 
points out another advantage of using the structured D-chart. 
Indentation for good programming style comes very naturally 
from the logic design of the structured D-chart. The controi 
levels of structured D-charts directly tells the programmer 



IDENTIFICATION DIVISION. 

PROORAI'I- ID. PRD.J1B. 

ENVIRONMENT DIVISION. 

CONFIOURATION SECTION. 

SOURCE-COMPUTER. 
OB~ECT-COMPUTER. 

INPUT-OUTPUT SECTION. 

FILE-CONTROL. 

PDP-l1. 
PDP-II. 

SELECT INPUT-DATA 
ASSION TO READER. 

SELECT OUTPUT-RESULT 
ASSION TO PRINTER. 

DATA DIVISION. 

FILE SECTION. 

FD INPUT-DATA 
RECORD CONTAINS 80 CHARACTERS 
LABEL RECORDS ARE OMITTED 
DATA RECORD 15 NUMBER-INPUT-RECORD. 

01 NUMBER-INPUT-RECORD. 
05 NUM-INPUT PIC 999 OCCURS 10 TIMES. 
05 FILLER PIC X(50)' 

FD OUTPUT-RESULT 
RECORD CONTAINS 133 CHARACTERS 
LABEL RECORDS ARE OMITTED 
DATA RECORD IS OUTPUT-REPORT-RECORD. 

01 OUTPUT-REPORT-RECORD. 
05 CARRIAGE-CONTROL 
05 NUM-OUTPUT 
05 FILLER 

WORKING-STORAGE SECTION. 
77 TEMP 
77 N 
77 I 
77 .J 
77 K 

PROCEDURE DIVISION. 

OPEN INPUT INPUT-DATA 
OUTPUT OUTPUT-RESULT. 

MOVE 10 TO N. 
READ INPUT-DATA. 
COMPUTE K = N - 1. 
PERFORM OUTER-LOOP 

UNTIL K IS LESS THAN 1. 
MOVE 1 TO 1. 
PERFORM WRITE-OUTPUT 

UNTIL I IS GREATER THAN N. 
CLOSE INPUT-DATA 

OUTPUT-RESULT. 
STOP RUN. 

OUTER-LOOP. 
MOVE 1 TO I. 
PERFORM INNER-LOOP 

UNTIL I IS GREATER THAN K. 
COMPUTE K = K - 1. 

I NNER -LOOP. 
COMPUTE ~ = I + 1. 

PIC x. 
PIC X(3)' 
PIC X(l29>' 

PIC 999. 
PIC 99. 
PIC 99. 
PIC 99. 
PIC 99. 

IF NUM··INPUT (I) IS GREATER THAN NUM-INFUT (~) 

MOVE NUI1- INPUT (I) ·10 TEMP 
MaVE NUM-INPUT (J) TO NUM-INPUT (I) 
MDVE TEMP TO NUN-INPUT (~). 

COMPUTE I = I + 1. 

WR ITE -OUTPUT. 
MOVE SPACES TO OUTPUT-~EPORT-RECORD. 
I'IOVE "'UN-INPUT{ I) TO t,r,.iM-DUiPUT. 
Wi< In, UUTPUT··F.EPORT-R£CORU. 
COMPUTE I ~ I + 1. 

" 
Figure 5e-Implementation in COBOL 

Structured D-Chart 743 

where to use indentation in programming languages (and in 
pseudocode) . 

5. RULES OF STRUCTURED D-CHART 
COMPOSITION 

There is great potential for program flexibility when restricted 
control structures are used to create a structured program. 
Structured D-charts are essential to the writing of effective 
structured programs, and should be understood and used as a 
basis for good programming practices. The following is a list 
of rules helpful in creating structured D-charts. 

1. A structured D-chart must consist of one or a combina­
tion of any of the three types of control structures. 

2. There must be only one entrance to and one exit from 
each selective control structure. 

3. Each selective structure must be identified by a pair of 
large dots to symbolize the entrance into and the exit 
from selective control structures. 

4. There must be only one entrance and one exit for each 
repetitive structure with the exception of (Exit 0), in 
which case the exit must be the first executable state­
ment following the repetitive structure 0, which may be 
a nested outer repetitive structure. 

5. Each repetitive structure must be uniquely identified by 
a different alphabetic character within the boundary 
symbols (0 and ~) for the repetitive structure. 

6. The logic of the structured D-chart must proceed from 
top to bottom with any repetitive structures depicted to 
the right. 

7. A control structure can completely contain another con­
trol structure. This is called nested structure. A control 
structure may not contain only a portion of another con­
trol structure. There may be no flow lines drawn to 
connect one control structure to another external struc­
ture or outer (nested) structure, the only exception be­
ing the beginning or ending boundary. 

8. The GOTO statement may be used to implement a con­
trol structure. This is the only time the GOTO statement 
may be used for the sole purpose of implementing con­
trol structures in a particular language, no matter if it is 
structured or non-structured. 

9. The structured D-charts in Figure 9 describe the illegal 
(left column) and the corrected D-charts (right column.) 

6. STRUCTURED D-CHART VS. FLOW CHART 

The structured D-chart is superior to the flow chart because it 
agrees completely with the restricted control structures in 
structured programming techniques. The logic of a structured 
program and a structured D-chart involves only three re­
stricted control structures: sequential, selective, and repeti­
tive. Implementing the logic of a structured D-chart as a struc­
tured program is a direct one-to-one translation. Structured 
D-charts are easier to read than flow charts because execution 
flow always proceeds through a structured program in a down­
ward direction; there are no crossing or upward-pointing 



744 National Computer Conference, 1982 

~EVEU-----, 

I Statement II 
I Group 1 
I I 
I 
I 
I 
I 
I 

DO UNTIL Condition 

Statement 

I 
I 

Condition 
TRUE 

Group 2 I 
__ .J 

Condition = 
FALSE 

r----- ----, 
I Statement 
I Group 3 

~EVEL2 _ 

Statement 
Group 4 

----, 
r"'""s-t-a-te...l.m-e-n-t"""'1 I 

I Group 5 I 
I I 

l!:.EVE'=-!. ___ J 

I 
I 
I 

r-------, 
I 

r---- ----, 
ICondition = Condition = I 
I TRUE FALSE I 

I Statement Statement I 
I Group 6 Group 7 I 
LLEVEJ:...3 _ _ ~~ ____ .J 

r-- -----, r--- ----, 
I Statement II I -S-t-at ...... emL..--en-t- I 
I Group 8 I Group 9 I 
I I I I 
I X i I I 
lLEVEL~ ___ -1 I I 

LLEVEL 3 ____ J 

Figure 6--Level of a control structure 

lines. All structured D-charts are drawn with single-entry, 
single-exit control structures, and all conditions are explicitly 

LEVEL NO. 

1 

1 

2 
3 
2 

2 
3 
3 
2 

1 

1 

1 
2 
2 
1 

INDENTATION 

Statement Group 1 

DO WHILE condition TRUE 

DO UNTIL condition TRUE 
Statement-Group-9 

END-DO 

IF condition TRUE 
THEN Statement-Group-6 
ELSE Statement-Group-7 

Statement-Group-8 

END-DO 

Statement-Group-2 

IF condition TRUE 
THEN Statement-Group-3 
ELSE Statement-Group-4 

Statement-Group-5 

Figure 7-Illustration of indentation in pseudocode 

stated in words similar to those found in the actual program 
code. 

Figure 10 illustrates a conventional flow chart, showing the 
logic necessary to read a list of number, sort the numbers into 
ascending numerical order, and print the results. Figure 10 is 

Statement Group 1 
DO WHILE condition TRUE 
DO UNTIL condition TRUE 
Statement Group 9 
END-DO 
IF condition TRUE 
THEN Statement Group 6 
ELSE Statement Group 7 
Statement Group 8 
END-DO 
Statement Group 2 
IF condition TRUE 
THEN Statement Group 3 
ELSE Statement Group 4 
Statement Group 5 

Figure 8-Pseudocode without indentation 



(a) Line Passes Across 
Looping Structure 

(b) Multiple Exits 

(c) Line Passes Across 
Selective and Looping 
Structures 

(a) Modify Logic so that 
No Lines Across 

(b) Three Nested Control 
Structures: Selective in 
Selective in Repetitive 

(c) Re-design Logic so that 
No Lines Across 

Structured D-Chart 745 

(d) Line Passes Across 
Looping Structures 

(e) Mix-up Exits of Looping 
Structures 

(f) Line Passes Across 
Selective Structures 

(d) Re-design Logic so that 
No Lines Across 

(e) Re-design Logic so that 
Repetitive Structure Y is 
Nested in Repetitive 
Structure X 

(f) Re-design Logic so that 
Two Selective Structures 
are Nested in One Outer 
Selective Structure, and 
No Lines Across 

Figure 9-Illegal and corrected D-charts 

a well-written flow chart, doing the best possible job of de­
picting program logic, given the inherent weaknesses of flow 
charts. Note that it includes crossed lines, lines moving right, 
and an upward-pointing flow of execution control. The logic 
is hard to follow and difficult to translate into a structured 
program. 

Figure 5 is a structured D-chart representing the same logic 
as Figure 10. No lines are crossed; all control structures are 
single-entry, single-exit; control is never transferred upward; 
and repetitive structures and their conditions are clearly 
shown. The control structures in Figure 5 are shown in such a 
way that code blocks and level breaks (used for the inden­
tation of program lines) are explicitly indicated. The struc-

tured D-chart makes it easier to implement structured tech­
nique and good programming style. 

Real application programs are larger and far more complex 
than any found here. As a result, the logic required to produce 
the algorithms for such programs is larger and more complex, 
sometimes consisting of many pages. Because structured pro­
gramming is a superior method for creating large programs 
that are effective and efficient, structured D-charts should 
be used to represent program logic. A· programmer can move 
from a structured D-chart to a structured program quite eas­
ily, for the structured D-chart is based on the same con­
cepts and uses the same control structures in structured 
programming. 



746 National Computer Conference, 1982 

~ 
~ 

r--------, 
READ NUM (I) ~----l~ 1 - 1 + 1 L _______ J 

1 -- 1 

< 

-----, 
I 1- 1 + 1 I L ________ J 

Figure 10--Bubbie sorting algorithm in flow chart whose logic is identical to 
that of Figure 5 

7. EXPERIMENTS IN USING STRUCTURED 
D-CHARTS 

In fall 1978 the programming curriculum for the Department 
of Computer Technology at Purdue University was estab­
lished. The department undertook to offer an application pro­
gramming education based upon an understanding of concep­
tual foundations. The ability to use structured D-charts to 
express program logic with restricted control structures in the 
program designing phase is an essential for the conceptual 
foundations. During the past four years of teaching structured 
D-charts to freshmen and all new-entry students, we experi­
enced great success with the structured programming method. 
All students used the structured D-chart method in all pro­
gramming courses and were informed concerning flow charts 
during the second year of the curriculum in order that they 
would be able to communicate with other computer 
progressionals. But most students have learned about the use 
of the flow chart before entering our program. They would 
have to unlearn the nonstructured programming technique of 
using flow charts. 

The following statistics are based upon a survey made in 

December 1980 of 148 randomly selected students who had 
had one or more semesters' experience using structured D­
charts in writing structured programs. 

1. 16 freshman-level students did not know what a flow 
chart was. They only understood the usage of structured 
D-charts. 

2. 132 freshman-, sophomore-, and junior-level students 
had a knowledge of flow charts in addition to structured 
D-charts. Among them, 
a. 86 students learned the use of flow charts before en­

tering our program. 
b. 46 students were exposed to flow charts after learning 

about structured D-charts. 
3. Students were asked to compare structured D-charts 

with flow charts, if they knew both methodologies. 

Question: If you know about structured D-chart as well as 
flow charts, give a letter grade to the usage of structured 
D-charts and flow charts in terms of overall performance in 
logic design, debugging, program understanding, program-



G 

a 
d 

A 

B 

C 

4 45 4.60 .-=---4.~3 4.26 ~4.27 
: ~0.80 .....- Structured D-Chart 

1.!38 1 .. 16 O.?~ 1.~7- Distance 
~3.8~ 

3.07 3.17 3.3 . 3.00 Flowchart 

e 0 

1 F L ~I ~--~~~~--
Years 0 0.5 1.5 2 2.5 or More Years 

Figure ll-Results of survey of 86 students who learned the flow chart 
before the structured D-chart 

4.78 4 60 4.67 
4.43~v 4.29 ~Structured D-Chart .-- i ~I· 

A 
I I I I ' . 

I 1.~9 1.90 1.43 1.~7 - DIstance 2.90 I I I I 

~ l... : ~ Flowchart 
~a3.00 

G B 
r 
a C 
d 

2.43 2.89 2.70 2.86 . 

eL ~ ~I ----L.----L.....-~-'---.L.__ Years 0 0.5 1.5 2 2.5 or More Years 

Figure 12-Results of survey of 46 students who learned the structured 
D-chart before the flow chart 

ming style, programming style indentation, and restricted 
control structure implementation. 

Answer: Structured D-chart 
Flow chart 

ABC D F 
ABC D F 

a. Giving 5 points for an A and 1 point for an F, the 
average result of the survey of 86 students who had 
learned the usage of flow chart before the entrance of 
our program can be graphed as in Figure 11. 

b. On the same 5-point scale, the average result of the 
survey of 46 students who had learned the structured 
D-charts from the very beginning and then were exposed 
to the usage of flowcharts can be graphed as in Figure 12. 

c. Interpretation of the figures in 11 and 12: 
(1) Students who learned the structured D-chart from 

the very beginning favored the use of the structured 
D-chart much more than those who had learned the 
flow chart before the structured D-chart. 

(2) From Figure 11, in spite of the influence of their first 
experience with flow charts, students still preferred 
structured D-charts after they learned them. The 
gap between the rating of structured D-charts and 
flow charts is narrower in Figure 11 than in Figure 
12, possibly because of the difficulty of unlearning 
flow charts while learning structured D-charts. 

(3) In both figures, the distance between structured D­
charts and flow charts remains nearly constant. 
However, the gap closes a bit as the student gets 
older. This is possibly because they are more mature 
in their understanding of the fact that the structured 
programming approach is due to a concept, not to a 
methodology. 

Structured D-Chart 747 

A second survey was made in November 1981 of 138 ran­
domly chosen students who had had one or two semesters' 
experience using structured D-charts. Its results were very 
close to the results of the survey made in 1980. Its correspond­
ing figures are as follows: 

G 

a 
d 
e 

G 
r 

1. 16 freshmen students did not know what a flow chart 
was. They only understood the use of structured D­
charts. 

2. 122 freshman-level students knew the methodologies of 
flow charts as well as structured D-charts. 
a. 84 students learned about flow charts before entering 

the program and then learned the use of structured 
D-charts. 

b. 38 students learned structured D-charts from the very 
beginning and learned about flow charts later in the 
year. 

3. The distribution curve of 11 and 12 above can be figured 
as shown in Figures 13 and 14. The figures are very 
similar to those in the first survey except that the gap 
between the ratings for the structured D-chart and the 
flow chart for the 0.5 years in Figure 14 is much closer 
(0.51). The possible interpretation is that there were 
only 8 students in that category and that the accuracy of 
that category might have been affected by one or two 
students or by simple, inadvertent error entered into the 
survey. 

A[ 

:1 
'v 

4.40 
4.~ Structured D-Chart 

O.~O 1.~1 - Distance .. : 
3.26 • • Flowchart 

3.19 

D 

F 

Years 0 0.5 

Figure 13-Results of survey of 84 students who learned the flow chart 
before the structured D-chart 

A 
4.30 

~
Structured D-Chart 

3.88 : 
I B 

0.51 1.47- Distance 
I I 

a C 3.~ Flowchart 
2.83 

d 
e 

lyear~ oL...-.----
0
...1.--.

5 
----'---

Figure 14--Results of survey of 38 students who learned the structured 
D-chart before the flow chart 



748 National Computer Conference, 1982 

8. ACKNOWLEDGMENTS 

The author is indebted to the following individuals for their 
contributions and suggestions to this article: Phil A. Beetley, 
Darryl E. Gibson, Jeff Whitten, and all other professors in the 
Computer Technology Department for their assistance in the 
survey. 

REFERENCES 

1. Bruno, J., and K. Steiglitz. "The Expression of Algorithms by Charts." 
Journal of ACM, 19 (1972), pp. 517-525. 

2. Denning, P. J., and D. E. Denning. "D-charts." Purdue University, De­
partment of Computer Science, 1976. 

3. Dijkstra, E. W. "GO TO Statement Considered Harmful." Commu­
nications of the ACM, 11 (1968), pp. 147-148. 

4. Knuth, D, E. "Structured Programming with GO TO Statements." ACM 
Computing Surveys, 6 (1974), pp. 261-301. 

5. Denning, P. J. "Guest Editor's Overview." ACM Computing Surveys, 6 
(1974), pp. 209-212. 

6. Wirth, N. "On the Composition of Well-Structured Programs." ACM Com­
puting Surveys, 6 (1974), pp. 247-260. 

7. Dahl, O. J., E. W. Dijkstra, and C. A. R. Hoare. Structured Pro­
gramming." New York: Academic Press, 1972. 

8. Nassi, I., and B. Shneiderman. "Flowchart Techniques for Structured Pro­
gramming." SIGPLAN Notices, 8 (1973), pp. 12-26. 

9. Chapin, Ned. "New Format for Flowcharts." Software-Practice and Ex­
perience, 4 (1974), pp. 341-357. 

10. Hwang, C. J., and Thomas Ho. "Structured Programming in BASIC­
PLUS." New York: John Wiley and Sons, 1982. 

11. Hwang, C. J. Structured Programming in PDP 1I Assembly Language. 
Englewood Cliffs, New Jersey: Prentice-Hall, 1983. 



Planning for software tool implementation: 
experience with Schemacode 

by PIERRE N. ROBILLARD and REJEAN PLAMONDON 
Ecole Poly technique 
Montreal, Canada 

ABSTRACT 

The interactive tool called Schemacode assists users in the development, docu­
mentation, and structured coding of programs. Its unique property of word-gr~phic 
type of communication can be of great help during the main phase of program 
development: defining the control structure of the program at different levels of 
refinement. 

A Schematic Pseudocode which represents the control skeleton of the program 
constitutes the very-high-levellanguage input. Construction of the schematic struc­
ture and its translation into an appropriate language are the two main functions of 
Schemacode. These transformations involve editing, formatting, cross referencing, 
and structure checking. The use of a formal language appears only at the end of the 
development, after the logic of the problem has been solved. 

A real advantage provided by Schemacode is that every program developed has 
a unique up-to-date documentation and listing. However, modest changes are made 
in the way programming is done. An integration plan is specifically designed to 
minimize disturbances in the work milieu where Schemacode is to be implemented 
and is thus effected in three phases: creation first of a virtual environment, then of 
linked environment, and finally of an integrated environment. The virtual environ­
ment promotes the introduction of the methodology, the linked environment favors 
an interactive process for learning about the tool, and the integrated environment 
leads the new users to autonomous control of Schemacode. 

749 





INTRODUCTION 

This paper describes an experimental tool and its automation. 
The tool links together the manager and the programmer on 
the development of a software project. It simply provides a 
way for initiating feedback at every level. This tool is fully 
interactive, since the software system design is arrived at only 
after several trial and error attempts at every level of design. 

The essence of an automatic programming system is that 
it assumes responsibilities otherwise borne by a human 
being and thereby reduces the human task and makes it more 
manageable. 

Software system developers need a change in their pro­
gramming environment that will relieve them of at least some 
of the tasks that they currently must perform. It is the goal of 
automatic programming research to effect this change by 
transferring responsibility for some segments of the program­
ming process from the human programmer to an automated 
computer-based system. 

Faced with a new tool, and usually a corresponding new 
methodology, the personnel, hardware, and software must 
also adapt or change accordingly; personnel must adjust to the 
new products, existing structures and division of labor must be 
modified, new hardware must be purchased, existing software 
must be modified, and scheduling must be changed.1 

A new interactive programming tool must include features 
for facilitating its integration into new environments. The in­
troduction of Schemacode, based on Schematic Pseudocode, 
a methodology easily understood by managers as well as pro­
grammers and analysts, is effected in three'distinct phases, 
each of which is a necessary stage in the transition process: (1) 
creation of a virtual environment, (2) creation of a linked 
environment, and (3) creation of an integrated environment. 
This gradual approach allows for a thorough training in the 
methodology, for the carrying out of various tests, and for a 
complete clarification of the tool specifications which the user 
requires in a finished product that meets all his specific needs. 

SCHEMATIC PSEUDOCODE 

One of the key elements of the methodology is the scheme 
used for communication between the manager and the pro­
grammer. Graphics, words; and codes are widely accepted as 
the basic elements of communication. Graphics alone do not 
carry enough readily accessible information. Words and codes 
portray the structure of the project poorly. Programmers do 
not like the documentation task, and computing managers 
who are most responsible for the quality of software dislike 
programming details. On the other hand, the unique property 
of word-graphics type of communication can satisfy the needs 
of both the manager and the programmer. 

Planning for Software Tool Implementation 751 

With Schematic Pseudocode, the graphic symbolism is ex­
clusively designed to represent the structure of the process 
while the words are used to express the "activity" of the 
structure. All the graphic symbols are shown in Figure l. 

Schematic Pseudocode is above all else a pseudocode that 
expresses itself through graphic language.2 When solving 
problems, it is often useful to be able to visualize the structure 
of an algorithm. There are several existing techniques for 
providing graphic translations of algorithms, but most of these 
techniques are applicable only after the creation of the algo­
rithm.3-5 Such graphic representations reflect, as a result, 
the programmer-analyst's competence in solving his problem 
rather than the intrinsic structure of the problem. Schematic 
Pseudocode, on the other hand, provides graphic represen­
tation throughout the development of a program. Schema­
code is the tool that allows for the direct input of Schematic 
Pseudocode at a terminal and for the obtaining of the for­
mal code in FORTRAN, PASCAL, COBOL or other 
languages.6 

SEQUENCE CONDITION REPETITION 

B2 51 

:l~~-· 53 -Ie 
B2 

52 

-Ie 

5, 

Schematic Pseudocode (SPC) is based upon a conventional nomenclature 
where each program can be expressed in terms of actions which can be 
sequential, conditional or repetitive. We use S for statement and B for boolean 
expression. a) Statement which begins with a dash (sequence S2) serves for 
descriptive documentation statements. Statements which are not preceeded by 
a dash are assignments, declarations procedures or general comments Sl, S3, 
... Sn). The general comment identifies in natural language the actions to be 
refined. b) SPC uses the same basic representation for the SELECT, the 
CASE and the IF statement. In general, a conditional statement may contain 
a sequence of statements in each branch (Sl) and may contain an arbitrary 
number of ELSIF (linked by dotted lines) on the statements. c) SPC uses an 
unique diagram form which is a general loop with multiple exits. Double 
vertical lines show the scope of the loop and stars indicate the exits. 

Figure 1-8chematic pseudocode 



752 National Computer Conference, 1982 

Before going further into the tool description, let us look 
at the methodology behind Schemacode. The introductory 
example is an algorithm called "update sequential file 
processing. ,,7 

SEQUENTIAL FILE PROCESSING 

Using Schematic Pseudocode, a general algorithm for file up­
dates is derived. The purpose of this example is to illustrate 
the ease of use of Schemacode in the design of a complex 
algorithm and its usefulness as a documentation tool. 

In this example, we present the basic operations that are 
performed when processing a file sequentially. The algorithm 
uses three sequential files: 

1. The MASTER file (M) consisting of records mr, which 
are sorted in an ascending sequence according to the 
value of the key mk. 

2. The TRANSACTION file (T) consisting of records t r • 

The records are also sorted in an ascending sequence 
according to the value of the key tk' Each record tr con­
tains two parts: an operation code top and the data td 

(incl. tk). The code has one of the three possible values: 
(1) 'D' deletes from the file M the record mr for which 
mk=tk; (2) 'I' inserts td in the file M; and (3) 'U' updates 
in the file M the record mr for which mk=tk. 

3. The NEW MASTER fiie (N) consisting of records nr 
similar to those of the file M and sorted in an ascending 
sequence according to the value of the key nk. 

No duplicate keys are allowed in the file, and the algorithm 
gives an error message when a transaction tries to insert an 
existing record or to delete or update a nonexisting record. 

A step-wise refinement approach to this problem requires 
8 steps, which follow. 

A top-down approach is used here; each of the actions 
present can be further defined by step-wise refinement. These 
actions are 

EOF (T) 
PROCESS 1 KEY 
EOF (M) 

(See Figure 2.) 

END OF FILE ON (T) 

END OF FILE ON (M) 

This algorithm also includes lines that begin with a dash. 
These lines are called comment statements. They provide an 
English description of the algorithm to help the person under­
stand the significance of the action to be executed or to be 
subsequently refined. 

The Schematic-Pseudocode feature designed for specifying 
data values is a triangle pointing toward the algorithm. In the 
example, TR is a variable for which value is required. The 
triangle pointing away from the algorithm indicates values 
that are to be recorded. 

Repetition in some form is necessary. The Schematic Pseu­
docode statement for this action is the double vertical lines 
that show the scope of the loop. The star indicates the exit. In 
this case, the loop is designed to repeat the processing until 

ROOO - ~ 

~ UPDATE ·SEQUENTIAL FILE PROCESSING 

~ T:TRANSACTION FILE 

~ M:MASTER FILE 
-

~ N:NEW MASTER FILE 

~ R:RECORD 

~ K:KEY 

~ D:DATA 

- READ A TRANSACTION RECORD 

{I TR 

- READ A MASTER RECORD _._- --

(I MR 

---- --

~ 
EOF(T) 

ROO1 

PROCESS 1 KEY 
ROO2 

~ 
EOF(M) 

ROO7 

STOP 

- -
Three refinements are required to define this step. They are described in 

steps ROO!, Roo2, and Roo7. 

Figure 2-Schemacode output of Refinement 

the end of one of the files T or M. Within the loop, every key 
is processed. Each of the actions is subsequently refined as 
shown in Figures 3-6. Conditional statements allow choice 
between alternative courses of action. For example, in Refine­
ment r-003, the value of TOP (transaction operation code) is 
compared with the character 'D,' 'I,' 'U,' or ELSE. If 'TOP' 
is equal to 'D,' the action DELETE is executed. That action 
is defined in Refinement R-004. 

All the refined steps are integrated to form the final version 
of the update file processing. The Schematic Pseudocode rep­
resents the control skeleton of the program, i.e., its structure 
as well as its flow. As can be seen from this example, the 
Schematic Pseudocode is more than an easy-to-Iearn lan­
guage; it is a design methodology that can be used by man­
agers and programmers in the development of software. The 
Schematic Pseudocode is a pictorial representation that serves 



R002 - -
- PROCESS 1 KEY 
_ TOP, TRANSACTION OPERATION 

~ FIND MATCHING KEYS 

TK.GE.MK 

~ GET 

VITn 

- .... 
ROOO 

R003 

.......... 
PROC. TOP 
ROO3 

NEW TRANSACTION 

I)MR 

klMR 

CODE 

TO N 

---=~=------------------------------------------

TRANSACTION 

--------------------------------------------

TOP=' D' 

DELETE .~;::::~ 
~R~O~074~---~~~~~~~~~R~T--~R006 I~~""v"w 

R002 

(a) Step ROO2 describes how PROCESS 1 KEY is performed. A match is 
tested between the transaction key (TK) and the master key (MK), if 
it is succeeded the transaction operation code will be processed 
(PROC.TOP), such a processing is done in Refinement (ROO3). If the 
match is not performed the master record is written onto a new file and 
a new master record (MR) is read. 
The ROOO printed at the bottom of the main vertical line indicates that 
the process resumed in refinement ROOO. 

(b) Step Roo3 describes in more details how the processing of the operation 
code is performed. 

To do so 3 more refinements are required. 

Roo4 to process the DELETE of a transaction 
Roo5 to process the INSERT of a transaction and 
ROO6 to process the MODIFY of a transaction. 

Otherwise an error 3 message is printed. 

Note that after execution of this refinement the process continues into 
refinement #2 as described by the Roo2 at the bottom of the printed 
output. 

All this labelling is done automatically by Schemacode. 

Figure 3-Schemacode output of Refinement 2(a) and Refinement 3(b) 

as a means of recording, analyzing, developing, and commu­
nicating program information. Throughout these steps, em­
phasis can thus be put on human communication. The Sche­
matic Pseudocode is a universal means for communicating 
software development even if you have been educated in 
FORTRAN, PASCAL, COBOL, or other languages. 

Planning for Software Tool Implementation 753 

SCHEMACODE 

Schemacode is a software package running on an IBM 4341. 
The terminal (VT-lOO compatible) makes it interactive. The 
primary task of Schemacode is to assist users in the develop­
ment, documentation, and structured coding of programs. 81t 
usually transmits the source program to the main computer 
for execution. In the development phase of a project, the 
Schematic Pseudocode is output at the graphic printer, 
whereas in the coding phase, a structured listing can be 
outpUt.6

,9 

The graphic structure of the Schematic Pseudocode consti­
tutes a very-high-Ievellanguage. It is entered to Schemacode 
via special keys or commands on the keyboard. Several con­
trol inputs are also used to specify the type of operation and 
the detail associated with it. 

When the desired level of development is reached, Schema­
code will automatically integrate all the steps and provide a 
complete chart of the step-wise refinement process. The user 
can recall any refinement, redraw it, or modify it. All modi­
fications to structures or comments will be automatically 
integrated. 

Two types of output can be provided by Schemacode. At 
each step of refinement, a graphical output can be printed. 
The graphic symbolism of the Schematic Pseudocode is used 

ROD1 

~ EOF(T) 

• END OF TRANSACTION 

~ COPY MASTER 

ROOD 

EOF(M) 
~...----

This refinement describes the copying of the remaining master records into 
the new file. 

Figure 4--Schemacode output of refinement 1 



754 National Computer Conference, 1982 

R007 - ,.... 
~ EOF(1) 

1- END OF MASTER 

--

INSERT NEW TRANSACTION 
ROOS 

----
I)TR TO N 

• EOF <T) 

- -
ROOO 

ROOS 

INSERT NEW TRANSACTION 

TOP='l' 

R007 

a) This refinement describes the insertion of the remaining transaction files 
into the New File once the end of the master file is reached. 

b) The insertion of the new transaction. An error 8 message is printed when 
the transaction operation code (TOP) is not of the INSERT (I) type. 

Figure 5-Schemacode output of Refinement 7(a) and Refinement 8(b) 

exclusively to represent the control structure of the process, 
whereas words in natural language are used to describe state­
ments and Boolean expressions. 

When the process is pursued to the code level, a structured 
listing can be output in a selected language with labeling and 
paragraphing done automatically. All the comments specified 
during the development phase are automatically integrated 
into the listing. Boolean expressions, variables, formats, etc. 
must be specified in the formal language before editing. As 
one can see, a real advantage provided by Schemacode is that 
every program developed has a unique up-to-date documenta­
tion and listing. This source program can then be transmitted 
to the main computer for execution. 

The use of a specialized language appears only at the end of 
the development, when the problem is almost solved. At this 
time, a programmer specialized in a formal language has to 

R004 

- DELETE 

f1K=TK 

R003 

ROOS 

- INSERT 

R003 

ROOb 

MK=TK 

- MODIFY 

f1K=TK 

R003 

• ••••••••• 

~ SKIP 

KIMR I)ERROR4 

• ••••••••• 

I)ERRORS I)rD TO N 

· ......... 
MR=TR I)ERRORb 

These 3 refinements describe the action to be taken when a transaction is 
to be DELETED, INSERTED or MODIFIED. They are set in refinement 
#3 (see Fig. 3). 

Figure 6-Schemacode output of Refinements 4,5, and 6. 



translate the Boolean expressions, and define the format, the 
variables, etc. to allow Schemacode to edit the listing in the 
proper language. 

SCHEMACODE IMPLEMENTATION 

To demonstrate exactly how the technological transfers take 
place, let us examine each of the three stages of tool imple­
mentation. The discussion will show the gradual development 
of a small group of programmers, analysts, and managers 
towards autonomy in their use of Schemacode. 

Virtual Environment 

Schemacode creates a preliminary environment based on 
manual use of Schematic Pseudocode (SPC); we have named 
this first phase the virtual environment. This stage begins as 
soon as the user manifests an interest in the tool and ends 
when all personnel involved in using the tool have completely 
mastered the concepts of Schematic Pseudocode. 

The virtual environment is created with the aim of allowing 
a gradual introduction of the methodology supported by Sche­
macode. The idea is to disturb work already in progress as 
little as possible, 10,11,12 while at the same time including in the 
virtual environment all personnel affected by the use of the 
new methodology. 

Those responsible for the quality of the software-man­
agers, analysts, and programmers-must ascertain that they 
have a thorough understanding of all aspects of Schematic 
Pseudocode. To this end, the team to be initiated into the new 
methodology undertakes a simple project under the direction 
of competent personnel. An ideal project for this purpose 
consists of rewriting in SPC a subprogram that the team has 
previously worked out using conventional methodology. 

Before launching the chosen project, however, the team 
receives a formal introduction to the new tool and obtains all 
the documentation necessary for the use of Schemacode. 2,6,9,13 

This preliminary stage of the virtual environment takes about 
two hours and should be carried out in a group of about six 
people that includes a representative from each level of 
activity-programmer, analyst and manager. The aim of this 
session is to introduce Schematic Pseudocode, Schemacode's 
methodology based on structured programming with a top­
down approach and step-wise refinement. 

The Linked Environment 

Using Schemacode in a linked environment constitutes the 
second stage in the transplantation of the tool. This stage 
consists of using the Schemacode software, in its IBM version, 
at a terminal connected to our central computer by a packet­
switching network of the Datapack or Telenet type. During 
this period, the users become familiar with the commands and 
the real possibilities of the tool. They become able to specify 
exactly which input and output options they would like to see 
added to Schemacode to create a modified tool that will adapt 
most readily to the third phase of the transplantation plan, the 
integrated environment. This second stage ends when all new 

Planning for Software Tool Implementation 755 

specifications have been defined, developed, and tested to the 
satisfaction of the users on the IBM version of the tool. 

The aim of the linked environment is to allow the user to 
understand the full potential of Schemacode. Schemacode's 
primary task is to assist in the development, documentation, 
and structured coding of source programs, which are then 
transmitted to the main computer for execution. 

Schemacode constructs, according to the rules of Schematic 
Pseudocode, an aggregate file developed from the different 
refinements specified by the user. This software also checks 
for basic errors in the structures entered. As a result of dis­
cussions which crop up among the team members during the 
virtual stage, this module can be modified slightly to adjust to 
the technical peculiarities of the third phase of implementa­
tion. The two output modules provide for the reproduction of 
printouts of the complete documentation of the program de­
veloped: an alphagraphic representation of the logical struc­
ture of the different refinements of a program as developed by 
the user at the terminal and a coded version produced by 
Schemacode, in FORTRAN, from the control structures and 
the comments specified during program development. 

Exercises such as those described allow the team members 
to evaluate the input and output modules in terms of their own 
particular work environment, as well as allowing each group 
member to develop his competence with Schemacode without 
disturbing the existing hierarchical structure of the work mi­
lieu. The linked environment stage thus allows the tool build­
ers to clearly define the software and hardware specifications 
of the input and output features of Schemacode as it will 
appear in the third stage, the integrated environment. The 
tool builders can thus adapt Schemacode's input and output 
modules to the particular type of hardware that they already 
possess or that they intend to buy. As each specific option is 
added to the tool, the team can test and evaluate it. The give 
and take among the team members and the tool means that 
there will be a clear evaluation of the needs of the group 
and minimizes the costs of transition to the integrated 
environment. 

The Integrated Environment 

The integrated environment is the stage at which Schema­
code is fully functional. At this stage the software and all its 
component parts "have been completely adapted to the needs 
of the particular user and the hardware that the user pos­
sesses, including terminals, printer, and files. This envi­
ronment stabilizes when all technical and administrative dif­
ficulties have been overcome. It is noteworthy that the 
preparatory phase of the integrated environment is complete 
when the linked environment has become fully functional. 
Thus, the transition from the linked to the integrated environ­
ment, however major a change for the firm as a whole, does 
not normally entail modifications in the work habits and re­
lationships of the team adopting Schemacode. 

The integrated environment can be effected in one of two 
ways, through the use of internal or of external resources. In 
the latter case, the team makes use of an outside computer, 
much as in the linked environment, with the difference that 
the Schemacode software is now perfectly adjusted to the new 



756 National Computer Conference, 1982 

user's particular needs. However, even with the use of exter­
nal resources, a program generated by Schemacode can be 
executed on the firm's internal computer. 

Internal resources are divided into the following categories: 
(1) main systems and (2) \vork stations. The ne\v user can 
decide to adapt Schemacode to his own particular computer 
and to connect this computer to different terminals, or he can 
give each programmer-analyst a work station. In the latter 
case, Schemacode is implanted in a microcomputer, and from 
his work station, the programmer can conceive and analyze 
his programming problem, obtain the code, and then transmit 
the program to the main computer for execution. 

The advantages of using internal resources are significant if 
a computer is reserved exclusively for the development of 
software. In other cases, the user's needs may require buying 
an additional computer capable of handling the concept of 
interactive software development. No matter what type of 
resources are used for the creation of the integrated environ­
ment, as far as the development of the software, the result is 
the same: Schemacode ensures uniformity. All documenta­
tion is automatically incorporated into the code and de­
manded for each refinement step. 

The adaptation and adoption of Schemacode are effected 
only with continual feedback between these two groups. Fig­
ure 7 provides a resume of the kind of feedback for each stage 
-virtual environment, linked environment and integrated en­
vironment involved in the transition to Schemacode. 

CONCLUDING REMARKS 

The Schematic Pseudocode is easy to draw by hand. However, 
one major interest of this methodology is its automation by an 
interactive tool named Schemacode. Using the Schematic 
Pseudocode, Schemacode assists designers in successively re­
fining the solution into further details. Schemacode performs 
its task by keeping track of all the processes involved and 
making sure that they are properly done, integrated, and doc­
umented. The process can go as far down as required by the 
user, possibly to the code level. 

This article describes how Schemacode progressively mod-

ENVIRONMENT TOOL BUILDER TOOL USER 

Virtual 
Methodology --.. 
~ Structural needs 

Schemacode 
with modified 

Linked SPC --.. 
~ Interface needs 

Schemacode 
customized 
version --.. 
~ Evaluation 

Integrated 

Figure 7-Resume of the feedback between the tool builder and the tool 
user for every step of the tool implementation 

ifies the environment in which software is developed to grad­
ually produce a completely automated environment for the 
development of software. Schemacode is specifically designed 
for adaptation to, rather than imposition on, a new milieu; 
and the adaptation is accomplished by the \vork of the ne\v 
team adopting Schemacode. 

The success of a tool depends on several factors: the tool's 
flexibility and adaptability, the environment, the tool's ac­
ceptability to the team members, etc. It is not enough for a 
manager to want a tool; the tool must be gradually accepted 
and accepted with enthusiasm by the team affected. The im­
plantation of a tool must modify the existing design environ­
ment as little as possible and must adapt this environment to 
the requirements of the tool. 

The development of software usually proceeds under condi­
tions that are severely restricted in terms of money and time. 
A design tool can hardly be introduced effectively when it 
serves only to contribute to the already existing confusion and 
tension brought on by the constraints of time and money and, 
furthermore, ends in confusing the documentation. This is 
why particular attention must be paid to the implantation of 
a new tool and to the elaboration of its functional environ­
ment. Careful research is required to better evaluate the ef­
fects of tool implantation into any given environment. The 
project and its preliminary results, presented in this article, do 
not pretend to solve the problem at hand, but they can per­
haps provide some guidelines when considering the mod­
ification of environment. 

ACKNOWLEDGMENTS 

The plan for integration proposed in this article is in fact an 
experiment now in progress in the industrial milieu of Cana­
dian Marconi Corporation. The first and the second stages 
in the integration-transplantation plan-the virtual and the 
linked environments-have been successfully completed, and 
the creation of the integrated environment is in progress. 

We would like to thank Mr. Tony Murphin, the manager in 
charge of software quality control, and the analyst, Mr. Roger 
Gauthier, for their unconditional support. 

The projects described above were realized with the col­
laboration of Ecole Poly technique de Montreal and were par­
tially financed with the help of subsidies from the gov­
ernments of Quebec (FCAC grant No. EQ-1727) and Canada 
(CRSNG No. RD-0119). 

REFERENCES 

1. Panel Session, G-2, "How Practical are Today's Software Engineering 
Methodologies." 5th International Conference on Software Engineering, 
San Diego, CA, March 1981. 

2. Robillard, P.-N., and R. Plamondon. "An Interactive Tool for Narrative, 
Operational and Structural Documentation." Proceedings of 23rd IEEE 
Computer Society International Conference (COMPCON 81), Washington 
D.C., Sept. 1981, pp. 291-295. 

3. Miller, E., "Tutorial: Automated Tools for Software Engineering." IEEE 
Computer Society, IEEE Catalog No. EHO-150-3. 

4. Freeman, P., Wasserman, A. I. "Tutorial: Software Design Techniques." 
IEEE Computer Society. 2nd Ed., Catalog No. 76CH 1145-2C. 

5. Belady, I. A., C. J. Evange!iste, and L. R. Power. "Greenprint: Graphic 
Representation of Structured Programs." IBM Syst. Journal, Vol. 19, no. 
4, 1980, pp. 542-553. 



6. Plamondon, R., and P.-N. Robillard. "Harness a Computer to Write Better 
Software, Faster." Electronic Design, 29 (1981), pp. 125-129. 

7. Robillard, P.-N., and D. Thalmann. "Complex Problem Solving Using 
Schematic Pseudocode." IRO Universite de Montreal, Publication No. 373, 
Nov. 1980, 17 pp. 

8. Robillard, P.-N., and R. Plamondon. "Schemacode: An Interactive Sche­
matic Pseudocode for Program Development, Documentation and Struc­
tured Coding." Proceedings of Tool Fair, 5th International Conference on 
Software Engineering, San Diego, CA, March 1981, pp. 161-169. 

9. Robillard, P.-N., and R. Plamondon. "Introduction to Schemacode." EP-
81R-20, Ecole Poly technique de Montreal. 

Planning for Software Tool Implementation 757 

10. Riddle, W. E. Software Development Environments, Tutorial on Software 
System Design Description and Analysis, Computer Society Press, IEEE 
cat. EHO-166-9, 1980, pp. 210--219. 

11. Riddle, W. E. et al. "Behavior Modelling During Software Design." IEEE 
Trans. on Software Engineering, Vol. SE-4, (1978), pp. 283-292. 

12. Basili, V., and R. W. Reither, Jr. "A Controlled Experiment Quan­
titatively Comparing Software Development Approaches." IEEE Trans. on 
Software Engineering, Vol. S4-7-N.3, May 1981, pp. 299-320. 

13. Robillard, P.-N. "Programming from Semantic Knowledge." 3rd World 
Conference on Computers in Education, Lausanne, Switzerland, July 
27-31, 1981. 





Distributed processing of problem-solving applications for 
farmers 

by ROBERT GAMMILL and LYNN THORP 
North Dakota State University 
Fargo, North Dakota 

ABSTRACT 

Intercomputer data communication via modem and telephone promises to have an 
important impact on rural areas. Unattended and inexpensive late-night commu­
nication has the potential for providing routine, noninterruptive, and rapid informa­
tion interchange. An application of intercomputer communication to reduce the 
cost of using remote timesharing services has been experimentally developed at 
North Dakota State University (NDSU). An agricultural problem-solving program 
from the AGNET system in Nebraska has been split into three parts: interactive 
input of user data, computation of results, and production of an output report. The 
interactive input is then carried out on a computer near the user, eliminating 
interactive long-distance communication costs. The data collected are transmitted 
to the AGNET timesharing machine for calculation. The transmission, including 
login, is rapidly carried out by the local machine, using a protocol interpreter 
developed at NDSU. The results of the calculations are then transmitted back in 
compact form to the user's machine, where they are formatted and displayed. Only 
a minute of connect time to AGNET is required instead of half an hour. The 
protocol interpreter used to do this is described in some detail. Such splitting of 
functions between computers promises to allow high-quality problem-solving ser­
vices to be provided on central machines, with personal or local machines providing 
interactive input and printed output services. 

759 





INTRODUCTION 

Rural areas have a high variance in quality of life. Despite 
positive attributes such as quiet, clean air, woods, lakes, slow­
er pace, and other amenities, there are numerous negative 
attributes stemming from isolation, such as a limited number 
of stimulating jobs; reduced access to educational, cultural, 
and entertainment opportunities; reduced peer interaction; 
and the lack of other positive attributes of urban life. Modern 
communications media, such as telephone, mail, newspapers, 
magazines, radio, and television, have helped; but there is still 
a lack of rapid, inexpensive, convenient, noninterruptive two­
way communication facilities for rural use. Computer­
controlled telephones promise to remedy this situation in the 
near future. Microcomputer-controlled data communication 
over telephone lines should produce a major improvement in 
quality of life in rural areas. 

This paper concerns one use of computer-controlled data 
communication and describes research being carried out at 
North Dakota State University to provide inexpensive access 
to farm-related problem-solving and management computer 
services. The work is part of a project called RAIN (Rural 
Agricultural Information Network), sponsored jointly by the 
North Dakota State University Agricultural Experiment Sta­
tion and the Cooperative Extension Service. The research 
uses adaptive softwarelO that allows a computer running 
UNIX6

,13 to login on another computer and run programs on 
that machine as if the UNIX system were an ordinary time­
sharing user, but at much greater speed than is possible for a 
human user. This capability allows the UNIX system to com­
municate with computers that are unprepared to com­
municate with it! In a rural environment, where most comput­
ers will be owned by individuals, such capabilities are likely to 
be critical. 

The goal of the present work is to demonstrate the fea­
sibility of distributing the processing of farm-oriented com­
puter services through such means. North Dakota farmers 
have access to AGNET, a timeshared computer service for 
generating solutions to farm management problems. A limit 
to the ultimate utility of AGNET to North Dakota farmers 
is its location in Lincoln, Nebraska, since long-distance 
telephone costs limit how much use a farmer can make of 
the system. The research demonstrates that a data sheet can 
be collected near the farmer, either on a personal computer 
or on a nearby timesharing system, and then transmitted 
through the telephone network from computer to computer. 
This eliminates the costly time delays involved in human typ­
ing over long-distance telephone lines and also allows the 
transmission to be scheduled late at night, when long-dis­
tance charges are minimal. Results are subsequently trans-

Problem-Solving Applications for Farmers 761 

mitted back to the machine near the farmer for examination 
or printing. This method is related to the concept of a network 
operating system, where processes may be scheduled on geo­
graphically distributed processors; but here the distribution of 
function is being carried out at the application level by a 
network terminal "agent" working like a postman. 

RURAL COMMUNICATION 

Considerable attention has been focused recently on the pos­
sibility of saving energy by using communication in place of 
transportation. For example, instead of traveling a sales­
person might make sales by telephone. In rural areas where 
distances are great, not only energy but human resources are 
at stake, since travel time reduces time available for edu­
cation, recreation, or business. At present, rural areas depend 
primarily on mail service, telephone, and the media (e.g., 
television and publication) for communication. Although the 
media provide a great deal of general information, specialized 
information desired by an individual can be difficult to obtain 
quickly and cheaply. Most limiting for the media is the one­
way direction of the communication. For two-way commu­
nication the rural resident must depend upon telephone or 
mail. Mail has the advantage of being noninterruptive, but it 
is very slow. The telephone, though rapid, is interruptive and 
requires that both parties to the conversation be at their tele­
phones. In the rural environment where much work is done 
outdoors and long travel times can keep people from phones, 
the telephone's usefulness is reduced. A result has been that 
some farm wives, who remain closer to the house, have taken 
on the role of communications expediter. The computer­
controlled modem and telephone promise to combine many 
good features of telephone and mail and to provide new op­
portunities and capabilities in rural areas. The promise stems 
from their noninterruptive nature (like mail) and their ability 
to minimize costs by automatically dialing up another machine 
at low-cost times (when humans are asleep), or by maximizing 
speed of outgoing information (at higher cost) by making an 
immediate connection and data transfer. No matter when data 
is sent, it can go at a rate of 300 to 1,200 words per minute­
much faster than even the fastest person can type. With im­
proving technology, even greater speeds are possible. 

The particular work to be described in this paper is the 
extension of a farm-management-oriented computer time­
sharing system called AGNET. It is extended by allowing 
some of its communications-intensive functions to be carried 
out on computers near the user, in the hope of substantially 
reducing communication costs. This research concentrates on 
ways in which this redistribution of the functions of AGNET 



762 National Computer Conference, 1982 

programs can be done with minimal changes in existing AG­
NET software on the central system to minimize the cost of 
changing over to this new technique. We begin by examining 
several current agricultural timesharing systems. 

CURRENTLY AVAILABLE AGRICULTURAL 
TIMESHARING SERVICES 

In the past few years several computer services have been 
developed especially for the agricultural community. Some 
are designed for a very limited audience. For example, HAMS 
(Hog Accelerated Marketing System) is designed to market 
hogs. Both buyers and sellers input information about animals 
available for sale and prices dealers are willing to pay. The 
seller may request a firm deal from a buyer or put up his lots 
for auction. The auctioning or acceptance and rejection of 
firm deals are all completed through the computer. A similar 
service is available to cattlemen in Texas through CATTLEX, 
a program funded by the United States Department of Agri­
culture. Producers will list cattle for sale and buyers will then 
have access to this list. 15,16,17 

Other computer systems have been designed to be more 
mUltipurpose. These services usually provide a variety of pro­
grams relating to agriculture, such as budgeting, crop plan­
ning, marketing ideas, and management. The most widely 
known of these services are FACTS (Fast Agricultural Com­
munications Terminal System) at Purdue University, TEL­
PLAN at Michigan State University, and AGNET, a regional 
facility in Lincoln, Nebraska. 5,u 

AGNET 

AGNET is a regional AGricultural NETwork computer sys­
tem headquartered in Lincoln, Nebraska, which serves mainly 
the states of Nebraska, North Dakota, South Dakota, Wyo­
ming, Montana, and Washington, with users from several oth­
er states and countries. AGNET's primary purpose is as an 
information delivery system, information ranging from mail 
between users, current market information, and current news 
clippings to information derived from problem-solving pro­
grams. The major users of AGNET are farmers, home­
makers, Cooperative Extension Service personnel and spe­
cialists, adult vocational education instructors, agricultural 
researchers, and students in home economics and agricul­
turally related areas. At the present time 35 to 40% of North 
Dakota AGNET usage is from students, mainly at North Da­
kota State University. Originally funded as an Old West Re­
gional Commission project, the project now receives support 
from member states. In North Dakota part of this support 
comes from the state legislature in the form of budget money 
for the Cooperative Extension Service. The Extension Service 
now supports the use of AGNET by people involved in re­
search, teaching, and adult education programs. External us­
ers (people not associated directly with the university or Ex­
tension Service) pay a fee that covers the direct cost of their 
computer use. In other states external users' fees are used to 
support the rest of the system. 

AGNET has a wide variety of programs to serve many 
agricultural needs. Some of these are simulations of real sys­
tems, such as grain drying and feeder cattle performance. 
Other programs help the user to figure out the best way to 
solve problems, such as the right feed mix, irrigation sched­
uling, the best crop to plant under certain conditions, or the 
feasibility of buying more land or machinery. General farm 
planning, estate planning, and tax management programs are 
also available. These problem-solving programs are designed· 
to guide the user to a possible solution by asking questions to 
gather relevant information. The user can see the result of one 
set of data, change several answers, and see the new outcome. 

Besides problem-solving programs, AGNET also provides 
services such as news clippings of importance, lists of buyers 
and sellers for hay and other commodities, and other general 
information useful to the agricultural community. A mailing 
system is also available to send messages to specialists, state 
programmers, and other users. 

Currently the most widely used programs fall in the areas of 
market information, financial packages, and communications, 
which includes mail, listings of magazine and newspaper arti­
cles, and conferencing. A problem-solving program that is 
used widely is FEEDMIX, which calculates the least-cost feed 
mix for certain nutritional requirements. 1 

Its interactive nature and quick response to the "what if' 
type of question help to make AGNET a well-used and rap­
idly growing service. There are now about 2,100 user numbers 
available for the whole system; about 215 of them are in North 
Dakota. The number of user IDs, however, is not a true 
indicator of the number of users, since several of these num­
bers are general-purpose numbers available to a large number 
of people, especially students. In North Dakota alone, the use 
both in total number of logins and average login session length 
increased by 35% in fiscal year 1980 and by 41 % in fiscal year 
1981. The average user in North Dakota is logged on for about 
35 minutes and typically runs two or three packages, besides 
receiving mail. In other states, such as Wyoming, the major 
use is for communication through mail, which makes the aver­
age login time shorter, although the number of logins is about 
the same. 1 

PROBLEMS WITH CURRENT TIMESHARING 
SYSTEMS 

With the increasing use of the services provided by today's 
timesharing systems, including AGNET, several potential 
problem areas come into focus. As actual computing costs 
decrease, a larger part of a timesharing user's cost will be the 
communication cost to link to the system. An interactive time­
sharing session usually involves a large amount of instructions 
and information to be transmitted to the user. The user then 
types in a reply, and the program continues. However, the 
user normally must think awhile before typing in his or her 
response. Even when typing, few users are able to achieve 30 
words per minute, or 10% of the available data rate. This 
means that the communication line is sitting idle for long 
periods of time, reducing the efficiency of line use to perhaps 
as low as 1 %. At the normal rate of 300 baud a session can be 
very lengthy and expensive, especially with daytime telephone 



rates. Besides being more costly to the user, a lengthy session 
ties up the resources of the timesharing and telephone sys­
tems. Such resources include telephone switching equipment, 
lines, and the computer's terminal port. Although the re­
sources such as the ports are in use a large percentage of the 
time, this does not mean that they are being used efficiently. 
North Dakota currently has seven ports to Nebraska. Four of 
these are dedicated to users on the campus of North Dakota 
State University and external users. The other three are ded­
icated to the field staff. The presently available ports are 
usually filled, and there are plans to increase the number of 
ports and lines to Nebraska. Handling the increase in demand 
solely by adding new equipment without increasing the effec­
tive use of existing resources can be an expensive and short­
term solution. 

At a time when demand for services has increased and 
adding physical resources costs a great deal, increasing the 
efficiency of the use of existing resources is another way to 
maintain and possibly expand the current level of service. One 
way to increase the efficiency of the communication lines is to 
use computer-to-computer communication, which can in­
crease the line use to nearly 100%. 

Splitting an interactive session into parts and running the 
communication-intensive portions of the session on a home 
microcomputer, sending only a small amount of information 
over long-distance lines, allows this higher use of communi­
cation lines. A microcomputer is a logical choice for the 
communication-intensive tasks, for several reasons. First, 
many farmers now have or will soon have a personal computer 
to aid them in the record-keeping aspects of farming. Cur­
rently available software can handle these tasks, but very 
few agricultural-problem-solving programs are available for 
microcomputers. Second, many people are taking advantage 
of the ability of their microcomputer to act as a terminal for 
accessing the larger timesharing services that have this soft­
ware available. The highly interactive nature of micro­
computers is ideally suited to the data gathering necessary for 
the input worksheet. Downloading a program from a remote 
machine to the personal computer to allow this data gathering 
would cut the amount ~f connect time to long-distance facili­
ties. Long-distance lines cost about $9 per hour late at night 
and $21 during working hours. At those prices a local comput­
er to provide interaction and collect data for subsequent trans­
mission can quickly pay for itself. 

One further point should be made about computer-to­
computer communication, as opposed to timesharing. Not 
only does intercomputer communication reduce costs to the 
computer user; it should also be a boon to telephone compa­
nies and to other residential telephone users. Present use of 
the telephone system by computer terminals connected for 
hours to timeshared computers has clogged local exchanges 
and encouraged movement toward metered local service, 
since earlier tariffs were based on an assumption of 3- to 
5-minute calls. The computer-to-computer communication we 
describe will operate in short bursts and be most economical 
and nearly as convenient for use at night, when voice traffic is 
minimal. It will generate additional telephone revenue at low 
load times, require no additional facilities, and increase the 
efficiency of the rural telephone system. This load leveling 

Problem-Solving Applications for Farmers 763 

should have the effect of lowering residential phone rates, an 
important result in inflationary times. 

THE COMPUTER-CONTROLLED MODEM 

Most work on computer-controlled modems until now has 
focused on microcomputers using assembly language. Al­
though UNIX running on a PDPll/45 cannot be viewed as a 
personal computer system, the wide use of UNIX on the next 
generation of 16-bit microcomputers makes it likely that it 
soon will be viewed in that way. The powerful programmer's 
environment of UNIX and its higher-level language C, in 
which UNIX is written, makes it an ideal system in which to 
do software research. As a result, we are using a PDPll/45 
running UNIX, a Universal Data Systems (UDS) 103J-ACU 
modem with auto-dialer, and one port of an ABLE DMAX-
16 (DEC DHll equivalent) terminal multiplexer as the hard­
ware support for our research. At a later date we plan to test 
the software on much less expensive equipment, namely a 
PDPl1123 running UNIX, a DZV11 terminal multiplexer, and 
an autodialer modem, such as the Hayes Smart Modem. 

The goal of the research is not only to establish connections 
between computers using the dial-up telephone network, but 
to allow the computer to establish and use those connections 
without any human intervention so that the benefits of late­
night operation and low rates can be realized. In addition, we 
are developing protocols that permit the "other" computer to 
be completely unprepared for computer-to-computer commu­
nication. The goal is to use the normal timesharing login mode 
of many machines as an access method and program our ma­
chine to be so "smart" that it can act like a human user of 
those machines. Clearly there are advantages and disadvan­
tages to this goal. The data rates achievable are limited, but 
most critical is the requirement for having a different protocol 
for every computer with which interaction will take place. 
This places upon us the requirement to make the software 
interpretive and to provide compact definitions of the inter­
action protocols for the "other" machines. We are well aware 
that if N machines are to communicate through login on one 
another, this could require as many as N*(N - 1) protocols. 
However, we are optimistic that should wide use of this ap­
proach develop, the volume of protocols will provide a strong 
incentive for standards among the machines which could be 
implemented and tested using our interactive protocol inter­
preter. Despite some obvious problems in our approach, it 
has even more important advantages. Most existing network 
protocols demand that every participating computer "learn 
the language." On the ARPANET every host must have an 
IMP interfaced to it and the host-IMP protocol must be imple­
mented for that host. Thus, any computer where the cost of 
an IMP and implementation of the host-IMP protocol is out 
of reach is precluded from participation. Rural communica­
tion using personal computers probably cannot accept such 
stringent requirements for entry into the "club." Therefore, 
we have decided to work on the interactive protocol inter­
preter to see just how far such an approach can be pushed. 
The payoff is that only "our" machine need be smart, and by 
distributing such smart machines around the countryside to 



764 National Computer Conference, 1982 

CALL 
$O'abody' 
$0=rOI5 
$1 

$2241007 
$3020A 

$4'% 'A 

$5001 

$6 

$7001 

$8 

MEANING 
Defines $a to mean body (macro definition). 
Defines $r to be the character 15 octal. 
End of line mark (allows comments etc.). 
Normal end of line causes transmission of all preceding 
text to the remote system. 
Sei DR11 mode (241) and speed (007). 
Set timeout on no characters returned to 

16 (20 octal) seconds and if so 
take action specified by A, where: 

A ::=n next command is to be issued. 
a abort entire session 

Specify response string (e.g., UNIX prompt) and if found 
do action A (as above). More than one response-action 
pair may be defined. 
Controls echoing into local transcript file. 

000 echo everything (for half duplex). 
001 no echo (for full duplex remotes and 

password input). 
002 do not even provide local prompts. 

Flush out present buffer contents (no return character) 
but do not wait for a response. 
Set pause parameter to one second. This controls the 
time between response and sending of the next command 
for half-duplex systems. 
Flush out present buffer contents (no return character) 
and then wait for a response. 

Figure I-Macro primitives for the protocol interpreter 

act as postmen and public servants, we believe we can supply 
unparalleled communication and information services to rural 
people. 

THE INTERACTIVE PROTOCOL INTERPRETER 

The basis for the protocol interpreter was the RITA language 
developed at The Rand Corporation. 2

,4.14 That language was 
used to control remote systems through the ARPANET (in­
cluding the Illiac IV and various IBM 370's) from a small 
computer running UNIX.3 RITA was designed for artificial 
intelligence research in rule-directed systems; and although it 
provided superb facilities for deducing what to do in compli­
cated situations, it tended to have too much overhead and was 
moderately inflexible for protocol interpretation, because its 
primary goals lay elsewhere. At North Dakota State Univer­
sity, under the RAIN Project, we are building a protocol 
interpreter for interactive systems that has only that goal. To 
do this we are using a macrolanguage9 that allows embedding 
of new language constructs within the interactive command 
text as primitives and sequences of primitives. The purpose of 
these embedded primitives is to provide control, expected 
responses, synchronization, and timing information to the in­
terpreter that transmits the surrounding text to the remote 
computer as commands. Figure 1 shows examples of experi­
mental primitives developed so far. 
This new macro language is based on GPMX7 which was 
derived from GPM, a well-known macroprocessor. The crit­
ical feature of this macro language is that because it uses a 
special escape character ($ here), it allows new operations to 
be embedded in an existing language. The existing language 
in this case is the command language of some remote time­
sharing system. Perhaps an example will make this concept 

clearer. In Figure 2 we show an example of a UNIX login 
session, but without any control primitives embedded. This is 
simply the text that a user would type, but with no indication 
of what responses or timing should be expected. 
It should be noted that the commands of Figure 2 must all end 
with a RETURN character and that the two (CTRL-D) char­
acters at the end result from holding down the CTRL key and 
hitting a D at the same time. This generates the ASCII end­
of-transmission (EOT) character. It should also be mentioned 
that the 12 at the beginning is preceded by an empty line 
(containing only a RETURN character) and these two com­
mand lines are for the purpose of selecting service 12 through 
a Gandalf Private Automatic Computer Exchange (PACX). 
Figure 3 shows the same session, but now with the macro calls 
embedded to control timing and deal with responses in a 
correct manner. It should be emphasized that the command 
text has not been modified, except by the introduction of the 
embedded macro calls. Also, in every case the occurrence of 
an end of line (RETURN character) is a signal for the com­
mand text to be transmitted to the remote system and also 
signals that a response from the remote system (specified by 
a previous $4 macro) is expected. Finally, the $1 macro allows 
a move to a new line of text without such transmission. 
A number of new issues can be observed in Figure 3. For 
example, the mail command gives no prompt or response, so 
a $s macro is issued, which sends off the text (adding a RE­
TURN) but does not wait for a response. In addition, in the 
case of the (CTRL-D) or ASCII EOT characters, no RE­
TURN character is needed, but a response is expected, so the 
$8 macro call is used following the $e, and both are defined as 
the body of a $q macro call. 

We intend to expand the interactive protocol interpreter 
considerably beyond its present capabilities to make it much 
more flexible. Planned expansions include the insertion of the 
contents of input files in the command sequence in order to 
allow login names, passwords, and text (to be transmitted to 
a remote computer) to be provided by a user who need not 
know the contents of the surrounding protocol. In addition, 
we must provide the capability for the user to route certain 
segments of incoming text (from the remote computer) into 
local files or subsystems, e.g., mail. In addition to the two 
present options (Abort or Proceed to next command) on time­
out or recognition of a response string, we also intend to 
implement a Go-to capability, allowing more complex routes 
to be taken through the protocol, depending on the responses 
of the remote system. Presently the protocol interpreter is an 
experimental system, but with these additions we believe it 
will be ready for preliminary operational testing. 

One other facility of the UNIX (Version 6) system at North 
Dakota State University is critical to the effective operational 

12 
gammill 
password 
who 
mail shapiro 
Have you heard from John yet? 
(CTRL-D) (CTRL-D) 

Figure 2-Commands for a UNIX login session 



$O=r015$O=eOO4$O'q$e$8'$5000$2341007000$4'*'n 
$4'SERVICE 12 UNAVAILABLE$r$n'a$4'login: 'n$3007n12 
$4'Password: 'n$5001gammill 
$4'% 'npassword 
$O's$r$6$1'who 
mail shapiro$s 
Have you heard from John yet?$s 
$q$q$l 

Figure 3-UNIX command text with embedded macro calls 

use of the interactive protocol interpreter. This is the "re­
mind" command, which was first implemented at Tne Rand 
Corporation by Dr. S. Zucker. This command allows the user 
to specify when a task should be executed, either in relative 
(e.g., 1 hour from now) or absolute (e.g., 3 a.m. May 15) 
time. If the task scheduled by "remind" is not successfully 
completed at that time, it can reschedule itself at a later time 
(using "remind"). Since it can continue to do this until success 
is achieved, it is possible to run the protocol interpreter un­
attended but with great assurance of success! 

DISTRIBUTING THE TASKS OF AGNET PROGRAMS 

As mentioned previously, the increased demand for the ser­
vices provided by AGNET and the increased burden on the 
physical resources of the system necessitate alternatives to 
provide the same quality of service in a more efficient and less 
costly manner. One approach would take advantage of the 
present three-part structure of AGNET programs and the 
increasing presence of personai computers on the farm for 
business purposes by splitting the programs into input, com­
putation, and output sections. This natural division of labor 
allows the individual tasks to be completed on different com­
puters. For example, the input and output sections, both 
communication-intensive, could be run on the farmer's home 
computer, and the model calculations could take place on a 
larger remote machine. 

The input portion of any problem-solving program gathers 
information needed to calculate the answers to the problem 
the program is trying to solve. In current AGNET programs 
this is accomplished through a series of questions to which the 
user responds, having the option of changing previous re­
sponses at any time. The questions are usually asked in the 
following way: 

Enter: 1) Tractor Price 
2) Tractor Useful Life 
3) Trailer Price 
4) Trailer Useful Life 

which takes a substantial amount of time to print out at the 
normal communication rate of 300 baud. This method will be 
referred to as the typewriter mode. 

The input function on a small machine has two possible 
implementations. The first would run as AGNET programs 
now do, with the questions being asked in typewriter format. 
This task is supported by several input routines, written in C, 
which are modeled after similar AGNET subroutines. This 

Problem-Solving Applications for Farmers 765 

method would always have to be available, since many termi­
nals use hardcopy instead of a CRT. An alternative method of 
input, called screen mode, would be video-oriented. Many 
questions would be on the screen at once, and boxes would be 
left for the user to fill in the answer. Hitting a key such as TAB 
would allow the user to move from one field to another. The 
screen mode program, designed to be similar to VisiCalc 
(TM-Personal Software, Inc.), would have the capability of 
checking for illegal or out-of-range data and giving appropri­
ate help messages. A special advantage of screen mode is that 
default answers can be provided in the boxes. Therefore, only 
changes need be entered by the user. 

Regardless of which method is used to gather the user's 
information, a problem-solving routine is needed to calculate 
results. For small applications it is likely that this task could 
also be done on a user's computer. However, some programs 
attempt to answer rather complicated questions. To accom­
plish this, many equations may have to be evaluated, and 
databases may need to be used. This task often requires more 
resources than are available on most microcomputers. There­
fore, the use of a larger computer is often required. After the 
relevant information has been gathered on the small comput­
er, it can be sent off to the larger one to be processed. Anoth­
er reason to keep the model calculations on a central machine 
is to allow the program author to have control over the main­
tenance and modification of the program. This allows the 
integrity of the model calculations and the reliability of the 
results to be certified by the author. Such issues are important 
when model results may be used in expensive agricultural 
decisions. 

The output section of the program takes the results calcu­
lated by the model section and prints it in a form easily under­
stood by the user. This printout is usually in table or chart 
form, which may be very lengthy. At the usual communication 
speed of 300 baud, this is a time-consuming process, which can 
be expensive during daytime hours over long-distance lines. If 
the output process were available on the farmer's own home 
computer, the calculated results could be sent to it in compact 
form, the long-distance connection dropped, and the results 
printed out on the screen or a printer if available. A hardcopy 
listing is often very useful in order to evaluate a possible 
solution to a problem. Since printers are still quite expensive, 
it is possible that not every user would have one. A possible 
solution to this would be to have a printer shared by several 
users, possibly located at a County Extension office. The 
results could be seen on the screen of the farmer's computer 
and then be routed to the printer to be picked up later. 

PROGRESS 

A test program using a North-Dakota-written AGNET pro­
gram, SEMITRUCK, has been set up to test the concept of 
splitting an AGNET program into three tasks and having the 
tasks run on separate machines. Each section was translated 
to C and implemented on the PDP 11/45. The input task was 
accomplished by a routine in typewriter mode and a screen 
mode routine that uses the Heath H-19 video terminal. First, 
the modules communicated with each other on the same ma­
chine, showing that the program could indeed be split. The 



766 National Computer Conference, 1982 

next step was to have the model calculations carried out on the 
AGNET system in Lincoln, Nebraska, with the input and 
output functions on the PDP 11/45 in Fargo. The AGNET 
SEMITRUCK program written in FORTRAN was slightly 
modified to bypass the normal input and output sections of the 
code. The input task was accomplished using the typewriter 
mode routines. These data were sent to the AGNET comput­
er with the aid of the previously mentioned auto-dial modem 
and protocol interpreter. The model calculations were carried 
out and the results sent back to the output program on the 
PDPl1/45. The output worksheet was printed by the local 
machine. 

RELATIONSHIP TO NETWORK OPERATING 
SYSTEMS 

Splitting a task into parts that are distributed over several 
computers interconnected by a network is one of the concerns 
of computer scientists studying network operating systems. 
The goal of a network operating system is to manage re­
sources and tasks among a variety of computers hooked to­
gether by a network, allowing the computers to share those 
resources (such as databases or special hardware) for better 
performance. Such work is complicated, especially because 
the machines and their individual operating systems are often 
heterogeneous and not designed with cooperation with other 
machines in mind. This paper describes work which is defi­
nitely not on network operating systems but is related to it. 
The goal here has been to distribute parts of a task on differ­
ent computers where the network involved is the dial-up long­
distance telephone network. In some ways the methodology 
used has been much different from that of workers in network 
operating systems, because we have assumed that the only 
control that can be exercised over computers "other" than 
ours is through time shared login on the remote computer. 
This has advantages and disadvantages. It means that achiev­
able data rates are low and that the class of services available 
are simply those available to the ordinary user. However, it 
also means that the remote computer need not even know (or 
be modified to support) the fact that it is being used in a 
distributed processing environment. In other words, the 
present work might be viewed as distributed processing man­
aged at the applications programming level., To make an anal­
ogy, overlays in FORTRAN were an applications level solu­
tion to the problem of limited memory, which is generally 
being solved by virtual memory operating systems today. We 
view our work as an applications level solution to distributed 
processing which will ultimately find more refined solution in 
network operating systems. Given the environment in which 
we are working, that solution is not yet feasible here. 

SUMMARY 

A project which seeks to distribute the processing of 
agricultural-problem-solving tasks over two or more comput­
ers has been described. The vehicle for the project has been 
the experimental use of a PDPll/45 running UNIX at North 

Dakota State University to split the processing of AGNET 
timesharing programs into local and remote parts. The goal of 
the work is the dramatic reduction of long-distance line 
charges for users of AGNET by allowing interaction to take 
place locally, while allowing the use of high-quality problem­
solving services that are available on the remote AGNET 
system in Nebraska. The support software used for this 
project is a timesharing protocol interpreter which allows 
UNIX to login on other machines and use their services. This 
method has some severe restrictions, primarily in the area of 
achievable data rates, but promises immense improvements in 
the costs of using remote computer services, since communi­
cation between computers can proceed at the full available 
data rate and at late hours. The cost improvement is estimated 
to be around a factor of 100 in long-distance charges. The 
present work is an early step in the development of systems 
where personal computers on the farm, small local time­
sharing services, and large remote computer services will 
work together to provide services to rural residents that no 
one of the services could provide alone. 

REFERENCES 

1. Anderson, D. North Dakota AGNET Programmer. Personal Interview, 
October, 1981. 

2. Anderson, R. H., and J. J. Gillogly. "Rand Intelligent Terminal Agent 
(RITA): Design Philosophy." R-1809-ARPA, The Rand Corporation, 
Santa Monica, California, February 1976. 

3. Anderson, R. H., and J. J. Gillogly. "The Rand Intelligent Terminal 
Agent (RITA) as a Network Access Aid." AFIPS, Proceedings of the 
National Computer Conference (Vol. 45), 1976, pp. 501-509. 

4. Anderson, R. H., M. Gallegos, J. J. Gillogly, R. Greenberg, and R. 
Villanueva, "RITA Reference Manual." R-1808-ARPA, The Rand Cor­
poration, Santa Monica, California, September 1977. 

5. Cain, Steven. "Computer Age Farming at Your Doorstep." Successful 
Farming, 77 (1979), p. 46T. 

6. "UNIX TIme-Sharing System." The Bell System Technical Journal, 57 
(1978), pp. 1897-2312. 

7. Gammill, R. C. "GPMX-A Portable General Purpose Macro Processor 
Adapted for Preprocessing FORTRAN." AFIPS, Proceedings of the 
National Computer Conference, (Vol. 45), 1976, pp. 927-933. 

8. Gammill, R. C. "Position Paper: Personal Computers for Science in the 
1980's." Proceedings of the Oregon Report on Computing, IEEE­
sponsored conference, March 20-22, 1978 (also reprinted in ACM SIG­
PC Notes, 1 (1978), pp. 18-28, and as Rand Paper P-5954). 

9. Gammill, R. C. "A TIny Portable Language Independent Macro­
processor and Some Applications." AFIPS, Proceedings of the National 
Computer Conference (Vol. 50), 1981, pp. 415-420. 

10. Gammill, R. C. "Research on Rural Communication and the Micro­
computer Controlled Modem and Telephone." Proceedings of Oct. 1981 
ACM SIGSMALL Symposium on Small Systems, SIGSMALL News­
letter, 7 (1981), pp. 40-46. 

11. Henkes, R. "Computers Come to the Farm." The Furrow, 84 (1979), pp. 
2-5. 

12. Isaacson, P., R. C. Gammill. "Personal Computing." IEEE Computer, 
11 (1978), pp. 86-97. 

13. Thompson, K., and D. M. Ritchie. "The UNIX TIme-Sharing System." 
Communications of the Association for Computing Machinery, 17 (1974), 
pp. 365-375. 

14. Waterman, D. A. "Rule-Directed Interactive Transaction Agents: An 
Approach to Knowledge Acquisition." R-2171-ARPA, The Rand Cor­
poration, Santa Monica, California, February 1978. 

15. "HAMS." Successful Farming, 77 (1979), p. H25. 
16. "Computer Marketing Looking Good in Debut." Successful Farming, 79 

(1981), p. H10. 
17. "Cattlex." Successful Farming, 78 (1980), p. B12. 



RIPS net: The impact of an optical communication 
network 

by KOJI YADA 
Electrotechnical Laboratory 
Tsukuba, Japan 

and 

MASANORI HONDA and SEIJI FUJINO 

Fujitsu Limited 
Tokyo, Japan 

ABSTRACT 

The new RIPS (Research Information Processing System), installed in the Tsukuba 
Research Center of AIST (Agency of Industrial Science and Technology) at 
Tsukuba Science New City in Japan, began operation in January 1981.1,2 

AIST thought of the RIPS plan for the purpose of more creative, more advanced 
research activities, taking advantage of the possibilities for centralization, since a 
number of national research organizations were gathered in Tsukuba. 

RIPS is a distributed integral system, decentralized in regard to the individuality 
of the laboratories or the researchers, but centralized by its very large-scale com­
puter system. 

The RIPS network, using optical fiber, is composed of three kinds of networks 
taking into account cost performance and technical innovations of the future. One 
is the MultiPurpose Data Highway loop, handling a mix of coded data and voice 
data. Another is the star-pattern High Speed Dedicated Network to expand the 
distance between the computer channel and 1I0s. The other is the star-pattern 
Video Distribution Network, through which users can observe the state of the two 
networks and the conditions of the RIPS center system. Overall length of optical 
fiber is about 360 km. 

767 





INTRODUCTION 

Local area networks using optical fiber cable have been devel­
oped and put into practical use all over the world. 3

,4,5 

The basic aim of the RIPS network is not only the installa­
tion of a very large-scale computer but also the establishment 
of a total research support system, with the new local network 
enabling each laboratory to make the best use of the full 
power of the computer. 

When a laboratory or a researcher needs individual re­
search information, a decentralized system catering to indi­
viduality is needed. Furthermore, active exchange of informa­
tion between researchers in the network is needed. It is also 
desirable to have software and databases to be used in com­
mon by all users, to control the computer and the mass storage 
system centrally, and to use the system's resources efficiently. 

Taking these conditions into account in RIPS, we con­
structed a distributed integral system having the merits of 
both a centralized system and a decentralized system. In the 
RIPS network, the host computer is installed at the RIPS 
center, computer devices are installed in laboratories, and an 
optical communication network links them. 

We adopted the optical communication technology gener­
ally to take advantage of its mass high-speed data transmission 
capabilities and noise immunity. 

Use of the optical network system contributes to system 
flexibility so that users at distant locations can use the central 
computer easily. 

SYSTEM CONFIGURATION 

Figure 1 shows the configuration of RIPS. The RIPS center is 
located at the center of the premises, where the very large­
scale computer system FACOM M-200 is installed. 

The RIPS center is designed to operate 24 hours a day, 7 
days a week. 

The centralized supervisory system makes possible oper­
ation without special operators. 

To access the host computer from the remote work stations 
and user terminals in the laboratories, there are three optical 
communication networks: 

• The multipurpose data highway 
• The high-speed dedicated network 
• The video distribution network 

Table I shows the scale of RIPS in October 1981. 

THE MULTIPURPOSE DATA HIGHWAY 

The data highway accommodates varied types of data termi­
nals, facsimiles, and minicomputers with standard data inter­
face. 

RIPS Net 769 

The concentration of channels to the host computer, 
switched connection between arbitrary ports, and voice com­
munication are the typical features of the network. 

The requirements of the local network are many, de­
pending on the application. But the following are generally 
common: 

• It must cover widely scattered terminals and computers. 
• It must place a computer facility at the user's premises 

(e.g., on a desk). 
• It must accommodate various types of terminals and 

make it easy to switch accessing to computers. 
• It must be sufficiently flexible to permit expansion or 

changes in the network. 
• It must be expansible to include new services, voice com­

munication, and image communication. 
• It must be easily managed and easily maintained. 

To satisfy the above requirements, we developed a data 
highway with the following features: 

1. Highly reliable transparent network. The highway is a 
duplicated loop transmission highway operated at 16.896 
Mb/s. 

2. Voice communication. In this data highway voice com­
munication is possible by interphone. This voice com­
munication provides a new communication service such 
as program guidance and operation schedule reporting. 

3. Multiloop network. To achieve a reliable and flexible 
network, building block construction is employed for 
each loop. The network is expansible up to five loops, 
and interloop communication is possible through the 
loop exchange node (LX). In the network's configura­
tion, remote centers are connected in a loop, and a star 
connection is used to connect all offices in the building. 
Therefore, an end user can have a desk data terminal. 

4. Microprocessor-controlled distributed packet transmis­
sion. Packet transmission integrates 64 kb/s PCM voice 
and data of various speeds such as 48 kb/s, 4800 b/s etc., 
for interloop and intraloop communication. One packet 
consists of 16 bytes, and in each loop throughput is 120 
kilopackets/s. Thus, a large number of data terminals 
can be accommodated. The main loop frame format is 
shown in Figure 2. 

A switching connection between arbitrary terminals is 
achieved in this network. Then, prior to the data com­
munication, signaling packets are transmitted between 
terminal nodes (TN) by supervisory node (SV) control 
to set the line. The line is released by the same pro­
cedure. The signaling packet throughput is 8000 packets/ 
packets/so Fujitsu's MB8861, an all-purpose processor, 



770 National Computer Conference, 1982 

I I 
RIPS Center 

I
' Center Work Station 

Batch/TSS tDocument 
Work Work. 
~tation ~tat1on 

Graphics I 
Desi2n 
Work-Station 

Image til 
Work 
Station 

I

Control Station 

I 
Graphic 

II 
ery Large-Scale 

Com'Quter System 
(FACOM M-200) 

Network ---

Dedicated 
Network 

I 
Laboratory -

(£[] m7 
~ 
@ ICMTI 

Micro­
computer 
for 
Experiment 

Remote Work Station 

panel 

S\lper­
v~sory 
console 

t-------'-f 

) 

@OD 
~ Facsi- Small/ 
~ mile mini 

computer 

Figure i-Configuration of RIPS 

controls the network. Table II shows the specifications of 
the mUltipurpose data highway. 

5. Centralized network supervisory system. In large com­
puter networks, the network management facility is very 
important. The operation status of each loop and chan­
nel is transmitted to a network supervisory processor 
(NSP: PANAFACOM-U1500 minicomputer system). 
With NSP, it is possible to control the network operation 
mode and to realize remote maintenance. NSP handles 
large quantities of subscriber information such as data 
terminal attributes and can easily deal with channel attri­
bute (e.g., transmission speed) alteration by software 
instructions from the center console. 

The network is composed of several types of nodes, and 
optical fiber links connect these nodes, as shown in Figure l. 
The nodes are as follows: 

1. SV: The supervisor node is set in each loop. The SV 
controls the loop to localize malfunctions, to avoid 
overload, and to collect traffic statistics. SV oper­
ates the RAS function in three steps, as follows, 
when it detects an emergency status in the data 

highway: Normal/emergency line switching, auto 
loopback by loop reconfiguration, and separation 
of the abnormal terminal node. 

2. CN: The center node is set up at the center. Ninety data 
channels are provided to interface the computer. 
Some of the data channels are connected in a time­
sharing system to concentrate the line. Four CNs 
can be accommodated by each loop. 

3. TN: Terminal nodes are installed in remote offices. 
There are 16 channels for interfacing the data ter­
minals, minicomputers, and digital facsimiles di­
rectly or through subnodes (SN). 

4. SN: Subnodes are set up at the users' offices. The sub­
node has a handset, a numeric key pad, a display, 
an audible-tone generator, and two low-speed (up 
to 9,600 b/s) data interfaces or one high-speed (48 
kb/s) data interface. In the SN with two data inter­
faces, one is usually used for the conventional data 
terminal, and the other is for the image terminal. 
The SN is connected to the TN by optical fiber 
links, and the transmission speed is 768 kb/s. Figure 
3 shows the SN equipment. 



5. LX: The loop exchange node interfaces all loops to pro­
vide interloop communication; 1,200 data channels 
and 600 voice channels can be accepted simultane­
ously. The LX also has a master oscillator to which 
all loops are synchronized. 

THE HIGH-SPEED DEDICATED NETWORK 

The network connects the very large-scale computer (FAC­
OM M-200) at the RIPS center with the laboratories in a star 
pattern of optical fiber transmission lines. 

There are two types of Remote Station Adapters (RSA) 
used at transmission control units for the optical fiber trans­
mission lines: RSA-C installed in the RIPS center and RAS-S 
installed in each laboratory. 6 

RSA-C is connected to the FACOM M-200 (host computer) 

TABLE I-Scale of RIPS 

Item 

Environment 
Laboratories and institutes 
Researchers 
Number of researchers using RIPS 
Buildings 
Total area 

Host computer 
Main frame 
Mass storage system 
Disk volume 

Optical fibers and devices 
LED 
APD and Pin-PD 
Optical fiber 

Optical fiber connections 

Data highway 
Loop 
SV 
CN 
LX 
TN 
SN 
Terminals 

Lines for acoustic coupler 
terminals 

Host -accommodated lines 

Dedicated networks 

Video networks 

Scale 

9 
2839 
1613 
about 60 
about 1.5km2 

FACOM M-200 
35GB 
10GB 

about 550 
about 550 
about 360km 

Data Highway 197km 
Dedicated 

Network 136km 
Video Network 27km 

about 2800 
Optical Connectors 2000 
Splices 800 

3 
3 
3 
1 

36 
220 
348 

TSS 319 
RJE 29 

9 

218 

19 

10 

RIPS Net 771 

TABLE II-Multipurpose data highway specifications 

Item 

Loop composition 
Number of nodes 

Number of con­
nectable lines 

Communication 
mode 

Connectable 
terminals 

Call connection 
control 

Interface 

Communication 
service 

Automation, 
labor-saving 

Reliability 

Operation 
service 

Specification 

Maximum 5 loops/network 
TN-30 or less/loop 
CN-4 or less/loop 
SV-1I100p 
LX-l or less/network 
Maximum 480 terminals/loop 
Maximum 240 subnodes/loop 

Hot line connection 
Switched connection 
Broadcasting (voice only) 

Low-speed lines: 
Asynchronous: Up to 1,200 b/s 
Synchronous: 1,200,2,400,4,800, 

9,600 b/s 
High-speed line: 

Synchronous: 48K bls 

Pushbutton dial (built in subnode) 
Automatic call, interface (V24-200 series) 

CCITT V24, V35, or equivalent 
Acoustic coupler 
FACOM low-speed I/O interface 

Calling party number display 
Representative number, abbreviated dialing 
Incompleted call detail display 

Automatic power ON/OFF mechanism for 
nodes 

System automatic activate/deactivate 
function 

One-dimensional management of subscriber 
control table 

Full-duplex system for main transmission 
line 

System automatic/manual reconfiguration 
(switching to standby transmission line, 
bypass, loopback, etc.) 

Network multiloop configuration 

System configuration with NSP for the 
following functions: 

Collection of RAS information such as 
that for errors 

Collection of statistical information 
such as traffic volume 

Remote control for modification of line 
attributes, line loops, etc. 

channel. RSA-S is connected to various input/output devices 
or experimental minicomputers constituting a remote station. 
Interfaces between RSA-C and the channel and those be­
tween RSA-S and the input/output devices or minicomputers 
are equivalent to IBM360/370 I/O interfaces. 7 Major RSA 
specifications are shown in Table III. 



772 National Computer Conference, 1982 

264 bytes/frame (125 ~s) 

Frame Header SG: Signal packet 
PKT: Data packet 

Signal packet (16 bytes) packet (16 bytes) 

CTL: Packet ID flag TID : Terminal ID 
DA : Destination Address DL Effective data length 
OA : Outgoing Address DATA: Call control detail information 
CMD: Command GK Check sign 
RSP: Response flag DO-7: Transmission data 

Figure 2-Frame format 

The remote station adapter (RSA) converts I/O interface 
signals into serial signals and transmits them over a long dis­
tance. It also transfers data over a long distance at a high rate 
of speed. 

To make possible the connection of an I/O device requiring 
high-speed transfer, such as magnetic tape unit, RSA makes 
high-speed transfer possible by blocking data with the use of 
a buffer memory, as shown in Figure 4. 

Figure 3-Subnode equipment 

Both RSA-C and RSA-S have three 64-byte blocks used as 
a cyclic buffer for high-speed data transfer. 

Two-way serial interfaces are provided between the two 
RSAs, which continuously transmit frames. A frame consists 
of 36 bits (2 bits are used for synchronization, 1 bit is the frame 
parity bit, and the remaining 33 bits are data bits). Two data 
bits are used to specify one of the three data modes. 

OPTICAL FIBERS AND DEVICES 

The optical source is the highly reliable light-emitting diode 
(LED), operating at about an 830-nanometer wavelength. 8 It 
has a guaranteed lifetime of more than 1 million hours. The 
optical detectors avalanche photo diodes or PIN photo 
diodes, the choice depending on the range of automatic gain 
control. 

TABLE III-RSA functions specifications 

Interface between central 
computer and remote 
device 

Data transfer rate 
Data transfer system 
Transmission system 

Equivalent to IBM360/370 I/O 
interface 

Maximum 1.5M byte/s 
Block transfer/byte transfer 
Frame synchronization 



RIPS Net 773 

Transfer 

~:_r_o_l ________ _ (RSA-C) 

Trans~er I control 

-------
Figure 4-RSA block diagram 

More than 600 optical source and detector pairs are used 
(See Table IV). 

Step index fiber is used for indoor cabling, and graded index 
fiber is used outdoors. Table V shows the characteristics of the 
optical fiber. 

RIPS OPERATION 

Since RIPS began operation, an average of 11,590 batch jobs 
and 13,933 TSS sessions per month have been processed. 

The data highway has 348 terminals; about 35 manufac­
turers supply the terminals. This network not only connects 
the host computer and the terminals; using the switching func­
tion, it also links the medium-scale computer with terminals 
connected to other nodes. Users can use TSS service and so 
on from the host computer and other computers. 

In the dedicated network, 14 lines are used for remote batch 
stations at 9 laboratories. Five lines are used to connect mini­
computers for experiments, and a measurement interface con­
trol unit (MICU) is connected to one of them. 

TABLE IV-Design values of network optical transmission lines 

Multipurpose data 
network High-speed 

dedicated Video 
Item Loop TN-SN network network 

Light source LED LED LED LED 
Photodetector APD PIN-PD APD APD 
Transmission 

speed 16.9 Mb/s 0.768 Mb/s 33.3 Mb/s 6 MHz 
Optical fiber 

cable GI SIIGI GI GI 
Gain (dB) 39.3 29.0 36.3 24.0 
Loss (dB) 24.0 16.1 24.0 20.7 
Margin (dB) 15.3 12.9 12.3 3.3 

THE IMPACT ON THE INFORMATION PROCESSING 
SYSTEM 

Now RIPS is expanding the areas for researchers' information 
processing. For example, experimental data gained through 
MICU and the dedicated network can easily be displayed 
graphically by an extensible engineer language (AXEL).9 By 
using MICU and AXEL, researchers can easily tabulate ex­
perimental data. 

We are developing the electronic filing system (ELF).lO 
Using facsimile, researchers can store image information in 
the host computer and retrieve it later. This system will help 
reduce the amount of paper in the office. 

We have a translation system capable of translating simple 
English phrases into Japanese. Though it cannot translate all 
English sentences, it is satisfactory for translating titles of 
reports in the literature database. ll 

We are now studying and developin6 additional features, 
such as translation from Japanese to English and translation 
to and from other languages. 

TABLE V-Design values of optical fiber cables 

Design value 
Item 

Unit Outdoor use Indoor use 

Cable Outside diameter mm 17 10 
Allowable tension kg 200 50 
Allowable bending 
radius mm 100 60 
Number of optical 
fiber cores cores 2 or 4 2 

Optical Profile GI GI SI 
fiber Core diameter/clad 

diameter fLm 501125 50/125 62.51125 
Transmission loss * dB/km :0:;4 :0:;6 :0:;6 

Transmission 
bandwidth MHz·km ;;:.200 ;;:.200 ;;:.30 

*wavelength: 0.83 J.Lm 



774 National Computer Conference, 1982 

We firmly believe that these RIPS-based applications will 
be a great help in researchers' activities. 

CONCLUSIONS 

This paper discusses the basic concept of the distributed inte­
gral research information processing system and the part of 
the system that has already been put into practicai operation. 

Optical fiber is most suitable for construction of a local 
network. The network will bring new applications to the office 
of the future. 

In the next stage, we would like to employ new communica­
tion technologies, such as extension to a high-speed network 
integrated system that includes video and image information 
and optical atmospheric transmission. 

In the future, efforts will be made to develop and commer­
cialize research automation by upgrading design with CAD 
and by making the best use of trial production capability with 
CAM and office automation technology. Research results of 
the technical learning system and document-translating sys­
tem will be tested with CAl, and wide-range system service 
using a communication satellite and DDX will be developed. 
Efforts will also be made toward further development of de­
centralized utilization and centralized high-level functions and 
high-level system integration. 

REFERENCES 

1. Yada, K., T. Ochiai, and M. Honda. "Optical Fiber Makes Research Infor­
mation Processing System." 25th Computer Society International Con-

ference, San Francisco, 1981. Piscataway, New Jersey: IEEE Computer 
Society, 1981, pp. 450-453. 

2. Yada, K., T. Tanaka, T. Hisano, and M. Honda. "Deveiopment of RIPS­
Net Using Optical Communications." Proceedings of the 23rd Annual Con­
vention of the Information Processing Society of Japan, Tokyo, October 
10-14, 1981. Tokyo: IPSJ, 1981, pp. 605-606. 

3. Yamaguchi, K., Y. Suzuki, and R. Yatsuboshi. "Microcomputer System 
Distribution by Optical Fiber Data Highway." 25th Computer Society Inter­
national Conference, San Francisco, 1981. Piscataway, New Jersey: IEEE 
Computer Society, 1981, pp. 454-457. 

4. Toyoda, T., T. Inoue, S. Koganemaru, A. Izeki, M. Fujii, and K. Yanase. 
"Laboratory Automation with Optical Data Highway for Toyota Motor 
Co., Ltd., Higashi Fuji Technical Center." Fujitsu Limited, 1980 (vol. 31, 
no. 2). 

5. Ceng, W. Y., S. Ray, R. Kolstad, J. Luhukay, R. Campbell, and J. W-S. 
Lin. "ILLINET-A 32 Mbits/sec. Local-Area Network." AFIPS, Proceed­
ings of the National Computer Conference (Vol. 50), 1981, pp. 209-214. 

6. Yada, K., H. Hasegawa, and M. 19awa. "Optical Dedicated Network in 
RIPS." In Proceedings of Distributed Processing System of the Information 
Processing Society of Japan. Tokyo: IPSJ, 1981, pp. 13-18. 

7. IBM. "IBM-SYSTEMl360 and SYSTEMl370 110 Interface Channel to 
Control Unit Original Equipment Manufacturer's Information." IBM Man­
ual GA22-6974-4, File No. S360-S370-19, January 1978. 

8. Abe, M., O. Hasegawa, Y. Komatsu, Y. Toyama, and T. Yamaoka. 
"Performance Optimization of GaAIAs DH LED's." Proceedings of the 
36th Annual Device Research Conference, Santa Barbara, California, 1978. 

9. Koganemaru, S., M. Iijima, E. Hashimoto, and K. Hirai. "Interactive Data 
Handling System for Laboratory Automation." Proceedings of the Com­
puter Software and Applications Conference, 1981. Piscataway, New Jersey: 
IEEE Computer Society, 1981. 

10. Tanaka, T., K. Yada, T. Hisano, and T. Ochiai. "Test Use of Electronic 
Filing System." Proceedings of the 23rd Annual Convention of the Informa­
tion Processing Society of Japan, Tokyo, October 10-14, 1981. Tokyo: IPSJ, 
1981, pp. 1089-1090. 

11. Nagao, M., J. Tsujii, K. Yada, and T. Kakimoto. "Document Information 
Retrieval System with English-Japanese Translation Capability." Proceed­
ings of the 23rd Annual Convention of the Information Processing Society of 
Japan, Tokyo, October 10-14, 1981. Tokyo: IPSJ, 1981, pp. 829-830. 



A coherent scheme to support location-independent 
references in internetwork environment 

by RAY CHENG and J. W. S. LIU 
University of Illinois 
Urbana, Illinois 

ABSTRACT 

We describe in this paper a coherent scheme to support location-independent 
references of remote entities in an internetwork environment where entities may 
dynamically connect to computer systems in different networks. More specifically, 
we propose that name servers be provided within networks and in hosts to support 
user creation and use of symbolic internetwork names of entities. Message-for­
warding mechanisms to support communication between entities that may migrate 
from network to network are designed. 

775 





A Coherent Scheme To Support Location-Independent References 777 

INTRODUCTION 

Since the early 1970s, user desire to access system resources 
provided in remote computer systems and to share informa­
tion with other users motivated the development of data com­
munication networks linking computer systems and terminal 
equipment. More recently these same considerations have 
generated a great deal of interest in the interconnection of 
individual networks to form joint networks of computer sys­
tems. 1--4 To access remote system resources and information in 
a network or a joint network, a user must know how to name 
remote entities. In most existing networks individual com­
puter systems and networks have their own naming schemes. 
Many of the naming schemes are designed and implemented 
in an ad hoc way. Furthermore, the naming schemes are usu­
ally so ingrained in the individual systems that to modify the 
naming scheme of a computer system or a network in a joint 
network often leads to major upheavals. Therefore, design of 
a coherent naming scheme is one of the key issues to be solved 
to allow convenient remote accesses of resources and informa­
tion in an internetwork environment. 

The naming and addressing scheme in computer networks 
has not been treated in a coh~rent manner un"til recently.s,6,7 
In most current networks, addresses are used by system and 
application programs to refer to remote entities. With rare 
exceptions, the design of most networks is based on the as­
sumption that communicating entities either do not move, or 
rarely move, from computer to computer. The use of ad­
dresses to refer to remote entities in networks is analogous to 
the use of physical core addresses in machine languages in the 
early stage of computer usage. In distributed systems where 
migration of files, data, server processes, and users between 
computers and networks are frequent, the tasks of generation 
and maintenance of directory information and the tasks of 
supporting location-independent references to all entities are 
usually carried out at the application layer. 15 

We describe in this paper a coherent scheme to support 
location-independent references of remote entities in an inter­
network environment where entities may dynamically connect 
to computer systems in different networks. More specifically, 
we propose that name servers be provided within networks 
and in hosts to support user creation and use of symbolic 
internetwork names of entities. Message-forwarding mecha­
nisms to support communication between entities that may 
migrate from network to network are designed. 

Our assumptions and terminologies are discussed first. 
Naming and addressing schemes used in well-known networks 
are briefly described. In the next section the functions and 
structures of symbolic name servers that jointly support sym­
bolic internetwork naming are discussed. Then a gateway level 
message-forwarding mechanism and two host-level message-

forwarding mechanisms for internetwork entities that may 
move from network to network are described. An example 
illustrating how the schemes proposed here may be incorpo­
rated into transport layer and session layer protocols is de­
scribed in the last section. 

TERMINOLOGIES AND ASSUMPTIONS 

In this paper we refer to a computer or a terminal that is 
attached to a network and that uses the ba,sic services pro­
vided by the network as a host. It is irrelevant to our discus­
sions to consider whether packets transmitted throughout the 
network are parts of messages exchanged because of inter­
process communication or are parts of voice or facsimile 
transmissions. Similarly, there is no need for us to differ­
entiate among the types of the sources and destinations of 
data packets. We refer to an element that is capable of gener­
ating, sending, or receiving information in the form of mes­
sages as an entity. We refer to the administrators who are 
responsible for the maintenance and operation of an entity as 
the owner of the entity. Entities reside in hosts. 

We confine our attention to packet-switched networks. 
(Since there is no possibility of confusion, we simply refer to 
them as networks.) A packet switch is a collection of hardware 
or software modules that implements the basic network 
packet-switching functions. An entity gains access to its local 
packet-switched network via its local host-to-network inter­
face. Messages to and from entities may be segmented into 
blocks either by local hosts or by the packet switches con­
nected to local hosts. Such blocks of data transported by the 
packet-switched network are called packets. When networks 
are interconnected, we refer to the interconnected networks 
collectively as a joint network. 

We view a name of an entity as a data item that designates 
the entity and distinguishes it from other entities. The address 
of an entity is viewed as a data item that indicates where the 
entity is located or can be reached.6 A name is used either by 
human beings or by machines.s,7 Names intended for the use 
of human beings usually have arbitrary lengths (within the 
limitations imposed by implementation). They are usually 
constructed with mnemonic character strings. We refer to a 
name that consists of a variable number of mnenomic charac­
ters as a symbolic name. Names consisting of bit strings for 
ease and efficiency of implementation are usually used by 
machines. We refer to names consisting of bit-strings as bit­
string names. 

We refer to a name used to identify an identity locally 
within its host as its local name. We refer to a name that is 
used networkwide to identify an entity within a network as its 
C-name, 8 and a name that is used in an internetwork environ­
ment to identify an entity as its I-name. 



778 National Computer Conference, 1982 

Naming and Addressing Scheme in Some Networks and 
Joint Networks 

In most existing networks, addresses of entities rather than 
names are used. For example, in ARPANET,9 before estab­
lishing a connection to a remote process, a user has to know 
the location of the remote process. In Cyclade,lO an entity is 
supervised by a Transport Station (TS). If a TS moves from 
one host to another host within the same region, only the 
packet switches in this region have to be informed. Entities 
that refer to the moved entities are not affected in this case. 
However, if an entity moves from one TS to another TS, or a 
TS moves across regions, all entities and TSs that may want to 
communicate with the moved entities have to be informed of 
the move. In the Distributed Computing System (DCS),l1 
location-independent reference using C-names is achieved 
with packet broadcasting. In Ethernet,12 the station address of 
a remote entity has to be known before a user can use the 
services provided by the remote entity. 

Addresses are also used for access of remote entities in 
interconnected networks. For example, while the CCITT 
X.25 recommendation allows each public data network to use 
its own addressing scheme when a virtual circuit is being set 
up, the X.121 recommendation that specifies the address for­
mat of an X.75 joint network interconnecting a group of X.25 
public data networks has decreed the use of a numbering 
system similar to that of a public telephone network. With this 
scheme, an entity cannot move across a network. In a Pup 
joint-network,13 a remote entity is referred to by a port ad­
dress containing a hierarchical address consisting of a network 
number, a host number, and a socket number. In these net­
works all the programs or tables that refer to the moved entity 
have to be modified when an entity is moved. 

Assumption and Objectives 

To make our discussions of naming and addressing schemes 
clear, we summarize here our assumptions about the joint 
network. We consider here a joint network of an intercon­
nected set of networks. The individual networks may support 
virtual circuit service or datagram service. Each network may 
have a different way to name and to address its local entities, 
may accept different packet sizes, and may have different flow 
control and error control protocols. Each entity in a network 
can be reached by a C-name within that network. We assume 
that the networks are interconnected via gateways. Since the 
level of interconnection is irrelevant to our discussion of nam­
ing and addressing schemes, we make no assumption about 
the manner in which networks are interconnected in our inter­
network mode1.2,3 

The internetwork naming and addressing schemes dis­
cussed here are designed to achieve the following goals: 

1. All the entities in the internetwork environment can be 
referred to throughout the joint network. (We refer to 
these entities as internetwork entities.) 

2. The internetwork naming and addressing schemes are 
independent of the naming and addressing schemes of 
individual networks. 

3. The entities may move within a host, within a network, 
or across networks without any undue cost. 

4. The naming scheme provides symbolic names and bit­
string names. 

5. The naming scheme supports the mechanisms of initial­
izing and deleting I-names. 

6. The internetwork naming and addressing schemes can 
be used both in datagram-oriented and in virtual-circuit­
oriented internetwork architectures. 

Relation between Symbolic Names and Bit-string Names 

We note that a user can use either a symbolic name or a 
bit -string name to refer to a remote entity. However, symbolic 
names usually use more bits than bit-string names. If we use 
symbolic names in packet headers to identify the destinations 
of the packets, it costs more overhead in terms of numbers of 
bits in the packet headers and in terms of the amount of space 
required to store the routing directory. For the sake of effi­
ciency in implementation, we assume here that when a remote 
entity known by its symbolic name is accessed, the symbolic 
name is first translated into the bit-string name or the address 
of the entity by its local host. The corresponding bit-string 
name or address is used in the packet header. If the naming 
scheme supports the use of location-independent bit-string 
names, the translation of symbolic names to bit-string names 
is not affected by the moving of entities. If the host does not 
translate symbolic names to bit-string names for its user, a 
user in this host is constrained to use a bit-string name to 
indicate the destination of a message. 

SYMBOLIC NAME SERVERS 

Since a symbolic name must be unique in an internetwork 
environment, a process that manages the registration of sym­
bolic names is needed in a joint network. This process may 
also be responsible for the translation of symbolic names to 
bit-string names. We call such a process a symbolic I-name 
server (SNS). An SNS may reside either in a gateway or in a 
host. For the reasons of reliability as well as speed, a number 
of SNSs may be distributed throughout a joint network. In 
order to use fully the services provided throughout the joint 
network, information on what entities are available, what 
kind of services these entities provide, and how to reference 
these entities must be made available to internetwork users. 
Therefore we assume that when a symbolic I-name of an 
entity is registered to an SNS, a short description of the entity 
associated with the symbolic I-name should also be kept at the 
SNS. Moreover, the SNS includes a facility to allow users to 
query the database containing the names and descriptions of 
the entities. 

In summary, an SNS provides to the internetwork users 
services needed for the translation of symbolic I-names to 
bit-string I-names, registrations of symbolic names, update of 
the information on the entities, and queries about joint-net­
work entities. In addition, when a packet is received in a host, 
the SNS can be asked to translate a bit-string name into a 
symbolic name. We assume that each SNS has a database 



A Coherent Scheme To Support Location-Independent References 779 

(DB) that provides database services to the SNS. The internal 
structure of a DB is irrelevant to an SNS. 

A host can provide a local symbolic name server (LSNS) to 
network interface routines and local users of the host. The 
LSNS can be viewed by its users as containing all information 
about symbolic I-names of the joint network. It provides such 
services as translation of symbolic I-names into bit-string 1-
names; registration of symbolic I-names; update of the infor­
mation of joint-network entities; query services; and the cre­
ation, translation, and deletion of local representation of 
remote entities. The relation among LSNS, SNS, and DB; the 
algorithms of SNS and LSNS; and the database interface are 
described in the Appendix. In general, if a name used in layer 
i is a symbolic name and a name used in layer i-I is a bit-string 
name, the services of a symbolic name server are provided in 
layer i. 

MESSAGE-FORWARDING SCHEMES 

When entities in a joint network are allowed to migrate from 
network to network, some mechanisms must be provided in 
order that messages intended for a moved entity may be for­
warded to its new location. We describe here two message­
forwarding schemes for this purpose. For the sake of concrete­
ness, we assume that a message intended for an entity contain 
in its header the bit-string I-name of the entity. 

When an entity is to be moved within a network or to a 
different network, the owner of the entity sends a move re­
quest to the supervisor gateway. The supervisor gateway then 
removes the C-name/I-name association from its memory. 
The entity, however, still has the same I-name. 

After the entity has moved to another host and has obtained 
a new C-name, it sends a location report request to its new 
supervisor gateway. The new supervisor gateway keeps the 
C-name/I-name association in its memory and sends the loca­
tion report with the I-name and supervisor gateway associ a­
tion to the registrar gateway of the entity. The registrar gate­
way then updates the assQciation of I-name and supervisor 
gateway code in its memory. 

When it is decided that an entity will no longer be accessible 
to other entities in a joint network, its bit-string I-name can be 
deleted by its owner by sending a termination request to the 
supervisor gateway. The supervisor gateway then deletes the 
I-name from its memory and sends the terminating request to 
the registrar gateway of the entity. The registrar gateway de­
letes the I-name from its memory. Depending on the pattern 
that the entity is referred to and on the implementation of the 
registrar gateway, the deleted I -name may be reused after a 
reasonably long period or never reused. One criterion for the 
reuse of a bit-string I-name is that there be a zero or a negli­
gible possibility for internetwork entities to refer a name that 
designates another entity. 

Gateway Mapping Scheme 

We assume here that the bit-string I-name of an entity 
carries no information on the location of the entity. Among 
the gateways in a joint network, some are responsible for the 
functions of creation and maintenance of I-names and associ-

ations between I-names and C-names of internetwork entities. 
A gateway at which an internetwork entity registers to get a 
bit-string I-name is referred to as the registrar gateway (or 
name server gateway of the bit-string I-name) of that entity. 
A gateway that transmits internetwork packets for a joint­
network entity is referred to as the supervisor gateway of that 
entity. In every network there are one or more supervisor 
gateways for the internetwork entities in the network. How­
ever, there might be no registrar gateway in some networks. 
A gateway can be both a supervisor gateway and a registrar 
gateway for some internetwork entities, but there are gate­
ways that are neither a supervisor gateway nor a registrar 
gateway for any internetwork entity. 

The bit-string I-name of an entity is created when it is 
decided that the entity will communicate with remote entities 
in a joint network. In this case the owner of the entity selects 
a gateway among the gateways in its local network as the 
internetwork supervisor gateway of the entity. All internet­
work communication for that entity will be handled by its 
supervisor gateway. Conceptually, the supervisor gateway can 
be viewed by the entity as a host in the network, with all the 
remote internetwork entities as the local entities of that host. 
The owner of the entity sends a name registration request 
containing the C-name of the entity to the supervisor gateway. 
The supervisor gateway selects a registrar gateway and for­
wards the registration request to it. The registrar gateway 
finds an available I-name from its internetwork name space, 
keeps the association of I-name and supervisor gateway in its 
memory, and returns the I-name to the supervisor gateway. 
The supervisor gateway keeps the I-name/C-name association 
in its memory and returns the I-name to the owner of the 
entity. Without loss of generality, we assume that a bit-string 
I-name consists of two parts: the first part is the code for its 
registrar gateway, and the second part is a bit string that 
uniquely identifies the entity among all entities registered by 
the registrar gateway. 

When an entity is to be moved within a network or to a 
different network, the owner of the entity sends a move re­
quest to the supervisor gateway. The supervisor gateway then 
removes the C-name/I-name association from its memory. 
The entity, however, still has the same I-name. 

After the entity has moved to another host and has obtained 
a new C-name, it sends a location report request to its new 
supervisor gateway. The new supervisor gateway keeps the 
C-name/I-name association in its memory and sends the loca­
tion report with the I-name and supervisor gateway associa­
tion to the registrar gateway of the entity. The registrar gate­
way then updates the association of I-name and supervisor 
gateway code in its memory. 

When it is decided that an entity will no longer be accessible 
to other entities in a joint network, its bit-string I-name can be 
deleted by its owner by sending a termination request to the 
supervisor gateway. The supervisor gateway then deletes the 
I-name from its memory and sends the terminating request to 
the registrar gateway of the entity. The registrar gateway de­
letes the I-name from its memory. Depending on the pattern 
that the entity is referred to and on the implementation of the 
registrar gateway, the deleted I-name may be reused after a 
reasonably long period or never reused. One criterion for the 
reuse of a bit-string I-name is that there be a zero or a negli-



780 National Computer Conference, 1982 

gible possibility for internetwork entities to refer a name that 
designates another entity. 

When an entity wants to communicate with a remote inter­
network entity, it sends a data packet containing the bit-string 
I-name of the destination entity to its own supervisor gateway. 
By examining the first part ofthe bit-string I-name, the super­
visor gateway can determine the registrar gateway of the des­
tination entity and then transmit the packet to the registrar 
gateway. The registrar gateway of the destination entity finds 
the current supervisor gateway of the destination entity and 
transports the packet to the supervisor gateway. Having re­
ceived the packet, the supervisor gateway of the destination 
entity transports the packet to the destination entity through 
its local network. This procedure is illustrated by the exam­
ples below. 

Example 1. As shown in Figure 1, the internetwork entity 
with bit-string I-name 2x wants to send a packet to another 
internetwork entity with a bit-string I-name 4y. The numbers 
2 and 4 indicate the registrar gateways of these entities. Gate­
way 1 is the supervisor gateway of entity 2x, and Gateway 3 is 
the supervisor gateway of entity 4y. 

Entity 2x sends an internetwork packet with destination 
name 4y to the supervisor gateway 1 of the entity 2x. Gateway 
1 forwards the packet to the registrar gateway 4 of destination 
entity 4y. Gateway 4 finds that entity 4y is currently connected 
to Gateway 3 and passes the internetwork packet to Gateway 

gateway 2 
o 

gateway 1 gateway 3 

entity 2x gateway 4 

Figure I-Entity 2x sends a packet to Entity 4y 

3. Gateway 3 then passes the internetwork packet to entity 4y 
through the local network, 

Example 2. This example illustrates how the procedure de­
scribed above can be simplified when the registrar gateway 
and the supervisor gateway of the entity are the same. As 
shown in Figure 2, Gateway 1 is both the supervisor gateway 
and the registrar gateway of the entity with a bit-string I-name 
1x. Gateway 2 is both the supervisor gateway and the registrar 
gateway of entity 2y. Figure 2 shows the path of an internet­
work packet sent from entity 1x to 2y. 

gateway 1 gateway 2 

entity Ix entity 2y 

Figure 2-Entity Ix sends a packet to Entity 2y 

Packet Forward Scheme 

We suppose here that bit-string I-names are managed by 
hosts in the network. In each host there is a process that 
assigns unused I-names to entities. We call this process an 
I-name server. To create an I-name, the owner of an entity 
requests an I-name from the I-name server in its host. Bit­
string I-names may have a hierarchical structure consisting of 
a network number, a host number, and a socket number. Note 
that, in this case, the bit-stringI-name of an entity also indi­
cates the location of the entity when the name of the entity is 
created. 

With this scheme, when an entity moves to a new host, its 
owner requests a new I-name and leaves this new I-name as a 
forward internetwork address in the old host. After an entity 
has moved, the packet containining the old I-name is sent to 
the old host. From the old host, the data packet is forwarded 
to its new host. Hence this entity can be referred to either by 
the old I-name or by the new I-name. (Figure 3) 

If an entity moves several times, the easiest way to forward 
packets is to link the forward I-names serially, as shown in 
Figure 4. Becau~e the time delay for packet transportations is 
significant, this'method makes communicating with an entity 
that has moved many times very, time-consuming. There are 
several ways to modify this meth~d. The first modification is 
to forward internetwork packets through the original location, 

new I-address 

current 
I-address 

old I-address 

Figure 3--Packet forwarding 

Figure 4--Cascade forwarding 

where the original location of the entity is the host (or a 
protocol handler) in which the entity resides when the entity 
first acquires an I-name. As shown in Figure 5, all forwarding 
I-names are pointed to the original location. When a packet 
arrives at a host and it is found that the entity has moved, the 
packet is forwarded to the original location of the entity. 
When a packet is received at the original location and the 
destination entity has moved, the packet is forwarded to the 
current I-name ioeation. The algorithms for this method are 
described in a PASCAL-like language, as follows: 



A Coherent Scheme To Support Location-Independent References 781 

current 
I-address 

Figure 5-Forward through original host 

forwardRecordType = record 
current: boolean; 
(* true if the entity is 

in this host 
original boolean; 
(* true if this host is the 

*) 

original location of the entity *) 
reference: I-nameType; 

end; 
(* When an entity is created *) 
new(I-name); 
with I-name A do begin 

end; 

current : = true; 
original : = true; 
reference: = I-name; 

(* When an entity is moves from I-nameOld to I-nameNew *) 
new(I-nameNew); 
with I-nameNew do begin 

current: = true; 
original: = false; 

end; 

reference: = I-nameOld A.reference; 
(* points to original I-name *) 

with I-nameOld A do begin 
current : = false; 
reference :=I-nameNew; 

end; 

(* Forwarding mechanism *) 
if I-nameA.current then 

passToEntity 
else 

sendTo(I -name A. reference); 

Using the method above, one packet transportation is needed 
to send a packet to the current I-name location of the entity. 
If a packet is sent to the original location and the entity no 
longer resides there, two packet transportations are needed. 
If a packet is sent to an old location that is not its original 
location, three packet transportations are needed. When an 
entity moves, only one message sent to the original location is 
needed. 

The second variation is to forward internetwork packets 
with a feedback update. As shown in Figure 6, when an entity 

moves, it leaves a forward I-name in the previous location. 
When an internetwork packet arrives at a host and it is found 

current 
I-address 

I 2J~_-JJ~.;-1 
..... - -..,...-' 

forward address 
feedback update . --_. ----_.- --... 
Figure 6-Forwarding with feedback updates 

that the entity has moved to a new location, the packet is 
forwarded to the new location and an update message is sent 
back to the location that has forwarded this packet. Hence, 
besides the source and destination I-name field, there is one 
more address field in the internetwork packet to indicate the 
location that forwards this packet. The algorithms for this 
method are specified as follows: 

forwardRecordType = record 
current: boolean; 
reference: I-nameType; 

end; 
(* When an entity is created *) 
new(I-name) 
with I-name A do begin 

current : =true; 
reference : = nil; 

end; 
(* When an entity is moved from I-nameOld to I-nameNew *) 
new(I -nameN ew) 
with I-nameNew A do begin 

current: =true; 
reference : = nil 

end; 

(* Forwarding mechanism *) 
if I-nameA.current then 

passToEntity 
else begin 
- sendTo(I-nameA.reference); 

sendFeedbackTo( forward Source , I-name A. reference); 
end; 

Using this method, if a packet is sent to the location where the 
entity currently resides, one packet transportation is needed. 
If a packet is sent to an old location where the entity does not 
currently reside, the number of packet transportations ranges 
from 2 to n + 1, depending on how up-to-date the forwarding 
addresses are in the previous locations, where n is the number 
of moves their entity has made. 



782 National Computer Conference, 1982 

AN EXAMPLE OF THE USE OF 
SYMBOLIC NAME SERVERS 

We give here an example based on the draft reports on proto­
col feature specifications by the National Bureau of Stan­
dards, which uses the seven-layer architecture of the ISO Ref­
erence Model for Open Systems Interconnection. 3

,14 In the 
reports of the National Bureau of Standards, the name sup­
ported by the session layer is a symbolic name, and the name 
supported by the transport layer is an address. In this exam­
ple, we assume the name supported by the transport layer is 
a bit-string name. In this case, the symbolic name server is in 
the session layer. 

In this example, among the events of service primitives pro­
vided in the session layer and the transport layer, we will use 
the "request" event of the TRANSACTION service primitive 
of the session layer and the "request" event of the TSEND 
service primitive ofthe transport layer. The TRANSACTION 
service primitive provides for single access data exchange for 
correspondent session users without establishing a session. 
The TRANSACTION(request) event notifies the session 
layer that it is to transfer the specified data as a transaction to 
the indicated session user. The TSEND service primitive of 
the transport layer provides for single-access data exchange 
for corresponding transport users without establishing a trans­
port connection. The TSEND(request) event notifies the 
transport layer that it is to transfer the specified data as a 
transaction to the indicated transport user. 

An entity with symbolic I-name "Nety . SeconcLBank.Acctl " 
wants to send data to an entity with the symbolic I-name 
"Netx. Third_Bank.Supv15." Furthermore, the first entity has 
a local symbolic name "Acctl" under user "238." The mes­
sage sent to the session layer, possibly having gone through 
the application layer and the presentation layer, is as follows: 

TRANSACTION(request( 
"Acctl" , 
"Netx.Third-"8ank.Supv15" , 
mode, 
data 
) ) 

The protocol handler of the session layer asks the LSNS to 
translate "Acctl" by calling 1sns. translate (see Appendix). 
The lsns. translate finds out that" Acctl" is a local symbolic 
name and returns the bit-string name of the entity, 
1110001010110, to the protocol handler of the session layer. 
The protocol handler of the session then asks the LSNS to 
translate "Netx.Third-"8ank.Supv15" into a bit-string name 
by calling lsns.translate. The lsns.translate finds out that 
"Netx.ThircLBank.Supv15" is not a local name, and then 
asks SNS to translate it by sending a message to sns.translate. 
The sns. translate queries its database by calling db.query to 
find the associated bit-string I-name, 1010011011001. SNS 
then returns the bit-string I-name, 1010011011001, in a mes­
sage to LSNS. LSNS finally returns the bit-string I-name to 
the protocol handler of the session layer. The session layer 
passes the data transfer message to the transport layer by 
calling the transport layer primitive: 

TSEND(request( 1110001010110, 
1010011011001, 
precedence, 
security level, 
compartment, 
data 
) ) 

We ignore the procedures that pass the message down to the 
network layer, the data link layer, and the physical layer, as 
well as the procedures that pass the message up to the remote 
entity, since they are irrelevant to the use of symbolic names. 
In the destination host, when the message is passed to the 
session layer by the transport layer, the session layer may ask 
symbolic name servers to recover the symbolic name of the 
entity that sends this message. 

ACKNOWLEDGMENTS 

This work was partially supported by the U.S. Army, COR­
ADOM, Fort Monmouth, N.J., Contract No. US ARMY 
DAAK 8080K0060. 

REFERENCES 

1. Cerf, V. G., and R. E. Kahn. "A Protocol for Packet Network Intercom­
munication." IEEE Transactions in Communications, COM-22, 1974, pp. 
637-648. 

2. Cerf, V. G., and P. T. Kirstein. "Issues in Packet-Network Interconnec­
tion." Proceedings of the IEEE, 1978, pp. 1368-1408. 

3. National Bureau of Standards. Features of Internetwork Protocol. Draft 
Report, Report No. ICST/HLNP-80-8, 1980. 

4. Postel, J. B. "Internetwork Protocol Approaches." IEEE Transactions in 
Communications, COM-28 (1980), pp. 604--611. 

5. Saltzer, J. H. "Naming and Binding of Objects." Operating Systems, An 
Advanced Course. Berlin, New York: Springer-Verlag, 1978. 

6. Shock, J. F. "Inter-Network Naming, Addressing, and Routing." Proceed­
ings of the 17th IEEE Computer Society International Conference (Comp­
Con), September 1978, pp. 72-79. 

7. Watson, R. W. "Naming in Distributed Systems." Advanced Course on 
Distributed Systems. BerlinlNew York: Springer-Verlag, 1980. 

8. Pouzin, L., and H. Zimmermann. "A Tutorial on Protocols." Proceedings 
of the IEEE, 66 (1978), pp. 1346-1369. 

9. Carr, C. S., S. D. Crocker, and V. G. Cerf. "HOST-HOST Communica­
tion Protocol in the ARPA Network." AFIPS, Proceedings of the Spring 
lCC (Vol. 36), 1970, pp. 589-597. 

10. Pouzin, L. "CIGALE, the Packet-switching Machine of the CYCLADES 
Computer Network." Proceedings of the IFIP Congress, Stockholm, Swe­
den, August 1974, pp. 155-159. 

11. Farber, D. J. "A Ring Network." Datamation, February 1975, pp. 44-46. 
12. Metcalfe, R. M., and D. R. Boggs. "Ethernet: Distributed Packet Switch­

ing for Local Computer Network." Communications of the ACM 19 (1976), 
pp. 395-404. 

13. Boggs, D. R., J. F. Shoch, E. A. Taft, and R. M. Metcalfe. "Pup: An 
Internetwork Architecture." IEEE Transactions on Communications, 
COM-28 (1980), pp. 612-623. 

14. Zimmermann, H. "OSI Reference Model-The ISO Model of Architec­
ture for Open Systems Interconnection." IEEE Transactions on Commu­
nications, COM-28 (1980), pp. 425-432. 

15. Lindsay, B. "Object Naming and Catalog Management for a Distributed 
DataBase Manager." IBM Research Report RJ2914 (36689), 1980. 

APPENDIX 

In this appendix we describe the relation among LSNS, SNS, 
and DB, the algorithms of SNS and LSNS, and the database 
interface. 



A Coherent Scheme To Support Location-Independent References 783 

LSNS "" SNS , 

, 

DB 

module sns; 

procedure translate( sname, bname, erroLcode); 
(* procedure translate returns the associated bit-string I-name 
of a symbolic I-name or returns the associated symbolic 1-
name of a bit-string I-name. *) 

db.query(snamekey,bname,answer,next); 
if answer = nil then 

prepare_erroLcode( erroLcode); 
end; (* translate *) 

procedure register( entity_record,erroLcode); 
(* procedure register inserts the information of a symbolic 
*i-name into the database. *) 

db.new_record(entity_record,erroLoccurred); 
if erroLoccurred then 

prepare_erroLcode(erroLcode); (* name conflict *) 
end; (* register *) 

procedure update(key, update_record ,erroLcode ); 
(* procedure update updates the information of a given sym­
bolic *i-name *) 

db. query(key,entity_record ,querYJd ,more_answer, 
erroLoccurred); 
(* update the fields of entity_record that appears in 
update_record *) 
update_record( update_record,entity Jecord); 
db.update_record(key,entity_record, erroLoccurred); 
if erroLoccurred then 

prepare_erroLcode( erroLcode ); 
end; (* update *) 

procedure query; 
(* procedure query reads query commands from the sub­
scriber, queries the database, and writes the answers to the 
subscriber until it reads a 'bye' command. *) 

repeat 
read( command) 
if command < > 'bye' then begin 

analyze_command( command ,key ,resuILkind); 
db.query(key ,answer ,queryJd ,more_answers , 

erroLoccurred) ; 
if erroLoccurred then begin 
- prepare_erroLcode( erroLcode ); 

write ( erroLcode ); 
end 

else begin 
write(answer); 

while more_answers do begin 
~geLanswer( queryJd,answer, 

more_answer) ; 
write ( answer); 

end; 
end; 

end; 
until command 'bye'; 

end; (* query *) 

end; (*module sns *) 

module db; 

(* since the structure is irrelevant to name servers, we describe 
here only the assumed database interface. *) 

procedure query(key ,answer ,querYJd ,more_answer); 
(* procedure query searches the database with the given key 
and returns the result to 'answer'. if there are more than one 
answer matches the key, it sets_more_answer to true, and 
assigns a query_id to this query. the caller uses this queryJd 
to get next answer by calling procedure geLanswer. *) 

procedure geLanswer( query Jd ,answer ,more_answer); 
(* procedure geLanswer gets the answer from previous query 
identified by query_id. if there are more answers, 
more_answer is returned true. *) 

procedure new Jecord( entitYJecord,erroLoccurred); 
(* procedure new_record inserts the record into the data­
base. *) 

procedure update_record(key ,entity_record,erroLoccurred); 
(* procedure update_record updates the record of the given 
key. *) 

procedure delete_record(key ,entity_record ,erroLoccurred); 
(* procedure delete_record deletes the record of the given 
key. *) 

procedure reseLdb: 
(* procedure reseLdb initializes the database. *) 

end; (* module db *) 

module lsns; 

procedure translate( sname, bname,erroLcode ); 
(* procedure translate returns the associated bit-string I-name 
of a symbolic I-name or returns the associated symbolic 1-
name of a bit-string I-name. *) 

if not is_Iocal(sname,bname) then 
- sns. translate ( sname, bname ,erroLcode ); 

end; (* translate *) 

procedure register; 
(* procedure register lets the user to register a new symbolic 
i-name. *) 



784 National Computer Conference, 1982 

(* interactively ask user the information of the entity_re­
cord *) 
geLregistecinfo( entity_record); 
sns. register( entity_record ,erroccode ); 
if erroccode < > nil then 

write( erroccode); -­
end; (* register "!<) 

procedure update; 
(*procedure update updates the entity_record. *) 

(*interactively ask the user the key and the fields to be up­
dated 

and prepares an update_record which contains only the 
field to be updated. *) 
geLupdate_info(key, update_record); 

sns. update(key, update_record,erroccode); 
if erroccode < > nil then 

write (erroccodey;-
end; (* update *) 

procedure query; 
(* procedure query connects the query routine of a symbolic 
i-name server to the user. *) 

sns.query; 
end; (* query*) 

procedure make_Iocal( usecid,sname, bname,erroLcode); 
(* procedure make_local makes an association between the 
symbolic local name 'sname' and the given bit-string i-name 
'bname' under the naming environment of the user 
'useLid'. *); 

inserLpair( usecid ,sname ,erroccode ); 
end; (* make_local *) 

procedure delete_local(usecid, sname,erroccode); 
(* procedure delete_local deletes the association between the 
local name 'sname' with the bit-string name from the naming 
environment of the user 'usecid'. *) 

delete_pair( usecid,sname ,erroccode); 
end; (* delete_local *) 

end; (* module lsns *) 



Issues and methods for practical distributed data 
processing applications-I 

by MAURICE BLACKMAN 
Arthur Andersen & Co. 
Houston, Texas 

and 

HUGH RYAN 
Arthur Andersen & Co. 
Chicago, Illinois 

ABSTRACT 

This paper presents methods for one of two key activities in the creation of practical 
distributed data processing (DDP) systems for business computing. The first ac­
tivity, discussed in this paper, is to select a configuration of hardware and software 
to support the implementation of a multiapplication plan. The second, discussed in 
a companion paper, is to select data distribution and manipulation approaches for 
one application within the limits set by the results of the first activity. To establish 
a justification for the methods, the paper selects a definition of DDP, discusses the 
alternatives to DDP for reaching the objectives of the enterprise, and identifies 
the design issues to be solved or avoided in a practical system for a commercial 
establishment. 

785 





Issues and Methods for Practical DDP Applications-I 787 

INTRODUCTION 

Distributed data processing (DDP) seems to have been se­
lected as the computing industry's newest panacea for busi­
ness computing. DDP has very attractive characteristics, ac­
companied by some significant technical challenges for the 
pioneer. This situation would be acceptable if the decision to 
use distributed processing were always made by computing 
professionals. Unfortunately, the spectacular improvements 
in the price/performance ratings of small computers has led to 
a significant number of articles in the business press 1-4 that 
promote the use of small computers in DDP configurations. 
As a consequence, the initiative in using DDP is taken by the 
chief executive, and the MIS director is frequently faced with 
a directive to "implement distributed processing." 

Principal Tasks 

In our experience and that of our colleagues, there are two 
activities crucial to a successful installation. The first is the 
preparation of a plan or strategy for the disposition of func­
tions, data, and hardware and the identification of the neces­
sary supporting software. The second is the disposition of data 
and the associated choice of approaches to the timing and 
synchronization of processing for each specific application 
within the constraints set by the choices of the prior plan. 

The two activities fit into the context of a complete method 
for systems development. 5 They draw upon data developed in 
earlier tasks and provide input to tasks that follow. The two 
tasks are discussed because they result in key design decisions 
that control the impact of logical problems and technical gaps 
that we see in the present environment. 

Each of the two papers discusses one of the two activities. 
The first is called strategy selection and the second data de­
sign. A method for collecting, organizing, and analyzing rele­
vant data for each is presented. The methods, intended to be 
responsive to the current state of the art in DDP products, are 
aimed at minimizing present risk for the commercial user of 
computing. As logical challenges are overcome and more 
sophisticated products are introduced, the methods will 
evolve. 

Issues 

There are two groups of issues that can make DDP imple­
mentation a formidable task: logical puzzles that spring from 
the very nature of allocating processing between several pro­
cessors6 and gaps in the available technology7 that make some 
approaches more costly than others. The second group of 

issues will lose their significance as the gaps are filled, but the 
first group may persist. In any event, the MIS director needs 
to adopt an approach to DDP that avoids both groups in order 
to succeed in creating a DDP environment within constraints 
of cost and time. 

Definition 

There are many interpretations of the term distributed data 
processing. 6,8,9 To place this contribution in context, we de­
fine DDP as follows: A data processing technique that pro­
vides access to computing power for end users by means of 
multiple processors interacting through the planned exchange 
of data over communication lines. 

The definition is explicit, because DDP systems have many 
sources of variation: 

• The processing capability of the devices at the remote 
location 

• The extent to which data are distributed to terminal 
locations 

• The discipline used to communicate 
• The number of terminal locations 
• The frequency of the processing at terminal and central 

locations 
• The frequency with which the processes are synchronized 
• The compatibility of the devices used for implementation 

Our definition varies from others in certain key respects. It 
is more restrictive than some in implying storage capability 
and hence data residence at each node. It is less restrictive in 
not being limited to online or real-time interaction between 
processors and in not implying any dynamic allocation of 
tasks. 

We wish to stress the definition question for two reasons. 
First, a clear definition helps the DP professional explain how 
a directive to "use DDP" has been interpreted. Second, the 
definition can be used as a template or profile for comparison 
with a proposed configuration. A conforming configuration 
may suffer from some of.the logical problems or gaps in tech­
nology that exist. The implementer of a conforming config­
uration will be alert to these issues and take steps to avoid 
them. 

STRATEGY SELECTION 

User Objectives 

Our earlier definition hinted at one of the key objectives of 
the organization examining DDP: to provide access to com-



788 National Computer Conference, 1982 

puting power for the end user. Distributed means that some 
function of the data processing department is reassigned to a 
person closer to the mainstream of the business. 

There are many means by which that function distribution 
may be achieved, including online terminals and decentralized 
computers. The many variations of DDP fill the middle 
ground. It is the quality of direct access, independent of the 
data processing department, that is the principal objective of 
the requester or commissioner of D D P. We therefore take the 
objective of strategy selection to be the configuration of a 
combination of hardware and software components that deliv­
ers access while optimizing an objective function addressing 
performance, development cost, operating cost, delivery 
date, and ease of use. 

General Approach 

The strategy selection activity can be decomposed into a 
sequence of tasks, as follows: 

• Identification of applications 
• Identification of distributed functions 
• Analysis and selection of a configuration of hardware and 

data communications facilities 
• Selection of standards for data distribution 
• Development of a catalogue of software components 
• Selection of products 

~trategy selection occurs during a planning phase. The re­
sults must stand for five, ten, or even more years. The selected 
strategy must be responsive to requirements that ilre imper­
fectly defined and likely to change. The selection approach 
must therefore rely heavily on the experience, knowledge, 
and judgment of the selectors. The steps here presented are 
precise in their identification and sequence but will be subjec­
tive in their execution. 

Application Identification 

If a strategy is to be durable, the selectors must have a good 
appreciation of the applications to be implemented. From the 
point of view of the user, computing services are more con­
venient if they are accessible through a single work station. 
From the point of view of the enterprise, product acquisition 
is more economical if negotiated for the long term. For such 
reasons, this first task identifies as many potential uses for the 
configuration as possible. 

Useful tools for this purpose are models of general pro­
cessing and data structure requirements specific to the indus­
try to which the enterprise belongs. These charts identify the 
components of a total information system to serve all the 
principal business functions for transaction processing, re­
porting, and operational and strategic planning. The com­
ponents are connected to show how information flows be­
tween them. The charts are personalized to an industry to 
show its unique requirements and to help communicate with 
the executives who must determine which systems are likely 
candidates for automation. The charts form a useful checklist 

to help ensure that all requirements are identified. Character­
istics of the enterprise discovered by interview and research, 
such as size, growth, and markets sought, help to develop a 
plan with a sequence and time frame that reflects the enter­
prise's priorities and resources. (See Figure 1.) 

Function Distribution 

Candidate functions capable of distribution at this time are 
the generic functions of a data processing department rather 
than the specific functions of single applications. This task sets 
limits on the maximum distribution in order to identify 
needed software support in the configuration and to establish 
overall quantities and capacity of equipment. 

Table I gives examples of generic functions in three groups: 
operations, development, and management. 

TABLE I-Generic data processing functions 

Operations Development Management 

Inquiry Identification Network design 
Data entry Justification Capacity plan 
Validation Data design Equipment acquisition 
Correction Screen/report Software selection 
File analysis Process design Standards 
Printing Programming Network operation 
Posting Testing Performance report 

Conversion Data administration 

Decisions about the dispersion of functions are responsive 
to characteristics of the enterprise and are made according to 
simple guidelines. 

Operations 

In general, operating functions are prime candidates and 
are considered first. If operating functions are not dispersed, 
the dispersion of any other functions is very unlikely. Oper­
ations functions are dispersed when the local business unit has 
autonomy in its own day-to-day operations, when its opera-. 
tions are on different business cycles from those of its parent 
or headquarters, and when its operations efficiency or effec­
tiveness can be improved by rapid access to the results of 
computing. The only common exception would be a lack of 
the necessary skills or working conditions to operate comput­
er peripherals. 

Development 

Development functions are also good candidates, for the 
reasons commonly cited for any form of end user participation 
in development: knowledge of the business, responsiveness of 
the design to user needs, and enhanced acceptance of the 
system. In addition, if the sites considered for function dis­
persion are widely separated, centralized development be­
comes difficult as a result of communications difficulties. Dis­
persed development is almost a necessity if the management 
style of the enterprise favors local autonomy as shown by a 



STRATi 
PI.MII 

OPERA' 
PI.MIIIIII 

COIITIIOL 
IIEPCIIIMI 

IIMIIET II'IIDIH/CT ITRATEGY 

o ENVIRONMENTAL FORECAST 
o MARKET IDENTIFICATION 
o NEW PRODUCT PLANNING 
• GROWTH PROJECTIONS 
• PRICING POLICIES 

t 
PIIDDUCT IIIAIIET I'INIIIIII 

o MARKET DEFINITION 
o PRODUCT DEFINITION 
o NEW PRODUCT RElfASE PLANS 
• SALES FORECASTING 
o PROMOTION PlANNING 
o REGULATORY APPROVALS 

t 
~ 

UlEI/ltAIIIETIIII 
ElCfEIIIEIICE 

o MARKET PENffRATION 
o GROSS SElL 
o PROMOTION PERFQftMANCE 
o COMMISSION 
o AGENCY PERFQftMANCE 
o COMPffITIVE ANALYSIS 
o PROMOTIONAL ACTIVITY 

t 
f I 
1 

CDIII'fTTTIVE 
DATACCIUECTION 

TIlAllIACTION 
PIIOCEIIINI 

o COMPffITIVE 
PRICES 

o PROMOTIONAL 
ACTIVITY 

o MARKff SHARE 

INFORMATION REQUIREMENTS PLANNING CHART 
PROPERTY AND CASUALTY 

BUSINESS PROCESSES----------------

POLICY ADMINISTRATION 
STRATEGY 

• POLICY PROCESSING 
ALTERNATIVES 

• LONG RANGE CAPACITY 
PlANNING 

o MEMBER ADMINISTRATION 
POLICIES 

• SERVICES LEVEL POLICIES 

1 
POLICY ADMINISTIIATION 

PlANNIN8 

• TIME/SERVICE STANDARDS 
• PRODUCTIVITY STANDARDS 
• DATA PRIVACY 

REQUIREMENTS 
• CLAIM COST STANDARDS 
• CLAIM FREQUENCY 

STANDARDS 
• FIELD OFFICE PlANNING 
• PERSONNEL LEVEL PlANNING 

t 
~ -'- ~ 

PIIODIICT EXI'£IIISICE POlICYHOLDEIl 
UNIIElIWIUTIII8 CONTIIOL SEIIVICE CDNTIIOL 

• TIME/SERVICE PERFORMANCE 
o PRODUCT PERFORMANCE o CLAIM FREQUENCY ANALYSIS • CQMPlAINT ANALYSIS 

ANALYSIS o LEGAL/REGULATORY o POlICYHQLDER INQUIRY ANALYSIS 
o lEGAL I REGULATORY COMPliANCE o IN FORCE REPORTING 

COMPliANCE o IN FORCE ANALYSIS • CANCELLATION ANALYSIS 
o IN FORCE ANALYSIS o EXCEPTION ANALYSIS o CROSS SELL PRODUCTIVITY 
o EXCEPTION ANALYSIS o PROCESSING ACCURACY 

• UNDERWRITING EXPENSE ANALYSIS 

t I f f 
f T 1 I I 

POlICY ""EMIUM IOUCITATION MAlNTEJIAIICE MAINTENAIICE 
ol'UliCY ISSUE o PREMIUM RECEIVABlE 

o SOLICIT A TlON o ENDORSEMENTS ACCOUNTING 
o SOLICITATION oRATING o PAYMENT FEE ACCOUNTING 

RESPONSE o MVRIINSPECTION REPORTS o BILLING STATEMENTS 
o POTENTIAL o POLICY RENEWAL o DIVIDEND ACCOUNTING 

CUSTOMER o PREMIUM ACCOUNTING o COMBINED STATEMENTS 
MAINTENANCE o REINSURANCE o REFUNDS 

o ADVERTISING o QUOTE o SSA INTEREST 
o WORKLOAD REPORTING o WORKLOAD REPORTING 

~ 

Figure I-Industry system schematic-detail 

CLAIM. CONTIIDL 

• TIME/SERVICE 
PERFORMANCE 

o A TIORNEY CONTROL 
o ADJUSTQR CONTROL 
o COMPLAINT ANALYSIS 
o AVERAGE PAYMENT 
o PROCESSING ACCURACY 
o CLAIMS EXPENSE ANALYSIS 

f l 
CLAIM 

ItAIIITBIAIICE 

o CLAIM ACCOUNTING 
• CLAIM PAYMENTS 
o CLAIM EXPENSE PAYMENTS 
• SALVAGE 
o SUBROGATION 
o REINSURANCE 
o LITIGATION 
o WORKlOAD REPORTING 

J I 

fUIID ffJAllAlalEIT BlRATHY 

• FUND MANAGEMENT POLICY 
o ASSff UTILIZATION AND MIX 
• INVESTMENT STRATEGY 

fUIID IIAIIMEIIEIT I'INIIIIII 

• PORTFOLIO PlANNING 
o LIQUIDITY PlANNING 
o INVESTMENT PlAIINING 

FUlDlIIMIAIaIfIIT 
~,-----

o FUND PERFQftMAIfCE 
o RISK EVALUATION 
o PORTFOLIO ANALYSIS 

POITfOUO/.VElTIIBIT. 

o PORTFOlIO ACCOUNT 
o REVENUE RECEIVABlE 
o MATURITY SCHEDULING 
o FUI.D MAINTENANCE 
• FUND ACCOUNTING 

TO: GENERAL 
LE06ER 

TQ: STATISTICAL 
REPORTING 

~ 
f/l 
f/l s:: 
('1) 
f/l 

p:> 
::s 
0.. 

~ 
('1) 

S-
O 
0.. 
f/l 

0' 
""'I 

~ 
p:> 

n 
(:;' 
~ 
tj 
tj 
'""C 

> "0 
'E.. 
(:;' 
~ 
0' 
::s 

1 

-....) 
00 
\0 



790 National Computer Conference, 1982 

profit center policy or if the products, markets, and businesses 
of the units are different. As with operations, the principal 
impediment to dispersion will be a lack of available skills. It 
should be noted that the dispersion choices being made here 
do not imply that all applications will be equally dispersed. 
The objective is to determine the degree of dispersion under 
the most favorable conditions so as to uncover software and 
equipment needs. 

Management 

Management functions are least likely to be dispersed, be­
cause the resources being managed are those shared by all 
users. Their proper selection and administration requires that 
the needs of all groups be blended and that facilities capable 
of working together be obtained. Conditions for the disper­
sion of management functions are the dispersion and local 
control of most of the assets of the enterprise and the dis­
persion of other service functions such as accounting, person­
nel administration, and research and development. Such an 
enterprise is really several distinct enterprises needing only 
occasional contact. 

Hardware and Data Communications 

Function distribution, although subjective and judgemental 
in its methods, is performed early, because its outcome may 
limit the hardware options considered. If only the simplest 
operating functions are distributed, then an online centralized 
solution is indicated. On the other hand, if extensive distribu­
tion of functions occurs, many strategies across the dispersed­
access spectrum are possible. 

This task may be subdivided into the following smaller 
tasks: 

• Selecting access styles and modes 
• Identifying access locations 
• Configuring peripherals at each location 
• Determining the processing/communications strategy 
• Configuring data storage 

Access modes 

Access styles and modes include choices of online or batch 
access techniques and such special requirements as OCR, 
MICR, microfiche, or badge readers. The distributed work 
stations' complement of devices can be deduced by examining 
the likely input and output media of each application. 

Locations 

The access locations to be given direct service must be 
reviewed for instances of very low volume not justifying 
equipment. Lack of volume may be a temporary condition. 
Plans for network expansion at a later time may be an im­
portant input to the more precise steps discussed later in this 
section. 

Peripheral configuration 

The configuration of peripherals at each site is the first 
precise step. The different types of peripherals need to be 
treated separately. Methods for establishing keyboard screen 
and printing requirements to satisfy random and scheduled 
demand are well established from online system experience. 5 

Requirements for specialized peripherals must be con­
sidered carefully when unit capacity and cost are both high. 
Those forms of peripheral are more usually centralized for all 
but the largest sites. 

Processing/communications strategy 

We now come to the crux of the hardware question: should 
processing be centralized or distributed? The analysis consists 
of computing one-time and operating costs for alternative 
solutions and comparing them. The variety of alternatives­
simple online terminals with a value-added network, smart 
terminals with a multidrop leased line network, intelligent 
terminals (stand-alone or clustered) with dialed WATS lines, 
minicomputers and mainframes with auto dial/auto answer­
is usually too many. A technique of sampling, say three alter­
natives, followed by successive refinement, is preferred. The 
cost analysis must recognize that increased dispersed intel­
ligence reduces data transmission volume and allows the use 
of iow-tariff periods for transmission if the remote and central 
processing cycles can be decoupled. 

The analyst must also consider geographically intermediate 
dispersion. There may be a case for sharing processors be­
tween several remote sites. This is an example of refining a 
strategy once a degree of distribution has been determined to 
be advantageous. 

Data storage 

The final step is to estimate data storage requirements if a 
strategy of physical distribution has been selected. This step is 
performed before more precise allocation of data within appli­
cations, since that cannot be done with certainty until de­
signing each in turn. At this time we are concerned only with 
gross needs. Data storage capacity is needed for development 
as well as production, for programs as well as data, for system 
software as well as applications, for backup as well as mainline 
data, and for inefficiencies of use. In short, rather large esti­
mates are indicated in preference to rather small. 

Data Distribution Strategy 

The final stage is to consider whether to place any lim­
itations on the application designer so far as the complexity of 
data arrangements is com:erned. Our principal target is to 
decide what forms of data synchronization are allowed and 
what forms, if any, of data directory are required. 

Our first task is to determine whether master data central­
ization is indicated. Under current technology constraints, 
data needing to be up to date for all locations must be central-



Issues and Methods for Practical DDP Applications-I 791 

ized. Other indicators include any suggesting the need for 
full-function database management system software. Such 
software needs the capacity and skills of a central site. 

As a rule of thumb for strategic planning purposes, the 
designer should avoid data distribution configurations that 
require online posting within one commitment unit at more 
than one node. The designer should be wary even of online 
posting at a node other than the one at which a transac­
tion originates. Paper II explains the background for this 
guideline. 10 

Software Configuration 

Once the decisions about function, hardware, and data dis­
tribution are made, the generic components of software must 
be identified. 

The key components are those associated with the fact of 
distribution: 

• Data communication, including the appropriate online or 
offline protocols 

• Message-routing logic for bringing data into the center 
and putting it out again, including distribution list inter­
pretation logic, logical address to physical line mapping, 
alternate routing, etc. 

• Data location logic in the case of split data files, including 
directory maintenance 

• Data conversion logic to map data characters, fields, 
records, files, and databases from one format to another 

• Development aids in each node type expected to support 
local development 

• Program and dictionary distribution logic if one site is 
developing on behalf of others 

• Remote job request submission and acceptance 

and many others. 
This list shows how the function, data, and hardware distri­

bution decisions have consequences in the complexity of the 
environment. 

To complete this task with any reliability, the designer 
must understand the software components necessary to the 
functions of operating, application development, and re­
source monitoring. Each of these divides and subdivides until 
a portfolio of components is developed that may be used as a 
checklist. 

Vendor Selection 

At the end of the strategy development, the designer has 
sufficient information to consider the products necessary for 

creating the target environment. This step will have been in 
view throughout the development of the strategy, since limi­
tations in products available are the reasons for some of the 
rules of thumb suggested. 

The principal components to be obtained will be the pro­
cessing systems of the different nodes and the communica­
tions subsystem between them. By far the most productive 
rule at this time is to obtain processors at all nodes from the 
same vendor so that much of the potential software complex­
ity can be subcontracted to the vendor. Many vendors have 
defined and implemented network architectures of richness 
sufficient to support cooperative working among multiple pro­
cessors. The decision to use different vendors will inevitably 
involve the enterprise in the definition of its own architecture 
and the software to implement it. 

SUMMARY 

The objective of this paper was to describe a sequence of steps 
for developing a DDP strategy. The steps have been described 
only to show their purpose. The material is offered to help 
identify the components of the strategy and the dependencies 
between them. The resulting strategy is a high-level plan ade­
quate for costing, for vendor selection, and for commencing 
the development of any necessary software. 

In Paper II, we consider the detail of data design for an 
application within the constraints of a strategy. 

REFERENCES 

1. Brancatelli, J. "Office of the Future." Texas Flyer, 10 (1981), pp. 57-72. 
2. Van Rensselaer, C. "Centralise? Decentralise? Distribute?" Datamation, 

25 (1979), pp. 88-97. 
3. Withington, F. G. "Coping with Computer Proliferation." Harvard Busi­

ness Review (May-June 1980), pp. 152-164. 
4. Buchanan, J. R., and Linowes, R. G. "Understanding Distributed Data 

Processing." Harvard Business Review (July-August 1980), pp. 143--153. 
5. "Method!1." Arthur Anderson & Co., Chicago, 1980. 
6. Kohler, W. H. "A Survey of Techniques for Synchronization and Recover 

in Decentralized Computer Systems." ACM Computing Surveys, 13 (1981), 
pp. 149-183. 

7. Tozer, E. "Is Distributed Data Base Yet Mature Enough To Consider?" 
22nd GUIDE Conference, May 1981. 

8. Loren, H. "Distributed Processing: An Assessment." IBM Systems Jour­
nal, 18, pp. 582-603. 

9. Scherr, A. L. "Distributed Data Processing." IBM Systems Journal, 17, pp. 
324-343. 

10. Blackman, M., and Ryan, H. "Issues and Methods for Practical Distributed 
Data Processing Applications-II." AFIPS, Proceedings of the National 
Computer Conference (Vol. 51), 1982. 





Issues and methods for practical distributed data 
processing applications-II 

by MAURICE BLACKMAN 
Arthur Andersen & Co. 
Houston, Texas 

and 

HUGH RYAN 
Arthur Andersen & Co. 
Chicago, Illinois 

ABSTRACT 

This paper presents methods for the second of two key activities in the creation of 
practical distributed data processing (DDP) systems for business computing. The 
first activity, discussed in a companion paper, is to select a configuration of hard­
ware and software to support the implementation of a multiapplication plan. The 
second, discussed in this paper, is to select data distribution and manipulation 
approaches for one application within the limits set by the results of the first activity. 
The paper assumes the definition of D D P established in the prior paper. It identifies 
soine of the issues that constrain a commercial establishment with limited research 
funds and that justify the limitation of practical alternatives assumed as a basis for 
the methods. 

793 





Issues and Methods for Practical DDP Applications-II 795 

INTRODUCTION 

This paper continues the discussion of methods for designing 
practical DDP systems in view of the proven technology avail­
able to the commercial user. This discussion commenced in 
Paper I of this two-paper series. In the first paper a definition 
of DDP systems was selected to include all systems that would 
be recognized as DDP by a commercial user. A method for 
developing a DDP strategy was described. The definition is 
assumed for this paper, and the results of the strategy selec­
tion are assumed to be implemented. This paper addresses the 
second key task: data design. 

Challenges and Gaps 

The basis for the method proposed in this paper is a desire 
to select practical approaches to applications. We are seeking 
to avoid substantial effort in two areas: 

• Overcoming the logical challenges of subdivided but 
dependent processing through additional application 
development 

• Filling technical gaps with substantial system software 
development 

The challenges and gaps include, for example: 

• The correct handling of transactions found to be invalid 
at one node after having been validated, posted, and 
acted on at another node earlier in a cycle 

• The maintenance of data integrity in answers to inquiries 
needing reference to several nodes while the late nodes in 
the sequence are continuing to post other transactions, 
unaware of the impending inquiry 

• The preservation of the integrity of locally developed 
files related to local copies of centrally maintained files 

• The preservation of the integrity of a distributed applica­
tion that posts transactions on line at more than one 
node, so as to be able to back out a whole transaction 
upon the failure of any node, its database, or the commu­
nications network between them 

The list goes on. These issues are substantial. In some cases 
they are only imperfectly understood. In time some will be 
routinely handled by software, especially when high-capacity 
data communications reduces the time for internode commu­
nication. For the present we believe that the average MIS 
director is better advised to avoid them. 

The Complexity of Design for Distributed Data Processing 

The system development process for a centralized environ­
ment includes the following segments: 

• User requirements and functions are identified. 
• A data design is defined on the basis of the requirements 

and functions. 
• A technical architecture is designed by consideration of 

data design and business functions. 
• A systems design is detailed from the technical architec­

ture, using a combination of data and function-driven 
structured design. 

• The entire design is implemented and converted. 

This process is not trivial for a centralized design. The 
distributed environment adds an entire dimension to the de­
sign problem (Figure 1): the geographically distributed nodes 
of the network. 

z 
o 

~ 
~ 
is 

" 

I 

r--i-----j-----j-----j-----i----j-
I· . . . . . . . . . . . 

i i/:~~ iii i 
i/~' j-r-j-j-j-
j-j----j-j----j-j-
0-----0----0-----0-----0-----0--

Figure 1-Design process in a distributed development 

The design process must be applied to each class of node in 
the network. It is not sufficient to repeat the design process 
for each distinct type of node, because a design decision about 
one type may affect a decision about another. For example, a 
decision to allow changes of hourly wages at a central node 
may affect the timing, and even feasibility, of computing and 
printing paychecks at remote nodes. 

Design in a DDP environment presents a set of complex 
design problems that require a well-structured approach to 
make the required decisions in a logical sequence. The meth­
ods presented address techniques for defining data allocation 
and operational data movement for a DDP system. However, 
they also affect functional analysis and the person/machine 
boundary. 

These tasks take place in a context of other activities in the 
design process, as shown in Figure 2. 



796 National Computer Conference, 1982 

INPUT PROCESS OUTPUT 

BUSINESS FUNCTION 
DATA MODEL 

PROJECT 
DATA MODEL 

Figure 2--Inputs and outputs of data design 

DATA ALLOCATION 

The Process of Data Design 

The designer begins the process of data design by iden­
tifying an initial data model. Then, for each business function 
to be supported by the machine, the designer must do the 
following: 

1. Identify the aggregates and relationships required to 
support the function as a business function data model 
(BFDM). 

2. Identify fields required to support the business function. 
3. Assign fields to appropriate data aggregates in the 

BFDM. 
4. Merge the BFDM into the prior project data model. 

This may require identifying new aggregates and/or re­
lationships in the project data model. 

5. Merge the fields into the appropriate aggregates of the 
project data model. 

These steps of data design apply in both a centralized and 
a distributed environment. 

Data design requires one additional step for a distributed 
environment: 

6. On completion of the project data model (exhausting all 
business functions), minimize communication across 
nodes within each business function data model. (The 
basis for this additional step will be discussed in the 
section "Data Movement.") 

The following is an example of the use of the method of data 
design for a distributed processing environment. Although it 
has been simplified by reducing the number of functions con­
sidered, it illustrates the key points of the approach. The 
example is based on parts distribution, in which computers at 
widely separated warehouses are used to keep track of local 
inventory. Stock status is reported centrally each week to 
support purchasing and allocation to warehouses. Predicted 
delivery data is then returned to the warehouses . 

• 
Example of Data Desigrz for Parts Distribution Control 

Consider two of the system's business functions: relieving 
inventory and purchasing new items (Figures 3 and 4). 

USE 213 

RELIEVE INVENTORY STOCK Fer, 1.0 

I/O X-REF. MODE WHERE 

{' R~"._'_' SCRHIIl On-Line Distributed 
Description 

1.0 
Relieve 1,2 Review Inventory Status SCR200 On-Line Distributed 
Inventory for Available On Hand 
Stock 

1.3 if Stock Available Reheve SCR200 On-Line Distributed 
Stock 

Figure 3-Function chart for "Relieve Inventory Stock" 

ORDER NEW STOCKS 

-f
2' I Review Warehouse 

On Hand Stock 
2,0 

Order New 2.2 If On Hand and. commit.ted 
Stock Order Level 

Add to Purchase Amt 
Note Allocation 

L2.3 On End 01 Warehouse 
Issue Purchase Order 

USE 213 

Fer 20 

I/O X-REF. MODE 

FormlOO Batch 

Figure 4-Function chart for "Order New Stock" 

WHERE 

Central 

The function descriptions are developed in a prior task, 
"Identify Functional Requirements and Information Needs." 
The 110 decision is set in a task, "Define Process Function," 
but it is preliminary and subject to change. 

As an initial guess for a project data model, we assume a 
single aggregate "warehouse stock status." 

Consider the function 1.1, "Find Appropriate Stock De­
scription," for the first step of data design. The appropriate 
screen layout shows that the function requires data describing 
the stock. The fields can be assigned to a single aggregate 
"stock description," which is the only component of this 
BFDM. 

Finally, merging the BFDM and the current project data 
modei gives an updated project data modei of two aggregates, 
"warehouse stock status" and "stock description." 



Issues and Methods for Practical DDP Applications-II 797 

N ext consider function 1.2, "Review Inventory Stock Status 
for Available On Hand." The BFDM (Figure 5) suggests that 
once the appropriate stock description is found, the ware­
house stock status record is obtained. Fields are assigned to 
the warehouse stock status, including: 

• Stock item identity 
• Warehouse 
• Short description 
• Amount available 

The existing project data model can satisfy this function, al­
though the entities are now required by the local site. 

STOCK 
DESCRIPTION 

WAREHOUSE 
STOCK 
STATUS 

Figure 5-Business Function Data Model 1 

Next consider the purchase function 2.0, "Order New 
Stock" (Figure 4). Examination of the related screen layouts 
and business function shows that a warehouse stock status 
entity and a purchase order entity are required. The BFDM 
suggested by this function is shown in Figure 6. The ware­
house stock status gives the amount on hand and records the 
amount allocated to the warehouse. The purchase order entity 
records the purchase. In addition, it is related to the ware­
house stock status. The relationship tells what purchase or­
ders exist for a given item. 

WAREHOUSE 
STOCK 
STATUS 

I 
PURCHASE 

ORDER 

Figure 6-Business Function Data Model 2 

Merging this business function data model (Figure 6) with 
current project data model gives a new project data model 
(Figure 7). 

WAREHOUSE STOCK 
STOCK DESCRIPTION 
STATUS 

PURCHASE 
ORDER 

Figure 7-Project data model as of purchasing function 

Assigning Data 

If one reviews the business function data models, it can be 
seen that the warehouse stock status is needed both at a local 
node, for relieving inventory, and at the central site, for pur­
chasing. If only one version of the warehouse stock status 
entity is defined, one of the BFDMs will need to cross nodes. 

Few approaches are available for minimizing the number of 
cross-node communications. For the business functions that 
require crossing nodes, the options are as follows: 

• Replicate the data aggregate at each node. 
• Copy a portion of the data aggregate at a node. 
• Partition the data aggregate across nodes. 

In replicating the data aggregate, one stores a copy of the 
data aggregate at all sites where it is required. In our example, 
we could replicate the warehouse stock status at the local and 
central sites. 

Replicated data are appropriate in cases where any of these 
conditions applies: 

• Most of the data of the aggregate are used. 
• Planned data use is periodic. 
• Noncurrent data have small impact. 

Copying a portion of the data aggregate is a variation of the 
replication option. The identity of the data aggregate may be 
lost when a portion is redundantly stored. For example, we 
can store the purchase quantity allocated to a warehouse in 
the warehouse stock status record. Thus, data from the pur­
chase order entity are redundantly stored in the inventory 
stock status entity. The identity of the purchase order entity, 
however, is lost at the remote site. Copied data is appropriate 
in cases where only a small portion of a data aggregate is used. 

The third option is partitioning data, i.e., storing the data 
for a node only at the node. For example, the warehouse stock 
status could be partitioned by warehouse. Partitioned data are 
appropriate when the data can be clearly identified with a 



798 National Computer Conference, 1982 

given node type. The partitioning option often seems de­
sirable, although it can increase the complexity of the design 
effort significantly. 

The above suggests the project data model shown in Figure 
8. Note that the geographic dimension has been introduced 
into the project data model. 

LOCAL 
WAREHOUSE 

WAREHOUSE REPLICATE 

CENTRAL 
SITE 

WAREHOUSE 
STOCK ---------------~' ~ STOCK 
STATUS I STATUS 

STOCK " PURCHASE 
DESCRIPTION ORDER 

Figure 8--Project data model for distributed inventory processing 

HWR 

7/26/81 

DATA AGGREGATE 

Warehouse 
Stock 
StatuI! 

Purchase 
Order 

Stock 
Descript ion 

I 

I 

I 

BUSINESS FUNCTION 
DATA HODEL 

X-REF. DESCRIPTION 

Relieve 
Inventory 

Create 
Purchase 
Order 

Create 
Purchase 
Order 

Check Available 
Stock 

Relieve 
Inventory 

Stock 

I 
Description 
Change 

DAT545 

HAPPING 

WHERE MODE 

Local On-Line Part it ion 

Central Batch Repl icate 

Central Batch 

Local On-Line Redundant 

Local On-Line 

I 
Central On-Line Redundant 

Structuring the Decision Process 

We are using a relatively simple data design problem for 
illustration purposes. Full-size problems need a more formal 
documentation tool. The form shown in Figure 9 has proved 
effective in the mapping process. 

To use the form, the data aggregates of the project data 
model are listed on the form. Then all BFDMs that use the 
data aggregate are listed and cross-referenced to the appropri­
ate source. Next, the sites where the business functions are 
performed are identified. When there is a mix of nodes in the 
"Where" column, a mapping approach must be defined. As 
noted, the options are as follows: 

• Replicated data 
• Redundant data 
• Partitioned data 

In addition, one can choose not to avoid crossing nodes and 
use messages instead. Messages are online transmissions of 
data between nodes. They are appropriate when use of the 
data is unpredictable and the data must be current. 

Concerns in Mapping the Project Data Model to Nodes 

A casual reading of the above would suggest that the DDP 
environment is accommodated by oniy fiiiing out a few forms. 

NOTE 

1 

I 

2 

I 

Figure 9-Inventory control technical architecture 



Issues and Methods for Practical DDP Applications-II 799 

This is not the case. As has been discussed, the DDP envi­
ronment is quite primitive today compared to centralized on­
line/DBMS environments. The system software, when avail­
able, is not very competent. Performance, when moving data 
between multiple machines, is often inadequate. Restart/re­
covery typically consists of having the user repeat work or try 
another approach, such as the telephone. The mapping sug­
gested by Figure 9 must be performed in full awareness of 
node-machine capabilities, transmission software capabilities, 
business function volumes, and business function require­
ments (versus desires). 

Data allocation is a key step in the definition of a DDP 
design. The data design approach needs a single extension for 
mapping the data design to the distributed network. The ob­
jective recommended is to minimize cross-node communica­
tions for BFDMs. The next step is to define the approach to 
data movement for a DDP environment. 

DATA SYNCHRONIZATION 

Selecting Data Movement Approaches 

Data movement is defined for this paper as follows: a de­
scription of machine processes that relate data structures. The 
description specifies what the processes are, when the pro­
cesses are run, and where the processes are run. 

Inputs and outputs from the selection of data movement 

The key inputs and outputs for selecting data movement 
shown in Figure 10, are as follows: 

• The project data model 
• Definitions of the application functions 
• A description of performance and security requirements 
• A description of the hardware/software environment 

from the strategy selection, that identifies hardware at 
each site, software (compilers, online monitors, database 
management systems) at each site, transmission hard­
ware between sites, and transmission software to move 
data between use. 

A thorough understanding of the capabilities and limita­
tions of the hardware and software is necessary. Because of 
the rapidly changing hardware/software environment and the 
high cost of software development and maintenance, it is 
worthwhile to stay inside the constraints of available products. 

The process of selecting data movement approaches 

Relating data structures in a distributed environment means 
keeping the data synchronized (i.e., ensuring that at certain 
times the data, at different sites have consistent and reasonable 
values). Thus, the process of selecting data movement for a 
DDP system is equivalent to defining the synchronization ap­
proach to be used for the system. 

This task can be time-consuming, involving many decisions 
and reconsiderations. At this stage in a design, functions or 

INPUT 

PERFORMANCE 
SECURITY 

REQUIREMENTS 

PROCESS 

DEFINE 
TECHN~CAL 

ARCHITECTURE 

OUTPUT 

Figure lO-Inputs and outputs for defining data movement 

features may need to be changed, reduced in capability, or 
completely foregone. Success is the result of creativity and 
compromise. Since the task is iterative, it is worthwhile to 
structure the design process. 

The technical architecture form previously illustrated (Fig­
ure 9) is a means for structuring the process. As shown in 
Figure 11, the form can be extended with two additional col­
umns. One column describes the synchronization require­
ment; the second describes the synchronization approach. 

There are relatively few approaches available for synchro­
nization: 

• Transmit a message. 
• Transmit a transaction file. 
• Transmit a master file. 
• Use the telephone. 

Synchronization using messages 

Synchronization using messages refers to a method of im­
mediate transmission of data to other sites. 

An example of the software and hardware for this approach 
is shown in Figure 12. The example is based on a DDP net­
work with IBM 8100s and a 370. In this environment, the 8100 
online monitor DTMS provides an interface to CICS or IMS 
on a 370. A message can be sent from DTMS to CICS. The 
message is processed in CICS and a reply sent to the 8100. 

The transmission of messages presents some significant 
problems in today's environment. One problem is record pro­
tection. When a record is acquired for update at a node, some 
currently implemented mechanisms provide no lockout pro­
tection for accesses from other nodes. Some implemented 
protection mechanisms fail to handle a program failure at one 
of the participating nodes. Finally, implemented schemes may 
require so many exchanges to acknowledge approval that per­
formance is not acceptable. 



800 National Computer Conference, 1982 

HWR 
7/26/81 

DATA AGGREGATE 

Warehouse 
Stock 
Status 

Purchase 
Order 

Stock 
Description 

I 

BUSINESS FUNCTION 
DATA MODEL 

X-REF. DESCRIPTION 

Relieve 
Inventory 

Create 
Purchase 
Order 

Create 
Purchase 
Order 

Check Available 
Stock 

Relieve 
Inventory 

Stock 
Description 
Change 

I 

WHERE HODE 

Local On-Lin.? 

Central Batch 

Central Batch 

Local On-Line 

Local On-Line 

Central On-Line 

I I I 

DAT545 

SYNCHRONIZATION 
MAPPING REQUIREMENT 

NOTE 

Part ition 1 Data should be current as 
of when data is removed 
from inventory. 

Replicate Data should be current as 
of end of business on the 
day when purchas ing runs. 

Data should be current 
as of end of day. 

Redundant 2 Data should be synchronized 
with last purchase order. 

Access local stock. 

Redundant Data needs to be current 
as of beginning of 
business at all local 

I I sites. 

SYNCHRONIZATION APPROACH 

Synchronous on-line updating of 
transact ion. 

Transfer entire file as of end of 
day. 

Do updates in batch. 

When purchasing runs, create a tra 
file of P.O. to send to local 151 
for updating. 

Desc. as a part of on-line 
processing. 

Transmi t trans nle of changes. 
Local site will post change 

ns 
te 

transact ions on overnight batch ru 

Figure ll-Technical architecture extended 

Performance, even without regard to protection, is a con­
cern when using messages. As the example illustrates, a mes­
sage involves the overhead of entry into two online monitors. 
In addition, there is the time for transferring data over lines 
between the sites. For large volumes of data, the line time can 
be significant. Thus the total time for a response from a mes­
sage between processors may quickly become unacceptable to 
the user. 

A third problem with messages is sensitivity to a node fail­
ure. In Figure 12, if the central site fails, the remote 8100 
programs using the central site cannot run. One of the benefits 
of DDP, reliability through independence of sites, is lost when 
sites are connected through the use of messages. The prob­
lems posed by messages in DDP are significant. Messages 
should be used primarily for exception conditions. If, as 
the design evolves, it becomes obvious that many transac­
tions require messages, use of a centralized system should be 
reconsidered. 

Synchronization using a transaction file 

Synchronization using a transaction file involves send­
ing a queued set of transactions to other sites for asyn­
chronous processing. Figure 13 gives an example of such 
a configuration: 

• Personnel data are maintained at the remote site . 
• Changes are posted to the local site database (1). 

KEYBOARD 
LOCKED 

eJ---

KEYBOARD 
STAYS 

LOCKED 

8100 

DTMS 

REQUEST HTF SERVICE 

CALL "HTF" ... 
(crealx) 

~ 
(nxtrans) 

HTF J 

SEND/RECEIVE ' 

HOST REQUEST 
COMPLETE 

COMPLETE PROCESSING 

=-= 

~= 

) 

C}~===~_----' 

KEYBOARD 
UNLOCKED 

HOST 

CICS/IMS 

PROCESS 1 

Figure 12-Synchronous message transmission between 8100 and 370 host 



Issues and Methods for Practical DDP Applications-II 801 

• A transaction file is maintained of personnel data 
changes made at the local site (2). An example of such 
change is the change of contact in event of an emergency. 

• Periodically, the changes are sent to a central site for 
updating (3) and retransmission to all other sites (4). 

SITE 1 

TRAHSMIT TO 
OTHER SITES 

(4) 

I::. EMERGENCY ADDRESS 
123 

Figure 13-Example of transaction file synchronization 

Transaction file-asynchronous processing 

In a DDP environment, this technique for synchronizing 
data structures is common. However, it presents some signifi­
cant problems. 

First, since data are posted immediate!)T at the local site, 
they are not synchronized with the rest of the network. This 
method may be acceptable or even desirable, but it does mean 
that while the transaction is queued, different sites will pos­
sess discrepancies in data. The user needs to understand this 
and recognize it as a planned part of the design and not a 
system error. 

Second, is a potential for conflicting transactions. In Figure 
14, two sites are entering an emergency contact address for 

SITE 1 

SITH 

SITE 1 
I::. EMERGENCY ADDRESS 

123 

SITE 2 
I::. EMERGENCY ADDRESS 

123 

Figure 14-Transaction file asynchronous update problems 

the same individual. It is accepted at each site. However, at 
the central site it is not clear which transaction is correct. This 
is a common problem with the use of transaction files, and 
many approaches exist to deal with it, such as designating the 
site with primary responsibility or timestamping. Every con­
flict should be reported, whatever the technique. 

Another problem then arises: who is to receive the error 
report when two sites are involved. Once again, many ap­
proaches are possible: 

• Report to the site causing the problem. 
• Report to the site receiving the problem. 

No general solution exists. In any approach, the impact of 
asynchronous processing of the transaction needs to be evalu­
ated. In each case, responsibility for the resolution of prob­
lems should be identified and some means of follow-up 
defined. 

Transaction file-transmission software 

A second major problem with transaction files involves the 
development of transmission software to move the data files 
around the network. Such software must be able to do the 
following: 

• Pre schedule file transmissions. 
• Send and receive sequential files between sites. 
• Detect and report on error transmissions. 
• Provide some form of a queuing mechanism to hold files 

until a site is prepared to accept them. 

IBM's DSX software has some of these features and can be 
viewed as a representative example. This software has been 
undergoing design enhancements for over three years, which 
indicates that such transmission software may be a major ef­
fort by itself. 

Synchronization using master files 

Synchronization using master files resembles the use of 
transaction files, except that master file records are sent rath­
er than the transactions causing the changes. 

This technique does have some drawbacks. First, if the 
master file is large, performance may not be acceptable. The 
second problem involves the discontinuity of the file trans­
mission. If files are not synchronized between two sites, the 
sudden revision of the file at a site may be disconcerting to a 
user. For one company, the central inventory files were used 
to maintain inventory balances. These balances were assumed 
to be correct and were used each month to update remote 
inventory balances. When the update occurred, an error re­
port was produced of items with differing amounts, and an 
inventory check was made to resolve discrepancies. The dis­
crepancies created a loss of confidence in the system, and 
there was user resistance to having "their" data overwritten 
by central-site data. 

Another problem is the need to halt the application. Typi­
cally, while master files are being loaded, there are oper-



802 National Computer Conference, 1982 

ational and application problems in running the application. 
Specifically, if changes are made while a file is being loaded, 
it may be difficult to predict which sites have what master file. 
To avoid this problem, the entire application must be stopped 
\1/hile loading occurs. Since users are reluctant to lose use of 
a system, even for short periods, and the software and oper­
ations procedures used to shut down the system may not be 
adequate to prevent concurrent online entrees, an effort 
should be planned to explain to users the need to halt the 
system on occasion. A subsequent effort during implementa­
tion is then needed to ensure that no one tries to enter "just 
one more." 

CONCLUSION ON DEFINING DATA MOVEMENT 

A means for documenting the relations of data structures is 
the technical architecture form (Figure 11) identifying syn­
chronization requirements and synchronization approaches. 
The limited number of approaches include the following: 

• Transmit a message. 
• Transmit a transaction file. 
• Transmit a master file. 
• Use the telephone. 

All these techniques present significant problems and require 
evaluation based on application specifics. Figure 15 sum­
marizes the tasks that have been discussed in the course of this 
paper to develop DDP design. 

SYNCHRONIZATION 
REQUIREMENTS 

SYNCHRONIZATION 
APPROACH 

Figure 15-Summary of tasks to develop DDP design 



PIONEER DAY 





A technological review of the FORTRAN I compiler 

by F. E. ALLEN 
IBM Thomas J. Watson Research Center 
Yorktown Heights, New York 

ABSTRACT 

The FORTRAN I compiler functions and organizations are described and shown to 
form the basis for many of the techniques used in modern compilers. 

805 





A Technological Review of the FORTRAN I Compiler 807 

INTRODUCTION 

Early in 1954, the FORTRAN I project was formed by John 
Backus. A fundamental question posed by the project was 
" ... can a machine translate a sufficiently rich mathematical 
language into a sufficiently economical program at a suf­
ficiently low cost to make the whole affair feasible?"1 A major 
goal was to provide an automatic programming system which 
" ... would produce programs almost as efficient as hand 
coded ones and do so on virtually every job. ,,1 This seemingly 
impossible goal was met to an astonishing degree. In some 
cases, it produced code which was so good that users thought 
it was wrong, since it bore no obvious relationship to the 
source. It set a standard for object program efficiency that has 
rarely been equalled. The FORTRAN I compiler, completed 
in 1957, established modern compiler tasks, structure, and 
techniques. 

The compiler was developed for the 704, an IBM machine 
introduced in 1954 featuring built-in floating point and index­
ing capabilities. It compiled the FORTRAN I language, 
which was defined as part of the project and evolved consid­
erably as the project progressed. In order to achieve its effi­
ciency goals, the high-level arithmetic statements in the 
source program had to be translated to minimize storage ref­
erences, and, even more important, subscripts and their con­
trol had to make maximal use of the machine's three index 
registers. The way in which this was achieved is described by 
Backus, and other project members;2 formalized by Sheri­
dan;3 and reviewed by Backus and Heising4 and Backus. 1 The 
latter paper, presented at the 1978 Conference on the History 
of Programming Languages, contains a penetrating analysis of 
the project, its origins and development. The purpose of this 
paper is to assess the technological impact of the FORTRAN 
I compiler on compiler construction, theory, and practice as 
it has evolved over the last 25 years. 

COMPILER FUNCTIONS AND ORGANIZATION 

The basic function of the FORTRAN I compiler was, of 
course, to translate the source program to an object program 
for loading and executing on the target machine. However, 
confronted with a belief that compilers could only turn out 
code intolerably less efficient than hand coding and con­
fronted with a machine that would make small lapses in ar­
rangement of coding show up as sizeable inefficiencies, the 
primary goal of the compiler, and indeed of the whole project, 
was to produce very efficient code. 

The greatest potential source for inefficiencies was believed 
to be the address calculations rather than the code generated 
for the arithmetic expressions. Thus, while the translator part 
of the compiler was designed to produce excellent code for the 

arithmetic expressions, the design and organization of the 
entire compiler was driven by the need to produce nearly 
perfect code for array addressing on the three-register 704. 
Consider the FORTRAN program fragment in Figure 1. 

DIMENSION A (10,10) 
DIMENSION B (10,10) 

DO 1 J = 1,10 
DO 1 1= 1,10 

1 A(I,J) = B(I,J) 

Figure 1-FORTRAN program to move array B to array A 

Remembering that FORTRAN stores arrays column-wise, 
the expansion of the subscript on array B (as well as on A) is 
(I - 1) + (J - 1)*10. Clearly such a computation inside the 
DO loops was intolerable-and certainly not two such com­
putations, one for A and one for B. It is interesting to note 
however that some current, nonoptimizing compilers do per­
form variants of this computation and are tolerated quite 
happily. 

To achieve a modicum of efficiency, there was also a need 
to utilize the 704 index register instructions to increment, test 
and branch to control the execution of the DO loops. Further­
more, the registers had to perform dual functions when possi­
ble, controlling the looping and indexing the arrays in the 
loops. Assembly language programmers did this all the time, 
and if compiled code was to compete, the FORTRAN trans­
lator had to also. The primary criterion which dictated the 
design of the compiler was, therefore, the need to produce 
excellent addressing code. In fact it is still the case today that 
the biggest payoff for optimizing compilers for languages at 
the FORTRAN level (e.g., PL/I and Pascal) is in generating 
good addressing code. 

The compiler was divided into six sections (phases in to­
day's terminology): 

1. A statement identifier and arithmetic statement 
translator 

2. A subscript and DO statement analyzer 
3. A transformer which interfaced sections 2 and 4 
4. A control flow analyzer 
5. A global register allocator 
6. Final assembly 

As John Backus makes clear/ this organization evolved as 
the problems associated with assigning index registers became 
clear. The initial intent was to have translation and code gen­
eration, including register allocation, complete by the end of 
Section 2 so that all that was left was final assembly; i.e., 



808 National Computer Conference, 1982 

producing the binary code, load maps, etc. Section 1, the 
translator, was to classify statements, compile object in­
structions for the arithmetic formulas, and partially compile 
or record information about the remaining statements (the 
I/O, DO, GO TO, IF, DIMENSION, and function definition 
statements). Section 2 was to compile the instructions associ­
ated with subscripting and DOs. When it became clear that 
the task of Section 2 was too complex, Sections 4 and 5 were 
created and then Section 3 to glue everything together. 

It is worthwhile looking in more detail at what went on here 
because it presents a model of an approach to solving very 
complex problems--the use of a divide and conquer strategy. 
Stated in today's terminology and from today's perspective 
(after 25 years of problem partition and solution), the prob­
lems being solved were the following: 

1. (Section 2) Assuming an unlimited number of index reg­
isters, to create optimal code for addressing and loop 
control. In today's terms this meant: (a) reassociating 
the subscript expansions to collect constants and make 
them part of the base address and to group sub­
expressions to minimize the computation required in the 
loop; (b) finding common subexpressions; (c) moving 
computations out of loops; (d) performing strength re­
duction so that subscript calculations become index reg­
ister increments and decrements; (e) folding constants; 
and (f) replacing loop tests by tests on registers required 
for addressing within the loop, i.e., linear function test 
replacement. 

2. (Section 4) To perform the control flow analysis and 
identify (probabilistically) the relative frequency of pro­
gram regions. 

3. (Section 5) To assign real registers to the symbolic regis­
ters in order to minimize, using the control flow based 
frequency information, storage references and register­
to-register moves. 

How does the overall organization of the FORTRAN I 
optimizer (Sections 2 through 5) differ from today's opti­
mizing compilers? Today we would probably do control flow 
analysis first and use it as a basis for performing Section 2's 
optimizations. Separating register assignment from the prob­
lem of optimizing code involving symbolic registers is now 
considered a good strategy, 5 though many optimizing com­
pilers have not exposed loads, symbolic registers, and all of 
the addressing code to their optimizing sections and have 
ended up with most of the problems originally faced by the 
FORTRAN project when doing register allocation! 

How does the overall organization of the rest of the FOR­
TRAN I compiler compare with today's compilers? The trans­
lation phase is typically broken into several subparts today; 
syntactic analysis, semantic analysis, and code generation are 
common partitions, although the evolution here is by no 
means complete. 

Overall, the organization of the compiler was surprisingly 
simple. Most of the complexities arose from the desire to 
produce object programs competitive with hand code and the 
consequent need to gather information and postpone pro­
ducing code until the analysis necessary to produce efficient 
code had been performed. 

We now turn to a closer examination of the significant sec­
tions of the compiler (Sections 1, 2, 4 and 5) in order to assess 
their technological impact in more detail. 

TRANSLATION 

Today's compilers often use elegant, language-independent 
translator systems. The theory behind these systems did not 
really start to develop until the 1960's, but the problem ap­
peared in its full form in this system. Given an arithmetic 
expression, the translator first created a sequence of arith­
metic instructions, then transformed this sequence to elimi­
nate redundant computations arising from the existence of 
common subexpressions (their term) and to reduce the num­
ber of accesses to memory. These transformations have been 
the subject of numerous investigations (Ah06 gives a good set 
of references), and we now know that an optimal solution is 
inherently hard. It is interesting to note, however, that the 
compiler designers felt that "the near-optimum treatment of 
arithmetic expressions is simply not as complex a task as a 
similar treatment of 'housekeeping operations,.,,2 

In addition to parsing and producing good code for the 
arithmetic expressions, the translator identified the other 
statements and transformed complex I/O lists into their com­
ponent DO nests for treatment by the regular mechanisms of 
the rest of the compiler. The attempt here and in numerous 
other parts of the compiler to seek common mechanisms rath­
er than create special case mechanisms is interesting in light of 
the overall complexity of the task and the amount of invention 
required for every part. 

SUBSCRIPT AND DO STATEMENT OPTIMIZATION 

The translator did not complete the translation of DO state­
ments and subscripts; that was the function of Section 2. A 
symbolic index register corresponding to each particular sub­
script combination of a variable was created by the translator 
and existed until Section 5 had assigned registers. The func­
tion of Section 2 was to optimize the calculation of subscripts 
and DO control statements. The constant parts of the calcu­
lation were incorporated into operand addresses, operations 
involving DO control variables were transformed into index 
register increments when possible, loop independent parts of 
the calculation were removed from the loop, and the loop exit 
test was transformed to use one of the registers needed for 
indexing. A nest of DO loops for array calculations was some­
times replaced by a single loop in the generated code! Some 
of these transformations are now subsumed in more general 
optimizations, but today's production compilers rarely do as 
well. 

FLOW ANALYSIS 

The function of Sections 4 and 5 of the compiler was to assign 
real registers to the symbolic registers. Except for the sym­
bolic registers and the assumption that they could all be as­
signed to real registers, the program on entry to Section 4 was 
complete. The basic task, therefore, was to assign the sym-



A Technological Review of the FORTRAN I Compiler 809 

bolic registers to real registers in order to minimize the time 
spent loading and storing index registers. Section 4 of the 
compiler did a flow anlaysis of the program to determine the 
pattern and frequency of flow for use in Section 5, where the 
actual assignment was made. 

Basic blocks ("a basic block is a stretch of program which 
has a single entry point and a single exit point,,2) were found 
and a table of immediate predecessor blocks constructed. 
Here, then, is the beginning of the elegant and fast control 
flow algorithms of today. Basic blocks and predecessor (suc­
cessor) relationships are inputs to these algorithms. 

The other task performed by Section 4 was the computation 
of a probable frequency of execution of every predecessor 
edge. To do this a Monte Carlo "execution" of the program 
with initial weights assigned to each edge was developed. This 
method is no longer commonly used to identify frequently 
executed areas of a program; rather the program topology is 
used more directly but with less resultant precision. 

REGISTER ASSIGNMENT 

Using the edge execution frequencies, regions were formed so 
that registers could be assigned to the most frequently exe­
cuted areas (usually innermost loops), then to the next most 
frequently executed areas, etc. until the entire program had 
been treated. When a region had been processed, its entry and 
exit conditions were recorded, i.e., the values which needed 
to be loaded on entry and stored on exit. A processed region 
was not reexamined when its containing region was processed, 
but the entry and exit conditions and whether or not it had any 
unassigned registers were used. The assignment of registers 
within a basic block used the "distance to next use" criterion 
to determine which register to displace when out of registers. 
"Activity bits" were used to determine the necessity of storing 
a value in a register for subsequent use if the register had to 
be reused. In case of register assignment mismatches across 
basic blocks, an attempt was made to permute the assignment. 

This register assignment method was a phenomenal piece of 
work. The displacement algorithm for straight-line code was 
later proved optimaf for the "one-cost model";8 a displace­
ment costs the same whether you need to store the register 
contents or not. Until 1980, when Greg Chaitin9 successfully 
applied a graph coloring algorithm to the global assignment of 
registers, most global assignments were essentially variants on 
the FORTRAN I approach. 

RESULTS 

Perhaps the best way of demonstrating the results of this 
project is to show an example of its output-an output which 
startled this author. The FORTRAN program in Figure 1 
moved array B to array A in a double nest of DO loops. The 
assembly program in Figure 2 is the FORTRAN I compiler's 
output for this program and shows the move being done with 
one loop instead of the two expected from the source. (FOR­
TRAN stored its arrays column-wise and backwards; the 704 
subtracted the value in the index register from the address.) 

LOOP 

ONE 
A 

B 

LXD ONE,l 
CLAB + 1,1 
STO A + 1,1 
TXI * + 1,1,1 

TXL LOOP,1,100 

, ,1 
BES 100 

BES 100 

load 1 into reg1 

add 1 to regl and 
goto next inst 
if reg1 ~ 100 
goto loop 

data value one 
reserve 100 locs, 
ending with A 
reserve 100 locs, 
ending with B 

Figure 2-FORTRAN I translation of array move 

In general the code produced by the compiler was not only 
locally efficient but globally as well. The output program did 
not contain long, precoded, predictable sequences but con­
tained code optimized to run efficiently in its context (where 
the context included the whole program). The project was a 
success. 

Jean Sammet states, "Its major technical contribution was 
to demonstrate that efficient object code could be produced 
by a compiler; as a result, it became clear that productivity of 
programmers could be significantly improved."l0 Another 
major contribution of the project is the influence it has had 
on compiler structure and techniques. Overall "... FOR­
TRAN has probably had more impact on the computer field 
than any other single software development"lO-because of 
the language, the technological impact on subsequent com­
pilers, and the impetus it gave to widespread use of higher­
level languages. 

REFERENCES 

1. Backus, John. "The History of FORTRAN I, II, and III." ACM SIGPLAN 
History of Programming Languages Conference, SIGPLAN Notices 13, 8 
(August 1978), pp. 165-180. 

2. Backus, J. W., R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L. 
Herrick, R. A. Nelson, D. Sayre, P. B. Sheridan, H. Stem, I. Ziller, R. A. 
Hughes, and R. Nutt. "The FORTRAN Automatic Coding System." Pro­
ceedings Western Joint Computer Conference, Los Angeles, 1957, pp. 
188-198. 

3. Sheridan, Peter B. "The Arithmetic Translator-Compiler of the IBM FOR­
TRAN Automatic Coding System." CACM 2,2 (Feb. 1959), pp. 9-21. 

4. Backus, J. W., and W. P. Heising. "FORTRAN." IEEE Transactions on 
Electronic Computers, EC-13,4 (August 1964), pp. 382-385. 

5. Auslander, M. A., and M. E. Hopkins. "An Overview of the PL.8 Com­
piler." Proceedings of the SIGPLAN Symposium on Compiler Construc­
tion, June 1982 (to appear). 

6. Aho, Alfred V. "Translator Writing Systems: Where Do They Stand?" 
Computer, 13,8 (August 1980), pp. 9-14. 

7. Belady, L. A. "A Study of Replacement Algorithms for a Virtual-Storage 
Computer." IBM Systems Journal, 5,2 (1966), pp. 78-102. 

8. Horwitz, L. P., R. M. Karp, R. E. Miller, and S. Winograd. "Index Reg­
ister Allocation." JACM 13,1 (Jan. 1966), pp. 43-61. 

9. Chaitin, Gregory J., Marc A. Auslander, Ashok K. Chandra, John Cocke, 
Martin E. Hopkins, and Peter W. Markstein. "Register Allocation via 
Coloring." Computer Languages 6 (1981), pp. 47-57. 

10. Sammet, Jean E. "History of IBM's Technical Contributions to High Level 
Programming Languages." IBM Journal of Research and Development, 
25,5 (Sept. 1981), pp. 520-534. 





Computing prior to FORTRAN 

by R. W. BEMER 
Honeywell Information Systems 
Phoenix, Arizona 

ABSTRACT 

The life of the programmer in pre-FORTRAN days is characterized in modern 
terminology, indicating how strongly FORTRAN has changed the programmer's 
condition and working habits. 

811 





The 25 years since the introduction of FORTRAN covers 
most of programming as we know it, certainly in volume of 
usage. To minimize any possible communications gap, I have 
chosen to describe how it was before that watershed event by 
means of some of the terminology and buzzwords of today: 

1. Conferences and published papers 
2. Computer science education 
3. Stored programming 
4. Structured programming 
5. Program portability 
6. Performance measurement 
7. Communications and timesharing 
8. Compilers 
9. Data independence 

10. Software piece parts 
11. Software packages 

The technical history of early programming languages has 
been covered by many authors (it became a popular subject), 
so I'll confine my contribution to more general areas. 

CONFERENCES AND PUBLISHED PAPERS 

Publication of software papers in pre-FORTRAN days was far 
less prolific than now. And it wasn't yet "software." Papers on 
software techniques prior to FORTRAN are given,2-42 as 
found (mostly) in Youden's "Computer Literature Bibliog­
raphy 1946 to 1963."1 They're given in best chronological 
order. To avoid duplication, sources with multiple papers are 
referenced separately, and the individual papers are given 
decimal notation. 

Doing an analysis of the paper content of the early Joint 

TABLE I-Paper distribution of early Jees 

Hard- Appli- Soft-
Year Jee ware cations ware 

1951 Eastern 16 2 0 
1952 Eastern 26 0 0 
1953 Western 8 11 0 
1953 Eastern 18 4 1 
1954 Western 8 14 0 
1954 Eastern 9 7 2 
1955 Western 6 16 
1955 Eastern 6 9 1 
1956 Western 18 10 6 
1956 Eastern 29 0 0 
1957 Western 28 4 3 

Computing Prior to FORTRAN . 813 

Computer Conferences (the only continuing national meet­
ings of that era) yields the counts shown in Table 1. The last 
entry is the meeting at which FORTRAN was presented. 

The summary pre-FORTRAN count is that of Table II. 

TABLE II-Paper distribution by conference location 

Hard- Appli- Soft-
Jee ware cations ware H/A HIS 

Eastern 104 22 4 4.7 26.0 
Western 68 55 10 1.2 5.5 

Total 172 77 14 2.2 12.3 
% 65 29 5 

COMPUTER SCIENCE EDUCATION 

This was just starting, and in just a few schools. When you 
hired a programmer then, you didn't ask about a degree in 
computer science; there weren't any. IBM used its Program­
mer's Aptitude Test as one screening method, and it worked 
somewhat, but people had a tendency to read more into it 
than was warranted. 

A lot of us had our own pet questions, for we were taking 
them off the street. Magazine writers were curious about how 
one became a programmer. Dave Sayre had been a crys­
tallographer, and Sid Noble and Art Bisguier were hired when 
I, an ex-movie set designer, advertised for chess players. 

Although there may not have been enough collected the­
ories to support specific degrees, the university people were 
all busy creating courses. The summer sessions at MIT and 
Michigan brought many practioners together. Language pro­
cessors were being built there and at Purdue, Pennsylvania, 
Carnegie Tech, Case, UCLA, and many others. 

STORED PROGRAMMING 

Programs have always been "stored programs." The only dif­
ference is in where they were stored. In desk calculator days­
in our heads. To program the IBM 601, one had to file notches 
in a phenolic strip, and they were stored in a box or hung on 
the machine. The IBM 604 was programmed by wires placed 
in plugboards, and often we stored them for reuse, if they 
were general enough. More often they were unwired for a new 
program (I wired about 700-800 60-step boards for the 604). 

For the CPC the program was obviously in the cards. Bob 
Bosak and I devised a card system with 4 different tracks of 
3-operand instructions, and so could feed a deck of cards 
continuously in a loop. 



814 National Computer Conference, 1982 

STRUCTURED PROGRAMMING 

Structure in programs is generally ascribed to Wilkes, 
Wheeler, and Gill,s in their book on programming for the 
EDSAC. The subroutine was the first element of structure; 
and was generally accepted by programmers, particularly 
those writing interpretive systems. 

We had no DO UNTILs or semaphores at our disposal, but 
many programs had a structure that's all but forgotten now. It 
was called "optimum programming," a method of placing 
sequential instructions just right on a magnetic drum, so they 
would be ready to read just after the previous instruction was 
completed. 

PROGRAM PORTABILITY 

The first way used to reconcile the differences between two 
types of computer was to recode the problem. The second way 
was to write a programmed interpretive emulator for one 
machine in the code of the other. When this resulted in per­
formance degradation of 100:1 up to 1000:1 it lost a certain 
amount of favor. 43,44 

The third way was to use the source language of the inter­
preter and write another interpreter for the second machine. 
This had some success, because the degradation was often not 
very high (except for extremely dissimilar machines), and it 
could even run faster! Several of these were made. 44 If ma~ 
chines of today's speeds had suddenly been introduced then, 
this may have become commonplace; compilers might have a 
different role. Even now, after thousands of compilers, inter­
preters still enjoy a considerable vogue. The fourth way, with 
different compilers, did not to my knowledge receive substan­
tial usage until FORTRANSIT, and even there the portabil­
ity path from a 704 to a 650 was difficult because the 650 
supported fewer index registers. 

PERFORMANCE MEASUREMENT 

Although no hardware instrumentation was available for 
probes, much performance measurement did occur. It was 
vital because the computers were too slow for the amount of 
calculation waiting to be performed. While working at Mar­
quardt, I was chastised one day by my boss, for not shaving. 
It was caused by being up since the previous morning running 
a trajectory simulation on the CPC. Under such circum­
stances, everyone wanted programs to run as fast as they 
could. That was why the program optimizers for drum ma­
chines (like SOAP) were so heavily used. 

When the 701 superseded the CPC, the balance between 
user and machine changed. One man at the RAND Cor­
poration took two years to program a problem that ran in two 
minutes. He experienced considerable culture shock. 

There was competition everywhere to have the fastest pro­
gram for a given task, quite often a mathematical subroutine. 
When published, those subroutines always had timing associ­
ated so the user could plan wisely. The situation was much the 
same as in the early days of microcomputers. Jewel work was 
needed, and the domain was small enough to see and measure 
something. There was even competition between software and 

hardware people. The 705 engineers were shocked when a 
programmed divide ran faster than the hardware instruction 
-without firmware, they could not program a Newtonian 
iteration. 

I suspect that FORTRAN itself had much to do with the 
temporary hibernation of performance evaluation. After pro­
gramming in the other languages, it gave so much power be­
cause of the ease of use (and the efficiencies were incorpo­
rated for you in the compiler), that the number of user of 
computers could expand much more rapidly. It wasn't until 
operating systems came into heavy use that we rediscovered 
the need to prevent waste. 

COMMUNICATIONS AND TIMESHARING 

It wasn't Ethernet, but George Stibitz had tied into a relay 
computer by way of a Teletype-in 1940. SAGE was one of 
the first major projects to use direct inputs from communica­
tions lines. FORTRAN wasn't available when it began, and 
couldn't have been used for much of the job if it had, for it 
wasn't just a scientific problem. 

Timesharing was just talk. The first time I find the word. 
appearing is in a J. W. Forgie paper on the input-output 
system for the Lincoln TX-2 computer, concurrent with the 
1957 FORTRAN paper. I proposed such usage in an article 
the next month; it was suggested that IBM should fire me, 
because that wasn't in line with their policy. 

COMPILERS 

Compilers existed before FORTRAN, but they were all rudi­
mentary in comparison. Grace Hopper, chief pioneer of the 
concept, might have gone faster further if she had had the type 
of support given to Backus and his group. IT, A2 and A3 
were true compilers, but they avoided interactions and 
optimization. 

DATA INDEPENDENCE 

This concept arose with the commercial compiler languages. 
Grace Hopper and company wrought the Data Division con­
cept. Scientific languages all stuck to floating point, with in­
tegers for loop control. 

Data structure was usually built into the program, and it 
didn't seem important, because hardly any interchange of 
programs took place between different computers. Even if 
that were possible one could not necessarily get the same 
answers due to different hardware characteristics. 

SOFTWARE PIECE PARTS 

Piece parts for software first came to attention at the first 
Software Engineering conference in 1968, proposed by Doug 
McIlroy. However, Bob Glass makes a convincing case45 that 
they were in existence before FORTRAN, certainly via the 
SHARE organization. Indeed they were necessary to counter­
act the inefficiencies of working without such compilers. 



SOFTWARE PACKAGES 

In the modern sense the software package did not exist, for 
today they cost money. Before FORTRAN it was unthinkable 
to sell software, although the packages did exist. They were 
traded or given away. Examples are several general CPC 
boards, plus the many 650 packages published in the IBM 
Technical Newsletter No. 10.27 

There is no doubt that packages existed. They were source 
programs for interpretation, not compiled source as today. A 
buzzword of the times was "abstraction." Douglas Aircraft 
had a "matrix abstraction," for example. 23 It manipulated 
matrices and performed combinatory functions. Ergo, if your 
problem could be expressed in matrix form, it could be solved. 
So it was urged that all problems be expressed this way, a not 
altogether natural way of use. But many of today's software 
packages have similar contortional requirements upon the 
user. 

Codes for nuclear computation also fell in the category of 
software packages, even if they were exchanged in machine 
language form. Hundreds of these codes were disseminated. 

SUMMARY 

I'm enjoying the developments of today, but my pleasure is a 
bit spoiled by the terrible waste in software development, and 
so much poor software. It's tempting to recall Miniver 
Cheevy, who loved "the medieval grace of iron clothing." 
Software before FORTRAN could be considered quite me­
dieval, even primitive, but there were certain graces. 

From my starting in the computer field in early 1949, until 
FORTRAN arrived, I was either working too hard to see the 
Peter Principle in effect, or else it didn't exist in such a virulent 
form. It was exciting to build software then. We had manage­
ment support and trust for whatever we thought was possible. 
The number of levels of management was low, and the control 
tenuous. I reported to John Backus in FORTRAN days, but 
never felt the slightest pressure. I looked upon him as a friend, 
not a menace. So today we have better tools and knowledge, 
and theories of program correctness and such. I don't think 
that they have added to the fun and excitement of Computing 
Prior To FORTRAN! 

REFERENCES 

1. Youden, w. W. "Computer Literature Bibliography 1946 to 1963." US 
Natl. Bur. Standards Misc. Publ. 266, 1965 Mar 31. 

2. Wilkinson, J. H. "Coding on automatic digital computing machines." 
Report Conf. on High Speed Automatic Calculating-Machines, Univ. 
Math. Lab., Cambridge, England, 1949 Jun 22-25,28-35. 

3. Huskey, H. D. "Semiautomatic instruction on the Zephyr." Proc. 2nd 
Symp. on Large-scale Digital Calculating Machinery, Cambridge, MA, 
1949 Sep 13--16, 83--90, Harvard U. Press, 1951, Annals Vol. 26. 

4. Stowe, L. "Programming." Office of Naval Research Seminar on Data 
Handling and Automatic Computing, Washington, DC, 1951 Feb 
26-Mar 6, 79-84. 

5. Wilkes, M. V., D. J. Wheeler, S. Gill. "The Preparation of Programs 
for a Digital Computer." Addison-Wesley Press, Cambridge, MA, 
1951. 

6. Proc. ACM Conf., 1952 May, Pittsburgh, PA. 
6.1 Adams, C. W. "Small problems on large computers." 99-102. 
6.2 Lipkis, R. "The use of subroutines on SWAC." 231-234. 

Computing Prior to FORTRAN 815 

6.3 Wheeler, D. J. "The use of subroutines in programmes," 235-236. 
6.4 Carr, J. W. III. "Progress of the Whirlwind computer towards an auto-

matic programming procedure." 237-242. 
6.5 Hopper, G. M. "The education of a computer." 243--250. 
7. Proc. ACM Conf., 1952, Toronto. 
7.1 Ridgway, R. K. "Compiling routines." 1-5. 
7.2 Isaac, E. J. "Machine aids to coding." 17-28. 
7.3 Strachey, C. S. "Logical or non-mathematical programmes." 46-49. 
7.4 Bennett, J. M., D. G. Prinz, M. L. Woods. "Interpretative sub-

routines." 81-87. 
8. Rutishauser, H. "Automatische Rechenplanfertigung bei programmge­

steuterten Rechenmaschinen." Mitteilung aus dem Institut fur an­
gewandte Mathematik, Basel, 1952, 1-45. 

9. Rochester, N. "Symbolic programming." PGEC (IRE Transactions on 
Electronic Computers), Vol. EC-2, No.1, New York, 1953 Mar, 10--15. 
LC Card 57-39723. 

lO. Hopper, G. M. "Compiling routines." Computers and Automation 2, 
No.4, 1953 May, 1-5. 

11. Hopper, G. M., J. W. Mauchly. "Influence of programming techniques 
on the design of computers." Proc. IRE 41, No. lO, 1953 Oct, 1250-54. 

12. Bouricius, W. G. "Operating experience with the Los Alamos 701." 
Proc. Eastern Joint Comput. Conf., 1953 Dec 8-lO, 45-47. 

13. Bennett, J. M., A. E. Glennie. "Programming for high-speed digital 
calculating machines. " In "Faster than Thought." B. V. Bowden, Lon­
don, Pitman, 1953, 101-116. LC Card 54-15305. 

14. Wilkes, M. V. "The use of a 'Floating Address' system for orders in an 
automatic digital computer." Proc. Camb. Phil. Soc., 49, Part I, 1953, 
84. 

15. Laning, J. H., N. Zierler. "A program for translation of mathematical 
equations for Whirlwind I." Engg. Memo. E-364, M.I.T. Instr. Lab., 
1954 Jan. 

16. Backus, J. W. "The IBM 701 speed-coding system." J. ACM 1, No.1, 
1954 Jan, 4--6. 

17. Symposium on Automatic Programming for Digital Computers, Office 
of Naval Research, Washington, DC, 1954 May 13--14. LC Card 
56-60789 rev. 

17.1 G. Hopper. "G. M. Automatic programming definitions!' 1-5, 
17.2 Moser, N. B. "Compiler method of automatic programming." 15-21. 
17.3 Waite, J. "Editing generators." 22-29. 
17.4 Goldfinger, R. "New York University compiler system.'; 30-33. 
17.5 Holberton, F. E. "Application of automatic coding to logical pro­

cesses." 34-39. 
17.6 Adams, C. W., J. H. Laning, Jr. "The M.I.T. systems of automatic 

coding: Comprehensive, Summer Session and Algebraic." 40-68. 
17.7 Muller, D. E. "Interpretive routines in the Illiac library." 69-73. 
17.8 Gorn, S. "Planning universal semiautomatic coding." 74-83. 
17.9 Brown, J. H., J. W. Carr III. "Automatic programming and its devel­

opment on the MIDAC." 84-98. 
17.lO Livingston, H. M. "Automatic programming on the Burroughs Labora­

tory computer." 99-105. 
17.11 Backus, J. W., H. Herrick. "IBM 701 speedcoding and other automatic­

programming systems." 106-113. 
17.12 Elmore, M. "The LMO edit compiler," 114-116. 
17.13 Keller, A., R. A. Butterworth. "Programming for the IBM 701 elec­

tronic data processing machine with repetitively used functions." 
117-149. 

18. Jones, J. L. "A survey of automatic coding techniques for digital com-
puters." M.S. Thesis, M.I.T., 1954 May. 

19. Proc. Eastern Joint Comput. Conf. 1954 Dec 8-lO. 
19.1 Rice, R. Jr. "Why not try a plugboard?" 4-10. 
19.2 Krider, L. D. "Applications of automatic coding to small calculators." 

64--67. 
20. Rutishauser, H. "Some programming techniques for the ERMETH." J. 

ACM 2, No.1, 1955 Jan, 1-4. 
21. Herbst, E., N. Metropolis, M. B. Wells. "Analysis of problem codes on 

the MANIAC." M.T.A.C. 9, No. 49, 1955 Jan, 14-20. 
22. Hopper, G. M. "Automatic programming of digital computers." Proc. 

High Speed Comput. Conf., Baton Rouge, LA, 1955 Feb 16, 113--118. 
LC Card 57-63206. 

23. Denke, P. H., I. V. Boldt. "A general digital computer program for 
static stress analysis." Proc. Western Joint Comput. Conf., 1955 Mar 
1-3,72-78. 

24. Bradshaw, T. F. "Automatic data processing methods." Proc. Auto. 



816 National Computer Conference, 1982 

Data Proc. Conf., Cambridge, MA, 1955 Sep 8--9,3-27, Harvard U. 
Press, 1956. 

25. "Automatic programming the A-2 compiler system." Parts 1 and 2, 
Computers and Automation, 4, Nos. 9 and 10, 1955 Sep and Oct. 

26. Electronic Digital Computers and Information Processing, Darmstadt, 
Germany, 1955 Oct 25-27, F Vieweg, Braunschweig, 1956. LC Card 
59-18764. 

26.1 Rutishauser, H. "Methods to simplify programming, 5 years work with 
the Z4 computer" (German), 26-30. 

26.2 Samelson, K. "Problems of programming techniques" (German), 
141-142. 

26.3 Lehmann, M. J. "Automatic computer programming" (German), 143. 
26.4 Loopstra, B. J. "Processing of formulas by machines." 146-147. 
26.5 Thuring, B. "The automatic programming of Univac by the A-2 com­

piler system." (German), 154--156. 
27. Technical Newsletter No. 10, IBM Applied Science Division, New York 

1955 Oct. 
27.1 Ruthrauff, R. E. "Symbolic coding and assembly for the IBM Type 

650." 5-14. 
27.2 Horner, J. T. "Relative programming for the IBM Type 650." 15-27. 
27.3 Bosak, R. "Development of a floating decimal abstract coding system 

(FACS)." 28--30. 
27.4 Berner, R. W. et a1. (Lockheed MSD). "A general utility system for the 

IBM Type 650." 31-48. 
27.5 Mandelin, A. R., K. D. Weaver. "A selective automonitoring tracing 

routine called SAM." 49-62. 
27.6 Battin, R. H., R. J. O'Keefe, M. E. Petrick. "The MIT Instrumentation 

Laboratory automatic coding 650 program." 63-79. 
27.7 Titus, C. K. "An integrated computation system for the IBM 650." 

80-89. 
28. Hume, J. N. P .. B. H. Worsley. "TRANSCODE, a system of automatic 

coding for FERUT." J. ACM 2, No.4, 1955 Oct, 243-252. 
29. 1. Gorman, T. P., G. Kelly, R. B. Reddy. "Automatic coding for the 

IBM 701." J. ACM 2, No.4, 1955 Oct, 253-261. 
30. C. Adams, C. W. "Developments in programming research." Proc. 

Eastern Joint Computer Coni.. 1955 Nov 7-9, 75-79. 
31. Gordon, B. "An optimizing program for the IBM 650." J. ACM 3. No. 

1. 1956 Jan, 3-5. 
32. Proc. High Speed Computer Conference, Baton Rouge, LA, 1956 Feb. 

LC Card 57-63206. 
32.1 Hopper, G. M. "Automatic coding techniques 1955." 6-12. 
32.2 Heller, J. "Mathematical service routines." 151-153. 
32.3 Perry. D. P. "Specifications for an automatic matrix program." 

210-215. 
33. Proc. Western Joint Computer Conf. 1956 Feb 7-9. 
33.1 Ross, D. T. "Gestalt programming. a new concept in automatic pro­

gramming." 5-9. 
33.2 Grems, M., R. E. Porter. "A truly automatic programming system." 

10-20. 
33.3 Moncrieff, B. "An automatic supervisor for the IBM 702." 21-25. 
33.4 Berner, R. W. "PRINT I, a proposed coding system for the IBM Type 

705." 45-48. 
33.5 Goldfinger, R. "The IBM Type 705 Autocoder." 49-51. 
33.6 Meek, H. V. "An experimental monitoring routine for the IBM 705." 

68--69. 
34. Brooker, R. A. "The programming strategy used with the Manchester 

University Mark I computer." IEEE Conf. on Digital Computer Tech­
niques, Supp\. Part B, Vol. 103, London, 1956 Apr 9-13. 

35. Perkins. R. "EASIAC, a pseudo-computer." J. ACM 3, No.2, 1956 
Apr, 65-72. 

36. Bauer. W. F. "An integrated computation system for the ERA-ll03." 
J. ACM 3, No.3, 1956 Jul, 181-185. 

37. Blum, E. K. "Automatic digital encoding system II (ADES II)." Proc. 
ACM Conf. 1956,29. 

38. Chipps, J., M. Koschmann, S. Orgel, A. J. Perlis, J. Smith. "A mathe­
maticallanguage compiler." Proc. ACM Conf. 1956, 31. 

39. Symp. Advanced Programming Methods for Digital Computers. 1956 
June 28--29, ONR Report ACR-15, 1956 Oct. 

39.1 Hopper, G. M. "The interlude 1954 to 1956." 1-2. 
39.2 Wegstein, J. H. "Automatic coding principles." 3-6. 
39.3 Thompson, C. E. "Development of common language automatic pro­

gramming systems." 7-14. 
39.4 Benington, H. D. "Production of large computer programs." 15-28. 
39.5 Jones, F. "SHARE, a study in the reduction of redundant programming 

efforts through the promotion of inter-installation communication." 
29-34. 

39.6 Carr, J. W. III, B. Arden, "Advanced programming techniques with 
smaller computers." 35-38. 

39.7 Goldstein, M. "Computing at Los Alamos, Group T-1." 39-44. 
39.8 Wells, M. "Coding for the MANIAC." 45-48. 
39.9 Holberton, F. E. "Proposed advanced coding system for the UNIVAC­

LARC." 49-56. 
39.10 Waite, J. H. Jr. "RCA approach to automatic coding for commercial 

problems." 57-66. 
39.11 Selfridge, R. G. "The PACT compiler for the 701." 67-70. 
39.12 Blum, E. K. "Automatic digital encoding system II." 71-76. 
40. J. ACM 4, No.4, 1956 Oct. 
40.1 Melahn, W. S. "A description of a cooperative venture in the produc­

tion of an automatic coding system." 266-271. 
40.2 Baker, C. L. "The PACT I coding system for the IBM Type 701." 

272-278. 
40.3 Mock, O. R. "The logical organization of the PACT I compiler." 

279-287. 
40.4 Miller, R. C. Jr., B. G. Oldfield. "Producing computer instructions for 

the PACT I compiler." 288--291. 
40.5 Hempstead, G., J. I. Schwartz. "PACT loop expansion." 292-298. 
40.6 Derr, J. I., R. C. Lukc. "Semiautomatic a!!ocatiop. of data storage for 

PACT I." 299-308. 
40.7 Greenwald, I. D., H. G. Martin. "Conclusions after using the PACT I 

advanced coding technique." 309-313. 
41. Symp. on Automatic Coding. Franklin Institute. Philadelphia, PA. 1957 

Jan 24--25, Monograph No.3. 
41.1 Petersen. R. M. "Automatic coding at G.E." 3-16. 
41.2 Katz, C. "Systems of debugging automatic coding." 17-28. 
41.3 Berner, R. W. "PRINT I, an automatic coding system for the IBM 705." 

29-38. 
41.4 Kinzler, H. M., P. M. Moskowitz. "The procedure translator, a system 

of automatic coding." 39-56. 
41.5 McGee. R. C. "Omnicode, a common language programming system." 

57-70. 
41.6 McGinn, L. C. "A matrix compiler for Univac." 71-86. 
41.7 PerIis, A. J., J. W. Smith. "A mathematical language compiler." 

87-102. 
41.8 Yowell, E. C. "A mechanized approach to automatic coding." 103 ff. 
42. Proc. Western Joint Computer Conf. 1957 Feb 26-28. 
42.1 Grems, M. D .. R. K. Smith, W. Stadler. "Diagnostic techniques im­

prove reliability." 172-178. 
42.2 Baskus, J. W., R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt. H. L. 

Herrick, R. A. Nelson, D. Sayre, P. B. Sheridan, H. Stern, I. Ziller, R. 
A. Hughes, R. Nutt. "The Fortran automatic coding system." 188--197. 

42.3 Newell, A., J. C. Shaw. "Programming the Logic theory machine." 
230-240. 

43. Table, Comm. ACM 1, No.2, 4. 
44. Tables, Comm. ACM 1, No. 11,5-6. 
45. Glass. R. L. "Software parts nostalgia." in Reader's Forum, Datama­

tion 27. No. 12,1981 Nov, 245-247. 



History of FORTRAN standardization 

by MARTIN N. GREENFIELD 
Honeywell Information Systems, Inc. 
Billerica, Massachusetts 

ABSTRACT 

The history of FORTRAN Standardization, ranging from the original efforts in the 
early 60s up to the present, is presented. Some of the precedent-setting devel­
opment during the initial cycle in handling problems common to all language stan­
dardization is discussed. The background in introducing some of the features in 
FORTRAN 77 is covered. The nature and reasoning behind the current activity are 
described. 

817 





There is an interesting and appropriate introduction in my 
daughter's college text on FORTRAN. It reads, "After you 
have learned some of the language, you will show off your 
sophistication by knocking its lack of elegance. Everybody 
does. After you learn a little bit more, you will appreciate that 
it is the way to really get your work done." FORTRAN has for 
most of life been the blue-collar worker of the programming 
language set. What it lacked in savoire-faire and style, it re­
turned in cost effectiveness. Those working with FORTRAN 
pioneered the way for the acceptance of higher-level lan­
guages and their standardization. Those who have influenced 
its development were continually aware of the underlying fact 
that the language, first and foremost, must remain an efficient 
tool for producing results. 

FORTRAN standardization dates back to early 1960. The 
language had just been selected by industry over ALGOL as 
the language for scientific and engineering work. The major 
vendors recognized the requirement to provide FORTRAN 
compilers in order to compete with IBM. The general strategy 
was to provide a compiler with the functionality of the 7041709 
FORTRAN and to add features as a competitive inducement. 
The impact of these added features was two-edged. Although 
they contributed to the development of the language, they 
threatened to splinter it into a myriad of uncontrolled dialects. 
Adding to the problem, a rigorous definition of the language 
did not exist, even within IBM. 

Fortunately, at that time ASA (subsequently to become 
ANSI) and BEMA (subsequently, CBEMA) undertook spon­
sorship of a massive standardization effort covering a broad 
variety of data processing areas. Someone had the brave idea 
of including languages. The ASA X3.4 committee conducted 
a survey of existing programming languages. FORTRAN, 
COBOL, and ALGOL were selected as the candidates for 
standardization. X3.4 at their May 1962 meeting established 
the X3.4.3 committee and directed it to standardize the 
FORTRAN language. 

INITIAL STANDARDIZATION (1962-1966) 

Bill Heising, of IBM, was appointed as the initial chairman of 
X3.4.3. Bill sent invitations to potentially interested groups to 
attend a formation meeting. Accompanying the invitations 
was a document written by Bill together with Dick Ridgeway 
that was proposed as the starting draft for the standardization 
effort. This Heising-Ridgeway FORTRAN was based upon 
the forthcoming FORTRAN IV. 

The initial meeting of X3.4.3 was held at the BEMA Head­
quarters in New York City on August 14, 1962. This makes 
1982 both the twenty-fifth anniversary of FORTRAN and the 
twentieth anniversary of the start of its standardization. At 

History of FORTRAN Standardization 819 

this August 1962 meeting, there was a consensus to undertake 
the standardization work. The scope and criteria of the effort 
were established. 

X3.4.3 assumed the role of parent and policy maker and 
delegated all the chores below that to two· working subcom­
mittees. As such, X3.4.3 met only about twice a year. X3.4.3 
originally had about two dozen regular members. All the ma­
jor hardware vendors were represented. A number of user 
groups (SHARE, Honeywell Users Association, USE, VIM, 
IBM 1620 Users, CO-OP) participated. Some software houses 
(CSC, CUC) and universities (Wisconsin, Penn State, UCSD) 
had members. 

The parent X3.4.3 did thrash out some very controversial 
issues. One of recall concerned a proposal from those working 
with the then new character-addressable hardware. They 
could save much space by not allocating the same space to 
integer and logical data as was allocated to reals. In fact, they 
preferred not to have any fixed storage relationship between 
the data types. Logicals could be packed into one byte or less. 
Double precisions could occupy just two or three more bytes 
than reals. Their arguments centered about the concept that 
a language standard should not be as hardware biased as the 
word-storage-unit relationship implies. After some impas­
sioned discussions the heavy dependence of FORTRAN on 
storage association for efficiency and the dominance of word­
addressable processors won. 

Most of the actual standardization work was handled by the 
two subcommittees. X3.4.3-IV was responsible for the stan­
dardization of the language based on FORTRAN IV, while 
X3.4.3-II was to do the same for FORTRAN II. 

The subcommittees were small compared to the size of 
groups currently developing draft standards. It was fortunate, 
because it provided an efficient working arrangement and 
uninterI1lpted participation. Little time was lost in having to 
bring new members up to date. The regular members of 
X3.4.3-IV were 

Martin N. Greenfield, Honeywell, chairman 
Richard K. Ridgeway, IBM, editor 
Caral Sampson (Giammo), Philco, secretary 
Tom Martin, SHARE and Westinghouse 
Geraldine Zimmerman (Bowen), UNIVAC 
Lou Gatt, CSC 
Ken Tiede, CDC 
Carl Bailey, CO-OP and Sandia 
Bob Mitchell, CO-OP and UCSD 

Along with the X3.4.3 chairmanship responsibilities, Bill 
Heising was a very active participant in the effort of the 



820 National Computer Conference, 1982 

X3.4.3-IV subcommittee. Others from X3.4.3 participated 
from time to time, but the bulk of the effort was done by the 
group above. 

The work proceeded during the following two years. Al­
though some meetings were hosted at the sites of the different 
members throughout the country, the bulk of the sessions 
were either at BEMA headquarters or at the IBM program 
development center in the Time-Life building, both in New 
York City. 

The initial FORTRAN IV compilers were all under devel­
opment while the work of X3.4.3-IV was in progress. The 
members of X3.4.3-IV were all either responsible or could 
direct changes in their language specifications for these imple­
mentations. It was a unique situation, where language 
changes adopted by the subcommittee were incorporated into 
the compilers almost immediately. I have always felt that the 
actual standardization of FORTRAN stemmed from the dis­
cussions, understandings, and agreements of X3.4.3-IV rather 
than from formal text that followed some years later. 

The undocumented agreement within X3.4.3-IV was that 
the standard would not incorporate any feature that was not 
planned for all the implementations. Since the starting point 
for all of our language specs was the IBM-proposed language, 
it followed that the draft most closely represented the IBM 
implementation. It was by no means a slavish copy. For one 
thing, there were no rigorous specifications within IBM of 
much of FORTRAN IV that could have been copied. This was 
particularly true in the input-output area. There were some 
features that IBM meant to carry into FORTRAN IV from 
their FORTRAN II implementations in order to protect their 
user's investment. Unfortunately, some of their FORTRAN 
II implementations contained some objectionable shortcuts. 
For example, a constant could precede a variable and imply a 
multiplication operator (SL meant 5 * L). To their credit, 
there was never much of a hassle with those from IBM in 
deleting features that were objectionable carryovers from ex­
isting implementations of FORTRAN II. I believe they were 
sincerely motivated in working toward the best long-term in­
terests of the language. Another change of note was that the 
DATA statement syntax was altered from the way IBM was 
implementing it. It was originally specified with parentheses 
rather than slashes as the delimiter for the list of constants. 

Having no precedents, X3.4.3-IV had to address numerous 
problems common to all language standardization. Much of 
this we take for granted now, but there was nothing to turn to 
at the time. There were discussions as to whether there should 
be a standard. There is a penalty. The presence of a standard 
implies the pressure of conformance over a long period to a 
static document. This could certainly serve to limit the growth 
and development of the language. Even if motivated, the 
implementor, constrained to conform, would be prohibited 
from adding extensions. Programs requiring nonstandard 
functionality could not be developed. Unanticipated require­
ments could not be satisfied until after the many years needed 
for a new revision had elapsed. The difficulties of specification 
of a standard could artificially limit the functionality because 
it might be too difficult or unwieldy to word the true re­
strictions. Once a feature was standardized, its life would be 
semi-eternal even if the feature were a mistake. The result is 
that generally a very conservative posture is assumed in decid-

ing what is to be included. The potentially useful but untested 
functionality usually doesn't make it. These are all penalties 
to be weighed against the advantages of portability and com­
munication that standardization could provide. 

A partial answer to these objections to having a standard 
was worked into the interpretation section of the standard and 
has been carried into all the subsequent revisions of FOR­
TRAN standards. The standard is to be interpreted as permis­
sive. That is, that the standard serves only to specify a part, 
not all, of the language. Anything not specified isn't unclean, 
bad, immoral, or even not kosher. It is simply not specified. 
Similarly, things that are prohibited are things that are simply 
uninterpreted when violated. A standard program must be 
limited to what is specified in order to conform, but the same 
is not true for a processor. A processor may provide array 
processing, but it must handle standard subscripting in the 
conforming manner. Thus, an experimental extension can be 
available in a standard processor. The processor must be able 
to properly interpret standard programs, but may also provide 
interpretation to a nonconforming program. The choice is 
then· available to conform or not as the economics dictate. 
Some nonconformance is encouraged. 

The subcommittee decided that the target audience for the 
standard would be compiler implementors or those on users' 
staffs who were the FORTRAN support experts. It was felt 
that this latter group were competent in being able to imple­
ment a compiler; so, in effect, there was just the implementor 
that characterized the audience. It was felt that the standard 
~hould specify the requirements for a standard conforming 
program rather than a compiler, but I don't believe this was 
apparent in the document. 

The decision was made to use English rather than some 
metalanguage. This was in the belief that the description of 
the semantics was the difficult problem. Use of a metalan­
guage would not help there. A metalanguage was at best only 
assisting in tackling the easiest part of the description. It was 
felt that its precision did not compensate for the need to 
become familiar with the added formality. Interestingly, the 
one most useful area that could have been served by a precise 
description using a metalanguage is the FORMAT statement. 
There was actually an error in the way it was specified in the 
standard. I am still unaware of a complete and precise descrip­
tion of that statement using some metalanguage. 

There were many challenges to our ability to describe. CDC 
had proposed that the new logical IF be a two-way branch 
analogous to the arithmetic IF. This would have saved us 
much descriptive grief in handling the concept of a compound 
statement that had in this one place crept into the language. 
For example, we could no longer accurately state that every 
statement could have a label. It also led to an unduly harsh 
restriction prohibiting some forms of the logical IF from being 
the terminal statement of a DO loop. 

The greatest challenge to our descriptive capabilities was 
presented by the extended range of a DO loop. (There are 
some who would claim that this honor should go to the con­
cept of second-level definition). All the implementations of 
FORTRAN IV being developed allowed a more liberal ex­
tended range than the one appearing in the standard. The 
committee would have been amenable to a less restrictive 
extended range if it could only have been appropriately de-



scribed. Everyone tried at least twice. Any definition that 
included statements about the sanctity of the contents of index 
registers, although reflecting the real concern, was inap­
propriate. The definition finally adopted was an accurate sub­
set of what everyone was providing. The definition was felt to 
be reasonably understandable. Those of you who have strug­
gled with that definition and its orereauisite conceot of com-.. . 
pletely nested nest might quibble about the description being 
reasonably understandable. This is only because you did not 
struggle with some of the descriptions that were rejected. This 
was certainly an instance where the ability to describe limited 
the technical content. I believe that there is some of this effect 
in most standards. It is deluding not to admit it. 

There were a surprisingly small number of new terms that 
had to be coined. Terminology common to several manuals 
was preferred, since it would already be familiar. The, usually 
missing, rigorous definitions of these terms had to be devel­
oped. Among the newly coined terms were definition and 
undefinition and their lelated states of being defined or un­
defined, reference as applied to data and to procedures, and 
intrinsic function. The term intrinsic function had its birth at 
a bull session during one of our meetings. We had been dis­
cussing the classification of functions, using the then custom­
ary terms open and closed functions. Open functions meant 
in-line code; closed meant some internal procedure. There 
was the concern that the absolute function (ABS), generally 
thought of as the obvious prototype of in-line code, was no 
longer such when the argument was of complex data type. 
Further, the tightening techniques being developed for some 
codes might make it attractive to put more formerly closed 
functions in line for greater speed. Besides, the terminology 
smacked of a particular implementation consideration. Lou 
Gatt piped up with the idea that the basic characteristic of 
these functions was that they were cast into or intrinsic to the 
processor, and that therefore we should call them intrinsic 
functions. So credit for this term belongs to Lou. 

We were later to find that a subtle side benefit of our stan­
dards work was the widespread use of the terminology used in 
the standard. Our terminology was generally accepted and 
replaced the proliferation of some terms for certain actions 
and objects that were in use before without any rigorous and 
agreed-upon definitions. 

The subcommittee gave some consideration to how to en­
force the standard through use of acceptance procedures. Two 
hurdles caused us to turn away from further work in this area. 
We realized that an exhaustive verification was not possible. 
It might be misleading to develop some partial verification 
package that might be construed as being total. Any such 
official package might be misused as a standard performance 
benchmark. The second hurdle was simply not having the 
manpower to do the work. It was hoped that market pressures 
would lead to some accepted verification means, but we didn't 
have the resources. 

The subcommittee X3.4.3-II drafting the specification 
based on FORTRAN II was even smaller than that of 
X3.4.3-IV. Their membership, as I recall, was 

Jack Palmer, IBM, chairman 
Irwin Boris, Honeywell 

History of FORTRAN Standardization 821 

Charles Davidson, University of Wisconsin, 1620 Users 
Group 

Don Laird, Penn State University 
Bob Brunelle, Honeywell Users and NIH 
Bernice Weizenhoffer, IBM 
Robert Hux, RCA 

Partly because their target was better defined, X3.4.3-II 
completed their work and the first draft FORTRAN standard 
almost a year before X3.4.3-IV finished. They were directed 
by X3.4.3 to keep the draft on hold until X3.4.3-IV had its 
draft ready. There was still the hope at that time that a com­
patible standard representing FORTRAN II and FORTRAN 
IV could be produced. 

Subsequently, X3.4.3 decided that there should be a stan­
dard for the full language and a standard that was a proper 
subset of the full language. It was not possible to use the 
X3.4.3-II draft as the subset because of the number of totally 
incompatible differences between FORTRAN II and FOR­
TRAN IV. The result was that the work of the X3.4.3-II was 
discarded. The subset was created by deleting text from the 
X3.4.3-IV draft. I hope that the draft produced by X3.4.3-II 
finds its way into the archives of FORTRAN history. Through 
no fault of its own, the effort of X3.4.3-II was not incorpo­
rated. Their work is historically significant in that it was the 
first completed draft of any language standard. 

In October 1964, the two proposed draft standards were 
published in the Communications of the A CM. These were the 
first standards ever proposed for a programming language. 
They severely taxed the editing and approval mechanisms of 
ASA and BEMA. Draft standards up to then rarely needed 
more than a page of text and that page usually had room for 
the diagrams of the screw thread. The inability to rigorously 
check for conformance was shattering. It is little wonder that 
it took almost a year and a half before final approval was 
obtained in April 1966. The full language standard was desig­
nated ASA X3.9-1966 FORTRAN and the subset, ASA 
X3.10-1966 Basic FORTRAN. 

Early in the standardization effort, the European Com­
puter Manufacturers Association (ECMA) submitted a pro­
posed draft of what they felt the full language should contain. 
Since they were separated from the developments in this 
country, their proposal fell between the Basic FORTRAN 
and the full FORTRAN. X3.4.3 voted to standardize on only 
two levels. When FORTRAN standardization was considered 
by the International Standards Organization, the ANSI form 
and content was chosen as the basis. The ECMA subset in 
ANSI form was added as the intermediate of three levels. 

INTERPRETATIONS PERIOD (1967-1970) 

Late in 1967, the then disbanded X3.4.3 was recalled primar­
ily through the urging of the National Bureau of Standards. 
NBS, and in particular, Betty Holberton, was attempting to 
produce a Federal standard for FORTRAN. Betty's examin­
ation ofthe X3.9-1966 FORTRAN standard led her to submit 
a few dozen questions on interpretation. Other clarification 
inquiries were received from other sources. The FORTRAN 



822 National Computer Conference, 1982 

group was revived as the only body that could authoritatively 
provide the clarifications. This process turned out to be more 
tedious and demanding than the standardization effort itself. 
Because we were dealing with an approved standard, not a 
single comma could be altered without going thmugh the 
same long approval cycle. Interpretations had to be based on 
a rationale developed from the standard's actual wording and 
not from what even the original authors felt it should have 
been. Two interpretation reports were published, but they 
took over three years of meetings to produce. The difficulty of 
that interpretation effort has had its impact on the form of the 
standard for FORTRAN 77. Those who participated in both 
efforts took pains to carefully examine every phrase to reduce 
to a minimum the chance of misinterpretation. 

By 1968, enough extensions had appeared in the more cur­
rent implementations to have the FORTRAN group appoint 
someone to study whether these extensions should be stan­
dardized. Frank Engel was selected as the one to conduct this 
study. Following Frank's report, in January 1969, the commit­
tee voted not to reaffirm X3.9-1966 when its review period 
came up, but to provide a new draft standard. 

The committee had a succession of chairmen during this 
period. Bill Heising was replaced by Dick Ridgeway. Heising 
later returned as chairman prior to having Dennis Hamilton 
assume the position. In September 1970 Frank Engle assumed 
the chair and was to last throughout the development of FOR­
TRAN 77. Frank's tenure, the longest of any chairman, ended 
in October 1977 when Jeanne Adams, the current holder was 
appointed. 

FORTRAN 77 (1970-1978) 

By early 1970 the interpretation activity had had it. There 
were unresolved issues that could not be handled within the 
wording of X3.9-1966. They decided that since the standard 
had to be reviewed and replaced or reaffirmed by 1971, it 
would be more productive to abandon the clarification work 
and devote their energy to a replacement. It is interesting that 
the most pessimistic schedule proposed at that time had the 
draft available by the end of 1971. The initial effort did not 
sharpen the ability to predict the time required to develop a 
standard. 

Criteria and goals were drawn up for what would become 
FORTRAN 77. Their jist was to evolve the language, keep it 
approximately the same "size," and be sure that its efficiency 
features would not be impaired. It was important that the 
standard should be in a much more expository form and be 
meaningful to a larger and less knowledgeable audience. The 
form of the revision was chosen to be a single standard con­
taining two subset levels. A later decision removed the inter­
mediate subset. Because of the single standard approach, 
ASA X3.10-1966 Basic FORTRAN would be discarded (i.e., 
not reaffirmed). 

They further voted that the new draft standard would be an 
evolutionary development that would not invalidate programs 
written in the language of the 1966 standards. This position 
was subsequently modified in two significant areas. The Hol­
lerith data type was deleted because it was replaced by the 
more functional and machine independent character data 

type. The zero trip DO loop was specified. Actually, the 
control conditions for a zero trip DO were conditions that 
were nonconforming to the 1966 standard. However, since 
many implementations interpreted these conditions by exe-
cuting the statements in the range once, many programs 
would have to be adjusted. There were objections even 
though the issue related to programs that were technically not 
standard conforming. 

Six years of effort went into FORTRAN 77. That standard 
represented work on over two hundred technical proposals 
from all over the world. The cost of the effort was in excess of 
two million dollars. The text was almost six times the size of 
X3.9-1966. While some very significant language additions 
are present, the expansion was largely attributable to the ef­
fort to make the document more understandable. The draft 
had a completely different organization than the 1966 stan­
dard. Emphasis was on clarity rather than compactness and 
nonredundancy. Extensive use was made of word processing, 
a concordance tool (KWIC), computer graphics, and direct 
transcription to hard copy and fiche facilities. The very exten­
sive editing, consistency checking, rewriting, and the distribu­
tion of the numerous interim drafts were made possible only 
by some herculean efforts of the two editors, Lloyd Campbell 
and J. C. Noll. The editorial staff of ANSI was presented with 
a camera-ready copy of the draft for publication, thus avoid­
ing the errors that might have been introduced by an ANSI 
stage of processing. 

The features of the draft standard were publicly presented 
by X3J3 members at the West Coast FORTRAN Forum held 
in Anaheim, California, in February 1976. The following 
month, the draft standard appeared in a special edition of 
SIGPLAN Notices. An East Coast FORTRAN Forum was 
later held at the National Bureau of Standards in Gaithers­
burg, Maryland. Smaller groups of X3J3 members presented 
sessions on the new language standard at meetings of profes­
sional societies, user groups, and at conferences. The public 
review was initiated and comments were solicited. 

During the period of public comment and review 289 re­
sponses consisting of 1225 pages were received. This was 
probably the largest outpouring to any proposed standard as 
of that time. It took almost a year for the committee to com­
plete the responses. The number of public comments was 
evidence of the large, present, and continuing interest in the 
language and the understandability of the document. Despite 
the earlier extensive checking by the committee, there were a 
number of changes and corrections incorporated because of 
the comments. 

The major issue, as measured by the volume of comments 
received, was to add some facility in support of structured 
programming. There were a significant number of prepro­
cessors available that enabled FORTRAN programmers to 
develop programs using statements such as IF ... THEN 
... ELSE, DO WHILE, DO UNTIL, CASE statements and 
the like. These preprocessors would convert the source into 
valid FORTRAN statements. There was a clear requirement 
to place some of the facility directly into the language. In 
responding, the committee felt that although some facility 
should be added, there were many syntactic variations and an 
insufficient experience basis to select and standardize many of 
the constructs. They took an appropriately conservative ac-



tion of adding only the BLOCK IF constructs. This addition, 
as specified by Walt Brainerd, provided most of the important 
capability requested. It avoided adding and being stuck with 
some of the other constructs such as DO UNTIL that are 
already falling into disuse because of superior forms. 

The reaction of X313 to the structured programming re­
quests is a good example of how a responsible committee 
should avoid an over reaction that would prematurely add 
features that it would shortly regret. Unfortunately, there are 
counter examples in FORTRAN 77 such as the ENTRY state­
ment and the alternate RETURN that should not have been 
included. 

Approval of the standard came in April 1978. The official 
designation is American National Standard programming lan­
guage FORTRAN X3.9-1978. In March 1980, an Inter­
national Standards Organization FORTRAN based upon the 
ANSI standard and known as ISO 1539-1980 was approved by 
twenty-one countries. This document is essentially a cover 
that references ANS X3.9-1978 for the English text and 
the French standard NF Z65-110 for the French text. In 
September 1980, the US Federal Standard for FORTRAN 
(FIPS PUB 69), incorporating by reference X3.9-1978, was 
approved. 

Next Revision (1978-Present) 

Following the approvals of the FORTRAN 77 standards, 
the expected lull in the standardization activity did not mate­
rialize. There was pressure to consider the additions received 
during the public response to FORTRAN 77 that were re­
jected as premature. New FORTRAN implementations were 
incorporating additions such as a free form for statements. 
CODASYL had established a group (FORTRAN Data Base 
Language Committee, FDBLC) to provide a foundation for 
the addition of a major database augmentation to the lan­
guage. ISA and the Purdue Workshop had developed stan­
dards addressing issues of tasking, file synchronization, and 
event management. An interest in a graphic addition was 
looming. 

The committee devoted its time during 1978 to the planning 
for the future direction of the language. They solicited the 
thoughts of many other interested groups such as ISA, CO­
DASYL, IEEE, and SIGNUM who were known to be inter­
ested in FORTRAN extensions. The level of interaction with 
international bodies was dramatically increased. International 
meetings under the informal structure of ISO FORTRAN 
Experts Group were convened in Europe during 1977, 1978, 
1979, and 1980. All of this activity was in the attempt to obtain 
a broad basis of experience upon which to develop the succes­
sor standard. 

X313 felt confident it could manage desired additional lan­
guage features such as free form for statements, new control 
and data structures, and even most of the array handling. 
They even felt comfortable in handling the removal of some of 
the basic restrictions such as dynamic storage allocation, re­
cursion, identification via storage association,and storage re­
lated precision. However, they were unsure of how to cope 
with major augmentations such as the database and graphics 
handling. The additions would be expensive, not only in the 

History of FORTRAN Standardization 823 

cost of the processors, but in the breadth of the language that 
would be impacted. Even those not interested in these fea­
tures would be paying a price in terms of what they would have 
to know to work with the language. The committee knew it 
did not have the expertise to select among the competing 
forms of database and graphics facilities. It wanted to be able 
to responsibly control these augmentations and yet didn't see 
how a single committee could commandeer all of the expertise 
needed for this development and management. 

The answer is one that is still evolving and is a change in the 
architecture of the language. It is called the core plus modules 
approach. The plan for the language revision, called FOR­
TRAN 8X, is to specify a relatively small, general purpose, 
self sustaining core language. There would be added features 
that would modernize and streamline the language. The size 
of this core language would not exceed that of FORTRAN 77 
because there would be compensating deletions. The core 
would be provided with very strong facilities to be able to 
interface with modules whose use could be selectively chosen. 
These modules would have to follow some broad conventions 
established by the committee to qualify as part of the FOR­
TRAN family. 

There would be two classes of modules, language extension 
modules and application modules. A language extension 
module would be developed by X313 and would represent 
features that exceed the general purpose scope of the core. It 
might also consist of features that were desirable for addition, 
but that had not been subject to sufficient implementation or 
usage experience. An extension module could not be mod­
ified and approved for standardization without recon­
sideration of the core ~md all of the other language extension 
modules. 

One special language extension module would be called the 
Obsolete Cfransition) Features Module. This module would 
contain all of the features needed for compatibility with the 
previous revision (FORTRAN 77). Features being dropped in 
a revision would survive for one cycle in this module. When 
this module was employed, it would override any incompat­
ible features of the current language. 

An applications module would probably be specified by 
some group external to X313 and would address features of 
some special domain. Examples might be one (or more) of the 
database facilities, a query capability, or a graphics addition. 
These would probably take the form of a collateral standard 
so its maintenance could be managed independently. The 
hope is that through use of modularity, the heart of what is 
identified as FORTRAN might remain small. 

FUTURES 

Over this period of twenty years of standardization we have 
been through two complete cycles and are in the midst of a 
third. How long does this go on and when does it end? Jean 
Sammet once asked me if it weren't time for the FORTRAN 
gurus to get together and call an end to the effort so people 
can get on with the using of the good languages. I have reser­
vations over which of the current choices should be crowned 
the good languages. There should be something funda­
mentally different and better to justify dropping the huge 



824 National Computer Conference, 1982 

investment in the current languages. The replacement should 
have features that defy compatible inclusion in what we have. 

Until this revolutionary development makes its appearance, 
interest in FORTRAN will remain. There is the story of the 
farmer who was asked by OTIe of his eager turks why he didn't 
replace his old burro with one of the younger, sleeker, more 
highly tuned and spirited steeds. He looked at the young hand 
with wrinkled and wizened eyes and said, "When you have 
something yeh gotta be sure gets done, yeh goes with what you 
knows." So be it with FORTRAN. 

REFERENCES 

1. Heising, William P., and Richard K. Ridgeway. "FORTRAN." Proposal 
distributed to ASA X3.4.3, June 1962. 

2. Heising, William P. "History and Summary of FORTRAN Standardization 
Development for the ASA." Commun. of ACM (Vol. 7, No. 10) October 
1964,590. 

3. ASA X3.4.3. "FORTRAN vs. Basic FORTRAN." Commun. of ACM 
(Vol. 7, No. 10) October 1964, pp. 591-625. 

4. ASA. American Standard FORTRAN (ASA X3.9-1966). 
5. ASA. American Standard Basic FORTRAN (ASA X3.10-1966). 
6. USASI. "Clarification of FORTRAN Standards-initial progress." Com­

mun. of ACM (Vol. 12, No.5) May 1969, pp. 289-294. 
7. ANSI. "Clarification of FORTRAN Standards-second report." Com­

mun. of ACM (Vol. 14, No. 10) October 1971, pp. 62!H)42. 
8. Greenfield, Martin N. "FORTRAN-A History of a Pragmatic Lan­

guage," HLSUA 1974 Meeting, June 11, 1974. 
9. Greenfield, Martin N. "Background and Interpretation ofthe FORTRAN 

Draft Proposed Standard." The WEST COAST FORTRAN FORUM, 
Anaheim, California, February 9, 1976. 

10. ANSI. "Draft Proposed ANS Fortran." SIGPLAN Notices (Vol. 11, No. 
3), March 1976. 

11. Brainerd, W. editor. "Fortran 77." Commun. of ACM (Vol. 21, No. 10), 
October 1978, pp. 806-820. 

12. ANSI. American National Standard programming language FORTRAN, 
ANSI X3.9-1978. 

13. ISO. Programming languages-FORTRAN. ISO 1539-1980. 
14. US Department of Commerce National Bureau of Standards. FORTRAN. 

FIPS PUB 69. September 4, 1980. 
15. CODASYL FDBLC. Fortran Data Base Facility, Journal of Development, 

January 1980. 



DYSTAL: nonnumeric applications of FORTRAN 

by JAMES M. SAKODA 
Brown University 
Providence, Rhode Island 

ABSTRACT 

This paper presents an explanation of how FORTRAN was used to write a list­
processing language, DYSTAL, which uses linear arrays rather than linked word 
lists. Three basic features are dynamic storage allocation, integer array names as 
pointers, and a seven-word head for each array. 

825 





INTRODUCTION 

I was in the Psychology Department of the University of Con­
necticut when IBM set up a computation center at MIT for use 
by New England colleges and universities. I attended the first 
summer institute offered at MIT in 1956, I believe, and strug­
gled through the assembly language programming course. At 
the end ofthe session a young man, who I believe was Sheldon 
Best, got up and announced that they were working on an 
automatic programming system called FORTRAN. The fol­
lowing year when FORTRAN was made available, I attended 
a short course on it in Boston. As a research associate to the 
MIT Computation Center I began to work on statistical pro­
grams in FORTRAN, and since then it has been the only 
language in which I have programmed. 

My encounter with nonnumeric programming came in 1963 
when I attended a summer institute on the use of IPL-VI for 
simulation at the Rand Corporation. The session was orga­
nized by Bert Green. I found that IPL-V provided dynamic 
storage allocation, list-processing operations, such as in­
sertion and deletion, and list-structures and procedures for 
handling them which could not be normany performed in 
FORTRAN. On the other hand, data handling was almost 
nonexistent, input-output was difficult, and even a simple 
device like a checkerboard could not be easily represented by 
linked-word lists. Moves on a checkerboard could not be 
specified by incrementing two subscripts as one could in FOR­
TRAN, but instead lists of possible moves were utilized. Fur­
thermore, programs written in IPL-V were reputed to be 
slow, and I attributed this to the linked-word list which re­
quired sequential rather than direct access to the middle of a 
list. 

LINKED-WORD LISTS VS. LINEAR ARRAYS 

Before the institute was half over I decided to write a list-pro­
cessing language using FORTRAN subroutines and functions. 
I was not aware of Gelernter's FLPL. Joseph Weizenbaum's 
SLlp2 had just been announced, and to me it appeared to be 
IPL-V operations written as a series of FORTRAN subpro­
grams, with a few primitives written in machine language. I 
decided that in order to preserve many of FORTRAN's effi­
cient features lists should not consist of linked words but a 
linear string of words. My task was to find ways of providing 
dynamic storage allocation at runtime, list-processing opera­
tions and creation and operation of arrays connected into tree 
structures. I was able to provide all of these using procedures 
written as FORTRAN functions. I then proceeded to add 
string-processing routines, sorting operations and statistical 
and matrix operations, aiming for a general purpose language. 
The first DYSTAL Manuae was completed in 1956. After the 

DYSTAL: Nonnumeric Applications of FORTRAN 827 

1967 IFIP Working Conference on Symbol Manipulation 
Languages4

, I decided to make arrays relocatable, using a 
directory to hold the names of arrays and allowing arrays to 
move to a disk file as room in memory was depleted. A man­
ual incorporating this improvement was put together in 19705

• 

My approach was that of an amateur, unaware of the nice­
ties of computer language design, doing what appeared to be 
necessary to achieve features which FORTRAN did not nor­
mally provide. Much of this would not even be of historical 
significance, since DYSTAL was not widely used. But some of 
it is pertinent to the present-day effort to provide a more 
general-purpose language via FORTRAN. The X3J3 FOR­
TRAN Committee is discussing setting up a core FORTRAN 
and extensions into different application areas. It is my belief 
that the core should be relatively flexible to allow for a vari­
ety of extensions. I would like to point out how I was able to 
make use of FORTRAN IV to accomplish unFORTRAN-like 
operations, while integrating numeric and nonnumeric 
procedures. 

ESSENTIAL FEATURES 

Three features were important to my effort to provide list­
processing and list-structuring operations in FORTRAN. The 
first was dynamic storage allocation. The second was the 
name of an array which was separate from its content. In 
FORTRAN a variable, whether subscripted or note, referred 
to its content or value. To create tree structures or to chain 
arrays it was necessary to be able to use names of arrays as 
pointers. This called for a new data type-array name-which 
was different from integer and real variables. The third fea­
ture was required to provide the flexibility inherent in linked­
word lists. I found this in the five-word head, which I later 
increased to seven words. These features were not indepen­
dent of one another. I began with dynamic storage allocation, 
which brought into play the need to keep track of the location 
of an array and its features. 

DYNAMIC STORAGE ALLOCATION 

To implement dynamic storage allocation of linear arrays a 
single storage area was created and from it all arrays were 
allocated at runtime. To accomplish this three variables were 
dimensioned a maximum amount and made equivalent to one 
another and stored in COMMON. Later a disk file was added 
when arrays were made relocatable: 

DIMENSION LOT (5000), FLOT (5000), GLOT (5000) 
EQUIVALENCE (LOT, FLOT, GLOT) 
COMMONGLOT 
DEFINE FILE 4 (1000, 80, U, JFI) 



828 National Computer Conference, 1982 

The equivalencing of the three arrays made it possible to cut 
out any type of array from the same storage area and even to 
store different types of variables on the same array. The 
EQUIVALENCE statement therefore played a central role in 
providing a flexible dynamic allocation system. The use of 
COMMON allowed each function to have access to the entire 
dynamic storage area without need to enter LOT or FLOT as 
arguments each time. GLOT was placed in COMMON to fool 
the compiler into believing that LOT and FLOT in COM­
MON were not being modified by a FORTRAN function. 
This rigid requirement was encountered in Basic FORTRAN 
when working with the IBM 1130 computer, and I would 
deem that as overprotection of the user. He is better served by 
permissiveness to change values in COMMON as needed. 

ARRAY NAME 

It was the development of dynamic storage allocation that 
permitted and also required a name separate from the content 
of the array. It was necessary to keep track of the position 
within LOT or FLOT where the next array was to start. This 
location was returned and used as the name of the array. If 
LOCA was the name of an array, LOT (LOCA + 1) or FLOT 
(LOCA + 1) referred to the value of the first word of that 
array. Thus LOT and FLOT came to mean "the content of' 
a word at a given location within the dynamic storage area. In 
the meantime, it was possible to use LOCA as a pointer to the 
array and store it on other arrays, making possible chains of 
arrays or tree structures. Below is shown a simple tree struc­
ture with an array called NAME holding the names of three 
arrays, LSTA, LSTB, LSTC. These in turn hold character 
strings, which have been read into created arrays: 

NAME: LSTA, LSTB, LSTC 
LSTA: D, 0, G . 
LSTB: C, A, T . 
LSTC: H, 0, R, S, E 

It was a great day when I realized that to create a tree struc­
ture it did not matter where the arrays were stored. All that 
was necessary was to be able to store array names on the same 
name array. 

Arrays were later made relocatable and an array called 
MAP served as the directory. 

LSTA = MAPL (3, 10) 

created an array named LSTA for real numbers of length 10. 
The name of the array was then the location on the directory. 
The directory in turn held the current location of the array. 

THE HEAD OF AN ARRAY 

I learned the use of the attached head of an array from IPL-V. 
Instead of a limited amount of information, I stored the length 
of the array, the count of items stored on it, the mode of the 
array (1-7), the node to be used to store pointers in creating 

chains of arrays or alternatively as the row size of a matrix, an 
alphabetic identification, a reference count, and the directory 
address. The head was positioned just before the array itself 
so that it could be accessed by means of a zero or negative 
subscript. LOT (LOCA) referred to the array counter, LOT 
(LOCA-l) to its length and LOT (LOCA-2) to its mode-i.e. 
the data type stored on the array. To a considerable extent 
list-processing type of operations were performed with the aid 
of information stored in the head of an array. LOAD (WD, 
LSTA) could be used to store a word at the end of the line and 
the counter increased by one. FlTEM ( --:- 9, LSTA) was used 
to take off the last word on the list. If the capacity of the array 
was exceeded when using LOAD, the array was moved auto­
matically to a new location and enlarged by 20 percent and the 
routine continued. Routines for insertion and deletion re­
quired that words be moved to make room or eliminate an 
empty position. 

To create and operate list structures names of arrays were 
placed on arrays with the data type of 1 (names of arrays), 
which distinguished them from integer arrays with a data type 
of 2. This distinction was desirable in writing a routine to walk 
through the list structure. Each of the seven modes was asso­
ciated with an input-output format so that it was possible to 
print out an array with the simple instruction IDUMP (LSTA) 
or to print out ali of the arrays in dynamic storage with the 
instruction CALL KDUMP. Thus, when creating an array its 
mode and dimensions were declared numerically and retained 
in the head of each array. In matrix operations, such as matrix 
multiplication, it was not necessary to specify the row and 
column sizes, since these could be calculated from informa­
tion in the head of the arrays involved. The head was made 
possible by implementation of dynamic storage allocation and 
by use of the EQUIVALENCE statment. 

The role of EQUIVALENCE is crucial in adding the head 
to each array. The information in the head could be handled 
as integer variables using LOT. The head could be attached to 
any array, whether they held integer, real or literal words. In 
developing DYSTAL for the IBM 1130 using Basic FOR­
TRAN, I managed to equivalence two-byte integers with 
four-byte real words. I did not get around to adding double­
precision words as data types, but that could have been man­
aged. The ability to equivalence different data types and the 
addition of a head to each array greatly contributed to re­
lieving the programmer of many bookkeeping chores. 

RECURSION 

FORTRAN subroutines are not recursive-i.e. they are not 
allowed to call themselves. Recursive routines are desirable in 
symbolic manipulation of formulas and in tracing through list 
structures. Recursion can be simulated in DYSTAL using the 
approach used by IPL-V. Within a procedure dynamic storage 
allocation can be used to provide a pushdown stack to store 
intermediate information. The necessary operations can then 
be performed in reverse order using information in the push­
down stack. At the end of the procedure the pushdown stack 
can be erased. Here it is dynamic storage allocation which 
permits an unFORTRAN-like operation. 



VIRTUAL MEMORY 

Virtual memory, if it exists, is generally provided by the com­
puter system rather than by a compiler for a particular lan­
guage. For smaller machines, however, virtual memory is 
generally not available, and using FORTRAN to provide it 
greatly adds to the flexibility of writing and running large 
programs. The implementation of virtual memory required 
the setting up of a directory as an array to hold the current 
location of each array. This could be in memory or on a disk 
file. Three types of arrays were distinguished: permanent ar­
rays, which remained in memory at the low end of the storage 
area, temporary arrays which were created at the upper end, 
and semi-permanent ones which began where the permanent 
ones ended. When the free space reached the end of the 
storage space, it was allowed to wrap around to the beginning 
of the semipermanent arrays. Thus it was possible to move 
whole arrays each time to the disk file without fragmenting the 
storage space. Virtual memory also neatly solved the problem 
of garbage collection, since it was possible to allow unwanted 
arrays to move to the disk file and remain there. 

ACCESS TO ARRAY ELEMENTS 

Creating a name of an array required adding its location to the 
subscript for LOT or FLOT. Making the arrays relocatable 
further complicated the problem of access. When an array was 
created its name was saved in a FORTRAN variable or placed 
on an array: 

LSTA = MAPL (3,10) 

To get its location, the function LOCAL was called:. 

LOCA = LOCAL (LSTA) . 

LOCA could then be used in the subscript of LOT to access 
the Ith element of LSTA: LOT (LOCA + I). 

Retrieval was made simpler, but not efficient, by using re­
trieval functions ITEM (I, LSTA) and FITEM (I, LSTA). For 
storage the function IPUT (X, I, LSTA) was developed. Here 
X is the word to be stored in the Ith position of LSTA. FOR­
TRAN, in spite of its rule that real and dummy arguments 
have to agree in number, order and type, allowed me to use 
IPUT for storing either integers or real words. There were 
further complications when arrays were made relocatable, 
since it was necessary to insure that accessing one array, which 
might be on the disk file, did not kick out another one that was 
needed in the same part of the program. One solution was to 
create such arrays early and declare them to be permanent. 
The other was to clear sufficierit free space to make sure that 
there was sufficient free space for the required arrays. A 
routine called ICHEK (LSTA, LSTB, LOCA, LOCB) brings 
into memory LSTA and LSTB and provides their locations. 
Such procedures were most helpful at the beginning of sub­
routines to insure that both were in memory at the same time. 

My general approach was to write frequently-used sub­
programs as efficiently as possible by subscripting LOT and 
FLOT. Retrieval functions, on the other hand, were used 

DYSTAL: Nonnumeric Applications of FORTRAN 829 

initially to write application programs. There was discussion 
fairly early in the game of the desirability of a precompiler 
which would take the less efficient functions and replace them 
with direct subscripts. 

STRING PROCESSING 

DYSTAL's string processing operations could be applied to 
arrays of single characters or to words. It was hampered by the 
lack of literal constants, and it generally had to be assumed 
that character strings were read into dynamically-created ar­
rays. It was possible to perform the basic operations of hunt­
ing for a character or a string of characters and to remove a 
substring or replace it with another substring. For example, 

LOC = MASK (LSTB, LSTA, I) 

searched for the location of LSTB within LSTA, beginning at 
the Ith position. 

CALL ISWAP (LSTC, N', LSTA, LOC) 

replaced with LSTC, the substring of N characters of LSTA 
beginning at LOC. Character strings stored on DYSTAL ar­
rays had array names which could be placed on name arrays, 
thus making it possible to create list structures, which were 
needed in analyzing sentence structures. As with other data 
types character strings had heads, including the length of the 
array and the current number of characters on it. In DYSTAL 
single characters could be packed into a word or the word 
unpacked into single characters, using integer arithmetic. 

FORTRAN 77 introduced the CHARACTER data type, 
which greatly aids string-processing in FORTRAN. The lit­
eral constant enclosed in quote marks can now be written 
directly into a program. But character strings can no longer be 
equivalenced with other data types, and hence new ways must 
be found to provide character strings with more flexibility, 
including an integer name. One method of doing this is to 
provide a separate dynamic storage area for character strings 
in a CHARACTER data type named CHAR. A function, 
such as LOC ('CAT', CHAR) can be used to store 'CAT' in 
the next available position of CHAR and return as its value 
the beginning and end positions within CHAR, I and J. The 
two numbers can be packed and stored into a single integer 
word: 

LCAT=I * 1000+J 

This integer value, such as 1003, can be stored on arrays 
whose mode specifies names representing character strings. 
Names of such arrays in turn can be placed on name arrays to 
form list structures representing, for example, sentence struc­
tures. Knowing the name ofthe character string, such as 1003, 
it is possible to retrieve the characters through the substring 
reference provided in FORTRAN 77: CHAR (1:3) or its 
equivalent value CHAR (LCAT/1000 : MOD (LCAT,1000)). 
The MOD function returns the remainder term needed as the 
designation of the end of the substring. In sorting the strings 
of characters into alphabetic order, it is possible to compare 



830 National Computer Conference, 1982 

character strings, but move the positions of the names of the 
strings rather than the strings themselves. Here again dynamic 
storage allocation produces a reference to the position within 
the area which can be treated as an integer name. 

PERMANENT FILE 

A more recent addition to DYSTAL has been a save file and 
get file instructions to save the entire dynamic storage area on 
the disk file at the end of a run and to recall the same storage 
area at the beginning of another run. All of the important 
words in a program, including names of arrays, can be saved 
from one run of a program to another by equivalencing them 
to a public location in the first parameter array. In my cluster 
analysis-factor analysis program I can first run the clusters, 
examine them, and if satisfied run the program a second time 
beginning from the point where the clustering procedure 
ended. It is also possible to write a program to selectively print 
out any of the arrays in dynamic storage. This facility provides 
a means of periodically updating a complex data structure 
constructed as a tree structure or a chain of arrays. An error 
made during the course of a run may result in the file not being 
properly stored. By saving the previous copy of a file, it is 
possible to go back to an earlier version. 

FORM OF THE DYSTAL LANGUAGE 

A language written as FORTRAN subprograms might be 
imagined as a series of explicit calls to subroutines. Early in 
the development of DYSTAL, I realized the advantage of 
using functions rather than subroutines. Practically every 
DYSTAL routine uses the name of at least one array and it 
was possible to allow the name of one of the arrays to be the 
returned value for most of them, except those retrieving val­
ues from an array. This permitted the nesting of functions 
within a line of the program. This gave DYSTAL a function 
form of specifying a series of procedures. For example, to 
create an array, read 10 words into it and print it out one could 
write: 

LSTA = IDUMP (LRD (NRD, 1, 10, (MAPL (3, 10») 

The matrix operation 

can be written in DYSTAL as 

MATN = IDUMP (MPTRA (MTRAN (ICOPY (MATT», 
MINV (MPTRA (MATT, MATT, 0», 0» 

MPTRA performs matrix multiplication of the first array by 
the transpose of the second and stores the resulting matrix in 
a newly created array and returns the name of this array. 
Although the function form is somewhat confusing because of 
the many parentheses, it does allow the stringing together of 
several routines on a single line. One can easily see that this 
ability is dependent upon the use of an integer name for an 
array. The nesting of functions makes the one-line arithmetic 
function quite useful. When the returned value of a function 
is not needed FORTRAN allows the use of the explicit 
CALL. For example, one can write CALL IDUMP (LSTA) 
even though IDUMP is a function with a returned value. 

CONCLUDING REMARKS 

DYSTAL used linear arrays in place of linked words and was 
therefore better able to take advantage of FORTRAN's de­
sirable features--flexible input-output operations, use of sub­
scripts, use of two-dimensional arrays, and arithmetic capa­
bilities. The development of DYSTAL as a general purpose 
language encompassing nonnumerical procedures was de­
pendent upon dynamic storage allocation, an integer name for 
arrays, the provision of an ample head for each created array. 
To develop these features there was heavy reliance on flex­
ibilities in FORTRAN IV, especially the equivalencing of 
different data types. The X3J3 FORTRAN standards commit­
tee is proposing a core FORTRAN to be combined with mod­
ules in different application areas. According to its minutes, 
it hopes to eliminate EQUIVALENCE and COMMON from 
core FORTRAN. I think that this would be a serious mistake 
if the core is meant to serve as a basis for a series of more 
specialized languages. The core should remain as flexible as 
possible, and EQUIVALENCE and COMMON promote 
flexibility in an important way. Those not desiring the flex­
ibility can always avoid the use of these features. 

REFERENCES 

1. Sammet, Jean E. Programming Languages. Englewood Cliffs, New Jersey: 
Prentice-Hall, 1965. 

2. Weizenbaum, J. Symmetric List Processor. Sunnyvale, California: Comput­
er Department, General Electric, 1963. 

3. Sakoda, James M. DYSTAL Manual. Providence, Rhode Island: Depart­
ment of Sociology and Anthropology, Brown University, 1965. 

4. Bobrow, J. G., editor. Symbol Manipulation Languages and Techniques. 
Amsterdam: North Holland, 1968. 

5. Sakoda, James M. DYSTAL Manual. Providence, Rhode Island: Depart­
ment of Sociology, Brown University, 1970. 



1982 NATIONAL COMPUTER CONFERENCE COMMITTEES 

Chairman 
Howard L. Morgan 
The Wharton School 
Philadelphia, PA 

Vice-Chairman 
Eric K. Clemons 
The Wharton School 
Philadelphia, PA 

Members 
Gene P. Altshuler 
Peat, Marwick, Mitchell & Co. 
New York, NY 

O. Peter Buneman 
The Moore School 
Philadelphia, PA 

Conference Chairman 
Russell K. Brown 
Brown and Associates, Ltd. 
Houston, TX 

Program Chairman 
Howard L. Morgan 
The Wharton School 
Philadelphia, P A 

Vice-Chairman-Program 
Robert R. Stirling 
IBM Corporation 
White Plains, NY 

Film Forum Chairman 
Eddie Truncellito 
Schlumberger Well Services 
Houston, TX 

Handicapped Facilities Chairperson 
Ms. Kerry A. Baer 
IBM Corporation 
Houston, TX 

PROGRAM COMMITIEE 

James E. Emery 
The Wharton School 
Philadelphia, PA 

Dennis Frailey 
Texas Instruments 
Austin, TX 

Robert Frankston 
Software Arts, Inc. 
Cambridge, MA 

Randall Jensen 
Hughes Aircraft Co. 
Los Angeles, CA 

Beverly K. Kahn 
Boston University 
Boston, MA 

Alan N. Smith 
Atlantic Richfield Co. 
Los Angeles, CA 

Amy D. Wohl 
Advanced Office Concepts 
Bala Cynwyd, PA 

AFIPS Liaison 
Sam Lippman 
AFIPS 
Arlington , VA 

CONFERENCE STEERING COMMITTEE 

Registration Chairman 
Mr. Lynn Hobson 
Houston Lighting & Power 
Houston, TX 

NCC Liaison Program 
Harvey L. Garner 
The Moore School 
Philadelphia, PA 

Vice-Chairman, Promotion 
Robert J. Gemignani 
Vallen Corporation 
Houston, TX 

Operations Chairman 
Gene Giblin 
Southwest Bancshares 
Houston, TX 

Transportation Chairman 
Bob Griffin 
Houston Transit Consultants 
Houston, TX 

831 

Exhibits Chairman 
Dave Nelson 
IBM Corporation 
Houston, TX 

Executive Director of AFIPS 
Paul Raisig 
AFIPS 
Arlington, VA 

Plenary Coordinator 
Susan L. Rosenbaum 
AT&T 
New Brunswick, NJ 

NCC Liaison-Operations/Promotion 
W. H. Sitter 
Tenneco, Inc. 
Houston, TX 

Socieiy Liaison 
Carey H. Snyder 
Texaco, Inc. 
Houston, TX 



Special Activities Chairperson 
Linda Vermillion 
Hydril Company 
Houston, TX 

Fiscal Officer 
Jesse B. Tutor 
Arthur Anderson & Company 
Houston, TX 

Conference Coordinator 
Fred Boecker 
Tenneco, Inc. 
Houston, TX 

Printing Chairman 
J. W. Burchfield 
Moore Paper Companies, Inc. 
Houston, TX 

Chairman 
Eddie Truncellito 
Schlumberger Well Services 
Houston, TX 

Members 
Cheryl Culifer 
DELTAK, Inc. 
Houston, TX 

Chairman 
Gene Giblin 
Southwest Bancshares 
Houston, TX 

Members 
Sigman Byrd 
Texas Commerce Bank 
Houston, TX 

Tom Houston 
First City East 
Houston, TX 

Michael Kwiatkowski 
Dresser Industries 
Houston. TX 

Professional Development 
Seminar Chairman 
Joseph S. Campisi 
Aetna Life and Casualty 
Hartford, CT 

Protocol Chairman 
Albert K. Hawkes 
Sargent & Lundy Engineers 
Chicago, IL 

National Promotion Chairman 
Alex Hoffman 
Consultant 
Fort Worth, TX 

Pioneer Day Chairman 
J. A. N. Lee 
Virginia Polytechnic Institute & 

State University 
Blacksburg, VA 

FILM FORUM COMMITTEE 

Sal Menez 
Schlumberger Well Services 
Houston, TX 

Stephanie Sample 
DELTAK, Inc. 
Houston, TX 

OPERATIONS COMMITTEE 

Bob Michael 
First City East 
Houston, TX 

Craig Sherrill 
Allied Bank of Texas 
Houston, TX 

Jerry Swan 
First City East 
Houston, TX 

Tom Taylor 
First City East 
Houston, TX 

832 

AFIPS Liaison 
Sam Lippman 
AFIPS 
Arlington , VA 

Implementation Plan Chairman 
Bill Carlisle 
Southwestern Bell Telephone Company 
Houston, TX 

Vice-Chairman, Operations 
Bob Coker 
Houston, TX 

Local Promotion Chairman 
Walter Ulrich 
Walter E. Ulrich Consulting 
Houston, TX 

Joe Van Hook 
OXY Systems 
Houston, TX 

Keitha Tullos 
First City East 
Houston, TX 

Bob Voelker 
First International Bank 
Houston, TX 



Chairman 
J. A. N. Lee 
Virginia Polytechnic Institute and 

State University 
Blacksburg, VA 

Members 
William Aspray 
Williams College 
Williamstown, MA 

Walter Brainerd 
University of New Mexico 
Los Alamos, NM 

Scott Guthrie 
Schlumberger Well Services 
Houston, TX 

PIONEER DAY COMMITTEE 

Daniel Leeson 
IBM Corporation 
San Jose, CA 

Jack Palmer 
IBM Technical History Project 
Yorktown Heights, NY 

Steven J. Shepherd 
Tenneco Oil Co. 
Houston, TX 

Henry Tropp 
Humboldt State University 
Arcata, CA 

Jerrold L. Wagener 
Amoco Production Research 
Tulsa, OK 

Thomas C. Wesselkamper 
Hunter College 
New York, NY 

Richard L. Wexelblat 
Sperry-Univac 
Blue Bell, PA 

PROFESSIONAL DEVELOPMENT SEMINAR COMMITTEE 

Chairman 
Joseph S. Campisi 
Aetna Life & Casualty 
Hartford, CT 

Members 
Richard K. Edwards 
Aetna Life & Casualty 
Hartford, CT 

George R. Eggert 
DCASR, Department of Defense 
Chicago,IL 

Promotions Committee Vice-Chairman 
Robert J. Gemignani 
Vallen Corporation 
Houston, TX 

National Promotion Chairman 
Alex Hoffman 
Consultant 

. Fort Worth, TX 

Robert J. Garabedian 
Aetna Life & Casualty 
Hartford, CT 

Lowry McKee 
Link Division, Singer 
Houston, TX 

Philip Palermo 
Connecticut General Insurance 

Company 
Hartford, CT 

PROMOTIONS COMMITTEE 

Local Promotion Chairman 
Walter Ulrich 
Walter E. Ulrich Consulting 
Houston, TX 

Members-Promotions Committee 
Bob Griffin 
Houston Transit Consultants 
Houston, TX 

Albert K. Hawkes 
Sargent & Lundy Engineers 
Chicago,IL 

833 

Jean M. Smith 
Aetna Life & Casualty 
Hartford, CT 

Carey H. Snyder 
Texaco Inc. 
Houston, TX 

Susan Tourtellot 
Houston Convention Bureau 
Houston, TX 

Members-National Promotions Committee 
John di Targiana 
Gillette Co. 
Boston, MA 



James V. M. Hale 
Coca-Cola USA 
Atlanta, GA 

John Hamblen 
National Bureau of Standards 
Washington, DC 

Phillip R. Jones 
General Dynamics Corporation 
Clayton, MO 

Kyu Y. Lee 
Seattle University 
Seattle, WA 

Beverly McMurrey 
Consultant 
Houston, TX 

Chairperson 
Susan Rosenbaum 
AT&T 
Piscataway, NJ 

Members 
Mary Charles Blakebrough 
IBM 
Poughkeepsie, NY 

Chairman 
Albert K. Hawkes 
Sargent & Lundy Engineers 
Chicago,IL 

Members 
Glenn B. Burkhardt 
Texas Instruments 
Dallas, TX 

Chairman 
Linda U. Vermillion 
Hydril Company 
Houston, TX 

Members 
Claudia Bryan 
Fluor Ocean Services, Inc. 
Houston, TX 

E. Z. Million 
Million Associates 
Norman, OK 

Bill Rieken 
Consultant 
San Mateo, CA 

Members-Local Promotions 
Committee 

Bob Brejcha 
Houston Natural Gas Corporation 
Houston, TX 

Linda Caruso 
Management Systems 
Houston, TX 

Oscar Dugey 
American National Insurance 
Galveston, TX 

PLENARY COMMITTEE 

Ocie M. Gamble 
Sun Gas Co. 
Dallas, TX 

PROTOCOL COMMITTEE 

Hans Puehse 
Fireman's Fund Insurance Companies 
San Rafael, CA 

SPECIAL ACTIVITIES COMMITTEE 

Lucilie Franks 
Lucille Franks & Associates 
Houston, TX 

Marsha M. Kaan 
IBM Corporation 
Houston, TX 

Jo T. Kennedy 
Fayez, Sarofim & Company 
Houston, TX 

834 

Barbara Green 
Office of the City Comptroller 
Houston, TX 

Connie Harris 
Corporate Associates 
Houston, TX 

Sholeh Huber 
City of Houston Health Department 
Houston, TX 

Mark Kellermeyer 
The Cameron Group 
Houston, TX 

Ernie Logan 
Vallen Corporation 
Houston, TX 

William A. Ritchie 
AT&T 
Piscataway, NJ 

Stephen S. Yau 
Northwestern University Technological 

Institute 
Evanston,IL 

Linda Swift 
Houston Lighting & Power Co. 
Houston, TX 

Sara Walsh 
University of Houston/DC 
Houston, TX 



NCC '82 SESSION LEADERS 

Jeanne Adams 
Chair, ANSI X3J3 
Bouider, CO 

Jeffrey S. Augenstein 
University of Miami Medical School 
Miami, FL 

John Backus 
IBM Corporation 
San Francisco, CA 

Roger E. Billings 
Billings Computers 
Independence, MO 

Naomi Lee Bloom 
American Management Systems, Inc. 
New York, NY 

Barry W. Boehm 
TRW Systems, Inc. 
Redondo Beach, CA 

Grady Booch 
Department of Computer Science 
USAF Academy, CO 

Alex Borgida 
Rutgers University 
New Brunswick, NJ 

John W. Brackett 
Softech Microsystems 
San Diego, CA 

Dave Brandin 
SRI International 
Menlo Park, CA 

A. Winsor Brown 
Volition Systems 
Delmar, CA 

J. C. Browne 
University of Texas at Austin 
Austin, TX 

K. M. Chandy 
University of Texas at Austin 
Austin, TX 

Ned Chapin 
InfoSci Inc. 
Menlo Park, CA 

Scott Davidson 
Western Electric Company 
Princeton, NJ 

Carl Davis 
Ballistic Missile Defense Advanced 

Technology Center 
Huntsville, AL 

Michael S. Deutsch 
Hughes Aircraft Company 
Los Angeles, CA 

Henry Dreifus 
The Wharton School 
Philadelphia, PA 

Martha Evens 
Illinois Institute of Technology 
Chicago, IL 

Robert Fenchel 
Xerox Corporation 
EI Segundo, CA 

Robert E. Filman 
Hewlett Packard 
Palo Alto, CA 

Dennis Frailey 
Texas Instruments 
Austin, TX 

Robert C. Gammill 
North Dakota University 
Fargo, ND 

C. F. Gibson 
Index Systems Inc. 
Cambridge, MA 

Sakunthala Gnanamgari 
Siemens Corporation 
Cherry Hill, NJ 

Paul Gray 
Southern Methodist University 
Dallas, TX 

Jerrold M. Grochow 
American Management Systems, Inc. 
Arlington , VA 

835 

Paul Heckel 
Interactive Systems Consultants 
Los Altos, CA 

Alex Hoffman 
Consultant 
Fort Worth, TX 

Lance Hoffman 
George Washington University 
Washington, DC 

Mark A. Holthouse 
The Analytic Sciences Corporation 
Reading, MA 

Portia Isaacson 
Future Computing, Inc. 
Richardson, TX 

Tom H. Johnson 
Nolan, Norton and Co. 
Lexington, MA 

Michael A. Kahn 
Honeywell Information Systems, Inc. 
Billerica, MA 

Steven Kartashev 
DCA, Inc. 
Lincoln, NB 

Svetlana Kartashev 
University of Nebraska 
Lincoln, NB 

Peter G. W. Keen 
MIT/Sloan School of Management 
Cambridge, MA 

Tom Kehler 
Texas Instruments 
Dallas, TX 

Steve E. Kolodney 
Search Group Inc. 
Sacramento, CA 

Ken Kristie 
Motorola, Inc. 
Austin, TX 

Dale Kutnick 
The Yankee Group 
Cambridge, MA 



Richard C. Layer 
-3M 
St. Paul, MN 

Samuel J. Lomonaco 
Institute of Defense Analysis 
Alexandria, VA 

Rita Gail MacAuslan 
Honeywell Information Systems, Inc. 
Billerica, MA 

Vance Mall 
Ada Joint Program Office 
Arlington, VA 

Fred Maryanski 
Digital Equipment Corporation 
Hudson, MA 

Richard Mason 
USC 
Los Angeles, CA 

Charlie McClear 
Motorola, Inc. 
Austin, TX 

Dennis McLeod 
University of Southern California 
Los Angeles, CA 

John McQuillan 
BBN Information Management 

Corporation 
Cambridge, MA 

John F. Meyer 
University of Michigan 
Ann Arbor, MI 

Jim Millar 
Texas Instruments Inc. 
Houston, TX 

Don Minami 
DMA Systems 
Santa Barbara, CA 

Howard L. Morgan 
The Wharton School 
Philadelphia, PA 

Amihai Motro 
University of Southern California 
Los Angeles, CA 

Christian Mueller-Schloer 
Siemens Corporation 
Cherry Hill, NJ 

A. Napier 
University of Houston 
Houston, TX 

Irene Nesbit 
Nesbit Consulting 
Princeton, NJ 

Susan Nycum 
Gaston, Snow and Ely Bartlett 
Palo Alto, CA 

J. Michael Nye 
Marketing Consultants International, Inc. 
Hagerstown, MD 

Bob Patterson 
Microprocessor Operation 
Intel Corporation 
Santa Clara, CA 

Dave Penniman 
OCLC Inc. 
Dublin,OH 

Jock A. Rader 
Hughes Aircraft Co. 
EI Segundo, CA 

Elizabeth D. Rather 
Forth, Inc. 
Hermosa Beach, CA 

David C. Rine 
Western Illinois University 
MacomlJ,IL 

Anne E. Robinson 
SRI International 
Menlo Park, CA 

Patricia Seybold 
The Seybold Report on Office Systems 
Boston, MA 

R. Shatzer 
Sytek, Inc. 
Sunnyvale, CA 

Allen Smith 
Atlantic Richfield Co. 
Los Angeles, CA 

Nancy Stem 
Hofstra University 
Hempstead, NY 

Jim Swager 
Honeywell Information Systems, FSD 
McLean, VA 

836 

Larry Tesler 
Apple Computers 
Cupertino, CA 

Glenn N. Thomas 
Kent State University 
Kent,OH 

Fred Thorlin 
Atari, Inc. 
Sunnyvale, CA 

Rein Tum 
California State University 
Northridge, CA 

Walter Ulrich 
Walter E. Ulrich Consulting 
Houston, TX 

Joseph E. Urban 
University of Southwestern 

Louisiana 
Lafayette, LA 

David Vaskevitch 
Standard Software Ltd. 
Toronto, Ontario, Canada 

Lynn Webber 
Peat, Marwick and Mitchell 
New York, NY 

Evelyn S. Wilk 
Arthur Anderson and Co. 
Chicago,IL 

J ames Winchester 
Hughes Aircraft Company 
Fullerton, CA 

Amy Wohl 
Advanced Office Concepts 
Bala Cynwyd, PA 

S. Bing Yao 
University of Maryland 
College Park, MD 

Daniel C. Zatyko 
Zatyko Associates 
Santa Ana, CA 



Altshuler, Gene 
Ariav, Gad 
Astrahan, Morton 

Bartol, Ray 
Beller, Aaron 
Buneman, Peter 

Chang, Mike 
Chapin, Ned 
Clemons, Eric 
Couger, Dan 

Dreifus, Henry 

Emery, James 
Evens, Martha 

Frailey, Dennis 
Frankston, Bob 
Franta, William 

NCC '82 REFEREES 

Gerritsen, Rob 
Ginsberg, Ralph 
Gnanamgari, Sakunthala 
Greenfield, Arnold 

Hanks, Steve 
Hsiao, David 
Hoffman, Lance 

Jaramillo, P. 
Jensen, Randall 

Kahn, Beverly 
Kartashev, Steven I. 
Kartashev, Svetlana P. 
Kuck, D. 

Levin, Dan 

Miller, Kip 
Morgan, Howard 

837 

Prywes, Noah 

Root, David 

Shneiderman, Ben 
Smith, Alan 
Smith, D. 

Webber, Bonnie 
Wohl, Amy 

Yianalos, Peter 



NCC '82 SPEAKERS AND PANELISTS 

Alford, Mack Gaggle, Michael Mathis; Robert 
Allen, Cheryl C. Galitz, Wilbert O. Mayfield, Anne M. 
Allen, Dan Gambino, Thomas McCracken, Daniel 
Annaratone, Marco Gibbons, Fred M. McDonald, Walter R. 
Aronofsky, Julius Girishparikh, Mr. McKenney, James J. 
Augenstein, J. Goldberg, Richard McLeod, Dennis 

Goldstein, David K. McPherson, John 
Backus, John Goldstine, Herman H. Meserve, Bill 
Bandy, Jim Gottlieb, Alan Millar, Jim 
Bair, James Grabendike, K. Miller, Ed 
Balzer, Bob Gravina, Art Miller, Mark 
Barr, Avron Greenfield, Martin Millett, Mark A. 
Bartlett, Joel Grey, Paul Mills, Dick 
Belady, Les Greynolds, Elbert B. Mills, Nancy R. 
Bemmu, Robert Grochow, Jerrold M. Morgan, David 
Blank, George Morse, John E. 
Block, Dennis Hardgrave, Terry Moss, Sam 
Bode, Mishe Harper, Thomas Motro, Amihai 
Boehm, Barry Harris, Kim Munson, John A. 
Bowles, Kenneth Harris, Larry Murphy, Catherine M. 
Brandin, D. Harris, Richard D. Myer, Theodore H. 
Bridge, Ed Heckel, Paul 
Brinklin, Dan Heimbigner, Dennis N ageshwar, Srini 
Bronsema, Gloria Heising, William Nelson, Dave 
Brosgol, Benjamin M. Henry, Glen Novotny, Eric 
Buchanan, Bruce Hughes, Robert Nutt, Roy 
Burr, Bill Huston, Bill 

Cheatham, Thomas E. O'Connor, Rob 
Ignizio, James P. Overgaard, Mark Cheng, Ray 

Clippinger, Richard Januelapis, Victor 
Palmer, David F. Colburn, Don Jaworski, Joe 
Parker, D. Condon, Maureen Johnson, Dave 

Couger, Daniel J. Juliussen, Egil Paul, Charles 
Currie, Edward Payne, John 

Pearson, Allen L. Kaczowka, Peter 
Peatrowsky, Ed Davis, Carl Kameny, Iris 
Peddecord, Tom Davidson, Charles Kane, Gerald R. 
Perkins, Thomas E. Davidson, John Kay, Marin 
Perry, Rich Denning, Peter Keplinger, Mike 
Peterson, Robert W. Deutsch, Don Kim, K. 
Pogran, Zen Diesem, John King, John 
Phillips, Betty A. Doelling, Arthur Koskinson, Joyce 
Price, Lynne Dowlin, Ken Krieger, Mark 

Driscoll, James Purtell, John 

Laffitte, David S. 
Quantz, Paul Eckert, J. Presper Landau, Herb 

Estridge, William O. Lee, Kyu Y. 
Everest, Gordon Lin, Peter Ramamoorthy, C. V. 

Lomuto, Nico Rattner, Justin 
Fain, Robert L. Lowenthal, Eugene Ray, Clifton V. 
Farber, Dave Reggia, James 
Fisher, Gerald Maples, Michael J. Reiser, Dick 
Fisher, Paul Marcellino, James J. Rolander, Tom 
Finin, Tim Maresca, Gerry Rosenblatt, Bruce 
Fox, Mark Markkula, Mike Rosen, Benjamin M. 
Freed, Roy Maryanski, Fred Ryan, Hugh 

838 



Sacerdotim, Earl 
Sakoda, James 
Sami, Maria Giovanna 
Sanchez, James 
Schklain, Nicholas 
Scureman, M. 
Shaw, Ward 
Simonyi, Charles 
Singh, Jitendra 
Slater, Dan 
Smith, Dave 
Smith, John 
Smith, Raoul N. 
Smith, Robert 
Smith, Steve 
Soloway, Elliot 
Spradlin, E. 
Stallard, Jim 
Stem, Sal 
Stuewald, David C. 

Sutherland, Duncan 
Swanson, Burton E. 

Tennant, Harry 
Tesler, Larry 
Thawley, Tom 
Thorndyke, Perry 
Tobes, Roselte 
Turner, Byron 

Urban, Joseph E. 

Vick, Charles R. 

Wagman, David S. 
Wagner-Korne, Anne 
Walter, Chris 
Ware, W. H. 
Ware, Willis 
Warner, Silas 

839 

Weems, Joe 
Wegner, Peter 
Weingarten, Fred 
Weinreb, Daniel 
Weissman, Larry 
Wensley, John H. 
Wilk, Chuck 
Wiekes, Maurice 
Williams, Robert D. 
Wilson, Diane 
Wong, Harry 
Woteki, Tom H. 

Yates, Jean 
Yeh, Raymond T. 
Yelowitz, Larry 

Zeldin, Saybean 
Ziehe, Theodore W. 
Zloof, Moshe 



Agrawal, Dharma P., 135,239 
Alexander, William, 257 
Allen, F. E., 805 
Amamiya, Makoto, 143 
Amsler, Robert A., 657 
Annaratone, M., 117 

Batcher, Kenneth E., 185 
Beech, David, 493 
Berner, R. W., 811 
Berg, Helmut K., 3 
Berra, P. Bruce, 125 
Berry, R., 251 
Bhuyan, Laxmi N., 135 
Blackman, Maurice, 785, 793 
Bloom, Naomi Lee, 539 
Bowles, Kenneth L., 327 
Brice, Richard, 257 
Browne, J. c., 217 

Callender, E. David, 381 
Cardenas, Alfonso F., 341 
Center, John W., 399 
Chandy, K. M., 251 
Cheng, Ray, 775 
Choudhari, Ramesh, 501 
Corbin, Jerry L., 81 
Cox, David A., 555 

Davidson, Edward, 639 
Davis, Carl, 167 
Deutsch, Michael S., 301 
DeWitt, David J., 207 
Dumse, Randy M., 73 

Elwell, James F., 309 
Estrin, Gerald, 369 

Filman, Robert E., 671 
Frank, G. A., 225 
Franta, William R., 589 
Friedland, Dina, 207 
Friedman, Daniel P., 671 
Fujino, Seiji, 767 

Gammill, Robert, 759 
Goodman, Aaron M., 359 
Goyal, Ambuj, 153 
Grafton, William P., 341 
Greenawalt, E. M., 225 
Greenfield, Martin N., 817 
Grochow, Jerrold M., 389 

Hardgrave, W. Terry, 571 
Harslem, Eric, 515 
Hartsough, Christopher, 3-81 
Hasegawa, Ryuzo, 143 

AUTHOR INDEX 

Hayes, Philip J., 469 
Hicks, Anthony, 697 
Hiromoto, Robert, 233 
Hoffman, Lance J., 461 
Honda, Masanori, 767 
Hsu, Khai Li, 727 
Hull, Jonathan J., 501 
Huston, Bill, 19, 85 
Hwang, C. Jinshong, 735 

Ignizio, James P., 193 
Irby, Charles, 515 

Jackson, James E., 549 

Kamibayashi, Noriyuki, 605 
Kartashev, Steven I., 103, 167 
Kartashev, Svetlana P., 103, 167 
Keller, Tom W., 649 
Kimball, Ralph, 515 
Kohn, Leslie, 199 
Koll, Matthew B., 571 
Kulkarni, A. V., 225 
Kurose, James F., 273 

Lakshmi, M. Seetha, 649 
Le Mer, Eric, 263 
Levin, K. Dan, 691 
Lin, Ching-Fang, 727 
Lipovski, G. Jack, 153 
Liu, J. W. S., 775 
Liuzzi, Raymond, 125 
Luo, Dawei, 617 
Lybrook, C. W. 415 

MacNair, Edward A.,273 
Malek, Miroslaw, 153 
Mark, William, 475 
Maryanski, Fred, 429 
Mateosian, Richard, 53 
McKelvey, Terrence R., 239 
McMahon, Edith M., 319 
Mikami, Hirohide, 143 
Minami, Don M., 11 
Misra, J., 251 
Mooney, James D., 529 
Morris, Richard V., 381 
Mueller-Schloer, Christian, 487 
Murphy, Catherine M., 193 

Nakamura, Osamu, 143 
Nance, Richard E., 293 
Neugent, William, 441 
Neuse, D., 251 

Okawa, Yoshikuni, 713 

840 

Palmer, David F., 193 
Pathak, Janak, 53 
Peatrowsky, Ed, 67 
Peterson, James L., 665 
Plamondon, Rejean 749 
Potochnik, John R., 595 

Rahimi, Said K., 589 
Rao, Prakash, 3 
Raymond, Janis G., 281 
Rich, Elaine A., 481 
Robillard, Pierre N., 749 
Rosenberg, Saul, 287 
Roth, Richard L., 351 
Ryan, Hugh, 785, 793 
Ryan, John R., 393 

Sakoda, James M., 825 
Salazar, Sandra B., 571 
Sami, M. G., 117 
Santhanam, Viswanathan, 595 
Sauer, Charles H., 273 
Seo, Kazuo, 605 
Shapiro, Michael, 95 
Shneiderman, Ben, 579 
Shriver, Bruce D., 3 
Smith, C. U., 217 
Smith, David Canfield, 515 
Srihari, Sargur N., 501 
Standish, Thomas A., 333 
Stockton, John F., 29 

Taute, Barbara J., 409 
Thomas, Glenn, 579 
Thorp, Lynn, 759 
Tong, Fu, 627 
Turn, Rein, 449 

Vaskevitch, David, 509 
Vinberg, Anders, 719 
Vincent, David R., 37 

Wagner, Neal R., 487 
Wah, Benjamin W., 697 
Waldrop, James H., 363 
Warner, Walter P., 293 
Winchester, James W., 369 

Xia, Daozhong, 617 

Yada, Koji, 767 
Yamamoto, Yuzo, 381 
Yao, S. Bing, 617, 627 

Zhou, Chaochen, 679 
Zingale, Tony, 59 
Zvegintzov, Nicholas, 561 



AMERICAN FEDERATION OF INFORMATION 
PROCESSING SOCIETIES, INC. (AFIPS) 

President 

J. Ralph Leatherman 
Hughes Tool Company 
Houston, TX 

Vice President 

Sylvia Charp 
The School District of Philadelphia 
Philadelphia, PA 

AFIPS Immediate Past President 

Albert S. Hoagland 
IBM Corporation 
San Jose, CA 

American Society for Information 
Science (ASIS) 

James N. Cretsos 
Merrell Dow Pharmaceuticals, Inc. 
Cincinnati, OH 

American Statistical Association (ASA) 

George Minich 
World Bank 
Washington, DC 

Association for Computational 
Linguistics (ACL) 

Donald E. Walker 
SRI International 
Menlo Park, CA 

Association for Computing Machinery 
(ACM) 

Peter J. Denning 
Purdue University 
West Lafayette, IN 

Aaron Finerman 
University of Michigan 
Ann Arbor, MI 

Raymond E. Miller 
Georgia Institute of Technology 
Atlanta, GA 

OFFICERS 

Treasurer 

Walter A. Johnson 
Consolidated Papers, Inc. 
Wisconsin Rapids, WI 

Secretary 

Arthur C. Lumb 
Procter & Gamble Company 
Cincinnati,OH 

BOARD OF DIRECTORS 

Association for Educational Data 
Systems (AEDS) 

John Hamblen 
National Bureau of Standards 
Washington, DC 

Data Processing lvfanagement 
Association (DPMA) 

P. Roger Fenwick 
New York Telephone 
New York, NY 

Robert A. Finke 
Cummins Engine Company 
Columbus, IN 

Robert J. Marrigan 
Mail Communications, Inc. 
Everett, MA 

IEEE-Computer Society 

Rolland B. Arndt 
Sperry Univac 
St. Paul, MN 

Oscar N. Garcia 
University of South Florida 
Tampa, FL 

Steven S. Yau 
Northwestern University 
Evanston,IL 

Instrument Society of America (ISA) 

Chun H. Cho 
Fisher Controls Company 
West Marshalltown, IA 

841 

Executive Director 

Paul J. Raisig 
AFIPS 
Arlington, VA 

Society for Computer Simulation (SCS) 

Per Holst 
The Foxboro Company 
Foxboro, MA 

Society for Industrial and Applied 
ldathematics (SIAl-d) 

Donald K. Thomsen 
SIAM Institute for Mathematics & 

Society 
New Canaan, CT 

Society for Information Display (SID) 

Carlo Crocetti 
Rome Air Development CenterlXP 
Griffis Air Force Base, NY 



NATIONAL COMPUTER CONFERENCE BOARD MEMBERS 

Chairman and ACM Representative 

Seymour Wolfson 
Wayne State University 
Detroit, MI 

Vice Chairman and SCS Representative 

Carl Malstrom 
North Carolina State University 
Raleigh, NC 

Small Societies Representative 

George Minich 
World Bank 
Washington, DC 

Treasurer and AFIPS Representative 

Walter Johnson 
Consolidated Papers, Inc. 
Wisconsin Rapids, WI 

AFIPS Representative 

J. Ralph Leatherman 
Hughes Tool Company 
Houston, TX 

AFIPS Representative 

Sylvia Charp 
The School District of Philadelphia 
Philadelphia, PA 

Secretary and D P MA Representative 

George Eggert 
Chicago DCASR 
Chicago,IL 

IEEE-CS Representative 

Stanley Winkler 
IBM Corporation 
Armonk, NY 

ACM President-Ex Officio 

Peter J. Denning 
Purdue University 
West Lafayette, IN 

IEEE-CS President-Ex Officio 

Oscar N. Garcia 
University of South Florida 
Tampa, FL 

DPMA President-Ex Officio 

Donald E. Price 
Siena College 
Rocklin, CA 

SCS President-Ex Officio 

Stewart I. Schlesinger 
The Aerospace Corporation 
Los Angeles, CA 

NCCC Chairman-Ex Officio 

Irwin J. Sitkin 
Aetna Life & Casualty 
Hartford, CT 

lAP Chairman-Ex Officio 

Dallas Talley 
Qantel Corporation 
Hayward, CA 

NATIONAL COMPUTER CONFERENCE COMMITTEE OF THE NCC BOARD 

Chairman 

Irwin J. Sitkin 
Aetna Life & Casualty 
Hartford, CT 

Secretary 

Floyd Harris 
Life of Georgia 
Atlanta, GA 

Members 

Morton M. Astrahan 
IBM Research Laboratory 
San Jose, CA 

Harvey L. Garner 
Moore School of Electrical Engineering 
University of Pennsylvania 
Philadelphia, PA 

Albert K. Hawkes 
Sargent & Lundy Engineers 
Chicago,IL 

Jerry Koory 
Rand Corporation 
Santa Monica, CA 

William Sitter 
Tenneco, Inc. 
Houston, TX 

Arnold P. Smith 
IBM Corporation 
White Plains, NY 

Robert Spieker 
AT&T Company 
New Brunswick, NJ 

NCC '82 Chairman 

Russell K. Brown 
Brown and Associates, Ltd. 
Houston, TX 

842 

NCC '83 Chairman 

Donald Medley 
California State Polytechnic University 
Pomona, CA 

OAC '83 Chairman 

James F. Towsen 
Harrisburg, P A 



NATIONAL COMPUTER CONFERENCE BOARD INDUSTRY ADVISORY PANEL 

Chairman 
Dallas Talley 
Qantel Corporation 
Hayward, CA 

Members 
David Bowman 
Roanoke, TX 

Jack Davis 
Harris Corporation 
Melbourne, FL 

Frederick M. Hoar 
Fairchild Camera and 

Instrument Company 
Mountain View, CA 

OFFICE OF EXECUTWE DIRECTOR 

Executive Director 
Paul J. Raisig 

Executive Secretary 
Joan Tackett 

Public Information Secretary 
Marion Baskin 

FINANCE AND ADMINISTRATION 

Director, Finance and Administration 
Janis Miller 

Accountant 
Saryratha Thach 

Bookkeeper 
Carrol Reid 

Administrative Manager 
Mary A. Dix 

Administrative Coordinator 
Ken Fields 

Analyst 
Ramsey Harris 

S. A. Lanzarotta 
Xerox Corporation 
EI Segundo, CA 

William Lonergan 
Xerox Development 

Corporation 
Beverly Hills, CA 

Richard Mau 
Sperry Rand Corporation 
New York, NY 

Jack McMahon 
IBM Corporation 
Armonk, NY 

AFIPS HEADQUARTERS STAFF 

Secretary! Receptionist 
Terry DiMurro. 

AFIPS PRESS 

AFIPS Press Director 
Christopher N. Hoelzel 

Fulfillment Administrator 
Olive Shilland 

Secretary 
Sharon Lee Conway 

NCC Copy!Production Editor 
Elizabeth G. Emanuel 

CONFERENCE DEPARTMENT 

Director of Conferences 
James H. Kroell 

Administrative Assistant 
Sue Robinson 

Manager, Conference Operations 
Sam Lippman 

Conference Coordinator 
Margaret Dyer 

843 

Jim Morris 
DATAMATION 
New York, NY 

Herbert Richman 
Data General Corporation 
Westboro, MA 

Gordon Smith 
Memorex Corporation 
Santa Clara, CA 

Conference Secretary 
Wendy Chin 

,\tanager, Exhibit Operations 
Larry J enDings 

Exhibit Operations Secretary 
Jill Newman 

Exhibit Sales Manager, 
Luellen Hoffman 

Exhibit Sales Secretary 
Dennis Smoot 

Marketing Manager 
Betty Lou Cooke 

Marketing Coordinator 
Debbie Kalbfleisch 

Marketing Secretary 
Lori Keller 

COMMUNICATIONS DEPARTMENT 

Director of Communications 
John Gilbert 

Research Associate 
Ellen Law 

Secretary 
Patty Mayo 




	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694
	695
	696
	697
	698
	699
	700
	701
	702
	703
	704
	705
	706
	707
	708
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719
	720
	721
	722
	723
	724
	725
	726
	727
	728
	729
	730
	731
	732
	733
	734
	735
	736
	737
	738
	739
	740
	741
	742
	743
	744
	745
	746
	747
	748
	749
	750
	751
	752
	753
	754
	755
	756
	757
	758
	759
	760
	761
	762
	763
	764
	765
	766
	767
	768
	769
	770
	771
	772
	773
	774
	775
	776
	777
	778
	779
	780
	781
	782
	783
	784
	785
	786
	787
	788
	789
	790
	791
	792
	793
	794
	795
	796
	797
	798
	799
	800
	801
	802
	803
	804
	805
	806
	807
	808
	809
	810
	811
	812
	813
	814
	815
	816
	817
	818
	819
	820
	821
	822
	823
	824
	825
	826
	827
	828
	829
	830
	831
	832
	833
	834
	835
	836
	837
	838
	839
	840
	841
	842
	843
	844

